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therefore in af?; therefore, ”y/(b,gk) holds in é’ for

some k in §1,...,r§ which implies that

gke(a1,b]I?U‘[b,a2)£_ . This is a contradiction since

..(a1,b]u& U [b’aZ)Iy does not meet A,

of lattices
For a chain 56’=(B° V,A) and a family ((% ' séS)Asuch

that each lattice O( has a least element O and a greatest

element 1_ where SC{(a b) ' a is covered by b in é}
‘X("fy’((%s\ SES) ) denotes the lattice L, where C is

B U U(As— f0.,13 , s€S) and the order in [, is defined by
identifying O(a,b) with a and 1(a,b)' with b , and

preserving the order in & and in each O?S‘.

THEOREM 2. For a complete chain (gand family .(asl SES)




A NOTE ON EQUATIONALLY COMPACT LATTICES

by
David Kelly

O.AIntroduction

The concept of equational compactness was intfoduced by
Jan Mycielski 161, (The definitions aré given in section 1.)
The'main‘result of this note (Theorem 1) is the characteriza-
tion of equationally compact lattices ijlxt, .the class of all
lattices which do not contain af infinite anti-chain, Some
results concerning the equational compactness of arbitrary

lattices are also .presented.

1. Preliminaries
The refer@nce for lattice theory is Birkhoff [1] while

the reference for universal algebrabis Gratzer [3]. A lattice

CX:(A; V, A) is lower continuous (resp., upper continuous) if -
A is Cbmplete and,fof-efery downward (resp., upward ) directed

'set C and a in O(, av/AC = /\(aVc ‘ c €C) (resp.,

aA V=V (a/\é‘ ce€C) ). (By Appendix II of Maeda (51, it .-

suffices to consider onty:chains C in the'prevﬂeuséaéﬁimit30n.)

A lattice is continuous if it is both lower and upper continuous.

An anti;ghain in a lattice is a set in which every tWo distinct

elements are incomparable.

A (universal) algebra _Cﬂvis equationally compact if any.
set of equations with constants in A that is finitely
solvable in Ol is solvable in A (see [6] or 1L71). An algebra

| Ol is M -variable equationally compact (where is a cardinal)

if .any. set of equations with constants in A in which at mosat

¥ variables appear is solvable in A whenever it is finitely
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solvable in Ol. The algebra Q@ is an elernantary extension of

Cﬂ if any sentence with constantz in A holils in Cn'if and
only it it holds in J&x(cf. Definition 38.. of [3]1). B. Weglorsz
[7] has shown that an algebra is equational!s compact if and

only if it is a retract of every elementary -xtension.

2. Equationally Compact ILattices

By a result of G. Gratzer and H, Lakser 14}, every
1-variable equatiéﬁally compact lattice is continuous.’ In
particular, any.equationalljncompact 1atti§e is continuous;-
Theorem 1 shows that the converse holds for lattices iniﬁ,

a result that is known for Boolean algebras (see [7]).

LEMMA. Let Cﬂ be a lower coatinuous.lattice and,J@'be
‘a (lattice) extension of (. The map 4):1;——> Ol defined by

(P.(b)= infol %aéA l a> b} is a ‘joi.n—homomorphj_sm.7

Proof. For b in B, let U(b)= {aéiA\:aéla}. Let b, and

_ 1
b, be in B. If U(b,) is empty, then @(b1V1%ﬂ = ¢(b1)V'¢Mb2)'
since infcnﬁf is the largest element of Cﬂ. We now assume that

U(bq) and U(b?) are nonempty. For a, in U(bj) and a

1

5 in‘U(bz),

(b, Vb,) € a,Va, . Taking the infimum over all a, in U(b, )
¥ 1o VD5 1 Ve, 1 1

and thén over all a, in U(bg), we obtain (P(b1V'b2)é?(bi1)V0(b2).

This completes the proof since the opposite ineqﬁality obvious-

ly holds.

THEOREM 1. A lattice innﬁ\is equationally compact if and

only if it is continuous.

Proof. Let Ol ve a continuous lattice inN\/\\’l\ and i; be an

elementary exteﬁsiori of Ol. We define ¢ and 'd)':;@—é v b;‘,"

-0

P ()= intqU(d) and @' (b)= supgL(b) where U(b)=fa€h]| a2}

¥




and L(b)= fa€alagb}. We will show that @= @' ; then,
by the lemma, (P is a lattice retraction. Therefore, O'l is

equationally compact by the result of F. Weglorz.

Suppose that @Q4# (P' ; then, for -ome b in B-A,

a,=Sup L(b) # inf U(b):az‘ and b &€ (61,8,2)23:{}{6}3' a,< x< az} .

For any interval I , the staiement "x €I" is equival-

ent to a lattice formula involving only x and the end points’

<;f I; each statement in quotation marks that follows is

easily seen to be equivalent to a la*tice formula withvconstants

in A, Let "\Ib(x,y) be the formula " :':.é(a,,,y] U[y,ag) and
yé(a,!,a,))" . Slnce (ax) XE(a ,519 " holds in 3’, (a1,a2)19(
meets A. Let {c1,02,...,'cnz be a maximal (with respegt to
inclusion) anti—chain in (a1,a2')f}ﬂ A, The sentence

"(VX.) Xé(a1,a2)%’\/7(x,c1) Or ... OT "V/(X,cn)" holds in OL

and therefore holds in (E’. Thus, ’l//(b,ci) holds in (ﬁ’ for

some 1 in {1,...,n} which implies that cie(a1,b]£u [b,az)jy

This is a contradiction since (a1,b]£U [b’a2)8@' does not

meet A,

: of lattices
For a chain JS (B; V A) and a family (0( ‘ séS)Asuoh

that each lattice O{ has a least element O and a greatest

element 1 where SC{(a D) , a is covered by b in 06}
X(I? (A \ sES) ) denotes the lattice L, where C is

. BU U(A - {O ,18} l séS) and the order in Z,ls defined by.
identifying O(a,b) w1’§h a and 1('a,b) with b , a'nd‘

preserving the order in £and in each Ols

T_HEORE_M 2. TFor a complete chain q\gand family (asl SES)
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of continuous lattices with S < {(a b) \ a is covered by b in é'}

= X((E (Ol ‘SGS)) is continuous. Moreover, I is

in the smallest non-trivial equational class containing' every

Ozs for s in S,
Proof. We can assume that S is nonempty and each a is non-

'tr1v1al Al For - s= (a, b) in S and ¢ in A, -{OS,‘I } , we

define A(c)= a; otherwise, .>\(c)=c for ¢ in B. Let T be an

ward directe

A subset of [ and c=supx§;( }\(t)‘ te€T)., It is easil.y shown that
c, if (c,d) ¢ S for any de& B;
sup,:T = N
supa(c\/tl t€T), where s=(c,d)€ S.
. . :

Let a'be in .. W‘é-how show that aA VI € Maat |ter) in
C. We first suppose that supl:T c. We can assume that a# C3
thus, a<c and the result follows since a 7|(t) cannot hold |

for every t in T. We now suppose that supe~ T= supglc Vit téT)
c d;

- where s={c,d)&ES. We can assume that aZc since otherw1se

a <>\(t) for some t in T, Then, a/\supET = (aAd)Asupa(TnA )
_supa(a/\d/\tl terna VR sup g (a At | €Tna)

| =s‘up’;(a At ‘ teT). By duality, this completes the proof of

the first statement of the ‘cheorem.

The sécond statement iis true if the chain $’is finite,.

Indeed, in this case we can suppose that &= {("\"‘k;-,,‘_'k-_i-‘l) ‘

"ugual order . : E is then 1somorphlc to the sublattice

U {1(1 2 )}x - "{1(1«5_1,@()}" \ Q?::{O(;cm},-,;uz)}""' "{O(n»_-nzig)}

of Ol(%}@_ )X "_ ¢« X Q(ﬁq ) ;y therefore L': is in the

B

equational class generated by {OIS \s 68} . We now consider _ o
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the general case. Le'ﬁ p(x1,'...,xn)=q(x1,...,xn) be an iden-
tity thaf.holdfs in each OZS for}s in . If a,,...,a € C,
then the sublattice of L generéted by. {aq,...an} is isomor=-
phic to a sublattice of X(f', (Ol | te1) ) for a finite
suﬁchain B of Lo andfPEES; therefore, p(a1,...,aﬁ) |

=qv(a1,...,an). Thus the identity p=q holds in L.

THEOREM 3., Any continuous distributive lattice (i.e.,infinitely
distributive complete - lattice) is 1-variable equationally

compact.

Froof., lLet Ol ve an infinitely distributive complete
lattice and 2 be a set of lattice equations in one variable
X with constants in A that is finitely solvable in . 1n
a Boolean algebra ;6,' the nonempty solution set in aé of a
lattice equation in one variable with constants in B is a
closed'intlerval in I} Since (3( can be (1atticej embedded
in a Boolean algebra, S(WV), the solution set in O of the
equation Y in Z, is a convéx set. We can suppose that W
is (ai/\ x)Vb = (¢cAx)Vd with a,b,c,d€A ; an easy.cal-
culation shows” that sup S(W) satisfies A, Therefo.re,'
S(’V/) is a closed interval in Ol. Since Ol is complete,
the interval topologyvmakes A a compact topological space
and therefore ) (S(W) "\PEZ ) # ,@l since (S(’.’\}/).,‘\Pé 2.)
is a family é_f closed vsets with the finite intersection |

property. This means that 2. is solvable.

COROLLARY. Let Ol be an infinitely continuous complete
lattice and i‘):(B;\/,/\, ' ,0,1) be a Boolean algebra. If

there is a (lattice) embedding (P:Ol——)._(B; V,A) such that

‘ "CP(A) generates ﬁ‘, ‘then (P is a comple®te embedding.
- v o .




Proof. We can assume that Ol is a su’biattice of &
such that A generates é For S&€ A, let u= Supg S and
¢ in B be an upper bound of S. We can write c as

_ , ' . - 7 k3
c-(_aAlVb")/\ /\(an\/b;l) with ai’biéA for all i, For
fixed i, the set Zi of equations {X /\bié aiAbi}U{ss X< u’l séS}

is finitely solvable in Ol. Since Zi is equivalent to a
set of lattice equations in one variable with_-constants in A,
, Zi is solvable in the 1-variable equationally compact lattice

01.; the solution can only be x=u. Therefore, uAb.<La.ADb.
. i=7i i

which is equivalent to uéaiVbi . It follows that u<c

‘and thus that uzsup‘;@S, prdving the corollary.

Since every distributive lattice can be embedded in a
Boolean algebra and the completlon by cuts of a Boolean algebra
is a Boolean algebra, the corollary yields the result that
every infinitely distributive complete lattice al cén_beqcemp—
letely embedded in a complete Boolean algebra; this result,
without requiring C%'to be complete, has been proved by

Nenosuke Funayama L] .b

The continuous modular lattice oonsisting‘of the infinife
anti-chain {a l nA<¢9}together with O and 1 is not 1-variable
.equatlonally compact since the set of equatlons

anv x=1, an/\. x:O“ n<w} is not solvable,

We 1abe1 the following statements for a class'& of lattices:
(A) For ()leg&, Ol is equationally compact if and only if

Ol is continuous..




(8) For Otégg, Ol is 1-variable equationally compact

if and only if ‘A is continuous.

(C) For Olé,l{‘, o iséquationally compact if and only

- if @Zis 1=variable equationally compact.

(D) 1If Ié'is a complete chain and (OZS \ sE€S) is a family
of equationally compact algebras ofAI/{nwhere Sg{(a,b.) la is
covered by b in I?y}, then X(Ié’,(@fs( S€S) ) 1is equationally

,cdmpact.

(D1) If ;6' is a complete chain and (O[SI s€S) is a
family of 1-variable equationally compact algebras of’§‘Where .
S & {(a,b) ‘a is covered by b in aé‘} , then X(o@',((%s‘ s&€S) ) ‘

is 1-variable equatidnally compact.

Since the "only if" implication always holds inv(A),(B),
and (C), (A) holds if and only if both (B) and (C) hold; there-
‘fore, (A) holds for the class of distributive lattices if and
only if (C) holds. For a class K for which X (&, (Ol |ses) ek
whenever -{Cﬂs\ se;s}gjg, it follows from Theorem 2 that
(D) (resp.,‘(D1) ) holds whenever (4) (resp., (B),)VhOIds;
in particular, (D) and (D1) hold forx&L.

' Boolean algebras

Let B be the class of}Aj, considered as lattices; D be -
_ ) AN AAN
the class ' of distributive lattices; M be the class of modular
lattices; and L be the class of all.lattices. The following

AP

table- summarizes the preeceeding results.

(4) (3 (c) (D) (D,)
w yes - -_yes_ . yes yes : yes
B yes ‘ yes yes ? yes -
"y ? yes o ? ? yes-
M no no -2 ? ?
L 0 0

no no ?
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