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On Equationally Compact Semilattices

Loy

by

Sydney Bulman—Fleming

Although equationally compact semilattices have been
completely characterized [4], the question of J. Mycielski
"Is every equationélly compact semilattice the retract of
a compact topological semilattice?" (first stated in {51
for general algebras, and posed anew in [7] for semilattices)
has heretofore remained unanswered. The main purpose of
the present paper is to provide an affirmative answer to
this question. |

Further, a new notion of "algebraic" compactness is
‘introduced which among all semilattices singles out exactly
those in which every chain is finite. Such semilattices
are in turn compact topological ones in view of the more
general result that the class of compact topolbgical
semilattices includes all join-complete semilattices in
which every chain has a least element. ,

Throughout this paper the term "semilattice" shall
mean "join semilattice". |

The results presented here form a part of'the author's
doctoral thesis. For inspiration and guidance during the
course of this investigation the author expresses gratitude
to G.H. Wenzel.

§1. Preliminaries

An algebra O = <A3;F> (see [3]) is called equationally
compact 1if the existence of a simultaneous solution of

every finite subset Zfbf ayset 2 of polynomial equations
with constants in S implies the existence of a simultaneous
solution of 2.. (Detailed discussions of equational com-
pactness can be found, for example, in [9], [10] and [1173.)

The equationally compact semilattices T = {(S;V) were
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characterized in [4] as those which satisfy the following -
three conditions: ' ’ '

(C1) The supremum of any non-empty subset X&S

exists; i.e. Tis join-complete.

- (C2) The infimum of any downward-directed subset
DES exists.

(C3) If aeS, and ifi)gs is a downward-directed
subset of S, then aV (AD) = A(avd|deD).

Definition 1.1

The interval topology of a partially ordered set ®

= {P;4Y is defined by taking as a sub-basis of closed
sets the collection of all intervals (-®,a7] = {p'e Plpsia}
and [a, ©) = gp € P| p>xa} as a ranges over P.

A fundamental result of 0. Frink [2] states that a
lattice is compact in its interval topology iff it is
complete. Application of Frink's methods yields that a
semilattice U= <3;V>is compact in its interval topology
iff conditions (C1) and (C2) above are satisfied. Thus,
'every equationally compact semilattice is compact in its
interval topology (although the topology is not, in general,
Hausdorff). ' -

An algebra A = <A;F> is called a (compact)j]-tgpological .

algebra it Tis a (compact) Hausdorff topology on A such
that if fe€ F and £:A"—>A, then f is a continuous mapping
if A" is endowed with the product topology. An algebra
which is known to support a (compact) Hausdorff topology
with respect to which all its fundamental operations are
continuous is called simply a (compact) topological algebra

if no particular topology'ﬂ’is specified. _ :

A subalgebra Qof an algebra Lis called a retract of ;I:_
-if there _exis’cs a homomorphism p from & onto O which acts
as the identity function on Ol. Such a homomorphism p is
called a retraction of £ onto QL.
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Definition 1.2 _

Let X = <L; V,A> be a complete lattice, and let
Cx*)*é.b be a net in L. The net (xg)«é p is said to
order converge to xeL iff V(A(x |«»¥)|veD) = x =
ANV (x| x2¥)|¥ € D). The order topology of £ is defined
as follows: F&L is closed in the order topology of X iff

whenever a net (x*)“eD in F order converges to x € L, then.
x € F.

It is well-known that, in géneral order convergence

does not coincide with convergence in the order topology.

However, should L be a complete and completely dlstrlbutlve1

lattice, then in fact the following three statements are

equivalent, where (xq4) is a net in L and x e L:

A €D
(01) .(x.‘).LQ D converges to x in the interval
topology.
(02) (g*h‘e p converges to x in the order
topology. )

(03) (Xd)de D order cqnverges_to X.

Moreover, if £ is a complete and completely distributive
lattice, then the interval topology (which coincides with
the order topology) is compact, Hausdorff, and makes both:
lattice operations continuous. Most of the observations

of this paragraph are well—kho'n and can be found, for
example, in [6]. They will always in this paper be applied
to the Boolean lattice <2S;Lj,(\> of all subsets of a

set S.

1A complete lattlce‘f is called completely distributive

1ff the following condition holds for every doubly indexed
set {x '1& I, jed, } of elements of L, the equation

V(/\(x slied; Nien = A (V (x4 Q(l)|1e1)|q;eTr(J |

i€eI)) and its dual are satlsfled
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This section concludes with an embedding lemma which
will play a crucial r8le in the remainder of this paper.

Lemma 1.3 v

Let ¥ = {S;V)be a semilattice. For each element
8¢S let e(s) =¢{tesS|sgt} &\28. Then e is an embedding
of T into 2V =<2S;U) such that if X¢S and VX = s,
then e(s) = U (e(x)] x € X).
Proof: | |

Only the fact that'e preserves suprema will be proven.
If VX = s, then for any element t ¢S, tee(s) iff t}s.
But this is equivalent to t }x holding for some x €X, or
in other words to t belonging to L)(e(x)lx:eX). : :
|

§2. Mycielski's Question for Semilattices

J. Mycielski observed [5] that every retract of a
compact topological algebra is equationally compact. To
his question "Is every equationally compact algebra retract
of a compact topological~algebra?" affirmative answers
were given in a large number of specificquuational'classes
(for a summary of these results see [11]) but that the
question in its general setting has a negative answer was
shown by W. Taylor [8], who by a graph-theoretical method
exhibited an equationally compact algebra of type <1;1>
which is retract of no compact topological algebra. As
mentioned in thé introduction, the problem is attacked
for the class of semilattices in the present paper.

At the outset, it should be remarked that the topology
of a compact topological semilattiqe is Or-compatible in
the sense of E.E. Floyd [1]. Since Floyd was able to find
a complete Boolean algebra (which can in particular be

considered an equationally compact semilattice) with no
Hausdorff and QN —compatible topology, the problem of
Mycielski cannot admit the solution that every equationally
compact semilattice is itself a compact topological one.
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A solution for Mycielsgi's problem for the class of
semilattices 1s now given.

Lemma 2.1 1 , _

Let P and Q be partlally ordered sets and let f:P—»Q
be a mapping which satlsfles pl\ P, iff f(pi)‘ f(p2),
for all Py Py € P. Let X and Y be subsets of P such that
Ax, AY, Af(X) and A f(Y) all exist.

Then Af(X) = Af(Y) implies AX = AY.

" Proof:

Suppose the hypotheses are all satisfied. Let w =
AX and z = AY. 1If w$-yolfor some y € Y, then f(w) £
f(yo).' But f(w) € Af(X) since w is a lower bound for X
and f preserves order. Therefore: A‘f(X)$ f(y ), which
gives the contradiction /\f(Y)#f(y ).

Consequently, w is a lower bound for Y, so wg z.

.Similarly z€<w and the proof is completed. - ‘;

i
Corollary 2.2 _ |
Let U = £S8;V> be a semilattice, let 2’6\= <2S;U> and
let e be the embedding of 1.3. Let X and Y be subsets of
'S such that A X and AY both exist. Then ﬂ(e(x’)lxeX)
=) (e(y)lye Y) implies AX = AY. | |

Theorem 2.3 _
Let ¥ = {S8;V> be a semilattice. Then T is equationally
-compact iff P is retract of a compact topological semi-

lattice.
Proof: _ |
It was remarked at the beginning of this section that
retracts of compact topologlcal algebras are equatlonally ‘
compact
Assume therefore that ¥ is equationally compact. Let
R = e(S) where e is the embedding of 1.3, let R =V<R;U)be
the corresponding subsemilattice of 27\(which is of course
isomorphic to ¥ ) and let ﬁ = <§'U>, where R denotes the
- closure of R in the interval topology (= order topology =

" Tychonoff topologY) of 21‘ Thus 6( is a compact topologlcal
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semilattice when given the relative'topology. . The theorem

~will be proven if a homomorphism p: K—hb’b‘ can be given
~satisfying p(e(s)) = s for all se S. '

To accomplish this task, observe that for any x € R
there exists a downward-directed subset M S S such that
x = Y (e(m)lmeM). For, x is the order limit of some net
(e (%4) )y ¢ p
(03) above). For each ¥ €D define my = V (x|« 2¥). Then
the set M = { my|¥e€ D} is downward-directed and because e

in R (by the equivalence of statements (01)-

preserves suprema one finds that x = ﬂ (e(m)lme M).

Should xe R admit two representations x = () (e(m)l me M)
and x = n (e(n)lne N) where M and N are downward-directed
subsets of S, then AM = AN by 2.2. Thus p(x) can be '
unambiguously defined as A M, where M is any downward-

| directed subset of S for which x = () (e(m)lmeM).

It is clear that p(e(s)) = s for any s € 3. That p
is a homomorphism, finally, is seen as follows. Lét X,
y€ﬁ and suppose M and N are downward-directed subsets
of S such that x = ) (e(m)l meM) and y =.n (e(n)|nenN).
Then p(x)Vp(y) = (AM)V (AN) = A (mVn|meM, neN) by
condition (C3). On the other hand, xUy = ) (e(mVn)lme M,
neN), and since {mv n|me Ml,nevN} is a downward-directed

'~ subset of S affording a representation of xUy as prescribed

in the definition of p, the desired result p(xUy) =
A (mvn|meM, neN) is obtained.

- §3. Further Results

To begin this section, a new form of algebraic
compactness is defined which will be studied in detail

for the class of semilattices.

Definition 3.1

Let K be a class of algebras of the same type and
let X be an algebra in K. Then A is called K-compact
iff for every algebra & in K such that M is a subalgebra
of I;the following condition is satisfied: the existence
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of a simultaneous solution in Qof every finite subset
3 of ayset 2 of polynomial equations with constants in
B implies the existence of a s1mu1taneous solution of 2,

in Q.

One cbserves that if K2 is a class of algebras of
the same type, if K, S K,, and if K is an algebra in K>
then K2-compactness of Mimplies K -compactness. Also,

Olis equationally compact iff Ol is {0 -compact, so if QX
is K-compact forfany class K, ‘then it is equationally
compact. N

It is well-known that all compact topological algebras,
so in particular all finite ones, are equationally compact.
The following proposition shows that a finite algebra
is in fact K-compact for any class K to which it belongs.
Although the proof is topological in nature, it becomes
apparent in light of the characterization theorem of K-
compact semilattices which follows that in general compact
topologlcal algebras may fail to be K- compact

Proposition 3.2

Let K be a class of algebras of the same type and let
a - <A;FY be a finite algebra in K. Then X is K-compact.
Proof: | '

Let & = <B;F> € K be'any extension of Q. Then any.
polynomial p in the varlables (xy)K°< with constants in
‘B can be considered a continuous mapping from A into B,

- where B is given the discrete topology and A% is endowed
with the relative topology‘ﬂrinduced from the product
topology of B°< . j”'is in fact a compact topology since
it is simply the & -fold product of the discrete topology
on A. Thus (because B is Hausdorff) any polynomial equatlon'
P = q with constants in B has a closed solution set in |
A% and so the compactness of 7‘assures that any set of
polynomlal equatlons with constants in B flnltely solvable
in Qlis in fact solvable in (Y. .

To initiate the study of K-compact semilattices (for
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K to be specified later) the following sequence of lemmas
is given. It is noted that Lemmas 3.4, 3.5 and one part
of the proof of Theorem 3.6 are modelled after 51m11ar
arguments in [47].

Lemma 3.3 ‘

© Let O{ = <A;V) be a semilattice in which every chain
has a largest element If ¢ t XSA then there exists a
finite subset BE€X such that VX = V B.

Proof': ,

Let T = {VB| $#B S X and B is finite} . Then T
is directed and so contains a greatest element V B.
Clearly VB = VX. "
Lemma 3.4

Let ¥ = <S;V> be a semilattice in which every chain
has a largest element, suppose T is a subsemilattice of
the semilattice O = <A;V>, and let K cs™ ve a set of

solutions of the equation aVx.V ...Vx. = bVx.V ...
o | o *n-1 Jo -
V x, . where a,b€& A, ® is an ordinal, and iO""’in-l’
m—-

jo""’jm-l are elements of the set_ib’lb’<°<} . Then t =

: . . e o i o .
V K (the supremum being taken in the semilattice T ) is

a solution of the equation aVx.V ...Vx. =bVx. V.
i i J
0 n-1 0
Vx. . | -
m-1
Proof: B
Let kO""’kr-l be the distinct members of the set

{io,...,in 1,j0,...,jm_1}and let J = {k seeesk, 43
Define Kl‘C'S as follows: fGK1 iff there ex1sts g €K
such that g(k ) = f(k ) for all k. e J.

The semllattlce'0".T has the property that every chain .

has a largest element. Hence by 3.3 there exist b

bs., € K, such that u = VK, =byv...Vb__,.

u(k;) = t(ky) for all k;€J. Thus, th(_io)'V "‘Vt(ln-—l)
= aVu(io)\_/-.-Vu'(in'_l) = aVbO(iO)V...Vbs_'l(io)\/...

O, L ]
Clearly
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Vo (i, OV..Vb (1 )=V i)V...Vb _ (i )

= b\/t(io)\/...\/t(in_l), so t is a solution of the equation.

Lemma 3.5 .
Let U = <3;V> be a semilattice in which every chain

has a smallest element, suppose T is a subsemilattice of

the semilattice 0( = {A;V), and let K< s™ be a downward-

directed set of solutions of the equation ani \4 ...in

6] n-1

= b\/xJ.V ...ij where a,b€ A, & is an ordinal, and io,
. 0 : m-1

.,in_i,jo,.;.,jm_1 belong to the set fK]X<N}.. Then t
= AN K (the infimum being taken in the semilattice T ) is

a solution of the equation aVXiV ...\/xi =bVx.V ...
o n-1 . Jo
V. -.
Im-1
Proof:

Let J and K, be defined as in the proof of 3.4. Let
} 1 Then V(ki) = t(ki) for
each k. € J and t satisfies the required equation since
there exists g€ K such that g(ki) = v(ki) for all kiG.J.'

In the subsequent discussion,\f denotes thé class ;

v be the least element of K

~of all semilattices and U_S denotes the class of all
semilattices which are join-semilattices of lattices.
In other words, [’S
=.{ L;V)such that the corresponding partial order is a

consists of those semilattices 5(
lattice order. Clearly leS
Theorem 3.6

Let ¥ = {S;V> be a semilattice. Then the foliowing
conditions are equivalent:

(K1) T is f—compact.

(k2) T is [.S-compact.

(K3) U contains no infinite chains.
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Proof':

The equivalence of (K1) and (X2) is an easy consequence
of the fact that any partially ordered set can be embedded
in a lattice with preservation of all existing suprema. and
infima (for example, via the Dedekind-McNeille embedding).

.To show (K3) implies (K1) let Ol= <A: ;V?be any semi-
lattice extension of T and let 5& ic~ |1e I} be a set
of polynomial equations with constants in A, 1nvolv1ng
the variables ixYIXZu} such that each finite subset of
2. has a solution in P . TFor each finite subset %) of Z,
let K(Z’)Q s be the set of solutions of Z’. By 3.4,
t(3)) = V K(3)) is also a solution of Z,. For each iel
let J, = i t(z‘)‘ 2)is a finite subset of = and O, €Zﬂ}.
Then J is a downward-directed set of solutions of 0‘
and so /\J‘ by 3.5 is also a solution of O‘ Since Ji
and JJ are mutually co-initial for all i,j €I the infimum
of __1 J is a solution of z

Flnally to show (K1) 1mp11es (K3) suppose QP is JF -
compact . (and hence equationally compact) but contains an
infinite chain. Then either (a) ¥ contains a chain C:l
with no %argest element, or '(b) T contains a chain CZ
with no smallest element. 1In case (a) let z VG let
Ay = sU§w} and extend the partial order on T to a partial
order on Al by defining x Jw iff x = w or x= z, and x€ w iff
X = w or x£c¢ for some c € G Embed <A ,~71nto a lattice
I <L V AY in such a way that suprema and infima are
preserved, and let N be the semilattice <L; VY. Then the
set of equations 2, —f xVe = x\cecl}u iwa = w} is
finitely solvable in T, but not solvable in T . cCase. (b)
is treated entirely similarly. In either case the Jr-
compactness of T is contradicted. I-

In conclusion, a 1arge class of compact topological
semilattices will be delineated, a subclass of which is

. the class of f—compact semilattices characterized above.

Theorem 3.7

Let ¥ be a Join-complete semilattice (i.e. ¥ satisfies
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Acondition (C1) previously stated) in which every chain

"has a least element. Then ¥ is a compact topological
semilattice. '
Proof:

Let ¥ be embedded in 2° = <2S;LJ> via the embedding

| e of 1.3, If % is the topology e(S) inherits as a subspace
of 2S, where the latter as usual is given its interval
topology, then clearly e(¥ ) is a ? -topological semi-
lattice. Under the present hypotheses, moreover, fTis
compact.

To verify the latter statement it suffices by the
Sub—base Theorem of Alexander to show that any family A
“+ of sub-basic “-closed subsets of e(S) with the finite
intersection property has a non-empty intersection. _
Accordingly let F = {[Xi,Yi]ﬂe(S)| ie I}'be such a family,
where for each 1¢ I X. and Y. are subsets of S with X C‘Y

‘and [x,v] ={ces|xccev}.

Le{: (P -iPCI‘ P is flnlte} for each i€I and Pe &

define A, P = {se s | X; & e(s)s N(Y. ‘J& P)} and for each

PEP let AP U(A P|1e I). Observe that each A,

non-empty. Flnally, for each Pe« ® let s

J = { sP|Pe® . . o
If Pe®., it is clear that U(Xi'\ie I) € e(sp), since

for each i €I there exists an element s. ,P € Al P and so

Xl_ e(s ) implies |J(X. |1e I)C-U(e(sl P)‘l& I) ¢ e(s ).

PlS

P \/AP, and let

Slnce J is a downward-directed subset of S it has a
least element sQ, where Q€ ® . The cons1deratlons of the
precedlng paragraph yield at once the inclusion (J(X. |1e I)
S e(sg). On the other hand, for each ieI let P, = {i}
€® . Since s $sp for all i €T it follows that e(s ).

c N(Y. \1& I), and 3o e(s ) € (\?}, which completes the
proof of the theorem.

Corollary 3.8

Every Jr—compact semilattice is a compact topologlcal

semilattice.

The procedure of 3.7 cannot in general be applied

to semllattlces with chains without smallest elements, as
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the following example shows.

Example 3.9

Let C denote the set of negative integers, let w
denote a new element, and let T be the semilattice <3;V?,
vwherevs = CO{wS, the elements of C . retain their usual order,
and w is smaller than any element of C. Then the topology

on e(S) inherited from 2T is not compact, since {w) belongs

to the set e(S)\Ne(S). The situation is illustrated in
the following diagram, where closed dots denote elements
of e(S) and open ones elements of 2S\.e(S).

S

e(-1) = [w,-2]
e(-2) = [w,-3]
e(-3) = (w,-41]

1o
e(w) = ¢
Figure 1

Observe that, while the method of Theorem 3.7 fails
"to equip the semilattice T of Example 3.9 with a compact
topology, T is nevertheless a compact topological semilattice

in its own interval topology.
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