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1. Introduction

The present contribution is concerned with the hyperbolic

initial boundary problem

Uiy ~ [a(x)ux]X + b(x)u, + c(X)u = dx,t), (x,t) e (0,1)x(0,=),
(1) u(x,0) = £(x), u, (x,0) = g(x), . 0<4x<u,
w(0,£) = nT(E), u(1,6) = n'(E), . 0 £+,

where 0 ¢ o = a(x)rand c(x) 2 0. For an arbitrary but

fixed T let At = T/N and bx = 1/(M+1), M,N € N, be small .

increments of the variables t and x, and let

' T
vy F v(kAx,nAt), Ve o= (v?,...,vﬁ) ,

Vo= (V

1
°ovi ..., VT,

We consider thewell-known implicit finite-difference

approximation of (1) devised by von Neumann (cf. O'Brien

et al. [9]) S - -

n+i n n-1

vk - 2vk + Vi .
| A2
(2) |

n+1 . n, - -1q .
o[1, v ]+ (1 - 20) [1,9v0] 4 w1, v dy s
k = 1, ’M’. n = -2’3‘,. 3




"
)

: o L - L+ ’
(3 v, o KT M, vg~= (), va = ™, n = 0,1,..

2

1 At N N |
(W) vy = £+ stgy + ——[a (f ) - b (f)) - ¢ f +dll,

where lA denotes the finite-difference operator corresponding
to the elliptical part of the differential equation in (1),
i.e. A

re1/2 Mas1 V) _'ak41[2(vk-vk41)v+ b kt1 k-1,

[l V] = -
bk Ax2 , _2Ax

e .
and w is a relaxation factor. Further, we denote by

- (u?,...,uﬁ)T the vector obtained from the solution u
of the non-discrete problem (1) by mesh-point evaluation

on the line t = nAt, and we use. the following norms

Vi = max'{lvﬁl}, v]_ = max'{lvnlé},
14k<M - 04n#£N
- ‘ | 2 S 2
Jal_ = sup la(x)|, ]an2 = AX lvﬁ] .
Wi 04x41 - S k=1

Lees [7] applies slight modifications of von Neumann's

method to the problem (1) with the differential equation

U, - [a(x,t)ux]x + b(x,tlu, + clx,t)u + e(x,t)ut = d(x,t).

By means of discrete energy inequalities he obtains the

estimation

(5) ]UN —'VN|2 < kK € 2 (At2'+ AX2), KK constants,

2

(VN denoting the solution of the discrete problem on the




...3..
line t #_‘f') in case ® ® 1/4 and At/Ax arcitrary but fixed
as Ax — 0. Friberg [4] applies von Neumann's method to
the pfoblem (1) with the differential equation
_ 5

Uy - 2 uxx-é d(x,t)

and derives by similar methods as in [7] the estimation'(S)

in case 0 ¢ w < 1/4 and Ax2/At2 > (1 - Mw)az. Since

| Ax[UN —.VNIE é-IUN - VN|§ we deduce from (5) immediately
that kT |
| NN ki€ 7] 2
_ , L
’U vV !oo = —Ax-m(At + Ax ).
7 . . )
Thus the estimation |UN - Vle = J(At) of Friberg [4] is

to coarse. On the other hand , as consequencé of his

estimation (5) Lees [7, Theorem 3] states without proof

that |UN - VN|°° = 6(At2 + AX2). However, the author of the

present paper was not able to verify this assertion via
discrete energy inequalities.

W

Here we do not use discrete energy inequalities as Lees“[7,8]

‘and Friberg [4] nor we étudy the behaviour of the discrete

'solution in transition from the line t = nAt to the line

t = (n+1)At. Instead we consider the appf@ximétive solution
on the lines t = nAt, n = 0,1,...,N, together and expand
the error in the eigerivalues of the elliptical part' of

the hyperbolic differential equation as Carasso-Parter [2]

vdid in proving the convérgence of the'"boundary vaiué

technique" for parabolic initial boundary problems (see




also [5]). By this way we establish
: M
N N T 2 2 -(1+
[U7 - V7, £ kg — (8t e ax®) 2 pire)
_ Ax p=1

(e >.0). So the convergence on the line t = T reveals to

be proportional to T itself.

The méthod of estimation applied in this papef is by‘no
meéns limited to hyperbolic marchiﬁg procedures (see
Carasso—Parter [2],‘Carasso [3], and [6]). In a sub-
éequent paper A-stability of finite-difference approxi-
mations fé parabolic initial boundary problems is studied

by this way.
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2. Stability and Convergence
We suppose that the non-discrete problem (1) satisfies the

following assumption

Assumption. (i) Let 0 ¢ o £ a(x), O f'q(x).

b, b c, f, T f <> & be continuous

(ii) Let Qy..., A <> Ty

xxx’ x?

and bounded in G = {x, 0 <€ x < 1}, say a(x) £ di"lb(x)l < gy
‘IbX(x)| £ yu, c(x) ¢y. Let d, h™, h™ be continuous in

Gx(0,») and d bounded in Gx(0,T) for every T > O,

(iii) Let £(0) = h™(0), £(1) = h'(0), g(0) :'h;(O),

g(1) = hé?O). Let all coefficients of the problem (1) be
sufficiently smooth that a s5lution‘u: (x,t) — u(x,t)
 exists-in the ciassical sense having.in Gx(0,~) four
continuous time derivatives énd~fouf continuous space

‘"derivatives.

We insert the known quantities (3) as far as possible in

N

_the equations (2) and collect the equations (2), (3), ”
and (4). The result is
.

-°SfM) )

, v =, H® = (f
(6) - _ ‘ : ;
o vl gl

1°°

where thé components of the vector Hl’are the values on the
right side of equation (4), and

1 1 ~on=-2 N

(7) ——E(Vn—evn'1+vn“2) + oTVD 4 (2-20)TVET 4 TV = g°,
At - :




where T ;.A + B+ C, A = (aik)i,k=1;...,M ete.,

2 " r ) .
(8,752 Be-q/2) /0% 0 -
2 - o
2 = b.. =9
k 2 > Tik .
2341/2/8% b, /28x o= i+l
; o | | ’ L 0 ' otherwise
ik T %kCik
(sik denotes the Kronecker symbol),and H" = Dn'l‘f & vn_l’_
. ¢ A" ‘ | + ' \T 2
T <§E§1/2+AXb1)<h )05 O (2aM+1/2 Axb )(h.) )" /28"

-

[§ ) v
M components
Collecting the N+1 (partly triviai) systems of equations
(6) and (7) we obtain for the block vector V the

following system

(8) ML PV iz (IS+T)V-:H

where T = (I,I,At °T,...,At7%I) and T = (7F,...,T) are

block diagonal matrices,

I - .V ' O .. . -_‘. . . »-: .
0 I O | o o " O
S=| IL-211 ° » @ = oI (1-20)I wl L

~
-~ ~

~ ~ ¢ R -
~ ~ .

'_()_‘\I\léi‘l_ e ()"f~f;wI{>K1;2;fI"wI

~ . e .

(I idenfity matrix of dimension M). The finite-dimensional
eigenvalue problem T Y =AY is a discrete analog to a

'nonselfadjoint'Strrm—LiouVille eigenvalue problem. Sub-




0 < Ax ¢ 2a /8 Carasso [1, Lemma 1] constructed a real

- are bounded below by a positive constant if 0 ¢ Ax é”aO/B. i

._7..

sequently we need some facts on the eigenvalﬁes and eigen-

vectors of'the matrix T which shall now be stated. Assuming

o

diagonal matrix D with the properties

5flﬁ 5rsymmetric, ID]_ ¢ Ky Iﬁ_lrm

5

where Kys Kg are constants not depending on M: Following
this result ﬁfi%_ﬁ has a complete system’df-orthonormal
w&p))T

eigenvectors Wp = (WEP),..., ,p=1,...,M, and the

corresponding eigenvalues Ap are real. Furthermqre, we
obtain Ao 30, p=1,...,M, by means of Varga [10,

Theorem 1.8]. Thus; as the. eigenvalues ‘o converge to

the (pbéitive) eigenvaluéé of the corresponding analytical

problem (cf. Carasso {1, Theorem 1]), the eigenvalues Ap

Lemma\q;(Carasso [1, Lemma 3], Gekeler [6]). Suppose that
the problem (1) satisfies the Assumption and let 0 4 Ax

£a /8. Let Ap be the eigenvalues of T and let W, be the

~ -1

eigenvectors of D T D normalized so that |w

p|2 =1,

p =1,...,M. Then there exists a positive integer p

o
independent of M such that

5

N
>
IN
no
no
(&)
IN

2
K6p kis
furthermore

Wp - 8>

where K6,'K7, kg are positive constants independent of M.

v
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As a consequence of Lemma 1 we have for € > 0

W |
p'e -(1+¢)

Let now 1 be the diagonal matrix of ‘the eigenvalues xp,

ns

let W = (Wl,...,WM) be the matrix of eigenvectors of
ﬁ—l% B, let D, W be the block diagonal matrices with the

LY

submatrices 5, W respectively,'and denote by A the block

~

diagonal matrix A = (I, I, A,..., 1). Then we may write

D Y(PU - H) = we, DPD=waQuwWl

- which implies

e - ml, £ Inl luaTih @7 e

(10) Ju-v]_ =1[pD"
Here ¢ is a block vector (and not a block matrix because

the eigenvectors W_ are orthonormal; this is the reason

D
why the diagoﬁal matrix D must be introduced). More exactly,

Gé =»(¢O’...,¢N)T, @n‘z'(¢?,...,¢ﬁ)T,

IN

p

1D Lpy - H)n)Twp/wgw ‘|§'1lw|(PU -, .

:O,

© o

: 1, 3'
(11)  |e¢ | £ KSKl(At)At s

1
I
“
-
=
“w

LW(Ts0x)8x%), p
ns=2,3,...

. n; « 2
(12) |¢p £ k19(K,(T,at)8° + Ky
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Since we have no*t supposed that h , h+, and the solution

u remain bounded in the cylinder Gx(0,») the bounds'Kl,

K2, K3 are the following quantities

~

K,(At) = max {z|u,. _(-,7)] 1} ,
1 otréag O CEE ®

. - B . 1 . .. -
K2(T,At) = max {TEIu (+,t)] 3,

O£t £T tttt o
K .R(T Ax) - max Blu ey (50 | . lax(')uxxx(-,t)lco
A , =
3,0 ol - ‘ :
. laxx(-)uxx(-,t)lm . IaI“IuXXXx("t)lw . Axlaxwm]uXXXX(~,t)]w
8 12 Sl
ax?la, | lus (L) ], lu (L)) la |
.t XX '@ XXYX P e X 7w XXX
96 . on
pxla lolug Gl |
+ XXX XX (20 + |1-20]).

- . _-7_', 48

The block matrix Q consists of diagonal submatrices
only, i.e.
0
oo 0
,Q =T S + Al oI (1-20) 'wl

~
~

O oI  (1-2w)I oI
Our aim is now to derive a bound for the right side of

inequality (10) using the estimation (9). Hereto we put
] . o) o) 1

for the moment ¥ = A Q "¢, i.e. ¥~ =-¢ = 0, ¥ s ='d(At3),
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o} N,T
and Wp = (wp, .,wp) . Then, of course,
ly [, = max Lol 5
ple ey P .
Consequently ’
|WA—1‘QIoo = mak{lﬁ@liw, maxl{lwx-lwnlé}
Lo LN _
(13) g, S
£ max{|We"|_, max {|WAT ¢"|_}
' 04néN
and M | E ' M
max {|WA “1y nlm}f § b max {|vl[7} = E
0£n<N p=1 Ap otntN P p=1
But ¥ %( )—1§ where
= T
% p
S _ ~ prt2
(14)y T = -2 +
p » 10+ w)\pAt2

A .
and P(1) is the (N+1)x(N+1)-matrix -

h

- 1 :
0 1 O
: A 11t 1
(15) " B(x) = e s .t

06 denoting the diagonal matrix 0 = (1, 1,(2+T1) ,...,(2+r)_

Summarizing the above results we find that

M .
IR A o
(16) |W A ~v lw é’i - Ez; (1+e)/2 >\('1-8)/2

p

'fTherefdre, since by (11)

(17) W ol = dat2)/ax,

= 1,...,M
}
},
ol
|y [@

A p .
-1 1
A -1
P , i)

(r ) | plm

).
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we have shown that under the above assumptiohs an esti-

mation of |U - V|_ depends essentially on a suitable

L)
©
-

,bound.for I?(r)—ll

Lemma 2. Let - 2 £ 1 £ 2 and let P(t) be the (N+1)x(N+#1)-
matrix (15) with N odd. Then

T
At

-

, ' 1/2
N 2
(18) ; \ |P (1) 1| < Kil{E—i—:—]

where Kqq is a constant independent of M.

RV

_Proof. Set

cand let

be a matrix of dimension N+1. Then ?(r) = OL(LflRZ“+‘I)

where L = (I, %,..., 1), r=(K,...,R) are block
diagonal matricesnof dimensioﬁ'(N+1)/2; The-eigenvalués‘

N~y

of L 1R are

2 - /2y,

and the matrix of its eigenvectors reads




—¢T2-' - T"V£2;' - T‘ | -1 VT2—U -1 -
2 2 /2 - 2
= /o=y 5
’ ' o 12—4'+ T

2

>4
1

-

Defihe U as the diagonal-mafhix U = (”1’ n2) and denote by
X and U the block dlagonal matrices w1th the identical
submatrices X and U respectively. Then, we have P(r)‘

xuz + 1) x 1,77, But for - 2 € 1 ¢ 2

S -1, -
(19) lem é.K1§3 lL. lm < Kq35 (2+1)|X 1

Thus , 51nce IUI 1 for = P T 4 2, an explicit

-1

computatlon of;(UZ + I) combined with the bounds (19)

_provides the estimation (18).

Theerem. Suppose that the hyperbolic initial boundary

| problem (1) satisfies the AséUmption. Let 0 € Ax = 1/(M+1)
£ a /6, At = T/N, N odd Let UN be the vector of dimension
M obtalned from the solution of the problem (1) by mesh-
.mesh—p01nt evaluation on the line t = NAt = T. Let VD

n=1,...,N, be the solution of the system (8). Then

—2—(maX{K (at),K (T,At)}At'2 + K (T, AX)AX ) x
AXE 1 . 2 s W

z%: p—(1+e)
p= L

R

o K15

(e >0, k;5 constant independent of T, Ax, and At) for
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w 2 1/4 if At/Ax is kept arbitrary but fixed as.Ax — O

(unconditional stability), and for O £ w < 1/4 if

(8§ ¥ 0) as Ax — O (conditional stability).

Proof. By Varga [10, p. 219] and Carasso [3, p. 310]'we
find that |%|2‘£ Mul/AX2 + u/2 + y. Hence, as [A]| ¢ 1%[2
is true for every eigenvalue A of %, we have -~ 2 4 1 £

2 - 4§ in‘case 0 £ w < 1/} if .max'{fx A2 4 4 - s,

: o 14psMm P

Moreover, we have - 2¢ 1< 2 - 8, for a certain §_ > 0

2

independent of AAt“ in case w 2 1/4 and At/AX’fixed as

"AX — 0 since AAX2_bounded,independently‘of M by Lemma 1.

Consequent 1y the assumption of Lemma 2 is satisfied in

both cases. However by Lemma 2 and (14)

. S _ 5 1/2
SO N A gpa——- ,
ai-e)/z o ez 41+ wabt®) - aat?
Z -€ 1
- K16 TAX

[4(1 + wrat®) - ant

This result together with the estimations (9), (10),

(12), (13), (16), and (17) proves the Theorem.

2]‘.

72 -
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