Capacity-Achieving Input Distributions

for Some Amplitude-Limited Channels

with Additive Noise

W. Oettli

[45]

Abstract: An additive noise channel wherein the noise is described by a piecewise constant probability density is shown to reduce to a discrete channel by means of an explicit construction. In addition, conditions are found which describe a class of continuous, amplitude-limited channels for which the capacity-achieving input distribution is binary.

- O. It is the purpose of this note to discuss some examples of continuous, amplitude-limited channels with additive noise having the property that the capacity-achieving input distribution can be ascertained a priori to have discrete support. In sections 1 and 2 we first review some well-known optimality conditions for a capacity-achieving input distribution to be used in the remainder of our discussion. In section 3 we consider the case of a piecewise constant noise density. We show by means of an explicit construction that in this case the given channel is equivalent to a certain discrete channel. This gives the possibility of characterizing a priori the discrete support of the optimal input distribution. The results of this section were motivated by, and include, results of Färber and Appel concerning the special case of a rectangular noise distribution. In sections 4 and 5 we describe a class of noise distributions which guarantee that the channel assumes capacity via a binary input distribution. The approach used in these two sections should be new.
- 1. We first recall some elementary facts about a discrete, memoryless channel with input symbols x_j , output symbols y_i , and transition probabilities π_{ij} = prob { $y_i | x_j$ }. For a given input distribution p_j with corresponding output distribution $q_i = \sum_j \pi_{ij} p_j$ the transinformation, T(p), is given as

 $T(p) = \sum_{j} p_{j} \sigma_{p,j}, \quad \sigma_{p,j} = \sum_{i} \pi_{ij} \frac{\log \frac{\pi_{ij}}{q_{i}}}{q_{i}}.$ A capacity-achieving input distribution, \hat{p} , is such that $T(\hat{p}) = \max_{p \in \mathbf{T}} T(p), \text{ where } \mathbf{T} \text{ is the set of all possible input distributions. A necessary and sufficient condition for a capacity-achieving input distribution <math>\hat{p}$ is that

(1)
$$\sigma_{\hat{p},j} = \max_{k} \sigma_{\hat{p},k}$$
 for all j with $\hat{p}_{j} > 0$.

In what follows we only shall need that (1) is a necessary condition for a capacity-achieving input distribution of a discrete channel.

Condition (1) is easily seen to be equivalent to the optimality condition derived in [1]. Iterative methods for finding a capacity-achieving input distribution may be found in [1], [5].

2. We now consider more generally a (time-discrete) channel of density type [2]. Such a channel is specified by a set X of inputs, provided with a σ -algebra E, a set Y of outputs, provided with a σ -algebra H, and transition densities $\pi(y|x)$ with regard to a given σ -finite measure $\mu(\cdot)$ on H. Υ is the family of all probability distributions over E, and for any Pe Υ the output density is given by $q(y) = \int_X P(dx) \pi(y|x)$. Furthermore

$$T(P) = \int_{X} P(dx)\sigma_{P}(x), \quad \sigma_{P}(x) = \int_{Y} \pi(y|x) \log \frac{\pi(y|x)}{q(y)} \mu(dy),$$

and the *capacity* is defined as $C = \sup_{P \in \P} T(P)$. We are interested in cases where capacity is achieved by a distribution $\widehat{P} \in \P$ whose support contains only a finite number of points (assuming, thereby, that E comprises at least all one-element subsets of E). For such a distribution \widehat{P} with finite support a condition analogous to (1) is given by

(2) $\sigma_{\widehat{P}}(x) = \max_{\xi \in X} \sigma_{\widehat{P}}(\xi)$ for all x with $\widehat{P}(x) > 0$, i.e., $\sigma_{\widehat{P}}$ assumes its maximum \widehat{P} -almost everywhere. We only shall need that for a continuous channel (2) is a *sufficient* condition for a capacity-achieving input distribution \widehat{P} with *finite* support. Sufficiency is obvious, as the elementary inequality $q \cdot \log(\widehat{q}/q) \le \widehat{q} - q$ implies

 $\int_X P(dx) \left[\sigma_p(x) - \sigma_{\widehat{P}}(x) \right] = \int_Y q(y) \log \frac{\widehat{q}(y)}{q(y)} \mu(dy) \le 0,$ and thereby $T(P) \le \int_X P(dx) \sigma_{\widehat{P}}(x) \le \max_{\xi \in X} \sigma_{\widehat{P}}(\xi) = T(\widehat{P})$ for any other input distribution P.

We henceforth shall restrict ourselves to the amplitude-

limited channel with additive noise. In this case $X\subseteq \mathbb{R}$ is a bounded interval; y=x+z, $\pi(y|x)=\omega(y-x)$, where z is a given noise random variable having range $Z\subseteq \mathbb{R}$ and density $\omega(z)$ with regard to Lebesgue measure. We obtain then

(3)
$$\sigma_{p}(x) = \alpha - \int_{X+Z} \omega(y-x) \log \alpha(y) dy$$
, $\alpha = \int_{Z} \omega(z) \log \omega(z) dz$.

3. We first show that an amplitude-limited channel with additive noise admits a capacity-achieving input distribution with finite support, provided Z is a bounded interval and $\omega(z)$ is piecewise constant between equally spaced points of Z.

To be more specific, let Z = [0,D], $D = n \cdot \Delta$ (n integer), $\omega(z) = -100$ = const. within each interval $[k \cdot \Delta, (k+1) \cdot \Delta]$ of Z. Let X = [0,S], $S = m \cdot \Delta + r$ (m integer, $0 \le r < \Delta$). Let Y = X + Z = [0,S + D]. This describes our continuous channel. It is possible to reduce this continuous channel to a discrete channel whose input symbols are points $\xi_j \in X$ and whose output symbols are intervals $\eta_i \subseteq Y$. To this end we define in [0,S + D] points

$$\xi_{k} = \begin{cases} \Delta \cdot k/2 & (k \text{ even}), \\ r+\Delta \cdot (k-1)/2 & (k \text{ odd}), \end{cases} k=0,1,\ldots,2(m+n)+1,$$

and intervals

$$n_k = [\xi_k, \xi_{k+1}], \quad k=0,1,...,2(m+n).$$

Now the capacity of the above continuous channel is achieved by a discrete input distribution whose support is a subset of $\{\xi_j\}_0^{2m+1}\subseteq X$. This can be seen as follows: If we place probabilities $P(\xi_j)$ at the points ξ_j in such a way that q(y)>0, then $\sigma_P(x)$ is continuous, and is linear between any two successive points ξ_j , ξ_{j+1} . In order to establish the optimality of such a distribution it is therefore sufficient to test condition (2) with X replaced by $\{\xi_j\}$. At the points ξ_j , however, the function $\sigma_P(\xi_j)$ equals the components of the vector $\sigma_{p,j}$ corresponding to the discrete

channel with inputs $\{\xi_j\}_0^{2m+1}$, outputs $\{n_i\}_0^{2(m+n)}$, and transition probabilities $\pi_{ij} = \int_{\eta_i} \omega(y - \xi_j) dy$ under the identification $p_j = P(\xi_j)$. If we have found a capacity-achieving input distribution \hat{p} of this discrete channel, then this distribution satisfies (1) as a necessary condition. The corresponding input distribution \hat{P} of the continuous channel, consequently, satisfies (2) on the restricted set $\{\xi_j\}$; however, because of the piecewise linearity of $\sigma_{\hat{P}}(x)$, \hat{P} satisfies (2) on all of X, thus giving capacity for the continuous channel.

In the special case where $\omega(z)$ is a rectangular density in the interval [0,D] (i.e., Δ =D, n=1), the optimal distribution can be given explicitly: Set

$$\hat{P}(\xi_{j}) = \begin{cases} \rho \cdot (j+1)/2 & (j \text{ odd}), \\ & j=0,1,...,2m+1, \\ \rho \cdot (2m+2-j)/2 & (j \text{ even}), \end{cases}$$

where ρ is a normalizing factor. For this distribution, $\hat{q}(y)$ is on Y periodic with-period Δ (on η_k —the value of $\hat{q}(y)$ equals $\rho(m+1)/\Delta$ for k even, and $\rho(m+2)/\Delta$ for k odd; η_k and η_{k+1} together have length Δ for all k). Therefore the function $\sigma_{\hat{P}}^{\bullet}(x) = \alpha - \frac{1}{\Delta} \int_{X}^{X+\Delta} \log \hat{q}(y) \, dy \text{ is independent of } x, \text{ and the optimality criterion (2) is satisfied. This has also been noted by Färber [3] and Appel [4].$

4. We shall consider from now on a channel with a signalling interval of length 2s, say X = [-s, +s]. An input distribution \widehat{P} is called binary, if $\widehat{P}(-s) = p$, $\widehat{P}(+s) = 1-p$. For binary \widehat{P} the optimality condition (2) becomes

(4)
$$\sigma_{\hat{p}}(-s) = \sigma_{\hat{p}}(+s) \equiv \kappa$$
,

(5)
$$\sigma_{\widehat{p}}(\xi) \leq \kappa \text{ if } -s < \xi < +s.$$

In what follows we shall describe a class of amplitude-limited channels with additive noise for which the optimal distribution

can be ascertained a priori to be binary. We note that equality (4) can always be attained by an appropriate choice of the weight p. We shall formulate conditions on s and ω which also ensure that the inequality (5) is satisfied, by enforcing suitable functional properties of $\sigma(x)$, such as convexity downwards (†). We first turn to the case of symmetric noise density.

Proposition 1: Let $\omega(z)$ be symmetric about z=M, increasing $(\dagger^{\dagger\dagger})$ in $(-\infty$, M], decreasing in [M, $+\infty$), concave in an interval [M- ϕ , M+ ϕ], and eventually constant in [M- ℓ , M+ ℓ] $(0 \le \ell \le \phi)$. If $2s \le \ell + \phi$, then there exists a capacity-achieving input distribution which is binary.

Proof: Set M=O for convenience. We choose \widehat{P} binary with $p=\frac{1}{2}$. The corresponding output density $\widehat{q}(y)=\frac{1}{2}\omega(y+s)+\frac{1}{2}\omega(y-s)$ is symmetric about y=O. \widehat{q} is increasing in $(-\infty, \ell-s]$, decreasing in $[-\ell+s, +\infty)$, and concave in $[s-\phi, -s+\phi]$ (since it is the sum of two functions with these same properties). The condition $2s \le \ell+\phi$ implies that these three regions together cover Y. Moreover, the concavity of \widehat{q} in $[s-\phi, -s+\phi]$ together with the symmetry about y=O guarantees that within this interval \widehat{q} is increasing up to y=O, and decreasing thereafter. Hence \widehat{q} is increasing in $(-\infty, 0]$ and decreasing in $[0, +\infty)$. The function $\gamma(y) = -\log \widehat{q}(y)$ is then decreasing in $(-\infty, 0]$, increasing in $[0, +\infty)$, and symmetric about y=O. The function $\sigma_{\widehat{P}}(x) = \alpha + \int \omega(y-x)\gamma(y) dy$ is therefore symmetric around x=O.We show that it is decreasing in [-s, 0] (condition (5) is then obviously satisfied). Indeed: Let $-s \le \xi_1 \le \xi_2 \le 0$.

$$\sigma(\xi_1) - \sigma(\xi_2) = \int \omega(z) [\gamma(z+\xi_1) - \gamma(z+\xi_2)] dz$$
$$= \int \omega(z) [\rho(z)] dz.$$

 $\rho(z)$, in view of the symmetry of γ around 0, is skew-symmetric around $K = -(\xi_1 + \xi_2)/2$. Also $\rho(z) \le 0$ for $z \ge K$. For $\zeta \ge 0$ we have

 $\omega (K+\zeta) \leq \omega (K-\zeta), \text{ because of } K \geq 0; \text{ moreover } \rho (K+\zeta) = -\rho (K-\zeta) \leq 0.$ Therefore $\omega (K+\zeta) \cdot \rho (K+\zeta) \geq -\omega (K-\zeta) \cdot \rho (K-\zeta),$

$$\int_{z \geq K^{\omega}(z)\rho(z)dz \geq -\int_{z \leq K^{\omega}(z)\rho(z)dz},$$

and consequently $\sigma(\xi_1) - \sigma(\xi_2) \ge 0$. q.e.d.

Examples: a) $\omega(z)$ rectangular of length 1 ($\ell=\phi=1/2$). Binary signalling is optimal if $2s \le \ell+\phi=1$. In this case the bound is sharp. b) $\omega(z)$ triangular of length 1 ($\ell=0$, $\ell=1/2$). The proposition gives $2s \le 0.5$. However, direct verification of (5) shows that binary signalling is optimal up to 2s = 0.72.

5. We now drop the assumption of symmetry. S = 2s is the length of the signalling interval.

Proposition 2: Let $\omega(z)$ be increasing in $(-\infty, M]$, decreasing in $[M, +\infty)$, and concave in $[M-\phi, M+\phi]$. If S satisfies (6) $\max\{\omega(M-\phi+S), \omega(M+\phi-S)\} \le \min\{\omega(M-S), \omega(M+S)\}$ (+++), then there exists a capacity-achieving input distribution which is binary.

Proof: Set M=0. We choose \widehat{P} binary such that equality (4) is satisfied. We then show that under the assumptions made $\sigma_{\widehat{P}}(x)$ is convex, so that the inequality (5) is satisfied, too. $\widehat{q}(y)$, being a positive linear combination of $\omega(y+s)$ and $\omega(y-s)$, is increasing in $(-\infty, -s]$, decreasing in $[s, +\infty)$, and concave in $[s-\phi, -s+\phi]$. $\gamma(y) = -\log \widehat{q}(y)$ is then

decreasing in $(-\infty, -s]$, convex in $[s-\phi, -s+\phi]$, increasing in $[s, +\infty)$.

Choose a constant θ between the right- and left-hand sides of (6) and decompose $\omega(z) = \overline{\omega}(z) + \underline{\omega}(z)$, where

 $\overline{\omega}(z) = \max \{ \omega(z) - \theta, 0 \}, \quad \underline{\omega}(z) = \min \{ \omega(z), \theta \}.$ Because of (6) we have

$$\overline{\omega}(z) = 0$$
 outside $[-\phi+S, \phi-S] \equiv A$,
 $\underline{\omega}(z) = \theta$ within $[-S, +S]$.

The function $a(x) = \int_{X+A} \overline{\omega}(y-x)\gamma(y) dy$ is convex, since for all $x \in [-s, +s]$ the domain of integration x+A is contained in the interval $[-\phi+s, \phi-s]$ in which γ is convex, and since the convolution of a nonnegative function and a convex function is convex. The function $b(x) = \int_{\underline{\omega}} (y-x)\gamma(y) dy$ is also convex. Direct verification of this is somewhat tedious; it is more convenient to use the right- and left-hand derivatives of b(x): Since $\underline{\omega}$ =const. in [-S, +S], we have

$$b'(x\pm 0) = -\int_{y \le x-S} d\underline{\omega}(y-x)\gamma(y\pm 0) - \int_{y \ge x+S} d\underline{\omega}(y-x)\gamma(y\pm 0).$$

If x varies in [-s, +s], the domain of integration of the first integral is always contained in the domain $y \le -s$ in which $\gamma(y)$ is decreasing. Also $d\underline{\omega}$ in the first integral is always nonnegative because of $y-x \le 0$. Therefore the first term is increasing with x; likewise the second term. The monotonicity of the derivatives of b(x) proves the convexity of b(x). The function $\sigma_{\widehat{P}}(x) = \alpha + a(x) + b(x)$ is then convex, by the convexity of a and b. q.e.d.

- [1] B. Meister, W. Oettli: On the capacity of a discrete, constant channel. Information and Control 11 (1967), 341-351.
- [2] K. Jacobs: Über Kanäle vom Dichtetypus. Math. Z. <u>78</u> (1962), 151 170.
- [3] G. Färber: Die Kanalkapazität allgemeiner Übertragungskanäle bei begrenztem Signalwertbereich, beliebigen Signalübertragungszeiten sowie beliebiger Störung. A.E.Ü. (Arch. elektr. Übertragung) 21 (1967), 565 574.
- [4] U. Appel: Der Einsatz der nichtlinearen Programmierung zur Bestimmung der Kanalkapazität von signalwertbegrenzten Analogkanälen. Diplomarbeit, Institut für Nachrichtentechnik, Technische Hochschule München, 1967.
- [5] S. Arimoto: An algorithm for computing the capacity of arbitrary discrete memoryless channels. IEEE Trans. Information Theory IT-18 (1972), 14 20.

Footnotes.

- $\begin{array}{l} (\dagger) \quad \psi(t) \ \ \text{is convex if} \ \psi \big[(1-\lambda) \, t_0^{} + \lambda \, t_1^{} \big] \leq (1-\lambda) \, \psi(t_0^{}) + \lambda \, \psi(t_1^{}) \, , \ 0 \leq \lambda \leq 1 \, . \\ \\ \psi \ \ \text{is concave if} \ \ -\psi \ \ \text{is convex} \, . \end{array}$
- (††) Here and in the following "increasing" does not necessarily mean "strictly increasing"; thus $\omega(z)$ may well be zero outside a given interval Z.
- (†††) This condition delimits an interval $0 \le S \le S_0$. If ω is symmetric, as in the preceding section, then $S_0 = \max\{\ell, \phi/2\}$, thus being smaller than the bound derived in the preceding section, which was $\ell + \phi$.