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. Abstract: An . additive noise channel wherein the noise is
described by a piecewise constant probability density is
shown to reduce to a discrete chamnel by means of an expli-
cit construction. In addition, conditions are found which
describe a class of continuous, amplitude-limited channels

for which the capacity-achieving input distribution is binary.

March 1973



0. It is the purpose of this note to discuss some examples of
“continuous, amplitude—limited chanﬁels with additive hoise having
the propefty that the capaeity—achieving input distribution can be
ascertained a priori to have discrete support. In eections 1 and 2
we first review some well-known optimality conditions for a capa-
city-achieving 1input distribution to be used in the remainder of
our discussion. In section 3 we consider the case of a piecewise
constant noise density. We show by means of an explicif construc-
tionAthat in this case the giveﬁ channel is equivalent to a certain
discrete channel. This gives the possibility of characterizing a

| pfiori the discrete support of the optimal input distribution. The
results of this sectien were moti?ated by, and include, results of
Firber and Appel concerning the special case of a rectangular noise
: distribution. In sections 4 and 5 we describe a class of noise
_dlstrlbutlons which guarantee that the channel assumes capacity
.v1a a binary 1nput distribution. The approach used in these two

sections should be new.

1. We first recall some elementary facts about a discrete,
memoryless channel with input symbols xj, output symbols Yi» and
‘trahsition pfobabilities Ti§" prob {y-lxj}..For a given input
distribution pj with correspondjng output distribution a3 23 lJpJ
‘the transinformation, T(p), is given as

| T o= ,,l ..__.J_
(p) = Ljpsop,50 9p,5 7 137ij togg:
A capac1ty ach1ev1ng input distribution, p, is such that
T(ﬁ);max qu(p), where 9° is the',et of all p0551b1e input distri-
butions. A necessary and sv£t1c1ent condition for a capacity-

achieving input distribution p is that

for all j with ﬁj:>0.

(1) | 95, =maxkcr15’k




In what follows we only shall need that (1) is a necessary condition
for'a éapacity—achieying input distribution p of a discrete channel.
Condition (1) is easily seen to be eguivalent to the opti-
ﬁality condition derived in [1].'Iterative methods for finding a
capacity-achieving input distribution may be found in [1], [s].

2. We now consider more generally a (time-discrete) channel
of density type [2]. Such a channel is specified by a set X of
inputs, provided with a o-algebra £, a set Y of outputs, prévided
with a o-algebra H, and transition densitiés m(ylx) with régard
to a given o-finite measure u(+) on H. 9? is the family of all
pfobability distributions over £, and for any Pef? the output
density is given by q(y)'=fXP(dx)n(y|x). Furthermore |

1) = [ PE0op00, o0 = | el TestEhuan,

and the éapacity is defined as C=fsuppeq}T(P). We are interested

" in cases whefe capacity is achieved by a distribution ﬁ&G’ whose
support contains only a finite number of points (assuming, théreby,
that = comprises at least all one-element subsets of X). For such

a distribution ? with finite support a condition analogous to (1)
is given by

- (2) | o'ﬁ(x). = maxgexof;(g) for all x with ’I;‘(x) >0,

i.e., off assumes its maximum P-almost everywhere. We only shall
need that for a continuous channel (2) is a sufficient condition
for a capacity-achieving input distribution ? with finite support.
Sufficiency is obvious, as the.elementary inequality q-log(4/q)<f-q
implies

"

Con()] - A
| P Bop00 - o5e0] = [ amtegd} s <o,

and thereby T(P):;[xP{dx)oﬁ(x):émax oﬁ(g)»=T(P) for any other

geX
input distribution P.

We henceforth shall restrict ourselves to the amplitude-




limited channel.with additive noise. In this case XER ié a bounded
intervél; y=x+z, m(y|x)=w(y-x), where z is a given noise random
~variable having range Z&R and density w(z) with regard to Lebesgue
measure. We obtain then

() eptmer| wrmx) Togandy, o=] u(z) logu(a)dz,

3. We first show ‘that an amplitude-limited channelAwith addi-
tive noise admits a capacity-achieving input distribution with
finite support, provided Z is a bounded intervalland w(z) is piece—
wise constant betwéen equally spaced points of Z. (

To be more specific, let Z=[p,D], D=n-aA (n integer),.w(z)=
=const. within each interval [kea,(k+1)-a] of Z. Let X=[0,S],
S=meA+r (m integer, O<r <A). Let Y=X+Z=[O,S+Dj; This describes
our continuous channel.‘It is possible to reduce this continuous
channel to a discrete channel whose input symbols are poinﬁs gj €X
and whose output symbols are intervals ﬁiggY. To this end we define
in [0,S8+D] points

.A-k/z ' (k even),

= k=0,1,...,2(m+n)+T7,
r+As (k-1)/2 (k odd),

tx
and'intervéls‘

ne = [Exrfxaqds Kk=0,1,...,2(m+n).
Now the capacity of the above continuous channel is achieved by
a discrete input distribution whose support is a subset of
{gj}gm+1g;x. This can be seen as follows: If we place probabilities
P(gj) at the points gj in such a way that ?(y) >0, then oP(x) is
continuous, and is'linear between any two successive points gj,

g In order to establish the optimality of such a distribution

j*1e
it is therefore sufficient to test condition (2) with X replaced
by'{gj}. At the points gj,however, the function cp(gj) equals the

corresponding to the discrete

components of the vector .

y




2m+1
ito

2{m+n)

o , and transition

channel with inputs {¢ , outputs {ni}

. probébilities_nij =fniw(y—£j)dy under the identification pj==P(€j).
If we have found a capacity-achieving input distribution § of
this discrete channel, then this distribution satisfies (1) as a
necessary condition. The corresponding input distribution P of
the contihuous channel, cohsequéntly, satisfies (2) on the restric-
ted set {gj}; however, because of the piecewise linearity of
cﬁ(x), P satisfies (2) on all of X, thus giving capacity for the
continuous channel.

In the Special case where w(z) is a rectangular density in
the interval [O;D] (i;e., A=D, n=1), the optimal distribution
can be given explicitly: Set (

R pe(j*+1)/2 (j odd),
P(gj) = 4 : j=0,1,...,2m+1,
~{ ee(2m*2-3)/2 (j even),

-

where p is a normalizing factor. For this distribution,q(y) is on Y
periodic with-period A (on nk«the value of G(y) equals p(m+1)/a
for k even, and p(m+2)/a for k odd; nk'and nk+1_together have
lengfh A for all k). Therefore the function |
”'cé(Xj;f;:%f§+A log §(y) dy is independent of x, and the optimality
criterion (2) is satisfied. This has also been noted by Fédrber [}]
“and Appel [4]. |

4. We shall consider from now on a channel with a signalling
interval of length 2s, say X = [-s , +s]. An input distribution P
is called binary, if P(-s) =p, §(+s)==1-p.eFor binary P the

'optimality condition (2) becomes

tH

(4) oﬁ(—s) =o§(+s) K
(5) | cﬁ(g) <k if -s <g <+s,

In what follows we shall describe a class of amplitude-limited

channels with additive noise for which thevoptimai distribution




can be ascertained a priori to be binary. We note that equality
;(4) can always be attained by an appropriate choice of the weight
p. We shall formulate conditions on s and w which also ensuré
fhat the inequality (5) is satisfied, by enforcing suitable
functional properties of o(x), such as convexity downwards(T).

We first turn to the case of symmetric noise density. ,
' | (++)

Proposition 1: Let w(z) be symmetric about z=M, increasing
inf(-w ,Mﬂ, decgéasing in [M , +©*), concave in an interval
[M—¢ ;M+¢] , and eventually constant ih [M-%2 ,M+2 ] (0<2<9¢).
If 2s<¢+¢, then there eﬁists a capacilty-achieving inpdt distri-
butiOn which 1s binary.

Proof: Set M=0 for convenience. We choose ﬁ'binary with p=%.

The corresponding output density Q(y)i=%w(y+s) +%w(y-s) is sym-
'metric about y=0; q is'increasing in (-« ,z—s], decreasing in
‘[-§+s , +o), and COhcave in [s-¢ , =s+¢] (since it is the sum of
th'functions}With these same properties). The condition 2s < £+¢
implies that these three regions together cover Y. Moreover, the -
concavity of.ﬁ in [s—¢ , -S+¢] together with the symmetry about
.y=0 guérantees that within-this in;erval d is increasing up to
y=0,:and decreasing thereafter. Hence § ié increasing in (‘-o° , 0]
and decreasing in [0, +=). The function y(y) = ~-log §(y) 1is then
vdecféasing'in (~= , 0], increasing in [0, +=), and symmetric about:.
y=0;-The-fun¢tion oﬁ(x)==a:+fw(y-x)y(y)dy is therefore symmetric
around x=0.We show that it is decreasiﬁg ih [-s, 0] (condition (5)
is then obviously satisfied). Indeed: Let -s < gy <g,<0.

0(tq) = a(g,) = Jul2) [y(z+gy) - v(z+e,)]dz

= fu(z) [p(2)]dz.

p(z), in view of the symmetry of y around O, is skew-symmetric

around YK=-(g1+52)/2. Also p(z) €0 for z=2K. For ¢ =20 we have




w(K+z) < w(K-z), ?etause of K= 0; moreover p(K+tg) = -p (K-3) =< 0.
Therefore w(K+g)ep (K+z) 2 ~w(K-g)-p (K-2)}, | |

[2s ez 2 -], 020 (242,
andAconsequently 0(51) ~c(£2);;0. q.e.d.

Examples: é).w(z) rectangular of length 1 (2=¢=1/2). Binary
§igna11ing is optimal if 2s<e+¢ =1. Tn this case the bound is
sharp. b) w(z) triangular of leﬁgth 1 (=0, ¢=1/2). The proposi-

- tion gives 2s<0.5. However, direct verifi¢ation of (5) shows
‘that binary signalling is optimal up to 2s = 0.72
| 5. We now drop the assumption of syﬁmetry. = 2s is the 1length
of the signalling interval.

Proposition'Z: Let w(z) b¢ incregsing in (-« ,Mj s deéreasing
in [M, +=), and concave in [M-¢ ', M+¢]. If S satisfies
(6) max {w(M-4+5) , u(M+¢-5)} <min {w(M-5) , w(urs)} (FTF)
then there exists a capacity—achieving input distribution which
is binary. | |

Proof: Set M=0. We choose ? binary such that equality (4) is
satisfied. We then show that under the assumptions made cﬁ(x) is
convex, so that the inequality (5) is satisfied, too. ﬁ(y), being
a positive linear combination of w(y+s) and w(y-s), is increasing
in (-= , -s], decreasing in [s, +=), and concave in [s-¢ , -s+¢].
y(y) = -logq(y) is then

decreasing in (-~ , -s],
convex in [s-¢ , -s+¢],
increasing in [s , +=).-
Choose a constant e.between'the right- and left-hand sides of (6)
~and decompose w(z) =w(z) +w(z), where
E(z)={max {w(z)-8,0}, g(z)=?min {w(z) , 8}

- Because of (6) we have




w(z) =0 outside [-¢+S, ¢-S7] =A,
w(z)

The function a(x) =fX£AEIy—x)y(y)dy is'convex; since for all

1)

6 within [-S, +S7].

xe[-s , *+s] the domain of integration x+A is contained in the

interval [—¢+s ,¢~s] in which y is convex, and since the convo-

lution of a nonnegative function and a convex function is convex. |
The function b (x) =f91y—x)y(y)dy is also convex. Direct verifi- -
cation of this is somewhat tedi9us; it is more convenient to

use the right- and left-hand derivatives of b(x): Since w=const.
in [-S ,+SJ,.we have

bt (x20) = - du(r-)1(+0) -

do (y-x)y (y+0).
y 2 xX+S '

Jy £ x-S

If x varies in [-s , +s7,. the domain of integration of the first
integral is always contained in the domain y £ -s in which y(y)

is decreasing. Also dw in the first'integral 1s always nonnega-
tive because of y-x <£0. Therefore the first term'is increasing
with x; likewise the second. term. The monotonicity of the deriva-
tives of b(x) proves the chvexity of b(x). The function |

oﬁ(x) =a+a(x)+b(x) is then convex, by the convexity of a and b. q.e.d.
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Footnotes.

()

(++)

(++4)

v(t) is convex if y[(1-a)t +rt,] §(1~A)w(to)+xw(t1), o<Aas<t.
¢ is concave if -y is convex. . : . |
Here and in the following "increasing'" does not necessarily

mean ''strictly increasing''; thus w(z) may well be zero

outside a given interval Z.

This condition delimits an interval O:SS:ESO. If w is symmetric,

as in the preceding section, then SO==max {2,¢0/2}, thus being

smaller than the bound derived in the preceding section, which

was L+¢.
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