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Problem statement and eharaeterization of solutions

The programming problem \<'0 are going to eonsider has the folIm.ing form:

(P) m~n {F(x)lxEC, ft(x) ~ 0 VtET}
..-:::! .

Let S',denote the admissible dcimainof P, Le.,

::'\..,.

Let us introduee funetions ~(x,~), ~t(x,~)(tET), defined on $xC, which will be

used as substitutes forF (0, f (~). We make anee and for all the folIm.ing as-
" t

sumption:

'nC clR ~s a elosed, eonvex set; T ~s a eompact metric spaee;

(AI) F (x)
..

i~ c~ntinuous on C; f (x) is.continuous on TXC;
t

i~ coritinüouson SxG;~' (x,O is eantinuous on
t

TXSxC.

Inwhat follows we shall be interested ~nproperties of a eertain point
I

X ES.

,.
Coneerning this point xES, welIlakethe followingassumption:

, (A2)

The funetions <r>(x,O and ~t (~,O are eonvex,with regard to ~;

~(~,~)?F (x),leJ?(~,O -F (0 I ~ 0 (~-~) ;

~ (~,~)= f (~),I<p (~,O - f (01 ~ o(~-~)t t" t t
where the Landau.-bound o(!l» is independent of t.

AAlways for xES define

~alldlet T "satisfy

T {tETIft (~) o} ,

We eonsider the following'system in ~:

< 0, ~ (~,~) < 0 VtET
" t

' ... -
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Lerruna 1: Let ~ be a solution of (l)• Then for any r > 0 there

exists xE[~,~] satisfying !
(2) xEC, lx-~l ~. r ,F (x) -F (i) < 0' fi:(x) < O,VtET .,

Froof: The compactness of T and the continuit:Y of f (~) with regard to t
t

imply the compactness of T. Since T is compact, since tpt(x,O < 0 VtET,

'ändsince tpt(x,O is continuouswith r~ga:rd to t, we have
A

tpt(x,O S; ..: <5< ° VtET •

Def~ne an open neighbourhood of T by means of

U = {tETltpt(~,O < -!} .
T-<"U .is',again compact; since 'ft:'(~)< 0 VtET'U ,and since ft (~) 1.S continuous'

with regard to t,we have

ft (i) S; ..• e: < ° Vi::ET'U •

. Likewise

For ° < I.. S;

= Atp(x,F,)+(l-A)f (x)+o(A) •
t t

This gives

for all tET'U: ft(xA) S; AM+(I-)')(-e:)+o(A) < ° if AE(0,A1)

for all tEJJ:ft(xA) S; A(-i)+o(A)<0 if AE(0,A2).

Also
F (xA)-F (~) S; A<I>(i,F,)+(I-A)cD(i,i)-F(x)+o(A)

=A(c:I>(i.O-F (x»)+o(A) < 0 if AE(0,A3) •

Therefore

, .

satisfies (2) for all sufficiently small A > O. q.e.d.
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The following theorem generalizes Kolmogorov's criterion for best Chebyshev-

approximations {I].

A

Theorem 1: a) A necessary condition for xES to salve P is that (I)

has no solution. b) This condition is .also sufficient, if F(~) and

ft (~) areconvex on C,and if 3~EC: f (';.) < 0 VtET.
t

Proof: a) If (I) has a solution, then, by lemma I, there exists xES such

that F (x) < F (;.), and .~ is not optimal for P. . b) If x is not optimal

for P there exists x satisfying

,.
xEC, ft (x) ~ 0 VtET, F (x) <F (x) •

~E(x,'k]and/ for all tET. Also, since F (x) < F (;.) is
Since

for all

ft (';.) < OVtETand~ since f (. )
t.

is convex we have then f (~) < 0
t

and F (.)

convex, we:haveF (~)< F (~) for all ~E(X;i';.] sufficiently elose to x.

Therefore the system
! ,.

~EC, F (~)-F (x) < 0, ft (~) < 0 VtET

has asolution. Nowadapt lemma 1, wi th the t"~les of {(.) and ~(~,.) inter-

changed, toconclude that (l) has a solution.
""."'/ --:'.'.... . - ":.- . .' ---".--,.--: .. ' :'."'.

q.e.d •.

Cdnt~rtlingstatetIfent b) we metltion an alternative assumption, under which

the inconsistency of (I) is sufficientfor ~ES to be a solution of P:

CI>(~,O ~F (0, tPt(~'O ~ ft(O, 3~EC: tPt(~''k) < 0 VtET. The proof in this case

does not need lemma I.

/
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Iterative scheme and convergence

Starting from an arbitrary point a sequence
k

{x } c S ~srecursively

defined as.follows: Fix a > 0, ß > 0.
," .,' Suppose kx ES is given. Let

Define !;k

(3)

DeHne k+1x

(4 )

as being a solution of

~s continuous on c. Therefore (3)
. !

has' a so1.utibn."Also (lI )has a solution •. Obviously k+1x. is"again in S.

Wemention that T~imay be replaced by T. Also the requirement I!;-xkl:$ ß

may be dropped from (3) if C is already compact. But a. cannot be set equal

tozero.

Theorem 2: Let xbe a cluster point of the sequence {xk}.•
A

Then xES,

and '(1) has no solution (i. e.,i satisHes ,thenecessary optimality condition

of theorem I).

Wehave already defined Hk(0. F or the proof let us deHne ~n addition
a

Hoo(x,O = max {<I>(x,O-F(x), <Pt(x,O (tET)} ,

A A

H(x,!;) = max{cl)(x,O-F (x), <P (x,O(tET)} ,. t. .

.where T = {tET Ift (~) = 0J. Both functions are continuous on sxC by (Al).

Nötethat' assumption (A2) is supposed to hold at x•

.'.'::Proof of theorem 2:
'¥. ."

iES, as S is closed by (AI).
-., k+'l' , '0 .".,

). ;:::,~(x. '(;a~d,thi~mouototlici ty implies

(4) we
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Since x is a cluster of {xk} and since I~k_xkl .~ ß th . t<, ere ex~s s ~EC and

a subsequence {K} C {k}such that

KAK
X -+ x, E;, -+ ~ •

--- There exists K1 such that

T C TK VK ~ Ka 1 •

is contim.ious by the cöinpactness of T arid the continuity

(6 )

Indeed, ljJ (x) =

of ft(x) on

lJli~
tETTxC.

f (x)
t

Since
K A

X -+ x,we have for all

sufficiently large K. This proves (6).

-. - Wehave

(7)

I~deed, suppose there exists E;,ECsuchthat

By continuity then for all K ~ K2

Since T'~ TK we have bythe definition of
.(]

Hand of
co

By (6) for all K ~ K1 we have TK
~ T, implying, b'y the definition of

a
H, that

Thus for all sufficiently large K we would have

This contradicts the defini don of E;,K~n (3). Thus (7) nlUst hold.

--- Suppose now that (I) hasa solution. It follows by a simple application of

lemma 1 that also the system

A ß A A
E;,EC,IE;,-x\ ::;2' <D(-x,O-F(x) < 0, tOt(x,O < 0 VtET
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has a solution. This means that m~n H (~,O < 0; and
CX)sEC

Is-il4
A A A

by (7) this impliesH(x,O < 0, ~.e.,

~(~,~)-F (x) < 0, tpt (x,~) < 0 VtET

Then by lennna'there. existsxE[~~] satisfying

A

F (X)-F (x) < 0,. ft (X)< O' VtET •

Let X = X+A (~-~), 0 ~A~ 1, and set

Then KX . -+ X, and bythe continui ty and compactness assumptions of (Al)i. .~
K I A' K

F (X )-F (x) < 0, ft(X ..) < 0 VtET
I

for all'suffici.entIy large K. ThismeciUs"that XKE[xK'SK] n S, and by (4)iiIlplies

F (xK+1) ~ F (XK). Bht since F (XK) < F (~) we have F (xK+I) < F (x), contradicting (5).

The assumption that (1) has asolut~ttwas wrong. q.e.d.

In conclusionwe

F (~), tpt(x,x) =ft(~}.

VxES. Then

It was already assumed inthe proof of theorem 2 that

k kH (x },~O,,;and by (3)a .

<D(x,x) ~ F (x), tpt (x,x) ~ ft (x)

Hk(xk) • Therefore Hk(sk)"~ O. In theproof of
aa

statement (7) it was'shbwn'that HK(SK) ~~(xK 'SK) VK~ KI• By continuity
a .

~(XK'SK)-+ ~(x,~).Since (I}'has no solution, H(X,~) ~O VsEC.

Assume for,the mom~n!':, that also

obtain H(x,O

:.. ":.-
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Rite of convergence

kThis section deals with the rate of convergence pf F (x) ~n some special

cases. In addition to (AI) we require:

F (O,ft(E; ),~(x,O,tpt (x,O are convexwith respect to E;

cX>(x,x)= F (x),tpt (x,x) = ft (x) \lxES ; the set

(A3) So = {xEclft(x) :::;0 \ltET, F(x) :::;F(xo)}

is bounded; 3~EC: ft (~) < 0 \ltET; (A2) holds

A • {xk,}for all x, which are cluster points of

The compactness of S implies that P has a solution.o
Also the sequertce

{xk} C S has cluster points. Under (A3) ,each cluster point is a. s()lution of P,
o

bytheorem 2 and theorem Ib).' Furthermore,since each subsequence o~ {xk} contains

a subsequence which converges to a solution of P, the remark following the proof of

theorem 2 implies that

We shall use in the following the abbreviations'

where F is the. optimal value of P. Then

With oLlR define

K(E;,o) = max {F(0-0, ft (I;HtET)} •

Proof:-

I;emma 2: Tbere exists such tbat min
E;EC

1E;-xkl:::;ß

. k k
K(~,F (x » :s; PI (-0 ).

Since S c: C,o

(8) min
E;EC

II;-xkl::;ß

m~n
E;ES o

II;-xkl::;ß

-- Let o < e ::; min {I ,~}, wher~ R is the diameter of S •o Then for any xESo

..... "
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there exists ~ES such thato

k k kI~-x I :::;ß, K(~,F ):::; 8K(x,F ) •

(Choose
kk

~; = x +8 (x-x ), and notethat K(. ,Fk) is convex, K(xk,Fk) - 0.) This implies

(9 ) min
~ESo

1~-xkl:::;ß

K(~,Fk) :::;8.min
xESo

kK(x,F ) •

_'_ Since Fk:::; F0, it is easy to verify that

(10) min
xESo

K(x,Fk) = min K(x,Fk) E v(Fk)
xEC

__ The function v(cr) = min K(x,cr) is convexover :IR since K(x,cr) is convex
xEC

over C~::IR. Alsov(cr) ,is, monotonical1y nO,nincr~asing. v(F) = 0, by the very

definition of F. Furthermore for cr > F the value of v is negative', since

there 'exists ';C'ECwith f (';C')< 0 VtET.
t . A

,., 0 cr-F
vexity, for al1 crE[F,F], v(o-):::;~ y.

F •.•,F

. 0
In particular, v(F ) = y < O.

Therefore

By con-

(11 )

Jn~<:J.\,lalities, (8) - (11) in succession provethe lemma.

Suppö'se fori(thEt moment wewould havedetermined
k+1

x

q.e.d.

as a solution of

min,. {K(x,Fk) IxEC, Ix-xkl :::;a}. Thiswould be the iteration rule for the. method of

centers '[3]. Its main difference to the method of feasible directions[Z] is

that no line-minimization like (4) takes place. It is Clear, that xk+IES under

th' 1 F h f 1 Z ld' h .rk+I_.rk = F (xk.+1)-Fk :::;1.S ru.e. urtermore, rom ernma we wou ave u u

k+1 k k k+1 k:::;K(x ,F):::; p'I(-e ), 1..e., e :::; (I-PI)e. Wereturn now to the method of

feasible directions.

Lerruna 3: If there exist constants Jl ~ 0, 0 < m :::;I, such that

(i) ~(x,O-Jlls-xIZ is convex with respect to ~'Il (ii) lPt(x,O-JlI~-xIZ:::;

:::;ft(s), (iii) <!)(x,O-(I-m)JlI~:"'xl-Z ~ F (U, then there exists Pz > 0

k k
such that T :::;P2(-~ ):

.~.~.-; .."-

......
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Proof:

E;k and thereby tuCk = {E;ECI lE.;-xkl~"ß}. Problem (3), which leadS!~
.Ik't , may be written as '

-- Let

k .. k
min { t I,,: 'tEIR , J';ECk, -'(."+ <D(x,O - F (x ) ::s;0,

.k
-'t + maX~t(x ,E;) $ O} •

tETk
a.

This is a convex programming problem with:tY10 numericai ebnstraints. Its optimal

value is tk, anddue to i ts special.structure (Slater's. regularity assumption is

satisfied) the Kuhn-Tucker-conditions [4] hold: There exisL
k ku .~ 0, v ~ 0

such that

k) .max ~t (x ,E.;) . V'tElR,

tETk
a.

Since this holds for all 'tElR we conclude readily that

k k
u +v = I,

-- We show first that lim inf uk > o. Otherwise there would exist a subsequence,
k-+=

K K K K
U +0, V + I, x + x, 't + 0 ,

and (12) would give in the limit for all E.;EC satisfy,ing IE;-~l::s; ß that

(13) o ~.max ~ (i,E;) •
tET t

However, since there exists ~EC with f (~) < 0 VtET, and since (A2) holds fort. .

an aqaption of lemma 1 shows that taere exists a E.;ECwhich contradicts (13).

Consequently we have Kandu > 0 suchthat uk ~ u Vk ~ K. Let uk = muk• Then

k
O<u$u ~I.

(12) implies that for all E;ECk

'tk ::s;~1E;_xkI2 + uk[~(Xk,E;) k
- F (x )
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the expressiomin brackets [.] are convex in

Now, if for arbitrary xECk we set

we obtain

k k k~ = x . + v (x-x ), then ~ECk' and since

~, and are nonpositive for
kx ,

,[k:s; lJ(vk)2\x-x'k12 + ukvk(W(Xk,X) - F(xk) - lJlx-xkI2)

+ vkvk(max ft(X»). VxECk •
tET

Noting that ,[k:s; 0 we have for all xECk

'[k '[k k( k. k k 2)=- :s;k :s; u <I>(x ,x) - F (x ) - (l-mhdx-x I +
v v

i k
:s;max{F(x) - F (x ), ft(x)(tET)}

= K(x,F (xk».

vk(max f (X»)
tET t

Thus
k - k'[ :s; v'min K(x,F (x ».

xECk
Lemma 2 then completes theproof:

Example: F or F, f convex and differentiable with
t

F (~) - F (x) ~ (~-x)TV.F(x) + mlll~_xI2.

choase

<D(x,O = F (x) + (~-x)TVF(x) + lJl~-xI2 ,
T < 2

lPt(x,O = ft(x) + (~-x) Vft(x) + lJl~-xl •

Then (i) - (iii) ~re satisfied.

Lemma 4: a) If F (0 :s;w(x,~) + MI~-xI2, f (0 :s; lP(x,s) + MI~-xI2 ,t t

then ok+1- ok:s; - Y(Tk)2 for some Y > O. b) If, in addition, there

exists lJ > 0 such that <J>(x,O - lJl~-xI2 and lPt(x,O - lJl~-xI2 are

convex with regard to
k+1 k k~,then 0 - 0 :s;YT for some Y > O•

• 1 ..- •
_~ _< '-_0 ~ ___'____~ - __ :- __ - _
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a) We have for tfTk
a

S - a + Ab S 0 forAE[6~~I]

(the uniform bound b exists by (Al». F or tETk we havea

. k . 2,. k kl2ft (xA) S (j)t (x ,xA) + MA . ~ -x

... k k k k 2 2
S(I-A)(j)t'(X,x ) + A(j) (x,~ ) + A Mß

. t

... .. k k k Z
F(xA) - F(~) S A(~(X , ~ )::- F(x) + AMß)

k.k k
S A(. + Ac) S A-

Z
. for AE[O, - .!....]Zc

k
A = - ~c' xAES ,and F (xA)

Since k• .-+- 0 we may
k

assume that-~c S Al"

k Z
- F(xk) S - (~c)

Then, if we choose

By (4) this implies

b) For

F.(~k+I." F (k) F (. ) F ( k) <. ( k)Z4 -, X S x
A

- x _ - y • •

tfT~ we have, as under a), ft(xA) S 0 if ~E[O,AI]. For

k 21 k klZft (xA) S (j)t (x,xA) + MA ~ -x .

( k k I kk
l
2) 2

1
k .k

l
2S A Wt(x ,~ ) - J..l~ -x + (M + J..l)A ~-x

• k k k .
S A(j)t(X ,~ ) S h for AE[O,A2]"

t'ETk b.we .0 ta~na I

In the same way

k k-F (x ) Sh for. AE[O,A2] "

xAES, and k) k.,. F (x S y••
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Combining the results of lemma 3 and lemma 4 we obtain immediately

Theorem 3: If the assumptions of lemma 3 and

ök+1 ;~ (1 - pök), ök for,.some p > O. If the

/lemma 4'a) hold, then
/

assumptions oflemma 3

andlemma 4b) hold, then ök+1 ~ (1 - p)ök for some p > O.

This extends some results of [5], [6].
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