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SOME REGULARITY RESULTS FOR THE STOCHASTIC PRESSURE
EQUATION OF WICK-TYPE

FRED ESPEN BENTH AND THOMAS GORM THETING

ABSTRACT. We prove that the solution of the stochastic pressure equation of Wiek-type belongs.
to aspace of generalized random fields having square integrable homogeneous chaos kerneis.
We find the chaos expansion, and calculate its stochastic regularity in distribution al sense.
Furthermore, we show that the solution is stable under perturbations of the permeability field
and the source term.

1. )NTRODUCTION

We consider the stoehastie pressure equation of Wiek-type

-'V(K(x)o'Vp(x)) =f(x) on V,

p(x) = 0 on av,
where K is a (stoehastie) permeability field, fis the souree term and p(x) is the unknown pressure.
The problem is posed on a bounded domain V in IRd. By introducing the Wiek produet 0 in the
pressure model we use an Itö interpretation of the stoehastie partial differential equation. This
produet will "mix" the paths in a eertain sense, contrary to the ordinary produet whieh would
lead to a pathwise (w-wise) equation. This model has been proposed and studied intensively by
Holden, 0ksendal, UblZleand Zhang [13]as a model for the pressure distribution in a field where
the permeability has large fluetuations on all seales (the main example being an oil reservoir).
They derive an explieit solution when the permeability is modelIed as a lognormal random field.
The main objeetive of this paper is to study (stoehastic) regularity properties of their solution
together with stability with respeet to the data in the problem.

Several authors (see e.g. Holden et al. [13]' Benth, Deek and Potthoff [4] and Vage [20]) have
used the so-ealled Kondratiev and Hida spaees of generalized random variables as a eonvenient
setting for studying stochastic (partial) differential equations of Wiek-type. Generalized random
variables belonging to these distribution spaees may have highly singular ehaos kerneIs as they
allow for kerneIs in the space of tempered Sehwartz distributions (see Kondratiev and Streit [15]
and Hida, Kuo, Potthoff and Streit [12] for the definition of these spaees). Reeently, Grothaus
[11] introdueed spaces of generalized random variables with chaos kerneIs having L2-regularity,
extending work by Potthoff and Timpel [18]. These spaees seem to be suffieiently flexible for the
study of a large dass of stochastic (partial) differential equations and at the same time providing
an improvement of stochastic regularity. Indeed, Grothaus [11]derives explicit solutions for some
stochastie (partial) differential equations of Wiek-type using these distribution spaces and Wiek
calculus (see also Kondratiev, Leukert and Streit [14]for Wiek calculus).
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From the Wiener-Ito-Segal chaos expansion for random variables with finite variance we know that
the chaos kernels belong to the space of square integrable symmetrie functions. The generalized
random variables of Grothaus have chaos expansions which after truncation belong to the space
of square integrable random variables. Also, by a suitable scaling via the Number operator, we
get random variables with finite variance. Of course, this offers a significant improvement of the
stochastic regularity compared to the Hida and Kondratiev spaces. Besides being interested in
more regular solutions of stochastic differential equations, questions like adaptedness and martin-
gale property are central. Having solutions belonging to spaces with L2-kernels, these properties
are easily verified (see e.g. Benth and Potthoff [7] and Grothaus [11]). See Deck et al. [8] for the
generalization to Hida spaces.

We will in this paper study the problem given in (1.1) with a lognormal permeability field in light
of the new spaces of Grothaus. Being a problem whieh intend to model real-world situations,
we believe it is of importance to improve the stochastic regularity of the solution. In addition
to showing that the solution is much smoother stochastically than proved by Holden et al. [13],
we calculate explicitly its chaos expansion. The chaos expansion is a key-point for studying
stochastic properties and numerical approximations of the pressure (see e.g . Benth and Gjerde
[5] and Theting [19] for numerieal studies of the pressure equation). However, further analysis in
these directions is outside the scope of the present paper. Another important aspect is stability
with respect to data. We shall prove that the pressure depends continuously with respect to the
source function fand the covariance structure of the permeablity field~ In real applications it
is important to know the stability properties of p(x) with respect to its data. The specification
of the sour ce or the permeability may only be an approximation to the physical structure, or
measurements may be inaccurate. It is therefore of interest to know that small perturbations in
the data lead to minor changes in the solution. Our results assure that this is indeed the case for
the stochastic pressure.

Modelling with the Wiek product is questionable, and need to be justified physieally and/or
mathematically. As argued in Holden et al. [13]' stochastic (partial) differential equations may
have singular solutions which make nonlinearities hard to interpret. Understanding products as
Wick-products avoid these problems and at the same time provide a niee structure making the
equations tractable for Wick calculus techniques. Also, there is a elose connection between the
Wick product and elassieal Ito integration (see e.g. Hida et al. [12]' Holden et al. [13] and Benth
[1]). The Wick product appears naturally in ordinary stochastic differential equations of Ito type
via this relation. This indieates that the Wick product performs a similar "mixing" of the paths
as does the Ito integral, and one can say that by applying the Wiek product in stochastie partial
differential equations one get an Ito interpretation of the noise. Whether or not the Wiek product
gives a good model is still an unanswered question. There are some work done in trying to compare
thetwo ways of interpreting the products, see e.g. [13] (and also the last section in this paper). The
results presented here are a step on the way to answer these questions, since we establish regularity
of the solution not previously known for our specific Wick-product equation. Furthermore, we shall
study a rel~tion between models using the different products which may shed some light on Wick
modelling. Apressure equation in one dimension is considered, with combined Dirichlet-Neumann
conditions. For this problem we provide a simple relation for the solutions of the two models. We
do not go into details about existence and uniqueness of solutions, which can be proven by using
techniques from Holden et al. [13]. We also note that the change of boundary condition make the
presentation of the connection a great deal simpler. Admittedly, this part is a bit outside the main
focus of the paper since we change the formulation of the pressure equation slightly. However,
we feel that it provides some understanding of Wiek modelling which may be of use for practical
understanding of the stochastic pressure equation. We remark in passing that to prove the relation
we need some interesting properties of stochastie translation and Wick products which we believe
can be useful in other connections.

Here is an outline of the paper: In Section 2 we give the necessary background to white noise
analysis. A precise formulation of the stochastic pressure equation of Wick-type together with the
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explicit solution is presented in Section 3. In Section 4 we prove the stochastic regularity of the
pressure, following with its Wiener-Itö-Segal chaos expansion in the next section. Stability with
respect to data is considered in Section 6. Finally, we state the relation between the Wiek model
and the model with ordinary product in one dimension when the boundary conditions are slightly
changed.

2. MATHEMATICAL PRELIMINARIES

White noise analysis is the natural frameworkfor the treatment of the stochastic pressure equation
of Wick-type. For a detailed and complete account on the basics of this analysis, we refer the
interested reader to the book by Hida, Kuo, Potthoff and Streit [12] (see also Potthoff and Timpel
[18]' Vage [20]' Kuo [16] and Grothaus [11]). This section gives a more or less self-contained
presentation of the part of white noise analysis needed for our purposes. We refer to Grothaus
[11] for a more complete description of the theory presented below. .

We work on the the white noise prob ability space (S'(lRd),ß(S'(lRd)),It). Here S'(lRd) denotes
the space of tempered distributions, Le. the space of boundedlinear functionals on the Schwarz
functions on lRd. ß(S'(lRd)) denotes thefamily ofBorel subsets of S'(lRd) generated by theweak-*
topology. The characteristie function oHlle probability measure It satisfies

where 1.12 is the usual norm in L2 (lRd). The existence of such a It is assured by the Bochner- Minlos
Theorem.

For n E No (the set of natural numbers including zero), let (S)0n,.n. and (S')0n denote the nth
symmetric tensor products (see e.g. Hida et al. [12]) of S(lRd),L2(lRd) and S'(lRd), respectively.
For notational convenience we put (S)00 = ij = (S')00 = lR . The norm on L~ is denoted by
1 '1[2, and simply 1.12 when there is no chance of confusion. For each epen) E (S)0n we define the
corr~sponding smooth Wiek monomial

where S' :7 w 1->: wl8in :E (S')0n is the nth Wiek power of w (see [11, 12]). The functions that
go inside the Wiek monomials are often refered to as the homogeneous chaos kernels. Given two
chaos kernels J(n) E (S)0n and h(m) E (S)0n then

(2.1)

where 8n,m denotes the Kronecker delta and ( ., . ) is the usual inner product in L~. We use (LP)
as a short-hand notation for LP(S'(lRd), ß, It), the space of random variables with finite p-moment.
The norm in (LP) will be denoted 11. II(LI')' It can be shown that given any sequence of smooth
kernels {ep;n)}~o converging to J(n) in L~, then the sequence In(ep;n)) converges to In(f(n)) in
any (LP) for p 2:: 1. It follows that we can define Wick monomials for chaos kernels in L~ and
that the orthogonality property (2.1) still holds. For h E L2(lRd) we denote the stochastic variable
w I-> (w, h) = h(h) by Wh. This variable is often called smoothed white noise. Let P denote the
space of smooth Wiek polynomials on S' (lRd ):

N

P:= {ep 1 ep(w)-= 'L1n(ep(n))(w),ep(n) E S0n,w E S',N E No}.
n=O

The space P is dense in (L2) (see [12]) and we have the following important result (a proof is
given for the one-dimensional case in [12]' see also Lemma 4.2 in [17]):
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Theorem 2.1. Every f E (L2) has a unique Wiener-Ito-Segal chaos expansion
00

(2.2) f(w) = L Inu(n))(w),
n=O

with chaos kernels f(n) in L~. Furthermore,
00

(2.3) IIfll~£2) =L n!lf(n)I~.
n=O

We proceed to construct our basic pair of smooth and generalized random variables. Our con-
struction follow the ideas in Potthoff and Timpel [18]' Grothaus [11] and Benth [3] and others.
Let N denote the Ornstein-UhlenbeckOperator (or Number Operator), defined to act on the nth
homogeneous chaos of (L2) as multiplication by n (n E No). For b E [0,1] and q ~ 0 define the
norm

(2.4)

and let g~ be the completion of P under this norm. For any <I>E g~ we get
00 00

(2.5) 1I<I>1I~,q= 11L(n!)b/2enq In( </>(n))lIh2) = L(n!)1+be2nql</>(n) I~.
n=O n=O

using (2.2), the definition of N and the orthogonality (2.1). The corresponding dual space g=: is
characterized as the completion of P under the norm 11 . II-b,-q. We denote the pairing between
g~ and its dual by ((., .)) and we have

00

(2.6) ((<I>,'I/J)) = Ln!(<I>(n),'I/J(n)).
n=O

It is clear from the norm expression (2.5) that g:, c g~ whenever q/ ~ q. Now set

gb:= n g:
q~O

and equip gb with the projective limit topology. By definition g-b is the dual of gb and we have

g-b = U g=:,
b~O

endowed with the inductive limit topology. The pairing between the space of smooth functions
gb arid the space of generalized functions g-b is again given by (2.6). For b = 0 we denote the
corresponding pair of spaces by 9 and g*, respectively. This case was studied in Potthoff and
Timpel [18] and several important results given here extend to gb and g-b for any b E [0,1].
For example it is straightforward to show by the same arguments as in [18] that the space gb is
a reflexive Frechet space for every choice of b in [0, 1]. See also Benth [3] where a more general
setting of weights based on the Number Operator is studied. Let (S)b and (S)-b denote the pair of
Kondratiev test- and generalized function spaces (see Kondratiev and Streit [15]). The following
theorem establishes relations between these spaces

Theorem 2.2. For each b E [0,1] the following chain of dense embeddings holds

(2.7) (S)b C gb C (L2) C g-b C (S)-b.

Praof. The proof follows the line of argument of Potthoff and Timpel [18] for the corresponding
relation when b = O. Note that-we only need to show that (S)b C gb. The main idea is to consider
the norm expression 11<flllb,q = II(N!)b/2eqN <fl1l(£2) together with the properties of the family of
norms defining (S)b and use Nelson's hypercontractivity theorem. For more details we refer the
reader to [18]. D
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The following example gives an illustration of an element in our test function spaces

Example 2.1. The Wick exponential is defined by

° exp(W7)) 17]1~
(2.8) exp (W7)):= E(exp(W7))] = exp(W7) - 2)'

for any 7] E Sand where W7) (w) = (w, 7]). The corresponding chaos expansion is
00 0n

expO(W7)) = LIn(;-),
n=O n.

and we have

5

00 0n 00

11expO(W7))II~,q = L(n!)l+be2qnl7]n! I~ = L(n!)-(1-b)e2qnl7]l~n.
n=O ' n=O

From this we conclude that if 0 ~ b < 1 then expo (W7)) is in g~ for alt q ;:::0 (and therefore also
in gb). Furthermore, if b = 1 then expO(W7)) is in g~ only as long as eql7]12< 1.

It is important to notice that the spaces gH have elements where the chaos kern eis are functions in
L-;.. This is not the case for the Kondratiev and Hida spaces, where for instance a Hida distribution
in general.has chaos belonging to thebigger space of tempered Schwartz distributions. In this
sense, g-b is amuch smaller space than (S)-b, giving a great deal of extra information on the
stochastie regularity. In light of the Wiener-Itö-Segal chaos expansion, elements of g-b are closer
to more familiar (from a probabilistie point of view) square integrable random variables.

We define the S-transform on g-b analogous to what has been done for the Kondratiev spaces
(S)-b (and many other spaces). Note that we have to take special care of the case b = 1 because
of the properties ofthe Wiek exponential (cf. Example 2.1 above).

Definition 2.1. Given <1>E g-b for 0 ~ b <1. Then the S-transform of <1>is defined as the map
S<1>(.) : S(lRd) 1--+ lR given by

(2.9) S<1>(7]):= ((<1>,expO(W7))))

for all 7] E S(lRd). For every <1>E g-l there is a smallest q ;:::0 (called the order of <1»such that
<1>E g=;. For this q we define the S-transform of <1>as in (2.9), but only for those 7] such that
eq 17]12< 1.

Let <1>E g-b, b E [0,1] and with chaos expansion given by <1>= L:=o In(<1>(n)). Taking the
S-transform gives

00

S<1>(7])= ((<1>,expO(W7))))= L(<1>(n),7]0n)
n=O

whieh is defined for all 7] E S(lRd) if b E [0,1) and on a suitable neighbourhood of zero if b = 1.
By Cauchy-Schwarz' inequality we get

00 0n
IS<1>(7])1::; L 1<1>(n)121;-12n!(1-b+I+b)/2e-qn+qn ::; 11<1>II-b,-qllexpO(W7))llb,q'

n.
n=O

It follows that S<1>is real analytic on S(lRd) for all b E [0,1) and real analytic in a neighborhood of
zero for b = 1 (cf. Example 2.1). Let Sc denote the complexification of S(lRd). The S-transform
is a surjective map from g-b into a subspace of holomorphic functions on Sc for b E [0,1), and a
surjective map from g-l into a subspace of functions on Sc analytic in a neighbourhood of zero.
The reader is refered to Grothaus [11] for a complete description of the Characterization Theorem
in these cases.

Definition 2.2. Given <1>E g=;~,'l1 E g=;~.Then their Wiek product is defined as the element

(2.10) <1>o'l1:= S-l(S<1> . S'l1).
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It is clear from the definition that the Wiek produet is associative, eommutative and distributive.
Furthermore, if<T?= 2:::=0 1n(<T?(n))and W = 2:::=0 1n(W(n)). Then

(2.11)
= n

<T?ow=L 1n(z(n)) where z(n) = L <T?(n-m)0W(m)
n=O m=O

by uniquness of the S-transform. The next proposition and its eorollary establish a regularity
property of the Wiek produet.

Proposition 2.3. Given <T?E g=:~, w E g=:~ for bi E [0,1], qi ~ 0, i = 1,2. Let b = max(b1, b2)
and set qo = ln(2)(1 - b)/2 + max(ql, q2)' Then <T?owE g=: for any q > qo and

lI<T?owll-b,-q::; (1- e-(q-qo))-111<T?II_b1>_qlllwll_b2,_q2'

By slightly adjusting two estimates in the proof of Proposition 2.3 given below we ean derive the
eorollary

Corollary 2.4. Given<T? E g~~, W E 9~;for bi E [0, 1],qi ~ O,i = 1,2. Let b = min(b1,b2) and set
qo = min(ql,q2)-ln(2)(1 + b)/2. Then if qo > ° we have <T?owE g~ for any 0::; q < qo and

lI<T?owllb,q::; Kqll<T?llb1,qlllwllbM2'

where Kq = (1- e-(qO-q))-l. 1f qo ::;° the result holds for q = ° and Kq = (1- e-min(ql,q2))-1.

Proof of Proposition 2.3. Take the 11.II-b,-q-nOrm of the nth term in the chaos expansion, reealling
the expression for the Wiek produet in (2.11). Using the triangle inequality and Cauehy-Sehwarz'
inequality we get

n

II1n(z(n))II_b,_q::; L II1n(<T?(n-m)0W(m))II_b,_q
m=O
n::;L (n!)U-b)/2e-qnl<T?(n-m)12Iw(m)12

m=O
n ( ) (1-b)/2::;fo : e-qn(n - m)!(1-b)/21<T?(n-m)12m!(1-b)/2Iw(m)12.

By assumption we have 0 ::; (1 - b) ::; (1 - bi) for i = 1,2. Therefore

n ( ) (1-b)/2
lI1n(z(n))II_b,_q ::;fo : e-qn+ql(n-m)+q2mll1n_m(<T?(n-m))II_bl,_qlll1m(W(m))II_b2,_q2

n

::; e-(q-qo)n L IIIn_m(<T?(n-m))II_bl,_qlll1m(W(m))II_b2,_q2
m=O

::; e-(q-qo)nll<T?ll_b1,_qlllwll_b2,_q2

where we used (;;J ::; 2n and Cauehy-Sehwarz again.
result.

Summing over all n E No proves the
o

From Proposition 2.3 we have

Theorem 2.5. Let b E [0,1]. Then gb and g-b are algebras under the Wiek produet. Moreover,
the Wiek product is eontinuous lrom gb x gb (equipped with the product topology) onto gb.

Now we eonsider the regularity of the ordinary produet.

Proposition 2.6. Given cPE g~~, 'I/JE g~; where bi E [0,1] and qi ~ O. Let b = min(b1, b2) and
set qo = min(ql,q2) - [(1 + b)~Jn(2) + (1- b)ln(2b+l + 1)]/2. 11 qo > 0 then cP' 'I/JE g~ and there
is a eonstant Kq depending on q such that

IlcP' 'l/Jllb,q::;KqllcPllbl,qlll'I/Jllb2,q2
lor alt 0 ::; q < qo. 11qo ::;0 the same result holds with q = 0 and Kq = 1.
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Proof. The proof is similar to the one given in Pott hoff and Timpel [18] for the case b = O. We
have (see e.g. Hida et al. [12]) that

(2.12) In(<p(n))Im('lJ(m)) = ~ k!(;) G)Im+n-2k(<p(n))0kIm('lJ(m))

where m 1\ n denotes min(m, n). Here

<p(n)0kIm('lJ(m) = J <p(n)(-,Sl,'" ,Sk)'lJ(-,Sl,'" ,sk)dks (k ~ ml\n)

and <p(n))0kIm('lJ(m)) denotes the corresponding symmetrization. Take the 11.llb,q-nOrm in (2.12)
and use the triangle inequality together with Cauchy-Schwarz to have

IIIn( <p(n))Im('lJ(m))lIb,q ~ ~ k! (;) (~) (m + n - 2k)!(1+b)/2eq(m+n-2k) 1<p(n))0k 'lJ(m) 12

~ IIIn( <Pn))lIb1,qle-(ql-q)nIlIm('lJ(m))llb2,q2e-(q2-q)n (~[ (;) (~) ] (1-b)/2

(m: ~ ~ 2k) (1+b)/2 k!-be-2qk).

The last sum is bounded by

m+n ( ) (1-b)/2
2(m+n)(1+b)/2 {; m2: n 2-(1+b)k

~ 2(m+n)(1+b)/2 (~n r(1+b)k) (1+b)/2 (~ (m
2
: n)2-(1+b)k) (1-b)/2

~ Kam+n

where a := 2(1+b)/2(1 + 2-(1+b))(1-b)/2 and K := (1 - 2-(1+b)) -(1+b)/2. It follows that

IIIn(<p(n))Im ('lJ(m) )lIb,q ~ KIlIn( <pn))IIb1,ql(Tn111m('lJ(m)) IIbM2(Tm
where (T := ae-(min(ql,q2)-q). Summing over all m, n E No and applying Cauchy-Schwarz twice
give

ll<p. 'lJllb,q ~ K(fa IIIn(<pn)) Ilb1,qr(Tn) (fa IIIm('lJ(m))llb2m(Tm)

1
~ K 1 _ (T211<Pllb1,qlll'lJllb2,q2'

Note that (T< 1 if and only if q < min(ql, q2) -ln a which explain the assumption on q. The last
result for qa ~ 0 is obvious. 0

Pram Proposition 2.6 it follows that

Theorem 2.7. Let b E [0,1]. Then gb is an algebra under pointwise product. Moreover, the
pointwise product is continuous from gb x gb (with produet topology) onto gb.

We define in the usual manner (Pettis) integration of parametrized elements of g-b:

Definition 2.3. Let (X, M, dx) be a given measure space and let b E [0,1]. A function <p
X ~ g-b is said to be g-b (Pettis) integrable if ((<p(x),'l/J)) is in L1(X,dx) for all 'l/Jin gb. The
g-b-valued integral of <p(x) over any measurable set E E M is defined as the (unique) element
JE <p(x)dx in g-b that satisfie~ ..

((h <p(x)dx,'l/J)) =h ((<p(x),'l/J))dx

for all 'l/J in gb.
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(3.1)

Remark. It is a eonsequenee of the same argument as for Proposition 8.1 in Hida et al. [12] that
JE p(x)dx exists as an element in g-b. Furthermore, note that from our definition it follows that

(2.13) S(l p(x)dx)(1]) = l Sp(x,1])dx.

For any q 2: 0 and <P E gb we have

(2.14) r 1((p(x),<p))ldx:S r IIp(x)ll-b,-qll<pllb,qdx.JE . JE
Thus, if p(x) is Boehner integrable on g=; from some q 2: 0 then it will be Pettis integrable and
the two integrals eoincide. We refer the reader to Hida et al. [12] and Yosida [21]for more theory
on Pettis and Boehner integration.

3. THE STOCHASTIC PRESSURE EQUATION

We formulate the stoehastie pressure equation of Wiek-type. The problem eonsists of finding the
pressure p(x) on a bounded domain V (being the 'reservoir') in lRd for dEN, given a permeability
field andsouree. The pressure is given as the solution to the stoehastie partial differential equation,

-V(exp<>(Wq,(x))oVp(x)) = f(x) x on V,

p(x) = 0 on 8'0,

where Wq,(x,w) = (w,<Px), <Px(y) = <p(y -x), <PE S(lRd), and exp<>(Wq,)denotesthe Wiek expo-
nential. V is the gradient with respeet to x. The permeability field is modelled as exp<>Wq,(x),
and is the noise in the system making the pressure stoehastie. The noise is smooth due to the
smearing effeet of Wq,(x). A singular (or white) noise is obtained with the ehoiee <P= 00, where 00
is the Dirae-o function at zero. We shall not eonsider this kind of noise here, but refer to Holden
et al. [13] for furt her details. Furthermore, f is the souree term, whieh in an oil reservoir eontext
models the extraetion of oil (and injeetion of water/gas). To emphasis the dependeney on the
smearing function <P, we will denote the solution of the pressure equation (3.1) by Pq,(x).

Remark. The map V '" x f-+ exp<>(Wq,)(x,w) defines a random field whieh is lognormally distrib-
uted at every loeation x in the domain V sinee (w, <Px) by definition is a Gaussian field. The
eovarianee strueture of the Gaussian random field Wq,(x, w) is given by

Cov(Wq,(x), Wq,(y)) = E[Wq,(x)Wq,(Y)] = (<p* <p)(y - x)

where * is the eonvolution produet for funetions on lRd. Note that this gives flexibility of modelling
different eovarianee fields. A major drawback, however, is that E[exp<>Wq,(x)] = 1, whieh is
independent of x. This means that exp<>(Wq,)(x) is hardly suitable for modelling permeability
variations over larger fields, where there are no reason to expeet that the mean of the fiuetuations
are independent of loeation.

One reason for introducing the Wiek produet between the permeability field and the gradient
of the pressure in the formulation of (3.1) is due to the fact that solutions are singular (or, in
other words, stoehastie distributions). This makes the ordinary produet hard to interpret, and
one way to resolve this is to introduee the Wiek produet. 1£the permeability is deterministie, the
Wiek produet will eoineide with the ordinary, pointwise produet. In this respeet, the Wiek-type
stoehastie pressure equation is a generalization of the determinsitie problem. The reader is refered
to Holden et al. [13] for furt her diseussions of the modelling aspeets using the Wiek produet.

The map Pq, : V f-+ 9-1 is said-to be a (weak) solution to (3.1) if

(( - V(exp<>(wq,(x))oVpq,(x)),,,p)) = ((f(x),,,p))

for every "p in g1 and every x in V.
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The unique solution of (3.1) is calculated explicitly in Holden et al. [13, Th. 4.6.1] by using
S-transformation techniques. It has the form

1 1 rv
(3.2) P1>(x)= 2" expO(-2"W",(x))oE

X [lo f(bt)o

expO(-~W",(bt) - ~ t (~(\7W",(y))02 + 6.W",(y)) =b ds] dt]
2 4 lo 2 Y s

for 1J E S(ffi.d) and x ED. Here (bt(W2),Px) is a standard Brownian motion on ffi.d starting in x,
EX is expectation with respect to the prob ability measure Px on a measure space (n, F), and we
define

(3.3) TV := inf {t ~ 0 1 bt ~ D}.

That is, TV is the first exit time out of the domain D for the Brownian motion bt starting in x
which is finite l\-almost surely since D is bounded. Note that since D is bounded there exists
a positive p such that EX (ePTV] is uniformly bounded for all x E D. In fact, a straighforward
calculation shows that it is sufficient to choose 0 < p < -dlnP(IXI ::; diam(D)) where X is a
standard Gaussian distributed random variable [9, p. 40].

Before we proceed we needthe following definition: Given b E [-1.1] and q E ffi., then define the
norm

(3.4)

for functions F : D f-4 g~.

1IFIIb,q,oo= slip IIF(x)llb,q.
xEV

(4.1)

4. STOCHASTIC REGULARITY OF THE PRESS URE

We prove under natural smoothness conditions for the force term f that p",(x) belongs to g=~1

where we have a lower bound on q. The precise result is as follows:

Theorem 4.1. Assume f(x) E g=~f for all xE D and IIfll-I,-qf'oo < 00. Let q E ffi. be such that
q > max( qj, qp) where qp satisfies the inequality

e-2qp 1\71JI~ + e-qp 16.4>12 < p
8 4

and where p > 0 is such that it [ePTV
] is uniformly bounded for x E D. Then P",(x) E g=: for all

xE D and IIp,,,II-I,-q,oo < 00.

Before we give the proof of Theorem 4.1, we state the following useful result

Lemma 4.2. Let t f-4 1Jt E L; be given and continuous in t. Then for any interval [a, b] C ffi. we
have

Proof. Integrability of In( 1Jt) follows from the continuity of 1Jt. Taking the S-transform of the
left-hand side and using (2.13) gives

S(lb In'(~t)dt)(ry) = lb(1Jt,'TJ0n)dt = (lb 1Jtdt,ry0n)

where the last equality follows using Fubini's theorem. The Lemma now follows by uniqueness of
the S-transform. 0
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Proof of Theorem 4.1. Let ql be such that q > ql > ma:x(qf, qp). By Proposition 2.3 with b = 1
we have,

1 (V
(4.2) IIp4>(x)II-I,-q:S ClliexpO(-2"W4>(x))II-I,a . ilEX[Ja ... dt]ll-l,-ql

where Cl = (1 - c(q-qd)-l. By Example 2.1 and since lc/>xl2= 1c/>12the first norm on the right
hand side in (4.2) is uniformly bounded by exp(Ic/>12/2).We proceed to estimate the last norm.
This estimation will at the same time prove Bochner integrability of the integrand. First recall
that smoothed white noise has the chaos expansion

(4.3) W4>(x) = (w,c/>x) = 11(c/>x)'

By the definition of the wiek product we get (DiW4»02(X) = I2((Dic/>x)02) and hence

(4.4)

Furthermore, we have

(4.5)
d

~W4> = LD;W4>(x) =Ir(~c/>x)'
i=l

(4.7)

Recall the exponent in (3.2)

( 1 . ( 1 t (1 02 )4.6) -2"W4> bt) - 4 Ja 2 (\7W4> (Y)) + 6W4>(Y) y=b. ds.

Define

(1) . 1 1 rtc/>t (y) = 2c/>(Y - bt} + 4 Ja 6c/>(y - bs) ds

(2) 1 t ~c/>t (YI, Y2) = 8 Ja \7c/>(. - bs)0\7c/>(- - bs)(YI, Y2) ds.

Substituting for (4.3),(4.4) and (4.5) in (4.6) gives

1 1 t (1 . 02. )-2Il(c/>bt)-4Ja 2h((\7c/>y) )+Ir(~C/>y) y=b,ds

1 1 t 1 t
= Ir( -2c/>bt - 4 Ja (~c/>y )Y=b.ds) + 12(-8 Ja ((\7 c/>y)02)Y=b. ds).

where the last equality follows from Lemma 4.2. Hence, we can write (4.6) as

(4.8) -Ir(<p~l)) - I2(<p~2))

with <p~l) and <p~2)given in (4.7). Now we estimate the last norm in (4.2). Choose q2 such that
ql > q2 > ma:x( qf, qp). Then again using Proposition 2.3 we get

ilEx [lrv f(bt)oexpO( -h(<p~2)) - Ir(<p~l))) dt] II-I,-ql

:SEX [lrv Ilf(bt)oexpO( -h(<p~2)) - II(<P~I))) II-l,-ql dt]

:S EX [lrv C21If(bt)II-I,-qf .11 expO(-I2(<p~2)) - Il(<p~l))) II-l,-q2 dt]

:SC3Ex [lTV

11expO(-Ir(<p~l))) II-l,-qpll expO(-h(<p~2))) II-l,-qp dt].

Here C2 = (1 - e-(ql-q2))-1 <l;pd C3 = C2(1 - e-(q2-qp))-1Ilf(x)II_I,_qf'OO < 00 by assumption.
Consider the last norm: By the triangle inequality we have

11 O( (2)))11 _11 ~ (_l)n (2)<8in) Iexp -h <Pt -l,-qp - ~ --I -I2n <Pt I -l,-qpn.n=a
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Cauchy-Schwarz' inequality now gives,

11

(4.9) 1-+.(2)I < IV'4;1~t.
'f't 2 - 8

and hence,

(4.10) 11expo (-h(4;~2»)) 1I-1,-qp ~ ~ ~! (e-2qp IV':I~ rtn = exp( e-2qp IV':I~ t).

The other norm is equivalently estimated by the triangle inequality

(4.11) 11expo( -lt(4;~l»)) 1I-1,-qp ~ exp(e-qp(~14;12+ ~164;12t))

since by the Cauchy-Schwarz inequality,
(1) 1 1

(4.12) l4;t 12~ 214;12+ 4164;12t.

Thus, by (4.2) we get the following bound,xlTD 1V'4;12 1
IIp4>(x)II-1,-qp ~ C4E [0 exp(e-2qp Tt + e-qp 4164;12t) dt]

where the constant C4 = Cl C3 exp((l + e-qp /2)14;12)is independent of x. By the assumption on
qp the theorem is proved. 0

Recall that elements of g=~ have chaos kerneIs which are square integrable functions. In fact,
we may rescale the nth chaos function by (n!)-1/2 exp( -qn) (for every n E No) to obtain an
element of (£2). Such a regularization corresponds to applying (N!)-1/2 exp( -qN), where N
is the Number Operator, to the element of g=~. Thus we see that P4>(x) has square integrable
chaos kerneis and that a renormalization via the Number Operator gives a random field in (£2),
i.e. (N!)-1/2 exp( -qN)p4>(x) E (£2) for all x E V. In the next section we will derive the chaos
expansion of P4>(x).

5. CHAOS EXPANSION OF THE PRESSURE

In this section we find the chaos expansion of the pressure P4>(x) solving equation (3.2). This
expansion will of course depend on the chaos expansion of the source function f, and we shall
assume here that this is known. The derivation of the expansion will make use of the S-transform.

Theorem 5.1. Suppose the assumptions of Theorem 4.1 holds, and let P4>be the solution of the
pressure equation given in (3.2). Then the chaos expansion of P4>is given as

(5.1)

where

00

P4>(x)=L In(p~n)(x))
n=O

(5.2)

(n)( . ) _ ~ ~ L~J (_l)n-1 (-+.0n-l~
P4> X,Y1,"',Yn -tSö'~~o2n-I+l(n-I)!m!(k-2m)! 'f'x 0

---J! [lTD f~:-k)07]~k-2m(t)07]~m(t)dt]) (Y1,'" , Yn)

and where 7]1 (t; yt} .- -4;P) (yt}, 7]2(t;Y1, Y2) := _4;~2)(Y1, Y2)' for the functions 4;(1)
defined in (4.7).
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Proof of Theorem 5.2. The idea of the proof is to S-transform the solution in (3.2), reformulate
this expression and apply the uniqueness of the S-transform. The details follow: Let ~ be in
S(IRd), then the S-transform of p", in (3.2) evaluated in ~ ean be written as

using the integrability of the integrand, the result about Boehner integrability from Theorem 4.1,
and (2.13). Now, reeall that the exponent in the last integral ean be written as in (4.8). This gives

using Lemma 4.2, and setting 711= -4>P) , 712= -4>~2).By expanding the exponential we get

exp[(TJ1,~)+ (TJ2,~02)] = f -+r(TJ1,~)n(TJ2,~02)mn.m.
n,m=O
. 00

=L L -+r(TJ1,~)n(TJ2,~02)mn.m.k=On+2m=k
00 lk/2J 1 _

= {; fo (k _ 2m)!m!(TJll~)k-2m(TJ2,~02r.

By using the definition of the symmetrie produet, it is not hard to see that eaeh of the terms in
the last surn ean be written as

1 ( 0k-2m0 0m C0n)
(k _ 2m)!m! 711 712' <,

thus-
00

exp[(TJ1,~)+ (TJ2,~02)] = L(e(k),~0k)
k=O

where

Next, we multiply with S f(bt)(~) = ~~o(f~:), ~01) and again by using the definition of symmetrie
produet we get

00

S f(bt)(O . exp [(711,0 + (712,~02)] = L (f~:), ~01)(e(k), ~0k)
k,I=O
00 n

= L L(f~;-k), ~0n-k)(e(k), ~0k)
n=Ok=O
00

= LCl/J(n),~0n)
n=O

where
n lk/2J

1jJ(n)= "" "" 1 j(n-k)0TJ0k-2m0TJ0m
L.- L.- (k _ 2m)!m! b, 1 2
k=Om=O
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D

and f~:) denotes the lth chaos of f(bt). Integrating over [0, TD] and taking the expectation with
respect to Fx gives .

EX [S(l
TTJ

... dt)W] = ta (EX [lTTJ 7/1(n)dtJ,~0n)

using the absolute convergence of the S-transform and Fubinis theorem twice. Finally, multiplying
with ~exp(-~(</>x,O) gives

SPq,(x)(O =~ f (~~t(</>~k,~0k)(EX[lTTJ 7/1(l)dt],~01)
k,I=O 0

= f(I: (_l)n-l </>0n-10EX[ rTJ

7/1(l)dt] ~0n).
n=O 1=0 (n - 1)!2n-1 x Jo '

And the result follows by uniqueness of the S-transform.

We see from Th. 5.2 that the chaos kerneis p~n) (Xj .) are regular functions. In fact, from the

previous section we know that p~n)(Xj') E i~.

6. STABILITY WITH RESPECT TO DATA

In this section we show that pq,(x) is continuous with respect to both fand</> when chosing
appropriate norms. Such stability results are of importance in real applications.

We have the following result following directly from the proof of Theorem 4.1:

Proposition 6.1. Denote by Pq,(fjx) the solution of the pressure equation (3.1) with source f.
Suppose f, 9 E 9=~.with norms uniformly bounded in x E V. Then

(6.1) Ilpq\(fj') - Pq\(gj ,)1I-1,-q,oo :::; Kllf - gll-1,-q,,,oo

for q > max(qs,qp) with qp defined as in Theorem 4.1, and where K is a positive constant inde-
pendent of fand g.

Proof. The proposition follows by the same arguments as in the proof of Theorem 4.1 using the
linearity of the solution. D

Consider now the mapping </J -+ Pq\ (x):

Proposition 6.2. Let </J,7/1E S(ffi.d), qo = max( qf, qp + In 2), and suppose the assumptions of
Theorem 4.1 holds. Then for q > qo

(6.2) IIpq\ - p,p 1I-1,-Q,oo :::; K {I</J - 7/112+ IV' </J- V'7/1I~ + 16</J - 6'l/J12 }

for some positive constant K dependent on </J and'l/J (but not on the difference).

Before we proceed to give the proof, we need the following intermediate result:

- -Lemma 6.3. For any q,r E No let 1,g E L~ and h E L~. Then

(6.3) 110gl[2" :::;111plglp
q+r q r

and for any m E N we have

(6.4)

where K = max(11Ip, Iglp).
q q
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Proof. The proof of (6.3) follows by direct calculation. The key point is to use Cauchy-Schwarz'
inequality for each term in the norm expression. The estimate in (6.4) follows by (6.3) and
induction on m. 0

Proof of Proposition 6.2. The proof goes by a direct estimation of the norms. First note that we
can write

where
X",(t) = expO(-It(</>~l)) - I2(</>~2))),

and with the obvious definition for X1j;. By the triangle inequality and the norm estimate in
Proposition 2.3 we get (for q > q1 > qo)

IIp,,,(x) - p1j;(x)II-1,-q :::;Cl 11expO(-~W",(x)) - expO(-~W1j;(X)) 11-1,0.

ilEX [l7"V f(bt)<>X",(t) dt] 1I-1,-ql
1 (V+ Cd expO(-2'W1j;(X)) 11-1,0. IlEx [Jo f(bt)<>(X",(t) - X1j;(t)) dt] 11-1,-ql

where Cl = (1- e-(q-q,))-l. There are four norms that we need to estimate. We start with the
left-most norm. Using the definition of the Wiek exponential and Lemma 6.3 we get

11 expo (- ~W",(x)) - expo (-~ W1j;(X)) 11=-1,0= 11f: ~! In (( _~</>x)0n - (_~'Ij;x)0n) 11=-1,0
n=l

=~ _1_4-nl</>0n _ 'lj;0n12 < ~ _1_4-nn2 K2(n-1)1</> _ 'lj;12
LJ (n!)2 X X 2 - LJ (n!)2 1 2
n=l n=l

=~I</>_ 'lj;1~~ (I~~{);)n = ~Bo(Kdh)l</> _ 'lj;1~

where K1 := max(I</>I,1'Ij;1) and Bo is the modified Bessel function. From the proof of Theorem 4.1
we have

ilEX [1'rv f(bt)<>X",(t) dt] 1I-1,-ql :::;K2
for a positive constant K2. For the third norm note that by Example 2.1 we have

Finally we estimate the forth norm. Bochner integrability yields,

IlEX [lTV f(bt)<>{ X",(t) - X1j;(t)} dt) 11-1,-ql

:::; C21Ifll_1,_qt,ooE
x [l7"V IIX",(t) - X1j;(t)II-1,-Q2 dt)

where q2 is a constant such that q1 > q2 > qo and C2 = (1 - e-(Ql-Q2))-1. Consider the norm
inside the expectation. For any P, r E (qo, q2) we get

IIX",(t) - X1j;(t)II-1,-Q2 :::;C311expO(_It(</>~l))) 1I-1,-pll expO(_h(</>~2))) - expO(-I2('Ij;~2))) 11-1,-T
+ C311expO(-I2('Ij;~2))) 1I-1,-rll expO(_It(</>~l))) - expO(-I1('Ij;~1))) 1I-1,-p
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where C3 = (1 - e-(q2-max(p,r»)-I. But,

11expo (-h (4)~1))) - expo (-11 (?/J~I»)) II-l,-p :::; 11f In (~!((_4>~I»)@n - (-?/JP»)@n) ) II-l,-p
n=1
00 -np ~ ~

< '" _e _14>(1)0n _ ?/J(1)0nl- LJ n! t t 2.
n=1

From Lemma 6.3 we have

14>~I)@n_ ?/J~I)@nI2 :::;n(max(I4>~1)12, 1?/J~1)12)r-II4>~I) -?/J~1)12.

Using the norm estimate (4.12) we get

11expo ( -11 (4)~1))) - expo (- Id ?/J~I»)) II-l,-p :::;e-P exp( e-P K4a(t)) (~I4> - ?/J12+ ~1.6.4>- .6.?/J12)

for
1 t

K4a(t) = '2max(I4>12,1?/J12)+ 4 max(I.6.4>12,1.6.?/J12).
Equivalently, using the norm estimate (4.9) we get

11expO( -h(4)~2))) - expO( -I2(?/J~2»)) II-l,-r :::;e-2r exp(e-2r K4b(t))~I\74>- \7?/JI~

where

15

K4b(t) = ~max(I\74>I~, 1\7?/JI~).

Colleeting these two estimates and using (4.10) and (4.11) give the bound

IIXq,(t) - X,p(t)ll-l,-Q2 :::; aept + btept

where C4 = C3 exp(max(I4>12, 1?/J12)),a = C414>- ?/J12,b = C4(1.6.4>- .6.?/J12+ 1\74>- \7?/JI~) and

p = e-P~ max(l.6.4>12,1.6.?/J12)+ e-2r ~ max(I\74>I~, 1\7?/JI~).

If P = 0 we are finished. Assurne p > 0 and integrate to get

EX [1-r'D IIXq,(t) - X,p(t)ll-l,-Q2 dt] :::; ~2 (b - pa + (pa - b)Ex[eP-r'D] + pbEx[rveP-r'D]).
o p

Note that by asumption on p and T we have p < p, where p is the eonstant from the estimate
in (4.1). This explaines the added ln2 in the assumption on qo. Using e.g. Hölders inequality it
is easy to show that uniform boundedness of EX [eP-r'D] implies uniform boudedness of EX [rveP-r'D].
The proposition is proved. D

7. THE WICK PRODUCT AND TRANSLATION

In this last seetion we shall prove an explicit eonneetion between a stoehastie pressure equation
with ordinary produet and a Wiek-type equation when d = 1. The boundary values of the problem
will be slightly ehanged, to have a more transparent and easy derivation of the eonneetion. Instead
of using Diriehlet eonditions, we use eombined Diriehlet and Neumann eonditions. It is shown that
the solutions may be written as stoehastie translations of eaeh other, where the translation is taken
in the direetion of the smearing funetion of 4>.We believe that sueh a eonneetion may be of some
use in evaluating whieh model, Wiek or ordinary produet, to use in real applieations. In deriving
this eonneetion, we will assurne existenee of suffieiently regular solutions of the two problems.
A similar eonneetion may be shown for (3.1) with Diriehlet eonditions when d = 1. All these
questions will be eonsidered at a more rigourous and eomplete level in a future paper.

The derivation is based on some interesting relations between translation and the Wiek produet
first presented in Benth and Gjessing [6] and Benth [2] for the ease b = O. In this seetion we will
generalize these results to the spaees g-b. We want to emphasis that sueh results have a wider
range of applieations than presented in this paper. For example, in eonneetion with quasi-linear
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ordinary stochastie differential equations Gjessing [10] proved interesting formulas for the solution
using Wiek product and translation.

We start by extending some results on translation from Potthoff and Timpel [18]: The following
lemma is a direct generalization of the corresponding result for the space 9 given in Potthoff and.
Timpel [18].

Lemma 7.1. Let bE [0,1], hE L2(JRd) and for 4J E gb define the translation map Th by 4J(w) t-+

4J(W + h). Then Th is a continuous linear map from gb to gb.

Proof. The proof follows the lines of [18]. Linearity is obvious. We need to establish the continuity.
Let 4J = 2::=0 In(4J(n)) be in P and recall from Hida et al. [12] the formula

4J(w + h) = ~ ~ G) h(4J(n,n-k))
where

Note that in Hida et al. [12] this formula is given for d = 1 but the extension to dEN is
straigtforward. Then using the triangle inequality, the definition of the norm, Cauchy-Schwarz'
inequality and the Binomial formula we get

114J(. + h)lIb,q S~ ~ 11G)Ik(4J(n,n-k))llb,q
S~ ~ G) (k!)(b+1)/2eqklhl~-kl4J(n)12
S~ 14J(n)12(n!)(b+1)/2eqn ~ G) e-q(n-k)lhl~-k

N

= L: 14J(n)12(n!)(b+1)/2eqon
n=O

where qo = q + ln(1 + e-qlh!2). Thus for any q' > qo we have by Cauchy-Schwarz that

N N

114J(.+ h) Ilb,q S (L: e2(qO-q')) 1/2(L: (n!)(b+l) e2qnl4J(n) I~) 1/2
n=O n=O

S (1 - e2(qO-q'))-1/2114Jllb,q"

The lemma follows by extending Th continuously to gb. 0

Definition 7.1. Let h E L2(lRd) and b E [O,IJ. Then the adjoint operator Th g-b t-+ g-b is
defined as

for all 4J E gb.
Remark. It follows from Lemma 7.1 that Th is a continuous linear map from g-b to g-b.

As for b = 0 in Benth and Gjessing [6J and Benth [2Jwe have

Lemma 7.2. Let h E L2(JRd),b E [O,IJ and<P E g-b. Then

(7.1) Th<P= expO(Wh)O<P.
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Proof. Take the S-transform. For any 71 E S(lRd) (if b = 1 we restrict to those 71 with eq 17112 < 1
for sufficiently big q > 0) we have

S(T;;'iJ?)(TJ) = ((T;;'iJ?, expO(W1)))) = ((iJ?, Th expO(W1)))) = S(exp(Wh))(TJ) . SiJ?(TJ)

since Th expO(W1)) = exp(h, 71) expO(W1))' Uniqueness of the S-transform completes the proof. 0

Inspired by Benth and Gjessing [6] and Benth [2]we introduce a generalization of the translation
operator. The only essential difference from what was done in Benth and Gjessing [6] and Benth
[2] is for the case b = 1. Extra care must be taken in this case because of the smoothness properties
of the Wiek exponentials.

Definition 7.2. Let h E L2(lRd),b E [0,1). For any iJ?E g-b define the generalized translation
ThiJ?as

(7.2)

for all c/> E gb.

Note the relation (T.1) and that expoWh E gb for all bE [0,1) and h E L2(lRd). Thus, the
above generalized translation is a well-defined, continouous and linear map from g-b into g-b by
Theorem 2.5. Now, consider the slightly more difficult case b = 1:
Lemma 7~3. Assume iJ?E g=; for some q ::::O. Let p > q + In 2 and suppose h E L2(lRd) with
ePlhl2 < 1. Then ThiJ? E g=~ and

IIThiJ?II-1,-p ~ 211 expO(Wh)111,plliJ?!I-1,-q'

Proof. Given c/> E g~ and iJ? E g=;, then using Lemma 7.2, Cauchy-Schwarz' inequality and
Corollary 2.4 we get

1((ThiJ?,c/»)1 = 1((iJ?,T;;'c/»)1
= 1((iJ?,expO(Wh)oc/»)1
~ !IiJ?i1-1,-q!lexpO(Wh)oc/>111,q
~ IIiJ?i1-1,-q(1- eq-p)-l!1 expO(Wh)111Ac/>111,p

and the lemma follows. o

We see that when b = 1, Th does not define a continuous and linear map from g-l into g-l since
we cannot find a function h (except for the trivial h(x) = 0 a.e. x) such that ePlhl2 < 1 for general
p. But we can define Th as a continuous and linear map from g=; into g=~ for a dass of functions
h, where p > q + In 2.
We are now ready to generalize a relation first given in Gjessing [10] in a Wiener space setting
and later generalized for b = 0 in the white noise case in Benth and Gjessing [6] and Benth [2].

Lemma 7.4. Let h E L2(lRd), bE [0,1) and iJ?E g-b. Then

(7.3) expO(Wh)oiJ? = expO(Wh). T-hiJ?

1f b = 1, (7.3) holds for alt h E L2(lRd) such that ePlhl2 < 1, where p > q + In 2 and iJ?E g:;.

Proof. The proof for b E [0,1) follows the ideas in Benth and Gjessing [6] and Benth [2]. First
notiee that from Lemma 7.2 we have

Setting iJ?= 1 gives a Cameron-Martin-Girsanov formula

J c/>(w+ h)df.L(w) = J expO(Eh) (w)c/>(w)df.L(w).
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For <l> E gb we get

J (expO(Wh)O<l»(w)4;(w)df.L(w) = J <l>(w)4;(w + h)df.L(w)

= J <l>(w- h + h)4;(w + h)df.L(w)

= J expO(Wh) (W)<l>(W - h)4;(w)df.L(w)

Generalizing to <l> E g-b gives

(7.4)

for all 4; E gb. The right hand side is understood in the usual senee

((T_h<l> . expO((" h)), 4;)) =( (T_h <l>, expO((" h)) . 4;))

and is well-definedas a eonsequenee of Theorem 2.7. Thus the first part of the lemma is established.
We eontinue the proof for b = 1. Note that Lemma 7.2 holds also for b = 1. 1£we assume <l> E g=~
and Ihl2eP < 1 for a p > q + In 2, then we ean perform the same ealeulations as for the b < 1 ease.
Thus it is clear that (7.4) holds for any 4; E g~ with p > q + In 2. D

We will in the rest of the seetion eonsider the press ure equation in dimension one, that is d = 1.
Asmentioned above, we shall treat slightly different initial eonditions than in (3.1) whieh makes
the ealculations mueh simpler. Let V = [a, b] for a > b. Let p(x) denote the solution of the
pressure equation of Wiek-type (the solution of (3.1)), but now with boundary eondition p(a) = 0
and p'(a) = k where kis a deterministie eonstant, and let q(x) be the solution when we model
with ordinary produet instead, i.e.;

-ddx(expow<p(x) 'q'(x)) = fon (a,b),
(7.5)

q(a) = 0, q'(a) = k.

Using Lemma 7.2 we ean show that any Wiek solution p(x) ean be written in terms of the produet
solution q(x), and viee-versa:

Theorem 7.5. Let 4; E S(ffi.). Assume that p(x) E g-l is differentiable in x, p'(x) E g=~
(with norm uniformly bounded in x) and T_<pyp'(y) is Bochner integrable on [a,b] for 4; such that
ePI4;12 < 1 and p > q + In2. Then

q(x) = 1" T_<pyp'(y)dy.
On the other hand, assume that q(x) E g-l is differentiable in x, q'(x) E g=~ (uniformly in x)
and T<plIq'(y) is Bochner integrable on [a, b] for 4; such that ePI4;12 < 1 and p > q + In2. Then

p(x) = 1" T<pyq'(y)dy.
Proof. We start by showing that the boundary values for the two problems are satisfied: Obviously,
q(a) = p(a) = O. Using the definition of q(x), we have q'(a) = T-<Pap'(a) = T-<Pak = k. Similarly
we get p'(a) = T<paq'(a) = T<pak = k when p(x) is defined through the solution of the pressure
equation with ordinary product.

In order to show the first part ofthe Theorem we use the generalized formula (7.3) and reformulate
the Wiek equation to a produet equation:

d~ (expO w:,:op'(x)) = d~ (expO W<px . T_<pxp'(x))

= d~ (expO W<px . d~ 1" T_<pyp'(y)dy)
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where the last equality followsfrom the Fundamental Theorem of Calculus.

This same calculation can be reversed to show the other way of the connection.
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We would like to remark that it is possible to calculate an explicit solution p(x) having the
desired regularity properties using Wick calculus (see Kondratiev, Leukert and Streit [14] and
Holden et al. [13]). In fact, Holden et al. [13] calculate an explicit solution when the Neumann
condition has a special stochastic form and the source f is zero: Introduce the boundary conditions
p(a) = 1, expO(Wh)<>p'(a) = k and q(a) = 1, expO(Wh)q'(a) = k for the two models. Then
it follows by a simple calculation using generalized translation on their explicit solution that
p(x) = q(x) . exp(lhI2), which coincides with the formula (3.5.11) in Holden et al. [13]. Note that
we have used a general source f possibly being a random field in Theorem 7.5.

REFERENCES

[1] F.E. Benth. Integrals in the Hida distribution space. Stochastic Analysis and Related Topics; Stochastic Mono-
graphs Vol. 8. T. Lindstrl2lm, B. 0ksendal og A. S. Ustunel (editors). Gordon and Breach, 1993.

[2] F.E. Benth. On the positivity of the stochastic heat equation. Potential Analysis, 6:127-148, 1997.
[3] F.E. Benth. On weighted 12(w)-spaces, their duals and rtö integration. University of Aarhus, Preprint,

MaPhySto 17, 1998.
[4] F.E. Benth, Th. Deck, and J. PotthofI. A white noise approach to a dass of non-linear stochastic heat equations.

J. Funct. Anal., 146:382-415, 1997.
[5] F .E. Benth and J. Gjerde. Convergence rates for finite element approximations of stochastic partial differential

equations. Stochastics and Stochastic Reports, 63:313-326, 1998.
[6] F.E. Benth and H. Gjessing. A non-linear parabolic equation with noise. a reduction method, 1994.
[7] F .E. Benth and J. Pott hoff. On the martingale property for generalized stochastic processes. Stochastics and

Stochastic Reports, 58:349-367, 1996.
[8] T. Deck, J. Potthoff, and G: Väge. A review of white noise analysis from a probabilistic standpoint. Acta Appl.

Math., 48(1):91-112, 1997.
[9] E.B Dynkin and A.A. Juschewitsch. Sätze und Aufgaben über Markoffsehe Prozesse. Number 51 in Heidelberger

Taschenbücher. Springer-Verlag, 1966.
[10] H.K. Gjessing. A variation of parameters solution of aquasilinear skorohod SDE using the Wick product.

Stochastic analysis and related topics, VI (Geilo, 1996). Progr. Probab. 42, Birkhäuser Verlag, 1998.
[11] M. Grothaus. New Results in Gaussian Analysis and their Applications in Mathematical Physics. PhD thesis,

University of Bielefeld, 1999.
[12] T. Hida, H.-H. Kuo, J. Potthoff, and L. Streit. White Noise - An Infinite Dimensional Calculus. Kluwer

Academic Publishers, Dordrecht, 1993.
[13] H. Holden, B. 0ksendal, J. Ubl2le, and T.-S Zhang. Stochastic Partial Differential Equations - A Modeling,

White Noise Functional Approach. Probability and its Applications. Birkhäuser, Boston, 1996.
[14] Y. Kondratiev, P. Leukert, and L. Streit. Wick calculus in Gaussian analysis. Acta Appl. Math., 44:269-294,

1996.
[15] Y. Kondratiev and L. Streit. Spaces of white noise distributions: constructions, descriptions, applications. Rep.

Math. Phys., 33:341-366, 1993.
[16] H.-H. Kuo. White Noise Distributions. Probability and Stochastics Series. CRC Press, Baton Rouge, 1996.
[17] P. Malliavin. Stochastic Analysis. Number 313 in Grundlehren der mathematischen Wissenschaften. Springer-

Verlag, 1997.
[18] J. Potthoff and M. Timpel. On a dual pair of smooth and generalized variables. Potential Analysis, 4:637-654,

1995.
[19] T.G. Theting. Solving wick-stochastic boundary value problems using a finite element method. Manuscript,

1999.
[20] G. Väge. Stochastic Differential Equations and Kondratiev Spaces. PhD thesis, Norwegian University of Tech-

nology and Science, 1995.
[21] K. Yosida. Functional Analysis. Springer-Verlag, Berlin, 5 edition, 1978.



20 BENTH AND THETING

(Fred Espen Benth)
DEPARTMENT OF MATHEMATICS

UNIVERSITY OF OSLO

P.O. Box 1053, BLINDERN

N-0316 OSLO, NORWAY

AND
MAPHySTO - CENTRE. FOR MATHEMATICAL PHYSICS AND STOCHASTICS

UNIVERSITY OF AARHUS
Ny MUNKEGADE

DK-8000 ARHus, DENMARK

E-mail address:fredb~ath.uio.no

(Thomas Gorm Theting)
DEPARTMENT OF MATHEMATICS
NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY

N-7491 TRONDHEIM, NORWAY

AND
LEHRSTUHL FÜll. MATHEMATIK V
FAKULTÄT FÜR MATHEMATIK UND INFORMATIK
UNIVERSITÄT MANNHEIM

D-68131 MANNliEIM, GERMANY

E-mail address:tgt~ath.ntnu.no

:.~.


	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021

