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Abstract. We consider energy minimization problems related to image
labeling, partitioning, and grouping, which typically show up at mid-level
stages of computer vision systems. A common feature of these problems
is their intrinsic combinatorial complexity from an optimization point-
of-view. Rather than trying to compute the global minimum - a goal we
consider as elusive in these cases - we wish to design optimization ap-
proaches which exhibit two relevant properties: First, in each application
a solution with guaranteed degree of suboptimality can be computed. Sec-
ondly, the computations are based on clearly defined algorithms which
do not comprise any (hidden) tuning parameters.
In this paper, we focus on the second property and introduce a novel
and general optimization technique to the field of computer vision which
amounts to compute a sub optimal solution by just solving a convex
optimization problem. As representative examples, we consider two bi-
nary quadratic energy functionals related to image labeling and per-
ceptual grouping. Both problems can be considered as instances of a
general quadratic functional in binary variables, which is embedded into
a higher-dimensional space such that sub optimal solutions can be com-
puted as minima of linear functionals over cones in that space (semidefi-
nite programs). Extensive numerical results reveal that, on the average,
sub optimal solutions can be computed which yield a gap below 5% with
respect to the global optimum in case where this is known.

1 Introduction

Many energy-minimization problems in computer vision like image labeling and
partitioning, perceptual grouping, graph matching etc., involve discrete deci'-
sion variables and therefore are intrinsically combinatorial by nature. Accord-
ingly, optimization approaches to efficiently compute good minimizers have a
long history in the literature. Important examples include the seminal paper
by Geman and Geman [1] on simulated annealing, approaches for sub-optimal
Markov Random Field (MRF) minimization like the ICM-algorithm [2]' the
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highest-confidence-first heuristic [3]' multi-scale approaches [4]' and other ap-
proximations [5,6]. A furt her important dass of approaches comprises continua-
Hon methods like Leders partitioning approach [7]' the graduated-'non-convexity
strategy by Blake and Zisserman [8]' and various deterministic (approximate)
vers ions of the annealing approach in applications like surface reconstruction [9],
perceptual grouping [10]' graph matching [11]' or dustering [12].

Apart from the simulated annealing approach using annealing schedules which
are unpractically slow for real-world applications (but prescribed by theory, see
[1]), none of the above-mentioned approachescan guarantee to find the global
minimum. And in general, this goal is elusive due to the combinatorial complex-
ity of these minimization problems. Consequently, the important quest ion arises:
How good is a minimizer computed relative to the unknown global optimum?
Can a certain quality of solutions in terms of its suboptimality be guaranteed in
each application? To the best of our knowledge, none of the approaches above
(apart from simulated annealing) seems to be immune against getting trapped
in some local minimum and hence does not meet these criteria.

A furt her problem relates to the algorithmic properties of these approaches.
Apart from simple greedy strategies [2,3], most approaches involve some (some-
times hidden) parameters on which the computed local minimum critically de-
pends. A typical example is given by the artificial temperature parameter in
deterministic annealing approaches and the corresponding iterative annealing
schedule. It is well known [13] that such approaches exhibit complex bifurcation
phenomena, the transitions of which (that is, which branch to follow) cannot
be controlled by the user. Furthermore, these approaches involve highly nonlin-
ear numerical fixed-point iterations which tend to oscillate in a parallel (syn-
chronous) update mode (see [10, p. 906] and [15]).

These problems can be avoided by going back to the mathematically well-
understood dass of convex optimization problems. Under mild assumptions there
exists a global optimum which, in turn, leads to a sub optimal solution of the
original problem, along with dear algorithms to compute it. Abstracting from the
computational process, we can simply think of a mapping taking the data to this
solution. Thus, evidently, no hidden parameter is involved. Concerning global
energy-minimization problems in computer vision, this has been exploited for
continuous-valued functions in [16,17], for example, to approximate the dassical
Mumford-Shah functional [18] for image segmentation.

In this paper, however, we focus on more difficult problems by extending this
line of research to prototypical energy-minimization problems involving discrete
decision variables. Our work is based on the seminal paper by Lovasz and Schri-
jver [19] who showed how tight problem relaxations can be obtained by lifting
the problem up into some higher-dimensional space and down-projecting to a
convex set containing feasible solutions in that space. This idea has been put
forward and lead to aremarkable result by Goemans and Williamson [20]' who
were able to show for a dassical combinatorial problem that sub optimal solu-
tions (for the special problem considered) cannot be worse than 14% relative to



the unknown global optimum. These two facts - bounds on the sub-optimality,
and algorithm design based on convex optimization - have motivated our work.

Organisation of the paper. We consider in Section 2 two representatives
of the dass of quadratic functionals in binary variables. This dass of mini-
mization problems is well-known in the context of image labeling, perceptual
grouping, MRF-modeling, etc. We derive a problem relaxation leading to a con-
vex optimization problem in Section 3. The corresponding convex programming
techniques are sketched in Section 4. In Section 5, we illustrate the properties
of our approach by describing ground-truth experiments conducted with one-
dimensional signals, for which the global optimum can be easily computed with
dynamic programming. Real-world examples are discussed in Section 6, and we
condude our paper by indicating further work in Section 7.

Notation. For a vector y E ~n, D(y) denotes the diagonal matrix with
entries Yl, ... , Yn' e denotes the vector of one's, ei = 1, Vi, and I = D( e) the unit
matrix. For a matrix X, D(X) denotes the diagonal matrix with the diagonal
elements Xii, Vi, of X. sn denotes the space of symmetric n X n-matrices Xt =
X, and Sr;. denotes the matrices X E sn which are positive semide£lnite. For
abbreviation, we will also use the symbol K = S~+l. For two matrices X, Y 'E sn,
X • Y = trace(XY) denotes the standard matrix inner product.

2 Problem statement: Minimizing binary quadratic
functionals

In this paper, we consider the problem to minimize functionals of the general
form:

J(x) = xtQx + 2btx + canst, xE {-I, 1}n, Q E sn, b E ~n . (1)

In the £leIdof computer vision, such global optimization problems arise in various
contexts. In the following sections, we give two examples related to image labeling
and perceptual grouping, respectively.

Note that apart from symmetry, no furt her constraints are imposed on the
matrix Q in (1). Hence, the functional J need not to be convex in general. This
property along with the integer constraint Xi E {-I, I}, i = 1, ... ,n, makes the
minimization problem (1) intrinsically difficult.

In Section 3 we will relax some of these hard constraints so as to arrive at a
convex optimization problem which dosely approximates the original one.

2.1 Example 1: Binary image restoration and labeling

Consider some scalar-valued feature (grey-value, color feature, texture measure,
etc.) g : n -+ ~ which has been locally computed within the image plane.
Suppose that for each pixel position i, feature g is known to originate from
either of two prototypical values Ul, U2. In practice, of course, g is real-valued
due to measurement errors and noise. Figure 1 shows an example.



Fig.1. Top: A binary image, heavily corrupted by (real-valued) noise. Bottom, left:
The original data textured on a plane. Bottom, right: The data as 3D-plot to illustrate
the poor signal-to-noise ratio.

To restore a discrete-valued image function x from the measurements g, we
wish to compute x as minimizer of a functional which has the form (1):

J(x) = ~L ((U2 - UdXi +Ul +U2 - 2gi)2 + ~ L(Xi - Xj)2, Xi E {-1, 1}, Vi.
i (i,j)

(2)

Here, the second term sums over all pairwise adjacent variables on the regular
image grid.

Functional (2) comprises two terms familiar from many regularization ap-
proaches [21]: A data-fitting term and a smoothness term modeling spatial con-
text. However, due to the integer constraint Xi E {-1, 1}, the optimization
problem considered here is much more difficult than standard regularization
problems.

We note furt her that, depending on the application considered, it might be
useful to modify the terms in (2), either to model properties ofthe imaging device
(data-fitting term) or to take into consideration a prior'i known spatial regular-
ities (smoothness term; see, e.g., [22]). These modifications, however, would not
increase the difficulty of problem (2) from an optimization point-of-view.

2.2 Example 2: Figure-ground discrimination and perceptual
grouping

Let gi, i = 1, ... ,n, denote some feature primitive irregularly distributed over
the image plane. Suppose that for each pair of primitives gi, gj, we can com-
pute some (dis)similarity measure dij corresponding to some of the well-known



"Gestalt laws", or to some specific object properties learned from examples. For
instance, gi might denote an edge-element computed at location i in the image
plane, and dij might denote some measure corresponding to smooth continua-
tion, co-circularity, etc. For an overview over various features and strategies for
perceptual grouping we refer to [23].

According to the spatial context modeled by dij, we wish to separate familiar
configurations from the (unknown) background. To this end, following [10]' we
label each primitive gi with adecision variable Xi E {-I, I} ("I" corresponding
to figure, "-I" corresponding to background and noise) and wish to minimize a
functional of the form (1):

J(X) = ~)A-dij)XiXj +2~)An- Ldij)Xi, Xi E {-I,I}, Vi. (3)
(i,j) j

Figure 2 shows a test-problem we use in this paper for illustration. On the left,
some "object" is shown which distinguishes itself from background and dutter
by the relative angles of edgels. Such edgels typically arise as output of some
local edge detector. Accordingly, the difference between the relative angles i1c/>ij
and the expected ones (due to our knowledge about the object) were chosen as
similarity measure dij with respect to primitives i and j. In addition, we take
into consideration inaccuracies of a (fictive) preprocessing stage by virtue of a
parameter ß (see Figure 2):

dij = exp( -ß TI (i1c/>ij- i1c/>k,expected)2)
k

0.8- 0 .•

\
0.'

/ 0.2

)
0.5 1.5 2 2.5

Fig. 2. Left: An "object". Middle: The similarity measure for i1</Jij E [0,7['),ß = 20,
according to the expected relative angles, and allowing for some inaccuracies of a
(fictive) preprocessing stage. Right: The object was rotated by a fixed arbitrary angle,
and translated and scaled copies have been superimposed by noise. Where are these
objects?

Clearly, this measure is invariant against translation, rotation and scaling of
the object. On the right in Figure 2, an unknown number oftranslated and scaled
copies of the object, which has been rotated in advance by an unknown angle,



is shown together with a lot of noisy primitives as "background". Trying to find
these objects leads to combinatorial search. By contrast, we are interested in
sub optimal minimizers of the functional (3) computed by convex programming.

3 Convex problem relaxation

Recall that both problems (2) and (3) (and many others) are special cases of
problem (1).

In order to relax problem (1), we first drop the constant and homogenize the
objective function as follows:

(4)

With slight abuse of notation, we denote the vector (x 1) t again by x.
Next we introduce the Lagrangian with respect to problem (1):

xt Lx - LYi(X; - 1) = xt(L - D(y))x + ety
i

and the corresponding minimax-problem:

Since x is unconstrained now, the inner minimization is finite-valued only if
L - D(y) E S~+l = K (for notation, see section 1). Hence we arrive at the
relaxed problem:

supety, L-D(y) E K.
y

(5)

The important point here is that problem (5) is a convex optimization problem!
The set K is a cone (i.e. a special convex set) and self-dual, that is it coincides
with the dual cone [24]

K* = {Y: X - Y 2: 0, X E K} .

To obtain the connection to our original problem, we derive the dual problem
associated with (5). Choosing a Lagrangian multiplier X E K* = K, similar
reasoning as above yields:

supety=sup inf ety+X_(L-D(y))
y y XEK

~ inf supety+X_(L-D(y))
XEK y

= inf supL-X-D(y)-(X-I).
XEK y



The inner maximization of the last equation is finite Hf D(X) = I. Hence, we
obtain as the problem dual to (5):

inf L. X, D(X) = I .
XEK

(6)

which again is convex.
In order to compare the relaxation (6) with the problems (1) and (4), respec-

tively, we rewrite the latter as folIows:

inf xt Lx = inf L • xxt .
xE{ _l,1}n+l xE{ _l,1}n+l

Note that the matrix xxt E K and has rank one. A comparison with the relaxed
problem (6) shows that (i) xxt is replaced by an arbitrary matrix X E K (Le. the
rank one condition is dropped), and (ii) that the integer constraint Xi E {-I, I}
is weakly imposed by the constraint D(X) = I in (6).

In the following sections, we will examine the relaxed problem (6) with re-
spect to the criteria discussed in Section 1.

4 Algorithm

The primal-dual pair of optimization problems (6) and (5), respectively, belongs
to the dass of conic programs. The elegant duality theory corresponding to this
dass of convex optimization problems can be found in [24]. For "well-behaved"
instances of this problem dass, optimal primal and dual solutions X*, y* , S*
exist (S denotes a matrix of slack variables) and are complementary to each
other X* • S* = O. Moreover, no duality gap exists between the optimal values
of the corresponding objective functions :

L. X* _ety* = S* • X* = 0 .

To compute X*, y* and S*, a wide range of iterative interior-point algorithms
can be used. Typically, a sequence of minimizers Xr" Yr" S1/, parametrized by a
parameter 'TJ, is computed until the duality gap falls below some threshold E.

Aremarkable result in [24] asserts that for the family of self-concordant barrier
functions, this can always be done in polynomial time, depending on the number
of variables n and the value of E.

For our experiments described in the following two sections, we chose the so-
called dual-scaling algorithm using public software from a corresponding website
[25]. To get back the solution x to (1) from the solution X to (6), we used the
randomized-hyperplane technique described in [20].

A more detailed description of the algorithm, along with useful modifications
according to the problem dass considered, is beyond the scope of this paper and
will be reported elsewhere.



5 Performance: Ground-truth numerical experiments

In this section, we investigate the performance of the relaxed problem (6) ex-
perimentally. To this end, we report the statistical results for three different
ground-truth experiments using one-dimensional random signals.

We chose one-dimensional signals in this section because ground truth (the
global optimum) can be easily computed using dynamic programming. Numer-
ical results concerning two-dimensional signals (images) and grouping experi-
ments are reported in section 6.

In what follows, we denote with x* the global minimizer of (1), and with x
the suboptimal solution reconstructed from the solution X to the convex pro-
gramming problem (5),(6).

5.1 Ground-truth experiments: Partitioning of random signals

For the first series of experiments, we generated random signals, each with 256
pixel values equally distributed in the range [-1,1]. Figure 4, top, shows an
example.

To investigate the performance of the relaxed problem we compare the global
optimum with the results from the relaxed problem. The optimal objective func-
tion is bounded as follows:

inf L. X :::;J(x*) :::; J(x)
XEK,D(X)=I

(7)

The left inequality holds true due to the relaxation of problem (1), as described
in Section 3. The right inequality is obvious because x* is the global minimizer.

To evaluate this relationship numerically, we used the following quantities:

J*: the sampie mean of the global optimum J* = J(x*) of the functional (2)
(computed with dynamic programming),

fJ.J: the sampie mean of the gap fJ.J = J - J* (measured in % of the optimum) of
the objective function with respect to the sub optimal and optimal solution,
respectively, and

UL},.J: the sampie standard deviation of the gap fJ.J.

The resulting values of these quantities are shown in Figure 3, for different
values of the global parameter A (1000 random signals were generated for each
value of A). Figure 3 shows that for reasonable values of A, the gap fJ.J is ab out
5% of the optimal value of the objective function.

Taking into consideration that these sub optimal solutions can be computed
by solving a mathematically much simpler convex optimization problem, the
quality of these solutions is surprisingly good!

The purely random signals considered in this section exhibit another prop-
erty: There are many solutions having similar values of the objective function
which however differ considerably with respect to the Hamming distance. Figure
4 illustrates this fact for an arbitrary random signal and a solution pair x, x*
leading to a gap of fJ.J = 6.4%, but differing at 58 pixel-positions (=22.7%).
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Fig. 3. Sampie mean of the optimal value of the objective function J., sampie mean of
the corresponding gap LlJwith respect to the sub optimal solution, and corresponding
standard deviation (J" LlJ. On the average, the quality of the sub optimal solution is
around 5%.
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Fig.4. Top: A purely random input signal. Middle: The optimal solution x •. Bot-
tom: The sub optimal solution x. Although the gap LlJ = 6.4% only, the Hamming
distance between these two solutions is not smalI. This effect is due to missing structure
of the input signal (see text).



On the other hand, no spatial context can be exploited for pure random
signals. Accordingly, there is no meaningful parameter value of A which could give
a more accurate solution. Therefore, this negative effect should not be taken too
serious because it disappears as soon as the input signal exhibits more structure,
as is the case for real signals. This will be confirmed in the following sections.

5.2 Ground-truth experiments: Restoration of noisy signals
comprising multiple scales

In our second series of experiments, we took the synthetic signal x' depicted in
Figure 5 which involves transitions at multiple spatial scales, and superimposed
Gaussian white noise with standard deviation a = 1.0. Figure 7, top, shows an
example. The goal was to restore the synthetic signal from the noisy input sig-
nals. Foreach value of A, we repeated this experiment 1000 times using different
noise signals.

o 50 100 Pixel 150 200 250

Fig. 5. Signal x' comprising multiple spatial scales.

In addition to the measures introduced in the last section, we computed the
following quantities:

fJ.J': sampie mean of the gap fJ.J' = IJ - J'I (measured in %) with respect to the
objective function values of the suboptimal solution J(x) and the synthetic
signal J' = J(x'),

a L1J': the sam pIe standard deviation of the gap fJ.J'.

The statistics of our numerical results are shown in Figure 6. Two observa-
tions can be made: First, for values of the scale-parameter A > 1.5, the restora-
tion is quite accurate: fJ.J' < 3%. Secondly, the fact fJ.J < fJ.J' indicates that
more appropriate criteria should exist for the restoration of signals that are struc-
tured like x' (see Fig. 5). The derivation of such functionals is not the objective
of this paper. However, we point out that such learning problems can probably
be solved within the general dass (1). In that case, our optimization framework
could be applied, too.
In order not to overload Figure 6, we did not indude the measures a L1J' and

aL1J. The average values are aL1J' = 3.16% and aL1J = 0.80%. These values
are significantly smaller than those of the previous experiment, and thus they
confirm the statements made at the end of the last section.
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Fig. 7. A representative example illustrating the statistics shown in Fig. 6. Top: Noisy
input signal. Middle: Optimal Solution x •. Bottom: Suboptimal solution x.



5.3 Ground-truth experiment: Real ID-signal

Before turning to two-dimensional signals in the next section, it is quite illus-
trative to look at numerical results for areal one-dimensional signal, namely
a column of the noisy image depicted in Figure 1. In Figure 8, top, the noisy
column of this image is shown.

The following two plots in Figure 1 show the global mini mizer x* computed
with dynamic programming, and the suboptimal solution x computed with con-
vex programming, respectively, for an appropriate value of the scale-parameter
>. = 2.

This result demonstrates once more the "tightness" of the convex approxi-
mation of the combinatorial optimization problem (1).

o 25 50 Pixel 75 100 125

o 25 50 Pixel 75 100 125

o 25 50 Pixel 75 100 125

Fig.8. Top: Column 43 of the very noisy image shown in Fig. 1. Middle: Opti-
mal solution x' computed by dynamic programming. Bottorn: Suboptimal solution x
computed by convex programming.

6 Numerical experiments: 2D-images and grouping

In the previous section, we showed the performance of the algorithm in the
context of one-dimensional signals. We will next discuss the results of applying
the algorithm to two-dimensional images. Computing the global optimum for
real 2D-signals (images) is no longer possible. To demonstrate the wide range of
problems that can in principle be tackled by the general approach (1), we also
include results with respect to a grouping problem (see Figure 2).

The results concerning the restoration of the real image shown in Figure 1
are shown in Figure 9. Taking into consideration the quite poar signal-to-noise
ratio, the quality of the restoration is encouraging.



Figure 10 shows the same experiment with respect to another image. Note
that the desired object to be restored comprises structures at both large and
small spatial scales. Again the restoration result using convex programming is
surprisingly good.

Next, Figure 11 shows the weIl known checkerboard experiment. As can be
expected, small errors only occur at corners, that is at local structures with a
very small spatial structure dose to noise.

Finally, the results of the grouping problem (see section 2.2) are depicted in
Figure 12. The suboptimal solution computed by convex programming dearly
separates structure from background, apart from a small number of edgels. The
presence of these extra edgels however is not caused by our optimization ap-
proach but is consistent with the chosen similarity measure which fails to label
them as dissimilar.

(a) (b) (e) (d)

Fig. 9. Arrow and bar real image. (a) Noisyoriginal. (h), (e), (cl): Sub optimal solu-
tions eomputed by eonvex programming for >. = 0.6, 1.0, 1.9.

(a) (b) (e)

Fig. 10. Ieeland image. (a) Binary noisy original. (h) Sub optimal solution eomputed
by eonvex programming with >. = 2.0. (e) Original before adding noise.

7 Conclusion and furt her work

In this paper, we introduced a novel optimization technique to the field of image
processing and computer vision. This technique applies to various energy mini-



(a) (b)

Fig. 11. Checkerboard image. (a) Noisyoriginal. (b) Suboptimal solution computed
by convex programming with A= 1.5.
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Fig. 12. Top: Input data (see Section 2.2). Bottom, left: The sub-optimal solution
computed with convex optimization (A = 0.9). Four false primitives are included which
- according to the relative angle measure - cannot be distinguished from object prim-
itives. Bottom, right: The true solution.



mization problems of mid-level vision, the objective function of which typically
belongs to the large dass of binary quadratic functionals.
The most important property which distinguishes our approach from related

work is its mathematical simplicity: Suboptimal solutions can be computed by
just solving a convex optimization problem. As a consequence, no additional
tuning parameters related to search heuristics, etc. are needed, apart from the
parameters of the original model itself, of course.
For two representative functionals related to image labeling and grouping,

extensive numerical experiments revealed a surprising quality of suboptimal so-
lutions with an error below 5% on the average. Due to this fact as well as the
dear algorithmic properties of our approach, we consider it as an attractive
candidate in the context of computational vision.
We will continue our work as follows: First, we will try to prove bounds with

respect to the suboptimality of solutions (see Eqn. (7)). Furthermore, we will
focus on the algorithmic properties in order to exploit sparsity of specific prob-
lems. Finally, other problems in the general dass (1) like matching of relational
object representations, for example, will we investigated.
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