
 
 
 
 
 
 
 
 
 

REIHE INFORMATIK 
TR-2008-004 

 
 

A Detailed Comparison of UML and OWL 

 
Kilian Kiko und Colin Atkinson 

University of Mannheim 
– Fakultät für Mathematik und Informatik – 

Lehrstuhl für Softwaretechnik 
A5, 6 

D-68159 Mannheim, Germany 

1 



A Detailed Comparison of UML and OWL 

Kilian Kiko 

University of Mannheim 

 

Colin Atkinson 

University of Mannheim 

 

Abstract 

As models and ontologies assume an increasingly central role in software and information 

systems engineering, the question of how exactly they compare and how they can sensibly be 

used together assumes growing importance. However, no study to date has systematically and 

comprehensively compared the two technology spaces, and a large variety of different 

bridging and integration ideas have been proposed in recent years without any detailed 

analysis of whether they are sound or useful. In this paper, we address this problem by 

providing a detailed and comprehensive comparison of the two technology spaces in terms of 

their flagship languages – UML and OWL – each a de facto and de jure standard in its 

respective space. To fully analyze the end user experience, we perform the comparison at two 

levels – one considering the underlying boundary assumptions and philosophy adopted by 

each language and the other considering their detailed features. We also consider all relevant 

auxiliary languages such as OCL. The resulting comparison clarifies the relationship between 

the two technologies and provides a solid foundation for deciding how to use them together 

or integrate them. 

 
2



Index Terms – Analysis, language comparison, representation languages, ontology 

languages, software modeling languages, syntax, semantics, interpretation assumptions. 

 

1 Introduction 

A major trend in IT over the last decade has been the move towards greater inter-connectivity 

of systems and the creation of enterprise-wide computing solutions. Whereas in the past, 

applications were typically written to solve a single, localized problem using their own 

private data format, today they are expected to fit flexibly into large multi-purpose systems 

that span whole enterprises or even planets (in the case of the Internet). This trend has shifted 

the critical activity of systems development from the traditional “programming” of 

imperative code to the creation of rich, interchangeable representations of information and 

knowledge.  

Two major “paradigms” have emerged in recent years to support this activity, each with its 

own terminology, standards bodies, research communities and flagship language. One is the 

so-called “modeling” paradigm that places “models” at the center of the development 

process. Model-driven development evolved primarily in the software engineering 

community and has the OMG’s Unified Modeling Language (UML) [17] as its flagship 

language. The other is the so-called “ontology engineering” paradigm that places 

“ontologies” at the center of the development process. Ontology engineering primarily 

evolved from the artificial intelligence community and has the W3C’s Web Ontology 

Language (OWL) [1] as its flagship language. 

Since the two paradigms were developed with different roles in mind, the two approaches 

have until recently remained relatively separate, with each community tailoring its 

language(s) to its own particular needs. For a long time, therefore, there was little interest in 

 
3



comparing the two approaches. However, with the growing importance of knowledge 

representation in mainstream software development and the primea facea ability of both 

paradigms to serve this role, there is a growing interest in both academia and industry in 

understanding how the two paradigms relate to one another, which offers the best capabilities 

under which circumstances, and how they can be used together.  

Recent literature identifies a variety of possible ways of bringing model-driven 

development and ontology-driven development together, ranging from the provision of 

“bridges” that allow one approach to be used within the technology framework of the other 

(e.g. [16], [11], [12]) to the wholesale integration of the paradigms at a fundamental level 

(e.g. [13], [15]). Unfortunately, no study to date has provided a detailed and comprehensive 

comparison of the two technology spaces based on the capabilities offered to end users. 

Existing proposals either compare the technologies at a very superficial level of abstraction or 

neglect one of their key elements. The most extensive comparison to date is that of Hart et. al. 

[2], but while providing a valuable overview of their relationship, this work does not take the 

capabilities of the Object Constraint Language (OCL) [22] or the underlying assumptions of 

the two domains into account. A detailed summary of the previous work in this regard is 

provided in [44].  

The basic rationale for this paper is that it is not possible to make good decisions about 

which technology to use for which purpose, how to effectively use the two technology spaces 

together and how ultimately to integrate them without a detailed and comprehensive 

understanding of how they compare and differ.  The goal of this paper is thus to investigate 

the technology spaces in terms of their flagship languages – UML and OWL respectively. 

Although these are by no means the only languages used to create software models or 

ontologies, they are highly representative of the two technology spaces. The resulting 

understanding of the relationship provides the required solid foundation for making practical 

 
4



usage and integration decision. However, it is beyond the scope of this paper to provide 

guidelines for this.     

The rest of the paper is structured as follows. In the next section, we describe our 

comparison approach and discuss the background to each “language”. In Section 3, we 

compare the goals and objectives of each language (i.e. semantic domain) together with their 

concrete representation (concrete syntax). Then in Section 4 we discuss the major underlying 

(and largely implicit) assumptions that characterize each language’s approach to knowledge 

representation and influence the interpretation of language constructs (semantic mapping). 

This is followed in Section 5 by a detailed, feature-by-feature comparison of the languages 

(i.e. their abstract syntax). Section 6 then discusses the conclusions that can be drawn and 

makes various suggestions and recommendations.  

2 Comparison Objects and Method 

Unqualified uses of the names “UML” and “OWL” can cause great confusion because they 

refer to languages with complex evolution histories, multiple variants and rich infrastructures. 

In order to compare the two technology spaces it is therefore necessary to first define 

precisely which parts of which languages are being considered.  

As a modeling language, the UML is conceptually embedded within the four-level 

modeling framework depicted in Fig. 1. The UML itself (i.e. the definition of the UML 

language) is regarded as being an instance of the Meta Object Facility (MOF) [18] at the M2 

level of the framework. It is therefore commonly referred to as a “metamodel”. The OMG 

envisages many other metamodels at the M2 level as instances of the MOF tailored to the 

needs of different domains. An example of another standard metamodel that accompanies the 

UML is the Common Warehouse Metamodel (CWM) [19].  

 
5



MOF MetaModel
M3

UML MetaModel
M2

UML Models
M1

User Data
M0

MOF MetaModel
M3

UML MetaModel
M2

UML Models
M1

User Data
M0  

Fig. 1 Four layer metamodeling architecture 
 

The relationship between the UML and the MOF is more complex than it appears in Fig. 

1. UML2.0, the recent major revision of the UML standard, is not only defined as an instance 

of the MOF, but it is also partly a specialization of it. More precisely, the full MOF and the 

UML (UML 2.0 Superstructure) are both specializations of a common core set of language 

constructs defined in a shared package known as the InfrastructureLibrary (UML 2.0 

Infrastructure) [20]. This actually defines the core language constructs that characterize the 

basic object-oriented, intensional information representation approach for which the UML is 

most widely known. These constructs focus on the representation of static structural 

information that forms the foundation of UML modeling – the so-called "class diagram". This 

is the part of the UML that we are considering in this paper. Since this part of the UML is 

also the foundation of the MOF, our comparison applies just as much to the MOF as it does 

to the UML.  

An important complement to the static modeling features of the UML is the Object 

Constraint Language (OCL) [22]. Strictly speaking, this is not part of the UML itself since it 

is defined in a separate specification. However, it is such an indispensable complement to the 

basic modeling features of UML that in practice the two languages should always be 

considered together. The OCL is essential in this comparison since it provides the means to 

add precision to UML models. In the remainder of this paper, we use the term "UML Full" to 

 
6



denote the combination of the UML/MOF core and the OCL and the term "UML Lite" to 

reference to the UML/MOF core alone (without OCL). If we use the unqualified term UML 

we mean UML Full (i.e. UML2.0 [17], [20] + OCL2.0 [22]).  

As a standard, OWL [1] is conceptually embedded within the four-level modeling 

framework depicted in Fig. 2. This is intended to indicate that OWL is built on top of the 

schema definition language RDF Schema (RDFS) [45], which in turn is built on top of the 

basic metadata markup language Resource Description Framework (RDF) [36]. “Built on top 

of” does not mean the same thing as "instance of" and so although they are superficially 

similar, Fig. 1 and Fig. 2 show different things. “Built on top of” is more like specialization 

than instantiation, although the precise semantics are not clear. Just as the core part of the 

MOF is effectively embedded with the UML, therefore, the RDF and RDFS are embedded 

within OWL. 

XML/XML Schema

RDF

RDF Schema

OWLOntological Layer

Schema Layer

Metadata Layer

KR Languages

Syntactical 
Languages

Data Layer

 

Fig. 2 Four level modeling framework 
 

The relationship between the languages is a usage and specialization relationship. OWL 

uses and specializes RDFS, which uses RDF. As pointed out by Pan and Horrocks [25] the 

Semantic Web hierarchy is a “functional hierarchy”. This means that every language has a 

certain function in the architecture. However, the languages were not originally devised for 

this purpose. In fact, it is more of an evolutionary hierarchy that includes legacy languages. 

The OWL standard actually defines three sub languages OWL-Lite, OWL-Full and OWL-

DL. The first of these provides a minimalist language with a very restricted scope and focus. 

 
7



It cannot reasonably be compared to the UML therefore. OWL-Full is the most general 

version of the language, which concentrates on maximizing expressiveness. OWL-DL is a 

subset of OWL-Full, which focuses on providing decidability. Since both tradeoffs are of 

interest in comparison to the UML, we consider both variants of OWL. Unless otherwise 

stated, the comparison is based on features in UML 2.0 [17], [20], [22] and OWL [1], [32], 

[38]. Having clarified what we aim to compare, we will now present our comparison method. 

There have been several comparisons of (modeling) languages in the past (cf. [24], [27], 

[28], [29], [30], [31]). Our approach builds on these, but with a unique focus that is tailored to 

the objects of the comparison. In linguistics, a language is characterized in terms of its syntax 

and semantics. The syntax can be further subdivided into concrete syntax and abstract syntax 

and the semantics into the semantic domain and semantic mapping (cf. [24]). A language 

comparison should take all of these into consideration. We compare the concrete syntaxes 

and semantic domains in section 3, the semantic mappings in section 4 and the abstract 

syntaxes in section 5.  

However, the most important issue in language comparison is the comparison of the 

language subject and expressiveness. The first is determined by the semantic domain and the 

latter by the abstract syntax and the semantic mapping.  

The concrete syntax specifies the actual representation of language statements. Each 

concrete representation symbol or icon maps onto a language construct. The concrete syntax 

itself has no meaning. It is therefore possible for a language to have several discrete 

representations. Hence, the concrete syntax has no influence on the expressiveness of a 

language.  

The semantic domain describes the area of application of a language, the so-called 

“universe of discourse” (UoD). Everything stated in a language is a part or element of that 

 
8



universe. Two languages have to have at least intersecting semantic domains to be worth 

comparing, i.e. they have to deal (at least in parts) with the same things. 

The abstract syntax defines the range of language constructs that describe the set of 

allowed statements expressible in the language. The user of a language composes these 

constructs to create statements in the language that reflect situations in the universe of 

discourse. The number of common language constructs affects the degree of equivalence in 

expressiveness between two languages, 

The semantic mapping or interpretation function determines the meaning of language 

expressions. As the name implies, a language statement or construct is mapped or related to 

its semantics, i.e. its denotation. The semantic mapping is the actual act of interpretation. It is 

the mental connection of terms to the conceptualizations they represent. The mapping acts on 

certain rules that can be more or less explicitly defined. The rules in turn underly a set of 

assumptions and constraints (e.g. human comprehension capabilities and characteristics). 

Formal languages use so-called model-theoretic semantics (also called Tarski-style semantics 

[46]) to provide a formal meaning to language expressions. The model-theoretic semantics 

explicitly defines the mapping of abstract syntax constructs into the semantic domain. The 

mapping is described as a mathematical (interpretation) function from the vocabulary of 

language constructs into the semantic domain (in terms of set theory). We present these 

interpretation definitions in section 5. Hart et. al. have already presented a feature-based 

(abstract syntax) comparison in [2] (later revised in [16]) though less complete and formally 

than the one in section 5. 

 
9



3 Comparison of the language representation and 

purpose 

A language is on the one hand represented by its concrete syntax (i.e. the perceivable form of 

its constructs and statements) and on the other by the constructs and statements which reflect 

objects and situations in a conceptual universe of discourse (i.e.  the semantic domain). These 

two aspects of the languages under investigation are examined in this section. 

3.1 The Concrete Syntax 

The concrete syntax specifies the actual representation of language statements. The UML for 

example has a diagrammatic representation and an XML representation called XML 

Metadata Interchange (XMI) [47], and RDF also has an XML notation RDF/XML [48]. 

Clearly, the concrete syntaxes of UML and OWL are not the same, even when XML is 

used as the concrete notation, because the tag names are distinct and there are potential 

synonyms and homonyms. As mentioned in the last section, this has no influence on the 

expressiveness and thus on the compatibility of the two languages and is therefore not 

considered further in the comparison. 

3.2 The Semantic Domain 

The languages were devised to fulfill different purposes. While OWL supports the 

representation of knowledge about a system, UML was developed primarily to support the 

construction of a (software) system. Nevertheless, the underlying goal of both is the 

representation of a system. This is why a large number of studies (e.g. [14], [16], [13], [23]) 

agree that the basic subject matter of the two languages is essentially the same, since both are 

used to define object-centered, intension-based representations of knowledge about a system 

 
10



or universe of discourse. Object-centered means that the main component of a knowledge 

representation is an object and its relation to other objects (equivalent to the object-oriented 

approach in software engineering). A single relation is known as a property or association. 

“Intension-based” reflects the fact that the knowledge representations can represent an 

abstraction of the elements in the concrete system. Instead of explicitly representing every 

object in a system the common properties of a set of objects are represented (i.e. objects are 

classified according to their properties).  

Both languages therefore have two basic layers of knowledge representation, namely 

concrete, instance-level information called extensional (or assertional) knowledge 

representation (AKR), and abstract, type-level information called terminological (or 

intensional) knowledge representation (TKR). For extensional knowledge representation, the 

semantic domain is the set of objects and objects relations (object states) under consideration 

at a given point in time. For terminological knowledge (i.e., ontologies and class models), the 

semantic domain is the set of valid sets of objects and object relations (i.e., the set of possible 

object models). The languages' semantic domain in both cases therefore consists of objects 

that can form tuples of related objects.  

However, the two languages differ in the way that knowledge is understood and expressed. 

This leads to a difference in the role of terminological knowledge and extensional knowledge. 

Ontology engineering uses a terminological knowledge representation approach to classify 

extensional knowledge and to infer new knowledge from it. If the extensional knowledge 

contradicts the ontology, it is identified as not satisfying the ontology. System models 

(terminological knowledge representations) in software engineering are used to represent and 

constrain the allowed set of system states. A concrete system state (extensional knowledge 

representation) must satisfy the constraints laid down by the system model to be a legal 

instance of it. Both approaches start with extensional knowledge to define a terminology, but 

 
11



while ontology engineering reuses this ontology to apply it to other extensional knowledge to 

deduce further extensional knowledge, in software development it is used for the construction 

of a (single) system (i.e. extensional knowledge representation). The consequence is that 

extensional knowledge in the UML is intended to be dependent on a terminological 

knowledge representation (i.e., a class model). 

The difference between the constructional motivation for UML and the representational 

motivation behind OWL is reflected in their different underlying assumptions. These, in turn, 

influence the set of available constructs as well as their interpretation, as will be observed in 

the following sections. 

4 Comparison of Interpretation Assumptions  

The knowledge representation and software engineering communities typically have different 

goals in mind when capturing information. They make corresponding but different 

assumptions regarding the interpretation of language expressions or statements. The set of 

assumptions influences the semantic mapping between language constructs and their 

denotations. While they are fixed or institutionalized in OWL, they are more variable in the 

UML. The UML allows different interpretations of a given language construct depending on 

the viewpoint. This is similar to situational factors in linguistics, where the pertinent 

assumptions are referred to as pragmatics. We will focus on one viewpoint and set of 

assumptions with respect to the UML which we call the representation-oriented set of 

assumptions or paradigm [10]. This viewpoint is the dominant view of object-oriented 

analysis. Its focus is problem domain modeling. This is also the focus of the conceptual 

design phase in database development and the viewpoint of the Entity-Relationship modeling 

paradigm [43]. Since problem domain modeling is similar to ontology definition, a 

 
12



representation-oriented interpretation of the UML has the largest overlap with the 

assumptions that usually underpin OWL. 

The most fundamental assumption is the “world model”. Both languages adopt an object-

centered world view which results in them having a large number of equal language 

constructs (e.g. class and object) and similar language constructs (e.g. property) as can be 

seen in the next section. Both languages differentiate between terminological (intensional) 

and extensional (assertional) knowledge. In OWL DL the extensional knowledge is 

represented by a set of names (individuals) that is disjoint from the set of names of the 

terminological knowledge (classes, properties and datatypes). OWL does not use an extra 

packaging construct to separate terminological knowledge from extensional knowledge. It 

therefore broadens the term “ontology” to include instance data [1]. The UML accommodates 

the concept of an object model but this is an implicit idea since no object model construct 

exists in the UML metamodel. Therefore, as in OWL, assertional knowledge in the UML can 

be included with the intensional knowledge in one model. A UML model that exclusively 

contains terminological knowledge is known as a class model, while a model that solely 

contains assertional knowledge is known as an object model.  

4.1 Open-World versus Closed-World Interpretation Assumptions 

A fundamental issue in knowledge representation is the underlying world assumption. Reiter 

[41] distinguishes two kinds of world assumptions: closed-world (CWA) and open-world 

(OWA). The UML is oriented towards data modeling and system construction so that even 

when used to create a conceptual model of a domain the represented knowledge is implicitly 

viewed as being complete. OWL, in contrast, interprets models as potentially representing 

partial knowledge. These two different assumptions have fundamental implications on 

modeling practice. In a CWA model, it is not necessary to close the definition of a classifier's 

 
13



intension or an object's specification because the closure is implicitly presumed. UML Lite 

therefore does not inherently support explicit closure axioms for classes or explicit 

restrictions on individuals. In an OWA model, on the other hand, explicit closure axioms are 

needed to specify what cannot apply to a concept. This necessitates value restrictions on class 

and object properties to represent complete knowledge. A closed-world language directly 

represents the system under study meaning that there is a functional relation between the 

language expressions and the modeled world. An open-world language on the other hand 

distinguishes the knowledge of the world from the world itself. An expression can therefore 

have multiple interpretations in the modeled world.  

4.2 Unique Name Assumption & Synonyms 

OWL's goal of supporting the semantic web imposes certain requirements on the language 

such as the need to support distributed and interoperable ontologies. OWL meets these 

requirements by allowing the definition of synonyms for classes, properties and individual 

descriptions. The language therefore grants the existence of synonym concept definitions and 

provides constructs to state explicitly that two classes, properties or individuals are 

equivalent. Identifiers for classes, properties and individuals are distinct and the same name 

always refers to the same element. This means that the definition of homonyms is not 

feasible. However, a given element (object, property or class) may be referred to by several 

different names. This means that the relation between concrete syntax expressions and their 

semantic domain counterparts is a non-injective function, i.e. names have no unique 

interpretation, whereas in a language like UML the function is injective. The assumption that 

every name has a unique interpretation (i.e. an interpretation that is not shared with any other 

name) is known as the unique name assumption (UNA).  

 
14



Individuals in OWL can be viewed as either equal or different. Class and property 

extensions can be disjoint, overlapping or equal, meaning that the class or property has an 

equivalent interpretation. The extensions are indeed independent of the UNA as identifiers 

are bound to intensions and one extension can have different intensions with different names. 

Therefore, it is possible for differently named classes to relate to the same extent. If classes 

and properties are themselves treated as individuals, as in OWL Full, it is also possible to 

state that two classes are the same, meaning that their intensions are equal. UML Full does 

not support synonyms because it was designed to support "offline" usage in which a model is 

developed by one person or a team of designers that are committed to a fixed and clear 

terminology. The UNA in the UML impedes synonyms in the assertional knowledge space 

(i.e., the object model) and in the intensional view of classes and associations and it leads to a 

limited view of class and association extensions that ignores equivalence specification.  

 

4.3 Global Scope and First-Class Status Properties 

Like classes, properties can have first-class status. This is equivalent to the treatment of 

classes and relations as unary and binary predicates in first-order predicate calculus. First-

class status recognizes properties as equal classification elements. Properties are then 

interpreted as sets of tuples of objects (i.e., sets of object relations). The intension of a 

property is based on relation-specific characteristics, (e.g. symmetric, transitive, functional, 

etc.) and the context specifications (i.e., the association end types). UML associations and 

OWL properties, like classes, can form taxonomies and set-based operations can be applied 

to them. 

First-class status also entails that properties have a meaning of their own. In other words, 

their general semantics is independent of a specific domain and range context. This is known 

 
15



as decontextualization. In the case of open-world semantics, these relations have global 

scope, meaning that these properties apply to every object in the semantic domain unless they 

are constrained by domain and range specifications. OWL properties therefore have global 

scope - that is, by default they have the universal concept as their domain and range. An 

OWL property therefore always applies to any class and an individual is always allowed to 

have additional features that are not prohibited by the class definition.  

The UML does not sanction global scope of attributes and associations because of the 

closed-world interpretation placed on these constructs. The intensions of associations are 

implicitly closed which implies that "context-free" associations by default apply to no object, 

i.e., their domain and range is the bottom concept, which is the complement of the universal 

concept.  

It is not possible to state that two associations are equivalent, as this is not intended in 

UML Full. UML Lite diagram syntax is based on token-referentiality, which prohibits 

distributed specifications. To specify that one association is the abstraction of other 

associations, association specialization or redefinition is used to indicate refinements of the 

original association. This allows multi-contextualized, classifying associations to be specified 

(or respectively their refinements to be represented) in UML Lite. Otherwise, anonymous 

associations can be used as sub-associations of the property (association) to state association 

redefinition. Since the OCL is type-referential, UML Full handles associations as if they were 

OWL properties. UML Full attributes are mere design- and implementation-level constructs. 

In contrast to associations, attributes in UML are not first-class model elements. They depend 

on their classifiers, cannot form taxonomies and have no decontextualized interpretation.  

 
16



4.4 Sufficient Conditions & Defined vs. Primitive Concepts 

One of the purposes of OWL ontologies is to facilitate automatic classification – that is, the 

computer-driven classification of individuals based on the terminological knowledge 

provided in an ontology. Automatic classification of individuals is only feasible if classes 

offer sufficient conditions for membership. OWL supports the definition of essential concept 

properties through necessary and sufficient conditions and distinguishes between primitive 

and defined classes since its goal is to support class-based reasoning on assertional 

information. OWL implements this feature by applying two terminological axioms, 

distinguishing the defining statement from the defined expression, and using anonymous 

class descriptions. The UML does not provide native assistance in the definition of sufficient 

conditions or defined classes, since the UML is intended to define constraints that have to 

hold in a concrete version of a represented system. However, it can be shown that necessary 

and sufficient conditions can be emulated with OCL constraints (cf. Section 5.3).  

4.5 Metaclasses  

The OWL DL sublanguage of OWL restricts instances of the OWL Class construct to having 

a mere extensional interpretation. OWL Full relaxes this constraint and enables information 

elements to exhibit an object and type duality. This in turn allows classes to have types of 

their own. These second-order classes are called metaclasses. UML does not support 

metaclasses directly. It has two mechanisms to define classes that have classes as their 

instances. The profile mechanism and stereotype construct can define metaclasses as 

subclasses of the UML Class construct. However, these classes are in fact regarded as an 

extension of the modeling language and not part of the modeled system [4]. Power types, a 

further UML construct, allow the definition of metaclasses that serve as power sets for other 

(regular) classes (i.e., their instances are subclasses of a class). Power types therefore rely on 

 
17



a class that is partitioned by them, which is the normal semantics of a metaclass. However, an 

OWL metaclass is the power type of the universal class owl:Thing, which is not available in 

the UML. Furthermore, the power type construct does not fit naturally into the strict four 

layer modeling hierarchy of the UML [7].  

 

 UML Lite UML Full OWL 

Object-centered    

Open-world assumption (not CWA)    

Global scope properties     

First-class status of Properties    

Synonyms (not UNA)    

Metaclasses  * *  

Sufficient conditions    

Universal concept  *  

Table 1. Interpretation assumptions overview 

 

Table 1 provides a summary of the interpretation assumptions that underpin OWL and 

UML in their normal usage modes.  means the assumption applies in the language,  means 

the assumption does not apply and * means the assumption applies in certain limited cases. 

5 Comparison of Language Constructs 

The abstract syntax of a language defines the set of constructs that are used to make 

statements in the language. Ideally, we would like to compare the abstract syntaxes of the two 

languages under study on a construct-by-construct basis but this is made difficult by the 

different assumptions that the two languages apply to the interpretation of their constructs 

 
18



and expressions. Every time an assumption affects the interpretation of a construct, we will 

explicitly consider and discuss the different possible interpretations. 

In the following subsections, every OWL language construct used for conceptual modeling 

is compared to its UML Lite and/or UML Full counterpart (where one exists) and the 

respective interpretation assumptions will be considered. Then, following this, the UML 

constructs that have no direct counterpart in OWL Full are discussed accordingly.  

The comparison is based on the model-theoretic semantics given for OWL in [38] and the 

definition of the UML 2.0 and OCL 2.0 abstract syntaxes in [17] and [22]. 

5.1 Individual & Object 

UML and OWL are fundamentally object-centered. Objects are the core medium for 

assertional (extensional) knowledge representation (AKR). Terminological knowledge, in 

contrast, abstracts away from individuals to capture knowledge common to sets of objects. 

The constructs owl:individual in OWL and InstanceSpecification in the UML are used to 

represent individuals in a representation of assertional knowledge.  

The semantics of each construct is as follows. Let Δ be the semantic domain and IE the 

interpretation function (semantic mapping). Every name x in the AKR is mapped to an object 

in the semantic domain: 

Δ∈)(xIE  

Since OWL takes an open-world assumption about the semantic domain, an OWL AKR 

has several satisfying interpretations. In other words, a given OWL AKR can be compatible 

with (i.e. represent one of) many different object populations in the real world. The closed 

world assumption of UML, in contrast, admits only one interpretation for a UML AKR. In 

other words, a UML AKR is compatible with only one real-world population of objects – 

exactly the set that is represented in the AKR.  

 
19



UML and OWL allow individuals to be defined with facts like class membership and 

property values. OWL defines class membership with the RDF type relation or by using the 

name of the classifier. UML uses the instanceOf dependency and the colon-based naming 

convention. Both languages allow objects to be defined without a type definition (see [17]). 

However, the purpose and interpretations differ in the two languages. While OWL allows 

objects to be unspecified and therefore instances of the universal type, UML objects are only 

instances of the InstanceSpecification classifier and used as examples for possible object 

states without identity. An untyped UML Lite object resembles an illustration of an arbitrary 

object, which is not a legal member of an AKR. Individuals (AKR members) represented in 

UML Lite object models always have to have a concrete classification, which in practice 

means a user-defined classifier since there is no universal classifier. 

Property values are defined in OWL by using the name of the property and relating it to an 

object or data value. In the UML, slots are used for the definition of datatype property values 

and links for the specification of object property values. Both languages support an unspecific 

property value, i.e. a value that is present but its type is unknown. In UML Full, the value 

"null" is used [22] as the unspecified property value. 

The unique name assumption in UML requires every object specification to be distinct, 

while OWL allows individual descriptions to represent the same individual. OWL therefore 

further provides three constructs for stating facts about the identity of individuals. These are 

owl:sameAs, owl:differentFrom, and owl:AllDifferent. As synonyms are not supported in the 

UML, these constructs are not available in the language.  

Instance specifications in UML do not need to have a closure axiom because of the CWA. 

Every instance specification in the UML is implicitly closed. This makes it impossible to 

state that an object specification is not closed. 

 
20



In summary, both constructs are essentially equivalent apart from the differing 

interpretations yielded by their respective world and name assumptions and the fact that 

UML Lite does not allow individuals with no explicit type (i.e., having only the universal 

classifier as their classifier).  

5.2 Classes 

A class is interpreted as a set of objects. Classes are elements of a terminological knowledge 

representation (TKR), which is known as a class model in UML and an ontology in OWL. 

Each class primitive c in a TKR is interpreted as a set of objects in the semantic domain Δ: 

Δ∈Δ⊆ 2)(,)( cIEcIE  

The set of classes (Class) in a TKR is interpreted accordingly as the set of class 

extensions: 

Δ= 2)(ClassIE  

An instance of a class can explicitly be related to its classifier with the type property 

(rdf:type or instanceOf). The type property is interpreted as a set of pairs, where the first 

element is an object in the AKR and the second element is a class from the TKR:  

)()()( ClassIEThingIEtypeIE ×⊆  

A class can be viewed as an intension and an extension. The class extension is the set of 

objects to which the class applies, while the intension is the collection of constraints and 

conditions that apply to instances of that class. The set of class features therefore determines 

the set of objects in the semantic domain and their representations in an AKR that are 

instances of the class. The major difference between each languages' interpretation of the 

class concept is that UML perceives classes as being implicitly closed with respect to their 

features while an OWL class comprises all members of the respective UML class and all 

objects that exceed the UML class's intension in terms of their features. A UML class' 

 
21



extension is therefore a subset of the respective OWL class' extension and the size of the 

extension of a class in UML's interpretation is less than or equal to the size of the same class's 

extent in OWL's interpretation. 

IEUML(C) ⊆ IEOWL(C) 

Since neither language allows the world assumption to be changed locally for a single 

classifier, UML and OWL class expressions have different interpretations (i.e. can be 

representations of completely different sets of UoD objects). To facilitate a feature-by feature 

comparison, we abstract from the implicit completeness assumption of UML models without 

any impact on the semantics of single UML features.  

IEOWL = IE 

To support data types the semantic domain is divided into two disjoint sets, the object 

domain OD and the data type domain DD (cf. [26]). The formal semantics of the universal 

class is the set of all objects in the object domain: 

ODThingIE =)(  

The bottom concept is interpreted as the empty set: 

∅=)(NothingIE  

And the foundational class Literal is interpreted as the set of data values in the data type 

domain: 

DDLiteralIE =)(  

OWL contains a standard foundation ontology that is implicitly available in every user-

modeled ontology. The foundation ontology holds the universal concept owl:Thing as well as 

the bottom concept owl:Nothing and the class of all data values rdfs:Literal. The UML does 

not directly feature these classes, but many object-oriented systems offer the universal classes 

of objects and data values. The OCL in fact possesses the universal concept of objects and 

data values in one class OclAny and the bottom concept OclVoid [22]. The OCL defines 

 
22



OclAny as the supertype of all types in the UML model and the primitive types in the OCL 

[21] (or as behaving like it [22]). This includes the primitive data types, the enumerations and 

UML user model types. To be able to make statements about the set of all individuals in the 

domain we interpret the extension of OclAny (i.e., OclAny.allInstances()) to be equal to the 

extension of the universal concept (owl:Thing in OWL). The operation allInstances() is 

applicable and correct as it returns only objects of user defined classes [22] and OclAny 

comprises all user defined classes. 

The class intension in OWL is specified by class axioms that relate a class name to a class 

description. This can either be a superclass of the specified class, an equivalent class or a 

class that is disjoint with the specified class. Class descriptions are the class name, a set of 

property restrictions, an exhaustive enumeration of the extension's members, or a logical 

combination of other class descriptions. OWL does not support variables at all. All axioms 

are represented by sets (classes). Property restrictions are interpreted as anonymous 

subclasses of the universal concepts by placing constraints on the class extension. The same 

is true for all other unnamed class descriptions (intersection, union, complement, 

enumeration). The UML in principle supports anonymous class definitions by unnamed 

classes [17], although this is rarely used in practice. The OCL supports variables and set-

based representation of axioms.  

5.2.1 Class Axioms 

Classes in OWL are defined by class axioms having a defined expression (the class identifier) 

and a defining statement (an intersection of class descriptions). The UML does not 

distinguish between the defining statement and the defined expression. Classes in OWL can 

be defined as subclasses of other classes, as equivalent to another class, or as disjoint from 

another class. These are the OWL class axioms. Class equivalence and class inclusion have a 

 
23



special purpose in OWL. While OWL can use the taxonomy construct (rdfs:subClassOf) for 

the definition of a class hierarchy in the same way as the UML generalization relationship, it 

uses this construct in combination with anonymous class definitions as a defining statement 

to describe necessary conditions for the class membership of an individual. To express 

sufficient conditions OWL uses the equivalent-class relationship. OWL uses anonymous class 

descriptions because it does not support variables. The UML, in contrast, admits only 

necessary conditions as discussed in Section 3.3. It therefore does not need a means to 

distinguish between primitive and defined classes (necessary and sufficient conditions). This 

implies that the UML Lite has only one axiom. Nevertheless, UML Full offers a means to 

handle sufficient conditions with OCL constraints. We therefore have to present a UML 

counterpart for every OWL class constructor considering the two axioms (i.e., class 

equivalence and class inclusion). 

As explained in 5.2, we abstract from the general impact of the world assumption with 

respect to the classes' extensions in an enclosing ontology, as it is not possible to revise the 

foundational assumption locally. We first list the OWL class axioms in their basic 

interpretation (5.2.1.1 to 5.2.1.4) and then the class constructors for primitive and defined 

classes (5.2.2.1 to 5.2.2.6). 

To facilitate a clear and concise comparison of language constructs we summarize their 

properties using the tabular template illustrated in Fig. 3. In the top left hand cell of the table, 

we identify the OWL abstract syntax element that is the subject of the comparison. Below 

this, in the bottom left hand cell we give an example of how this construct is normally used in 

OWL ontologies, and on the right, in the top right cell we give a textual description of the 

construct. The bottom right cell is organized into three parts: one containing the semantics of 

the construct in first order logic, one containing the equivalent UML Lite feature and 

associated description, and one containing appropriate OCL statements. The OCL statement 

 
24



is always based on an appropriate UML Lite class model whose elements (classes, 

associations) are referenced by the OCL expression. Together the UML Lite feature and the 

OCL expression form the UML Full representation of the OWL construct. This implies that 

there could be two UML Full representations of the OWL construct, one using a single UML 

Lite feature and one using a combination of UML Lite elements and OCL statements. 

OCL descriptionOCL representation

UML 
descriptionUML Diagram representation

Semantics in First Order Logic

Standard usage 
example for the 

language construct

Description of the OWL language constructOWL abstract 
syntax element

OCL descriptionOCL representation

UML 
descriptionUML Diagram representation

Semantics in First Order Logic

Standard usage 
example for the 

language construct

Description of the OWL language constructOWL abstract 
syntax element

UML Lite
UML Full

UML OCL
 

Fig. 3. Comparison template 
 

5.2.1.1 Atomic Classes 

owl:Class 
The atomic class has no intension. It can only be interpreted by its 
name that has a meaning in the world outside the ontology. The atomic 
class is a class description that is simultaneously a class axiom. 

C 

Class C 
C

 

UML Lite represents atomic classes as 
named elements of type Class without 
further features. 

 
25



5.2.1.2 Class Inclusion and Class Taxonomies 

rdfs:subClassOf The subclass of one class has an extension that is the subset of the 
extension of the subsetted class. 

BA ⊆  
))()(( xBxAx →∀  

B

A

UML Lite offers the generalization 
relation to express class inclusion. Fig. 4 
shows a class B being the subclass of a 
class A. 

5.2.1.3 Class Equivalence 

 
Fig. 4 

 

A subClassOf B 

Context A inv: 
self.oclIsKindOf(B) 

The meaning of this class axiom is that the two class descriptions 
involved have the same class extension (i.e., both class extensions 
contain exactly the same set of individuals) 

owl:equivalentClass 
[32]. 

BA =  
))()()()(( xAxBxBxAx →∧→∀  

B

A

Complete
A correct and legal way to state that 
two UML Lite classes are equivalent 
is using a generalization-set and 
defining it to be covering as 
demonstrated in  

Fig. 5 
 

Fig. 5
A equivalentClass B 

Context A inv: 
self.oclIsKindOf(B) 
Context B inv: 
self.oclIsKindOf(A)  

 
26



5.2.1.4 Class Disjointness 

The meaning of a owl:disjointWith statement is that the class 
extensions of the two class descriptions involved have no individuals 
in common. 

owl:disjointWith 

A ∩ B = ∅ 
)))()((())(()(( xBxAxxBxAx ∧∃¬=¬→∀  

Woman

Person

Man

disjoint
:Sex

 
Fig. 6 

 
Class disjointness in a UML Lite class diagram is only definable 
between sibling classes in a partitioning, that is, between classes of the 
same generalization-set. 

5.2.2 Class Descriptions 

Class axioms describe classes using class descriptions (also known as class constructors). The 

class description as the defined expression of a class axiom is always a simple class name. 

The defining statement of a class axiom is a class description, which specifies the class 

extension of an unnamed anonymous class. In the following, we list the different forms of 

class constructors (for the defining statement) in the languages. 

Fig. 6 shows a partitioning of a class C 
(Person) into the classes A (Man) and B (Woman), which form one 
generalization-set under a common discriminator (Sex). The 
generalization-set has the property “disjoint”, meaning that the two 
subclasses have no common instances. 

A disjointWith B 

Context A inv: In OCL, the definition of 
class disjointness is not 
limited to sibling classes in a 
generalization-set. 

not self.oclIsKindOf(B) 
Context B inv: 
not self.oclIsKindOf(A) 

 
27



5.2.2.1 Enumeration 

An enumeration lists a collection of individuals that constitute the class's 
extension. The value of this built-in OWL property must be a list of 
individuals that are the instances of the class 

owl:oneOf 
[32]. 

Δ×= 2)()( ClassIEoneOfIE  

UML Lite supports the concept of 
enumeration as a data type whose values are 
enumerated in the model as enumeration 
literals 

<<enumeration>>
C

A
B

[17] (cf. Fig. 7). The enumeration is 
not a class but a data type. This is different 
from OWL's definition of owl:oneOf, as it is 
only an enumeration of data values. OWL 
also supports enumerated data types with the 
same construct. 

D
 

Fig. 7 
C oneOf A, B, D 

OCL has no means to define enumeration but 
it can use the values (members) of an 
enumeration in an OCL statement. The syntax 
for this is the enumeration name followed by 
two colons and the identifier of the 
enumeration value. 

Context X inv: 
self.G = C::A  

 
28



5.2.2.2 Class Conjunction 

The owl:intersectionOf property links a class to a list of class 
descriptions. An owl:intersectionOf statement describes a class for 
which the class extension contains precisely those individuals that are 
members of the class extension of all class descriptions in the list 

owl:intersectionOf 

[32]. 

BAC ∩=  
)))()()(())()()((( xCxBxAxBxAxCx →∧∧∧→∀  

UML Lite does not support a visual construct to define a class as an 
intersection of several other classes.  C intersectionOf  

A and B 
Context A, B, C inv: 
C.allInstances() = A.allInstances()-> 
intersection(B.allInstances()) 

BAC ∩⊆  
))()()(( xBxAxCx ∧→∀  

BA

C

 

 
Fig. 8 

C subClassOf 
intersectionOf  

A and B 
UML Lite allows multiple inheritance, which indicates that a class is 
an immediate subclass of several other classes at the same time. An 
instance of that class (C in Fig. 8) is therefore an indirect instance of 
the superclasses (A and B in Fig. 8). The element has to obey the 
necessary conditions of all superclasses and is therefore an element of 
the intersection of all superclasses.  
Context C inv: 
self.oclIsKindOf(A) and self.oclIsKindOf(B)  

 
29



5.2.2.3 Class Disjunction 

The owl:unionOf property links a class to a list of class descriptions. 
An owl:unionOf statement describes an anonymous class for which 
the class extension contains those individuals that occur in at least 
one of the class extensions of the class descriptions in the list 

owl:unionOf 

[32]. 

BAC ∪=  
)))()()(())()()((( xCxBxAxBxAxCx →∨∧∨→∀  

The generalization-set concept in 
UML Lite is capable of defining a 
class as the union of a set of 
subclasses. The generalization-set 
attribute "isCovering" is used to 
describe an exhaustive partitioning 
of a class by its subclasses. 

 

BA

C

complete

 
Fig. 9 

Fig. 9 
depicts the situation in a UML class 
diagram.  

C unionOf A and B 

Context A, B, C inv: 
C.allInstances() = A.allInstances()-> 
union(B.allInstances()) 

BAC ∪⊆  
))()()(( xBxAxCx ∨→∀  

A direct mapping of this 
situation is not feasible in a 
UML Lite class diagram. 
However, it can be simulated 
by the use of an anonymous 
class that represents the union 
as in 

BA

complete

C
 

Fig. 10 Fig. 10. 

C subClassOf  
unionOf A and B 

Context A,B,C inv: 
A.allInstances()->union(B.allInstances())-> 
includesAll(C.allInstances()) 

 
30



5.2.2.4 Class Negation 

An owl:complementOf property links a class to precisely one class 
description. An owl:complementOf statement describes a class for 
which the class extension contains exactly those individuals that do 
not belong to the class extension of the class description that is the 
object of the statement 

 
owl:complementOf 

[32]. 

BA ¬=  
)()( BIEAIE −Δ=  

UML Lite is not capable of specifying a class as the complement of 
another class. A complementOf B 
Context A, B, OclAny inv: 
A.allInstances() = (OclAny.allInstances() - 
B.allInstances()) 

A ⊆ ¬B 
IE(A) ⊆ Δ − IE(B) 

The definition of a class as a primitive class that is a subclass of an 
anonymous class, which is a complement of another class, is not 
possible in UML Lite. 

A subClassOf  
 complementOf B 

Context A, B, OclAny inv: 
(OclAny.allInstances() - B.allInstances())-> 
includesAll(A.allInstances()) 

 

5.2.2.5 Property Restriction – Value Constraints  

It is possible to constrain the range of a property in specific contexts in a variety of ways 

using property restrictions. A property restriction is a special kind of class description. It 

describes an anonymous class, namely a class of all individuals that satisfy the restriction 

[32]. This anonymous class is used to define other classes by inclusion or equivalence 

assertion. This is necessary in OWL, as variables are not supported. The UML interprets 

association and attribute definitions as necessary conditions. Sufficient conditions and 

explicit closure axioms can be defined with OCL invariants.  

5.2.2.5.1 Value Restriction 

 
31



The value constraint owl:allValuesFrom is a built-in OWL property 
that links a restriction class to either a class description or a data 
range [32]. The constraint is analogous to the universal quantifier of 
predicate calculus. All instances of the described class that have the 
property must be related to an instance of the class description or a 
value in the data range. 

owl:allValuesFrom 

))(),()((,))(),()((, yByxRxAyxoAyoRyByo →∧∀∧→∧∀  
UML Lite is not able to specify a sufficient condition on a class 
feature in a class diagram. 
OCL uses the universal class to state that all objects that have only 
property values from B for the property R are members of class A. 
This is the sufficient condition of the OWL axiom. The necessary 
part is equal to the constraint described below, so that the complete 
invariant is the set of both assertions. 

A equivalentClass 
Restriction on R 
allValuesFrom B 

Context o:OclAny inv:  
o.R->forAll(y|y.oclIsKindOf(B)) implies 
o.oclIsKindOf(A)  
Context x:A inv:  
x.R->forAll(y|y.oclIsKindOf(B))  

))(),()((,)))(),(()((, yByxRxAyxyByxRxAyx →∧→→∀ ⇔ ∀  

BA R 0..*

 
Fig. 11 

Under the CWA, every class description is assumed to be complete. 
The counterpart to the OWL statement above is therefore the 
definition of a typical UML Lite association with 0..* multiplicity as 
depicted in Fig. 11. Due to the CWA, the UML Lite diagram raises 
further implicit constraints that are disregarded. 

A subClassOf 
Restriction on R 
allValuesFrom B 

Context x:A inv:  
x.R->forAll(y|y.oclIsKindOf(B)) 

 

 
32



5.2.2.5.2 Existential Quantification 

The value constraint owl:someValuesFrom is a built-in OWL 
property that links a restriction class to a class description or a data 
range. A restriction containing an owl:someValuesFrom constraint 
describes a class of all individuals for which at least one value of 
the property concerned is an instance of the class description or a 
data value in the data range 

owl:someValuesFrom 

[32]. 

)))(),(()(()))(),()((( yByxRyxAxoAyoRyByo ∧∃→∀∧→∧∃∀  

UML Lite is not able to specify a sufficient condition on a class 
feature in a class diagram. 

OCL uses the universal class to state that all objects that have 
some property values from B for the property R are members of 
class A. This is the sufficient condition of the OWL axiom. The 
necessary part is equal to the constraint described below, so that 
the complete invariant is the set of both assertions. 

A equivalentClass 
Restriction on R 

someValuesFrom B 

Context o:Thing inv:  
o.R->exists(y|y.oclIsKindOf(B)) implies 
o.oclIsKindOf(A)  
Context x:A inv:  
x.R->exists(y|y.oclIsKindOf(B))  

)))(),(()(( yByxRyxAx ∧∃→∀  

Because of the CWA, every property is by default restricted by an 
implicit closure axiom. This renders a mere existential 
quantification in the UML Lite impossible. 

A subClassOf 
Restriction on R 

someValuesFrom B In UML Full, an OCL constraint can refine an inherited 
association R: 
Context x:A inv:  
x.R->exists(y|y.oclIsKindOf(B))  

 

 

 
33



5.2.2.5.3 Role Filler 

The value constraint owl:hasValue is a built-in OWL property that 
links a restriction class to a value V which can be either an individual 
or a data value. A restriction containing an owl:hasValue constraint 
describes the class of all individuals for which the property concerned 
has at least one value semantically equal to V (it may have other values 
as well) 

owl:hasValue 

[32]. 

)))),(()((()))()),(((( VyyxRyxAxxAVyyxRyx =∧∃→∀∧→=∧∃∀

UML Lite is not able to specify a sufficient condition on a class feature 
in a class diagram.  

A equivalentClass 
Restriction on R 

hasValue V 

Since OCL cannot directly access object model elements, UML Full is 
not capable of supporting the role filler construct completely. 
Nevertheless, OCL can state the value restriction on a data value (V) if 
A is a class and R is an association of A: 
Context x:A inv:  
x.R->includes(V) 
Context o:OclAny inv: 
o.R->includes(V) implies o.oclIsKindOf(A) 

))),(()(( VyyxRyxAx =∧∃→∀  

UML Lite is not able to specify such a value constraint in a class 
diagram. 

A subClassOf 
Restriction on R 

hasValue V 
OCL cannot directly access object model elements so UML Full is not 
capable of supporting the role filler construct completely. 
Nevertheless, OCL can state the value restriction on a data value (V) if 
A is a class and R is an association of A: 
Context x:A inv:  
x.R->includes(V) 

 

 

 
34



5.2.2.6 Property Restriction – Cardinality Constraints  

In general, it is assumed that any instance of a class may have an arbitrary number of values 

for a particular property. The existential quantification of the last section states that a 

property is required. It is similar to a qualified number restriction with minimum cardinality 

of one. Other cardinality constraints can restrain the maximum number of values for a 

property. Cardinality constraints are analogous to the unqualified number of restrictions of 

predicate calculus.  

5.2.2.6.1 Maximum Cardinality 

The cardinality constraint owl:maxCardinality is a built-in OWL 
property that links a restriction class to a data value belonging to the 
value space of the XML Schema datatype nonNegativeInteger. A 
restriction containing an owl:maxCardinality constraint describes a 
class of all individuals that have at most N semantically distinct 
values (individuals or data values) for the property concerned, 
where N is the value of the cardinality constraint 

owl:maxCardinality 

[32]. 

))(y)}R(x,|{y()y)}R(x,|{y)(( xANxNxAx →≤∀∧≤→∀  
UML Lite is not able to specify a sufficient condition on a class 
feature in a class diagram. A equivalentClass 

Restriction on R 
maxCardinality N Context o:OclAny inv:  

o.R->size() <= N implies o.oclIsKindOf(A)  
Context x:A inv: x.R->size() <= N 

)y)}R(x,|{y)(( NxAx ≤→∀  

A B
R 0..N

 
Fig. 12 

 
UML Lite specifies cardinality constraints with multiplicity 
information on the association ends. To emulate an OWL maximum 
cardinality constraint, the navigable end of the association is given a 
value for the upper multiplicity attribute that is equal to the 
maxCardinality value of the OWL statement. Fig. 12 shows an 
example of an association from class A to class B with maximum 
cardinality of N. 

A subClassOf 
Restriction on R 

maxCardinality N 

Context x:A inv: x.R->size() <= N 

 
35



5.2.2.6.2 Minimum Cardinality 

The cardinality constraint owl:minCardinality is a built-in OWL 
property that links a restriction class to a data value belonging to the 
value space of the XML Schema datatype nonNegativeInteger. A 
restriction containing an owl:minCardinality constraint describes a 
class of all individuals that have at least N semantically distinct 
values (individuals or data values) for the property concerned, 
where N is the value of the cardinality constraint 

owl:minCardinality 

[32]. 

))(y)}R(x,|{y()y)}R(x,|{y)(( xANxNxAx →≥∀∧≥→∀  
UML Lite is not able to specify a sufficient condition on a class 
feature in a class diagram. 

A equivalentClass 
Restriction on R 

minCardinality N Context o:OclAny inv:  
o.R->size() >= N implies o.oclIsKindOf(A)  
Context x:A inv: x.R->size() >= N 

)y)}R(x,|{y)(( NxAx ≥→∀  
Fig. 13 shows an 
example of an 
association from class A 
to class B with minimum 
cardinality of N. 

A B
R N..*

 
Fig. 13 

A subClassOf 
Restriction on R 

minCardinality N 

Context x:A inv: x.R->size() >= N 

 
36



5.2.2.6.3 Exact Cardinality 

The cardinality constraint owl:cardinality is a built-in OWL property 
that links a restriction class to a data value belonging to the range of 
the XML Schema datatype nonNegativeInteger. A restriction 
containing an owl:cardinality constraint describes a class of all 
individuals that have exactly N semantically distinct values 
(individuals or data values) for the property concerned, where N is the 
value of the cardinality constraint 

owl:cardinality 

[32]. 

))(y)}R(x,|{y()y)}R(x,|{y)(( xANxNxAx →=∀∧=→∀  
UML Lite is not able to specify a sufficient condition on a class feature 
in a class diagram. 

A equivalentClass 
Restriction on R 

cardinality N 
Context o:OclAny inv:  
o.R->size() = N implies o.oclIsKindOf(A)  
Context x:A inv: x.R->size() = N 

)y)}R(x,|{y)(( NxAx =→∀  
Fig. 14 shows an 
example of an 
association from class A 
to class B with 
cardinality of N. 

A B
R N..N

5.3 OWL Properties and UML Associations and Attributes 

An OWL property is a binary relation that asserts general facts about classes of objects and 

specific facts about an individual. Two types of properties are distinguished (in OWL DL): 

datatype properties and object properties. The former relate individuals and data values. 

Object properties link instances of two classes. UML associations are n-ary relations between 

classifiers. Their instances are called links. Links relate single objects in the object model. A 

UML attribute or property construct is a structural feature of an object that is contained in 

every instance of a class and takes an individual value in each instance. The individual value 

of an attribute is related to the object in a slot. In the UML, a class is usually related to 

 
Fig. 14 

A subClassOf 
Restriction on R 

cardinality N 

Context x:A inv: x.R->size() = N 

 
37



datatypes via attributes. However, both UML associations and attributes can relate a class 

with another class or a datatype. The difference between the two primitives is on the one 

hand that only associations can relate multiple classifiers, and on the other hand, that 

attributes (UML properties) are not first-class modeling primitives. The distinction between 

attributes and associations in UML is based on the implementation-oriented foundation of the 

language. For the representation-oriented viewpoint, the UML Property construct is 

redundant. UML attributes are contingent on the classifier they describe. They cannot form 

taxonomies and have no decontextualized interpretation (see Section 4.3). UML attributes 

can therefore not represent OWL properties. The OWL Property construct therefore has to be 

mapped to a unidirectional binary association in the UML. OWL properties are defined and 

characterized by property axioms. These axioms are the property name (atomic property) and 

type (datatype or object), the domain and range, the property inclusion (taxonomy), the 

property equivalence, the inverse, global cardinality features, and logical property 

characteristics. 

5.3.1 Atomic Properties 

R ⊆ OD x OD 

This defines a 
property R with the 
restriction that its 
values should be 
individuals. 

<owl:ObjectProperty 
rdf:ID="R"/> 

R ⊆ OD x DD 

Datatype and object properties are 
mapped to binary, unidirectional UML 
associations. This association has one 
navigable association-end, which is an 
attribute of the class that owns it. 
However, without a universal class in 
UML Lite an unspecified property cannot 
be represented. As described in Section 

This defines a 
property R with the 
restriction that its 
values should be 
data values. 

4.3, an unspecified association, because 
of the CWA, by default applies to no 
object, i.e. the domain and range is the 
bottom concept. 

<owl:DatatypeProperty 
rdf:ID="R"/> 

 
38



5.3.2 Domain & Range 

For a property one can define (multiple) rdfs:domain axioms [32]. 
Syntactically, rdfs:domain is a built-in property that links a property to a 
class description, which could be any of the class descriptions described in 

rdfs:domain 5.2 The domain of a property specifies the set of objects that can be related 
to other values with the property. It asserts that the subjects of such property 
statements must belong to the class extension of the indicated class 
description. 

))(),(( xCyxRyx →∃∀  
UML Lite has no universal classifier and because of the CWA, cannot define 
an association domain separately. 

R domain C 
UML Full uses OclAny to relate to 
all objects in the object space. 
Therefore, the variable x is 
interpreted as an arbitrary object.  

Context x:OclAny inv:  
x.R->notEmpty() implies 
x.oclIsKindOf(C) 

For a property one can define (multiple) rdfs:range axioms [32]. 
Syntactically, rdfs:range is a built-in property that links a property to either a 
data range or a class description, which could be any of the class descriptions 
described in rdfs:range 5.2 The range of a property specifies the set of objects or data 
values that can be related to from other objects with the property. It asserts 
that the values of this property must belong to the class extension of the class 
description or to data values in the specified data range. 

))(),((, yCyxRyx →∀  
UML Lite has no universal classifier and because of the CWA, cannot define 
an association range separately. 

R range C UML Full uses OclAny to 
relate to all objects in the 
object space. Therefore, the 
variable x is interpreted as an 
arbitrary object. 

Context x,y:OclAny inv: 
x.R->notEmpty() implies  
R->forAll(y|y.oclIsKindOf(C)) 

 
39



5.3.3 Property Inclusion and Property Taxonomies 

A property can be defined to be a specialization (subproperty) of an 
existing property. The subproperty of a property has an extension 
that is the subset of the extension of the subsetted property. The 
contexts and type of the properties or associations must be 
compatible. 

rdfs:subPropertyOf 

SR ⊆  
)),(),((, yxSyxRyx →∀  

UML Lite offers the generalization 
relation to express association 
taxonomies. However, UML Lite has 
no universal classifier and can 
therefore not define an association or 
sub-association with unspecified 
domain and range values. If these are 
given elsewhere, a sub-association 
can be defined as in 

E

R

S

5.3.4 Property Equivalence 

 

 
Fig. 15 Fig. 15 with "E" 

being an arbitrary class. 

R subPropertyOf S 

OCL is not equipped to support constraints in the context of 
associations and thus there are no sub-association definitions.  

The owl:equivalentProperty construct can be used to state that 
two properties have the same property extension owl:equivalentProperty [32] - that is 
both property extensions contain the same set of pairs or tuples. 

SR =  
)),(),(),(),((, yxRyxSyxSyxRyx →∧→∀  

UML Lite class diagram has no feature to express association 
equivalence. R equivalentProperty S 

OCL is not equipped to support constraints in the context of 
associations and thus no association equivalence definitions.  

 
40



5.3.5 Inverse Property Relation 

The owl:inverseOf construct can be used to define an inverse relation 
between object properties [32]. Properties are unidirectional, that is, their 
direction goes from domain to range. To state that a certain property is an 
inverse of another property the inverseOf relation can be used.  

owl:inverseOf 

)),(),(),(),((,,, abRbaSxySyxRbayx →∧→∀  

hasPethasOwner

Person 

Animal

Person 

Animal

Association ends with 
property names

hasPet

hasOwner
Person 

Animal

Association ends with 
role names

Pet

Owner

PetOwnership

 
Fig. 16 

 R inverseOf S 
UML Lite has no feature to express that two unidirectional associations 
are inverses of each other. UML Lite instead uses bidirectional 
associations to combine two inverse, binary and unidirectional 
associations. The association then has two navigable ends, where one is 
the opposite of the other Fig. 16. To be able to distinguish the semantics 
of the relation it is mandatory to define role names for the association 
ends or to add a direction marker on the association name. Fig. 16 shows 
how two (binary, unidirectional,) inverse OWL properties are mapped to 
one bidirectional UML association by applying the property names to the 
association ends.  
OCL can navigate along associations to manage cycles in a model. Two 
inverse associations form a cycle that can be characterized by the 
following constraint: 
Context x,a:OclAny inv:  
x.R->forAll(y| y.S = x) and  
a.S->forAll(b| b.R = a) 

 
41



5.3.6 Functional Property  

The owl:FunctionalProperty construct can be used to define a 
global cardinality constraint on a property. A functional 
property P(x,y) is a property that can have only one (unique) 
value y for each instance x, i.e., there cannot be two distinct 
values y1 and y2 such that the pairs (x,y1) and (x,y2) are both 
instances of this property 

owl:FunctionalProperty 

[32]. 

)),(),((,, abbxPaxPbax =→∧∀  
In UML Lite class diagrams, it is 
not possible to declare an 
association as being a functional 
relation. As the functional property 
construct is just a short form for a 
maximum cardinality constraint, it 
is possible to define an association 
as functional by specifying the 
upper multiplicity of the navigable 
end as being one (cf. 

E

P

0..1

 
Fig. 17 

Fig. 17). 

FunctionalProperty P 

In UML Full an OCL constraint can be used to define an 
association functional for all objects: 
Context x: OclAny inv: x.P->size() <= 1 

 
42



5.3.7 Inverse Functional Property  

The owl:InverseFunctionalProperty construct can be 
used to define a global cardinality constraint on an 
object property. If a property is declared to be inverse-
functional, then the object of a property statement 
uniquely determines the subject (some individual) 

owl:InverseFunctionalProperty 

[32]. 

)),(),((,, baxbPxaPbax =→∧∀  

P

0..1

E
In a UML Lite class diagram it 
is possible to define an 
association as inverse 
functional by specifying the 
upper multiplicity of the non-
navigable end or the opposite 
end as being one (cf. 

5.3.8 Transitive Property  

 
Fig. 18 Fig. 18). 

InverseFunctionalProperty P 

In UML Full an OCL constraint can be used to define an 
association functional for all objects: 
Context x,a,b: OclAny inv:  
a.P->includes(x) and b.P->includes(x) 
implies a=b 

The owl:TransitiveProperty construct can be used to define 
the global logical characteristics of an object property. If a 
transitive property P has a pair (x,y) as an instance of P and a 
pair (y,z) is also an instance of P, then we can infer the pair 
(x,z) is also an instance of P 

owl:TransitiveProperty 

[32]. 

)),(),(),((,, zxPzyPyxPzyx →∧∀  
In UML Lite, it is not possible to define that an association 
has transitive characteristics.  

TransitiveProperty P 
In UML Full an OCL constraint can be used to define an 
association transitive for all objects: 
Context x: OclAny inv:  
x.P->includesAll(x.P.P)  

 
43



5.3.9 Symmetric Property  

The owl:SymmetricProperty construct can be used to define 
the global logical characteristics of an object property. A 
symmetric property is a property for which it holds that if the 
pair (x,y) is an instance of P, then the pair (y,x) is also an 
instance of P 

owl:SymmetricProperty 

[32]. 

)),(),((, xyPyxPyx →∀  
In UML Lite, it is not possible to define that an association 
has symmetric characteristics.  

SymmetricProperty P 
In UML Full an OCL constraint can be used to define an 
association symmetric for all objects: 
Context x: OclAny inv: x.P.P->includes(x)  

5.4 UML specific constructs 

UML supports the specification of behavioral features. Some UML features that are often 

regarded as structural are in fact "behavioral-driven" such as abstract classes, interfaces, 

active classes, composite structure, ports, connectors and collaborations. These constructs 

either specify which messages an object understands or emits, or how objects are related by 

message communication. As explained in the introduction, behavioral features are not of 

interest for this comparison as OWL is a structure representation language. 

Furthermore, UML includes several design or implementation related constructs that have 

no representational meaning in terms of the modeled domain. These constructs are templates, 

dependencies, derived elements, static attributes, ordered features, and association ends 

(UML Property). These constructs are based on the construction-oriented perspective of the 

UML, which means they are used in the design and implementation phases of software 

engineering and have a well-defined denotation in the models used in those development 

phases. However, the subject they describe is the software product that tries to represent the 

 
44



system described in the problem (or business) domain model. Therefore, they provide no 

additional use for knowledge representation.  

However, UML does possess some representation-oriented constructs that are not directly 

available in OWL. These shorthand constructs are n-ary associations, qualified associations, 

bidirectional associations, and association classes. The following subsections present these 

constructs and their OWL counterparts.  

Two UML constructs – aggregation and composition – are not translatable to OWL, as it 

does not feature predefined mereological relationship constructs in the knowledge 

representation ontology. However, this does not preclude a general ontology like [39], [40] 

from providing the required constructs. The regular association construct in UML is slightly 

different from the OWL property construct as the latter can be unspecified, meaning that the 

domain or range or both are implicitly defined to be the universal concept. As all UML 

relationships are based on the association construct, we include the standard definition for the 

matter of completeness. 

5.4.1 UML Associations 

A regular UML association is 
equivalent to an OWL object 
property that has a specified 
domain and range. 

A B
R R domain A 

range B 
 

 
45



5.4.2 UML N-ary Associations 

A common solution to representing n-ary 
relations in OWL is reification, i.e., the 
creation of an individual, which stands for an 
instance of the relation and relates the things 
that are involved in that instance of the relation. 
However, the exact design of the relation class 
and the other related classes depends on the 
association characteristics. For further reading, 
see 

A BR

C
 

[34]. 

5.4.3 UML Qualified Associations 

A qualifier declares a partition of the set of 
associated instances with respect to an instance 
at the qualified end 

A B
R

x
[17]. As the qualifier is a 

property of the qualified class, a qualified 
association is a kind of ternary relation and can 
be treated like n-ary associations (see 4.4.2). 

5.4.4 UML Association Classes 

An association may be refined to have its own 
set of features; that is, features that do not 
belong to any of the connected classifiers but 
rather to the association itself. Such an 
association is called an association class 

A B
R

R

[17]. 
An association class is treated in a similar way 
to an n-ary association as a class reifying the 
relation in OWL. 

 
46



5.4.5 UML Bidirectional Associations  

B 

A

hasB

hasA

A bidirectional association can be translated 
into a pair of OWL properties, with one being 
the inverse of the other (cf. 4.3.5). 

 

5.4.6 UML Aggregation and Composition Relationships 

 

A B
R

A B
R

The UML supports the mereological 
relationships of aggregation and composition. 
Both constructs have no counterpart in OWL.  

5.5 Ontology & Model 

Both languages use a packaging mechanism to gather all ontology or model information in 

one place. UML uses the Model construct, which is a subclass of the Package primitive to 

gather all model elements of one knowledge representation in one module. OWL uses the 

Ontology construct for the same purpose. However, neither language separates terminological 

knowledge from assertional knowledge (see Section 3). A model or an ontology can thus be 

interpreted as the set of all classes, properties, data types and individuals of a universe of 

discourse.  

Informally: 

Ontology = Class ∪ Property ∪ Datatype ∪ Object 

 

 
47



IE is the interpretation function, Δ is the semantic domain, OD is the object domain, DD is 

the datatype domain, and Model is a UML model and Ontology is an OWL ontology: 

 

IE(Model) = IE(Ontology) =  DDODDDODODODDDOD ∪∪∪∪∪=Δ∪∪ ××Δ×ΔΔ 222222

5.6 Data types 

In both languages data types are distinguished from object types. While the object types 

represent the semantic domain of objects, data types represent the orthogonal semantic 

domain of data values (cf. Section 5.2). Data values have a kind of type-referential semantics 

as they have no identity for themselves. OWL makes use of the RDF datatyping scheme [36] 

and uses XML Schema data types (XSD) [35]. Data values are instances of the RDF Schema 

class rdfs:Literal. Literals can be either plain (no datatype) or typed. Datatypes are instances 

of the class rdfs:Datatype [32]. The simple built-in XML Schema data types that are 

recommended by the RDF Semantics document [37] for use in OWL are: the primitive 

datatype String, the primitive datatype Boolean, the primitive numerical datatypes  Decimal, 

Float, Double, the primitive time-related datatypes DateTime, Time, Date, and the primitive 

datatypes HexBinary, Base64Binary, and AnyURI. 

The UML supports the predefined primitive data types String, Integer, Boolean, and 

UnlimitedNatural that are defined in the PrimitiveTypes package of the AuxiliaryConstructs 

package [17]. The OCL additionally provides the type Real [22]. It is also open to any kind of 

user-defined data types. 

The data types of UML correspond to equally named OWL data types. In other words, 

UML String is equal to XSD String, UML Boolean is equal to XSD Boolean and UML 

Integer is equal to XSD Integer. UnlimitedNatural contains the set of naturals and the infinity 

 
48



value ("*"). It is used as the type for the upper bounds of multiplicities in the metamodel. 

OWL does not need it because it is equal to omitting a value for owl:maxCardinality. 

5.7 Version Information & Other Non-Ontology Constructs 

OWL provides additional constructs to handle ontology merging and evolution. Version 

information can be included via the owl:versionInfo construct.  Further constructs concerning 

ontology evolution like owl:deprecatedClass, owl:deprecatedProperty, 

owl:backwardCompatibleWith, owl:incompatibleWith, and owl:priorVersion are similar to 

special UML dependency relations and stereotypes which are widely used for UML model 

evolution. The UML uses the package merge mechanism and construct [17] to describe 

model evolution, which is similar to the import construct in OWL. 

5.8 OWL Full Constructs & Axioms 

Until now we have only considered OWL DL. OWL Full extends OWL DL by providing 

unconstrained use of RDF constructs. The consequence is that the construct owl:Class is 

equivalent to rdfs:Class and OWL Full allows classes to be treated as individuals because 

rdfs:Class is a subclass of rdfs:Resource. As rdfs:Literal is an instance of rdfs:Class this 

implies that data types and object types are not distinguished. The universe of individuals 

therefore consists of all resources (owl:Thing is equivalent to rdfs:Resource), which also 

means that object properties and datatype properties are not disjoint [32]. It is therefore legal 

in OWL Full to define a class "Dog" that is at the same time an individual as illustrated in 

Fig. 19 showing two instances of "Dog" namely "Fido" and "Lassie" and "Species" that is a 

classifier of "Dog".  

 
49



Fido

Dog

Lassie

Species

 

Fig. 19 

In UML, this scenario can only be captured by using the power type concept. In this case, 

a further class would be needed (e.g. "Animal") that would be partitioned by the metaclass 

"Species" and the superclass of "Dog". A direct specification as in OWL Full is not possible 

in UML Full.  

OWL Full allows an ontology to augment the meaning of the pre-defined (RDF or OWL) 

vocabulary. The following OWL fragment show an example ontology that extends the OWL 

concept owl:class by defining a subclass SingletonClass. The problem is that the semantics of 

this class is only implicit, while the interpretation of all other language constructs is explicitly 

defined in the language semantics [38].  

<owl:Class rdf:ID=”SingletonClass”> 

 <owl:subClassOf rdf:resource=”#Class”/> 

</owl:Class> 

The UML supports language-modeling capabilities by its profile extension mechanism. A 

profile defines a set of stereotypes that are subclasses of specified classes in the UML 

metamodel. This means that the standard UML Full, without the profile feature, has no 

support for language modeling, just like OWL DL.  

 
50



6 Conclusion 

In this paper, we have presented a detailed and comprehensive comparison of the UML and 

OWL languages based on a systematic analysis of their respective features and their 

underlying assumptions. The results of this comparison can be interpreted in two ways 

depending on what one wishes to emphasize. They can either be viewed as highlighting the 

great disparity between the languages or the great similarity between them. 

Since both languages were devised for the purpose of knowledge representation and have 

common roots in object-orientation, their abstract syntaxes show a remarkable degree of 

similarity. On the other hand, each language has a slightly different purpose that manifests 

itself in several ways.  Firstly, it directly affects the set of language constructs offered by each 

language. OWL restricts itself to a set of inference-supporting constructs together with a few 

constructs that handle Web-related issues. The UML, in contrast, is not concerned with 

automatic deducibility of information and offers an unrestricted constraint language. It 

additionally focuses on describing implementation related issues that are irrelevant for 

knowledge representation in the abstract. Secondly, it influences the set of assumptions, – 

many of them implicit – used to interpret the elements of the language. The different 

assumptions used with OWL and UML often lead to different interpretations of common 

language constructs. In other words,, while they share a large set of apparently common 

language constructs, these constructs possess slightly different meanings with slightly 

different mappings in the semantic domain. As a result, it is impossible to translate OWL 

ontologies into UML models and vice versa without the loss or corruption of information.  

Since they have common roots and share a large set of common concepts there is a lot of 

scope for aligning and possibly merging them. We have explained how the different 

interpretations of common concepts are based on implicit underlying assumptions, which 

could be made explicit and modified. Also, missing concepts can easily be added, so that 

 
51



models and ontologies cover the same semantic domains. Therefore, one could adapt one or 

both of the languages to include the necessary missing concepts and require modelers to 

specify the perspective (i.e. interpretation assumptions) they wish to use. With the use of 

perspective-dependent transformation rules (that have to be defined), one could then translate 

an OWL ontology into a UML model. There is no fundamental reason why OWL’s features 

for explicit information representation could not be used under a closed-world assumption or 

why the features of UML could not be used under an open-world assumption. All that would 

be needed is an additional set of features to specify exactly what assumptions and closure 

conditions hold at a particular point in time. In other words, all implicit (default) information 

should be made explicit. In fact, even UML Full already has most of the capabilities needed 

due to the flexibility of OCL. For OWL, this can be achieved for example as suggested in 

[33], by providing a special “ontology-wide” property that allows the world assumption to be 

defined. 

As noted above, the (explicit) abstract syntaxes of both languages already have a large 

overlap in terms of common constructs. However, there are a few concepts in one that are 

missing in the other due to the different requirements in each domain. The missing features in 

OWL (cf. Section 5.4) can be compensated for by defining specific higher ontologies (e.g. 

[40], [39]), but it is not possible to emulate the missing OWL constructs in the UML using 

additional libraries as these are more fundamental concepts. The features of OWL which are 

either not supported or only partly supported in UML are object enumeration, role fillers, 

atomic properties, property inclusion, property equivalence, synonym and antonym object 

specification, classes as instances and the universal class "Thing". The role of the latter, 

however, can be assumed by "OclAny" in our comparison as explained in Section 5.2. 

Although this is a legal choice based on extensional equivalence as both concepts represent 

 
52



the set of all objects in the UoD, it is not correct based on intentional equality since both 

concepts have different purposes and intensional definitions.  

In many ways, the situation facing the “information” representation communities today is 

similar to that which faced the different object-oriented modeling communities a decade and 

a half ago when the UML was first defined. At that time users were faced with a large array 

of different languages possessing trivial abstract syntax and semantic differences that greatly 

increased learning overheads, fragmented the OOAD tool market, and raised interoperability 

barriers while providing little if any benefit. Much of the initial enthusiasm around the UML 

came from its removal of these arbitrary idiosyncrasies. A somewhat similar situation exists 

today with the division between the "ontology" and "modeling" worlds. There are a lot of 

arbitrary syntactic and semantic differences which create unnecessary learning and 

interoperability barriers between the two communities. Given the large shared common core 

of UML and OWL there is much to be gained from unifying the two, as the UML did with 

OOAD languages. Other modeling paradigms which could also be brought into such a 

unification effort include Entity-Relationship modeling and the Common Warehouse Model. 

Discussing the pros and cons of unification was not a goal of this comparison, however. 

Rather, the goal was to clarify at a technical level where the two languages overlap and where 

they differ. We hope this comparison will provide a useful foundation for ensuing 

discussions. 

 

 

REFERENCES 

[1] M.K. Smith, C. Welty, and D.L. McGuinness, eds., “OWL Web Ontology Language Guide”, 

World Wide Web Consortium (W3C) recommendation, Feb. 2004, 

 
53



http://www.w3.org/TR/2004/ 

REC-owl-guide-20040210/.  

[2] L. Hart et al., “OWL Full and UML 2.0 Compared”, OMG TFC Report, 2004. 

[3] A. Borgida and R.J. Brachman, "Conceptual Modelling with Description Logics," The 

Description Logic Handbook, F. Baader et al., eds., Cambridge University Press, 2002, pp 

349-372. 

[4] C. Atkinson and T. Kühne, "Rearchitecting the UML infrastructure," ACM Transactions on 

Modeling and Computer Simulation, vol. 12, 2002, pp. 290-321. 

[5] J. Álvarez, A. Evans and P. Sammut, "Mapping between Levels in the Metamodel 

Architecture," Proc. 4th Int'l Conf. Unified Modeling Language (UML2001), M. Gogolla, C. 

Kobryn, eds., Springer-Verlag, 2001, pp. 34-46.  

[6] C. Atkinson and T. Kühne, "Model-Driven Development: A Metamodeling Foundation," 

IEEE Software, vol. 20, 2003, pp. 36-41. 

[7] Colin Atkinson and Thomas Kühne, "The Essence of Multilevel Metamodeling," Proc. 4th 

Int'l Conf. Unified Modeling Language (UML2001), M. Gogolla, C. Kobryn, eds., Springer-

Verlag, 2001, pp. 19-33.  

[8] C. Atkinson and T. Kühne, "Meta-Level Independent Modeling," Int'l Workshop on Model 

Eng. at the 14th European Conf. on Object-Oriented Programming (ECOOP 2000), 2000. 

[9] C. Atkinson, "Supporting and Applying the UML Conceptual Framework," Proc. 1st Int'l 

Conf. Unified Modeling Language 1998 (UML'98) - Beyond the Notation. First Int'l 

Workshop, J. Bézivin and P.-A. Muller, eds., 1998, pp. 1-11. 

[10] K. Kiko, "Towards a Unified Knowledge Representation Framework," master’s thesis, Dept. 

Software Technology, Univ. of Mannheim, Germany, 2005. 

[11] K. Baclawski et al., "Extending the Unified Modeling Language for ontology development," 

Software and System Modeling, vol. 1, 2002, pp. 142-156. 

 
54



[12] D. Djuric, "MDA-based Ontology Infrastructure," Computer Science Information Systems 

(ComSIS), vol. 1, no. 1, 2004. 

[13] S. Brockmans, R. Volz, A. Eberhart, and P. Löffler, "Visual Modeling of OWL DL 

Ontologies Using UML," Int'l Semantic Web Conference, 2004, pp. 198-213. 

[14] S. Cranefield and M. Purvis, "UML as an Ontology Modelling Language," Proc. 16th Int'l 

Joint Conf. Artificial Intelligence (IJCAI-99) Workshop on Intelligent Information Integration, 

1999. 

[15] S. Cranefield, "UML and the Semantic Web," Proc. 1st Int'l Semantic Web Working 

Symposium (SWWS'01), July 2001, pages 113-130. 

[16] Object Management Group, DSTC, IBM, Sandpiper Software Inc., “Ontology Definition 

Metamodel Second Revised Submission,” OMG Specification, May 2005. 

[17] Object Management Group, "UML 2.0 Superstructure Revised Final Adopted Specification," 

OMG Specification, Oct. 2004. 

[18] Object Management Group, "Meta Object Facility 2.0 Core Final Adopted Specification," 

OMG Specification, Oct. 2003. 

[19] Object Management Group, "Common Warehouse Metamodel Specification," OMG 

Specification, Feb. 2001. 

[20] Object Management Group, "UML 2.0 Infrastructure Final Adopted Specification," OMG 

Specification, Dec. 2003. 

[21] Object Management Group, "OCL 2.0 Adopted Specification," OMG Specification, Oct. 

2003. 

[22] Object Management Group, "OCL 2.0 Specification," OMG Specification, June 2005. 

[23] A. Cali et al., "A Formal Framework for Reasoning on UML Class Diagrams," Proc. 13th Int'l 

Symposium Foundations of Intelligent Systems (ISMIS 2002), M.-S. Hacid et al., eds., LNCS 

2366, Springer-Verlag, 2002, pp. 503-512. 

 
55



[24] D. Harel and B. Rumpe, “Modeling Languages: Syntax, Semantics and All That Stuff - Part I: 

The Basic Stuff”, tech. report MCS00-16, Faculty of Mathematics and Computer Science, The 

Weizmann Inst. of Science, Israel, 2000. 

[25] J.Z. Pan and I. Horrocks, "Metamodeling Architectures of Web Ontology Languages," Proc. 

1st Int'l Semantic Web Working Symposium (SWWS 2001), July 2001. 

[26] J.Z. Pan and I. Horrocks, "RDFS(FA) and RDF MT: Two Semantics for RDFS," Proc. 2nd 

International Semantic Web Conference (ISWC2003). D. Fensel and K. Sycara and J. 

Mylopoulos, eds., 2003, pp. 30-46. 

[27] J.F. Sowa, “Knowledge Representation - Logical, Philosophical, and Computational 

Foundations”, Pacific Grove, Brooks/Cole, 2000. 

[28] K. Orsvaern, "The REVISE Project: A Purpose Driven Method for Language Comparison," 

Proc. 8th European Knowledge Acquisition Workshop (EKAW'96), N. Shadbolt, K. O'Hara 

and A.T. Schreiber, eds., LNAI 1076, Springer-Verlag, 1996, pp. 66-81.  

[29] E. Söderström et al., "Towards a Framework for Comparing Process Modelling Languages," 

Proc. 14th Int'l Conf. Advanced Information Systems Engineering, (CAiSE2002), A. Banks 

Pidduck et al., eds., LNCS 2348, Springer-Verlag, 2002, pp. 600-611. 

[30] P. van Emde Boas et al., eds., "Formalizing UML: Mission Impossible?," Proc. OOPSLA'98 

Workshop on Formalizing UML, 1998. 

[31] T.A. Halpin and J.L. Han Oei, “A Framework for Comparing Conceptual Modelling 

Languages,” tech. report 92-29, Dept. Information Systems, Univ. of Nijmegen, The 

Netherlands, 1992. 

[32] M. Dean and G. Schreiber, eds., “OWL Web Ontology Language Reference,” World Wide 

Web Consortium (W3C) recommendation, Feb. 2004; http://www.w3.org/TR/2004/ 

REC-owl-ref-20040210/. 

[33] J. Heflin, ed., “OWL Web Ontology Language Use Cases and Requirements,” World Wide 

 
56



Web Consortium (W3C) recommendation, Feb. 2004; http://www.w3.org/TR/2004/ 

RECwebont-req-20040210/. 

[34] N. Noy and A. Rector, “Defining N-ary Relations on the Semantic Web: Use With 

Individuals,” World Wide Web Consortium (W3C) working draft, July 2004; 

http://www.w3.org/ 

TR/swbp-n-aryRelations/. 

[35] P.V. Biron and A. Malhotra, eds., “XML Schema Part 2: Datatypes,” World Wide Web 

Consortium (W3C) recommendation, May 2001. 

[36] G. Klyne and J.J. Carroll, eds., “Resource Description Framework (RDF): Concepts and 

Abstract Syntax,” World Wide Web Consortium (W3C) recommendation, Feb. 2004; 

http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/. 

[37] P. Hayes, ed., “RDF Semantics,” World Wide Web Consortium (W3C) recommendation, Feb. 

2004; http://www.w3.org/TR/2004/REC-rdf-mt-20040210/. 

[38] P.F. Patel-Schneider, P. Hayes and I. Horrocks, eds., “OWL Web Ontology Language 

Semantics and Abstract Syntax,” World Wide Web Consortium (W3C) recommendation, Feb. 

2004; http://www.w3.org/TR/2004/REC-owl-semantics-20040210/. 

[39] K. Falkovych, M. Sabou and H. Stuckenschmidt, "UML for the Semantic Web: 

Transformation-Based Approaches," B. Omelayenko and M.C.A. Klein, eds., Knowledge 

Transformation for the Semantic Web, vol. 95, IOS Press, 2003, pp. 92-106. 

[40] W.N. Borst, “Construction of Engineering Ontologies,” tech. report, Center for Telematica 

and Information Technology, Univ. of Tweenty, Enschede, The Netherlands. 

[41] Raymond Reiter, "A logic for default reasoning", Artificial Intelligence, Apr. 1980, vol. 13 

no.1-2 pp. 81-132. 

[42] M.K. Smith, ed., “Web Ontology Issue Status,” World Wide Web Consortium (W3C) working 

draft, Nov. 2003; http://www.w3.org/2001/sw/WebOnt/webont-issues.html. 

 
57



[43] P.P. Chen, " The Entity-Relationship Model - Toward a Unified View of Data," ACM Trans. 

Database Systems, Mar. 1976, vol. 1, no. 1, pp. 9-36. 

[44] K. Kiko and C. Atkinson, " Integrating Enterprise Information Representation 

Languages," Proc. of Int'l EDOC Workshop on Vocabularies, Ontologies and Rules for the 

Enterprise, G. Guizzardi and G. Wagner, eds.,  CTIT, Sep. 2005, pp. 41-50. 

[45] D. Brickley and R. V. Guha eds., “RDF Vocabulary Description Language 1.0: RDF 

Schema,” World Wide Web Consortium (W3C) recommendation, 10 February 2004; 

http://www.w3.org/TR/2004/REC-rdf-schema-20040210/. 

[46] A. Tarski, “Logic, Semantics, Mathematics: Papers from 1923 to 1938,” Oxford University 

Press, 1956. 

[47] Object Management Group, "XML Metadata Interchange, v.2.1," OMG Specification, Sep. 

2005. 

[48] D. Beckett, ed., “RDF/XML Syntax Specification (Revised),” World Wide Web 

Consortium (W3C) recommendation, 10 February 2004; http://www.w3.org/TR/2004/REC-

rdf-syntax-grammar-20040210/. 

 

 
58


	Abstract 
	1 Introduction 
	2 Comparison Objects and Method 
	3 Comparison of the language representation and purpose 
	3.1 The Concrete Syntax 
	3.2 The Semantic Domain 
	4 Comparison of Interpretation Assumptions  
	4.1 Open-World versus Closed-World Interpretation Assumptions 
	4.2 Unique Name Assumption & Synonyms 
	4.3 Global Scope and First-Class Status Properties 
	4.4 Sufficient Conditions & Defined vs. Primitive Concepts 
	4.5 Metaclasses  

	5 Comparison of Language Constructs 
	5.1 Individual & Object 
	5.2 Classes 
	5.2.1.1 Atomic Classes
	5.2.1.2 Class Inclusion and Class Taxonomies
	5.2.1.3 Class Equivalence 
	5.2.1.4 Class Disjointness
	5.2.2.1 Enumeration 
	5.2.2.2 Class Conjunction 
	5.2.2.3 Class Disjunction 
	5.2.2.4 Class Negation 
	5.2.2.5 Property Restriction – Value Constraints  
	5.2.2.6  Property Restriction – Cardinality Constraints  


	5.3 OWL Properties and UML Associations and Attributes 
	5.4 UML specific constructs 
	5.5 Ontology & Model 
	5.6 Data types 
	5.7 Version Information & Other Non-Ontology Constructs 
	5.8 OWL Full Constructs & Axioms 

	6 Conclusion 


