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The algebra of all continuous real-valued functions

on aspace X endowed with tbc continuous con~eggence

structure i8 denoted by c Cx)c
Dcl"t'". l' co y'ct (.1,'Jh: ~Cc J.Ous 1lP,_, U,-, \Ileen

aspace X and its associated convergence algebra CcCX)

are investigated. After appropriate definitions, the

following two theorems are proved: (1). A c-embedded

.convergence space X is Lindelöf if and only if C (X)c

is first countable (this has a generalization to

upper I\'-compact spaces). (2). A c-embedded convergence

spa.ce X has weight 7l if and only if C (X)c has
• ":)f',VJelght 'I,. With the help of (2), it is shown that

a completely regular topological space X is separable

and metrizable if and only if C (X)c is second countable.

A type of Stone-Weierstra~s theorem ~roved by E. Binz

is extended to deal with questions of density. This

extension is utilized to provi~e another characterization

of separable metrizable spaces, and to show that the

algebraic tensor product of C(X) and C(Y) may be

regarded as a D~nse subalgebra of C CX x Y)c
An inductive limit (in the categorj of convergence

spaces) of certain locally convex topolagical vector

spaces is constructed. This inductive limit proves to

be a useful approximation of C (X)c However, for

a wide class of topological spaces, it is shown that

Cc(X) can not even be realized as an inductive limit

of topolagical vector spaces.

-J.l-
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We will 60nsider relationsnips between aspace

X and the corresponding algebra CCX), consisting of

all continuous real-valued functions on

well-known that the algebraic properties

not, in general, suffi~ient to determine

x It is
r C(X) areOL

the space X

Thus, in order to obtairi information meaningful for a

wide class of spaces, we must consider more than the

strictly algebraic properties of C(X) • It turns out

that the continuous convergence structu~e on C(X)

(see 0.2), which we denote by

weIl suited for our work.

C (X) , is particularlyc

Chapter 0 provides a brief sun~ary of the concepts

needed throughout the paper. We point out in 0.7 that

the c-embedded convergence spaces form a natural class

of spaces for investigating thß interplay between X
and C (X) •c Furthermore, topological ~paces whose

tppology is determined by C(X) , namely completely

regular spaces~-(.see0.5), are c..ernbedde0-.

In chapter 1, after generalizing_certain topological

concepts, we prove that a c--embedded convergence space X

is upper Ä-compact if and only if C (X)c is X-countable.

'.
With the help of theorem 2, a characterization of

c-embedded convergence spaces having weight ~ , we show that

a completely regular topological space X i8 separable.
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and metyizab10 if and only • .t"

11 n ('X,)\.,J \ •.e 18 second cauntable.

Section 1.3 provides generalizations of same familiar
"-'-';.<fo

topological results and examples to show that our

extended definitions are not vacuous.

The problem of dense subsets in C (X)c leads

to theorem 1 in chapter 2, which is a general1zatlon

of a type of Stone-Weierstrass theorem proved in [5J.

Using theorem 1, we give a characterization of

separable metrizable spaces in terms of countable dense

subsets of C (X) (theorem 3). Furthermore, ac
general criterion for the separability of completely

regular topological spaces is piovided. Theorem 1 also

allows us to investigate both the algebraic tensor

pr9duct of function algebras (section 2.3)and the ~ensor

product 1n a certain category of convergence algebras

(section 2.~).

C (X) i8 not, jn general, a topologi6al space.c
In chapter 3 we attempt to approximate C (X) by. c

an inductive limit of locally convex topological

vector spacesl~n the category of conv~rgence spaces).

Specifically, given a completely regu1ar topological

space X, we consider the inductive limit of the

topo16gical algebras C (ßX\K) ,for all compact subsetsc

K of ßX\X, and denote this limit by Cr(X) .
The convergence algebra Cr(X) provides a useful

approximation of C (X)c We show, for example, that

t.



C ("")I A ha.s thc: same clc<:;edidc:O'alr;} thc sarne continuous
homomorphisms, and thc same dual space as ., (V)C \ 1\ •C .
Further'Jnore,

•..•. ; •. "1.>

, lS always complete
and i6 topological if and only if c (X)c ü; topolog).cal.
On the other hand, do0s not coincide with C (X)c

1n general, and moreovbr, for a large class of topologlcal
spaces, Cc(X) can not be ~ealized as an"inductive
limit of topological vector spaces (theorem 6). Thc
last scction in chapter 3 is devoted to investigating
the locally convex inductive limit of the algebras
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on a set X (in the sense of I~,olJ.rbaki, C6J , I, PO" 57) .
Given filters (jJ and 1/J on X Vle write (jJ < 1.jJ-
if. (jJ is coarser than ~) (01' ~) is finer than q) )

If a :lon-'emptycollection J- of subsets of X has the
proper~y that the inten3ectio~j of any finite number

....1of element.s in cl.

filter containing
1S not empty, then the coarsest
'1 is ca11ed the f i1ter genera~ted bY

'J.. If a collection (;l of subsets of X generates
a filter (jJ and has the property that each A, ~ contains
an element Bt:..6i , then i~ said to be a base (01' basis)
for the filter (jJ. POl' a point x {X , let x denote
the trivial ultrafilter generated by fx} . Finally,
for tVfO filters <j> and 1/J 1n F(X) , ep A~) is the
finest filter'~oarser than both ~ and 1/J (i.e., the
filter generated by all the sets A \.)1],.' , for A (<j> and
1\' I)• ~ ltJ •

A convergence structure (Limitierung, [1J) on a
set X is a map A from X into the power set of
F(X) that satisfies the following conditions for
each point x [X :
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(i) If. cjJ t ; (-,)Ii A

(ii) 11' 4) ~ h ( 'v ),"

( J.:L] ) " <c- f' (v)A .1. . ..l ••• .

(LimesrauYn, [lj), Every topological space X lS, in a

natural ,.my, Cl conver'g,'::ncespace. Por e[:c11 x t,' X

A(x) is simply th6 collection of all filters OV,11

'that convergeto x inthe topological space X

In analogy with topological spaces, we often elenote

a convergence space (X,A) by the symb61 X 210ne.

In this case, fora filter <p €: A(x) , where x (X , we

say <p converges to x and write <p---~ x. 'l'hus,

<p is a convergent filter in the convergence space X

if q) --;. X 1'01" sorne x (;X .

A map f from a convergence space X into a convergence

filter <p on X,

f(<p) -+ fex)

ln Y, where <p ._}- x in X. By f (<p) , we me,::mthe

filt~r generated on Y by

{f(A): At:ep}.

Obviously, for topological spaces the definition coincides
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with thertsual coneept of continuity.

The identity map from a eonvergencc spaee X
.,' ."--~

.onto itself i8 continuous and fUL'ther, Given conveq;ence

spaces X , y , and, Z and continUou~; - lTlc11J S l' . X ---r- y

and g : Y -.-r .. Z " thc map gof lS continuous from

X into Z Therefore, we ean speak of the eategory

£ , whose objects are convergence spaces, and whose

morphisms are continuous maps. We ea11 an isomorphism

in the category £ CL homeomornhisrn. Clear'ly, the

cate[J;.ory.oftopological spaees (morphisms., continuoUi3 mc:tps)

ean be regarded as a (fu1l) subcategory of £.
We ean e~tend the concept 01' a clcsure operator

to tbe eategory £. For a subset S of a eonvergenee

space X., the adhe~"-~JlC.~01' S, v[hich we denote by

a (S) , 1s the set 01' all point s x (X VJ:lth the property

-that there exists a convetgent filter ~ on X s0ch

that has a trace on C'•..) . A filter

'.

""'<jl .. on X ..issaid to have a trace on a subset seX

if every set AC ~ has a non-empty intersection with

S. We say tbat a subset S 01' Xis. closed if

a(S) = S. In general, the adherence ~perator is not

idempotent, and thus the adherence of a subset S of X

need not be c10sed.

A eonvergence space X is ealled !:~~paratedif

whenever a eonvergent filter <jl on X converges

to both x and y, then x = y. We say aseparated

convergence space lS £eguJ:..cu.:-::LI' 1'01'each convergen'c filter
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~ on X , the filter generated by

{a(A): A t q)}

is convergent in X On the subcategory of topological

spaces, these definitibns agree with the usual concepts of

separated (i.e., Hausdorff) and regular.

Given two convergence structures A and h'

on the set X, the convergence space (X,A) is said to

be !.'_i_n_e_rthan (X,A') (or (X,h') lS coarser than

(X, A) ) if the identity map

id: (X,A) --'-+ (X,A')

is continuous.

A subset S of a convergence spa~e X is called

a subspa~~ of X (or carries the convergence structure

inherited from~"'X ) if S is endowed ~ith the coarsest

of all convergence structures A for.which the inclusion

map

i: (S,A) ---+- X

is continuous.

.,,.



Given convergonce spaces and 'j' , VJe defille

the product convergence space X x. Y to be the cartesian

product of v
A a.l1d Y together with the coari3est.•of

all convergence structures making the proj~ction maps

onto X and Y continuous. Obviousl~, we c6uld exiend

this\definition to the product of an arbitrary family of
\conv~rgence spaces. For a convergence space Z, a map

, I

f from Z into X x Y i6 continuous if and only if

P ()fand P D f are both continuous, \'illereI) andx y Jx
Py are the projections onto X and Y respectively.

are non-empty convergence spaces,If X and Y
Ithen th~ collection of all continuousmaps from X

convergence ~paces.

into Y, which we denote by C(X,Y) , is not empty.

Thus, for convenlence, we restriet ourselves to non-empty

In particular, £ 0ill denote the

category of convergence spaces excluding the empty set.

Now, 12t w denote the natural evaluation map

w: C (X , Y) x X -- Y

defined by w(f,x) = f(x) for every f (C(X,Y) and for

every x E X Among all the convergence structures A on

C(X,Y) making the map w from (C(X,Y),A) x X into Y
continuous, there exists a coarsest convergence structure

(see L1J ) .
structure (Limi tieru.ug der stetigen IZonvergenz, [1J ), and
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we denote the convergence space ( .-' (" ") A )c; /.~i,,1\
C

by Cc(X,Y) •

The convergence space

if Yi8 separated.

C (V V)r-, ./\'.~ _. ,
v

i8 separated if ~nd only

The set C(X, IH) . consisting of all continuous

realLvalued functions oh a convergence spa,ce X, we, !

denote simply by C(X) . Under the pointwise defined
i
i' •operatJ,ons, C(X) J.S an associative, cornmutative,

unitary rR -algebra. The function 1 of constant value

1 is the unity element, and the function 0 of constant
I

valueb is the zero element. If a.function f t. C(X)

has a multiplicative inverse in the algebra C(X) , we

denote it with the suggestive notation 1/f. Any algebra

of the form C(X) for a convergence space X i8 said to

with the function algebra C(X) together with the continuous

convergence structure which we denote by C (X) .. c

A convergence space G, which is also a group,

is said 'cobe a, convergence. grovJ2.if:
(1) . The map

G x G -'----»- G ,

sending each (ß1, g2) (;Cl >< G to the group

product gl' g2 ' i8 continuous.
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(2) . '1'1Ic rnap

-1 G ---+- G , "

sending each element 1n G to its inverse, 18

continuous.

It is ~vident that the converg2nce structure on a

'convergence group is determined by the filters convergent

to the identity element. A convergence space V, which

is also a vector spaco ovor IR, is a~9nvergence vectoy~

space if V is a convergence group wi th respe.ct to the

unc1e.rlyinggroup struct;ure, and scalar multiplication

is continuous (i.e., the mapfrom ~ x V into V

defined by scalar multiplication is continuous). Further,

if the convergence vector space V isaIso an algebra

if the multiplication is continuous.

Since for topological space~ X 8Jld Y the produ8t

convergence space X x Y is simply the usual cartesian

product of X Jand Y, the concepts o~ topological groups,

vector spaces, and algebras are consistent with the above
--
definitions. In particular, c (X)

k
and C (X) , the algebras

C(X) endowed with the compact-open topology anel thc

topology of pointwise convergence respectively, are both

topological (i.e., convergence) algebras fo1'any conve1'gence

space X. For adefinition of compactness in a conve1'gence



....11..

;:~p8.ce,see [8J, p. ;~T7 .

It is not difficult to show (sec [1J) that c (X)c

is 8. convergence algebra for any convergence space
,.,' ....•.~ x .

Thel'efol'e,the continuous convergence structure on
C (:X) is determined by.tlle filters cOrlvergent to 0
Specifically, a filter 8 on C (X)c converges to
o if anel only if w(G x <1» converges to o :Ln

for every convergent filter cjJ on X (0 x cjJ denotes

thEF filter generated on C(X) x X by the sets A x B

for e-,;ery A E 8 and every B E cjJ) . VJith thi.s cl1aracterization
it is easy to see that C (X)

c
1s always finel' than

.Remal'k. For a completely regular topological
space X, the convel'gence algebra C (X)c is equal to
C1{ (X) ifand only if X is locally compac t (~;ee [6],
11, p. 329).

, We call a subset A C C (X) a sul?~~lgeEraof
of C(X) if A , with the inherited alßebraicoperations,

I ..;".•

is ar algebra containing 1 . It will often be helpful
to consider the subalgebra CO(X) , consisting of
all ~ounded functions ln C(X). Here, we can define
the sup-norm by

11 f 11 = sup I fex) I
1

1

,x (, )~
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for each f' (' C,O (V\. (,; ,'J" Wo will denote by .CO/"')\.An thc:,

9'J '~E.l.)"->", (,0 (Y '\L.O,;.~.i~.;L.t(::..:.. ,.I .1).../ togethor with the sup-norm. Of .cour~:;,e

clG
(X) is B. Baru1ch a,J.g;el)I'El~n

Function algebras have the fol~owi~g usoful algebraic

structure. There is a natural partial ordering on
i

C(X) for a convergence space X defined by:

f '::: g if fex) ~.g(x) for every x (. X " Hith this

.ordering C(X) i8 a partially ordered algebra

(see [9), p. 11), and in addition, a lattice. In

particular,

(fvg)(x) .- f(x)vg(x)

for every x (. X , vlhero "vI! lS the lattice operation

'111 .ln . \ (:L.e., av b ::: max{a,b} for a anel b in IR).
. ,

Similarly, (f /I.. g) (x) ::: fex) 1\ g(x) for every x (;X .

'1'he' function Irl i8 defined oy

Ifl::: f\/(-f),

~;.- "

andi t follows immed.iately that for each x f. X

Ifl(x) :: If(x)1 .

Since Irlfc(x) and
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f' v g = 1 {(fi.~)~) + 11"'-[0;1,)
2

the function f v g and dually I'f, gare inc1eed
c6ntinuous (i.e., elements of C(X) ). I.P ,

1. cl. subalgebra
A of C(X) 18 also 0. sublattice of C(X) then A

13y a homClmorpJ1J.sm between two associati ve} commutati ve,
unitary m -algebras, we will mean an algebra homomorphism
taking uni ty to uni ty. Let -,-4~ be the category of
associative, commutative, unitary convergence. algebras
over 11'\ • 'lOhemorphisms in .9f are continuous homomorphislTlr:..
For convergence spaces X and Y, a continuous map
t: X ---+- Y induces a homomorphism

~ft : C(Y) -;. C(X)

defined by *'t 'Cf) = fot for every I' G.C(Y) In fact,

*t" : C (Y) ~ C (X)c c

Therefore, we have a contravariantis continuous (see
functor t'c from

[2J ) .
£. into \'ihere ~ c takes each

object Xto Ce (X) and each morphism t 'co
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r"'rhe set 0[' all homoT:1orphisms from an ,rJ -al[';8b2a

11.' 0 nt 0 m ( i .e ., t akin gun i t y t 0 uni t y) vJ (: cl enot 8

by Bom 11. For L:' Jfi c pr " let ././(;"/om 1\ be the sübset of

all continuoUi3 horncrllorphü,;msfrom A onto IH '1'0

indicate the continuou~ convergence s~ructure on
.f'/. Arf OJIl 11 (inheriteel fröm C (11.) )c

Similarly, let the spaces Ilom 11.s and Horn 11.-s carry
,the topology of pointwise convergence on the sets in

qu~stion. Given two convergence algebras 11. anel
13 • A-1.n , a homomorphism u from 11. into 13

induces a map

*u : Horn 13 ------+ Hom [:1,

defined by for each 11 {HolTI1'3 • In
addition, if u 16 continuous (i.e., a morphism in . I

9i ),

then r~I.PIu fiom B , h. h d.... . b ' u .ffW 1C wo enove agaln y , maps
-Jlom B into -I/Oln A , and

flom l3, c -110m Ac
*' f'/u : ;J-7om 13s

--t-

~re ~oth continuous (see [2]). Clearly,

u*": Horn B
s HOlT! 11.s
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18 continuous even jf u is not continuous.
I Now, given a continuous map t from a convergence

tXX: ß/Oln C ( X) .---+- l/eHn C (y )c c c c
\ I

to
into a c.onv~rgence space Y

of thc cpntinuous maps
it makes

"',c.

and

{'"*: 110m C (X) --+ Horn C ( Y )
ses c

Similarly, for a continuous homomorphism

u: A ----+ B

vJhere A and B are elements 1n (
.Pt", we can sp,eak of

the continuous homomorphisms

** (~/ »u C ,/--Iom A) --+ C (Cl10m B)c c c c

and
*~{. (_lI (O()U : C ~4onl A) --r C f om B

c ses

Finally, given a continuous funct-ion g in C ( IR) ,

one obtains a continuous map

g....: C (X) --+- C (X ) ,>r C C

-for any convergence space X, defined by g*(f) = gof
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f 0r eachf (; C ( x )

, ..••• l'."(>

In 0.1 vH:' introduccc1 the conccpt o{ a c10f3ed

subset cf a convergence spacc X. Therefore, a subset,

U o£'X :u; called gpen if U 18 the complement of a

c10scd set. The collection of all open subsets of

X defines a toplogy on the set X, which we refer to

For our purposes,we wish to associate to each

convergence space a completely regular ~opological

space. Given an arbitrary convergence space X, let

X'", = .iI 0m::;Cc (X ) • VJe c all X'" t h e _~.:2..~;_oc La t e~:.5::!?!!J:D-=.(CLt.~~hY..

re_gular ~2ace of X. E. Binz has shown in [3J that thc

map

iX: X --., .. I!om C ( X )c ".

sending each x EX to the continuous homomorphism

of point evalu.-a'donby x (i.e., ix(X.)(f) = f(x)
,

for each fEC(X) ), is surjective. rrhus X' may

be regarc1ed as the space obtained by identifying the

points in X which can not be distinquished by functioDs

in C(X) and giving this set the weak topology induced

by 'c (X) (cons idered as fune tions on the :'3et X wi th

the above identifications). Clearly for any convergence
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space x, the function algebra C(X) 13 isomorphie

a cOQtinuous isomorphiom from

to C(X' )

alld
. )t-
:L" J.B

A

Indeed, J.x ~s a continU01JS ~n8.p onto
C (X~)'

c

ont~ Ce (X) •

. \ 0.6. g.9mpact~Xi._~;i1tions
\ - .
I Completely regular topologlcal spacesare characterized

by:the fact that they are precisely the subspaces of

co~pact topological spaces. Specifically, for a

co~pletely regular topological space

the Store-öech compactification of
T

[9J, p. 86). By a compactification

x , we will denote

X by ßX (see

of X , we

mean a compact spacewhich cbntains a homeomorphic

copy of X as a dense subset. ßX i8 the unique

compaetificacion of X, up to homeomorplüsm, satisfying

the ,~ollowing universal property: Every continuous

map k from X into any eompact space K has a
A

cont)nuous extension k from ~;X into . K That is,

if 1 is the natural embedding map from X into ßX,

thc: following piagram is comrnutative:

-,
X ----:---+ ß X

~k l:~'- 'i
~>"',r

h

Furtriermore, C(ßX) is isomorphie to the s0balgebra
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CO (X) , VIa the canonienl
monornorphism We remark that thc compactification
ßX can be realized as l-Jom CO (X)

C'
d

. "~-~

space x is
cilled realcompact if every homomorphism from C(X)
onto m can be repres~nted by a point evaluation by
an'element in X (1.e., x is homeomorp~ic to HomC(X) ).s

"For example, every compact topological space is realcompact.
Itis not difficult to verify that two realeompact
spaces X and Y are homeomorphic if and only if
the algebras C(X) and C(Y) are isomorphie (see
[9]', p. 115).

By a realcompactificatioh of a completely regular
~pological spaee X, we mean a realcompact space
containing a homeomorphic copy of X as a dense subset.
Let. uX denote the HevJitt realeompactific3.tion of
X (see [9J, p. 118). In analogy to theStone-Öeeh
compaetification, uX is the unlque r~alcompactification
of X , up to homeomorphism, satisfying the following
uni~ersal property: Every eontinuous m~p t from
X into a realcompact space T has a_continuous
extension t from uX into T 'rhus, if 1

is the embedding map, the following diagram is commutative:

XiX---J- U -'..

~It
T
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MOI)eOVer-,". X Ca]1 be reaJ.j:zed as I{om~C(X) , B.nd
,:0

thus it is homeomarphic to a subspace of ßX Now
it is easy to verify that the map ~LS 211

• , ... "to~. •.

:1~3omorphl srn

f C('u',{.)..rom onto C(X)

We have seen that for realcompact spaees, the
function algebra C (X).determines the space X Sim:i.larlyJ
we seek the largest class 01'convergence spaces such
that the convergence algebra C (X)c determines 'ehe

space X We call a convergence space X c-embedded

if x is homeomorphic to llom C (X) •c c E. Binz has
shown in [3J thatCc(X) is bicontinuously isomorphie
to C (110m C (X)) via the mapc" c c

.";'{..l 1'01' any convergenee
v
A

8pace X. Convergence algebras A and Bare said

homeomorphism 01' A onto B whicll is also an isomorphism.
Indeed, the c-embedded convergence spa~es are precisely
the spaces we desire. Specifically, two c.-embedded

,"' ~eonvergence spaces X and Y are hom~omorphic if and
/

only if C (X)e and C (Y)e are bieontinuously isomorphie
(see [3J, Satz 5). ji'urther,evel"y complete ly regular'
topologieal spaee is e-embedded. Thus,

X- i/mn. C (X) .- ilom C (X) _. l/om C (X)
c c s c s s
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für a cbmpletely regular topologjcal space X, where

TI ~ Ir rne ::J1'18 h Ofnc: olno:e]}Lli c . In tl}c case of a c.-enlbedded
r . r "r e X .C' 1 ,.., r r 1 'y. t. '., " r '" " C' ,.. .') "L 0 d c.;'c')\<r,)J 1 e t. p J \7conve"gence t3~)<.:t,~... , , ...cd., J1':~ 0..0'::>.'" .. O-lJ,__ . U' .... ' J:.,]

regJ.lar space can be~regarded as a

topJlogical structure on the same underlying set.



1, AXIOMS OF COUNTABILITY

....• "J(.

\

' 1,1, 'rhe aim oi' tbi::;seet,ion :1:3 to e'flElracterize
Lin,:ielöfand more genel"ally u.pper ;(-'c,ompactspaces,'

, We ~T~Jl f~rst peneraJi7p a few topological concepts,I \i .-. - - _I. .J.. , ..) : ~ - I.J ..••

of a convergence space x ,
we mean Cl collection of subset8 of X with the prdperty
tGat for every convergent filter ~ on X, there
exists an S (cf such that S t 1J. A 2~.~~~3ic~.ut~:2_::::er:Lnb£
of a.covering system J 1.S a subfamilyJ' of

Iwith the propertythat for every convergent filter
X , there exists a finite number of e1eroents in J'

nn{,S.},-1 ' such that \.)S. C cjJ
. l l- i=1 l

Definition 1.
;,et "X be an arbitrary infinite cardinal number,

if every covering system of X has a basic subcovering

on

, I~of cardinal number less than 01" equal to In
particular, x i8 Lindelöf if it i8 upper -;:Y -cornpact.o



Dof'Lnition 2.

A convergence space X

if for any point )~'-.'{~.1"')~

'i'~~~,""andlany filter $ convergent to A in X there

exi~\ts a coarsor filter 4J' such that <jJ' --+ X and

<jJ' ~as a countable batis (respectively a basis or
I

c~rd~nal number le88 than 01' equ~l to ~).

It is evident that our definitions correspond

to the usual definitions in the ease cf topological

spaces 'i
I

Given a convergence group G, we note that G

is X -countable if and only if the condition in definition

2 holds for filters convergent to the identity element

1n G .
We need the following two technical results.

Lemma 1. .-- _ .._----

is 5!:. conve}~gei.ltfilter in x , thon the filter

where 18 the closure of in is also



'-',"}.-. (:.: ) .....•

Let in V
,/ ~. f or ~.:'Ornf; x(X Vle C') ,,- .. '(1

.; O~~ J

CO [1 'sid. e l~ ~~ C0 n v e :!'[-;c;n t t 0 x in ,flom C (X) .. c c 'I'his

means that for every convercent filter E) in . (;--(X)
c

o --,>- f , anel for every

and an f1[ ~ such t.b.at

c > 0 t'.-]--.C" -I' e';"";; Y l-' 'C- i-" '.,, .... 1 ..... _ '-' .... IJVI':> a.. '1'[8

w(T x M) C {f(x) -I- [-c EJ }, .

wh~re w is the evaluation map as ln 0.2 (i.e"

I g( y) - f (x) I s c for every g E T and every y r: Tl[ ).

Sinee X' earries the weak topology indueed by all
I
!

the furietions in C(X) ,

w (er x MX') C {f ( x) + [- E , E: J }

Benee ~ eonverges to x in X .

We say that Ot is a refinpment oi'a eovering

system ,4 , if (f{. is a eovering :3ystem with the pr'operty

that each H ("£,

Lemma 2.

is contained in some element of .J

x has Ci

sets closed in the



Let be 8. coverj.ng systenl cf and lot
derrote the collection of all convergent filters in
X. For q) C (;) } len1ma :1 irLplies Q ( cI) ~'herefDre,

is indeed a refinement

thej->eexists an S C{£ such that S.~4) '~:~Lince
has \a basis cOrlf3istingof sets clo;:;edin X~ , we can
chodse a set B E ~ such that F is closed in X~~ ~. 5~

Of course ~ i8 coarser than ~ and, !
aI(d \ B~es.

'hence {B,+.}dC1''t' :) \, YJ

Theorem 1.

!2. !C--emb~5!ß~;d_s:or~yergencespace X
(re_spe:-~ti ve1;[ Lj:ncl~.lÖf:~) if and ~)n12 i f

Proof. Assume X 18 upper iL -compact. Again,
denote by ~ the collection of all convergent filters l~

X. Let 8 be an arbitrary filter in ec(X) convergent
to O. This I1leCinstha~ for ev,::ry 1In ? v/here n £. fi'y,
and every there exists a T 1/n}<jJ E G and
an M E <p eso that1/n}<l> •.

VJ('r~/' ~ x IvI~1 ") C Gl l~]
111 , -I) 1 n, 'jl ln ' n.

For a fixed r, In E. Ir\J , the collection



lS cl. Co,0' Te' I" J' '"1 rJ'
\ • _J "e.) i3:'l~3tern cf x and by admi t~~

.in = {I'fI :
Cl

'-...-..it~

oi' cardinal number' lc;::,s than 01' cqual to ;'L. Let

T be the element ofa
,as above. That is,

o that correspond~ to ]V[
a

It follows that

00

{T : a E: U Q, 1
0, n'n=l

generates a filter 8~ coarser than 8

8~ has a basis of carc1inal nurnber <;t

Obviously

It only rema:LllS

to ver'U'y that 8~ ---4. O. Gi ven :l/n for n ~ iN and <t> r:. <P

t her e ex ist s a. f ini t e s u.bset 0 f /)} . { }~n' 0,1' 0,2' ... , ak
k ",

such that l)-rv; f rjJ •
. 1 a.1= _ 1

){

NOIA] T (\ 'I' jS an element, . - I a .
i=l 1

of O' with the property that

k r-~ 1'\w(T x lJ TI'] ) ,.-.,,-.
i=l Q. n

1 .,- .J

and hence e~ converges to 0 ln c (X)c '



~-2 6.-

j)
...('-~ = {S 1•. Ci Ci (; U

..•..~

be ~n

lernn\a
arbitrary covering system of X. Beeause of
2 , \!Jeean aSßume that the elements of ,/g

!

clos~d in the assoeiated completely regul~r space.
oHe \lviIIprove that .,r-;j", has a basic subcovering of

cardinal number less than 01' equal tb .;\~. 1"01' each
S c.J, set
(J, -

'1' ::; {ff C(X): feS ) ::: {O} } .
Ci Ci

Clearly the collection of all sets T f01:' Ci {: a
Ci

generates 0. filter e that converges t~o 0 ln C (X).c

By assumption, there exists 0. filter e' coarser than
e , cunvergent ~o 0 in Cc(X) , and having 0. base
of cardina1 number 1ess than 01' equa1 to (1'. Let

be 0. basis for 8' - , vvhere the cardina1 number of the
-index set i8 1ess than 01' equa1 to Since
8' ---?- Q, for every ~ t <P there exists a D

ß
f e' anel

an L f cD- cjJ , such that



'.
T).'- r--1 1'1

'.. .L , .. .J

.•.•..(-

") I" VFor a fixed 0c~ , let the unlon of all sets L6t

that correspond to Dß in the sense of (I) be denoted

by Rß. It follows that

is a covering system for X. Since e~ < 8 , for a

given ß C:: 61.
such that

there exists a tini te subset aß of (1.,

VJe

11)

claim that

Assume to the ~pntrary, that there exists a point

x E RS\ lJ S , where 1t \ 11 denotes the set theoretic
I. Ci, C: (J. Ci,

ß
difference. Th.e fact that U SiE'. closed in the

C"' E (j.. Cl,
\.N • ß

associated completely regular s~ace X' implies that
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there exists a f'ur'.ct:i.on r (C(X") ~)u.ch that

fex) - 2 anel { 0 1 . '.'
.J .,' -' .• 4-

Because of the natural ':isomorphism from C(X') onto
C(X) (see O~) ~p 0an 000umC~:.J , \-•...... v UJ..."""')'::.) •. .11'-...-0 ff, C(X) Clearly

fE (') T but, in view of (I), the fu.nction
r 11 aa (;I"ß

. .:'!

This contradicts the fact that Dß ,_) (l Ta ' anel hence
at;Ct(3 .

our claim i3 established. Now,it follows from the
inclusion (11) that the collection

() ;'--ci. -- {s :
(i,

is a basic subcovering of X. Furthermore, the cardinaJity
of J'" is 1ess than 01' equal to ;'(, and thus
X lS upper X-compact.

Corollary.
Let x t-e',a c-embecJded If

Cc(X) i8 first-countable.

If C (X)c is Lindelöf, then C (c (X»c c
countable. Since X is c-embedded, it is homeomorphic
to a subspace of Cc(Cc(X» , anel thus first countable.
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In section 1.3 we wi~l prOV1Qe exarnples of

Lindelöf convergencealgebras C CA) •c
.......•...•

1.2. Here, we obtain a-characterization 6.f

separable metrizable t6pological spaces.

Let X be a convergence space. By a b~sis for

X '-1we mean a collection ~ of sub;::;etsof x vüth

the following property: For any convergent .filter

</> on X , say </> --r x , there existß a coarser filter

</>' such that </>' -+ x and </>' has a basis consisting

of sets in ';1.

Definition 3.
The least infinite cardinal number of a basis

for X is called the ~eieJ:!tof X. In particular,

X is second count0ble if it has weight;\!o

It is easy to verify that our definitions of

basis, weight,:~nd second countable coincide with

the usual concepts in the case of topological spaces.

The following generalization of a topological

result is evident.
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X be a convergence space having

weight "', i
{i.. • Then any subspate of X has weight less

- Ithan 01' equal to {l
,,' ....•..•

(and i8 X-countable).

b) Any subspace of a"s~cond countable

convergence space is second countable.

c) A se60nd countable convergence space

i8 first countable.

Theorem 2.

Proof. Assurne x • ,:'\1has lveLght I ••.

:= {U} .
a a E tZ

Let

be a basis for X of cardinal number ~ Given

a. €. Cl, I' t !iJ (the rational numbers), and 1'1 f il".;'-, we
v~ ••

define the fo}l~wing subset of C(X):

Ma,r,n := {f{C(X): f(U )Crr _ 1a 1 n
L.

, r + ;!.;J }
n

Denote by 1n tbe collection of all fini te inten3ections

of sets of the form J\I) ~ for CI. { Cf" r i': Q ,O:,r,n
and . 11/n (;;.(V • Clearly i3 stiLL

",'
i\... \!Je 1'1ow f',how that (.in 1s indeed. a baSle:3 1'01' C (X)c

,.
\



.....3J ...

Let c (X)e

convergent filter ~ in X

exists Cl. conve:cgcnt filter c'?'" VJhich :L3 coarse1' than

~ ; and has a base eonsisting of sets in

we ean find a U ( 4) , and 8. 'r [G such that
0;

Now c11003e an I' t Q so tIlat

'I'hus,

If(x) -. 1'1 1.< .--.. 2n

Because of our constructioll, there exists an llj E ?}7~<p,n
(M ::]\1 ) such that for every gc Iv'! and<p,n o;,1',n <p,n
every yt:u

0; ,

01"

19(y) - fex) I < Ig(y) - 1"1 + Ir - fex) I 2~ ..

( ."Vi JVJ 1
CiJ,n

x U ) C {fex) +
0; ['-i.~l }

-n ' n J

We observe that

Ig(y) - rl < Ig(y) .- fex) I .,. If(x) - 1"1 1.<
- n

t.



1'01' every g G '1' b.nd every

....:32.-

',V E U
• Ci.

Therefol°C:;, tl'1e

collection of all a convergent filter
on X and n (; IN , gonerates a filter G~ coars',:1' than G

vd.th a basis consisting 01' sets in '~-rL.. It ü) also

clear that O' converges to f Further, thore ean

exist 1'10 basis !JTi..,.' for C (X') ~ d" I"' t" tJc o~ Gar ln3. l~Y s-rlc ..y

less than If such an

have just proved, C (C(X)) would have a basis ofc c

cardinality strictly less than X. Beeause of the

preceeding remark and the fact that X is homeomorphic

'coa subspace of

unequal to X.
C (C (X)) ,c c X wou1d have weight

Conversely, assume c (X)
c has weight ':\'I.. •

as above, X must have weight 1ess than 01' equal to ~,

The necessity of the theorem implies that X has

weight exactly {{.

Since a compJetely re8;ular topolog.ical space

is separabJe and metrizable if and only if it is

second countable (see [7], p. 187 & p. 195), we have

the foJlowing result.

Theorem 3.

c 0 un t .3.b 1e ,

C (X)c is s-eCO{1Cl



C OT'Clla.r:\I ...
---"--'-_._----

c (X)c J.S Cl o.rld nIet, l'izccble

In Vlew of the remark in 0.3 and the discussion
.preceeding the last theorem, the proof i8 :i.mrnecJiate.

1.3. We will extend two results that are known
for topological 8paces to the class of eonvergenee spaecs.
These will prove useful in analysing the continuous
convergence structure on C(X)

'rrleorem ~.
Let x

of x i8

Because of the remark 1n section- 1.2 , it suffices
Considerto show that X itself 1S upper X -compact.

.~1 -_ {fr }iJ.. to be a basis
Ci

Let 1-, be an arbi trary
for X of cardinal number
eovering system for X .

~.

l;'orear:h 'r L '1 Cl or SF' .8.L - - 0:. cJ.., ,1 c) ~ • a
(J .

•J:fJ;. sueh th,it S:) T :i.i' sueh
Ci 0:

to be a fixed
an elf:men'c S

Ci

e1e In e l'1 t l 11



DerJot,c o .".by 4. the .collection of C'
I.) Clea!'ly

J' j_s a collectj.c)n of cardi.naJ. nurnber less tharl Ol~

eqtlal to
_. t
,\. .• ' \'Je \Vi 11 'i C' ctC'C'.'[ U 8 ''j]'" v',,....•.•.,::) .J • ~ •..•..._'.., CL

basic subcoveririg of jJ
.<oL- . Let be an arbitrary

convergent filtc~r in X, say cjJ ---+ x. By asc.umption,
there exists a filter~' coarser than ~ suchthat
q)' ----+- x and ejJ' has a ba~)is cODsisting of.sets ln

Since {J
4...- lS Ei covering ;::,ystem,there exists

an S . JJln .((. VJi th S {; cjJ' • Because S must contain
some element T 6J, where T lS also in cjJ'

(Xo .• fXo

we can find an S t l' such that S :? '}" 'Thus(Xo . (Xc (Xo

S i3 an element of both cjJ' and cjJ •(Xo

It is now easy to demonstrate that there exist
convergence spaces that ar'e upper ;1' -compact (respectively
Lindelöf) and not topological, namely, c (X)c for
X a cornpletely regular topologieal sp~ce having weight
;\,.(respectively second countable) and not locally
compact. More."över,sueh a c (X)

c has ,weight ;1:'

(respeetively issecond countable) but i8 not topological.
For an example of a first countable convergence

space that i8 neither second countable nor topologieal,
consider G (X)c 'where X is a comp1etely regular
topologieal space which is Lindelöf and neither seeond
countable Dor locally eompaet.



T_n topological

tlv: •.3(1h(.'"['(."1"e nf S :l.S Y 'l'lle space

to-tle'~~I:~l~;~J?_~:~~.:i.I'it contains a coüntaJ:)1e

\

is saicJ

dense ~;ubßet.

~et Y be a second countab1e convergence space
with

a countable basis. In light 01' 'ehe remark in section
1.2 , it l.0.'U su1'1'icientto prove that Y is separable.
For eac.h T. C J , pick 8J Yi f:. Y such tl1at y. € T.l l l
vJe claim that {y.}~-~ is dense in Y . Given y ,- y{:

]. :l.- 1.

there exists a filter cjJ convergent to \T ln Yv
•... ~

with the propei'ty that cl> has a basis consistir:g of
_ [ }ooHence cjJ has a trace on LYi i=l '

which completes the proof.



- .. ,•....,.•..•...•... "''",....... ~ ... <!' ..

....~)6-

tha.t ii' 18 a separable, metrizable topological

space, then ro (V\
~I Li.. j

C
is second cou.ntable, fil"st 'C'ountab1e,

~in~\:le1ör, and s eparab 1e .

In U;e next ck.J.pt'er 'v.re wi1J study density
I, I

s~p~rability in a more general setting.
I .

and
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- j'( --,.

;;~"Vl"~

\

2.1. IJ, certain type 01' St;one--vJeierstrCLsstheorem

has been proved by E. Binz in [5J 1'01' elosed subalgebras

oflC (X) . In order to investigate questions of
\ c

dpnsity, we must develop CLmore general type of theorem,

as it is not known when the adherence operator in

Cc(X) is idempotent.

Let X be a completely regular topological space.

1:Je say/a subset 01' C(x)
if the weak topology induced on X by M coincides

with the given topology. Recall that a set M C C(X)

lS said to be dense in C (X)c if the adherence 01'

M is C(X) (see 1.3). Also, by definition (see 0.3),
a subalgebra of C(X) contains the unity element 1

.We will show that if the bounded function3 in a

subalgebra. A ..ar~ topology gejle=~'ating~tJ).en A .is

dense lD Ce(X) .

For a su~algebra A C C(X) , let

(i.e., thc collection 01' all bounded funetions in A).

We remark thatif A 13 a lattice subalgebra 01'

C (X), then A lt3 topology generating if and only if
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AO is tapology generating. In what follows, Tt

will always denote the eloaure operator in
(the sup-norm eloaure).

-,

Lemmi:1.1.

Let of C(X)

is a Jqt~~0~ 0l11)al~OI)~~of. ~ (..... \,"" -~ t:.: .:2..- -_{::;~:.....:: _,.~ __ C(X)

that i f f {,AO and I! 1'11 > 6 f0 I' S0me 6 > 0 ,
then 1/f 16 1n AO

It is straight forward to verify that
a lattice subalgebra (see, for example, [9], p. 2)11).

To prove theinversion property, we first assurne that
f E A ° and f > 61 for 6 > O. Thus, there exist
m and n in ffJ such that (1./n)l:S f ::m.l. Since
the Taylor expansion for the real-valued function'
1/(1 - t) defined on [0 , r] c: IR
convergent for r < 1 ,

is uniform!y

1
m T = 1-------p-- .

1 - (1 .. -=-)
m

can be uniformly approximated by polynomials Jn
This implies m/ft. AO , anel thus 1/i:' C AO

Por (-J.D arb i trary fE A 0 boundeei ~nJay from zero (:L. e .,
for 0> 0 ), :l/f C f:O .

t.
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For e:::.ch point x t X 5 VI<:: cr:m clefine the point

evaluation II OIl1 0 Hl C)I') IJ 1__1i [3 rn by
, ... , •• j<.••.

".

for every f f A ()

the rnap

lS eontilluou8.

Lemma 2.

i (x)f ::: fex).x

Furthermore, it 18 evident that

1. X ----+ HOITI A 0X s

A

iX(X)
of C(X)

is Cl dense subset of
--------

Horn A 0s

It suffiees to show that a basic open neighborhood
V in Horn AO inter'seets iy(X) . 'vIe ec:m assurnes ~~ ~

n
n {J{ E Hom A ° :
. 1 S
1::: ~.

Ik(f.) - h(f.)1 < c}
1 1 .

for i E {1, 2, .... , n} , h ~ Horn A 0 , allds
E > 0 Now if

g :::
II
L, (f. - h ( f . ) :J )2

. ~ J. 1 -
1=.1



then h\/u) :: 0 .
'-'

-1.[0-

Thus g can not be a unit in Ä~
and by le:mr;w, 1, thex-'e exi:3ts a point P E X ~3uch that

')

g(p) < E<- 'rhis means
,." .••••• <fo

for'every iC{l, ;~, ... , n} > andhence 'iX(p)tV.

Lemma 3.

subalg~bra A of C(X) .----i---

. The proof consists of showing that Horn AC lS
S

homeomorphic to a closed subspace of a product of

closed intervals . For an arbi trary f (i A0

exists an n ~ fi'-J such thatf

there

Since, by lemni8:" 2; ix (X)

follm'1s that Ih(nl :: nf

is dense in liom A0
s'

for every II C Hom A0s

it
Nov, ,

the map sending each h £. Horn A0s to is

a homeomorphism of HomsAo into



where each nf 13 chosen as above. It i8 easy 'co

verify that if a point

point of Hom f\ °
~)

,"""i.lf. .procuct,

then the map seriding each fC AO to ~rf is a homomorphism
on AO Thus, the image of BomoAO

,--,

the carteslan product ~hich i8 compact by Tychonoff's

theorem.

Let A be a subalgebra of C(X) for a completely

regular topological space X. Since Horn 1-\ °
S

is compact,

the universal property of the Stone-~ech compactification

(see 0.6) implies that the map iX can be extended

to a continuous map from ßX into HomoAo
~>

1;1e cI eJl 0 te

this unique extension by 1T , 3nd note that the

following diagr'am i8 commutative:

where i is the natural inclusion ma2. In fact, 1T

i8 sUr'jective since is dense in
There i8 a Gelfand map

d: A°-----+

t.



d(f)h .- h(t)
,' ;•.'{.

for every It iseasy to see that d

l'S .a 1.I'jC')~()IT.('r")}lJ'01.n .]'ntc .
• J J. .• ,_l)} __ I..) •• _ .•. J~)

13 an isometry fromiX(X) . is dense J.n HomsA 0

AO regarded as 0. subspace
Clearly

d,
f CO(X)o. n'

d(i\Ö) separates the points in
into C (Horn AO). n S

emd

-.

thus the Stone-Weierstrass theorem implies that d 1S
actually 0. surjection.

For l' (; C(X) } where X is 0. completoly regular
topological space, let f denote the unique continuous
extem3ion into Nof f to 0. map from BX 11 , the
one point compaetification of IR (see [7] , p. 21~6) \:Je
say 0. subset BCC(X) separates the points 1n BX.
from those in X if 1'01' each point p 6 [3X and each

.point_ .x.{iX ..,.t1}el-:'S?.exi~j:;f:3_afunction :({:B l:2uchthat

f(p) 1 f(x).

v1he1'e X is 0._ .._-

.,
if AO

in ßX fl~Oll1 thc)~)e i1'1 vA •

.,.
\ .. ,



unx

::.S topology

l'J :.: N n XJ: i:; 2.
y

If.(x)[ < 1}
l

and of _course

Since .1\ °

n
r. f?
i=1 1.

f .-

lS dense in I3X '. the set

with the"property that for e2.ch

in X

n
V- n{xfX:

i=l

f . (v) c-= 0 . andl C J

V':: {xC:X: fex) < 1}

neighborhood of

of functions in AO
generating, we can find a finite set {f1, f2, .." fn}

(u()x)nv' - 0

N o:f y SUell tha.t 1Jl U ...Y . y

lS a neighborhood of y such tüat V'c VeN. It only

i8 a neighborhood of y contained lD N, For

1'1e have

collection of all neighborhoods of p in BX disjoint

frorn N Sir"l"ceXy

i8 non-ernpty for e~ch

'1'his irnplisf3

remains to show that T(p) ~ 1, Let ~t be the

J



f(TJnX) r '1 , Cf:) •l. "-

.....~~,.

Since the filter generated by ~t converges to p

In ßX and has a trace In X , we conclude that ¥(p) > 1 .

Conversely, assurnc? 1\° separates the points in

ßX from those in X. We will show that.for an arbitrary

function ftCO(X) CJ.nda point ylZ(f), where

-1Z(f) = f (0) , '.;'Je can find a closed set F in the

topology generated by AO on X such that F:::>Z(f) and

y d F. Without lOBS of generality, we can assume f(y) = 1,

Let TI be the eontinuous surjeetion from ßX onto

Hom"A° defined above. Sinee A0 separates the points
,:>

in ßX from those in X

where X is eonsidered as a subspace qf ßX and -Z( f)-SX

is the closure of Zer) in ßX. Clearly we ean

ehoose a funct5t>n g {;C (Rom -Aü)
s such that

g (y) = 2 .

Since d(f\.°) is dem,e in there exists

a k (; f\ ° S 0 that

t. .~



d ( k) ( ':T ( zTr-y x) c: (- co , oJ

and

d(k) (y) > :1-

It is now clear that the set

F = {x(X: l-;:(x) < O}

'-""''''.t'

has the desired property. rrhat 13, YI Fand F:> Zce,
which completes the proof.

'Given a su1)setSC:C(X) , let a (.'3)c bethe

adherence of S 1n C (X),c

Let
-- ._- -_._-_.~- --_.

seC O(X)

x

a (S) -- a (3)c c

For a slJbi:;et

where 18 the closure of S 1n

Clearly aceS) :)8
C
(S) . '1'0 prove the ot11.er inclu;:;:}.orJ,

o 1n C (X)c such that 0 -+ f 2nd

.,..



J.rI Denote the colleetion 01' all eC)nvergcnt filters

on . X by cI; c > 0 and each r'p t: 9

and atherc: C');:i:::)ts an

that

D cjJ,E:
I
I
i

= {g( S: geN;, .) C [f(X) - s , fex) + E:J},
'I) , S -

and eonsider the eolleetion

We will show that for a fihite ~umber of elements

D (. IX
,1), , E: •
'11 1

, i lZ{l, 2, .'" n} ,

n
()D -10. 1 tf-.,. E: •
J.::. '1'1- 1

First, ehoose a function
n

t t n T.
i::1 q)i,E:j~

\trithout loss

.of generali ty, Vle ean assume t t. S, and of courf3e

O
E: •

t(N ) c. f(x
J
,.) - 21. , f(x

1
.) +q) , , S .

1 1.

E: •. 1
-;:;-~
c _. ,



,~3il1ce

CO uell tha t I, C' _.
l t:..-:. 1'0:(' it{l, ?, ... , n}

NOH för cach i f:. {l, 2, ... , n} , we have

< Iß(p) - t(p)! +'It(p) - f(x.)1 < E.
J. l

for I'evcry
!

pt N
<jl , , E.'l .L

and thU.3
n
() D

i=1 epi,ci It i3

easy to verify that thefilter generated by ,8 eonverges
;

to f and has a basis in s . Benee Pt:: a (0)1. ,.: 0..")

C
as desired.

We! noVI cO:~jsiderthe case of Cl. subalgebra A Co C (X) ,
i

where X i3 Cl. completely regular topological space. Bere,
a subset SC: ßX 'fT-elosedif 1 C'.- '"

closed ln ßX and TI-l(n(S)) ;:S
is due to E. Binz (see [5J, lemma 4).

Lemma )~,

rrhe following lemma

. ' ...',tbere eXls.ts a function---_ .. ------ -- --------,,--

emd

such that

g.
2

in

N.I ~C.J .'./1 - and

The lemma can be proved by applying thc Tietze
extensio~ theorem to C(Hom AO) , and recalling that

c'IJ



',0- J-1 i,)-..

cl i ag::r") [lrfl :

,"/ '-"~.'lf

. 1'" r, (-/' 0 (X,.)where J lS the canOD1ca lsomorpn1sm lrom .

C(ßX)

onto

'rhe o~~S'0..]j.

Let A b~ 0: ~,~2.:~lEel~Taof C (X) , fo~ ~ s.omDl~:.~!~.lx

all bounded functions in-- _ ..._---- _._-- A

then A J.s dense J.n

In V1ew of propositi6n 2, it issufficient to

showthaL 8
C
(A 0)= C (X) We utili~e ~ technique

t~at appears in the proof of theorem 5 in [5]. Let

f be an arbit~:"'aryelernent in C (:>-:) We will construct

a filter 8 on C(X) that cohverges -to f in C (X)C \ .

and has a basis 1n AO
such that gp(p) = f(p)

For a point p f X , let

Define

g (. A 0'

P

'I)' = {y C ßX:.p,E: .- s + c)}



,-Li 9-

in r3X C"',nc1 thu.s X\V i~) CL compact subset of i:!.Xp,c
Sinpe, by proposition 1, AG separates the poi~is in

ßX ]' .from those in X , the set -n' (e,x\v. )"".,.i8 di~3j oint '. ~I) , c.:

fro \1 1f(p) . In HOHl J\ U , we chooGe a elo::.;ed neighborhood
8

N df 'fT (p) dü;j oint from TI ( ßX\V ). Ii:; folloW~J
I P,S
i 1

t~at' 'fT - (N) i3 0. 1T-elosec1. neighborhood' oi' p contcüned

'in Vp,c Let -1VI = -fT . (N) , anel setP,E:

Fr = {gt JIO: Ig(y) - f(Y) I < E:"p,c for' every

Consider the col1ection 1 of all sets '1'p,c for alJ

pe X and E: > 0 • Clearlyeach element ].s

not empty, since it contains at least the funetion

.We will 8h00 that for 0. finite number of elements

Ir t:. 1p. , E: '
l 3.

, ilf {1, 2, ... , n} ,

n
nrE -;'C).

'i~l Pi,ci

For eonvenienc.e' we ean assume E:~. < £2 < ••• < £J. - ,- - n

Sinee.weknow is non-ernpty, -vle assume

o for mC{2,3, ... , n} , and provo

that
mnT ,-1-0.
'-1 p. ,c ..
J.- J. l

Let L = m-l
l..../ v.J ,, . p .. C.

J.::': 1 l J :1.
We might



l.... i~.. __ '- ~'. ....._ ~..• , .. >~.... . .••.. _ •..•.:..,~._., __ •...: ...•.~.~_ .• '~ ..••.••.•...•..,"" ...•••~••....: ....•.~_ ...•..." •..~_,.... ~ .•..• _....c.;..~_.__ ;.'....->_ "'" . .,.~ ...•.•••••..•,_. ;i.!

... ~)() ..

af; 1,;1(-;11 2S~;U.me I'I . \ L :/-(1; , for otherwü;e our pl'oof
pm,cm '

would be complete, Sincc" the urnon of a" finit(" Humber of

1T.-closecl sets J_ß ,r'-closcd,L :LS a rrhus,
.- :]

TI '(Ir(y)) :LS a 'fr .••closcd set disjoint frcm L for every

, \ T
Vc.W \'U'\.. D c'

. m' "m
Let n be thc collection of all sets

-111 (1T(Y)) fOl' Y C 1") \ L
Pm' cm

..
For the following calculation

we will denote the elements in 0 by Greek letters.

First, we choose

rn-1
g f nT
1 '._:]p.,E:.

J.'-. 1 J.
and g2.6 Tn E~'m' rn

Now for each a and ~ ln n , lemma 4 allows us

to pick a function

and g,. 10' U ~ ' Letc:.

-- Iwhich extends both g1,L

m
TvJ:: l.J Vi

• A D., C •
l::.L '.l.. 1

(i.e" H :: LU,;,!, ).
p Fm' 'm

Choose an integer k such that

and set

k > E + 11 [;111 -I- I! G) 11 ,m _

t.



,., .... i.'f

--"~--'I
!

Clearly and thu~; the set

u~ - {yC ßX: g ~(y) < }-:'(y) + E }o 0,<; m

].S an open. ne ighb orl100clof 0 U ~ tJ L. POl' a fixed
~ , the collection {U~} is an Oj..)en covering; of the

o oGQ

compact set M. Hence, there exists a finite sub set
of Q such that

g,... = A g -
c, oe2:0,t;,

1

'1'hefunction

lS an element of 'A 6- and has tr:e property that

= {y (; ßX: gr (Y)
-0

Ur is an open n8 igbborhood of (!,l L , and thv.s {U t"} r( (i
(~ s <; .... j"

~1 . "
.•• ~ . ,'1



18 an open covering of M

n. The function

für E~ a finite sul)set
t...

,.e. "~.~

g -

is an element of A ° and. cnj oys thc pr'operty that

-giL - -g' IL
"'1 and. Ig(y) - f' (y) I < Em

Itfor every y G Iv'! ,
m

Hence g fE i ')T _ as d.esired..
. j p., E .
J.=.J.' 1

is straight forward to verify that '1 generates a filter

that.converges to f 1n Cc(X) and has a basis 1n AO,'

If X is a convergence space, the canonical map from

X onto associated completely regular space )
T ••. , induces

a continuous isornorphism from CcCX') onto C (X)c
(see 0.5). Thus, in vievv of proposition 1, we have

the follov.Jing:

A be .!?:. .i.mbalgebr~Qf C(X) for a
yJ. Ii' RX' from'" -_.-

those J.J1 X", then C (X) •c



If

;,:;ubalgebra.

C(X)

f

it sufficet;

C (X)cin

'vJhenever
a lattice,

adl1erence of
'1'0 prove a (A) J.Bc

18 an element of El.c(A)

then

Ifl

It i8 evident that the

ShOi'1

\
is a!

to
1n A , since

f Vg ~.(f J. g -j. I f - g. I \- 2 . -I", I . - / ~

Let
I

f f.. a (A) , anel let 8 be a filter convergent tü fc

1n c (X)c with a base in A. We denote the ~üllection
of all convergent filters on X by ~. Now for each
<p €. (jJ , say \jJ --~; X , and each E > 0 there exists an
N C cf> and a Tl € 8 such. that<p,c ~,E

w(T x N ) C (f(x) _ E<jJ,s <jJ,c 2

Define

D = {gE p,: geN)) ~) c (Irl (x) - scr,C ~,t..
Irl(x) + c) .

We will show that D, is not empty. Indeed, we
Cj.J , C

will demcnstrate that for finitely many
1.I1he 1"' 2 if{l,2, ... , n} ., tlle set

and C. > C ,
1.



"

is not void.

Obviously

Let t be a fixed element 111

t(N ) C (f(x.)q) . , E . 1
1 1

E.
1r,

c...

\!Ihere <p. --;" ... x.
1 1

1'01' each ... , n} In
particular, there exists an integer k such that

Now the binomial expansion 1'01' (1 - ~)li2 (the function

Ir'. 1'1)from ;( lnto in converges uniformly 1'01' I s I s 1 .

'Ums there exis ts a polynomial P w~ith 'ehe property that

I (:J. _. s) .~/ 2 -:. P ( s )' I < E2k.

where

'1'hismeans that

. '.. ) c }
n



.•. , .•_~.'f-

Furthermore, for 8ach
n

x f ') N. \", cb., c .
l.~~l 'l J.

\
for levery

I
i

- I{ t

1

- (.~_(f.)2)(x)}2
.. ....\.

~ IF:C~-(k)-.) (x) < ~--
'. 2~:

I

i e {1, 2, ..., n } ~ 1tJ e ha ve

for every x f N,
q.>. , E: •
l l

Hence is CI.nelement

of
TI()D. 1 ,j., •• E: •

l=~ 't'l.' J.
Now the collection of sets D,j.,'v, E:

cjJ E <P and E: > 0 ) generates a .filter convergent to I f I
ln Cc(X). with a ba;3i:3in A , and tbus Ifl E. ac(ß..) which
completet:>the proof .

.
Beca.use a lattice suba.lgebra AC C(X) is topology

generating if and onlY if the subalgebra AO consisting
of all bounded functions in A is topology generating,
proposition 3 and theorem 1 yield:



I.f C(X)

"tben

18 dense In C (X)--~~_.._.- c

In chapter 1 He pI'ovidec'la cha-racterization
of ~eparable metrizable topological spaces (theorem 3).
Here, using the results of the last section, we will prove
the following:

~rheorem 3.
--'"'-----

(1) .

(2) .

(3) .

C (X)c '
C(X)

is second countable.
contains a

sub::,et.
(4). C (X)c contains

(5) . ce'"A) contains a 'countable
the Dointi3 in--'- '-' -'--- ---

from those in X.
( 6 ) . C (X)c contains a dense subset which

from those in x .



rjl~'l'.' c'. rj , ) cl "Ir rl '1 ('. "'J .... C' 0 f' (-1 \) (".....11 'J" (,;) :1.;) ;) i rn.r,.)1'JI are Ci t i:.1.tC' m!::.'nt.'_1 C :::;'-.1 L.~__ \ (~ . >., ~; 1 ,'~..':. _' .,_...1. ~

of theorem 3 in 1.2.

Clcarly (6)
, .......•.••

lies (5). We first prove that (5)
il11pJ.ie~)(ii). A;:i;;urne D J.S a.eountable.su1Jset of C(X)
which separates th~ points in ßX from those in X
Without los[-';of ccnc.'ra:Lity, Vfe ean a:, ~~ll.Ji1eD C. CO (X)
For othervtise,

{((-nl) vf) /\(n1)}. dlU
- Tl (~I!"

could repla.ce each unbounded f c: D , and this new set
of bounded functions would have the required properties.
Now proposition 1 jmplies that the subalgebra A generated
by D is topology generating. Furthermore, by theorem 1,
A is dense in C (X) •c Wo c0l13ider the set D conslst:Lng
of a.11 functions 6f the form

p(r
1'

.. ", f )., n

where f e D 1) J. and P runs through a11 polynomials
i

(without r. Of) S t a"1t t. c-'PTI"!)v _I Cl .•. ' '-' \,...._. 1 in n :: 1 indeterminates with
rational coefficients. Clearly the set D i8 still
countable. We will show that D satisfies thc conditions
of statement (!.~). '1'0thisend, Vle prove first that D
is dense in A with respect to the sup-norm topology (i.e.,
the subspace topology on A inherited from C~(X) ).

lJ



for ""tt.a. r:;. ii\
1

aDel

n
r a.

• A :1.
.l:: 1.

be an arbitrary element in

A i. Since all the function3 1n question are bounded,

given E > 0 there exist ratiG~al numbers

sothat

~
I'1' r2, ••• , rn

11
' n

jl.: a.
!. 1
1:: 1.

m.
J.

E f.
Jk=1 'k

n lni 11L. r. n f.
i = 1 J. k ::1 J.k

Therefore, it follows from prop0sition 2 that D i8 dense

1n C (X). It only remains to verify that D is topologyc
generating. Since A i8 a topGlogy gegerating subalgebra,

any neighborhood of a point xf X conta1n8 r-1(-1 1)
for some :1, ~" A '"',

.•••. oe 6 In fact,we can assume fex) - 0 I-let

g f. D such thai: 11 g ..f 11 < jJ2. rrhUf:~

is a neighborhood of x contained in

desired.,

g-:1(-:U2 , :1/2)"

f-1(":1 , 1) as

Of course (4) implies (3) trivially. To prove (3)
implies (1.), ass U.l1lC: B L3 Cl count -3.b lc, topoloSY generating

subset of C(X). Since B i6 topology generating, the map

I



sending each point x. &: X jnto (
,C' ( "; \ \
.1 \ ..•.•.i J r,( J',)

1,. ,)
13 a homeomorphism

of'

col1ection of rerl,],LLnes. No\'!stclterf1ent(1) foltov'JS

'that induces the given topology,

lS separable and metrizable.frOll1 the rac t tha t mi
}}

It only remains to
, Ideno~e a metric on X

prove (1) implies (6). Let d

I
, I

arid tlet {x } '-:"l'd be a countable dense ~)lJ,bset01' X
11 11cl"

'v,le' def:ine, 1'01' each nEiN , the function X t: eO(X)
n by

, X'n( y) -, mi n {d (x: , y )
" n'

, 1}

1'01' all yE X. Let A 'oe the subalgebra of e(X)
generated by ele~rly A 1S topology generating,
and thus, by proposition 1, the algebra Aseparates
the points in ßX from those in X VIe consider the
set E cons:isting of all fU11ctions of the form

'"J
P(x

11 '1
... , -..x )nk

'\IJhere)( E (x'} "U 1. and P ranges through alln. n'ne!!.)
1

polynomials (withol.!.tconstant term) irl k > 1 indeterminates
with rational coefficients. Argulng as above, E
is dense in A with the sup-norm topology. Now an
easy caJculaticnshovJs that E separates the points in
ßX from thosein X. Theorem 1 implies that A is
dense in c (X)c arld appealing to proposition 2~



..- 6 C)--

c (X)c Since the
set E j.s cou]1tab~1_e, the pr~oof' l,s comr)l-ete~

\ \-Ie. conclude

seP1:cClb1l1.ty .
\

\ iPI\onosition 11.-~._._. __ .

tlüs section with a characterization of

monornorphism) from
------- -- - ----

c (X)c into C (Y)c '\'ihereY is
a countable d:u~crete

Let X be a completely regular, separable topological
spacs, and let Y be a countable dense subset of X .
Give Y the discrete topology, and denote the inclusion
map from Y into X by 1.
the induced !'1ap

Since i is continuous,

i*: C (X) --~ C (Y)c c

sending each function 1'C: C(X) to the function ,1'01 ,

is a continuous homomcrphism. Furthermore, since i(Y)
i3 dense in X , the homomorph:i.:-:;mi7.- lS injective.

Conversely, ass urne first that X is Cl completely
regular topological space, andu i3 a continuous



lTIOrlOrrlorp11isnl fr01TI c ()()
c

.-(;j ..

into C (Y) • vJhere' Yc ' 1:3 a

countable dis(?rete space~ Now, the Inap

..,....,$

u.)(-: // C!n C ( Y) ----~ Po rn C ( y )c C 11 l ... C C L, ,

sending each homornorphism 1)/h( ; i'om n ( "' ),-' J. to the homomorphisrn
heu, is continuous. Since both X und Y are c-ernbedded
convergenee spaees, ~t. can be regarded as a eontinuous
map from Y into X It is easy to verify that the
induced map 7[.. .::!-

U ,. must be equal to u '1'0 prove that
X is separable, assume that thc countable set v:.

u" (Y)

is not dense in X Thus) there exists an open set
U Ul X disj oint form the closure of l}:f-(y). Since
X is a completely regular spaee, we can find a function
fE C(X) such that f -I 0 while f(Ue):: {O} ( UC = X\U ).
This means that u(f) - 0 which contradj.cts the fatt that
u is injective. Therefore, u*(Y) is irtdeed dense lTI

X Finally, assume Xis realcompact and u is a mono-
morphism of C(X) into C(Y) , where Y i8 a countable

.
discrete spaee. Now

.:;t. ( )u : Horn C Y --~ Horn C(X)s s

is continuous. Y 18 Lindelöf, and thus theorem 8.2,
p. 115 in [9J implie8 that Y 18 realcompact. Sinc~
X i8 realcornpact by assumption, u* can be regarded

.,..



as a con,tj.flllOllS rnap f'ronl Y ir1to X

'---'.'".~

In this scction ws will investigate thc

algebraic tensor, produc.t of C(X) emd C(Y) 1'01'

completely regular topological spaces X and Y.
"

.Fora definition of the tensor product of two algebras,

see, 1'01" example, [12J, p. 1120.

In the usual manner, we write basis elements 01'

CeX) 0 C(Y) in the form f 0 g 1'01" f£ C(X) and

g [ C (Y) . '1'hecanonical monomo:cphi8m J,1. from C (X)

into C(X) 0 C(Y) i8 defined by

i1 Cf) = f 0 1

1'01' each 1'[ C(X). Similarly, 12 sending g to

1 8 g 1S a monomorphism of C(Y) into the tensor
<"Jproduct. Let TIx and TIy be the projectionsof

x x Y onto X" anel Y respecti',/ely. Sinee thc proj eetions

are eontinuous and burjeetive, 'fT';'(o (respcctively lT'~1x _' . y' i8

a continuous mcnumorphism from C (X)c C (Y)c
into C (X x Y). Now, by thc universal property of thee

tensor product (see [12J, p. 420), there exists a unique



,r.,
- 0 ~J.-

It is therefore clear that for a basis element

f 0 ge. C(X) 0 O(Y) ,

r;(f G g)
.~_. ~.

= TI . (f) . TI Cd
x y

Thus.the image of an arbitrary element 1n C(X) @ O(Y)

can be calculated by linearity.

Lemma 5.----
Given C(X) and o ( Y ) , ~.!le mC02 is a monornornhi flm

".fromC(X) g o(y) ... into C(x x Y) '.

Suppose that
n
>= (f. G g.)

. 1 1 11=
is senO to 0 under

- -Without'-loss of generality, VJe can asswne

are linearly independent. By ddfinitian,

n
" (,0 '( v \ g ( .. \) = 0(~ L. /. ) • ! • \ Y )

• A l :_ ..
J. = J.

f~l' f::-, ... , f
~ 11

far every (x, y)f X x Y. Assume that there exists a



--_._._-------"_.-. -, "'- -. -~ .. "

•...•...,.'..

n
" (\.0 0I.~ g.' Y;J.i _.,

'j :: 1 1 ..

which contradicts the fact that f 1 ,
.L

are

linearly independent. Hence ( 13 indeed, injecti ve.

Since ( is a monomorphism into C(X x Y) , we can

regard C(X) @ C(Y) as a subalgebra of C(X x Y)

Theorem 4.

If X and Y

c (X x Y) •c

In Vlew of theorem 1, it is sufficient to prove

that thc collection of bounded functions ln C(X) G C(Y)

is topology generating. The topology on X x Y is simply

the coarsest topology such that the projections are

continuous. Since CO(X) and CO(Y) generate thc

topologies of X and Y respectively, the collection

of all functions fe TI
X

and fC:CO(X) and

g C C ° (Y) , gen erat e t 11e top 0 1 ()gy 0 f X x Y

fOTI = TI7~(f) ,
x x VJhich means (re C" C', r'~.'e; cl. t::; c. . \..-;.t .. ~'- as an

c (X x Y». Similarly, rr n 'i' = 1 (=} c;. c" Iy



Sil1ce TI -~( .. cLncl
z

"/'T ~;~. ol,::, er....,'I', e. l~".( .....'L.' "1", ',_."','r:, C~ f .. J 1 . '\ "l. :. - :0 I A~ _,untlonS CO oounaeay

functions, the subalgebra
-.....•. 't

(C(X) 0) C(Y» n CO (X X :Y)

i8 topology generating.'

Let ,[C(X) 0 C(y)Jc denote the subalgebra C(X) 0 C(Y)

together with the convergence structure inherited from

C (X x Y) •c

P . t' r::..--r:.0p~SJ.l (1.0. J.

We will first show that as 8Cts Ilorn [C(X) 0 C(y)l.)c
can be identified with X x Y. Consider the map

sending each (x ,y) ( X x Y to the hgmomorphism of

point evalua~ion by (x, y) In view of theorem 4,
the subalgebra C(X) 0 C(Y) separates the points in

X x Y , and thus ixxY is injective. Für the füllowing

proof of the surjectivity of Jxvv.••.•. .1.

we are indebted to
Ee Binz and K. Kutzler. Assllme ther1e exj.sts all

t '-~



h C

-.66 ...

;3 Ll C'}1 t 11.-2. t h 18 not an element

of i), ,,-(X x Y)
;'x J.

POl~ conv'enieJ~lCe, WE~ denote the subaJ.gebra
C(X) 0 C(Y) by A

. •.. f_Y..

As noted 111the proof 01' theorem 4,
the subalgebra AO consisting 01' all bounded functions

in A i:3 d.er1.se irl r (V x Y') 0nd ~~110v.1'.. . , C.I...l. \.', vJ 1I.A. ,_)

C
!~0 i8 dense

in [CO ( y ) 0, C...• (V) I
.' ", 0 '\.J. .I e This means ihat hlAo can not

be realized as a point evaluation. For if hlAo

were a point evaluation, the density of AO 1n

[C(X) @ C(y)Jc would imply tIlat hitself is a point

~~~luation. Now let AO denote the sup-norm closure

Thc homomorphism hlAo can

be extendec1to a continu.ous homomorphism h': A 0 ---'r- iFl

with respect to thc sup-norm topology. Furthermore,

AO lS a lattiee sub algebra of C(X h Y) (see lemma 1),
and it is easy tö verify that h' is a lattice homomorphism

(i.e., h'(fl\g) = h'(f)/\h'(g) emd h'(f)Vh'(g)'= h'(fvg)

for every I' and g 1n AO); Sinee h' i8 not a

-....point evaluation homomorphi~3m ,.1'01" each. point z...(--X.x ..Y

we can choose a function

f (z) = 0z and

such that

h' (f ) = 1 .z -

Because h' is a lattice homomorphism, we can assume each
f > 0z Now for eaeh z (;X x Y and eaeh s > 0 there

exists a neighborhood uz,c of so that



f (U ) c r-()
z z , f:..~

and

,-.. ,' .••.«,

:I.her) > -}2

Let JJ denote the collection of all sets D for
z!1E

zC:: X x Y and E: > () . Given a finite number 0:[ elements

D, z c. ,2,c-2
D

Z En' n
ln , we claim that

Now the func~ion

nn D :/ 0 .i=1 Zi,Ei

g -
n
1\ fi=:l Zi,Ei

is ln AO with the property th~t h' Ci) =:1. and

for each iE: {1, 2, "" n}

= 111l' n{ c
J.l .••..J '

If

c }n

we can find a function g' in the subalgebra AO with
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I I' I I" "'''1 'Ig--gl<cq ~'I' (P" ,. \ :> 1 12
J... t::J ) .~.- Tt 1 f) eV'iÖC:tlt

Thus the collection (~'generat2s

a filter 0 that convGrges to 0 j:n. [C ( X ) <1 C( Y) 1. - c

On the other hand, h(O) doesn't converge to 0 since
1'01' every set T 6.0 there exl::;b3a function fE:l' such
that h(f) > 1/2. rrhis contradicts the fact that
h is continuou8, and thus 1xxy 18 surjective. Now,
to show that the spaces in question are homeornorphic,
consider thc follm'ling commu.tative diagram :

I)

:where

. .;(;
ilom C (X x Y) _1_.__~_ i/lornfC(X) (5 C(Y) J

c~~ c~ lid C

A~rn rC (X) 0 C ( Y ) "Is - ~c

.* . . ...1 18 the map 1nduced by the 1ncluSlon 1
from [C(X) 0 C(Y)l into C (X x Y) an.d id denotes.' c c "

the identity rnap. Jt follows from thc, proof of theorem 4

all thc Dl:'lPS

C(X) ~9that
110m [C (X)s

C'(Y)

09 C(Y)Jc
in (I)

i8 topology generating, and
18 homeomorphic to X x Y

are continuous anel Xx Y

thus

c-embedcled, \ire conclude that
homeomorphic to X x Y .

-/lonJcfc(x) @ C(y)l i3
- " C
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Let be the subcategory of
of all conve:cgence a.lgebra:3 of the fO:C'lli Ce (X) :'

a completely regular topological space
,J:i t~11 the hclp of theorem 1.[ , Vi,;' VIiIl clete;'i;~'inethe tensor
pro ,uet in the category ~-c
. ! Let A and B be objects in an arbitrary c~tegory
01. ! An cbject '}' in 01 together with morplüsm~3
h1: A --1-. '1' and h2: B --'-+ '1' J_ f:; said to be a cC)Proc1uct_._-_ .._----

of A and B if the following universal property
is satisfied: Given an object D E Ci artdmorphisrns

and k2, B-+ D , there exists a unique
morphism (,: 'r -+ D making t11e following diagram
commutative:

ea11 such a}i'object T a tensor of and n
Li

By standard categorieal argument~, it is clear that
any two tensor products are isomorphie. Thus if
tensor produets exist, we ean speak of the tensor produet.

Theorem. j.

(in

::1.
I C

l.'"•. I..~C (VjC .J... I
[-ln cl

C (y)
c

G (X)eof
2ndr. (Y)-'c '\ 1.

Let



C (y x y\
,I C \....~. .L. I to

1S a coproduct cf
ction}

and

in j_nduced lllaps such as 'Ir )'; . anel
X

are
morph:ismf: tl-Je category '7~r

c Given
an object C ('7) -:. '.::;li.--

'c L, C C . amI

~ so that the following diagram i8 commutative:

1)

The induced map -x- /?'. //k 1 : 2/om C (z) ----?-en om C (X)_ ses c ean

be regarded as a continuous ma~ from Z into X
the spaces in question are completely ~egular (see 0.7).

ean be regarded as a continuous map
from into.Y We now clefine a ~ap m from into
X x Y by

,,-
mez) = (k1" (z)

..}~
k') (z))

L

for every z (Z. Clearly m 18 continuous}. and further,
thf,; ~.L~~ COlTlrnut cl t iv'e :



~7 ..-;
~-. f l~-

I''''.

. ~

We claim that r ::
'0' is the desired map'(i.e.,

l;;(f) = rom for each r t C(X x Y) ). We note that
the induced rnap
just k1 ' and similarly,

into C (Z) isc

It i s noVJ eac3Y

to verify that l;; makes the diagram (I) commutative.
It only remains to prove that S is unique. Clearly

elements 0:[ the form TI *(f) and 'k '1 foron 11 (['")1
X Y .

f t C(X) anel g C C(Y) , tttemap l;; is unique. It

follow3 that t is completely c1eterminec1on thc
subalgebra C(X) @ C(Y) as f @ 1 anel
TI ,I<' (g ) = 1 0 g. Si n c e C ( X) G C ( Y) l S den sei ny

Cc1X x Y) by theorem 4, the.proof is complete.

Hernark. artd ':t-s be the subcategories
of consisting of all topologiccü algebra~:;of thc form

a.nd C (X)
:3

respectively, for a completely regular
topological space X. It'is now easy to show that the
tensor product of objects C (V \

'1 J'- I
,{

and C, (Y)
K

ln

and C (Y)
S'

:in
'--1ct- ) is
. ('

U

" ('" X y\vk A .. )

( Y' e '"'-),:"" ,-l "(0, l'I- d 1 .~~ \,1 v ~ "J c (X x Y) ).s
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:5 . INDUC']'IVE LI]\L['l'S

,.' '-.,,~

1 ;g:,~~~,,---<. l 3.1. We introduce the,concept ,of an inductive

Ilmtt in the category of convergence spaces.

\ Consicler Ei non-emnty faruily {Y} er] of convergence
(1 aL.. I ••v

spaces. Assume the index set (£ J_S dü"'oGtec1,emd

the family {Y} ~.a a (;.'LI,

denote the preordor relation by

Uiat for every (a, a") E. a x a
< lf He requ:ir'e

satisfies the following two conditions:

(i). I' If a < a' then Y C ya ,-a'
I
I

(as sets)o
(ii). If a < a" then the natural inclusion map

from Y into Y " i8 continuous.a a
Let Y ::: l)Y , and let i be the natural inclusion map,a aaEa

i Y -+- Y
a a

The set Y together with the finest of all convergence.
structures making the inclusion maps i a

for every

continuous is eal1ed the inductive._-------_. lirni t (induktiver

Limes [llJ) of the family {Y} "a aEc..:, I:Je denote this space
bvJ ind Y

IC aaeJJ.-

Even if all the rnembers of a family {Y 1a~a [;Ci:

are topological spaces, the inductive limit will not in

.categor~ of converge!1~2 spaces~ In fact, we hav~ the
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fO~].owing Ch2]~acter:izatioll of COY'lvc:rgent filt, i11
, 1":Lnc ".12a E a .

• •••• "f,~,

A filter on y y J,n ind Y
a[.(1. a

if emd there exists a. fi].tel~ on y
a

for

som,'" a ( /l "'l,e;11 1-1"c,f- q'l_. _.;-- Y
••••. .,. t,..'1..t"' 5 .~~~_ ..:-"_...:'_'::....=-_ ..

Cl.
in Ya and ~a 16

'a basis for the filter in y (i.e., i (~) = 0 ).a 'i a 'i

It is now easy to see that tbe inductive limit of

a family {Y~} cn i8 separated if and only if every
0. a,;. (,{.

Y is separated.a

By appealing to proposition 1, one can verify the

following universal propert~y for an inducti ve linü t (see LJ.1]).

Propo:'2L!.Jon2.

A lTlao--~- t from the

continuOU6

tei : Y -y. X
a cl

i8 contirmous for each :::tt a .

We will now consider the special case of a family

t.
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{IJ',:r },:.~?: I) ;3at.i:~~fies COrlCJ.~tt,l_On~-) (i.) arId.
c.. Cl. (" ";,

(ii), and 1n addition, the inclusion mars 0~ condition

'I'

(ii) must bc linear'. "'11 . J.... [1,_,..1
'

L' •.... >.•.J'lJ.S mea.ns ~ .. lS,
a£Q, a

in a natural waY,a vector space and ~ach I.1 lS a
r~
W.

linear subspace of L (1' e t-hr.:> )'n~pr,.. t,. ~l.JC IJd,. _ L.:J i a
Whenever wo speak of the inductive limit M of a family

where each L is a convergence vectorspac,:,',
a

V.Te require that the above conditiens are satisfied, VJhich

quarantees that Mitself is a convergence vecter

space. In this case, we ~ritE

M = Ind L
1,,'/ aa", [.~.

orsimply M = 1nd L
Cl.

If each La i8 a local1y

cCnvex topological vector space, then M i8 called

s tru,c t ure.

3.2. In this section we will define a Marinescu-

convergence structure on C(X) .

Let X be a completely regular topological space.

He regard y
1\ as embedded in its Stone-techcompactification

denoted by ßX. Given any compact subset K of ßX



such that K.C (:3X\X

is ~bV.i ously
\

1.'1(: X .__ .)- ß}::\E.
J l ;;.~'''_••c,

continuous~ CJnd thus induces Cl homomorpllislTl

defined by ]Jl<./f (f) = fÖ).1K for every f t C (ßX\K) .

In faet, ]JK~( is a monomorphism as X is dense in

ßX\K. For convenience, we will identify the topological

algebra C (ßX\ K)c with.its restrietion to a subalgebra
O.f C (X) . tJ -f (' ; ,. thV1a 1e map 1JK' 1.e., re~a1nlng -le same

topology). Slnce ßX\K is a locally compact topological

space, the remark in 0.3 implies that

(the compact-open topoJogy).

Consider tGe family {C (ßX\K) L,. , where lCc 1\.(: K'

13 the collection of all compact subsats of ßX\X.
Since the union of two elements in K is again in K ,

the collection K is a directed set under the ~reorder

oi' inclusion.

v,re have

Given for and 1n I(
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C~ (f-:!'{\ Y'" )
•.. j-l.i -- \ '1. .

This natural inclusion, cal1 it J ,lnduces a continuous

homomorphi E,m

•. j{' . \ )J' C( r.sX\ ]{., I ._--+ C ((3X \K
2

' ,
< • C 1 C _

and j .J{' i3 also 1njective as, ßX\K2 1s dense in

ßX\K1. Indeed,

C (ßX\K1) intoc

.}~
J i8 simply the inclus10n map from

C ,(8X\lL) (as subalge]'ras of C(X) ) ,C L

Thus, we can speak of the inductj.ve limit of the family

{CC(ßX\K)}KEK' Since each member of this family is
".' a locally convex topological vector space,

1s a Marinescu-space.

Ind C (ßX\1\)
K( I': c

We claimthat the 11"(' C (ßY\ 17\-- '" . c ."\.\.\) is actually a

Marinescu-convergence structurc on C(X) That i8,

l,j C(r:;X\K) --
KCK

n(v)\./ .h.

One incJ.usion 1..3 clear, 'th .i .aYl.o... us ]._~ IS_ sufficient 'co show
that every function in C(X) has an extension to

C(ßX\K) for same l<:tK Given f CC (X) , con:::d.der

f , thc continuous extension of'f to a map from

into rV

H 2.S J.n ') ""
(.. • J. • r 18 real'-valued,

~, -1(n\ .....)y\y
1" / L !.lLe A



A

,"Ll'OP,- J.l:, ','~'"",,', 'L-.\l",,'.':l.~-. ~,',l ••••• 1. "\{ ()') ';1 " C-, ,", -, -I n " ,',,....::).-,""~,(1 1.,. '~, ,- {', (" ~ (., 0 •..' ....' ..~ ~', .:..• ._ I:: ':J . _ '-....... _ , . .L. ~~) cl. C.. _L' ••• ' ~'.~ -.:.. ",). (,.ll J ...•.. 1 j. l:~ ,I. J. '-":.: Cl.. ,-,' 1 j -1-) CL C L.

sub~3et of 'ftll.li3 .r a.n ~;z t en,::::L Oll 1,0

and
_.1

.1:- .1. ( c.n \ . ',i ~...•1. .. ) _.e> k,
, "' . '~'.'t

Ta sj_rl1p~Lj.fy the notation, we set

Ii-Jc]
K(r:

" '( I')X' \ T7)\J .).1\

C

Since all the inclusionmap~3 • j'"J are homomorphisms,

.,

..'

it i8 easy to verify that C1(X) 18 also a convergence

algebra .

C (ßX\K) --~ Cc(X)c

are continuous for every Kf K , and h~nce proposition 2

irnplies that the identity,

--)- C (X)c .

i8 alw~ys continuous.

3.3, rrhe concept oi:'completcness in topological

spaces (see ~J). A filter 0 in a conversence vector

S1)21C8 \T is s2.id. to be Ca.lJ.crJ if' G 8 con.ver'ges
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filters induced by the subtraction in 'Irv • 'I'hus", VJC

cal1 v Cauch'} filtel" COllverlf;es to
an elemei'lt in V .

'1'heorern 1,

j_[~ corn1J1ete_.__ ._.- .._'._--

Assurne 8 lS a Cauc}1Y fj"l.terin CTeX) . Since
.L

8 - 0 converges to 0 in C-eX) thel"s exi ~-)t s a fi 1t: ('::1" ~I
.1

,

convergent to 0 in C eßX\}\) for sorne ,l" ( K vlith1\. ,'c
the p1'üperty tha.t ~I ~L[-) a basi::-,für 0 - 8 in CIeX)
Thus, there exist sets M and N in G such that
eM - N)f ~. Consider a fixed element f ln M . Given
any function gEN ,\<J8 lU10VI

-:J. r. ) ,........g .. \.v) ,_

(f' - g) t CeßX\K)

f ~le(XJ)l~ K

l'Jhich irr;)} :i.es

'1'he1'efore, the' set is cont!:üned in C.eQV\V' )pA n. ) where

This means the filter 0 has a basis in CeSX\K').

o
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:.:;to 0 ln

., (')'\""c... [j i. J\. )c;

incJ.usion ri'iclp

. y,. (', ( I',,;V '\,1;,',.)'J : I \ l-~./',.. 1... ~----~-
C

c (() y \ 'Ie' )
.I C ,} ~ V\.

.... , ..:".(-

i
\ \ '\f

(Lei., j fr(lji) =: 0' - 0' ). NmJ it i2.we:U-knowl1 thCit

C c( ~3X\K') lS complete (e. g., see [5J), and thus 0 _..;..k

for some function kE C(ßX\K'). It follows that the

filter 0 converges to k in Cr(X) , and hence

Cr(X) p.s complete.

3.4. Here, we will investj.sate the structure of

closed ideals in Cr(X) .
For a non-empty subset M of a convergence space

x , we define the ideal I(M) in C(X) by

r(Tvl) - {f ~ C(X): f(!'tl) :: {O}

Similarly, we define the ideal IC(M) in eC(X), the

bounded functions in C(X), by

TC(TVT)_L 1 J. {O} }

An ideal J i6 said to be fu11 if



J = I(l'i)
......~,~

for same subset M of X

It i8 easy to verify the following:

Lemma 1.

If is a full ideal 1n---_ ..- ~-_•.._-- - C(X) , then J 18 closed

.., Given a completely regular topological space

we will denote the convergence strueture on CO(X)

x ,

inherited as a subspaee of CI(X) by

straight forward to verify that C1(X)

(,0 ()r'
'I')

i3 bicontinuously

isomorphie to tbe inductive limit of the family

{CO(ßX\K)}. , where CO(ßX\K) earries thc su.bspa.cee K(K e
topology inherited from

For an ideal J 1n

C (SX\K) .e
C(X) 01' in CO(X) ~ weclefine

NX(J) = {x Ex: f(x) = 0 for _every fE J}

and refer to this set as the null-set of J. In terms

of' z'2ro-sets,

I

1,1"<I (J-) =
/1.

n '7 (f')I IJ .,

f'f, 1._v



By thc zero-set oi' a f'unctioll f[ C(X) , which we denote
by Zer) ~ Vle mean {x (X: fex) ::: O}

PI1 (1) 0 ~':>i t i 011 ).
---.....:::;_ .._---~--~._-

trlen

Let P denate the ideal J neo (X) 111 CO (X) .

Si n c e P c: J , i t i s c 1 e 2. r t h Cl.t NX ( J ) c: NX ( P ) On the

other hand, a~)sume x /NX(J) . 'rherefore xl Z(f)

far some f t J Further, there exists a unit u

(an invertible function) in C(X) such that

( ( -.1.:.v f) I, 1-) ::: uf

(see [9), p. 21). Now x i8 not in N}((P) since

Z(uf) - Z(f)

and uf C P

Before shawing ttat a elosed ideal 1n C1(X) i8

full, we need the following result.

.,
\ .



Lernma 2.

If J i8 a closed ideal in C 1-- ( .X ) ;. !.h.?n Ny ( J )
h

"Ir
1\, •

In view oi' proposition 3, lt 18 sufficient to

'lI (n .~ßX \ Kr) for any K (I( ;. \'ve mean thf; null-set oi' P

i 1 . 'I ]. C,' ° (S' )~\ 1.'~)regarcec as an lc.ea.,J.n \ _. •

subalgebra C(ßX\K) contains CO(X)
to verify the following:

Of course the
Tt ü:> easy

and
NrX\K (P) =

In particular, as SD.rne trJclt NX(P) J_S ernpty" 'Then
NßX CP) VJhieh \.'ie denotE' by K i C' a subset oi' ßX\X...,. ,::' ,- .

0 "

and further, K is com,pact in ßX '1'hiß means K 5 s
0 0

an element oi' . IC, and l,T (P)
l~ Q Y '\17 \ _ .,":>. >. \ o

If \'Te let J'

be trle ideal J n C(ßX\R ), 0

implies that
Jn C(AY\Y'\ , J.Jr'oposition3,).1'. .. \. \0)

',1 ( '[) ) r1
- H ßY \,r \ .L .' V)

.~ \: 1', 0

But J' 18 a closed ideal ln C (ßX\K ) , which contradictsc 0



the fact tl')at tllC nulJ.-'set 01 a c].(lsed j.deal. i.ll tlle-

tüpülogical algebra c (ßJ~ \}\ )C 0
r-J'tjY1I[.,-\'-\T (c..pe-~-- -;-' -'J ~-"~. ~,

."~-.für eXej)"rple,pi]). 'rhu;:.N,,(P) C.:1n not be empty, VJhicl1
A

completes the proof.

If J i8 a clo~-;edideal in then J is full.

Por p:: J n Co (X) , let N:: NX(P) in the follmving
proof. We know, by thc previous lemma: that N is
a non-empty subset of X. We will demonstratc that
J is thc full ideal I(N) First, we define N to
be the closure of N in ßX, and show that

N .- N y(r)ßü

Assurne equality does not hold; then th~re eXlsts a tt ßX

s,uch that tE NQ,"(p)\H Purther, \\'e ean choose a
!-,A

closed neighbc;~~hood V of t ln ßX so thcLt V!) N :: 0 .
Denote
subset

vnI.T v(P) by
ß./'.

of ßX, allel

1,77, . Clearly

NOVI\ \'i8 cC:.n firld a function g r: C( with the prOp2)~ty



.,.ß 1[ ..

1":;)-1(1t

g(t) - 1 2nd g(ßX\V) :::{O} 0.' • ".~.'f

li'ar \ example, let U be an open neighborhood of t
Then by eomplete regularity, therev .ti• ,.eon .aJ.neG 1n

1 .

i 'e:kisitsa function gC:C(I3X) f3uch that g(t) :::1 and
g(Ue) ={O}. Since J is a closed j.deal in C1eX)
foreach KCK theideal JnC(ßX\K) isclosed
1n C (SX\K) . 1t is well-known that an ideal in the

,~

topolo~ical a1sebra C eßX\K) is closed if and only if
i c

i t is full (see, for'example, [4J). Sinee
CeßX\K) ~ COeX) . we cünelude that. . ,

F) :: '1 ° e}T ( r )\. "~ßX\K\ )

für each K rf: K. NahT

and therefore the funetion g 16 an element of
1° eNSiX\K' ep» but gyt I (lJ",.(P»

P.,x.

Benee N:: NsxCP) which impJ.ies
Vih:l.ch 1i3

:: p '1'0 eomplete
the pro,.)f \'Je sho'\'! that t..) j I' equnl t 0 T ( IJ ).' _1::-' i

T C I ( I.) '\ On the other h::i.nd g~i"V"erl
~-l (. I ( J) i'-' I . , 1.

ObV101.:t;:;ly,

V.'e have

(. (. __ ~_t V f) /\ _1) .. uf 1'01" c"i u..nit; u C C (X ') (co ,0:.,'.' r Ci'1 D ,;.,)1._' '-- \_' 1. j~;.'} 1. c; (_ .1. "



Since u:CC P and .] contaülf) F > the function

f = :1- uf I: ,T .
u

J 0: I(N)
'""""">/'

We have now proved

rrheorem 2.

an ideal J

is ful1.

Given a eonvergenee space X, the topological

algebra C (X)s i3 bicontinuously isomorphie to (' ()r~)
v \'

3

where X. is the associated completely regular spaee

of X Sinee a full ideal in C (X) i3 elosed, we states

ideals are

p,tru~cttlr'E:' -on C. (.v',
/ .1.\. ) finer

than C (X)
S \ and e02crser than as

Let X be a completely regular topological spaee.

Point evaluation by a point in X is a eontinuous

homomorphism on C (ßX\K)e 'T'1'" 18J. .11.,.. ,

it follows from the universal property of the inductive

X



sU.bset oJ:~ on1 In fact, VI i J :1 tlJe follo\'JinEG:

the mal?

t~'p
<J/om C., (X)

~L

Proof. For any element h JJ/1n ~lom CT(X) , the
-'-

ideal h-1(0) , the kernel oi h , is closed in Cr(X)

Since
that

...;1
h (0)

h-1(0) ::

is also a maximal ideal,

rex) for sorne point xi

11 (f) .- f (x)

theorem

)~. It

2 imp]j e~3

follm'Js thai:;

fop every fE C(X) as desired.

Every completely regular topological space X

1 .~.f'j1 CI;' ',l' \~e need only prove that ~omc/llA)

to Cl.G In viel:! of the



J. f1 CJ.l~) 0 11o!n~~~Ol!1 Or'l) 1) :i.C

to
convergence ].3 al,~Jays (~OarSer tl18n ttle continuod~ COfJVergerlce
stnjcture, and thus

eomrr\utati ve diagrc.1Jrl

\

are
idc~ntity maps
eontlrJUOl);:;:

ln fOllüwing

where .)(.id is the map induced Ly the iClentity from
. ,.;f'1Q is also continuous,Cr(X) onto Ce(X)

wo eonelude that X i8 homeomorphie to .1'1 (' (X),"10m '-'J_e ,_

:3 . 5 . In analogy with the functor

~'.~_. _... ~"_._ .....-- -_ ..-._-,_ .•..,

F , wo introduce..e

the i'unetor This allows us to charaqterize the
continuous homomorphisms between algebras (1 rlcl

(theorem 4).
First, we provo the following.



I
-i.

Let V
.l •. Ci.1Id be U.lc1:C

If s J. S <:1 COll.t i!.~U.CJU.S
____ 4-eo .• .~._,'"._" •. •••

.9 efine d ~Y. S A ( f) - s <; f f 0 r ,c:_very f ( C ( X ) ,
1.S cant inuoUf3 •

(ii).1 If t is a continuDus man from X into "1, ,

is continuous.

To prove part Ci), let KC K , and consider thc sap

vlhere <.- ( 1" ) = s 0 ,.1,,"uv. .-
I\. ...,;...

for c'-/ery f t C (ßX \K) •

it is easy to verify that tbe following diagram lS

corrmLUtative:



c ( \]{)
c

I
s I

EX- !
\t ,

(~ ( \ "" )""' \.1.\
C

.,

where 1 is the natural inclusion map. Sr lS irl-1\ ,,-N.

fact continuous (see 0.1+), and thus sei lS continuous.
)i' .

It fol1oVls from propo;,ition 2 that S.)f' is continuous.
For part (ii) , let 1 derJote the natura.l inclusiony

map from Y into GY Oi' cou:ese J. C~ t is a continuousy

map from X into GY , and by the Ulli\rerJS8.1 property
of the Stone-Cech compactification, it has a continuous
extension t' frorn ßX into GY If K is a compact
subset of 6Y\Y, then t,-l(K) is a closed and hence
a compact subset of ßX contained in ßX\X. NOH set

It follo\,.;;3thaL

( fjX\ t' -1 ( K) ) _._.~-:.-. 'ßV\I')\ J ~ ,.\

i8 continllOU,s, and thus the hornomor~)hism

C I' 0'1\ 17)C \ \->.;.. .1\
-_._':; .. C (() y' t-' '-1 ( 17 \ ')

./ J-' ..n. \ I ~,\.. )

C



seIl cI i rl g f t 0 .f Gt ]\ f 0 I' C 3.Ch" f (;.C: ( BY \ F.. ) if'.i continuouf3.

cornmu.tativc,:
, ••••. <{.

.'

where i and i are the inclusion maps. Since 1
i8 obviously conti_nuous, we conclude from proposition 2

ti:~that itself i8 continuous.

Recall that £ 18 the categary of convergence
8paces and s-f 18 the category of cOl.l.verc;encealgebras.
Given spaces X and Y 1n £ and a continuous map
t: X -+ Y , we identify t '>Titll the cont:Lnuous m~lp

V \Jt"'-->--:X'" -+ Y'" , wllere X' and y'" are the associated
completely regular spaces. Now it follows easily from
proposi tion LI tJleÜ

x in £ 'co

\?~I ' which sands each object
• I cl '. . .
JJl .f:Ef' an, e2ch morpt1:u;m t :L11 ce

to the induc ed rnorphism t H. in /
.5~'i-} is a contravariant

functOJ: from ." _7,1-:LDCO

GiveD completely regular topolog1cal spaces
and y ~ t.-'Ie nC\'t.v }'("llOVl tlla,t c'ler';.;T cc,ntirlu.Otlß n18.}) t:}: --,-}.. Y

i_nduces a continuous map C• (v \
-_.}- .I I \J.\ .. / 1'7h1c11 lS

a honlomorph:L-sm~ On tl1c other halld, a.SSUlne U lS a



n (",G -r 1.)
.L

irrtc)

..... >."

definec1 by
p!.

u'(h) :: hou fc)l"' (,"',rt';l"',Y' l'lr:l/onl ,e (X')v • - L .• :' ., I"

continuouo. Since X and Y are completely regular,
it follows from corolJary b of theorem 2 that .\f,.

u" can
be identified with a contj,Duous map from X into Y

Now it is evident that
~{-;¥-

U :: U

'l.'heorern 11.

and hence vIe haVE: provE;cJthe follovJinf£:

where X and Y are comp]etely regular topological-~'..:'.._.-- - .... -._-_._, ..__ ._~. ---...:......-_-_._ .•_-:.:.._~---~

continuou.s
continu.ous if and onlv :11:'._-_....:.:-_.. _._--

-'iU :: t" for sorne

t: Y .------1>- X



-- Ci~)--
.J ' •.

3~6~ . ~I~t].8 112.tl;ral ta. as]{ if' or Wl)erl the convergeY1Ce

.' str'ucture 05" C~ (X)
..L

coincides with that of C (X)c
We wiJ.l sh{)w') in fa(~t,that fer a. wide class of s'paces,
C (X)

C'
ean not even be realized as an inductive limit

of topological vector spaces. On the other hand, Cr(X)

like Cc(X) } is a topological space (namely, Ck(X) )

if and only if X i5 locally compact.

A convergence vector space V is said to be

Vereinigung, [10J) if it i3 the inductive limit of

topolngical vector spaces.

The following result is due to H.H. Keller (see [11J).

V - Ind V
Eil'. a a

1.[-) a

ezists ar;

such that V ,
a vector '-'n'3ce'"" ):::.~_:. <-' _:.::.~

For completeness, we include the fbllowjng proof.

Assurne V 13 a "eopclogical vector spiee, emd let 01

denote the neighborhood filter of zero in V By

has a. b81'ns EI v , fcr :'30mea
Because each neighborhood of zero is absorbent, it follüws

tl1at V , -= Va a'".0 \TectOY' S[J2c.es. V
8.

for

a > a' can not be strictly cüarsor thhn V , , für "ehena

t.



(')1 Vlould. not be the 11 (c1.. borhcod fi.lter of ~~,ero1(1 V ,

The sufficiency i3 c1ear.
''''-<''':'''f

For a x

(i ). CI ( X ) }.s !2. !?J!_ 0 1oJ,~~.~_.0.l'@_Pi'::..~~.

(i i ). .CI (X) .~iJ!.'r~.e s ~h(:::. cornP0_c:~.-.QI~,n ~r~~~J..:s:~gy(anc1

isomorc)hic to------_. __ .•._- -- C (Y\ \,
/ "' / /.c

Proof. It i3 easy to verify that ßX\X i3 a

compact subset of ßX if and only if X 13 locally

compact (see [9] J p. 90), No%' it follows f20m

proposition 5 that CI(X) is a topological space if

and only if X i8 locally compact. It 13 evident.that

if X is locally compactJ then C1(X) 18 equa1 to

In this case, C (X) also carries the compact-c
open top010gy since Cc(X) 13 always coarser than

CI(X) and fin6+ than Ck(X)

'l'heorern 6.

vii t:h the oint pE X

C (X')
C'

earl ll.ot be



,',.. " ~...•.4.-... .. < •• _'-, > __ ".' .• ~ _'~ .• J>. .• '" ~

that a Dseudo-topological UDlon

v - Ind 'v' hafe) '[,lJ(:,' T)rOper'tytl1at if Cl filter' ~i ->- 0
_ () Cla (; i", "'",

(the zero element 1D V), then there CXlsts a coarser rilter

~' with thc property that $' converges to 0 and

for every )\f fR\{O} 0 13y A~)" Vie sünply mean

OA: Ac<jJ'} . Indeed, if q) --io- 0 J.n V , then J. ("';1 ).. v, ,
a

is the inclw3ion map fJ:"om

where tri
a

for some

1S the neighborhood filter of

a (.a , and

o 111 V a

V a

into V . Since V a 13 a topological vector spaee,

A 13'1 = Gi , and honce \1(01) = i(Ot) for each A f. 0a a a a
Our proof will consist of.finding a filter 8

convergent to 0 1n C (X)c that does not satisfy the

above condition. Wo first construct inductively the

following system of decreasing neighborhoods of p .

Assume that p has no compact neighbo~hood and

{Ci} . r"J"m In C. 11'

18 a countable collection of open sets that form a

base for the neighborhood filter at p .

a,nd let

Set l'J - X ,"1



._::; ') .-.

be an open coveri
\'Je c1efine

TI
L.1~. .- 0jr.t n Qj. p

I

''J};]PIOip
\ ,,_.-J ,'"

. {N.
l

pt

u. }
l

o (. {O } and Q (-~ {Q } ." r '.1u 1. (j . v 1 m Y.1 f; Ii\!
Phave been constructed 1'01' i ~ j

As llrDe

- j • Choo::;e

Nj to be a closed neighborhood ()f' p
and let

{o. }
Ja

contained in U. ~J-J.

be a covering 01' N.
J

x that admits no

finite subcovering. He pick U.
J

to be (j.nopen
neighborhood 01' p contained ln

O. () Q. n N.
Ja .J JP

closed and open neighborhoods of
1'1he1'e y)G O. C. {O. }

1- Ja' 'ICXp. L

of reC'",pectively

and VJith this
p

N :.:.\ U ::::; N ::7 U :'71 :1. 2 2

we construct Dur filter e. Let



,... Cj64-

ancl 1et

r[' _ {['C:C(X):
n

J', (,., \

1. j\'n /

,- ..... "'.i..

'1' -, {f (;:C (X): feH) - {o} }x x

1'01' eacl1 x r: X\{p} V:;118 1"8 VIf'.:- ehoose H •..••. <... ..•.• follo\'!s} Cl,..)x
Sinee x ~ p , there e)~J~sts an 1-") [ Ö" such tha.t

x ( N \l'J l' Let \'l be a elosed neil;n;hborhoodoi'
1" 1"+, X

"'"'

x

r
W C ( n o. () Ne 'j

X ,- J r, '1-' + ','L •i=l --"x

(' Ne
'1'+1

:L[{1,

=X\N ~ ), VJhcre x t: O. e {O _ } foreachr+.L . lG la
x

2, "'.' r} , It is easy 1;0 verif'y t1'1attbe-
eollection

J. ::: {'r} _
x X t X\ {p}

generates a filter 0 that cohverges ~o 0 III C (X)e
tJow, we sl]ow that tllcre e.xists Da coarser filter 0/
,eonvergent to 0 with the property that \O~::: O~

8' -_._j. .. () tl.lere e):if:;ts a.:::- :;

n,e i t;ll b OI'lJ'l.ood. of ,p 2,nd an element



-9'/-

'"'1'1, p \' f' ",c .,- J •. \') Cl i- ,[•• .1 .•. . Cl- L.. l".J. ,(~ •...

V :JI~l_ for SOlTieI\.

w(F/>( \I) C:: [--1

lS a nej.g11borhood
ano thu::,

()f.

.-;1
.!. j

'-',;'.¥,

p 1.mplJ,cs that

By assumption, and e/ ~ e , which means there

lass o~ generality, we ean i8 the interseetion of

existc an element FEe such that

8.S S D.rne

1-" (-- .-, 'I" /
J.1' •.~ .•.. ~.k' ,

r..
VIithout

., a finite number of E;ets in J., and th,,}reforeV7e ca.n write

~'

:l £1'/ :::::> p =2k

for fl a finite subset of ~ 2nd a finite subset

of X\{p}. Now, we clai.m that

Nd. t,)VJ U F
1-:- 7'- x (jE x 'k + J

Dur eonstruction guarantees that for a fixed \\1
X

either l T ,_'-, ,. •• ,C
1"1 l- [~

x k
O.
Va,

is an element

of the open coverlng

i~) c on t cd. Ee c1 in O.
! r ('
£L "p

Jn 1
t. \jl{Cl J

Since the

J
l

~.P
i..,JJ. 1',1 .1'1 ci S }~j0

"'j[ nite stlbcovering~



~".' . '.~-.

t'6Cjl"~P
,c. 1"""~'
fr;q(X)

I
ßuch 'cha,t

regular} VJe 'ca,n pick a function

:J.
11 f 1I < k f(q) 1.- k , and \ I 1.T )'-...J vv _.

_( v x,'x ';'\
{O}

It follows that f i8 an element of F . But tl1f), ---- ,'1-"",. - 2k '

as f(q)
Itheorem!.

1- ~ ' and this contradiction establishes the

He)~~,?rl~. 'rh(';proof of theorem 6 reveaL3 tlle fo110\'J5.ng
property of the continuous convergence f;tructure; Given
a LU ter o convergent to 0 1n c (X) , there does not,c
in general, eX1st a coarser filter 8" convergent to 0
such that ~8" = 8" for every A(.fH \ {O}

The following 16 an immediate corollary of theorem 6.

:x 1, S COrnni':LCl'; •



........._.~... \.

-; '7
.) f, I 4

CCi{l V'f; >: irlcl U.Cti ve lirni t 0 f' tl11~.; f' CJ.l"ni l~l {(' (OY\,,)\.
../. f-) .i\. 1. .1 Tl" r 11

C .. ,):~X I<

Let {T \. be a famil,v of Ioeallv convex tot.)oloc.~ical, .~cl) ::1( iL f • .",... • 'c .

.J ,'"f '.' 'n(',..,,~ c. .,.1.. ' c,"'".' ".,.. t' Q .••( ,-...(-i~•. .t.. .•. ~ ~ ,...._j) (:--,,~ 4_" Y., 7 ~vec~c1.. ,-'l)ü.~t.;,:' 'Jdl"J,,-'. .l.,",Lr'b ,D,<:;;C,..'Jl", ..L'.,J,O'1':;' _.,1 u,,--CL,J.OJl .).,1.

I)" J'1'" 10nQ"'1., nOY"Tc'X'i)"11,.,-I-"L'T"" "l"""'r' n.0 f'J" 'J' T'e
J;j l f '" .:=- .. ..:~.?:.=-L,2.. .':......'....:.::.:.:._.:..:'::....~~~:..::..\.~ ..~::-.. .:!::......:.:~.::. ,. 1. l J Cl at (J ' "".

I '
mca~ thc fioeGt locally convex vector spaee topology

I

mak:i.ngall the inclusion maps ~,)y"ltinuous(f:,ee[1IIJ" p. 78).

VJe c1enote th:i.f3by

Lim L
a

Given a convergence vector space V itL3 aSßc)c5.a.t,(;cl

veetor spaee topology on the linear space V which i8
coarser than the given eonvergence structure. Such a
topology indeed exists, for it is the topology det~rmineG
by all the continuous seminorms on V

In viev-Tof propösi tion 2, ~l.tJ.s ea,sy 'co veri fy
that tne associated locally convex topology of Cr(X)
is just

Fol' a

r. (ß""\ I')~ A \ \ •
C

Sr)2Ce
----.•..._---

the



-.. 1 ()C)--

o l11

\,J8 can a"SUI:le U :".;:0 clo::3eo. 2nd convox. Since a.1I the
,':;.'}~.' Ce C' r)n 1"; n 'l' C)'1 .~ -i l' f:~l.J.f f '_i C', ,", S-. _ . ~.~v -1.. ~ .••.•' A. L1c ~J ~ ..•...••..' __ ....

to show that U 18 a neighborhood of 0 in Ck(X) .
Clearly T'J (\ (' 0 (y )'. 'v \.1. .•. J.S Cl neighborhood oi' o ln ,.., 0 ( y)

"'nI.",

as C COY')j.).J'l.

C
i8 bicontinuously isomorphie t6 CO(X)

n

Thus,. there exists a 6 > 0 with the property that
fE U whenever 1I f I1 < ö and f C. C(X)

Here, we interrupt our proof to introduce the concept
of a support set as developed in [13J. A support set
.1'01" TJ is a compact subset Ge ßX such that if fE: C (X)

and .f vanishes on G ~ then f c: 1] (here agc.un, f

is the unique exten;.3ionof f to Cl continuou;:3map from
..vßX into R). Trivially, ßX itself i8 a support set

for U . Given any support set fOT' U VJe clcüm tha.t

then f £. U . ,Inc1eo(1,let
if fEe(x) and , wbere C' l J l' I fo ( )' 11u "1:) l.r. •../ .

xEG

['; = (f V ~~ :J) + (I' /\. ,:i 1)2 -- .2 --

Since by assumption 11TI!< 0/2
I ~ li(} the function 2g

van]~~hes on G , anel thus 2g (" U Further~
112(-" - rr)P1I - \.L Ö 1I < 8 , which implies 2(f - g)~ U Bonce



-Je)J ..".

28 is c1. 8l)IJ})Ol't

i~
:::;et für 1.T

'.e> f' r: ('(Y':L1 .~' h)

in r3X :' 'ehen f..-'

J i;3 in 1.3 The rieeessity i8 obVious.
\

Für tlJe sufficiency, 3.c;';urne fC C(X) and f(G) = {O}

.Again, de fine Sinee

f vanishes on G the set

-1 _.0 Ö
N - f ("2' 2)

lS an open neighborhoocl of G sU.ch thaG g vanlshes

on N By as S U111P ti 011, 2g f 1.3 and ~ c' above, 2(f - g) L: U, cl I'::! \,..

By e6nvexity, f is an element of 1.3. Renee G is

indeed 0. support set. The eolleetio~ of all support

sets for 1.3 is, ln fact, closed under finite interseetions.

Tt suffiees to show that the interseetion or two

support sets, G1 emd

Let be an open neighborhood cf er (')
1 , and

f' a fun~tion in C(X) whose eztension f vanishes on

Sinee allel. G \\/.:r) ••
e

are disjoint closed se~s

in ßX , we ean chooso open neighborhocds H1 anel

VI 2
(i,f','. ("';1 anel G2'W respe6tively with the property

-I'; I ',I )\.\.,.,'~l - {1} and {O} .



It [0110''':3 tha.t

2 fk (l~ V \.~2) ... {O"] and

SirJce G :J
arlcl G. r,

c.
are support .sets, and

21'(1 - k) are both eJements of U , and thus

1':: ~{2fk -I- 2fC~ - k)} (EU,

which means . G ::G~n G~ is a support set for U .
1 c.

We are' now prepared to show that thore exists a unique
smallest supp6rt set for U, which wo dünote by GU .
vIe ean wri te

r"'i Ci
GU'

where r is the collection 01' all support sets for U .
Ta verify that GU is aetualJy a support set, let
f' be an element 01' C' (y)J \ ..l~. such that f vani~3hes on
sorne open neighi")orhood 1;J 01" GU

HC n n G :: 0
GO'

and BX 13 compact,

o'oJnce



.. 1C;j ...

r' is a fi.11ite subset oI' Tl
J conta.irlS

\'il}icJ.1 5,rn"pJ.ics fC U.
, •.••••.•.. <t-

Returning to our proof, wo need only show that

this smallest Sllp]~ort set ~lß cont ..a.incc1. 1.11 y
.1'". •

For then;

{ f f. C (X): 1Iflic"
, JU

would be a neighborhood of 0 in C (X)k

--U .To this end, let p be an arbitrary point in

ßX\X Now

u n C (ßX\p)
lJ

i8 a neighborhood of 0 in C (Q"\ )\pA\D •C • '.~herefore,

there exists a compactsubset G~ ßX\p with

the property thc!t if f c: C (ßX\p) and f vanisbes

"'on'G~ ,-then FE U. C6nsider any function g r:. C(X)

such that ~(G~) - {ol . The Fr&chet filter 8
..-~,.

determined by the sequence

( (n t /\ g) v _.nJ.)" / 'I;' J
- 11 t: ,,'

) vrec (e ..X\ I()c

Since 8 has ;:;,

~
(',c ( O,X\" -t-'" - J, (,.:; ';, ') c; < 1 --"\ ~_.• l. :;.., , <.:...n(1. n.f::Y1Cec ein ve r'.E£es to g in

cOrl\le~('g:es to (';" in(.::.~

trace on U ~Yl rl Uc..> .I. ,~(.

r
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.,,,_~.;.;; .•~,.;...-.; .••.,._,'v., •. ~_

for U di sj oint .from D •

j_ntersectioll of all SUPP01~t sets f'OI' 1J, t}),e POi_l"lt

P i8 not in Gu which complet~s thep~oof.

Since is CO.3.riser' tllcl,n GT(X)
..L

than Ck(X) , Vl(; have. an alternat:ive proof for the
following known result (to appeal' ln the thesis of
H.P. Butzrnann, UniversitUt Mannheim) without using
integral representations.

thenG k(X ) iS !)l ~ ~?::;0c:..~~!2:5:_~~~1C!.(22):LL ~ 0l~.:~.e:.~.~gy01..~li-Y.
öf C (X) •c

For a convere;enee vector spaee V , let L(V) denote
the dual space of V (i.e., the vector. spe.ce ofalJ.
continuous linear functionals on V). It has been

the thesis oi' 110 P.

L(G (X))c for.any c"-emlJeddad convergence
space X. In the case cf 0. completely regular tOPDlogieal
space X we ean extend this l'esult to the finer convegence

Specifically, as an immediate
col'ollary of theorem 7, we have

t.



.-.. , "~,~

!Hem2.2k.
i -~~----'-_.-

rrheore;n'7 teIls Ufo that C]{(X) , for' any
(' or"I" ] r-."' e J -'I -I'-'e 0'1.' 1~rJ J 1J _C U -J -- ~-~t~._. C~ topological 3pace x , can be realized es
the locally convex inductive limit of a family, each
of whose me~bers is a function algebra on a locally cornpact
topological space (with the compact-open topology).

We will consider the 10caJly convex inductive limit
of a subfamily of Define

/J.- {Z (f'»' f 1,:; (' ( (:<"J' \(I".. :...J •. ~. --' _J l.) and Z(f) C ßX\X}

( Z(f) = f -1(0) ). It is clear that is a f:5Llt)Set

of ~( , and further, the family
the conditions in section 3.1. Eecall thClt uX denotes
the Hewitt realcompactification.

'I'heorem(3.

For e
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- j

.~lo6F,~

" \

CleC\rlY'

L J (-' ( (.) Y \ 7 \ ," ( V) ,~".".,.
~••. 1 l-Ji:.. 1.-1) ._. v .I~

Z «{....u

it SlJffices to denlonstrate tl1at every f(:C(Y\. 3.':, .d.. )

is i
I Z) ,? ( /J.., ..a'n e lernen.t oi' C \. P,X\ 1'01' :301ne L, Cl . . fi ~3S urne f

:Ls in C(X) 1 set5 an(~

g = Irlv.!

Now
I ~ 1

-g~ !'-..l ( CD ) -_ J".' --: (co),. i t, _ anel :'ul' hermore , haG a

b i" ,. ~I CCO(X'\ ). oune eCl J_nverse \J .. e., 1 [; ~ ). It fol1ows that

Now it ia easy to vel'ify that für c'very

D C C(f'y\?(I.))J. - ).,u'v
,J

Z (l1JX :: 0

c:md hence

ZC';} (see [9J, p. 118). 'I'hu;] ~ gi ven z C~~ , the inclu ..sJ.on
[,

map f~om 1JX into ßX\Z induces a continuous
monomorphisrn from C (SX\Z)c into C (uX) .c I3ec8.l).se of

the canonical ü3ümorphism betVJebl C(X). anS C(uX) , we

can regen'd Lj.lJl.C (ßX\Z)c 28 a conve]~gence structure on

C(uX) . Since r (11'1')'"l.T ,,\.,..0'.1::'
'e

is coarsel' 'chan, Cc (I):;() ~ the

uni verscü prope)?ty 01' the locally conv-t';x incJ.uct ive

limit (see [14J, p. 79) implies that the identity,

. ,
1.0 : Lin

is continuous~ C011verseJ.y~aQsume tJ is a nei.ghboy:tl()od
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(",f' 0 iIl
T (' (--'~ 1..: v \
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i'iC CCln as f) l..lY11e T 1
,)

pr'oof of th,eorem (7, ttle intersection of all support
sets far U , which w8.derlote lJY
Sllpport set für U. Furtl1cr, there exists a 6 > 0
such that f~' U v!henever f f. C(X) vlith 1I f lln < 8. It

Uu
only rema,:ins to ppove that GU ],:3 ccn.tained in uX :8'01'

an a1'bitrs.ry tc:. I3X\uX , thcre exist~3 Cl function k c-;C( SX)

such that k(t) = 0 and Z / ]<,) n lJ Y = (7)
C-l \ •• .i~ y~, [" ..,

(see 9.1, p. 101~).

u n C(ßX\Z(k)

is a neighborhood of 0 ln C (!3X\Z(k» , there exüotß
c

, b J G-'C ßY\:~(l,.,{'\a compac"C su sec J' _ .) with the property that

if f(C(ßX\Z(k») Cind [(Ur) = {o} then f tf U Now~
as in the proof of the opern '7 ~ one cc:1.l1show that if

g is any function in C(X) and V va.nishe s on G-',~ .
then g {U. 'rherefore G' is 8. support set für U

disjoint from' t , which cornpletes the ~roof.
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