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The algebra of all continuous real-valued Functions

on & space X, endowed with the continuous convewrgence
structure is denoted by CC(X) . Relationships between
a space X and its associated convergence algebra CC(X)

are investigated. After appropriate definitions, the

following two theorems are proved: (1). A c-embedded

.convergence space X is Lindelof if and only if CC(X)

is first countable (this has a generalization to
upper W -compact spaces). (2). A c-embedded convergence
-4

space X has weight W if and only if CC(X) has

weight A . With the help of (2), it is shown that

" a completely regular topological space X 1is separable

and metrizable if and cnly if CC(X) is second countable.

A type of Stone-Weilerstrass theorem?proved by E. Bingz
is.extended to deal with questions of denéity. This
extension is utilized to provide another char cﬁerization
of separable metrizable spaces, and toréhow that the'
algebraic tensor produqt bf C(X) and  C(Y) may ﬁe
Pégafded as a dense subalgebra of C_(X x Y) .

An inductive 1imit (in the category of cdnvergence
spaces) of certain locally convex topélogical vector
spaces 1s constructed. This inductiyé limit proves to
be a useful approximation of CC(X) . However, for
a wide class of topological spaces, 1t is shown that
CC(X) can not evenvbe.realized as an iﬁductive Timit
of ﬁopological vector spaces.
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We will ¢onsider P@l&tiéDShipS between a sbéce
X and the correspondiqg algebra CCX) , consisting of
all continuous real-valued functions on X . It is
well~known that the algebraic-propefties of  C(X) are
not, in general, sufficient ﬁo determine the space“X .
Thus, in order to obtain ‘information meaningful for a
wide class of spaces, we must consider more than the
strictly algebraic properties of C(X) . It turns out
that the continuous convergence sfructure on  C{X)

(See 0.2), which we denote by CC(X) » is particularly
well suited for our work.

Chapter O provides a brief summary of the concepts
needed throughout ﬁhe paper. We point out in 0.7 that |
the_é«embedded convergence spaces form a nétural class‘
of spaces for investigating the interplay between X
and CC(X) . Furthermore, topological spaces whose
topology is determined by C(X) , namely completely
regular spaces. (see 0.5), are c-embedded.

in chapter 1,Aaft@r generalizing .certain topological
concepts, we prove that a c-embedded convergence space X
is uﬁper N-compact if and only if ’CC(X) is N-countable.
Wiﬁh the help of theorem 2, a characterization of

c-~embedded convergence spaces having weight W\ , We show that

a completely regular topological space X is separable:
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and metrizable if and only if CC(X) is second éountable.
. Section 1.3 provides @eneralizatibns of some faﬁiliar
topological results and examples to show that dﬁ;
) extended definitions are not vacuous. )
| The problem.of dense subsets in CC(X) 1éads us
to theorem 1 in chapter 2, which is a generalization
of a type of Stone-Weierstrass theorem proved-in [5}.
Using theorem 1, we givé a characterization of
separable metrizable spaces in terms of countable dense
subsets of CC(X)v(ﬁheorgm %). Furthermore, a
general criterion for the separability of completely
regular topological spacés is pfovided. Theorem 1 also
. v
allows us to investigate both the algebraic tencor
- “ product of fuﬁction algebras (section 2.3%) and the .tensor
- prodﬁct in a certain category cof convergence algebras.
(section 2.4).
CC(X) is not, in general, a topologiéal apace.
»Invchapter 5 we attempt to approximate CC(X) by
an inductive limit of locally convex topological )
vector spaces.(in the category of convergence spaces).
Specifically, given a completely regular tepological
space X , we consider the inductive limit of the
topological algebras CC(BX\K) for all compact subsets
- K of BN\X , and denote this limit by ¢ (%) .
] The convergenée algebra CI<X> provides a useful

)

approximation of - C (X) . We show, for example, that
; ¢




CI(X) has the same closed idesls, the same contilnuous

4

homomorphisms, and the same dual space as C (x) .
Furthermore, 'CI(X) , like CC(X) , 1s always co;plete_
and is topological if‘and only if Gch) is tqpological°
On the other hand,. CI(X)’ does not coincide with CC(X)
in general, and mdreover, for;a 1afge class of topological
spaces, CC(X) can not be realized as an inductive
limit of topological vector spaces (theorem 6). The
last section in chapter 7 is devoted to investigating

the locally convex inductive limit of the algebras

CC(BX\K) .
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0. BACKRGROUHND

0.1. Convergence spaces

g

Before intreducing the concept of a gonvergence
spajce, we will briefly.clarify our hbtations in dealiy g-
with filters.

oo Let T (X) denote the col °0tjon of all filters

oﬁ a set X (in the sense of Bourbaki; [SJ, I, p.-57).
Given_filters ¢ and ¢ on X , we write ¢ <

if ¢ 'ié coarser than ¢ (or ¢ is finer than ¢ ).
If a non-empty collection Jd or subset; of X bhas the
proper%y that the intersection of any finite number

of eiements in 2 is not empfy, then the coarsest
filter'éontaining -4 ds called the filter generated by

1. If a collection & of subsets of X generates

a filter: ¢ and has the property that eéch A¢ ¢ contains
an element B € B , then & is said to be a base (or basis)
for>the filter ¢. For a point x€X , let *x denote

the trivial ultrafilfer generated by {x} . Finally,

for two filters ¢ and w‘ in " F(X) , ¢ AP is the

finest filter:cOérser than both ¢ and ¢ (i.e., the
filter generated by all the sets AVA® , for A¢ ¢ and
Aew). | |

A convergence structure (Limitierung, [1]) on a
set X dis a map A from X into the pONer set of

F(X) that satisfies the following conditions for

each point € X



(i) If ¢€A(x) and ¢ .< ¢ for & F(X) , then Yeh(x).

(1i) If s e h(x) and Peéh(x) , then ¢ay £h(x).

(iid) % En(x) .

) The pair (X,Ah) is called a éanergence Space 

(Limesraum, [1])t Every topological space X 1s, in é

natural way, a convergence gpaoen 'For each x ¢X ,

A{x) 1s simply the cdllection of all filters on X

"that converge to X :n £he topological space X .

In analogy with topélogical spdces, we offten denote

a convergence space (X,A) Dby the symbol X alone.

In this case, for-a filter ¢ €éA(x) , whefe x X , we

say ¢ converges to x and write ¢ — x . Thus,
5 ,

¢ is a convergent filter in the convergence space X
- if ¢ — x for some xé€X .

- A map f from a convergence space-X into a convergence
space Y d1is sgaid to be continucug 1if for every convergen@
filter évon X,
£(9) ——r £(x)

in Y , where — x in X . By f(¢) , we mean the

filter generated on Y by )
i C{f(A): A £ ).

Obviously, for topological spaces the deflinition coincides . .
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Wwith the-usual concepnt of continuity.
b -7

The identity map from a convergence space X

[

~onto itself is continuous and further, glven convergence

spaces X , Y , and Z and continuous maps f: X —— Y
and g: Y — Z , the map gef 1is continuous from
X into 2 . Therefore, we can speak of the category

$ , whose objects are convergence spaces, and whose

morphisms are continuous maps. . We call an isomorphism

in the category £ oa homeomornhism. Clearly, the

category -of topological spaces (morphisms, continuous maps)
can be regarded as a (full) subcategory of L.

We can extend the concept of a clesure operator
to the category £ .. For a subset S of a convergence
space X, the gﬁﬁgﬁggﬁg of S , which we denote by

a(S) , is the set of all points x € X with the property

‘that there exists a convergent fiiter ¢ on X such

that ¢ — x and ¢ has a trace on S . A filter

~¢-on--X-- 1s said to have a trace on a subset SCX

if every set A€ ¢ has a non-empty intersection with
S . We say thet a subset S of X is.closed if

a(S) = S . In general, the adherence operator is not

idempotent, and thus the adherence of a subset $ of X

need not be closed.

A convergence space X is called separated if
whenever a convergent filter ¢ on X converges ' |

to both x eaend y , then x

=y . We say a separated

convergence space 1s regular if for each convergent filter




~of all ccenvergence st

7
¢ on X , the filter

{a(A): AEo}

y

is convergent in X . On the subcategory of topoleogical
spaces, these definitions agree with the usual concepts of
] _xxloz‘i

sdorff) and regular.

0.2. The continuous convergence structure

Given two convergence structures 1

na I

e
jO)

on the set X , the convergence space (X,A) is said to

|64

be finer than V(X,A’) (or (X,h7)

1s coarser than
(X,  A) ) if the identity map

1d: (X,A) ——= (X,A7)

is contlnuous.

A subgset S of a convergence space X

0

is called
a subspace of X

(or carries the convergence structure
inherited from ™~ X ) if S is endowed with the coarsest

structures A for._.which the inclusion

map
it (S,h) — X
is

s continuous.

oo




Given convergence spaces X and Y , we define

1.

" s S B
te be the cartesian

@)

<
<

g

the product convergen:

space
product of X and Y together with the coarsest, of
Aall‘convergence stfuctures making the projwction maps
onto iX_ and iY continuous. Oﬁviou;ﬁlf/3 we could extend
this1definition to the product of an arbitrary family of
convérgence spaces. For a convergence space 4, a map
T Pfrom Z into X x Y dis continuous if and only if
pf;f ahd 1pyaf are both continuous, where Py and
py‘ are the projections onto X and Y respectively.
.If[ X and Y ére noh~empty convergence spaces,
then the collection.of all continuous maps from X
into Y , which we denote by C(X,Y) , is not'empty,
Thus; for‘convénience, we restrict ourselves to non-empty
convergence spaces. In particular, L will denote the
:aﬁegory of converéénce spaces excluding the empty set.
Now, lct w denote the natural evaluation map

.

w: C(X,Y) x X -—> Y ,
defined by w(f,x) = f(x) for every f€C(X,Y) and for 
every €& X .- Among all the convergeﬁce structures A on
C(X,Y) making the map ‘w from (C(X,Y),h) x ¥ into Y

continuous, there exists a coarsest convergence structure

AC (see [1]). We call AC “the continuous convergence

-

structure (Limitierung der stetigen Konvergenz, [1]), and
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we denote the convergence space (C(A,Y),AC) by. CC XYy .

Theiéonvergence space Ch(XﬁY) is separated 1if and only
e
N if 'Y is separated. ' » i
Q.B. Conve?g and.fdnction algebraé
| The set C(X, M) -consisting of all continuous
real}valued functions on a convergence space X , we
.dénote simply by C(X) . Under the pointwise defined
ogérations,- C(X) is an associative, commutative,
unitary @ ~algebra. The function 1 of constant value
1 is the unity element, and the function O of constant
~value 0 is the zero element. If a function £ €C(N)
- ‘ "has a multiplicative inverse. in the algebra C(X) , we

'denote it with the suggestive nctation 1/f . Any algebra
of the form C(X) for a convergence space X is said to

be a function algebra. We will be primarily concerned

with the function algebra C(X) together with the continuous
convergence structure which we denote by Cﬁ(X) .
. (97
A convergence space G , which is also a group,

o

is said to be a, convergence group if:

(1). The map

sending each . (gl s g2)6 G % G to the group

hroduct gl £ is continuous.
J.L 2 >
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(2). The m

g}
)
j®]

A i"""":{-
G — G ,

-

sending each element in G to its inverse, 1is
continuous.
It is -evident that the convergence structure on a

‘convergence group is determined by the filters convergent

to the identity element. A convergence space V , which

is also a vector space over [R , is a convergence véctor

space if V is a Convergence group with respect to the

underlying group structure; and scalar multiplication

is continuous_(i.e;,'the map from R x v into v

- defined by scalar multiplication is contihﬁous). Purther,
,if the coﬁvergence vector space v is-also an algebra

over R . then V is said to bec a convergence algebrsg

if the multiplication is continuous.

~ vSiqce_for topological spacexs X and Y the product

convergence space X x Y  is siMply the usual cartesian
product of X “and Y , the concepts of. topological groﬁpss
vector Spaces, and algebras are cdns’stent with the above
‘definitions. In particular, Ck(X) and CS(X) , the algebra
'C(X) endowed with the compact-open topoiogy and the |

= , topology of pointwise convergence respectively, are both
topological (i.e., convergence) algebras fof_any convergence

Ty 42

space X . For a definition of compactness in a convergencs




B

O if and only if. w(@ x ¢) converges to O in

i
j
1

space, see [8], p. 277 .
It is not difficult to show (see [1]) that C_(X)

is a convergence algebra for any convergence space X .

Therefore, the continuous convergence structure on

C(X) idis determined by -the filters convergent to 0O .

Specifically, a filter 6 on CC(X) converges to-

R

for every convergent filter ¢ on X (0 x ¢ denotes

the filter generated on C(X) x X by the sets A x B
for every Ac¢ 0 and every DB ¢¢). With this characterization
it is easy to see that CC(X) 1is always finer than

CkQX).

- Remark. For a completely regular topological

space X ; the convérgence algebra CC(X) is equal to
Ck(X) if and only if X 1s locally compact (see [6],

TT, p. 329).

.

We call a subset ACC(X) a subalgebra of

of C(X) if A , with the inherited algebraic operations,

is an algebra containing 1 . It will often be helpful

£

to consider the subalgebra C%(X) , consisting of

;all bounded functions in C{X).  Here, we can define

the sup-norm by

Hell = sup [0(x)]
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for each f€C°(X) . We will denote by Co(X). the

P TR T ¢ I R, N BV B g N T ; -
algebra - C"(X) together with the sup-norm. OFf course

C2(X) is a Banach algebra. e
n :

Function algebras have the following useful algebraic
structure. There is a natural partial ordering on
C(X) for a convergence space X defined by:
> g if f£(x) > g{x) for every xé¢X .. With this

cordering C(X) is a partially ordered algebra
(see [9], p. 11), and in addition, a lattice. 1In
particular,
(fvg)(x) = f(x)vglx)

. for every x¢ X , where '"v" is the lattice operation
in R (i.e., avb = max{a,b} for a and b in R).
Similarly, (fag)(x) = f(x)ag(x) for every xeX .
The' function |[f| 4is defined by

\ .
[f] = fv (-f) ,
and it follows immédiately that for each x ¢ X
G0 = 0] .

Since |f]€ C(X) and
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&
H

the function fvg and dually A g are indeed
continucus (i.e., elements of C(X) ). If a subalgebra
A of C(X) is also a sublattice of C(X) , then A

igs said to be a lattice subalgebra.

0.4, TYunctorial properties

By a homomorphism between two associative, commutative,

unitary B ~algebras, we will mean an algebra homomorphisn
taking unity to unity. Let ;4’ be the'category.of
aséociative,'Qommutative, unitary convergence. algebras

over B . The morphisms iﬁ ﬁ% are continuous homomorphisms.
Fof convergence spaces X and Y , a cbntinuous_map

te X — Y induées a homomorphism ‘ ]

£t C(Y) — C(X)

.

defined by ¢t f) = fet for every fe€C(Y) . 1In fact,

' . i

¥ ' _
t CC(Y) e—a—CC(X)

is continuous (see fé])g. Therefore, we have a contravariant

' . . ") : '
functor ¥, from £ into ¥, where tc takes cach

v
b2

object X to CC(X) and each morphism t to 7 .
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all homomorphisms from an [ -algebra

., taking unity to unity) we denote

Cn : Y. | L
by Hom A For A€ s, let FHom A be the subset of

J © 1 ) - .57 N
all continuous homcmorphisms from A onto i . To
indicate the continuous convergence structure on

]

. . - . . F
ffom A (inherited from CC(A} ) we write fvomCA .

Similarly, let the spaces ¢7om_A and Hom_ A carry
- =) il

.the topology of pointwise convergence on the sets in

question. Given two convergence algebras A and

B in ?4', a homomorphism u from A into B

induces a map

hYA

U : Hom B — Hom A

defined by> u*(h) = heu for each héHom B . 1In

‘o . . . . L . ]
addition, if wu is continuocus (i.e., a morphism in £t ),

2f : >
#Hom B x

, which we denote again by u”™ , maps

then u™
ﬁ%bm B into #om A , and

# 3 3 /ﬂ P \
S ?ngcB ——4-;ﬁ%mCA and uﬁg ﬂgms} > é@n%A

dare both continuous (see 2]). Clearly,

u%: HomSB — Hom_A

el
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is continuous even 31T u  is not continuous.
. Now, given a continuous map t  from a convergence

+
space X into a convergence space Y

o

makes

sense to speak of the continuous maps

KR pp oy £ .
t '(HumCCC(X) u > /bﬂCCC(Y>

. o £ FHom C (X) ——= Hom C (Y) .
a s ¢ s ¢

Similarly, for a continuous homomorphisnm
x
!

u: A —-B

v ' . /
where A and B are elements 1n s, we can speak of
the ‘continuous homomorphisms

1 -

W ¢ (FHom A) —— ¢ (Hom B)
. c c c c

and

W o (Wom A) —— ¢ (Hom B) .
¢ s c 5

-

Finally, given a continuous function g in C(iR)

_ohe obtains a continucus map
. 7Y ey 1
Byt Cc(k) > vc(}\) 5

-for any convergence space X , defined by g
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vfbr each € C(OD)
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0.5. Associated topologlical structures

O
]
o]
Q,

In 0.1 we introduced the concept. of a cl

subset ¢f a convergence space X . Therefore, a subset
U of X is called open if U is the complement of a

closed set. The collection of all open subsets of
"X " defines a toplogy on the set X , which we refer to

~as' the associated topology on X ..

‘

FPor our purposes, we wish to associate to each
1 .
convergence space a completely regular topological

space. Given an arbitrary convergence space X , let

X" = om,, C (X) . We call X~ the associated.completely
- B} .

regular space of X . E. Binz has shown in [3] that the

3

map

» #Hom c. o0,

senﬁing each x€X to the continuous homomorphism

of point evalyation by x (i.e., *k(h)< r)y = £(x)
for'eaoh TE€C 55 is sur] octﬂVu Thus X7 ﬁay

bo regal ded as the space obtained by identifying the
points in X which can not be dist iﬁq@ishﬁd by functions
in KC(X) , and giving this Sét whe weal topology lDQU”ﬂ(
by C(a) (considered as functicens on the seﬁ X with

Clearly for any coenvergence

[N
Q
—
e
O

{ 1’)
f—y

the above identifi

i
T
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space X ,- the function algebra

to C(X") indeed, iy

A

and i is a continuous ilsomorphis
_ -
ont

CC(X) .

Compactifications

‘-"lo.6.

|

1

Lo ) .
v i Completely regular topological

bj*the fact that they are precisely

C(X) is

is a ceontinuous

lsomorphnic

r’
onto X

map

spaces are characterized

the subspaces of

compact topological spaces. Specifically, for a

conipletely regular topological space X , we will denote

the StoFe~Cech compactification of
(9], p. 86). By a compactification
mean a compact space which contains

copy of X as a dense subset. BX

X by BX (seec

of X , we.
a homeomorphic
dis the unigue

compactification of X , up to homeomorphism, satisfying

the following universal property:

5X into - K .

Every continuous

K has a

That is,

from X into BX ,

map k from X . into any compact space
, V ~

continuous extension k from

if i 1s the natural embedding map

the following diagram is commutative:

X —t—r pX

¢ \\ \l L(
kK ~. \
~K

18

C(pX)

Furthermore
d >

isomorphic to the

subalgebra




0

of bounded functions, CO(X ) , via the canonical
; ;

monomorphism 17 . VWe remarlk that the

o

o uulllLCd*lbf
gX  can he realized as HomSCO(X) . | RN
; A completely regular topological space Z is
called realcompact if every homomorphiSm from C(X)
|

onto m can be represented by a f int evaluation by
an' element in X (i.e., X 1s homeomorphic tb HomSC(X) ).
'Por cxampl every compact topolegical space is rhélcompactﬁ
bIt is not difficult to verify that two realcompact
spaces X and Y are homeomorphic if and only if
the algebras C(X) and “C(Y) are isomorphic (see
9], p. 115). |

By a realcompactification of a compietely regulér
1Dppiogica1 space X , we mean a realcompac t.space
containing a h01@omorphnc copy of X . as a dense subset.
Let: uvX denote the Hewitt realcompactification of
X (see [9], p. 118). In analogy to the Stone~Cech
combac‘nificationj uX is the unique raalcompacﬁification
of X 5 up to homeomorphism, satisfying the following
uﬁi@ersal property: Every continuous map € from
X into a realcompact space T has a.continuous |

~

extension t from vX idinto T . Thus, if 1

is the embedding map, the following diagram is commutative:
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Moreover., . X can be realized as Hom_C(X). , and
thus it is homeomcrphic to a subspace off  BX . Now
it is easy to verify that the map 1 is an .isomorphism

from C(uX) onto C(X) .

0.7. c-embedded spaces

We have seen that for realcompact spaces, the“
function algebra C(X)-détermineé the space X . Similarly,
we seek the largest class of convergence spaces such
that the convergence algebra CC(X) determines the
space X . We call a convergence space X c—gggggggg
if X 1is homeomorphic to ﬂomCCC(X) . E. Binz has
shown in [3].that _CC(X) is bicontinuously isomorphic

ey X

to chﬁmeCC(X)) via the map iy

for any convergence
space X . Convergence algebras A and B are said

to be khicontinuously isomorphic. if there exists a

homeomorphism of A onto B which is also an isomorphism.
Indeed, the c-embedded convergence spaces are.precisely

the spaces we desire. Specifically, two c-embedded
convergence spﬁbes X and Y are homeomorphic if and

oﬁly if CC(X) and CC(Y) are bicontinuocusly isomorphic
(seé [3]5 Satz 5). rFuftﬁer;.evéry compiétely régﬁléf

topological space is c-embedded. Thus,

7 -f / _ ~ g f .f;t
X r,ﬁomccc(ﬁ) =~ Fom C (¥} = ﬁomSCC(X)
2 . . - o

3.
[ =




for a completely regular topological space X

wher

6}

>

"=" means homeomorphic.  In the case of a c-embedded

convergence space X , clearly the associated c¢Ompletely

Harpon

regular space ( %%mSCC(X) ) can be.regarded as a

topblogical structure on the same underlying set.
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- i 1.1, The aim of this sectlon is To emaracterize

i We will first generalize a few topoleogical concepts.

| . ) ,
By a covering systen é, of a convergence space X ,
Lo : ‘

we mean a collection of subsets of X with the property
that for every convergent {filter ¢ on X , there

exists an Sé«& such that S¢€¢d¢ . A basic subcovering

of a covering system 6? is a subfamily 4~ of o
f ,
. I . _
with the property that for every convergent filter ¢ or

e X , there exists a finite number of elements in &~ s
' . n n -
: , {s.}._ , such that JS.E ¢ .
. e T171=1 iz1 1

Lingeldf and more generally upper ~compact spaces.

Definition 1.

et N be an arbitrary infinite cardinal number.

A convergence space X is said to be upper N -compact

.

if every covering system of X thas a basic subcovering

of cardinal number less than or equal to X . In

particular, X dis Lindeldf if it is upper 'ﬁoncompaot.



Definition 2.

A ey gy - oy r S N ey oA i~ I S . oA o 1 —
A convergence space X ois said to be first countable

) . G et e . .
(respectively T-countable) 1f for any point x&Y

: i R e
candfany filter ¢ convergent to x. in X , there

’

exijts a coarser filter ¢~ such that ¢~ — x and
¢° thas a countable bhasis (respectively a basis of

i

cardinal number less than or equal to N)..

It is evident that our definitiocns correspond
to the usual definitions in the case of topological
spaces .

|
Given a convergence group G , we note that G

is A -countable if and only if the condition in definition

2 holds for filters convergent to the identity element

in G .

We need the following two technical results.

Lemma 1.

Let X Dbe a c-embedded convergence space and

X" its associated completely regular space., If ¢

is a convergent filter in X , then the filter ¢

generated by

r
where M is the closure of M in X~ , is also

convergent in X .




—= % in X for some x&X . VWe can

_
i
@
o
<

<

consider ¢ counvergent to x in ﬁVomCCC(X) . This

5

means that for every convergent filter © in 'GS(X)

g a4 T § -
say| © -— 1 , and for every e > 0 , there exists a TE€.0

andlan M€ ¢ such that
i ! 2 VI Vi ot .
: i '\f‘v(l X I\‘l) « {J. ;\A) + [:"E s ,&] ] s

where w 1is the evaluation map as in 0.2 (i.e.,
lg(y) = f(x)] < ¢ for every g€T and every yéM ).
Since %’ carries the weak topology induced by all

the functions in C(X) s

w(T x NX’) c {r(x) + [-e , e]} .

Hence A$ converges to x in X .

We say that  is a refinement of a covering

system Lé? , 1f R is a covering system with the property

that each R€®R. is contained in some element of «. .

Lemma 2.

Let X ©be a c-embedded convergence space. Lvery

covering system of X has a refinement consisting of

the associated completely regular space.




) L . ) ) . ;
Let &« ©ve a covering system of X and let &

- B

denote the collection ol all convergent filters in

X .. TFor ¢€9 , lemma 1 implies ¢ €¢ . Therefbre,

| a N e Wriweres -
there exists an Sé.4 such that S€¢ . Since ¢

hasla basis consisting of sets closed in Y7 , we can
chodse a set Bé € ¢ such that B, 1s closed in X~
ahdz B.¢S . Of course ¢ is coarser than ¢ and

C e e 4
1s indeed a refinement of ﬁ{ .

Theorem 1.

Alc"embeddgg convergence space X 1is upper X-compact

(respectively Lindeldf) if and only if C.(X) is

N -countable (respectively first countable).

Proof. Assume X 1s upper N -compact. Again,
denote by - & the collection of all convergent filters in

X . Let 0 be an arbitrary filter in CC(X) convergent

3

to 0 . This means that for evory 1/n , where neélN,
X } - (7) - o oy ‘SLS m - A ,-.“,
apd eve1J. b € 4 there exists a 11/n§¢f ¢ and

an Ml/n,¢é ¢‘*so that

' -1 1 T
w(T, x M, - = = |
(Pi/n,¢ L/n,¢> - n’n .

For a fixed neliN , the collection -
|

{Ml/l’l,(\b: d,\GQ)}V. . | o - o
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1s & covering system of X  and by assumpition admits

a baslc subcovering
L
N 4 =M ac Q)
n o n
of cardinal number lesg than or egual to X . Let
T be the element of © that corresponds to M
o : o
-as above. That is,
. \ - -1 1
w(T »xM)YyC | =, = .
o o n n
It follows that
[ee]
{T : «a€ L)
n=1

generates a filter ©° coarser than 6 . Obviously
©" has a basis of cardinal number < N . It only remaiis
to verify that 0 -— 0 . Giver 1/n for ne¢il and o€ ¢

there éxists a finite subset of CLH s {uq, Uns cves O

2 k
ko T k
such that kJ‘Md € ¢ . Now T = /ﬂ T“' is an element
i=1 i i=1 i ‘

of 0" with the property that

i=1 Y1 L

| ' K [-1 1
. - w(T % U M Y& =, =,
] ' A

and hence ©° converges to 0 in . Cc )

5
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Conversely, assume C (X)) is du-countable. Let
o 3 e .

Y

Py

be an - arbitrarvy coveriﬁg system of. X’. Bécause of
lemma 2 , we can assume that the elements of ;dg are
c;oskd in the associated completely regular space.
‘Wé will prove that ﬂdﬁ has a basic subcovering of
cardinal number less than or equal to . TFor each

S ¢4£, set
o
= {f¢ {): £(S = } .
T {rec(): £(s ) = {0} )

. Clearly the collection of all sets T for o € (4
. ‘generates a filter © that converges to 0 in CC(X).
By assumption, there exists a filter ©° coarser than

0 , convergent to 0O in . CC(X) , and having a base

of cardinal number less than or egual to V. Let

> 8 B e}

be a basis for ©° , where the cardinal number of the

to. . b . . - .
index set & is less than or equal to A . Since
. 0°— 0 , for every o¢¢ & there exists a D_¢ 0 and
- )

B

an L, & ¢ such that

¢




o
T o T o 4 1"
A_) ‘“(_‘){i IS JJQ{)) [ .I L 9 '.J <
. . e 0 . .

* For a fixed L& , let the union of all sets Lé

. ) - f
that correspond to DB in the sense of (1) be denoted
by RB . Jt folleows that
Rz {Ry: red)

is a covering system for X . Since 6 < © , for a
given BEM , there exists a finite subset ah of (&
such that

) ~ N o, ()T
. - o g uéQB «

We c¢laim that

II) RB C OLLC-J@ So; | .

B

Assume to the contrary, that there exists a point

-

x € R\ UL 5,

o &l
i

‘difference. . The fact that (J S is closed in the

, where "\ " denotes the set theoretic

s

ar stace X7 impliles that

assoclated completely regu




there exists a function {£C{X") such that
£(x) =2 ana . £(LJ) 5 ) = {0} e

Because of the natural isomorphism from C(X”) onto

3

C(X) (see 0.5), we can assume € C(X) . Clearly

re fﬂx T, but, in view of (I), the function f@])s .
ot : -
B

This contradicts the fact that DB:D [m) Ta , and hence
ot i

B

our claim is established. Now, it follows from the

inclusion (II) that the collection

o 0= (s : a0t Lo
. o e e Béié B}

is a basic subcovering of X . Furthermore, the cardinality
~ #~ . o d
of ‘ég is less than or egual to /X, and thus

X dis upper X -compact.

Corollary.

Let X belg c-embedded convergence space. If

CC(X) is Lindeldf, then X is first countable,

If CC(X) is Lindelsf, then C_(C_(X)) is first

countable. Since X is c-embedded, it 1s homeomorphic

- to a subspace of C (C (X)) , and thus first countable.
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In section 1.3 we will provide examples of

Lindelof convergence algebras CG(X) .

1.2. Here, we obtain a‘characﬁerization of
separable metrizable topological Sﬁaces.

Let X be a convergence_é*acee By a basiq>for
'Xb, we mean a collection (Q_ of subzmets of X with
the following property: For any convergent filter
¢ on X , say ¢ — x , there exists a coarser filter

¢” such that ¢ — x and ¢  has a basis consisting

of sets in 4.

Definition 3.

The least infinite cardinal number of a basis

for X is called the weight of X . In particular,

X is second countable if it has weight ;ﬁo .

It is easy to verify that our definitions of
basis, weight,. dand second countable coincide with
“the usual concepts in the case of topclogical spaces.

Eal

The following generalization of a topelogical

result is evident.




. - X -~ . P N .
than or equal to (& (and is ¥-countable).

B O A A O U SO
!
- '{,O —
B . oy 4 - - - ~ TS YT O - o ymy ey £ P 3 vy
Rem a) et X be a convergence space having

weight /Y. Then any subspace of X has weight less

b) Any subspace of a’'second countable
convergence space 1s second countable.
c) A second countable convergence space

is first countable.

Theorem 2.

A c~embedded convergence space X has weight

U (respectively is second countable) if and only if

. -4 . . N ) .
CC(X) has weight (' (respectively is second countable).

. - f P
Proof. Assume X has welight ﬂ%A, Let

J =0, . g

. . . = s »
be a basis for X of cardinal number {L . CGiven
A f] " eyl - a3 Ang 1 e ) a0 A [r“‘ .
o€ 2, rt @ (the rational numbers), and nébkv', we
define the following subset of C(X):

' ' 1
M = o Y o« £ I" a - = - =
llu’r,n {fec(X): f(Ua)k:€1 SRR + }

Denote by 9 the collecticn of all finite intersections

of sets of the form M , for we€ll, réqQ ,
o,r,n

1 f oy . .-
and né R, Clearly the cardinality of /¢ is still

; . : L oy . . o ) . '
V. We now show that %1l is indeed a basis for CC(X)

B



et 0 be an arbitrary convergent Iilter in CC(X)
Say O — . Our assw Li that for any

ke

exists a convergent filter ¢F whiich is coarser than

¢ , and has & base consisting of sets in L. Thus,

we can find a Uac ¢ ,.and a T¢© such that

Toxu cley 4 | 2L Ly T
w(T x U )« {fr(x) A [zn s zn]} .

Now choose an r€ & so that

: - 1
| £ () r| < 5= .

Because of our construction, there exists an M € F7L

$,n

( M¢ nC M ) such that for every gEéM and

o,r,n

$,n

every- yéfUd 5

R R R GOl
or

U -2 2]
W(Mg X Uu) C {f(x) + [ s n]} .

We observe that M 2T , since

¢ .n

X I).\

le(x) - r] <

-

lg(y) - »| < Jaly) ~ £(x)]|

n




for every gé¢ 1 and every w€U . 'Therefore, the

collection of all M@ n o Por & o convergent {ilter
- ¥ gL 7

on X and nélN o, generates a filter Q’ coarser than O
with a basilis consisting of_sétsvin twébf' It is also
ciear that 07 convergés to . -Furﬁher, there caﬁ
exist no basié - for CC(X)‘ of cardinality strictly
less than X . If such an S existed, then, as we
have just proved, CC(CC(X)) would have a basis of
cardinality strictly less than. N . Becsuse of the
preceeding remark and the fact that X 1is homeocmorphic
to a éubspace of CC(CC(X)) 5 X would have welght
unequal to N,

Converéely, assume CC(X) has weight N . Then,
as anve, X must have‘weight less than or equal to A
The ﬁecéssity of the theoren implies that X has

welght exactly N

Since a completely regular topological space

is separable and metrizable if and only if it is

second countabile (see {7], p. 187 & p. 195), we have

the following result.

Theorem 3.

A completely regular tbpolqgical space X 1s

if CC(X) is second

separable and nmetrizable if and or




Corcllarv..

lar topological space,

wr . . . Y ea
C (X) ds a sepsrable and metrizable topological space

if and only if X is separable, metrizable, and locally

compact.
In view of the remark in 0.% and the discussion

‘preceeding the last theoremn, the proofl is immediate.

1.3. We will extend two results that are known
for topological spaces to the class of convergence spaces.
These will prove useful in analysing the continuous

convergence structure on C(X) .

Theorem 1.

. ~/
Let X be a convergence space that has weight L

~

Because of the remark in section- 2.2 , it suffices
to show that ¥ ditself is upper X -compact. Consider
z = {7 } & o ; P nurher A

= {fa to be a basis for X of cardinal number L .
Let & be an arbitrary covering system for X

For each Taﬁ:l, choose SQ to be a fixed element in

¢

{ : - L i . ! S
¢ such that SaJ To 1T such an element S& ex1sts.




=l -

1o ,['. - .1- - ! T . N e [ s R |
Denote by ., the colilection of these S Clearly
N T [P AT carddinal rlmhen Tees Eharn o1

»d; 15 a collection of caerainal number less than oz

oy € . . PN . g . . y e
~equal to 0 We will verify that 4 18 actually a

basic subcovering of .« . Let ¢ be an arbitrary.
convergent filter iﬁ X, say ¢ — x . By assumption,
there exists a filter ¢ coarser than ¢ such that
¢"— x and ¢  has a basis consisting of 'sets in

|

:}Z L .O g e 2 = - : 2 ‘
. Since «- 15 a covering system, there exists |

‘ |

|

\

an S in ég wit S €¢°. Because S must contain
some elemenﬁ Taoéz » where qu is also in ¢~
we can find an S édf’ such that S =T . Thus
o3 0 O o Qg
_ Sao is an element of both ¢~ and ¢ .
* E‘E{_'E_ILH_E.]_E_‘E °
It is now easy to demonstrate that there exist
convergence spacés that are upper ﬁf~compact (respectively
Lindeldf) and not topological, nameiy, CC(X) for
X a completely regular.topological space having welght
ﬂ;”(respsctively second countable) and not locally
compact. Moredver, such a CC(X) has weight }f
(respectively iS‘sééond couhtable) but is not topological.
For an example of a first countable convergence
.space that is neither second coﬁntable nor topological,

consider CC(X) where X 1is a completely regular

topological space which is Lindeldl and neither second

countablie nor locally compact.




In analogy with topological spaces, we say

a subset S 1s dense in a conve

. ?"
the adherence of 8 is Y . The space Y 1s sald

to e separable If 1t contalins a countable dense subset.

Theorem 5.

i )
i

Any subspace of a second countable convergence.

o

space 1s separable.

et Y be a second countable convergence space

with !

NE (7.1

171=]

b

a cduntabie basis. In light of the remark in sectioﬁ
1.2 , it is sufficient to prove that Y is separable.
For each Tié J , pick a yié Y such that v € Ti .
We claim that {yi};{):1 is dense in Y . Given vEY
there exists a filter ¢ 'convergent to y in Y
with the propef%y that '¢ has a basls consisting of
sets in J é ‘Hence ¢ has a trace on {yi}?{):1 s

which completes the proof.

El
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Remark. We have shown {theorems 3

that if % is a separvable, metrizable
space, then Cﬁ(X) is second countable

Linhelbf, and separable.

In the ncxt chapter we will study

separa bli:ty in a more general setting.
i

and '5)

topological

, Tirst cdunt

higene

density and

-~

<L

ble,
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2. SEPARARILITY AND DENSITY
kX3
Anngee .
4 - - Y e S Al Tay oy e . 11 .
2.1. A certain type of Stone-Weierstrass theoren

has| been proved by #. Binz in [5] for closed subalgebras

.

L

of \CC(X)-, In order to investigate questions o
: l ’ .

dgn%ity, we must develop a more general type of theorem,
as it is not known when the adherence operator in

CC(X) is ldempotent.

Let X be a completely regular topological space.

We say{a subset M of C(X) is topology generating

coincides

e
p

if the'weak topology induced on X Dby
with the given topolegy. Recall that a set M ¢ C(%)
18 sald to be dense in CC(X) if the adherence of

M ‘is C(X) (see 1.3%3). Also, by definition (see 0.3),

a subalgebra of C(X) contains the unity element . 1.

We will show that if the bounded functions in a

subalgebra A are ftopology generating, then A_ is _
dense in CC(X) .

For a subalgebra A < C(X) , let

o

Hi

ANnCO(X)

-

(i.e., the collection of all hounded functions in A).

We remark that 1f A is a lattice subalgebra of

C(X), then A is topology generating if and only if




A" dis topology generating. In what follows, i

5

will always denote the closure operator in CQ(X)

e

(the sup-norm closure).

Lemma 1.

Let A be a subalgebra of C(X) . The set

A" dis a lattice subalgebra of C(X) with the property

that if € A° and |If]lz & for some 8 >0,

then 1/f is in A° .
It is straight forﬁard to verify that A" s

a lattice subalgebrév(see3 for example, [91, p. 241).
To prove the inversicn property, we first assume that
fE€A® and f >3681 for 6 > O . Thus, there exist
m ‘and n in - such that (1/n)1 < f < ml . Since
the Taylor expansion for the realmvalued:function‘
1/(1 - t) defined on [O ) r] < A is uniformly

convergent for. r < 1 ,

m oL = e
. 5= —
1 - (1 - =
( =)
can be uniformly approximated by polynomials in
- - . . NP : s T
(1 - ﬁ\ . This implies m/f€A° ', and thus 1/f€ A°
For an arbitrary f£&A4° bounded away from zero (i.e.,
(e . 1 o ' —
Hell > 6 for 6 > 0), = = &y and hence 1/f€A° |
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For each point %€ X , we can define the point
evaluation homomorphisi ir(x)é'Hoqu by

iX(X)f = ()

for every f€&€ A" . Furthermore, it is evident that

the map
i X — HomSAO
is continuous.

Lemma 2.

iX(X) is a dense subset of Hom_ A® for any subalgebra

tel

A of C(X) .

It suffices to show that a basic open neighborhood

V. in HomSAO intersects iX(X) . We can assume

P . n . -
V. = ;?q{KéEHomSAOZ ]k(fi) - h(fi>J < el

where fj& A for i€ {1, 2, ..., n} , }1é'HomSA° , and

e >0 . Now if




1, " i - . o . PO - L, o . 4]
then nh{g) = 0 . Thus g can not be a unit in A” ,

. and by lemma 1, there exilsts a point »p¢& X such that
r') *

g(p) < €“ . This means

[£.(p) - n(£ )] <«
\

for every i1¢ {1, 2, ..., n} , and hence 'ix(p)a'“ .

Lemma 3.

Hom"A0 is a compact topological space for any
2 T

~subalgebra A of C(X) .

~The proof consisté of showing that HomSKT is
homeomorphicvto a closed subspace of a product of
closed intervals. For an afbitrary £EAY 5 theré
exists an nflsﬁé such that

FX)E [np y 0]

Since, by lemma 2, i,(X) is dense in Hom A° it
bl 5 X St 3

f

the map sending cach hé& Hom K?V to h{if)..m—% .
nap s & 5 (h{ ))MEAO is

follows that !h(f)[ <N

a homeomorphism of 'HomSA° into

for every HéfHom%Ao . Now, '




-

where each n, 18 chosen as above. It is easy to

o
verify that if a point (rf)f{RE' 15 an accumulation
-

. ~ T PR DR I RET PO I 1”‘ )
point of HomOAO , embedded 1in the carteslan product,

then the map sending each £ A° to Y is a homomorphism
on A® . Thus, the image of Hom_A® ds closed in
. 1D

the cartesian product which is compact by Tyvchonofl's
s .

theoren.

Let A be é Sﬁbalgebra of C(X) for a completely
regular topological'space X . Since HomSKF‘ is compact,
the universal property of the Stone-Cech compactification
(see 0.6) implies that the map iX can he extended

“to a.continuous map from RX into HomSE?4. We denote

this unique extension by = , and note that the

following diagram is commutative:

-

where 1 is the natural inclusion map. In fact, 7w
is surjective since 1X(X) is dense in HomSA” .
There is a Gelfand map

d: A —s C(HQWSAO)



dafined for each [&A4A7, by

Tor G‘,\fé’,].“f h & Hom Ad . - It is casy to see that d
J P .
is 'a monomor Q 1iesm into C(Hqu AD) s and f'\ll’th@l”j since

4

i((X)' is dense in Homsﬁﬁ-, d is an 1Qonetr fjom_

A regarded as a subspdce of cé(x) into C (Hom ET)
Clearly d(ij) separates the points in HomSAG ,. and
thﬁs the,Stone—Wei straos theorem impl lies that 4 is

actually a surjection.

For T &C(X) , where X is a completely regular

topological. space, let f denote the unigue -continuous

. Fod
exuo nsion of £ to a map from BX dinto R , the
one point compactification of IR (see [7], p. 246).
say a subset B«£C(X) separates the points in  BX

from those in X if for each point p¢ 8X and each

point_ xé& X , there exists a function__f€ B such that

T(p) # £ (x).

Proposition 1.

Let A be a subslgebra of C(X) vwhere X is a

CO“ ‘]

; .l
o
3
&)
aQ
-
-1
]
"3
o+
O
@]
1
C
J._ 3
(@]
w
bomd
wn
st

race.  A°  1s topology

generati ng if and only 1f A% separates the points

in  BX from those in X .



i %
Assume - A®  is topology genecrating. Let pdé #X
and y&€X . In BX we can choose & closed neighborhood
N of 'y such that 33;{IG“ . HNow, N =N 11X 7Is a
y ; ' y ¥
neighborhood of y in X . Since A% is topology
generating, we can find a finite set (I A

of functions in A° with the’

1
1%

we have 0 and

5

fi(y‘)

is a neighborhood of 'y

V= {x€X:

“is a neighborhood of y such

remains to show that 1(p) > 1

collection of all neighborhoods of p

9]

dens

D

f'rom Ny . Sinece ¥ i

is non-empty for each UE U

unx)ynvs

conta

13

S P .
that

n

fg’
fo T,
i

property r each

IENENY < 11

ined in N For

.

(%) < 1}

that VcVeN It only

.

. Let 94 ve the
in BX disjoint

in BX , the set UNX

and of course



SR N o VIO e e oL G e e

) Since the filter generated by %4 converges to p
in BX and has a trace in X , we conclude that T(p) > 1.
Conversely, asgume  A° ‘sepérateh the points in
gX from those in X . We will show that for an arbitrary
function fé€ CY(X) and ‘2 point vy £Z(f), where
Z(r) :'f_i(O) , we can find a closged set T in the
topology generated by A? on X such that FIDZ(f) and
y @fF . Without ioss of generality, we can assume f(y) = 1 .
Let ¢ be the continuous surjection from pgX onto.
i HomSKF defined above. Since A® separates the points
R B in gX from those in X
T () 6w (BT =0,
‘where X is considered as a subspace of gX and G LA
ig the c¢losure of Z(f) in gX . Clearly we can
choose a function ge¢ C(Homsﬂf) such that
g(w(Z (D) X) = {~1} and gly) = 2 .
: Since d(A?) is dense in Cn(HomsKT) there exists

a kCAY° go that

4
. H




“

d(k) (ﬁ<????y.x>)

d(k)(y)
It 1s now clear that the set
F =

has the desired property.
which completes the proof.
"Given a subset

sec(x) , 1

adherence of S in CC(X)Q

‘Proposition 2.

Let

o

>

et

1

Thet is,

X bLe a convergence space.

(-

, 0]

{x¢€ X: k(x) < 0}

yEF and F27(

aO(S) be the

For a subset

S CB(XV}”A, .

aC<S) = a
where 3 is the closure of S
Clearly a (S)Yza (3S) . To
c c
assume € ap(h . This means

such that 6 —

there

.

~ N
s

pors
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O

in -9 . Denote the collection of all convergent Tillters
on . X by ¢ . HNow for each £ > 0 and each &€ ¢ |

say: ¢ — x., there exists an N LE 0 and

suclh that

! M(T¢}€ > d¢’€)£j wf(k) 5 s f(x) + 5 .

D = {g¢g S: g(N¢5€)éZ [f(x) - ¢ , T(x) + g]},

|

and consider the collection

i?v::'{D¢ b 0E0 and e > 0} .
5

We will show that for a finite number of elements

D, e , ie{1,2, ..., 0},

¢i-85
n ’
‘; J?1D¢i’gi £ 0 .
| .' n
‘First, choose a function ¢ €& (VT ) . Without loss

. Ve 5 £ 47
i=1 Pi084

“of generality, we can assume t£ S, and of course

C €. [N
f(x.) - == ,-f =



where ¢, - X, Since t£€ 5, there exists a  g& 3
such that |ig - tﬁ < el /2 cr every 1¢&{1, 2, ..., n} .
Now for esch 1ié {1, 2, ..., n} , we have .

p) - f(x )] < [e@) - ey +[e(p) ~ T(x)] <

n

‘ o i B 1 .

for every pt Nh ) and thus g¢ N D i . It is
L Pi2€4 - i=1 ?3083

easy to verify that the filter generated by aﬁ‘ convergers

t& f and has a basis in S . Hence f[€£ ac(S) as desired.
Wejnow éonsider the case of a subalgebra AcC(X) ,

where X  is a completely regular topological Space.vHePe>

a subset S& gX ig said to be w-closed if S is

closed in gX and 7« (ﬂ( )) = 3 . The following lemma

is due to E° Binz (see [5], lemma 4).

Lemma 4,

= If -Si«wggg MSP~ are two-disjoint-" w-closed-subsets e
of X , then given &any two functions g and . In
— ’ == A °1 2 =
A% there exists a function g£ AY such that
Tla - : 4 > la '.. P
g[8y = g,[5; ~and - gls; = g5, .
The lemma can be proved by applying the Tietze
extension theorem to C(Hom‘fo , and rec 1ling that




s

iscomorphism 1n the following commutat:

\
tia
2

]

£

[
o
o

diagram:

>

’ e
, — ¥

‘ ' ’ C(Hom_A%) —m—e C{BX) o=

5 PR

i

pd

a ‘ -
LT s
[\ 6] .

\ . 21 . 5

where j  1s the canonical isomorphism from C°(X) onto

C(EX) .

Theogg@ 1.

\

Let A 'gg a subalgebra of C(X) , for'g completely

regular topological space X . If A" | the algebra of

all bounded furctions in A , is topology gencrating,

then A is dense in C_(X) .

In view of proposition 2, it is sufficient to
show.thatw”aC(Ao)_: C(X) . We utilize % technique . . .
that appears in the proof of theorem 5 in [5]. Let

f be an arbitrary element in C(X) . We will construct

H

a filter © on C(X) that converges to [ in CC(X)>

and has a basis in A° . TFor a point péEX , let gpé A°

such that gp(p) = f(p) . Define

I

= {yepx: T(y) < (. () - ¢,

02
~~
)
g
o
™
S
(o

i
D,e
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for e > 0 . WNow V| is an open neighborhood of p-

e
in BX , and thus X\Vp - is a compact subset of  gX .
[ g G .
Since, by proposition 1, A® separates the poinfs in.
| Alstrernr
BX | from these in X, the set W(BX\VF’“) is disjoint-
Pse - .

from w(p) . In Hom A" , we choose a closed neighborhood

n

€

N df 7w(p) disjoint from >W(BX\VP ) . It follows
| 2

L -1 . . . . . :
that 1 "(N) is a w-closed neighborhood-of p contained
Ca 4 7 — ,"1 \
in V_ _ . Let W = 7 “(N) , and set

; D€ D€

P = foc BT lg(y) - T(y)! < e for every yE U 8}

9

Consider the collection o of all sets T for all
. ) /s &
pe€ X and € > 0 . Clearly each eclement Tp Cé,% ig

not empty, since 1t contains at least the function g_ .
~We will show that for a finite number of elements

T ed , iée{1, 2, ..., n},
pi’Ei ‘

For convenience we can assume €, < €, < ... <

] 2 -~ n
Since.we know T is non-empty, we assume
' 1°%1
m-1 .
/1 Tp. c. # 0 for mé&{2, 3, ..., n} , and prove
i=1 Fi°71 ' :

i ' m-1




b o o e FH iy

as well assume UT \L # @ for otherwise our proof
S
T T '

would he complete. Since the union of & finlite-number of
b g .

m-closed setbs is a +m-closed set. Thus,

r-closed set disjoint from L for every

Let € be the collection of all sets

€'\L . TFor the following calculation
m’® m : '
by Greek letters.

we will denote the elements in

FPirst, we choose

_ m=1 )
€ T a v, €T .
&1 -C}FD-,E» nd g2C TP s €
i=1 “i’7i m® m

Now for each ¢ and & in @ , lemma 4 allows us

c R0 P
C A & 1 I

to pick a function which extends both

2
£’_O,E
and gglctxg . Let

m
M= UW X .
. D, s E
i=1 ~i
(i.e., M = T,wa . ). Choose an integer k  such that
> 5 ' .

m’ m : _ ;

k > ¢ +
M

ol Dl s

A3

and set




£7 = ((PAKL) v-ki) .
) Clearly f©7|M =-f|M , and thus the set

E - - P r N . axd X
19 = {v £ p): < ¥ + e
LG | {yep %c,g(y> (y) e )

is an open - neighborhood of ocwEdlL . For a fixed
£ , the collection {U%}GCQ is an open covering of the
C a3
compact set M . Hence, there exists a finite subset ¢,
_ : 1
of Q such that {U?} covers M . The function
g g€l
1
|
gg = A E)(Y E;
N ogér, 7°
is an element of A® and has the property that .
g(:‘TJ = gj!]:J s gg (: :' gg E s
and
U giﬂ(y> © I’ (o o+ “m .
for every y&€ M . Now for each §&Q , let
- U, = {yé€x: g y) > T (y) - ¢
- £ {vy€n gg\u) , (y) - e}

U, is an open neighborheood of &L , and thus -{Ug}gﬂm

C, . _ ST




is an open covering of M . Ag
finite subcovering,

@ . The function

&= V g,
T AT s
CQLQ

is an element of A’ and enjovs the property that

gL

=g, L and  g(y) - T < e
o m
for every y&M . Hence g€ ()T . as desired. It
| i=1 Pio%

is straight forward to verify that :Z generates a filter

‘that converges to f{ in CC(X) and has a basis in A°.

i k is a convergence space, the canonical map from
X onto its assoéié*ed completely regular space X°, induce§
a continuocus isomorphism from CC(X’) onto CC(X)
(see 0,5): - Thus, in view of proposition 1, we have

the following:

Corollary. -

Let A be a subalgebra of C(X) for a convergence

space X . If A’ separates the points in gX~ from

those in X°, then A is dense in CC(X) .
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Proposition 3.

I A is a bra of  C{X) for a ceonvergence
space X , then wC(A) is a lattice C(xX)y .
EPSS
It is. evident that the adherence of A in CC(X)
is al subalgebra. To prove aC(A) is a lattice, 1t suffices
to show |f] is an element of a,(A) whenever f  is
in A , since
g = 1(f - + 1 - gl
"E:“’é"-‘g [ gi/ -
Let féiaC(A) , and let © be a filter convergent to f

in CO(X) with a base in A . We denote the collection
S of all convergent filters on X by @ . Now for each
$£9 , say ¢ —» x , and each € > 0 there exists an

N CG ¢ and a - TS € © such that

(b:'

> f.‘<X> +

nim
g

W(T¢ X NO 8) < (f(x) -

-

m

-

s
o

Define

D, . = {g¢a: g(N¢ ) e, [E]0) +oe)

A

) We will show that D¢~¢ is not empty. Indeed, we
e
. LI
will demcnstrate that for finitely many ¢ic &  and €y > 0,

nt , the sat

)

where 1 €{1, 2, ...,




5l
n
no,
i=1 Yi’vi ]
v _ n
is not void. Let ¢ be a fixed element in f}T® - DA
: ‘ i=1 ©i0%3
Obviously
. £ €.
(N & (f(x,) - == fix,) + 5=
t( ¢i’€i) ( (‘1) 2.7 ( 1) 2 )

where ¢i_—* x; for each ie¢{1, 2, ..., nt . 1In

particular, there exists an integer k such that

n -
6 U Ny E_j)c [~k , k] .

i=1 "i°”
. . . - . 1/2 . . .
Now the binomial expansion for (1 - 8) (the function
- 7} » - ,ﬁ) . gy .
from & into R ) converges uniformly for |s| < 1 .

Thus there exists a polynomial P with the Sroperty that
‘(1.w 5) /¢ *.P(sf] < 5;.

whére
€’ = min{e c

13

This means that




i
J(" v “i 4
. ;'1\ (x) = 3&}(”({) )(})!
M . _';‘.""'.5
1 - .
" ) Foiges -
= {[1 - ( ) Y () 1e P(i“(g)“)(X) <‘%§
S n o : ,
for levery x €& ij& . . Furthermore, for each
. i ., PR S
C = 1771
:ik {1, 2, ..., n} , we have
l]f](k ) - kp(a-(59)2) (x)]
L |
e ey - [t](x)l e et - wa-d
for every x€&N, - . Hence kP(1 - (%)2) is an element
. . (Pis i
n
of (D Now the collection of sets D, , for
i=1 ¢35€i ¢,€
¢ €d and € > 0 , generates a Tilter convergent to |f]|
in CC(X). with a basis in A , and thus lfléﬁaC(A) which

.

completes the proof.

Because a lattice subalgebra ACC(X) is topology

generating if and only if the subalgebra A° consisting

-of all bounded functions in A 1is topology generating,

proposition 3 and theorem 1 yie




Theorem 2.

I A ls a topo ng subalpebra of  C(X)
for a completely regular topological space X | then
| ik
& ig dense in C_(X) .
a,(A) is dense ir SONES
| o ' . ,
\ .
vl . . . |
12,2, In chapter 1 we provided a characterization |
| . |
'of separable metrizable topological spaces (theorem 3).
Here, using the results of the last section, we will prove
the following:
.
Theorem 3.
For a completely regular topological space X , the
- ’ following statements are equivalent:

(1). X is separable and metrizable.

(2). CC(X) is second countable. . |
_ | 1
(3). C(X)  conbains a countable, topology generating |

- - . e .

(4). € (X) contains a countable, dense, topology

*

generating subset.

(5). C(X) contains a ‘countable subset which separates

(6). C (X)) contains a countabls, dense subset which

. .

n X . "

0
0]
k®)
)
3
2
-+
(0]
wn
<
op
D
]
C
o}
-t
N
e
1=
=
W
[
3
2
=
c
3
@]
9]
(@)
ju-}

|
from those in X . ' o




" Without loss of

G Vet e ede g e L

The- ¢quivalence of (1) and (2) is simply a restatement

of theorem 3 in 1.2.

wlies (5). We First prove that (5)

Clearly (6)
implies (M), Assume D is a countable subset of C(X)
which separstes the points in BX from those in X .

erality, we can assume D<CCO(X) .

For otherwise,

— v o 1
(=D v ) AD] g

e

could replace each unbounded f€D ., and this new set

of bounded functions would have the required preperties.

Now proposition 1 implies that the subalgebra. A generated
by D is topology generating. Furthermore, by theorem 1,

i~

A is dense in CC(X) . We consider the set D consisting

of all functions of the form

P(fl,vfg, cees T

where f € DVL" and P runs through all polynomials
1 o :

(without constant term) in n > 1 indeterminates with
. ~
rational coefficients. Clearly the set D 1s still

countable. We will show that D satisfles the condltions

~

of stetement (4). To this end, we prove first that D
is dense in A  with respect to the sup-norm topology (i.e.,

1 M)

Il

the subspace topology on A inherited from C2(X) ).




584
by gy

N
W
3
T
=
{

for a.ft and .4 DVI1 be an arbi
i i —

. \ k

trary element in

.

Ao ISince all the functions in questlon are bounded,
| | N .

given € > 0 there exist raticnal numvers r r

12 PR

so?that

r. . < e .
i L i,
1=1 i=1 k=1 K
N A
Therefore, it follows from propesition 2 that D 1Is dense

in CO(X) . It only remains to verify that D is topology

generating. Since A ¢ a topclogy gemnerating subalgebra,
-1 '

any neighborhood of a point x€& X contains £ “(-1 , 1)

e
O
e
L
@
o

for some fé&A.., In fact, we can assume §©(x)
~

g€&D such that |l[g- 7] < 1/2 . Thus g -2, 1/2)

- . . L. R !
1s a neirghborhecod of x  contained in  f (-1

, 1) as
desired.

(3) trivially. To prove (3)

D
o0

Of course (4) impli
implies (1), assume B is & countable, topology generating

subset ¢i C(X). Since B 1s topolegy gencerabting, the map



o 50
vy
sending cach peint =& X dnto (f(x});(P 18 a homecmorphisn
e ) it ) :
, o I
of ¥ dntc A, the cartesian product of a countable

collection of real lines. Now statement (1) follows

oy Y . ) . e .
from the fact that i 13 separable and metrizable.
It only remzins to prove (1) implies (6). Let d
. | * - 3 N 2 . L ' .
denote a metric on X -~that induces the given topology,

i

and let {x } be a countable dense subset of X

n &N

'We define, for each nEﬁ4 , the function %nE CoO(X) by

4 s ‘ “ 4
xn(y) ~”m1n{d(nnﬁy) , 1}

|
I

Tor ali yéX. Let A be the subalgebra of C ()

generated by {¥_} .

N Clearly A is topology generating,
S B S Th

and thus, by proposition 1, the algebra A separates
the points in pgX from those in X . We consider the

set L consisting of all functions of the form

~

11

>

}

polynomials (without constant term) in k > 1 indeterminate

/1 and P ranges through all

where f g L
nic { neiy

v

with rational coefficients. Arguing as above, E
is dense in A with the sup-norm topology. Now an
easy calculaticn shows that E separates the points in

pX - from those in X . Thecrem 1 implies that A4 is

@

dense in C _(X) , and by appealing to proposition 2, we
- C o

o
]




=60~

T

conclude that E itself is dense in C _(X) . Since the
set B ds countable, the proof is complete.

P :
We conclude this section with a characterization of
sepdarability.

S
|
i
1

Proposition U,

-

A completely regular (respectively realcompact)

topological spsce X 1s separable if and only if there

exists a continuous monomorphism (respectively a

moncmorphism) from CC(X) into CC(Y) , where Y is
a countable discrete topological space.

. : Let X Dbe a completely regular, separable topological
space, ana let Y ©be a countable dense'subset of X .
‘Give Y the discrete topology, and denote the inclusion
map from Y idinto X by 1 . Since 1 i1s continuous, ¢

the induced map

it CC(X2 i CC(Y) s

sending each function ¢ C(X) .to the function .fei |,

‘is’ a continuous homomorphism. Furthermore, since 1i(Y)
- : ~ is dense in X , the homomorphism 17 is injective..

Conversely, assume first that X is a complet
. s b -

.regular topological space, and v 1is a continuous




o ~ . !y .- . <y N . - B L .
moricmorphism from C’\A) into C’(f) , where Y 18 a
¥ C y
countablie discrete space. Now, the map
e
X . 'fr-:" in (Y 4 N ¢4 N B4
. u v,cmcuc(l) - dfom C (X)) ,

o . i - L.
gsending each homomorphilsm he #Hon C(Y) to the homomorphism

heu , is continuous. Since both X and Y are c-embedded

convergence spaces, uw¥ can be regarded as a continuous

map from Y into X . It is easy to verify that the

. £ . .
induced map u®* must be equal to u . To prove that

<

is'separable, assume that’the_countable set u%(Y)

‘is not dense in X . Thus, there exists an open set
: o U in X disjoint form the closure of uﬁ(Y). Since
X is a completely regular space, we can find a function
f€C(X) such that r # 0 while f£(U%) = {0} (U% = X\U ).
This meéné that u(f) = 0 which contradicts the fact that
u  is injective. Therefore, u"(Y) 1is indeed dense in
X . PFinally, assume X -is realcompact and u is a mono-
morphism of C(X) into C(Y) , where Y is & countable

discrete space. Now

- !

ur Hom C(Y) —— Hom C(X)

is continuous. Y is Lindel&f, and thus theorem 8.2,

p. 115 in [91 implies that Y ig realcompact. Since

X ds realcompact by assumption, u® can be regarded



s
e S
Wl
: . BT
- 4. ey e A 7 = F r (P P
as & contlnuous map 1oom b 1nTo A . BT, 1 =
v
J . - A o~ - N T —— AV AR § [ N 2. S AT

ana argulig a3 adove, woLiy) must be i A .

2.%3. In this section we will in&estjgate the
algebraic tensor product of C(X) and C(Y) for
completely regular 1opolop1 <5 spaces\ X ‘and Y .
For a definition of the tensor product of two algbj

see, for example, [12], p. L20.

-y

In the usual manner, we write basis. elements o
C(X) @ C(Y) 1in the feorm  ® g for £ C(X) and
g€ C(Y) . "The canonical monomorphism 1 from C(X)

into C(X) & C(Y) is defined by

e

for each f¢ C(X). Similarly, i2 sendin

1 8 g is a monomorphism of C(Y) into the tensor

e

g to

product. Let ﬂy and ﬂy be the pruJ@LtionD of

X x Y onto ¥. and Y vrespectively. Since the project]

- . L

. . . PR Y Y
are continuous and surjective, ﬂ; (re Qpccplwely )

S

a continuous mcnomorpnism from ( ) (respectively

“into CC(X x ¥Y). Now, by the /QWVcrc“l property of the

tensor product (see [ﬁQJ, p. 420}, there exists a unique

-

homomorphism ¢, making ©

e following diagram commutative:



>It is therefore clear that for

re géc(x) & c(y) ,

. z(f

Thus.the image of an

can be calculated by

Lemma 5.

Given C(X) an

— —~Ffrom --C{X) & -C(Y)--i

Suppose tﬁét
i

- ~Without—lo

9]
0N

of gene

are linearly

for every

g C(Y)

independ

basis element

€& g) = ﬂgr(f)'ﬂy () .
arbitrary element in C(X) & C(Y)

linearity.

, the map ¢ iﬁ a monomorphism

nto C(X x Y) -, e

n .
L (f. ® g.) is send to O, under z.
i i , -~
=1
rality, we can assuvme [ , ., ..., T
1 o g
ent By definition,
n
(. Oe(y)) = 0
=i T >
A ®» Y . Assume that there exists a



g.éﬁ{gj5 cees B and  yEY such that g

n
Tog.(y)f. = C

. i i
1= .
which contradicts the fact that f£,, ..., fn are

linearly independent. Hence ¢ ig indeed injective.

Since ¢ 1s a monomorphism into C(X x Y) , we can

‘regard C(X) ® C(Y) as a subalgebra of C(X x Y) .

Theorem 4.

If X and Y are completely regular topological

spaces, then C(X) @ C(Y) is a dense subalgebra of

In view of theorem 1, it is sufficient to prove

9]

that the collection of bounded functions in C(X) & C(Y)

3

is topology generating. The topology on X x Y 1s simply
the coarsest topology such that the projections are.
continuous. Since C'(X) and C°(Y) generate the

topologies of X and Y vrespectively, the collection

of all functions fcﬂx’ and. gﬂwy , for F£E€C(¥) and
g€ C%(Y) , generate the topolegy of X x Y . Furthermore,
fﬂﬁy = Fy%(f> , which means for =0 & 1 (regarded as an

)

element in C(¥X x Y) ). Similariy, gen, = 1 8@ g .
: ) D



&

‘can be identified with X x Y .. Consider

3 A
. ke - P S v T PR
Since w7 -and talte bounded funtions

e Ly

>

functions, the subalgehra

(C(x) ® C(Y))f)C“(X x:?)

.5 topology generating.-

br

o

Let . [C(X) @ C(¥)], denote the subalg

™
[

together with the convergence structure inherit

C (X x ¥) .

Proposition 5.

For X and Y .completely regular topological

e

C(X) @ Cc(Y)

1o

C

from

» to bounded

spaces, &gomC[C(X) 6 C(Y)]C is homeomorphic to

X

X

Y

3

We will first show that as sets FHom [c(xy e C(Y)}C

P

3

. . , 7 p f». . . . . }
Iyyt X X Y ———diom [C(X) © Q(Y)Jc

sending each (x , y)€ X x Y to the homemorphism of

In view of thec

point evaluation by (x , y)

the subalgebra C(X) & C(Y) separates the points in

X x Y , and thus iXVV- is injective. For the

proof of the surjectivity of 1.

E. Binz and K. Xutzler, Assume there exists an

the map

cllowiln
ted to

Fsd



' -~ 1’:” FARFARYY "\ h) LY, .. = ~ - -y ae “ T 2
h € dom [e(x) & ¢c(v)] such 1 h 15 not an element
L VI
of iyyY<X x Y) . For convenience, we denote the subalgebra
.

C(X) @ C(¥Y) by A . B8s noted in the procf of theorem 4,
the subalgebra A consisting of all bounded functions

in A is dense in CC(X x Y) , and thus A" is dense

<,

in [c(x) e C(Y)lc . This means that hlA® can not
be realized as a point evaluation. For if hl|A°
were a point evaluation, the density of A° in

[c(x) ® c(¥)] would imply that h itself is a point

e

cevaluation. Now let A° denote the sup-norm closure

of AY in C%(X X Y) . The homomorphism h!AO can

|

=

be extended to a continuous homomorphism h”: A? — ¥

with respect to the sup-norm topology. FTurthermore,

'XF is a lattice subalgebra of C(X % Y) {see lemma 1),

and it is easy to verify that h” is a lattice homomorphism
(i.e., h'(fag) = h"(£)An (g) and h'{f)vyh’(g)': h'(fvg)
for every f and g in A% ): Since h” is not a

—point evaluation homomorphism,. . for each point -z&X-x Y.

we can choose a function fZE'A° such that

P

L

c () = e fp Y =
r (z) - 0 and h (125 = 1,

”

Because h” is a lattice homomorphism, we can assume each

fz > 0 . Now for each =z X x Y and each ¢ > O there

exists a neighborhcod U of 2z so that




2,e) &0 5
‘_ g
Define : : '
’ Il‘ oo 0 Ias - ' oo 1
D = {TeA 0(U- ) (-e , &) and h{f) > =} .
1 Z,€ _ Z,E 2
Let &/ denote the collection of all sets D_ . for
. . oy &
zE€X x Y and e > O . Given a finite number of elements
D, o D, s ., D in & , we claim that
"1 1f 2772 n’n

D4
AN I

Now the function

1!

n
g AT
1=1 21284

is in A? with the

property that h’'(g) = 1 and

. £ .
\ it
g<UZ,;6,) - HJ > 2 )
i*vi
‘for each i€f{1, 2, ..., ny . If
£ = min{eij €55 .ht)'en} s

we can find a function g’ i



e - gll <

hat  g°¢ M

a filter ©

On the other

]

W (g™) > 1/2 o It is evident
D . Thus ihp ﬂoll sotion & TEenerates
Zi5€5

that converges to O in. [C(X) @ C(Y)]c :

hand h(0®) doesn't converge to 0O since

there exists a functicon €T

for every set Tg0 such
that h(f) > 1/2 . This contradicts the faet that

h is continuous, and thus iXXY islsurjective. Now,
to show that the spaces in question are homeocmorphic,

consider the

#fom_

1)

S
where 1 18

from [C(X) &
the identilty
that

?QOm (c) e

C(X) &

all the maps

ﬂ~cmheddco,.

homeomorphic

following commutative diagram:

@

¥*

=S 370m C(x) ® ()],

CC(X X Y)
~

™~

.

ofomS[C(X) & c(V)],

the map induced by the inclusion i

C(Y)], dinto C_(X x Y) and 1id denotes

map. 1t follows from the proof of theorem U

¢(Y) is topology generating, and thus

C(Y)]C is homeomorphic to X x Y ., -Since
in (I) are continuous and X x Y is
we conclude that J%jn v\’) @ C(Y) is

to ¥ x Y




‘h"

2.4,  Let %b e the subcategory oi

of all convergence algebras of the form CC(X)
. X . . . P R -
a completely regular topological space X .0 Heré,
. -
with the help of thecrem 4 , we
prB

product in the category fo

l et A and B be ohjects in an arbitrary category

i

Ol. ' An chject T din o1 together with morphisms

1’
of A and B 1f the following universal property
is satisfied: Given an object D€ C1  and morphisms
klf A j+ D and k?: B — D , there exists a unique

norphism ¢: T — D making the following diagram

comnutative:

A — 7T and h,: B -—= T is said to-be a coproduct

2 ¢ Pt sbolietintit i

We call such anobject T a tensor product of A and.

By standard cabtegorical argumentsg, it is clear that

any two tensor products are isomorphic. Thus if

tensor products exist, we can speak of the tensor product.

Theorem 5.

Let C () and € (Y) be objects
C e -

! . et ! . . .
product {(in ) of OC(X) and. C (YY) is




We wlill show that CC(X x Y} together wi. . the
morphisms « " and @7 , as defined in ~Llon
- ; p Iy . R T [P
is a coproduct of chl) and CO(Y) . L5 mentiBned
3 ; . 5 mmyy e ’ - P P U P
in 0.4 , induced maps such as T, .and. . 1 are

’ c o, y

. . . . L ] ~ .
morphisme (i.e., continuocus) in the category = . Gilven
' . Sy . e - .
an object CC(Z ¢ iC and morphisms ki: CC(X) — CC(Z)

and kP: CC(Y) R CC(Z) , we construct a.unique morphilsm

<

"¢ so that the following diagram is commutative:

1)
C;(X x Y>b/
¢ /

_‘ k.
3 L& )// ‘
. (z)

X
1

' be regarded as a continuous map from Z intec X , since

7

The induced map k,  : égomcCc(Z) ————— - fyomUCC(X) can
f) [l -

the spaces in question are completely regular (see 0.7).

Similarly, k.,  can be regarded as a continuous map
. Pt

N

from Z into ™Y . Ve now define a map m from Z into
X x Y by

By

m(z) = (ki%(z) , ko (2)

0
e

=5
in
Do

for every =z¢Z . Cleariy nm continuous, and further,

- I B . R, - dege Ao oy
the following diagram 1s commutative:



\\X X

<

'

K 1 \\ |
Z

We claim that 7 = m” 1is the desired map (i.e.,

‘C(f) = fem for each TEC(X x Y)Y ). We note that

. ¥ . R . 5 .
the induced map k. from C (X) idinto C (Z) is
t 1 c C
. | . 3 % oL |
Just k., , and similarly, k =k, . It is now easy

1 2 2
\

to verify that ¢ makes the dlagram (I) commutative.

el

It only remains to prove that ¢ is unique. Clearly

pYd

, P . T 4 #
on elements of the form . (f)y and wy (g) , for

s

99}

reECc) and g€C(Y) , the map ¢ 1 unique. It
follows that ¢ is completely determined on the
subalgebra C(X) @ C(Y) as  wE) = £ @ 1. and
'ny%(g) =10 g . Since C(X) 6 C(Y) is dense in

CC(X X Y) Dby theorem 4, the proof is complete.

B g . . .
Remark. JLet Uy and ;: be the subcategories
fAcnari A S : ,
; _
of & consisting of all topological algebras of the form
CR(X) and C_(X) respectively, for a completely regular

topological space X . It 'is now easy to show that the

—

tensor product of objects CR<X> and CV(Y) in 9,
: ¥ A% j 2%
. : | . ) - N
(respectively C_(X) and CS(Y) in e, ) is C, (X = ¥Y)
Pl Pel X

(respectively C (X »x ¥) ).
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4. IHDUCTIVE LIMITS
5.1. We introduce the concept . of an inductive

lim%t in the category of convergence spaces,

Consider a non-empty family {Y_ } _, of conver
1 y z
spaées. Assume‘the-index set ¢ is directed, and
denote the prebrder relation by. < "L Ve requjfe
tﬁat for every (a , a’) € U = , the family {Ya}a

satisfies the following two conditions:

o

(i).i Ir < a’ then Ya(: Ya' (as sets).

(ii). If a < a” then the natural inclusion map
from Y into Y_. is continuous.

Let Y = L;}Y s, and let 1 be the natural inclusio

i Y — Y .
a a

The set Y together with the finest of all converge
structures making the inclusion maps 1 for every

(o4

continuous is called the inducbtive 1limit (indultiver

Lime 11 f the famil Y . . We denot Chis
+10es [ J> of the nily | a}acu ) ienote this

by ind Y .
ac—@ cl

Even if all the members o

f a family ({Y_}

are topolegical spaces,

general be a topolopgical space, as vwe are working in

category cof converge

gence

¢l

n map,

nce

a



...,':/ :/>._

following cheracterization of converg filte & in
ind Y (see [11]):
altli ©
Proposition 1.

A filter ¢ on Y converges to' y in ind Y

at @

if and only if there exists a. filter ¢, on Y , for
— — - < - d T

and ¢

‘a basis for the filter ¢ in Y (i.e.,

ia(¢a) = ¢ ).

It is now easy to see that the inductive limit of

a family {Y_} el is separated if and only if every
a"atie

Ya is separated.

one can verify the

By appealing to proposition 1,

following universal property for an inductive

. .

Proposi

ind Y
agi
conbtinuous 1if and only if

A map t from the into a convergence

space X is the composition

map,

is continuous for each afd.

We will now consider the special case of a Jaul}v

{L_}. ., of convergence tor spaces. Here, we demand

Q
o
I

1imit (see

RESDR



-7 L.
that the family {L }3,,? satisfies conditions (i) and
ao Al

(ii), and in the inclusgion maps of condition

.. s , e L P L
(ii) must be Linecar. This means L = (. LQ is,

atl. ~
in a ratural way, a vector space and cach L is a
. «,

linear subspace of L (i.e., the maps 1 are linear).

we

‘henever

L)

‘atacld
we reguire
quarantees

space. In

or simply

a Marinescu-space (Marinescu-Raum, [10]) or

a

inductive limit M  of a family

where each La is a convergence vectoy ‘space,
that the e satisfied, which

above condlitions ar

that M idtself is a convergence vector

9]

thi

9

2

case, we write

M Ind L_ ,

at(i ®

M = Ind L, - If each L is a locally

convex topological vector space, then M 1s called

M has

a

Marinescu~convergence

structure.

3.2.

-convergence structure on

Let
We regard

denoted by

In this section we will define a Marinescu-

C(xX) .

X be a completely regular topologlical space.
& . & A=) s

. [ Q . v e N A . .
X as embedded in its Stone~Cech compactification
RX . Given any compsact subset K of gX

B3 s
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gsuch that R C3XNX , the natural inc

1s gbviously continuoug, and thus induces a homomorphism
Pl &

e
)

defined by UK?‘\‘(f) = foy, for every f€ C(RX\K) .

In fact, UY% is a monomorphism as X is dense in
N
X\K . | For convenience, we will identify the topological
‘\ b
algebra C (pX\K) with its restriction to a subalgebra
C . &
. . . By . R . .
of C(X) wvia the mar 1,7 (i.e., retaining the same
g S ’
topology). Since BX\K 1g 8 locally compact topological
space, the remark in 0.3 dimpliecs that
>

CC(BX\K) = CR(SX\K)

(the compact~open topology).

sider the fami- YNK) Y.,
Consider the family {CC(B \I)}Kék

e

, Where «

is the collection of all compact subsets of gX\X .

[

Since the union of two elements in « 1s again in « ,

the collection «k 1is a directed set under the preorder

Given Kii K2 for Kl and

b
N

N

of inclugion. in ko,

we have




ey N . YN W )
(!J); \J"“)/ S L AT A Y .
[

This natural inclusion, call

—
—
[
o

J 4 induces a continucus

homomorphisn

and J is alsce injective ag BX\KQ is dense in
- . R . P ! . e N
Bk\K1 . Indeed, J7 is simply the inclusion map from

CC(BX\Kl)' into CC(SX\KE) (as subalgebhras of C(X) )
Thus, we can speak of the inductive 1imit of the family
{CC(BX\K>}KGK . ‘Sincé each member of this family is
a locally convex topological vector space, Ind CC(BX\K)

Kér 7
1

)
o
=
)
o
0}
“
e
<

1]
v

]
@
O
o)

We claim that the Ind CC(BX\i) is actually a

Marinescu~convergence sbtructure on C(X) . That i

[ €2}

L) copnng) = c(x) .
Kl

-

One inclusion is clear, and thus it is sufficient to show

that every functicn in C{X) has an extension to
C(BX\K) for some XLk . Given [ éC(X) , consider

I, the continuous extension of - to a map from

S . . )
BX into R as in 2.1, 8ince [ is real-valued,

Nt s 5, P PAPRIR AN Y e - ey IR g e e
(o) ¢ BXANX . Furthermore, the conbtinulty of I
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=77
[
implies that T THie)  is a closed and hence
( subset of B¥ . Thus £ has an extension to
i AN .
and I (e2) - 13 a member of k.
To simplify the notation, we set
Co(X) = Ind C_(BANK) .
) K€ 7
. . . . iy .
Since all the inclusion maps 7 are homomorphisms
& A 3

y ' it is easy to
algebra.

The maps

verify that

CI(k) —

hbe extendesd to

ilter © in a

CI(X) ig also

C (BX\E) == C (X)

Keéwx , and

¢

c (0.

ompleteness in top
convergence

conver

. “
Mg o
are continuous for every
implies that the identity,
. id:
is always continuous.
%5.%. The concept of ¢
’ vector spaces can
g spaces (see [5]). A £

sy e \ 1 a4 A
space VYV 18 said

1T 6~0 co

hence propositi

erice

a convergenc

oleogical

vector

TVerges

LOT

vector

2

£ o R i o it T o 1]
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filters induced

“~

call ¥ co

an element in V .
Theorem 1.

complete

15

s g e IV Sy S
(R
- -
i . T oA i g Moo 2.
TO e a2eiyrd eilementy , wnoeire - 158

Cauchy

<

for

rorite aiat, Wi it s 5. g« A it s ke At b S e rs et ke

the operation on

in Vo, we
filter converges to

any completely regular

CI(X)

topological space X .

Agssume 0O 1is a Ca

6 -0 converges.to O

- convergent to O in C
the pfdperty thet V¥ 1
Thus, there exist séts

(M ~ Nyfv .
“any function gé€éN , we

5

.

Therefore, the set

=
<y

B C(BYNKT

uchy

filter

b4
CI(A> 5

C(BX\K) for

in

s a basis fo

M and N

Consider a fixed element

know (I -

.".3-/. - 7 d

1s contained

...1(

1t
™
2]
r—oJi

\
)

O has a has
b * o
er 67 1in

) for BEO

in C.(X) . Since
- -

[

g a filter W

e
<

there exi

some K with

r 0 - 0 c_(x) .
I

in ¢ such

in M . Given

g) € C(BX\NE) which implies

(oo)..lj K .- e

in C(BX\K ), where

Ux .

g e Ny 177

is in o C{RXNKT).
s\ ~ox o e 4 S
BYAK") , consisting




‘CC(BX\K'} is complete (e.g., see [5

B T I Py A PL W PR PG S0 T A SR STy Tt it Aot a L - i 2t sk e AR

in C{X) . Furthermore, 0 - 8 con to "0 in
CC(QX\K') , es 1t is the image of ¥ .under the continuous
. : Trey 5 5 ..Nllm
inclusion map .
Ahue:
2 l‘# N .Y( A N1\ 4 ,; 7 \ iTde
g Cc\ﬁk 1K) "“%-CC(UX\A‘)
i .
N ! A . . . . - ,
(i.ev, J7(y) = 0" - 0" ). Now it is well-known that

])5 and thus % -» k
for some function k¢ C(gX\K"). It follows that the
filter © converges to k in CI(X) , and hence

CI(X) Fs complete.

3.4, Here, we will investigate the structure of
closed ideals in CT(X) .
For a non-empty subset M of a convergence space

X , vie define the ideal T(M) in C(X) by

IO = {(££C(X): £(0) = {0} }o.

-«

Similarly, we define the ideal I®(¥) din C°(X), the

bounded functions in C(X), by

10(H) = {f

T+
™~
(@]
<
o~
N
b
R
[
TN
p—
i
-
O
(o]
-
.

An idesl J  is said to be full if -



for some subset M of X
It is easy to verify the following:
Lemma 1.
Let X Dbe a completely regular topological space.

If J is a full ideal in C(X) , then J 1is closed

Given a completely regular topological space X ,
we will denote the convergence structure on CO(X)"
inherited as a subspace of lex)v by C%((j . It is
straight forvard to verify that C%(X) is bicontinuocusly
isomorphic to the.inductive limit of the family
{CQ<BX\K>}KQK , where Cg(BX\K) carries the subspace
topology inherited f{rom CC(BX\K) )

For an ideal J in C(X) or in C°(X) , we define

-

i
O
F
e
"3

Ny (7)) = {x€X: £(x) every f€J}

and refer to this set as the null-set of

i

In terms

of zero-sets,
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o
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N 1, . T »
wnich we daenote

- P PR o v e 8y A P R FANP I . Fg h¥s
By the zerc-gset of z function ¢ COX)

by Z(f) , we mean {x¢& L. £{x) = 0} .

" Proposition 3.

C(X) , then

N (J) = hYAJf$( (X)) .

Let P denote the ideal JANACY(X) in CY9(X).
Since P& J , it ds clear that NX(JjC:NX(P> . On the
other hand, assume x;?NX(J) . Therefore xf Z(f)

for some € J . Further, there exists & unit u

(an invertible function) in C(X) such that
((=1Vv I)a 1) = uf
(see [9], p. 21). Now x is not in N, (P) since
A

- Z(uf) = 72(f)

and uf«€?

..-_v

Before showing that a closed ideal in C((") is

full, we need the Tollowing result.

~5
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Lemma 2.
) If 0 is a closed ddeal in C;(X) , then W, (J)
}5_ not emoty, for any ¢ tely regular
space X
In view of propesition 3, it is sufficient to
prove that ANX(P) # @ , where P = JOCY(X) . By
‘N L(P) for any K€k , we mean the null-set of P
BX\NK :
regarded as an ideal in CO(BX\K) . Of course the
subalgebra C(RX\K) contains CO(X) It is easy
to verify the following:
-
N,(P) = N (P)nX
() = Moy
and N U (P) = N._(P)N RXNK .
P\X\IX ;./x
In particular, assume that N,(P) 1s empty. Then
& 3 X - e
NBX(P)'* which we denote by . K is a subset of BYXAX
and further, KO is compact in BX . This means io
an element of %, and N_,..(P) is empty. If we let
BXN\K ol
o
be the ideal JKEQ(BX\KO) in C(BX\KO) proposition
implies that

Rut J° i

el

N
YAXAK
o)
cloged 1denl

3

whichh cov

SRR L

%

R ARG R
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o7
3 e

.

s e et e T T e ot P N S S S,
the fect that the null-zect of a cloged ideal in the:

- sy - T e Al oy N T2 e N Uy N Y
topological algebra CC\%A\KO> is never empty (see,
N, {(P) can not bhe empty, which

Let X Dbe s completely regular topolopi

4ol
]
o
)
}_.J
w

¢
)
=
O]

closed ideal in C;(X) , then J ds full.

—
(o)
SN
[v2]
o

For P = JNCY(X) , let N = NX(P) in the following
proof. We know, by the previous lemma, that N is
a non-empty subset of X . We will demenstrate that
J is the full ideal I(N) . First, we define N to

1

be the closgure of N in pX , and show that

Assume equallty does not hold; then there exists a tE& gX

n choose a

—

such that t¢ NEY(PY\E . Further, we ca
SA .
closed neighborhcod V. of t in g% so that VAN = @

Denote Vf}NBX(P>. by K. Clearly ¥ 1is a ccmpact

subset of gX , and

Now, we can find a function gé C(gX) with the property




1
T

That

gy

o

U<

—
s

£y = 4 and  g(B8A\V) = {0} .

Wiy

Forlexanple, iet U be an open neighborhood of ¢
conaained in V . Then by complete regularity, there
ekists a function g€ C(RY) such that g(t) = 1. and
g(UC) = {0} . Since J is a closed ideal in CI(L) y
fdr cach X &£« the i1deal JF\C(BX\K) is closed

in Cﬂ(SX\K) . It is wéil~knowh that an ideal in the
topological algebra CC(BX\K) is closed 1if and only if

it is full (see, for example, |[4]). Since
C(BX\K) = CoO{x) , we conclude that
P o= 1%°(N

{ AN
vk (T

for each K€k . Now

3

(P) = NBX(P){W BXANK™

NBX\K’

and therefore the function g 1is an element of

NBX\K,(P)) but gg 1l HBX(P)) which is impossible.

Hence N = N

T9¢

Ey(P) which implies I%(N) = P . To complete
s A

the prowf, we show that J is equal to I{H) . Obviously,
J < I(H)Y . On the other hand, given € I{HN) , we have

o], p. 21).

i

i

g
¥
<

—

O

Q

<

st

L

—

-

<

Y

[

2
—

N,

v
!
N

0

6]

o

o

((~1v )AL
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Since uf¢& P and J contains P, the function
- A T j— £ M- — ( \
foe=uféed . Thus J = L(N) .
u -
|
|
We have now proved _ o

Theorem 2.

For a completely repular topological space X -

2]

an 1 sed if and only if it

an ideal J  in Ci(X) is clos

is full.

Given a convergence space X , the topological

. algebra C_(X)} is bicontinuously isomorphic to C_{X") ,
. 32

]

‘where X° is the associated completely regular space

of X . Since a full ideal in CS(X) is closed, we shate

Corollary a.

For a convergence space X , the same ideals

closed under any convergence structure on C(x) finer

“than- CS(X) and coarser than CI(“’) (regarded as

a-convergence structure on C(X) ). .

Let X ©be a completely regular ftopolegical space.

hlp ¢

Point evaluation by a point in X is a continuous

<
©

homomorphism on CC(BX\K) Tor every Xé&€x . Thus,

it follows from the universal properity of the inductive
limit (proposition 2) that X can be regarded as a
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[
=Y N
subset of #om C. (¥} . 1In fact, we will show the following:
|
|
|
|
1 . |
Corcllary h.
h Hniw,
i For a regular topologleal space X,
theimap
i
. . ) £ i
‘ iy X — Fom C. (L) -
‘v X , i )
sending easch x€ X to the homomorphism of point
evaluation by x , is a bijection.
|
!
N S -
Proof. For any element h in “@/om C,(X) , the
e .

. -1 : . . . .
ideal nh "(0) , the kernel of h , is closed in C,(X) .
. ~ T
. -~ . .. . .
, ' Since h “(0) is also a maximal ideal, theorem 2 implies

that hwi(O) = I(x) for some point x¢é X . It follows that
h(f) = £{x)
for every 1€ C(X) as desired.

Theorem 3.

Every completely regular topologica
. L J & I3 :

by
5
2
e
‘-.’
%)
4
-
w
T
Oz
¢
{0
o<

£ - N\ i - . e oo AT 5 - L o~
to m%m@ﬁ_(hj as X is c-embedded. In view of the
. C .
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previous corollary, we know that X is also homeonmorphlc

' o~ .
= R sl [ 7 . - e 2 e gy oy al I~ b

. 7 e ! » (LY o N - T e
to dfrom U_o(A) . hNow Lng topoiogy of point-wise

. D T nrentrer e ey FERSN AT T T g v s
convergence is always coarser than the continuou# convergence

ture, and thus the identity maps in the follow

[
=

" - ostryc

commutative diagram are continuous:

id

" By .
i ‘}~EOT!‘1SCI(X.) s

ML

where id is the map induced by the ide

P

At Ly from

’ . 13 ) .¥‘ .
CI(X) onto CC(X) . Since ig” 15 alsc continuous,

we conclude that X 1g homeomorphic to mom (k)

%2.5. In analogy with the functor EE , We introduce

the functor QI . This allows us to characterize the

continuous homemorphisms between algebras ( () and

>CI(Y) (theorem 4).

4

. _ First, we nrove the following.

AR




commutative:

LTy that the following diag

a0
Qo
b,
Let X and Y be ular torologiceal
5paces.
TS e
- . : . = %) . 03]
(3). If s is a continucus functicn from M into K |
then
o ‘
I ‘ , |
' S ¥ |
et Cp(¥) ——- (X)) |
! . |
defined by s, .(f) = s¢f for every ¢ C(X)
is continuous.
(i1). If t is a continuous map from X into Y
then the homomorphism
o .
e ~ Y
S G (YY) e O (XD,
{ T< ) I< >/
» |
defined by t7(f) = fot for every € C(Y)
is continuous.
To prove part (i), let K€ x , and consider the map
S, + C (BY\K) -— ¢ _(BX\K) ,
NF C c -
where SK?(f> = gef  for every § €C(R¥X\K) . Now
#
it 1s easy to verif: is -



O A A

B e

C (BINK
c , .
.| :
T |
!
P
C, (BXNK) - s
where 1 is the na ulral wucl sion map. Sy is in
fact continuous (sec 0.4), and thus sgei is continuous.

It follows from proposition 2 that s is continuous.

for part (ii), let i_ denote the natural inclusion

map from Y dinto RY . Of course 1 et dis a continuous

map from X into Y , and by the universal property

of the S‘OWG L ch compactification, it has a continuous
extension t° from #X into RBY . If K is a ccmpact
subset of BY\Y , then t'mi(K) is a closed and hence

a compact subset of BX contaired in PBX\X . Now set

. - el 4_’—”1 N
by 7 | (BX\t (X))

e

It follows that-.
£ (8X U”’(H)) e (BY\K)

inucus, and thus the homemerphism

T
’C;,': C ('u K) —— C _(8X\¢
AY




ding { to [fet) Tfor esch ¢ C(RY\K) , is continuous.
It is easy to am 1s
commutative:
. 3
C‘ (AYANKD — C..(Y) .._,.wi(_"".__-‘_-l..‘. C. ()
I T
AL . ’ . Pe ~
e e
K "
v ‘ " - 1 '
LY . j LR . .
C, (BENE™ T (K)) P

where 1 and 1 are the Jpcltxioh maps. Since i
is obviously continuous, we conclude from nropo sition 2

3

that t7 itself is continuous.

Recall that &£ is the category of convergence
spaces and st ig the category of convergence algebras.
Given spaces X end Y in £ , and a continuous map

t: X — Y , we identify ¢t . with the continuous map

(¥
P

77 X7 = Y where. X7 and Y~ are the associ
3 A

Y
(_1 -
o8

ated

.

completely reguiar spaces. Now 1t follows easily fronm

proposition 4 that ﬁT , which scnds each object

. . . . / ' e .
Y in &£ to CI(A') in = and each morphism t  in &

M. . i .
to the induced morphism t° in 57, is a contravariant

gl.. .

functor from £§ into 7 .
Given completely vegular tonological swvaces X

] 7 - P IO SO M P S~y w1 NI et o . ' v
and Y , we now know that cevery continuous map t: X - ¥

induces a continuous map t : C.(Y) —~ )T(XX which is

h; ~ o~ v AP S A Yy I ] - Ly y ey o Cr e s 1y - . .
‘a homomorphisn. Uy tne other 112:1.'1L1,;. agsuine U 18 a
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“continuous homomorphism from C.(Y) into

(&)

N
w
S
"

The map
e,
- % e .
u. .,f/?lisS(;I\_ ) 3 N
) - . - 7\5 \ ' N —"’f > -
defined by u ' (h) = heu for every hédFonm CT(R) , 18
continuous. Since X and Y are completely regular,
. . “ - : WS . M .
it follows from ccrollary b of theorem 2 that u can
be identified with a continucus map from X into ¥
- 4 ) -"—j’.. -)‘ e \Pati EP : L. R S "
(namely, the map ly@u CLY Y. Now it is evident that
Y v
¥ ) PR e ;
= u , and hence we have proved the following:
3

Theorem 4.

i A homomorphism

us CI(X) et CI(Y) s .

where X and Y -are completely regular topological

k
o
=

spaces, is continuous if and only if wu = t° for some

continuous map.

£ Y —— X

S .

B
5.
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3.{ + It dis natural to ask if or when the ”’)Ti\/f—"’ enoe

al NN . e 4} 4R
structure cf CT(A; oincides with of Cc O
‘We will show, in fact, that for a wide class of spaces,

CC(X) can not evern bhe realized as an J Juctive 1limit
of topological vector spaces. On the other hand, CI(X>

like CC ¥) , is a topclogical space (namely, CV(X) )
if and only if ¥ is locally compact.
A convergence. vector space V is sald to be

a pseudo-topological union (pseudotonologische

Vereinigung, [10]) if it is the inductive 1limit of
topological vector spaces.

The following result is due to H.H. Keller (see [11]).

Proposition 5.

A pseudo-topological union, V = Ind Vo, » 18 @
atld

topological vector space if and only if there exists an

a’¢f such that Va = V_. (as tonological vector snaces)
q° ‘&8

For completeness, we include the following proofl. ,

§._J
/‘7\
U=
.
o
j8b]

Assume V 1s a topc 1 vector space, and let €7

denote the neighborhood filter of zeroc in V . By

’)

definiti

ST
a1

avs . . p S - 94
5 Gi has a basis in Va’ for some a”¢€ &,

Because each neighborhood of zero 1s absorbent, it follows

that V_. = V as vector spaces. IFurther, V for

a - a.

vy
=

a > a” can not be strictly coarser thi

V_. , for then
a” 2
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&1 would. not be the nelghborhood Tilter of zero in V .
The sufficiency is clear.
r . “aa
. 5,
' .
For a completely yepular topological space X
the following three statements are eguivalent:
(i). C;(X) is a topological space.
(ii). ‘CI<X> carries 1h~ compact~open topology (and
is therefore b““OWTlIN”“ ely isomorphic to _CC(T) 3.
(iii). X is locally compact.
Efobf It is easy to verify that @X\Y 1is a

compact subset of X if and only if X 1s locally
L compact (see [9], p. 90). Now it follows from
proposition 5 that CI(X) is a topological space if

» evident that

)

and only if X is locally compact. It i

i equal to

[N
rn

if X is locally compact, then CI<X)
Ck(X) . In this case, CC(X) also carries the compact=-

open topclogy since CC(X) is always coarser than

CI(X) and fing» than CV<X) .

Theorem 6.

cal space

If X 1s a completely regulsr topologd

. with the property that there ewists a point pDE X
Ay T - i
such that the neighborhcood filter of p has a countable
. I BT . P
jo has 5 then C (;'\ -
c
an not be a pse




for every

{AA: A€o}

where Eﬁa is

for some

into V

element 2

acl

Since

4
i

x e R\{0}

Indeecd

the

in Vo),

N ”
sy that ¢

nei
and 1 is

v
a

pseudon

(-

By Ao

simply

we mean

, if ¢ — 0 in V

0

ghborhood filter of

the inclusion ma

vector

1s a topologic

(e

, Then

in

ceoarser

a

¢ > 1(et )
- a

~topological union

filter

nd

>

v
a

p from V
a

space,

Aef = &, and hence 2i(G ) = 1(&i1 ) for
Y a a a a
Our proof will consist of finding a filter
convergent to O in C (X)) thet does not satisfy
above condition. We first construct inductively
following system of oeCMQaOL_U nél'.nqﬁﬂood. of
“Assume that p has no compact nei fnborhooo and
{Q ;
m}mé N
is & countable collection of open sets that form
base for the neighborheod filter at p . Set N
and let

‘each A # 0 .

&)

the

the

JON




open of Fi N0 subcovering.
We defline - e
\ ,
| Sk
. . I
U 4 = 0 £ Q

3 _ '
where p€oO, € {040} and Q. ¢ {Q 1} ., . Asume

5 1o 1
‘{Ni s Ui} have been constructed {for 1 < J - 1 .. Choose

Nj‘ to be a closed neighborhood of p contained in U].m1

[

and let

be a covering of N. by open sets in X that admits no

finite subcovering. We pick U. to be an open

neighborhood of p contained in

where  pé 0, €. {0, } and Q.€ {Q } .
e k Jjo_. ia ¢ i Qm mé N

D - :
system of respectively closed and open neighborhoods of

J 22U N 20U, ..,
N 2 U2 N, U ,

we construct our filter © .. Let

s




" F

let

for each x€ X\{p} , where we choose W as follows:

T
an rE N such that

o)
b
41_; .
%]
o
¢ 4

Since x # p , there

€N \ .. Let W bo a closed neighborhood of

T+ ¥
X 80 uhat

L N 0., NuZ,.)

i=1 X

( Niﬂ = A\N_,, ), where x€0, & {0 ] for each

o

S

ie€{1, 2, ..., r} . It is easy to verify that the-

collection

generates a filter © that converges to O ‘in CC(X) .
“Now, we show that there exists no coavser filter ©
cconvergent to 0O with the property that A0 = @7

for e=z cw A F O . Assuins té the contrary, that such =

a Filter ©° exwists. Since 07 - 0 . there exists a

SRR Y 1 3 7 e el 4y ~ ] Wt vy 4 ™ 4 11,0 - -
neighborhoed Vo of p and an element P¢ 87 such that

s




Llown B2 by ouloin aemtie e

Falgee:

The |fact that V 18 a

of p implies that

VON, for some k<&

: « j —y # ) - 4 - .
By assumption, 5T ¥ eoe and 07 < 6 , which means there
: 3 <
exists an element F£0 such that ¥ CigE-Ff . Without
N .
loss of!generalitv, we can assume F  is the intersection of

o

. a finite number of sets in 7 , and therefore we can write

L.

, s PR = [V N [ )r
neret owed t
for ¥ a finite subset of N and ¥ a finite subset
of X\{p}. Now, we claim that
L+l
Our censtruction guarantees that for & fixed WX s
RN N . .
eilther wwuﬂmy or NXC’O“» s Where O 1s an element
£ N 2 A j28
of the open covering N, . .
- . ' i ‘i'l
is contaired in O, 0 £I0 Y . Since the
Ko ko ka
p 7:"1

oy E e 3 ~ w3 o e . Ty e ) e o IR
Spen covering O,y of N has no finite subcovering.
el Iz =
~ T o - T L Ea > =
the claiwm 18 trus. In fact, for & point
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i £ ‘:’;'1 N NS X 2 e
KEH
becduse X is completely regular, we can pick a function
£¢€C(X) such that
\
| el <2, f@) =% , and rOi .U \UJW) = {0} .
-k _ k 2 k+1l Ty X ’
. A
!
- - . “ " . - Ao £Ly - /"'/ j— A
It follows that f is an element of F . But ff & s
: v S 2k
X 1 . . - ‘
as f{q) = s and this contradiction establishes the
P ’
theoremnl
e * . i
‘Remark. The proof of theorem 5 reveals the following

< . property of the ontlnu us convergence structure: Given
a filter © convergent to 0 in C (X) , there does not,
in general, exzist a coarser filter 07 convergent to O

such that X0° = ©° . for every A€ R\{0O} .

The following is an immediate corcllary of theorem 6.
Cov»ﬁlurvn _ - B
For a Tirst countable, completely regular tovological
X , the convergence algebra CC(X) is a pseudo-
‘ topol L oand only 1f X dis locally combvact.
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convex inductive limit of the family {CC(BX\K)f

1 .

. Let '{L“}@éﬁ be a family of locally convex topological

e )
e

vector spaces satisfying the conditions in section 3.1.

Fiy

By tihe locally convex inductive limit o L.y _ ., , we
: - a atli

the finest locally convex vector space topology

making all the inclusicn maps continuous (sce [1“],:p. 78).

We denote this by

Lim Lo
N a

Given a convergence vector space V its asscciated

[V

locally convex topolopgy 1s the finest locally convex

vector opacc topology on the linear space V which is
coarser than the given convergence structure. Such a
topology indeed exists, for it is the topology determined
by all the continuocus seminorms. on V.

In view of proposition 2, it is easy to verify -

that the associated locally convex topology of CI(X)

is just Lim C}(BX\() .

Theorem 7

for a complebtely regular tonological space X

the LOC‘]lV convex inductive 1inii of the family

{CC Pl\n)}f is the




s o

~100-
Let U be an arbitrary neighbornood of
, 0 in Lim UC(BA\K) . Without loss of generality,
-y e
we can assume U e closed and convex. Since all the
) inclusion maps into uk(X) are continpou;, it suffices
to show that U is a néighb@rhood of O in jk i)
Clearly UNCY(X) is a neighborhood of 0 in C%(X) 5
as CC(BX\ is bicontinuquslj isomorphic to CS(X) .
Thus, there exists a & > 0 with the property that
f €U whenever ffl < § and fFEC(X) .
Here, we interrupt our proof to intrqduoe the concept
“of a support set as developed in. [13}. A support set
for U idg a compact subset GCRX such that if € C(X]
-
and T vanishes on G , then f€ U {(here again,
* is the unique extension of £ to a continuous nmap from

R¥  into ﬁ Y. Trivially, L it

for U . Given any support

if FEC(Y) and

then

- g = (£V 5 1)+
Since by assumption Hihc < 8/2
7=
vanishes on G and thus 2gccU .
3 O

whict

>

lal
I

self 1s a support set

we claim

xeG

(Iﬁ N _1) .
the function

Further,

sup | F(x)

g

that




Again,

"By convexity,

as U 1s ¢ 5o
Fl Fal 2 N -
selt for U il and only 1§ G

G in gX , then [ 18 in U
oyt cafP Pl el anes 5 > 1
For the =zuilflcliency, & 16

. Lo S
define g = (fV §~i) +

T wvanishes on

()]
- -
ey
©
2
a
e

is an open neighborhcod of G

on N . By assumption, 2g€¢U

elemen

indeed a support set. The col

sets for U dis, in fact, clos

It suffices tc show that the 1

sets, G1 and G? , is

he an oper

support

p—
Py

nelghborhoo

C(xX)

Let

" a function in whose

-

Wo. Since G, and G \W are
(44

in RX , we can . CLOO’“ open n

W { 3
\J2 of G 1

that

jab)
=
Co

regpect

G2\W'

1"‘ e O""i C'to o r’w}v A oy
CrheYye exX1sts a 1uncoion

L

oo A 4o IS - - 5 -
w that G 18 a support
e o "~ e U . -y 4 [ DR
has the property. that
. i e

Since

(£ A2 1) .

Pam
nolos
A%
s
N~

such that g vanishes

, and as above, 2(Ff 2) €U

t of U. Hence G is

lection of all support

7y

ed under Tinite inter

ntersection of two

again a support set.
d of G =G, NG, , and

ervtension £ vanishes on

disjoint closed sets

eighborhocds W and

1
ively with the property

ke Cl{¥)Y so0 that

=
TN
t\)“
N
13l
—~
@
et

sections
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@

To verify that G

N

-

o=}

efk(Wvid,) = {0} and  2P(1 - k)W) =0} .

24 4 o) ¢ R oy ey A Y, ~
Since G and G, are support sets, ik and
<

27(1 - k) are boeth elements of U , and thus

which means - G = G1F3G? is a support set for U .
Ve are now prepared to show that there exists a unigue
smallest support set for U , which we denote by LN

We can write

where T 1s the collection of all support sets for U

is actually a support set, let

U

f be an element of C(¥) such that f vanishzs on

some open neighborhcocod W of GU . Since

and BX ds cowmpact,




vnere I'7 ds o finite subset of T . Thus W contails
4 the support set (110G which implies 6 1.
S GETT
_ Returning to cur proof, we need only show that
i "
this smallest support set GU is contained in X .
Foxr then,
. {-L" Lo Yy . ! £ [ - 6\
._LC C()\). hf,! « ~ T
G, - 2
, U
would be a neighborhood c¢f 0O in CP<X) contained i
U . To this end, let p be an arbitrary point in
BX\X . DNow
R

UNC(BX\p)

in

a

is neighborheod of 0 CC(BX\p)

o

e F5
Lo

there exists a compact subset G 8X\p

£€C(8%\p) and

the property

b

~on .G",; then £ U . Consider any functi
~such that g(G") = {0} . The Fréchet fil
determined by <lre sequernce
(ni A g) Vv -nl) .
=né N
P A
: . ~ ¢ ou\ T Loy A
converges to g in € (£X\g (=) , and
. converges te g in  Lim C (8¥\K) . Sinc
} . ¢
trace on U and U ig closed in Lim C

M-

with

Lo

wrefore,
va

fe}
()

n

ter 0O
hernce O

e 0 has a2
/o TN .
(BYENK) , we

4
1

o
1

]



p is nct in C.. which

space X . In the case c¢f a completely re

conclude that gdU . Thus, we have a support set O
o ~ . - 1m
for U disjoint -from p . Because UU ig the
.
“dntersection of all support sets lor U , the point

compleves the prool.

Since CC\A> 18 coarser than CT(X) and finer

o

than Ck(X> , Wwe have. an a ternati ve proof for the

folleowing known result (to appear in the thesis of
H.P. Butzmann, Univereitit Manrnheim) wiuuout using

integral representations.

COfol11rv a.

“If X is a completely regular topological space

then

of C (X) .
- C

For a convergence vector space V , let L(V)
(i.e., the vector, space of all
continuous lineazr functionals on V ). It has been

S

e

the the

O

is of H.P. Butszmann) tha

H

any c-embedded convergenc

(T}

L(Ck(x)) Lo (x)) for

space X , we can extend
structure C,(X) .

I

> theorem 7, we have

Specifically, as an immediate

(@]
O
3
O
[
2
i
O
—

iner con

-3

CH_(X) is the associated locally convex topology
\'. V-

dencte

sular topological

repence
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‘Hemark.

‘ Thecrem 7 tells us that

!

completely regular tcpological space’

the locally convex inductive limit of

"1

of whose members is a function algebr

topological space

(with the compact-o
| .
!

a on a

pen topology).

tive

- o e
subse

-

{

locally compact

N(BK\Z)}yéQ, satisfies
< 4 & :

denctes

We will consider the locally convex induct
of a subfamily of {CC(BX\K)}kGK . Define
‘ D= {7(£): FEC(EX)  and  Z(f) C BX\X)
(2(c) = £ "*(0) ). It is clesr that % is a
of k , and further, the family {C
the conditions in section 3.1. Recall that vX%
the Hewitt reaic5mp&ctifjcation.
Theorem 8.
For-g’completegz ree
locally convex inductive t of the
- bicontinuously iscmorphic fo LECUX)'.




SN N

map from v dinto BX\Z

the canonical isomcorphism between

1imit (ses [1“]; p. 79) implies that the identit

C(X) o

N
s

L) cemne) =
¢ ~

Clegrly, 1t suffices to demonstrate that every
1s an element of ,\;A\A), for some Z€77~, Assume §

et

"
o)
oo
o]
@}
e
g

W

o
o)
o
Cl\
[

[rlvi .

-1 o -l

Now g ' “(») = T

jab)

(©) , and furthermore, g has

1/¢ €C°(X) ). Tt follo

N
C
=
-y
6]
[
-
)
Y
o

bounded inverse (i.e.,

-1

Z(é)Arv? (@) , and hence -

p—
o
.

("C(f)\”(é)) , where 7(

1%

03§

ZOVvK = 0 - for every

c*"

Now 1t is sy to verify tha

¢

Z€ % (see (9], p. 118). Thus, given Z&% , the inclusion
induces a continuous

monomorphism from CC(BX\Z) into CC(UX) .

can regard LimJCC(BX\Z) as a convergence structure on
e

C(u¥) . Since Cy(UX is coarser than. C (i), the

A
1o S

universal property of the locally convex inductive

[€))
bt
i
et
I
cr
9]
.
1
gt
s
o)
-~
.

is continuous. Conversely, assume U 18 a nei
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of 0O In Lim C(,k, \Z) . ¥ith no loss of generality,
>

we can assume U Le closed and convey Az 1n the

proof of theorem 7, the interseciion of all support

sets for U , which we denocte by G , 1s again a

o~ .

support. set for U . TFurther, there exists a & > 0

such that €U whenever £&C(X) with | it

only remaing to prove that Gy is ccntained in vX . For g
an arbitrary t€&€ RX\uX , there exists a function k& C(BX)

1

such tha

4
4 |
i

'3

¢t k(t) = 0 and Z(k)NvX = ¢ (see [9], p. 104).

Since
U 0 C{BY\Z(k))

is a neighbbrhood of 0 in CC(BX\Z(k)) , there exists
o compact subset G'< BX\Z (k) with the property that

if  feC(pX\Z(k)) and T(g") = {0} , then f€U Novr,
as in the proof of theorem 7, one can show that if

g is any function in C(X) and g vanishes on G-
then ge¢U . Therefore G° is a support set for U

disjoint from™ £ , which completes the proof.
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