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The purpose of this ndte_is to introduce a natural
Marinescu structure {7] (an inductive limit of locally
convex topological vector spaces in the category'of
convergence spaces) on C(X) , where .C(X) denotes the
B-allebra of all continuous real-valued function on a
completely regular topological space X ; The. structure
_in gquestion is closely related to CC(X) , the algebra C(X)'

ll‘ . C
‘endowed with the continuous convergence structure [1].

1.1. Definition of the convergence structure

Let X be a completely regular topological space.

We denéﬁe the Stone-Cech compactification of X by BX
It is wéll—known that every continuous map from X into
a compact space C can be extended to a continuous map
frbm BX into ¢ . Since X is a dense subspace of BX ,
fhis extension is unique.

.By_ C(X) , we mean the R—aigebra of all continuous
- real-valued functions on X (under the pointwise defined
operations). E&efy function £ in C(X) can be regarded
as a map from X into é , the one pcint compactification
of the reals. Hence we can extend f - to a function from
BX into ﬁ . Clearly if f is bounded, then the extension
is still real—vaiued. For any fé€C(X) , the extensi;n of ¢
to BgX ; as a function with values in é s, 1is again denoted by
f . Let Kfc:BX be the pre-image under f of the point

©«€R . Since f: BX — R is continuous, K is a compact

f
subset of gX . The function f restricted to X is of course

real-valued, and thus Kf must be a subset of BX\X , the

¥ Parts of this. paper are contained in the thesis of the

second author.
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complement of X in 8X . For any space - Y such that

XCyYCBX , .
. wWe id%ntify each continuous real-valued function on Y
with its restriction to X . Therefore given any compact
set K(: BX\Xi, the algebra C(RX\K) is contained in C(X)
In pafticular, the subalgebra “C(BX\Kf) contains f .

We now conclude that

cx) = U e

( v : , KCBRX\X
where K ranges through all compact subsets of BX\X
‘ By COO(BX\K) , We mean ﬁhe algebra C(BX\K) endowed
with the topology of compact convergence. The convergence
structure;'being the subject of dur‘investigaticn, is the
fines@ of all convergence structures on C(X) making
the inclusion maps. from CéO(BX\K) into C(X) continudus
for every compact subset K CIBX\X . We denote the algebra
C(X) together with this convergencé structure by CI(X) s
and notice that this is simply the inductive limit,
in the category of convergence spaces, (see [7]) of the

family
() {CCO(BX\K): K a compact subset of BX\X}

with the ordering defined by inclusion. Of course the

inclusion map from CCO(BX\K) into CCO(BX\K’)Y is continucus

whenever K 1is contained in K° . Since all the spaces

-
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considered in (¥) are locally convex topological R-algebras,
CI(X) is indeed a Marinescu space as introduced by H. Jarchow
in [7]. Ve leave it to the reader to verify that C1(X)

is aiconvergence R-algebra [1], meaning that the operations

are continuous.

1.2. ECompleteness of € (X)

1

A filter o on a commutative convergence group G

is called Cauchy if © - © converges to zero, where

" - " denotes the difference operation in G.. If every
Cauchy filter in G coﬁverges to some element in G,

| : .
then the! group is said to be complete.

Theorem 1. For any completely regular topological

space . X , the convergence aZgébrav CI(X) 18 complete.

Proof. Let © be.a Cauchy silter on C (X) . We
must find é function fEfCI(X) ;uch that © converges to
f .‘-Here, we remark that a filter V¥ on CI(X) converges
to a function g in 'CI(X) if and only if there is a
compact K C BX\X such that C(BX\K) contains g and
¥ has a base in CCO(BX\K) which is a filter convergeﬁt
to g in this space. Now the filter o - @ has a base

& in 'CCO(BX\K) with ¢ .convergent to zero for some compact

KCBX\X . Hence any element A of ¢ contains M - M

where M€0 . We will show that M itself is in C(gX\K")
for some compact K~ ¢ gX\X . Let g be a fixed element

in M . For each f€M , the function f - g isin M - M,

5
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and thus in C(BX\K) . This means that
-1 -1 U
I (»)C g () UK

Therefore M 1is contained in C(BX\K) where K” stands

for g—l(w)lJ K . It follows that © has a base in

|
C(BX\K") , call it ©° . Since

C(BX\K) C C(BX\K") ,.

the filt%r 0 - 0" on CCQ(BX\K’) has ¢ as a base,
and thus 0" 1is a Cauchy filter in CCO(BX\K’) . The
compleﬁeness of CCO(BX\K') implies that ©° itself
coﬁverges!to some function te€ C(BX\K’) . Hence 0

converges‘to t in CI(X) as desired.

1.3. Closed ideals in CI(X)
By.an_ideal, we mean of course a proper ideal. It
‘is evident that for every non-empty subset S of X the

ideal
I(S) = {feC(X): £(s) = {0} }

is closed in CI(X) . We conjecture that all closed ideals
in CI(X) are precisely of this form.
Td prove this, let JC CI(X) be a closed ideal. We

call the set of all points pé€ X with the property that

every function feéJ vénishes on p the null-set of J,
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~and denote this set by NX(J) . It is exactly the
intersection of all zero-sets ZX(f) where f runs
thrdugh J . By ZX(f) , we mean {xeX: f(x) = 0} .

Since for any function f€J , there is a bounded function

g€ J| such that ZX(f) = ZX(g) , We can represent NX(J) as

f’\ Zy(g)

g€J°

where J° denotes the collection af all bounded functions
in J . Furthermore, the set J° is a closed ideal in
‘CCO(BX)r, and is therefore of the form I(NBX(JO)) . where
NBX(JO)! is a non-empty subset of BX . Evidently the

ideal J C I(N.(J)) . We will show that J is all of

(N, (3)) . ‘First, we verify that J° contains all the
bounded functions in I(NX(J)) . Since J° consists of all
functions%in C(BX). Vahishing on NBX(JO) , 1t is enough‘to
‘prove that any bounded element of TN, (3)) Vanishgs on
NBX(JO) . 'Ciearly we are done as soon as we know that
NBX(JO) is the closure of N, (J} in X . Assume, to

the contrary, that NBX(JO) contains ﬁ;TTT , the closure

in BX of NX(J) , as a proper subset., For a point

qéiNBX(JO) ouﬁside of NXZJS , we choose in BX a c}osed-
neighborhood U of p disjoint from NX(J5 . There exists

a function éEZC(BX) such that g(g) =1 and .g vanishes
on the complement of U.. We assert that ‘g€ J N C(BX\K) ,
‘whefe K denotes the compact set UN NBX(JO) contained

| in BX\X . Clearly J M C(RX\K) is a closed ideal in
'CCO(BX\K) , and therefore consists of all functions vanishing

on its null-set. Since the bounded functions in J M C(BX\K)

are precisely the elements of J° , we conclude that




e
NBX(JO) M BX\K is the null-set of J N C(BX\K) .  The
function g vanishes on NBX(JO)!W BX\K , and therefore
g 1is an element of J M C(BX\K) as‘claimed. Thus. we
know vgé(IO . On the other hand , g is not an element of
I(NBX(JO)) , which is of course J° . Becausé of this
contradiction, ﬁe conclude that NBX(JO) :_E;TTT , and
thus J° consists of all bounded functions in I(NX(J))
where 'NX(J) is not empty. To complete the proof, iet
£ be an arbitrary element of I(NX(J)) . There is a unit
u in C(X) such that f-u is bounded. Hence f-u€J° s
and therefore .’(f'u)~1/u € J. “his implies that -
J = I(NX(J)).

We now have established

" Theorem 2. An ideal J 1in CI(X) 18 closed 1f
and only if J = T(N, ()
Corollafz 1. 4 maximal ideal in CI(X) is closed if
and onZy 1f 1t consists of all funetions in C(X) vanishing

at a fixed point in X

For every point p€ X there is a continuous R-algebra
. ¢

homomorphism
1X(p): CI(X) — R ,

defined by iX(p)(f) = f(p) for every. fE€C(X) . Assigning

to each point pé€ X the homomorphism iX(p) , we obtain

a map
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iy X — Jfbm uI(X) s

where f?om CI(X) denotes the set of all continuous
R-algebra homomorphisms from CI(X) onto R . Since
an element of #?%m‘CI(X)v is determined by its kernel,

a closed maximal ideal in CI(X) , we deduce from

~corollary 1:

Corollary 2. The map iX 18 surjective.

1.4. The associated locally convex topology of CI(X)
First, let us demonstrate that, in general, CI(X)

is not topological; more precisely:

- Theorem 3. CI(X) is topological if and only if X
8 locally cbmpact. If X <8 locally compact, then

cr(X) = C, (%)

Proof. If X 1is locally compact, then C(X) is of
. the form C(BX\K) , where K = gX\X is a compact subset
of BX . The inclusion map from C,o(BN\K™) into C_ (X)
is continuous for any compact set K* < BX\X . Thus
CCO(X)‘ is the finest of all convergence structures making
the inclgsion maps continuous, i.é;,_CI(X) coincides with
CCO(X) and hence is topological.

Conversely, assume that CI(X) is topological. Since

the neighborhood filter of zero has a base in C(BX\K) for
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some compact K C BX\X and every neighborhood of zero is

absorbent, we have

C(X) = C(BX\K)

If there were a compact K < BX\X strictly containing K ,
then |{the neighborhood filter of zero in CCO(BX\K’) would
_ I : '
be strictly coarser than the neighborhood filter of zero in

1 _
'CCO(BX\K) . This is apparent since two locally compact
spaces Z -and 2° are homeomorphic if and only if 'CCO(Z)
and CCO(Z’) are bicontinuously isomorphic (see [3]).
Therefore K must be equal to BX)YX which means X is
locally kompact. -

In view of the fact that CI(X) is not, in general,
topological, we wish to determine the associated locally

. y )

convex space CTI(X) of CI(X) The topology of CTIKX,
1s generated by all the continuous seminorms on CT(X)

Let
p: CI(X) — R
be a continuous seminorm. We construct a seminorm P. which
majorizes p and is more convenient to work with. For a
compact set K C BX\X , we denote by 'pK the restriction of

p to C(BX\K) . Clearly

C.o(BX\K) — R

Py
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is continuous. Therefore we can find a compact set

QKC:BX\K such that a constant multiple o of the seminorm

Sq CCO(BX\K) — R ,
K
defined by s (f) = sup |f(q)| , majorizes p, . This
Q K
XK q € QK

implies that for any function f£€ C(BX\K) s
Be(£) = sup{p,(e): |g| < |f| and g€ C(BX\K)}

is a real number less than or equal to as g (f) . Since
’ K
for every function g€ C(X) the relation |g| < |f| dimplies

that g€ C(BX\K) , we know that
p(f) = sup{p(g): |g| < |f| and geC(X)}

is identical to ﬁK(f) . Of course every function in
C(X) . is an element of C(BX\K) for some compact K BX\X

It is not difficult to verify that the maps

“

and

~

Dy : CCO(BX\K) — R for any compact K<BX\X ,

sending each FE€C(X) to p(f) and each £ € C(BX\K)
to ﬁK(f) respectively, are seminorms. Since p restricted
to C(BX\K) is ﬁK , we conclude that p itself is a

continuous seminorm. Furthermore, p has the following
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properties:

il

p(f) B(lf]) for all fe€C(X)

and
p(f)

LAY

B(g) for all f,g€C(X) with |[f| < |g| .

. Lemma 1. The kernel P of D , the set of all functions
feC(X) with D(f) = 0, is a closed ideal in Cp(X)
consisting of all elements in C(X) wvaniching on a compact

subset of X .

Proof. P is clearly a linear subspace of C(X) . To

show i1t is an ideal, let g€&€P . TFor an arbitrary element

vf‘éC(X) , We consider

((-nvE)An)

where g' denotes the function of constant value né€ N

Now
B(g-((-nvE)an)) < Blgn) = n-plg)

and hence g-((-nvf)An)€P . The Fréchet filter generated

by the sequence

(g-((-nvf)an)) o

converges to g-f in CI(X) . Since P is obviously

closed, g-'f is an element of P . Thus P is a closed
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ideal in CI(X) , and therefore consists of all funcfions
in iC(X) vanishing on its non-empty null-set Q C X (see
theorem 2). It only remains to prove that Q 1is compact.
We can express P as the union of the kernels of ﬁK for

K

all tcompact KCBX\X . On the other hand, the kernel P
' Hence we have

K QK

| . . |

of Py contains the kernel H, of s

Nexak (P & Moy (Hy) }
. T . s ' . |
But NBX\K(hK) is nothing else but Q . Since Q

is contained in the intersection of the null-sets of PK s

|

Qe e,

K

where X runs through all compact subsets of gX\X
The fact that () QK is a compact subset of X dimplies
; ok

that Q 1is compact. . |
Next, we will show that P 1s majorized by a constant

multiple of the supremum seminorm s over Q . Let rfec(X) ,

and consider

g = ((-s(f) Vv EIAs(f))

By the previous lemma, we have

o p(f - g) =0

Furthermore,
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|B(£) - Blg)| < B(f - &) ,

and hence P(f) = d(g) . From the inequality |g| < s(f) ,

we c‘nclude that

\
i
!
|

Therefore we have proved

Theorem 4. The assoctated locally convex space

of Cl(ﬁ)’ is CCO(X)

The associated locally convex space of CI(X) coincides

with the locally convex inductive limit of the family
”{CCO(BX\K): K is a compact subset of BX\X}.
Thus we may state

Corollary 1. The locally convex inductive limit of

the family
{CCO(BX\K): K is a compact subset of BX\X}

18 CCO(X)

For any convergence vector space E over R , its

dual {L(E) 1is identical with the dual of the associated
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1ocaily convex space of E . Therefore:

i

" Corollary 2. £(CI(X)) £(CCO(X))

1.5.| Functorial properties of CI(X)

lLet X and Y denote completely regular topological
\ ‘ -
spaces. Every continuous map

t: X — Y

induces a homomorphism
{
i

* ' ‘
t7 CI(¥> ——»-CI(X) s

. : *
defined by t (f) = fet for every Tf€C(Y) . To see that
£% is cohtinuous, we consider the restrictions
#*

-tK : CCO(BY\'K) —_— CI(X)

* | : .
where t,  denotes t*IC(BY\K) , and verify that tK* is

continuous for every compact set XK CBY\Y . To this end,

we extend t to a map ' .

T sx—;—» BY

For each compact KcBY\Y , we know T ~I(K) 1is a compact

subset of BX\X . Furthermore, for a compact KCCBY\Y the

map tK% is induced by
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TINE THE)): BX\E THK) — YK

K K for all

fEC(BY\K) . Clearly

which we denote by t, . That is, tK%(f> = fetg

¥# A —
tK : CCO(BY\K) — CCO(BX\t (K)).
1s continuous for every compact K(:BY\Y',rand therefore

'c-)é itself is continuous.

On the other hand, let
us Cp(Y) —= C(X)

be a continuous R-algebra homomorphism sending unity to

'unity. We will now show that u. is of the form t* where
t maps X 1into Y continuously. The homomorphism u

induces a continuous map
W Hom_c_(X) — Hom_C.(Y)
s I s I
. * .
defined by u’ (h) = heu for every h€ #om CI(X) .
The index s denotes the topology of pointwise convergence.
Corollary 2 of theorem 2 implies that the map
iz: Z ——+-ﬁ@msCI(Z) is a homeomorphism for'any completely
regular topological space Z . Thus we have a continuous
-1 ®

y °u OiX‘. Now

it is easy to verify that t* is equal to u.

map t from X into Y defined by ¢ = 1

To summarize these facts, we state:

o
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Theorem 5. A4 homomorphism

i Cp(¥) —— C(X)

i
I

takiLg unity to unity is continuous if and only if there
emisLs a continuous map t: X — Y such that u = ¥,
l ’ '

\

rr

‘For maps t: X — Y and s: Y — Z between completely

regular topological spaces, we have the obvious identities:

* _
(set) = t*"'a s ¥

and ‘
N
ldX = 1uC(X>

1.6. Realcompact spaces

.Let X be a completely regalar topological space.

As before, the zero-set ZBX(f) of a fuﬁction £ € C(BX)

means the set of all points p €g8X where f vanishes.

Here, we consider the collection

X C BX\X 1is a zero-set}

I3

(%) | {0, (BX\Zgy): 7,

This is a subfamily of the family of all topological algebras

CCO(BX\K) for K a compact subset of BX\X . As in
section 1.1, it is clear that the union of all C(BX\ZBX)'
for 2 a zero-set outside of X i1s again C(X) . Under

gX

the natural ordering (as in section 1.1), the collection
(#3) 1is an inductive system, énd we denote the inductive

limit of this system by CI’(X)
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It is easy to see that CI’(X) is actually the finest
convergence structure on C(X) obtainable as an inductive
limit of a subfamily of the family of all éCO(BX\K) for K

a compact subset of BX\X . Of course the identfty,
(1) id: CI,(X) — 01 (X)

is'qontinuous. Our main concern in this section is to
.determine under what conditions this identity is a
-homeomorphism. |

If every compact subset of RX\X 1is contained in
~a zero-set in BX\X , then cleafly the identity (I) is a

homeomorphism. Conversely, assume that
id: C_I(X) —-——»—__CI, (X)
is continuous. Therefore we have a continuous injection
. X
id :7¢5mSCI,(X) ———r;éémsCI(X) R

where ﬁ%mSCI,(X) denotes the set of all continuous
R-algebra homomorphism from CI‘(X) ohto- R ‘together
with the topology of pointwiséACOnvergence. For both‘ X
and its Hewitt realcompactification uX the convergerce
algebras CI’<X) and CI,(UX) are identiéal, since any
zero-set containéd in BX\X is already contained in

BX\vX (see [6], p. 118). Thus

ﬁ@mSCI,(X) = ﬁ%mSCI,(UX)

P
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In view of (I), we conclude that the map

1 o vX —4»ﬁ%ch,(x)

vX I

. LU :
is continuous. This tells us that 1d ° 1 maps uvX

vX
rtively into ?ﬁngCI(X) , which is homeomorphic to X

injec

\

" Hence X must be realcompact.
} .
To continue our investigatioen, without loss of generality

we can regard X as a realcompact space. Since by assumption

id: CI(X) — CI,(X)

is continuous, we know that the inclusion map from
CCO(BX\K) into CI,(X) is continuous for any compact
KCBX\X . Thus the neighborhood filter of zero in ‘Cco(BX\K)

has a basis in CCO(BX\Z ) for some zero-set contained in

RX
BX\X . Because every neighborhood of zero in Coo(BX\K)

is absorbent, C(BX\ZBX)_:)C(BX\K) meaning that 2 X:)K

B

To summarize, we have extablished the following:

Theorem 6. ILet X be a realcompact space. CI(X)
18 1dentical to CI’(X) 1f and only <f every compact® set

in BX\X is contained in some zero-set im BX\X

We note that in the case of a realcompact locally
compact space X , the convergence algebra CI(X) coincides

with CI;(X) if and only if BX\X 1is a zero-set, i.e.,

X 1is o-compact.
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More generally, assume that C..(X) 'is topological for

\‘I’
a realcompact space X . By arguing as in section 1.4, we
conclude that X is of the form BX\Z for some zero-set

BX

Z This means that X is o-compact and locally compact.

BX
Therefore, we can state:

Theorem 7. Let X be a fealcompact space. The
convergence algebra CI'(X> 18 topological ifband only 1f

X <8 locally compact and o-compact.

As an example of a realcompa2ct space X for which
CI(X) and 'CI,(X) do not coincide, consider the reals

together with the discrete topology.

‘1.7, Universal representation of CI(X)
For a compleﬁely regular tbpological space X , the

homomorphismA
d: C (X)) — cc(ﬁmecI(X)) s

defined by d(f)(h)‘= h(f) for all fé€ C(Xj and all‘

h€ #Hom C;(X) , is called the universal representatién [2]-"*‘~~~«
of CI(X) . The subscript c indicatés the continuous
convergence structure (Limitierung der stetigen Konvergenz

[1]) on the sets #om CI(X) and C(ﬁbmcCI(X))'.
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We first investigate the continuous convergence
structure on #om CI(X)
The‘space f%mCCC(X) is homeomorphic to ‘X (see f}]),
and thus the continuous convergence structure on ‘ﬁ@m.CC(X)

is the topology of pointwise convergence. Since the

“evaluation map
w: CI<X) X X —+ R

(defined by w(f,p) = £(p) for all £€C(X) and all pé€X)

is continuous, the identity
‘1d: CI(X) —_— CC(X)

is continuous. Furthermore, the sets 7%Mn CI(X) and
gqu CC(X) are identical (corollary 2 of theorem 2)

which means that
-1d:??meCC§X) “‘*‘%%H%CI(X>

is continuous. On the other hand the identity map from
?7omCCI(X) into ﬁ%n%CI(X) is clearly continuous (tpe
sﬁbscript s 1indicates the topology of pointwise convergence).

It follows that .
. . _ / - v
%mccl(x) = //{amscl(x) ,

which is homeomorphic to X via the map iX defined earlier.

Therefore
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%.

v iX CccﬁemcCI(X)> - CC<X>_

is a bicontinuous isomorphism, and of course iX%Od is the
identity map on C(X)
Our main problem is thus to determine whether CI(X)»

and CC(X) coincide. So far, we can say the following:

Tﬁeorem 8§. Let X be a completely regular topoZogicaZ 
space. ff there is a point q in X  having a countable
base of neighbbrhoods and ﬁb compact neighborhood, then
CC(X) canvnot be dn Iinductive Zimit of topological vecter

spaces over R

Proof. Any inductive limit of topological vector
spaces over [R- has the propeftyathat for each filter ©
converging to zero, there exists a coarser filter ¢~

convergent to zero with

for every real numbér‘ A ruﬁequal to zero. e
Our aim 1is to show that under the assumption of the
theorem, Cé(X) fails to satisfy this condition.
Let .{Qm}me N be a countable collection of open sets
in X that form a baée for the neighborhood filter at g
We défine inductively a certain system of nested neighborhoods

of q . Let N1 = X and let '{Oi a} be an open covering of
> .
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X with no finite subcovering. Set

- n9 '
Ul.olﬂQ1 R

where O? is a member of { } containing 'q . Assume

0 o

that the cloéed respectively open neighborhoods Ni and

Ui are defined. Choose Ni+1 to be a closed neighborhood

of " @ contained in Ui , and let {0 } be a covering

i+l,q

of Ni by open sets in X having no finite subéovering.

+1

- We pick Ui+

1 to be an open neighborhood of g contained in

. T
0% . N Qi+1ﬂ N.,

i+1- 12

o4

where
1+1

N ’ ‘ . q .
is a member of {Oi+1,a} with q€0; .
With this system of respectively closed and open neighborhoods

of q ,
N1:>U1.‘A"_"DN2."_'DU2 cee s

we construct a filter O that does‘not satisfy the condition ‘

mehtioned above. Let

- re . -1 1
T, = {féC(X): f(Nn) C [n R n]}
and let
T, = {fre c(x): f(wx) = {0} 1}
for x # q , where we choose WX as follows: Since x # q ,
‘the point x lies in Nr but not in Nr+1 forvsome natural
number r . Let W be a closed neighborhood of x contained

X

in
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r
f]o?(ﬂ N

j=1 rel e

}

where O? is a member of the covering system {Oj a
5

containing x . It is clear that the sets '{Tn: né€ N}

and {TX: x€X and x # a} generates a filter © convergent

to zero in CC(X) .  Assume that there exists a coarser

filter ©° 1in CC(X) convergent to zero with

A7 = 07
for every real number A # O . To the interval -1, 1] ,
there is'a set F € 0° and a neighborhood Nk of g such
that.
F'(Nk) = {f(p): f€F and péNk}
is a subset of [-1, 1] . For X equal to 1/2k , we have
L e [-_1 1]
2k K 2k * 2k) °
1 td ”» j. » i . - a
and sy F € 9 . Thus 5% F contains a finite

%

intersection of elements of the form Trl and TX s, say

BT S
neN T x¢X

where N is a finite subset of N and X is a finite subset

of X\{q} . Now we claim that
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N¢ LJ w_uu
k Xé')“'( X k'*‘l
Our construction guarantees that for a fixed WX , either

WX_ is a subset of the complement of N or W is

k X
contained in an element of the open covering {Ok u}
3
Furthermore, N is contained in 0% Since the open

, k+1 X
covering {Ok a} has no finite subcovering, the claim is
Uk, : ,

true. Therefore, we can find a function g€ C(X) vanishing

on Lu[jWi UN,,

1 with g taking on the value 1/k
x€X . : :
for some point in N and lell < % . This function is
certainly not in 1 F° but it is in M T N ()T 5
, 2k >~ n > X
néN X € X

and this contradiction establishes the theorem.

2.1. Consequences for CC(X)-‘

In'this sectibn, we demonstrate consequences of the
- theory develdped in 1.1 to 1.7 in investigating‘cloSed
ideals in CC(Y) for a donyérgence space Y , and in
determining both thé associéted 1oca;ly convex topological
space of CC(X) and the dual space of CC(X)‘, where X
is a completely regular topoiOgical spacz. The resul@s
we obtain can be found in [Mj and [5] respectively; hbwevef,
the proofs given here are simpler than those provided in
[4] and [5] |
| First,-we‘look at clésed ideals in CC(X)
Let Y Dbe an arbitfary convergence space. To this

space we associate a completely regular topological space

as follows: Any two points' p,g €Y are said to be equivalent
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if f(p) = f(q) for all real-valued continuous functions
f . As usual, the set of all these functions is denoted by

C(Y) . The quotient set defined by the above equivalence

relation is called Y . Any function £ é&€C(Y) defines
Ca fuLction

by sending each p€¢Y" to f(p) . The initial topology

induced by the family

| L7 FEC(Y))

‘is, of course, completely regular. The set Y° together with

this topology is again denoted by Y~

. The obvious projection
m: Y — Y7

induces an isomorphism (with reépeot to the usual R-algebra
structure)
*

7 C(Y") — C(Y)

X * ' . oy .. .
defined by = (g) = gem for all g €C(Y") . This isomorphism

- 1s continuous if both algebras carry the ¢ontinuous convergence

structure. Hence for any closed ideal J in CC(Y) (the
algebra C(Y) together with the continuous convergence
structure), the ideal W*—l(J)C: ¢ (¥") is closed . Since

the identity map,

e R D e L e T R P Lt S abtvmtnia, il ol e R B SN e e BV R O



id: Cp(¥Y ) — cC(Y )

is continuous, we conclude.that f&_l(J) is closed in
CI(Y') . Therefore, we know by theorém 2 that it is of the
form I(N) where NCIY’ is a closed non-empty subset.

It is clear that I(ﬂ_l(N)) = J . Since an ideal of the
form I(M) for any non-empty subset of Y is'closed in

CC(Y) , We have the following result:

Theorem 9. For any cénvergence space Y , an ideal J

in CC(Y) is closed 1f and any i1f 1t 18 of the form»'I(NY(J))

Another application of the theory developed in chapter

1 1is the following theorem:

- Theorem 10. Let X be a completely regular topological
space. The associated locally convex space ofv CC(X)
. . f k .
28 C O\X)

c

Proof. Clearly the identity from C_(X) into the

locally convex topological vector space C_ (X) is cgntinubus.

co

Since
id: Cp(X) — € (X)

is also continuous, in view of theorem 4 the proof is complete.

Lk



obtain
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By reasoning as in the proof of the last theorem, we -

Theorem 11. For any completely regular space X the

spaces £(CI(X)) s L(CC(X)) , and {(CCO(X)) are identical.

N
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