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The purpose of this note is to introduee a natural

Marineseu strueture [7] (an inducti ve limit of locally

convex topological vector spaces in the eategory of

convergence spaces) on C(X) , where C(X) denotes the

~-al~ebra of all eontinuous real-valued funetion on a

comP1etelY regular topologieal space X. The structure

in question is closely related to C (X) , the algebra C(X)c
\endowed with the continuous convergence structure [1J.

1.1. Definition of the eonvergence structure

Let X be a completely regular topological spaee.

We denote theStone-Ceeh eompaetifieationof X by ßX.
I
J

It is well-known that every eontlnuous map from X into

a eompaet spaee C ean be extended to a eontinuous map

from ßX into C . Sinee X is a dense subspaee of ßX , ,

this extension i8 unique.

By C(X) , we mean the ~-algebra of all eontinuous

real-valued funetions on X (under the pointwise defined

operations) . Every function f in C(X) ean be regarded

as a map from X into R , the one point eompaetification

of the reals. Henee we ean extend f to a funetion from

ßX into R . Clearly if f is bounded, then the extension
"is still real-valued. For any f~C(X) , the extension of f

is again denoted by

f of the point

to ßX , as a function with valu(,;3 in R ,
f . Let KfCßX be the pre-image under
ooER Sinee f: ßX ---t- R is continuous, Kf is a compaet

subset of ßX. The funetion f restrieted to X is of course

real-valued, and thus Kf must be a subset of ßX\X, the

~ Parts of this,paper are contained in the thesis of the
second author.
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complement of X in ßX. For any space Y such that

x c Y C ßX ,

we id~ntifY each continuous real-valued function on Y
with lts restriction to X. Therefore givenany compact

\
set Ke ßX\X , the algebra C(ßX\K) is contained in C(X)

i

In particular, the subalgebra C(SX\Kf) contains f.

We now conclude that

C(X) = l-J C(ßX\K)
Ke ßX\X

,

where K ranges through all compact subsets of ßX\X.

By C (ßX\K), we mean the algebra C(ßX\K)co endowed

with the topology of compact convergence. The convergence

structure, being the subject of our investigation, is the

finest of all convergence structures on C(X) making
the inclusion maps from C. (ßX\K) into C(X) continuousco
for every compact subset K C ßX\X . We denote the algebra

C(X) together with this convergence structure by CI(X) ,

and notice that this is simply the inductive limit,

in the category of convergence spaces, (see [7J) of the
family

{C (ßX\K): K a compact subset of ßX\X}co

with the ordering defined by inclusion. Of course the

inclusion map from C (ßX\K) intoco .
C (ßX\K")co is continuous

whenever K is contained in K" . Since all the spaces

__ I



considered in (~) are locally convex topological R-algebras,

CI(X) is indeed a Marinescu space as introduced by H. Jarchow

in [7J. We leave it to the reader to verify that CI(X)

is aconvergence R-algebra (lJ, meaning that the operations

are .ontinuous .

1.2. \Completeness of CI(X)
A filter e on a commutativ2 convergence group G

is called Cauchy if e - e converges to zero, where

" - " denotes the difference operation in G.. If every

Cauchy filter in G converges to some element in G,
I .,then thei group lS sald to be cornplete.

Theorem 1. For any completely regular topological

space X ~ the convergence algebra CI (X) is complete.

Proof. Let e be a Cauchy filter on CI(X) . We

must .find a function f t CI(X) such that e converges to

f. Here, we remark that a filter ~ on CI(X) converges

to a function g in CI(X) if and only if there is a

compact K C ßX\X such that C(SX\K) contains g and

~ has a base in C eSX\K) which is a filter convergentco

to g in this space. Now the filter e - e has a base

<P in C eßX\K) with <P convergent to zero for some compactco
K C ßX\X . Hence any element A of <P corrtains M - M

where ~.1E: e . We will show that M itself is in CeßX\K')

for some compact K' C ßX\X. Let g be a fixed element

in M. For each f(fM, the function f - g is 'in ~!I - M ,
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and thus in C(SX\K) . This means that

K' stands

has a base inert follows that

f-1(00) C g-1(00) U K •

Ther1rore M is contained in C(ßXIK) where
I -1

for g (00) U K
I

I

C(SX\K') , call it e' . Since

C(SX\K) C C(SX\K') ,

the filtbr e' - e' on C (SX\.K') has ep as a base,co
and thus is a Cauchy filte~ in C (SX\K')co The

completeness of C (SX\K')
co,

implies that e' itself

converges to some function t €. C (SX\K' ) Hence e
converges to t ln Cr(X) as desired.

1.3. Closed ideals in

By an ideal, we mean of course a proper ideal. rt

is evident that for every non-empty sub set S of X the

ideal

reS) = {f€C(X): feS) = {O} }

is closed ln Cr(X) . We conjecture that all closed ideals

in Cr(X) are precisely of this form.

To prove this, let Je Cr(X) be a closed ideal. We
call the set of all points p ~ X with the property that

every function f € J vanishes on p the null-set of J,
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and denote this set by Nx(J). It is exactly the
intersection of all zero-sets Zx(f) wher~ f runs
through J. By ZX(f) , we mean {xe:X: fex) = O} •

Since for any function f f J there is a bounded function
g£J such that ZX(f) = Zx(g) , we can represent Nx(J) as

n Zx(g) ,gE JO

where JO denotes the collection af all bounded functions
in J . Furthermore, the set JO is a closed ideal ln
C (ßX) , and is therefore of the form I(NßX(Jo» whereco
Nßx(Jo) I is a non-empty subset of ßX . Evidently the
ideal JCI(Nx(J» . We will show that J is all of
I(NX(J» . First, we verifythat JO contains all the
bounded functions in I(Nx(J». Since JO consists of all

Clearly we are done as soon as we know that

('NßX (J j ) , it isen 0u'gh t0
I(NX(J» vanishes on

NßX(JO)
Nßx(Jo)

NX(J) , the closure
Assume, toßX .

prove that any bounded element of

is the closure of Nx(Ji in
othe contrary, that Nßx(J) contains

functions in C(ßX) vanishing op

NX(J) , as a proper subset. For apoint

U of p disjoint from NX(J). There exists

inßX of
oq6N

ßX
(J)

neighborhood
outside of NX(J) , we choose in ßX a closed.

"

a function g£C(SX) such that g(q) = 1 and g vanishes
on the complement of U. We assert that .gE:J n C(SX\K) ,
where K denotes the compact set U n NßX(Jo) contained
in ßX\X Clearly J n C(SX\K) is a closed ideal in
C (ßX\K), and therefore consists of all functions vanishingco.

on its null-set. Since the bounded functions in J n C(SX\K)
are precisely the elements of JO , we conclude that
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NSX(JO) n ßX\K is the null-set of J n C(ßX\K). The

function g vanishes on NSx(Jo) n ßX\K , and therefore

g is an element of J n C(ßX\K) as claimed. Thus we

know g €. JO . .On the other hand , g is not an element of

I(NSX(Jo)) , which is of course JO. Becaus~ of this

contradiction, we conclude that NßX(Jo) = NX(J) , and

thus JO consists of all bounded functions in I(Nx(J))

whereNx(J) is not empty. To complete the proof, let

f be an arbitrary element of I(NX(J)) . There lS a unit

u in C(X) such that f.u is bounded. Hence of.u ~J ,
and therefore (f.u). 1/u €. J. "'his implies that .

We now have established

Theorem 2. An ideal J in C1(X) ~s closed if

and only if J = I(NX(J)) .

Corollary 1. A maximal ideal in C1(X) is closed if

and only if it consists of all funetions ~n C(X) vanishing

at a fixed point in X.

For e.very point p E X there is a continuous IR-algebra
~

homomorphism

defined by ix(p) (f) = f(p) for every f € C(X) . Assigning

to each point pE X the homornorphism ix(p) , we obtain

a map
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1I1here 110m CI(X) denotes the set of all continuous

R-algebra homomorphisms from CI(X) onto ~: Since

an element of 110m' CI(X) is determined by its kernel,

a closed maximal ideal in CI(X) , we deduce from

corollary 1:

Corollary 2. The map lX is surjective.

1.4. The associated locally convex topology of CI(X)

First, letus demonstrate that, in general, CI(X)

is not topological; more precisely:

Theorem 3. Cr(X) ~s topoZogicaZ if and onZy if X

is ZocaZZy compact. If X is ZocaZZy compact~ then

= C (X).co

Proof. If X is locally compact, then C(X) is of

the form C(ßX\K) , where K = ßX\X is a compact subset
~

of ßX . The inclusion map from C (ßX\K' ) into C (X)co co
is continuous for any compact set K' C ßX\X Thus

C (X) is the finest of all convergence structures makingco
the inclusion maps continuous, i.e., CI(X) coincides with

C (X) and hence is topological.co
Conversely, assume that CI(X) is topological. Since

the neighborhood filter of zero has a base in C(ßX\K) für



-8-
some compact K C ßX\X and every neighborhood of zero is

absorbent, we have

C (X) = C ( ßX \ K ) •

isxmeans

C (Z)co
(see [3J).

whichßX\X

Z' are homeomorphic if and only if

are bicontinuously isomorphie

must be equal to

This is apparent sir-ce two locally compact

and C (Z')co
Therefore K

If t1ere were a compact K'C ßX\X strictly containing K,

then-\the neighborhood filter of zero in C (ßX\K') would
I co

be st~ictly coarser than the neighborhood filter of zero in
i
i

C (ßX\ K) •co
spaces z. and

locally /compact.

In view of the fact that CI(X) is not, in general,

topologieal, we wish to determine the associated locally

convex space CTI(X) of CI(X) - The topology of CTI(X)

is generated by all the continuous seminorms on C1(X)
Let

be a continuous seminorm. We construct a seminormp<- which
majorizes p and is more convenient to work with. For a
compact set K C ßX\X , we denote by the restrietion üf
p to C(ßX\K). Clearly

PK: C (SX\K) ~ Rco

!



is continuous. Therefore we can find a compact set

QKC SX\K such that a constant multiple a of the seminorm

sQ : C (SX\K) ~ R ,K co

defined by sQ (f) =
K

sup I f(q) I
q E QK

majorizes This

implies that for any function f€ C(SX\K) ,

is areal number less than or eq1lal to aSQ (f). Since
K

for every function gE C(X) the relation I gl ::: I f I iIT,plies

that gE C(SX\K) we know that

p(f) = sup{p(g): 'igl < Ifl and gE:C(X)}

is identical to Of course every function in

C(X) is an element of C(SX\K) for some compact KC SX\X

It is not difficult to verify that the maps

and
PK: C (SX\K) ~ R for any compact KCSX\X,co

sending each f t. C(X) to P (f) and each f € C(ßX\K)

to PK(f) respectively, are seminorms. Since ~ restricted

to C(SX\K) is PK' we conclude that p itself is a

continuous seminorm. Furthermore, p has the following
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properties:

p(f) = p(lfl) for all fEC(X)

and
p(f) < p(g) for all f:)gf C(X) with I fl < I gl .

Lemma 1. The kerneZ. P of P ~ the set of alZ functions

f~ C(X) with per) = 0 "'"s a cZosed. ideal in Cr(X)

consisti~g of all elements in C(X) vanishing on a compact

subset of X.

Proof. P is clearly a linear subspace of C(X). To

show it is an ideal:) let g€ P. For an arbitrary element

f f C(X) :)we consider

«-g vf)/\ g)

where n denotesthe function of constant value nE N .
Now

.p(g.( (-g Vf) Ag)) < p(g'~) = n'p(g)

and hence. g. «-n v f) 1\ g) E P

by the sequence
The Fr&chet filter generated

converges to gof in Cr(X) . Since P is obviously

closed:) g.f is an element of P. Thus P is a closed
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ideal in C1(X) , and therefore consists of all functions

inC(X) vanishing on its non-empty null-set Q C X (s~e

theorem 2). It only remains to prove that Q is compact.

We can express P as the union of the kerneIs of PK for

all ~ompact ~ C ßXIX ()n the other hand, the kernel PK

of ~K contalns the ker~el HK of sQ . Hence we have
\ K

Since Q

is contained in the intersection of the null-sets of PK,

Q c n QK '
K

where K runs through all compact subsets of ßX\X.

The fact that n QK is a compact subset of X implies
K

that Q is compact.

Next, we will show that p is majorized by a constant

multipleof the supremum seminorm S over Q

and consider

g = « -s (f) V f)1\ s (f) )

By the previous leIPJna,we have

p (f - g) - 0 .

Furthermore,

Let f€ C(X) ,
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I p (f) - p (g) I < p (f - g) ,

and hence p(f) = p(g) . From the inequality Igl < s(f) ,

we TCIUde that

p(f) < p(s(f)) = s(f) pU)

Therefore we have proved

Theorem 4. The associated tocatty convex space

of is C (X) •co

The associated locally convex space of Cr(X) coincides

with the locally convex inductive limit of the family

{CcoCßX\K): K is a compact subset of ßX\X}.

Thus we may state

Corollary 1. The tocatty convex inductive timit of

the famity

{C (ßX\K): K is a comp:-.ctsubset of ßX\X}co

is

dual

C CX).co

For any convergence vector space E over R, its

£(E) is identical with the dual of the associated
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Therefore:

Corollary 2. £(C (X».co

1.5. Functorial properties of Cr(X)

Let X and Y denote completely regular topological

spacas. Every continuous map

t: X --r Y

induces a homomorphism

*"defined by t (f) = fot for every fe C(Y) . To see that

*t lS continuous> we consider bhe restrictions

where denotes t*IC(ßY\K) > and verify that t "* isK

continuous for every compact set KCßY\Y. To this end,

we extend t to a map

t: ßX --r ßY .

For e8.ch compact K C 8Y\Y > we know t -1 (K) is a compact

subset of 8X\X. Purthermore> for a compact K c: 8Y\Y the

map tK* is induced by



-14-

which we denote by

fEC(ßY\K). Clearly

That is, fot
K for all

tK*: C (ßY\K) -+- C CßX\t -1(K))co co

is continuous for every compact KC ßY\Y , and therefore

t"* itself is continuous.

On the other hand, let

be a continuous R-algebra homomorphism sending unity to

uni ty. We will now show that u., is of the form t'# where

t maps X into Y continuously. The homomorphism u

induces a continuous map

defined by u*(h) = heu for every h€ -110m Cr(X) .

The index s denotes the topology of pointwise convergence.

Corollary 2 of theorem 2 implies that the map

iZ: Z --rilomsCr(Z) is a homeomorphism for any completely

regular topological space Z. Thus we have a continuous

map t from X into Y defined by Now
it is easy to verify that t'*' lS equal to u.

To summarize these facts, we state:
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Theorem 5. A homomorphism

unity to unity is continuous if and on~y if thereta~itg
eX1-S ts

i
I
\

a continuous map t: X -+- y such that u =

For maps t: X -+ Y and s: Y -+ Z between completely

regular topological spaces, we have the obvious identities:

(sott= t*os*

and
"d "*l X =

1.6. R2alcornpact spaces

Let X be a completely regular topological sp?-ce.

As before, the zero-set Zßx(f) of a function feC(ßX)

means the set of all points p E.ßX where f vanishes.

Here, we consider the collection

(.

This is a subfamily of the family of all topological algebras

Cco(ßX\K) for K a compact subset of ßX\X. As in

section 1.1, it is clear that the union of all C(ßX\ZSX)

for zsx a zero-set outside of X is again C(X) . Under

the natural ordering (as in section :1.1), the collection

(* *) is an inducti ve system, and we denote the inducti ve

limit of this system by Cr,(X) .
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It is easy to see that CI' (X) is actually the finest

convergenc$ structure on C(X) obtainable as an inductive

limit of a subfamily of the family of all C (ßX\K) for Kco
a compact subset of ßX\X. Of course the ident{ty,

is continuous. Our main concern in this section is to

determine under what conditions this identity is a

homeomorphism.

If every compact subset of ßX\X is contained in

a zero-set in ßX\X, then clearly the identity (I) is a

homeomorphism. Conversely, assume that

is continuous. Therefore we have a continuous injection

where A0mSCI,(X) denotes the set of all continuous

R-algebra homomorphism from CI' (X) onto m together
(.

with the topology of pointwise convergence. For both X

and its Hewitt realcompactification uX the convergence

algebras CI' (X) and CI,(uX) are identical, since any

zero-set contained in ßX\X is already contained in

ßX\uX (see [6], p. 118). Thus
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In view of (I), we conclude that the map

is cbntinuous. This teIls us that id~iux maps uX

inje~tivelY into 110m CI(X) , which lS homeomorphic to x.
\ s

Hence X must be realcompact.
\

i
To continue our investigati0n, without loss of generality

we can regard X as a realcompact space. Since by assumption

is continuous, we know that the inclusion map from

into CI~(X) is continuous for any compactCco(ßX\Y.)
K C ßX\X . Thus the neighborhood filter of zero ln C (ßX\K). co

has a basis in Cco(ßX\ZßX) for some zero-set contained in

ßX\X. Because every neighborhood of zero in C (ßX\K)co

is absorbent, C(ßX\ ZßX):::>C(ßX\K) meaning that ZßX~K.
To summarize, we have extablished the following:

Theorem 6. Let X be a realcompact space. CI(X)

is identical to CI~(X) if and only if every~ompact.set

~n ßX\X is contained in some zero-set in ßX\X.

We note that in the case cf a realcompact locally

compaet space X, the convergence algebra CI(X) coincides

with CI~(X) if and only if ßX\X is a zero-set, i.e.,

X is a-compact.
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More generally , assume that CI' (X) is topologicalfor

a realcompact space X. By arguing as in section 1.4, we

conclude that X is of the form ßX\ZSX for some zero-set

ZSX' This means that X is a-compact and locally compact.

Therefore, we can state:

Theorem 7. Let X he a realcompact space. The

convergence algebra Cr~(X) is topological if and onZy if

X is ZocalZy compact and a-compact.

As an example of a realcomp2ct space X for which

Cr(X) and Cr~(X) do not coincide, consider the reals

together with thediscrete topology.

1.7. Universal representation of Cr(X)

For a completely regular topological space X, the

homomorphism

d: Cr(X) -t>- C (Pom'cr(x» ,c c

defined by d(f)(h) = h(f) for all fE C(X) and all~

h€ -110m Cr(X) , is called the universal representation [2]

of Cr(X) . The subscript c indicates the continuous

convergence structure (Limitierung der stetigen Konvergenz
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We first investigate the continuous convergence

structure on 110m Cr(X) .

The space Horn C (X) is homeomorphic to X (see [3]),c c

and thus the continuous convergence structure on 110m C (X)c
is the topology of pointwise convergence. Since the

evaluation map

(defined- by w(f ,p) = f(p) for all fE C(X) and all pt X)

is continuous, the identity

is continuous. Furthermore, the sets 110m Cr(X) and

110m C (X) are identical (coroJ,lary 2 of theorem 2)c
which means that

id: 11'omC (X) -+-lfum Cr(X)c c. c

is continuous. On the other hand the identity map from

is clearly continuous (the..
subscript s indicates the topology of pointwise convergence).

rt follows that

which is homeomorphic to X Vla the map

Therefore

defined earlier.
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iX~: C (-;t%m C_[(X» -+ c (X)c c _ c

is a bicontinuous isomorphism, and of course

identity map on C(X)

i ~o d is the
X

Our main problem is thus to determine whether Cr(X)
and C (X) coincide. So far, we can say the following:c

Theorem S. Let X be a completely regular topologicaZ

space. If there &3 a point q in X having a countable

Let

theorem,

base of neighborhoods and no compact neighborhood~ then

Ca(X) can not be an inductive limit of topological vectcr

spaces over IR

Proof. Any inductive limit of topological vector

spaces over ~ has the property.that for each filter ~

converging to zero, there exists a coarser filter ~'

convergent to zero with

for every real number A unequal to zero.

Our aim is to show that under the assumption of the

C (X) fails to satisfy this condition.c

{Qm}m~ N be a countable collection of open sets
in X that form a base for the neighborhood filter at q.

We define inductively a certain system of nested neighborhoods

of q • Let N = X1 and let . {O" }
1,0.

be an open covering cf
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X with no finite subcovering. Set

,

where oq is amember of {o } containing1 1,u
that the closed respectively open neighborhoods

q. Assume

N. and
l

U.
l

are defined. Choose N. 1l+ to be 0. closed neighborhood

of

of

q contained in U. , and let {Oe 1 } be 0. coveringl l+ ,U
Ni+1 by open sets in X having no finite subcovering.

We pick U. 1l+ to be an open neighborhood of q contained in

where 09- 1 lS 0. member of {o. 1') wi th q € 09- 1l+ l+ ,~ l+
With this system of respectively closed and open neighborhoods

of q ,

we construct 0. filter 8 that does not satisfy the condition

mentioned above. Let

T = {f~C(X): f(N) C [-1, 11}n n n n
and let

T = {fe:: C(X): feH ) = {o} }x x

for x ~ q , where we choose W x as folIows: Since x ~ q ,

the point x lies in Nr but not in Nr+1 for some natural

number

ln

Let W be 0. closed neighborhood ofx x contained
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rn Ox, n I,T~r+1 'j = 1 J

where o~ is a member of the covering system {O. }
J J ,Ci

containing x. It is clear that the sets {T nE N}n

and {T: x E X and x f. q} generates a filter 8 convergent
x

to zero ln C (X) . Assume that there exists a coarserc
filter 8' in C (X) convergent to zero withc

for every real number A f. o. To the interval [-1, 1J

there is a set F'€ 8' and a neighborhood Nk
that

of q such

is a subset of [-1, 1J For. A equal to 1/2k, we have

and 1 F' €. 8'2k Thus 1 F'2k contains a finite

intersection of elements of the form Tn and Tx' say

n
x f X

Tx

where N is a finite subset of N and X is a finite subset

of X\{q}. Now we claim that
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Our constructiön guarantees that for a fixed W , eitherx

Wx is a subset of the complement of Nk or W isx

has no finite subcovering, the claim is

contained in an element of the open coverlng

Furthermore, Nk+1
coverlng {Ok },0.

is contained in

{Ok },0.
Since the open

true. Therefore, we can find a function gt C(X) vanishing

on U" W U Nk+1 with g taking on the value l/kxtx x
far point in Nk and 11 gll 1 This functionsome < lS- k
certainly not in 1- F' but it is ln n T () n T2k nEN n xEX x

and this contradiction establishes the theorem.

2.1. Consequences for C (X)c
In this section, we demonstrate consequences of the

theory developed in 1.1 to 1.7 in investigating closed

ideals ln C (Y) for a convergence space Y, and inc
determining both the associated loc~lly convex topological

space of C (X)c and the dual space of C (X) , wherec X

is a completely regular topological spac2. The results

we obtain can be found in [4] and [5] respectively; however,

the proofs given here are simpler than those provided in

[4] and [5]

First, we look at closed ideals in C (Y) •c _

Let Y be an arbitrary convergence" space. To this

space we associate a completely regular topological space

as folIows: Any two points p,q E Y are said to be equi valent



if f(p) = f(q) for all real-valued continuous functions

f. As usual, the set of all these functions is denoted by

C(Y). The quotient set defined by the above equivalence

relation is called

a futction

\

Y~ . Any function

f': Y~ ---I- R

f{C(Y) defines

by sending each p E Y~ to f(p) . The initial topology

induced by the farnily

.{f': f€.C(Y)}

is, of course, cornple.telyregular. The set Y~ together wi th

thistopology is again denoted by Y~

The obvious projection

TI: Y-+ Y'

induces an isomorphism (with respect to the usual R-algebra

structure)

defined by *TI (g) = gOTI for all g€C(Y') . This isomorphism

is continuous if both algebras carry the continuous convergence

structure. Hence for any closed ideal J in C (Y)c (the
algebra C(Y) together with the continuous convergence
structure), the ideal TI;lI'-1(J) C. C (Y~) is closed. Since

c
the identity rnap,
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is continuous, we conclude that *-1
TI (J) is closed in

C1(Y') . Therefore, we know by theorem 2 that it is of the

form I(N) where Ne Y' is a closed non-empty subset .

It is clear that I(TI-1(N» = J . Since an ideal of the

form I(M) for any non-empty subset of Y is closed in

C (Y) , we have the following result:c

Theorem 9. Por any convergence space Y ~ an ideaZ J

in Cc(Y) is cZosed if and onZy if it is of the formI(Ny(J»

Another application of the theory developed in chapte~

1 is the following theorem:

Theorem 10. Let X be a compZeteZy reguZar topoZogicaZ

. ( .)
1,S C ,X •co

space. The associated ZocaZZy convex space of C (X)c

_P_r_o_o_f.Clearly the identity from

locally convex topological vector space

Since

C (X) into thec
C (X) is cQntinuous.co

is also continuous, in view of theorem 4 the proof is complete.
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By reasoning as in the proof of ,the last theorem, we

obtain

Theorem 11. For any completely regular space X the

spaces [(C (X)) , andc
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