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Introduction.
This thesis deais with convergende spaces,particularly
- with c-embeddéd ones,and applies that theory to the problem
of répresenting commutative topological algebras as algebras
of continuous functions. | ?: , :

The first chapter. (chapter O ) is purely ‘introductory,
summarising our notation and those resulté already'known,
which we need. Covering systems (which are a generalisation
to convergence spaces of ' open cover ' in topological
spaces) are defined and discussed in the next chapter.With

&these,many topological concepts can be extended to cbnver—
gence spaces - for instance,compactness can be characterised
by covering systems; we define local compactness,and could

:Idefine paracompactness,axioms of countability;and SO on.

This line is‘investigated more thoroughly in the thesis of

Feldman [ﬁS], for example. |

Next,in chapter 2; we developr a sort of Stone-Weier-
strass theorem,extending those of Bingz [7, Theorem 5] and

Feidman [15].

Classical Gelfand representation theory for commutative

Banach algebras is extended to commutative topological alge-

bras.We shew that for each topological algebra A there is

a locally compact c-embedded convergence . space Hoch, which
acts as carrier in the following sense:

The Gelfand map
d A ——>C Hem A
c c

is continucus (see {5}, where it i1s called the universal re-
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presentation of A ), and CCHomaA is furthermore a complete
topological algebra,carrying thé topology of uniform conver-
vgence on the compact subsets of flom A. Conditions on A are
given (coinciding with those known for Banach algebfés,when
A itself is a Banach algebra),establishing whén d is ac-
‘tually an embedding or a homeomorphism. |

Last,these results are used>to obtain.anew the charaote~
~risation first given by Binz E8]~ of compacﬁ c-embedded con-
vergence spaces,and extend it to locally compact spaces.We
then give two examples of c-embedded locally compact spaces
thich are,though,not topological.These examples have other
properties,enabling us to disprove certain conjectures.The
~thesis ends by looking at ﬁherrelationship between a com-"

pletely regular topological space X, and the WQ—algebra

CX of all continuous K-valued functions on the one point

‘compactification X of X. On the way,we run across examples
- shewing that our Stone-Weierstrass theorem,proved in chapter

2, 1s a genuine extension of those of Binz and Feldman.



0O General background.

0.1 Convérgence spaces and continuous maps.

The idea of a convergence space (whose utility as a
generalisation of topological spéces(is,we hope,alréady
justified or will become so) is central to this thesis.

To make it reasonably self-contained,we give here the defi-
nition and some simple properties of convergence spaces.

More details can be found in [1],[2] or [M].

‘A pair (X,A), where X is a set and A a function with

b

domain X assigning to each point x of X a set Ax of filters

on X, is called a convergence space iff for each x in X the.
following conditions hold: ~

1) % e Ax,

ii) ¢e Ax and ¢° > ¢ imply %" e Ax, and

i1i) ¢, ¢" e Ax “imply ¢ad e AX.
Note: Our notation throughout is as above; namely,

i) X denotes the trivial ultrafilter at x in X,

ii) ¢ ;.¢’ means that ¢ and ¢° are filters on the
same set,and that ¢ is finer than ¢, and

iii) the greatest lower bound (with respect to this
ordering) of sets ¢ or {¢1’°'°’¢n} of filters on a set X is
denoted by A%, and 2¢i or ¢;A...A¢n respectively.We use
analogous formulae for the union,intersection and product
of families of sets as well.

With this definition come a number of 'shorthand'! nota-

tions: for instance,the convergence space (X,A) is often re-
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ferred to as the space XA, or simply X when no ambiguity

is possible.Further,we write ' ¢ - x in X ' and say

" ¢ converges to x in X ', or ' x¢ is a pair from X '

»

iff ¢ e Ax. The set X is called the set underlying the

space XA’ and A is called its (convergence) structure.

For all points x of X, the filter aAx 1is denoted by -
Using these filters we construct a space c¢X, the principal

. space associated with X, as follows:

) > x in eX iff ¢ 2 -

A space X is called principal iff ¢X converges to x in X,

for every point x. Equivalently, X and c¢X are the same space.
Every topological space will be regarded as a principal

cohvergence space,in which a filter converges to a point iff

it is finer than the neighbourhood filter at that point.
'Any space X possesses an adherence operator 8y s defined by

aX(A) = {xeX| there is - ¢ e Ax such that ¢ NA},

for each subset A of X. (We use the symbol ¢ A for two
purposes: first, to mean that the filter. ¢ has a trace on A, |
tﬁat is, FMA is nonvoid for all Fe ¢, and second,to de-
note the resﬁlting filter {FAA| Fe ¢} on A. It will always
. be ciear'what is meant.) One checks easily that this operator
satisfies three conditions,namely:

i) aX(®) = ¢, (the symbol @ denoting the empty set)
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ii) Ag;aX(A), for all subsets A of X, and
111) 2, (AUA") = a, (A)Ua (A7), for all A,A"S X.
Thus ay is a closure operator,as soon as one Knows that it

is idempotent,which it need not always be.Moreover,since.

aX(A) = {xe€ X{A¢%KWA}

for every subset A of X, the operators 8y ‘and .,y coin-
cide.This means simply that convergence spaces are not uni-
guely determined by their adherence operators,as non-princi-
#pal spaces do exist.However,there is a one-to-one correspon--
dence between the principal structures on a set,and the ad-
herence operators (that is,any operator satisfying the re-
“quirements>given above). This fact,whose proof is a not
unpleasant calculation,appeared first in [1,Satz i}.
A subset A of a convergence space X is said to be closed
| iff A = ay(A), and open iff the complemenﬁ of A in X (de-
noted by X\A ) is closed in X.  Obviously, A ié open in X
iff Ae ¢ whenever xeAl andv'¢ +~ X in X, and also,the col-
lection of open subsets éf X forms a topology on X. The set

X together with this topology is written tX, and called the

topological space associated with X. Clearly tX and tcX

are the same topological space,since the topology is given
purely in terms of the adherence opérator.

An obvious question: when is a convergencé space topolof
gical? One can now see readily that a space X 1is topological

iff it 1s principal and its adherence operator is idempotent.
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This characterization is also due to Xowalsky [1].

Given a convergence space X and a filter ¢ on X, the
cluster set ch(¢) of ¢ is defined in the same way as in

1

topology,by

cly(¢) = {xeX| there is ¢ » x in X with ¢"> ¢J.

The relation

cly(9) € el y(¢) = N{ay (F)| Fe ¢}

.is easily proved,along with the fact that the left inclusion

- may be proper,for non-principal spaces.

For any convergence spaces X and Y, a map fG'YX is gaid

to be continuous iff f(¢) » f£(x) in Y, whenever x¢ is a

pair from X. (The convenﬁion we follow here is that f(¢)
deﬁotes that filter on Y having l{f(F)] Fe¢'} as base. )

It is to be noted that this definition and the usual one .are
equivalént,when X and Y are bbth topological spaces.Constant
maps are clearly éontinuous,as is the composite of continuous
maps,when defined.Furthermore,any continuous map f:X — Y
has the following pair of properties:

i) f(aX(A)) c aY(f(A)}, for all subsets A of X, and

ii) when B 1is closed (or open) in Y, the set f 1(B)
is closed (open) in X.
As usual,the symbol C(X,Y) means the set of all contin-

uous members of YX. When Y is the real or complex field

with the normal metric topology,we often slim this to CX,
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using also C%X for the set of bounded continuous functions

on X.

At this point we should remark t@at the empty seﬁ @ is
vacuously a convergence space,and that C0 coﬁsists solely
of the void function.Clearly CO is'é pérfectly well-defined
algebra,whose operations are defined pointwise - we shall
élways consider CX ‘as an algebra with respect to the point-
wise defined operations,for all spaces X. Later however, it
will be convenient to demand that our algebras be nontrivial.

£

For  this reason we assume from now on that all spaces are

nonvoid.

The associated principal and topological spaces of a con-
Vergence space are neatly characterized by means .of an uni-

versal property (which phrase we often shorten to UP ).

Proposition 0.1 : Le% X be any convergence space, C any

paincipal convengence space,and T any Lopological space.
Then |

L) a map £:X — C A5 contdnuous L44

| fieX — C 48 continuous,and

i) a map g:X — T s Continuous L4 4

g:tX — T 44 contdnuous.

An immediate consequence of this proposition is that
the identity maps
X — cX — tX

are continuous,for all spaces X.



-8~
0.2 Induced structures and unilversal properties.

- In this section we lock briefly at initial and final in-
duced structures for convergence spaces,comparing them with
corresponding structures alreadyrknown in the theory of topo-
logical spaces.Then we introduce that convergence structure
on C(X,Y) with which we are most directly concerned in this

thesis,the structure of continuous convergence.

We start with initial structures.Let X be a non—void set.

A collection F of mappings is called an initial system of

~“mappings on X 1ff each map fé F has X as domain,and

range st say.When each X is a convergence space,the

f

initial structure.on X induced by F is.obtained as follows:

for all fefF,

é >~ x in X 1iff f(¢) - £(x) in Xf,

The usual UP holds,and furthermore,when the spaces X are all

f
topological,this structure is also topological,being in fact

the initial topology induced by F. More formally,we have

Proposition 0.2 : Let X carry the initial structure induced

" by an Anditlal family of mappings,say,F. Then
L) forn any convergence space X°, a map g:X‘ﬁ—% X
i5 continuous L44 each’mxp fog ech’,xf). Funthen,
LL) .when each space X L8 topological (oh principal)
X 44 akso Zopological (princdpall,the topology coinciding

with the initial topology induced by F.

The proof is omitted.,as it is stralghtforward calculation
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for‘the first part,and diagramme-chasing for the second.
A subsef A of a space X, and the product IX of a c§1~
lection X of spaces are given the initial Structurgs in-
duced by the inclusion jA’

coordinate projections respectively.We define now the term

and the family {my| Xe X} of

embedding,as a homeomorphism onto a subspace,the term homeo-

morphism needing no explanation.

We need later to know_(at least for subspaces) what cX
.and  tX are,when X carries the structure induced by an ini-
tial family F. To this end,we set up the commuting diagramme

given below,for each fe€rF:

X 1d oX id - > tX
l |
fl £ £
) N X v
1d ' 1d
Xf > ch > tXf

Our convention is that those maps whose continuity a dia-
gramme purvorts to prove are marked with broken arrows.Hére
the desired continuity is proved by means of the UP for cX
and tX.

| Next let ¢”X denote that space obtained f}om the initiai

family {f:X — cX fefF}, and t°X Dbe defined similarly.

el
By using the above diagrammes and the UP for ¢ X and t’X,

we see that

id:eX—> ¢"X , and id:tX —t°X
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are both continuous. For subspaces we can do better.To do so,

we must use a formula given in
Lemma 0.3 : Left X be a space,and BeA<=X. Then

a.

\ -
A(B/ = aX(B)/\A.

Proof: Since the inclusion jA

inequality aA(B)QQaX(B), and hence ‘

1s continuous,we have the

aA(B)Q;aX(B)f\A.

+0On the other hand,if xezaX(B)F\A there is by definition a
filter ¢ on X, with x¢ a pair from X and ¢MB. In par-
ticular, $ has a trace on A, and the filter ¢~ A converges

"to x in A. However ¢~A has a trace bn B, which fact ver-
ifies the inequality aA(B);?aX(B)fwA.<

"

A simple corollary of the formula just proved is

Lemma O.4 : 4} The adherence operator of a convergence space
is AdempoZent Lff At 48 ALdempotent for each subspace.
AL) Fon each convengence space X, and each subser A 0§

X, the inclusion map icA—>cX 44 an embedding.Thaxt

jA
i4,the spaces cA and ¢c'A  anre the same.

I

In proving the second of these claims one mustAknow,as re-
marked before,that principal convergence structures are uni-
quely determined by their adherence operators.

The assoclated topology of a subspace is not quite so

amenable to treatment,as our next lemma shews.
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Lemma 0.5 Let X be a convengence space,and A = VAF,
whereby. V 48 an cpen subset of X, and F L5 closed

Ain  X. Then tA 44 a subspace o4 tX, that is, tA = t A,

Proof: First, A 1is open in vF,-for-if x¢ i§ a palr from
F with xe A, then j(¢) » x in X (here j denctes the
inclusion map of F into X ).ABut V is open in X, so
that Ve j(¢). Hence. V}wF = Ae ¢, as required.

Next we shew thaﬁ tF = t°F. We know already that ¢tF
carries a finer topology than t°F. So,let C Dbe closed in
LtF. Then C 1is closed in F, by definition,and thus closed
in X, by Lemma 0.3. Accordingly, C is closed in tX, and
even in +t°F, this latter being'a subspace of tX, by defi-
v'nitioh of t'F. Hence ¢tF = t'F, as claimed.

A similar proof,using open sets,shews that the topology
on tV 1is exactly that inherited from tX. In particular,
ﬁA is a subspace of tF, since A is open in F. By com-

bining these facts,we have our lemma.

We turn now to final convergence structures.A collec—

tion G of mappings is called a final system of mappings

in (a non-void set) X iff each map g G has range X, and.
domain ng, say.When each Xg is a convergence space,the
~ final structure on X induced by G is defined below:

For all points x of X, let

gx = {x}u{g(¥)| geG and yy 1is a pair

from Xg with g(yd = X},
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Now we demand that ¢ -~ x in X iff there is a finite sub-
set E° of Ex, such that ¢ > aZ" (that is, ¢ belongs
to the A-ideal generated by Ex in the semi-lattice of ail
filters on X ). The expected UP_hol@s - again we doAnot

]

prove it - and is stated below.

Proposition 0.6 : For each convergence space X°, a map
Fil—=s X" As contdnuous Lif4 fon each ge G Lhe map

fng:Xg——»ix' L5 continuous .

- It is not necessarily true that X i1s principal or
topologiqal when the spaces Xg are all principal or topo-
logical.Our Examples L.5 and 4.6 will shew this,among other

Nwthings.In particular,the final topology and the final struc-
~ ture are not generally homeomorphic;the exact relation is
given now.
Let X .carry the final structure induced by a family  G

of mappings, X~ that induced from the family

o~

G* = {g:th——~>X I g« G},

and X" carry the final topology induced by the family G”.

Then tX, tX°, and X" are all the same topological space.

Proof:.'Consider,for all gé‘G, the commuting diagramme drawn
on the next‘page ~ in these diagrammes,any map not marked 'g!

is the identity map.on X.



Xg 3 X > tX
¥ / T
v yars e/ |
/A ¥
tX > X7 > LX° [ g6
g % / \ NJ
/i, TAAN |
K A N
XH XH

The map id! is continuous,from the UP for X . Hence
id?2 is continuous (UP for tX ).
The UP for X is used next ,to shew that id® is con-

tinuous.This,in turn,shews the continuity of id*.

Last,the maps g:Xg——é'tX are all continuous,and thus i

xidsog:th——e-tX are also all continuous.This,though,is exact- _
ly what is needed to prove the continuity of 1d%, by the
UP for X". With this,our claim is proven. |
\

When X and Y are topblogical spaces,there are many
topologies with which C€(X,Y), and particularly CX, can.be
invested,some of these having been extensivély studied.There are
two main reasons for introducing on C(X,Y) the structure
of‘continuous convergence [3], which is often not even a
topology.First,it is defined in a very natural way,and one
might hopevfor correspondingly ‘'‘natural' results - this hope
is justified - see [4], for example.Second,it reflects to
some extent the properties of both X and Y, the question
being,how far.This questidn,asked of (X, has been in theory

totally answered for a wide class of spdces,including the
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completely regular topological.However,the details of this
relationship are still being worked out,and there are many

opéen problems.

We now set out the definitions.First,for'ahy subset H

of YX, where X and Y are sets,the evaluation map w is

defined by

wiHx X —> Y
(f,x) —>f(x).

(We should append to w the indices H, X, and Y; we do

not do so,since it will always be clear what 1s meant.In

fact for ail 'standardised’ objects,such as adherence opefn—
‘tors a, identity maps id, inclusion maps j, and others %o
come later, we omit indices as much as possible while avoiding
ambiguity.)

Given next convergence spaces X and Y, and a non-void

subset H of C(X,Y), we give the structure of continuous

convergence on H (obtaining the space HC ),in which

6 > f in H, iff w(®x ) » £(x) in Y,

for each pair x¢ from X. The UP of t@is structure follows.

Proposition 0.7 : For any donve&gence space 7, a map
g:Z‘——-aHc L5 continuous L4 Lthe map g, made up from

the diagramme

3xLJ
7 x¥ —> ch X,
\ /w
9 v

L4 continuous.
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Conseqguently, H, is a subspace of CC(X,Y). Further,

each point x of X induces a continuous map

HC————esY, with %(f) = f£(x),

P>

called the point evaluation at 'x. The resulting map

X —=X e Y
X,Y Xc Cc<Hc’v>

is also continuous,by the UP. We reserve the letter i
for these maps,sloughing as many of the indices as we can.

However, H can receive the structure of pointwise con-

~vergence,the initial structure induced by the family X. Ve

denote the space so obtained by HS, and observe that

id ¢+ H ——=H
e S

is continuous.Further,we shall mostly use this structure
when Y is topological,in which case it is a topology too.
Finally,nothing in its definition makes use of.the conver-
gence structure on X; thus HS is well-defined,as above,
whenever X 1s a set, HG;&X, and Y 1is a convergence space.
Returning to the subject at hand,we suppose that X, X~

and Y are all spaces,and that g_:_X—f~%-X’ is continuous.

In the natural way, g induces a map

g’ cc(x‘,Y)l~—> cé(x,y)

f = fog

which is actually continuous also.
Our introduction to the structure of continuous conver-
gence ends here; those infterested are referred to [4], in

which its general properties are thoroughly studied.
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0.3 Algebras and homomorphisms.

Here we set out our algebraic conventions,giving a few
remarks of a purely algebraic nature,before turning to con-
vergence algebras.Theif carrier‘spaoés and universal repre-
sentations are defined as in ES]. As thé>theory ié'explained,
it is applied to CcX’ and later again in chapter 3 in our

study of topological'algebras.

We use the more-or-less standard symbols ﬂﬁ, Q, “1+,-
‘mﬂk, and ¢ for the sets of natural numbers,rationals,strictly
positive reéls,reals and complex numbers, all carrying'the
usual métric topology.Also, F means K or €, and A the uni@
ball in .
” .Throughout,the"word ! algebrar' ié takén to mesn an
associative,commutative W—~a1gebra.Further,unl¢ss otherwise
stated,every algebra has a multipiicative identity element
I unequal to the additive identity (. The term homomorp-
hism is reserved for W?jalgebra homomorphisms,taking 1
to 1, whenever both the range and domain algebras have 1.
If A is an K- (C-) algebra, we denote by Hom A

the set of all K- (€C-) valued homomorphisms of A. This

set can be equipped with the topology of pdintwise conver-

is a completely regular topological space,in fact,realcompact.

Our purely algebraic remarks will be mainly concerned
with Qz—algebras with involution,and the complexification of
real algebras.

[s]
If A is a (C-algebra,a map : A——>4 is called

gence,described on the previous page. Thus defined, Hom_A
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an involution iff it is self-inverse,satisfying also

0 o

(Ax + py)o =2 x> + uv®, and (xy) = x v o,

for all x,ye A and A,ue@C, Letb HmeA be the set of all

é—true members of Hom Aj; that is,
he HomA iff he Hom A, and

h{a®) = h(a) , for all aeAl.

The complex conjugation in € is always written " in
this thesis,as above.
To each h eHom A corresponds a conjugate homémorphism
h*e Hom A, with h* : aw~——=h(a®) , for all aeA. Clearly
(h")* = h, for all heHom A. | |
The algebra with involution (A,°) 1is called fully
éymmetric iff every member of Hom A 1is self-conjugate,or
equivalently, iff Hom°A = Hom'A, since the members of
Hom A are exactly the self-conjugate homomorphisms.
An element a €A is Hermitian iff a = a°, and just
as in €, each point xe A admits an unique decompoéition

into Hermitian components
o
H(x + x") and -ii(x - x°),

. +

whereby 1 ¢C, with 12 = -1. The set A  of all Hermitian

C elements of A forms an W&—algebra containing 1. One can
see that a homomorphism heHom A i3 self-conjugate iff

na') = R.

|
\
These observations are collected in the next proposi- '
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tion. To do this neatly, we make anocther definition, appli-

cable to any ﬁr—algebra whatsoever. An ideal M of an “:-al—

gebra A is an ®-ideal (or a C-ideal) iff the algebra

A/M

is isomorphic to R (respectively, to € ), and an [-ideal

iff it is either an K-ideal or a indeal. Obviously al

1

F -ideals are maximal, and no C-algebra possesses R-ideals.

However, an ﬂz-algebra may indeed have {-ideals - for exam-

ple, C regarded as an W-algebra.

Proposition 0.8 : Let A be an algebra with involutio

]
n

L) The topologdlcal spaces Hom;A and HomoA* are Lin a

natural way homeomorphic.

LL) A is fully symmeinic if4 A" has no C-ideaks.

AAL) A As fubly symmetnic when 1 + a?

is a multiLpli-

cative unit of A, forn all Henmitian elements ael.

4v) Hom®A s a closed subset of HomA.

Proof: Once the set-theoretic content of i has been shewn,

its topological part, and iv. also,follow easily with stan-

dard methods.

It is enough,then,to write down a map o:Hom A —» Hom®A

and a map 8 : Hom’ A -——> Hom Aﬁ and point out that they are

mutually inverse. For any x € A, with Hermitian components

a and a’, and any homomorphism h,e Hom A#, we define
alhg)(x) = -he(a) + 1he(a”).

To verify that a(hy) 1s a homomorphism is not hard,and

left to the reader.Equally easily one sees that 'a(ho)

is
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® ~true. On the other héna,ﬁhe map £ 1s more simply given;
for he Hom A, we define 8(h) to be the restriction of h
to A". The details of shewing that o and R are inverse
are left out. |

Claim i1i 1is proven,when one observes that!to each
C -ideal of A" correspond two distihct'mutually conjugate
homomorphisms in Hom A\\HdmoA, and conversely,for each

he Hom AN Hom’A, the ideals

A A Ker n and A" Ker h*

5,

coincide,being actually C-ideals of A .

Last,if A is not fully symmetric,there is a homomorp-
hism heHom A for which h(A") = €. Thus there is ae€ A
.with h(a) = 1, and . h(! + a?) = 0. This is not possible,

2

“if 1 4+ a? is a unit of A, and h(l) = 1. With this,the

proof is at least completely sketeched.

The algebra C(X,Q) is the set of all Hermitlian ele-
ments -of C(X;C), for any convergence space X. Furthermore
T + £* 4is invertible,whenever f 1s a real-valued conti-

nuous function on X. Hence we have

Corollary 0.9 : Gdiven any space X, the algebra C(X,Q)
L6 fully symmetric (wiith respect to the involution in-
“duced grom confugation in C), and there is a canonical

homeomorphism between HomSC(Xﬁ?) and HomSC(X,C).
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A very similar theory can be bullt up for ﬂ?-algebras,

with the help of their complexification; the complexifi—

cation A? of an R-algebra A is the set A=A, in which
addition is defined componentwise,multiplicatioﬁ by the for-

mula

(a,a')(b,b') = (ab - a’b’,ab” + a’b),

and scalar multiplication similarly. The resulting C-algebra
whose multiplicative identity 1s (f,O)s possesses an invo-

- lution

| (a,a" ) — (a,-a”" ).

The image of the injective ﬁQ—homomorphism
0 : A ——= A%, defined by o(a) = (a,0),

is exactly the set of Hermitian elements of A?. Similarly
a -true (:—isomorphism can be defined between any'algebra
with involution (A,°), and the complexification of its

Hermitian subalgebra,under which
X s ( 2(x + x%) , -21(x - x°) ).

In particular,the algebras C(X,C) and C(X,R)? are

(C-isomorphic,for all spaces X.

Accordingly it makes no difference from a purely alge-
braic standpoint,whether one studies algebras with involu-
tion or ﬁz-algebras and their complexifications.We shall

usually take the latter point of view.
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Convergence structures appear again now - we shall be

rather informal, and define only the term ' convergence
algebra '. Other such terms used here have analogous defi-
nitions.

A convergence algebra AA "is a gf—algebra A, together

with a convergence structure A, such that the addition and

multiplication maps: AAx AA—~—9 A, and the scalar multipli-

cation map:F x‘AA > A, are continuous.
We could actually discuss universal algebras (with or

without external operations), and obtain the following
¢straightforward results:

1) Subalgebras of a con&ergence universal algebrg ( CUA )

are also CUAs, as subspaces of their parent.

| 2) The product of a family of CUAs all of the same
type is again a CUA. A

%) The methods of [M,section,é] can be used to show that
whenever X 1s a convergence épace, and A a CUA, then
CC(X;A) is a CUA of the same type,with respect to the
cperations induced pointwise from A.

by 1 A dis a. CUA without external operations,whose
inﬁernal operations are all finitary,and if TiA —> A
is any surjective homomorphism, then A’ is a CUA  under

the final structure induced by I.

As a particular case of the third remark above,we have

Theorem 0.10 : The afgebra CQX i a Locally convex con-

vergence afgebra, forn all spaces X..Furtheamone,the mod

function (f—s|f| 45 continuous.
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A1l that remains to be explained is the term ' local
convexity '. A convergence vector space EA over - is called

locally convex iff whenever ¢ - (0 in B, there is a coarser

filter ¢° on E, which also converges to ¢ in E,,and has

A
a base of absolutely convex sets. (This definition clearly
coincides with the usual one,for topdlogical vector spaces.)
The local convexity of CQX is easily Verifiedvdirectly;
in fact though,for g > Olin CCX, the filter g, to be givep

in Lemma_OQl? has a base of absolutely convex sets.

Local convexity has the same permanence properties as

-in the topological case; namely,subspaces and products of

locally convex convergence vector spaces are also locally

convex, as is the complexification of a locally convex con-

vergence vector space over K.

Later the duality between a Qanaoh algebravA and its
carrier set Hom A 1is extended to topological algebras.In
doing this,one should consider only those homomorphisms over
which one has some control - the continuous ones.This selec-
tion principle is vacuous for Banach algebras,since each
F -valued homomorphism is continuous for these algebras.,

With this in mind,for any convergence algebra AA,we call

the set

“Hom AA = {hesHém A | h is continuous}
the carrier set of AA.'There is no reason a priori for

knowing if this set is vacant - the set Hom A itself may

be empty (for example, HomT = @, when € is considered sas

R—algebra), We assume from now on that whenever Hom AA is

—
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mentioned,1t is non-void. This assumption is of the same
character as that banishing the empty convergence space:
it is not necessary, but convenient.

Since Hom AAQ;CAA, 1t makes sense to consider the con-

vergence space fom A,, which is called the carrier space of A

Ir AA, and A’A,~ are convergence algebras, and

u:AA —-ﬁ>A’A; a continuous homomorphism, we get a map
u : Hom A" ,., ——> Hom A,, with- h+~— heu.
¢ A oA

By using the UP of the structure of continuous convergence

L e

it is easy to shew that u. is continucus.Obviously, u

is a homeomorphism,when u is a bicontinuous isomorphism.

Our next result concerns the complexification of a con-

vergence K -algebra AA, and is a ' continuous ' version of

Proposition 0.8.

Proposition 0.11 : Let A, - be a convergence R-akgebra.Then

L) Ats complexdfication AAZ (togethern with fthe pro-

duct convenrgence ftructure). 4is a convengence C-algebnc

. with continuous Lnvolution, and

LL) the spaces Hom A, and Hom"CAA2 are homeomorphic.

Proof: We shall first shew that the multiplication map

.op 2 2 on 2
m AA n AA ?‘JA

is continuous. Let the real and imaginary projections of AA2

on AA be T, and Ty respectively. Thus, tc prove the

continuity of m, it is enough to shew that of m.em, and

AT
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™o m. To this end,corisider the commuting diagramme

(g2}

AAzx AAZ--->.AA2, with (a,a”;b,b")i—s(ab - a’b”,ab” + a’b)
\/' " ‘ITF I | ;l
Ay % Ay “;;>'AA (ab,a’b” ) e—m— % ab - a’b”

and its imaginary counterpart.

As multiplication is continuocus in . A and the product

A)
.of continuous mappings is continuous,the lower path is con-
tiniuous.Hence m.em is also continuous,as claimed.Similar

~dlagrammes and arguments prove the rest of the first part.

Turﬁing now to the secohd part,we point out without proof
“that when hy e Hom A,, the homomorphism o(hg) taking (a;a')
in AA2 to ho(a) + 1the(a”) in C is also continuous.On the
other hand,the map O:AA——~%*AA2 given earlier,with

og(a) = (a,0) , is continuous. Accordingly, o~ '(h) = heo

is continuous,for all hisHomoAAz. Thus

—> Hom A 2

o:Hom AA A

is a bijection.
We shall have shewn the continuity of « as soon as we
know that

AT ’ 2
a.HcchA xAA —

is continuous.That this is so,derives immediately from the
commuting diagramme given below,and its imaginary compa-

nion.
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HochA X AAZ ~ 25, (ny,a,8" s ho(a) + 1the(a”)

lprogectlon (i [ : J[

2
HochA X AA—~*9~>WQ (h¢,a) r——— ho(a)

Similarly the commuting diagramme ' o :

~——

Hom®n,? AAéf—> R, (h,a) —s h((a,0))

e F T

HomZAA2 x AAZ—-Qe»(; (h,a,O)k~¥%-h((a,O))

_establishes the continuity of a"!, and completes the proof

of the proposition.

It is not hard to verify that if (AA,°) is an algebra
with continuous involution and operations,then the natural
(:.—isomorphism

' #+
. 2
pihy —— (A))
1 1
X s { w (X + Xo),—EI(X - x%) )

is a homeomorphism.On applying this to CcX’ we have

Proposition 0.12 : Thexre 44 a bicontinuocus Lsomornphism

between the C-algebras CQ(X,CD and CQ(X;Q)Z. Funthen
C the spaces HomcCc(X,C) and HomQCC(XﬁQ) are canond-

cally homéomo&phic ,forn all spaces X,

The proof is omitted - it consists solely of applying the

preceding three results.
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In [5] Binz defined the universal representation (also

known as theé Gelfand map,as in Banach algebra theory) of a
convergence Wg—algebra AA to be that map

d:AA~-—> CCHOmCAA
given by d(a)(h) = h(a), for all hetHom AA and aeA.

The definition is egually applicable to (:~algebras,of course.

Theorem 0.13 : The undlversal representation ¢f any conver-

‘gence algebra 48 a continuous homomorphdism,

£

We omit the straightforward proof,which is to be found in ES].

Two concepts,symmetry and quasi-symmetry,are useful when
dealing with convergence C -algebras,for they allow us to
apply Stone-Weierstrass theorems.A convergence algebra AA

is said to be guasi-symmetric iff* the subalgebra d(A) of

A has

CHQmCAA- is closed under complex conjugation.When A
) o
an involution , which need not be continuous,it is called

symmetric iff Hom A, = Hom®A,. Equivalently, d is °¥trﬁe,

A A
that is, d(a®) = d(a) , for all ae A. In particular,

symmetric algebras are qguasi-symmetric.

In the last part of this section we restrict our atten-
‘tion to subalgebras of CC(X,R), for any convergence space X,
proving that for some of these,including C(X,R) itself,
the caPrier set consists eiactly of all the point evaluations.

This result was first given,for CC(XJR), in [65Satz i].
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First,however,we ¢ our terminclogy: each subalgebra A
of C(X,R) inherits the pointwise-defined ordering.When A
is also a sublattice of C(X,R), it is called a sublattice-

algebra.In this case,for any he Hom A, we have

(h(£))2 = n(£?) = n(|£]?) = (A(|T]))?
and hence
h(|£]) = ¢[n(0)] ,
for all feA. We call A monotone iff it is a sublattice-
algebra, and each homomorphism h € Hom A 1s also a lattice
~homomorphism. Two simple sufficient conditions for this are

given below without proof - the first is due to Isbell.

. Lemma O0.14 : L) A Aubﬂatiiceaﬁgabﬁa A of C(X,K) L4
monotone L4 1+ |f| L& a undt in A, fon all £eA.

LL) A subalgebra A of C(X,R) 44 monctone,

A4 fon each f €A, the function V|f|leh also.

We are now able to state our result formally:

Proposition 0.15 :  The continuous real-valued homomorphdisms
| 04 a monotone subalgebra AQ o4 CC(X,R) anre exactly

the point evaluations.

Proof: We have seeh earlier‘that each point evaluation

% Ac——~>@1 is continuous - it 1s clearly a homomorphism.

Let now hé Hom A\\i(X). There is then for each x€ X a func-
tion fxe A, with fx(x) # h(fx). One can obviously ar-

range that h(fX) = 0 and that f_(x) = 1, for all xeX.
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If there_is a filter 06 on A with a trace on Ker h,
such that 8 -~ 1 in AC, then h can not be continuous,as
the filter h(8) does not converge to h(1) = 1 in K. To
cdmplete the proof,we need only construct the filteri 6, as
follows -~
For any ceeR"Y, and ahy pair x¢ from X, the set

B, = fx"l(i + €d) belongs to ¢, by the continuity of f_.

(Recall that &> denotes the unit ball in the scalar field.)

Furthermore,the,setv

' DeX = '{g[geA and g(BEX)Ql+eA}

contains 1, and fX. Thus

- + ‘4
D= {D_, | ee R and xeX }

generates a filter 6, converging to 1 in Ac' We must next
verify that 6 Ker h.

To each set De 8, there are Dy,...,D €D and corre-~

sponding indices g, and X

T
o> such that D=2(1D,. However

LS

f 1(Acf )
= A v
D cei Xg

clearly belongs to each set D, since A 1s a sublattice

of C(X,R). In addition, h(fy) = 0, as A is even monotone.
Our proof is now finished,since fDé DNXer h, as required.
This proof scarcely needs alteration,in shewing that each

c~continucus linear lattice homomorphism of a vector sub-

ﬁhe function ' :
\
\
|



-28~

lattice of C(X%,R) into W 1is a positive multiple of a
point evaluation.

By working a little harder,one can extend the result of
Proposition 0.15 to locally bounded subalgebras of C(X,R),

this term being defined in pafagraph 2.1 1later.What happens

for other,more general,subalgebras 1s still an open problem.
Corollary 0.16 : For each convergence space X, the map

i:X —~—%>HomcC0(XJQ)

L5 continuous and sunfective.

Proof: Obvious,thanks to Lemma O.14,
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0.4 On c-embedded spaces.

This paragraph is shorter,and rather a mixed bag - we
introduce on any convergence space X the initial topologj
ihduced by the family - CX, and then a technical lemmé,which
will be used several times later.Finallykcfembédded conver-
gence spaces are defined as in {5] or [6], and some of their
properties given.Much more information,and proof,is provided

in these two references.

Let X be a space, and H a subset of C(X. Then the fam;
?ily i(X) of point evaluations induces the s-topology on H,
also known as the topology of pointwise convergence,or the
~weak topology.The resulting topological space HS is in
fact a subspace of CSX. Because point evaluations are con-
tinuous on _HC’ the identity map id:Hc—-> HS is also
;continuous.

Fbr each space X, the initial structures induced on X
by the families C(X,R) and C(X,{) are the same,and ac-
tually tcpologies.The Sef X together with this topology is
denoted by wX. From the UPS for tX and wX, it is clear
that id:tX-;——e>wX is continuous.It is by no means neces-
sary that wX be a Hausdorff topologieal space: it is Haus -
dorff iff CX separates the points of X.

The next result is the Qseful technicality mentioned
above,in which the situation is the followng; X is a con-
vergence space,and H a non-void subset of (CX, and closure

in the space HS is denoted by
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Lemma 0.17 @ 1§ £& is a pain from H , then s0 is fe’,

whene 67 44 the §ifter on H generated by the collec-

tion { B | Bed } of s-closed sets.

Proof: TFor each pair x¢ from X and each positive real

number A, there are éets BAX¢€ 6 and CXX¢6 ¢ with

w(BAx¢ x C ) ; £(x) + Xbh.

The collection
{E(CXX¢)|X6ﬂ%+ and x¢ 1is a pair from X},

whereby

E(Cqu))_ = {get| g(CAX'{b) s £(x) + An},

consists purely of s-closed sets,and generates a filter 6,
“‘on #. Obviously 6 > 8 > 8o, and @, » f in Hc;
Now,with the lemma proven,we note in particular that
when 6 - 0 in CCX, the filter ‘60 constructed above has

a base of absolutely convex sets. This verifies our earlier

" claim,that c X is locally convex.

It is shewn in [6,Satz i} that the continuous map
T .,
i:X 4>H0mCCC\X,Q)

is surjective,for all épaces_x. We cali-X c-embedded iff
this map is a homeomorphism.Equivalently, X is c-embedded
iff i:X-—¥€>HomCCC(X,£3 is a homeomorphiém,as one readily
verifies with the help of Proposition 0.12 and a commuting

diagramme.The results from [5] and {6] concerning c-embedded

spaces are collected below.
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Theorem 0.18 : &) C ¥ is c-embedded, for all spaces X.
T [a8
L4L) Subspaces and products of c-embedded spaces are
also c-embedded.
ALL) Completely negulan topofogical spaces are c-embedded.

Lu) The undiversal nepresentaiion

a:C x -3 C Hom C X
c [d ce

i85 a homeomorphism, for all spaces X.

Another property of c-embedded spaces is a variant of
Lemma 0.17 . From the UPs of wX énd HomSCCX, we see
that i wX-——%*HomSCCX is oontinuous,for all spaces .X.
Similarly,when i 1is injective,it is a homoomorphism. From

this follows

Lemma 0.19 : 14§ X 44 a c-embeuded space,anud x¢ L5 a
painr grom X, then so is x¢ , where ~  represents clo-

sune An  wX.

Proof: We know from Lemma 0.417 that i(¢) > x in Hom,C X,
Hence,using the homeomorphism between wX and HomSCCX, we

deduce that

¢ = ATHE (97 > x dn X,

as required.




w.32._.

1 Covering systems.

1.1 Definition and apology.

In passing from topological to éonvergence spaces not
only structure,but also 1anguagé is.lost: in this chapter is
given a generalisation to convergence spaces of the topologi-
cal term ' covering system of neighbourhoods . This aliows
us to extend to convergence spaces many ideas and results
in topology,which are expressed in such terms.For example,
local compactness,paracémpactness,axioms of countability,
“and so on.Theée are not idle extensions: in chapter 3 we use
local compactness; in his thesis LiS], Feldman characterises
among other things, second countable completely regular topo-
logical spaces (that is, second countable metric) as those
completely regular spaces X for which CcX is also second

countable.

To come to the point (at last),let X Dbe a convergence
space,and S a nonvoid collection of nonvoid subsets of X.

The final family of inclusions {j, | S¢S } - with each S

p

considered as a subspace of X = induces a structure on X,
creating thereby a space written XS. It holds always that
id X, —=X is continuous. We answér the obvious questiocn

S
in the next lemma,after two definitions.

A collection S of subsets of a space X 1is
1) a-quilt for X iff there is for each pair x¢

from X a finite subset SX¢ of 8§ such that

a) Xe:f\SX¢ ,
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g) \US.. « ¢, and

4o

v) ¢nNS, for each SQ'QX¢;

2) a covering system for X iff for each pair =x¢ from X

there is Sy € S such that xeiS,ee ¢ -
)

o X

Note: 1) Every covering system is a quilt.A quilt @ ‘which

1s directed upwards (meaning that to any S,3"e Q0 there is

S"e 0 with Su S € S" ) is already a covering system.

2) We can always assume that X = US, without af-

«~fecting the space XS ; precisely, XS and XS’ coincide

for all collections S, when 8" = Su{{x}|xeX} . With this

assumption, which is always made from now on, S 1s a quilt

for XS’
We next shew that from nothing less than a quilt'can the

parent space be wholly reconstructed.

Lemma 1.1 : Left X be a convergence space, and S a col-
Lection of subsets of X (with ¥ = US ). Then X ard

Xg are the same space Liff S is a quilt for  X.

Proof: First,let S Dbe a quilt for X. We need only shew

that every pair =x¢ from X is also a pair from XS' Now for

“each Sé.sy we know that the filter ¢NS converges to x

q)ﬂ

in 8. However, conditions g and v guarantee that

¢ = A {ig(en3) | Sesxq)},

and hence converges to x in XS'
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On the other hand,let X = US, and X = Xq. This means

that for any pair x¢ from X there are sets Sl,...DSp6 S

“and filters ¢,,...,¢, on X such that
t

i) ¢S, and xS for each a = 1,...,p,

oo

ii) ¢Sy » x in Sy, for 211 indices,and
iii) ¢ » A’°J'S (6o ~Sy) -
= &l O

The third condition SheWs in particular that S,u cee LS e D
Now defiﬁe Sx¢ = {3, | ¢r\Su}; It is not possible for
~this set to be empty - as if it were,there would be for each
index o a set By ¢, with B NSy = @. This would imply

e Fo
¢ = (U Sa>r\ﬂBue¢>,
L=

oKLt

which is not allowable. A similar argument shews that the

set k)SX¢e ¢, completing the proof.

When dealing with c-embedded spaces,it is énbugh to con-
sidef only those covering systems which are made up from
w-closed sets. For if.X is c-embedded,and S is a cover
for X (naturally,the phrase éovering system ' is often
Shdrtened‘to ' cover ! ) then we can give a cover T for X
réfining S, and:composed entirely of _w-closed subsets of X,

in the following way:

For any pair x¢ from X, the filter ¢_ also converges
to x in X. There 1s then a set SX¢~6 S, with xe SX¢~6 ¢ .
This means,though,there is a w-closed set Ty¢~ €¢:for

which XG'TX -< S Clearly the collection

¢ Xo

{TX¢—[ x¢ 1is a pair from X} 1is a cover,satisfying the claim.
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can be usefully dual-~

The construction of the space

ised,as we now describe. Given a space X and a collection §.

of subsets of X, we get an initial system of mappings
. ° . - - . T e \
{JS : CX —+>CCS | S ‘S}

on CX, obtaining from. it the space CSX.‘It is easy to check

that id: CCX —~%»CgX -is always continuous.

However ,we shall shew that CQX and CSX coincide ,when
S is a quilt or,in particular,a cover for X. This means,in
.theory at least,that one can more easily see how the proper-
ties of CQX depend on the local properties of X. Possibly
the simplest example of its use in this way is given in Prc-
"position 1.11 , where we show that for each locally compact
space X,the sbace CQX is topological,carrying in fact the
topology of uniform convergence or the compacta of X.

A converse question,whose anéwer could allow us to deduce
- Jocal properties of X from properties of CcX’ is only partly
answered: namely,under certain restrictions on S, when CcX

and CSX coincide, § 1is a quilt for X.

Note: An analogous space CS(X,Y) can be given,for any
space Y, but to investigate these would be beyond the scope

of this thesis.

Next it 1s shewn that the algebraic operations on CSX
are continuous,and then a sequence of calculations is given,

at the end of which we shall have proven the claims just made.
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Proposition 1.2 : Fon all spaces X, and non-vodld collec-

*

tions 'S o4 subsets of X, C,X 46 a convergence al-

S S
which £ s |[f] ) 44 continucus as well.

*

gebra,and furnthen,the mod function: C.X —= C.X (unden

Proof: It will be enough to do this for the addition map ad;
the other proofs are all similar tc this.

The diagrammes .
J eoad

- s
S O s S

e\

CSxCS

e c
commute,shewing the continuity of jS°oad, for all Se38.
That of ad itself now follows from the UP for CSX,

Our sequence of calculations starts here,ending at

Theorem 1.4,

Lemma 1.3 : For any Apacé X, 46 S A4 a quilit,then CCX

and CSX are fthe same space.

Proof: It is-enough to shew that 68 » ¢ in CcX’ whenever

0 1s a pair from CSX. So,let x¢ be-a pair from X. Then

wS(JS (8) x ¢MS) = 0 in ¢S

for each S e , Where wg is the corresponding evaluation

SX¢

map. Hence for any positive real number ¢, there is Ase 6

and Bgeg¢ , such that
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for each Se Sx¢' It follows that w({hx B)e e, where

Ses .}t e 0, and

A = F\tAS 4

}ed.

<

_ fa e
B = ( std) )f‘\m‘LBS[SC qu)

This shews that 6 - 0 in CcX’ and proves the lemma.

Lemma o: Let X be any convergence Apaca,and. S a col-
Lection of w-closed subsets of X, such that €, X and

CSX arne the same. Then S 48 a quilt forn X.

LProof: We suppose that S 1is not a quilt for X, that is,
there is a pair x¢ from X at which S fails to satisfy
requirements. For each y¢« X\\{x}—, we can find a w-closed

‘neighbourhood By of vy in wX, which misses x. We set

Ay = { fecX | f(By)QA, for all ye Y},

whenever Y is a finite subset of XN\ Ax} .
-~ Next let D Dbe a fixed w-closed neighbourhood of x-
in wX, and By = DA UT, for any finite subset T of §.

Now we put

T
Clearly the collection

A - { recx | f(BT)c_:A}.

{ kAy_I re RY and 'Y is a finite subset of N {x} )
O { AL | e’ and Tes is finite )
| ;
|
|

has the finite intersection property (when BT' is void, A

T
is naturally ¢X itself ), generating a filter © on CX.




Since whenever x= S¢S, the set DMS is a neighbour-

hood of x in tS, the filter 6 converges to ¢ in CSX.
However it can not converge in CQX. To see this,we argue
three cases,corresponding to non-fulfilment of the three
conditions in the definition of é quilt.

Case 1: xeX\US: For any indices Y and T, the

w-closed set BTr\k){Bylye;Y} does not contain x. Thus

there is f e CX, vanishing on this set and taking the value
1 at x. We deduce from this that the filter w(éﬂ-i) is'
the indiscrete filter {1} on F?,_and in particular,does
\ﬁot converge. Hence 6 also does not converge,in CCX.

Case 2: for all 8eS, either x¢S or ¢ has no

trace on S. Using again the set BTnkJ{By[y eY} given

above,we see that its complemént in X dis an open set; so
for any set C€ ¢, there is a point x* of C, lying outside
that closed set. As béfore,we cah conclude that the filter
-w(6 x ¢) is indiscrete, and that 6 does not converge in
'CQX. The last remaining possibility,in which we suppose

S¢ to be that non-void subset of S, consisﬁing of sets con-
taining x, on whiéh $ has a trace, is that whenever T

is a finite subset of S, then UT ¢ ¢. However it too is

easily disposed of in the same way as above,

With this,the proof of the lemma is complete.
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Agsembling these lemmas,we obtain

Theorem 1.4 : Llet X be a convengence space,and = S a

collection of w-closed subsets of X. Then CSX and

CCX codnedde A44d S As a quilit.

That this theorem is not as genefal as it might be,is
shewn by a simple example: when X :TQ, and S = {Q}, the

.

homomorphism Jo ¢ C ﬂ2—4>CQ¢Q is an embedding,as can
: c _

éésily be seen. Thus when S ' contains sets which are not
&w—closed, it may fail to be a quilt,even if CcX and - CSX
are the same.

Thié example,and the need to prove an analogue of Lemma 1.3

~guide us to the following definition:

A collection S of subsets of a space X has property (-)

iff for each pair x¢ from X there is a finite subset S

X¢
of S such that Sx¢—- = {8 ]s¢ SV¢} has the properties

demanded in the definition of a quilt,and further,for each

Be¢ and S GSX there is Bse ¢, with BSQ;B, and

¢>

(BSF\S) = BS ~ S

This enables us to state two lemmas,the first proved in the

same way as Lemma 1.3, the second a corollary of Lemma o.

Lemma B: Let X be a convergence space,and S have pro-
peaty (). Then CSX and CCX are equal.
Lemma Y: 1§ C X = CgX, then 57 = {ST]SeS} {4 a quilt

forn  X.
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1.2 Applications to compactness.

In this section we shew by example that it is often pos-
sible with coverihgvsystems to use arguments well-known in
topology.In particular,compact convergence spaces admit a
characterisation by covering syétems;mirroring‘the original
Borel-Lebesgue definition. The one point compactification
is then introduced for convergence spaces,where it is shewn
to retain (most of) its usual properties.Finally,locally

compact convergence spaces are defined and briefly studied.

First,the definitions needed: a épace X is said to be
T, iff each convergent filter on X has exactly one limit
(equivalently,the cluster set of every convergent filter
contains exactly one point), and compact iff every ultra-

filter on X converges.

Note: We do not include T, in our definition of compactness.

A 1list of the properties of compactvspaces follows,

Theorem 1;5 o 1) Tychonov's theornem holds.
7)) CKOAQd'Aubépaceé o4 compact spaces are compact.
3) A compact subspace 05 a T, space is closed.
4) The continuous Lmage of a cowpact space 4is compact.
5) Any g4inite undon of compact subsets of a space is
again compact.
6) The following statements are equivalent:

L] X 4s compact.

AL) The clusten selt 0§ every filten on X 4is non-void.
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LLL) Forn each covending sysiem S fon X there 45
a fintte subset S, of S with \JS, = X.
iv) Forn each quilt Q  fon X there Ls a findte

subset Q¢ of Q with \JQ, = X.

T

Proof: Statements 1 to 5 are easy to prove,either di-
rectly or with the heip of 6. Fischer {2] observed the
equivalence of 1 and 1ii in 6, which we now prove in its
entirety.

That 1iv implies i1ii is obvious.Now let us consider
P s implies i '. Suppose there is a nén—convergent ultra-~

filter Y on X. This means that ¢ _is not finer than ¢ a3,

for all pairs x¢ from X. There is thus a set Ax¢& ¢ A X,
Swith XN\ Ayy€ Y. Now the family
{ Ax¢ | x¢ is a pair from X }
is a covering System for X, not satisfying iii.
Next comes ' i dimplies 1i '. Let X be compact,

and £ a filter on X. Zorn's lemma provides us with an

ultrafilter x on X, finer than £, and which converges,

thanks to»compactnéss. Hence the cluster set of £ is non~void;.
Last, ' 1i dimplies iv '. Suppose @ is a quilt for

X not satisfying div. Then Q% = {X\ Q]Qe Q} has the fin-

ite intersection property,anﬁ geherates a filter <. We

~claim that the cluster set of 1 is empty. To see this,we

note that for each pair x¢ from X, the set LJQX¢e d, whereas

X\&)Qx¢ev1. Conséquently ¢ 1s not finer than rt,which

proves the claim,and completes the proof of the theorem.
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With the help of this,a straightforward ! claSsical.'
proof of a result of Binz's can be given 18]; namely that
CcX carries the topology'of uniform convergence on X, when
X 1s a compact convergence space. (For any space X, we de~-

note this topology,and the topology of uniform convergence

on the compact subsets of X, by CnX and C, X respectively)

k
Formally, the result is

Proposition 1.6 : Fon each convergence space X, the Liden-

1Lty map
| 1d:0._ X —> C X
n C

L5 continuous.lWhen X A4s compact,it is a homeomorphism.

Before proving this,we need a technicality,of the same

1lk as Lemma 0.17.

Lemma 1.7 : Let X be «a conQeagenae space, H a non-emply
subset of CX, and £8 a pairn from H, . Then to each
IPOALILUQ heal numben X, there L4 a cover S(X,0) foxr

X by sets closed in the initial topology induced on
X by Hf |

Préof of lemma: There are sets BX¢€ 6 andv Cx¢e-iA 0

such that

w(BX¢ X CX¢‘) < f(x) + A

holds,for each pair x¢ from X. After defining

E(x,x¢) = {ylyeX and |g(y) - £f(x)| < 2,
¢

for all g €B, T,

we see first that E(r,x¢)= C, and henice that

¢
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{ E(x,x$) | %9 is a pair from X }
is a cover for X, and second that all the sets E(A,x?)

are closed in the initial topology generated by H.

This done,we can prove our proposition as well.
Proof of proposition 1.6: It is shewn in {j] in a much more

general framework that
id: CnX — CcX

is always continuous: it is,however,easily verified directly.
«In any case,the proof is left out.

' 4is contin-

Now let X Dbe compact.To shew that id~
vous in this case,it is enough to shew that 6 -~ 0 in CnX,
“whenever 8§ » (0 in CCX. For each positive number X, the

cover S(1,0) to be seen in the lemma above has a finite

' subcover ', say {E(X,xXc¢g) | x=.1,...,z}. Hence
A )
w(CB x X )< an
K=t qubK . ’

where thé BX¢'S correspond to the E(A,x¢)'s in the lemma.
This means,though,the convergence of 6 to ¢ in CnX? as
claimed.
It is perhaps worth pointing out that CnX and CcX

may well be the same,without X's beiﬁg cbmpéct - see Ex-
ample 4.4 . This can not happen when X is c-embedded,as was
shewn 1in [8], and will be shewn in another way here in chap-
ter U4 .‘ Even now the reader has enough information to shew

the compactness of X, when X is c-embedded and the spaces

'CnX and CQX coincide,but not enough to shew that X is




vfilter on X having {X\K | K is a compact subset of X }

also topological.

Some more definitions are given next ,the last for this

secticn. The one point compactification ( OPC ) of a con-

vergence space X ( denoted by X ) has XL){;} as under-
lying set,for any point w# X. 'The convergence structure
on X 1s specified by requiring

i) that for points x in X, the pair x¢ dis from
X 1iff ¢MNX » x in X, and that

ii) ¢ » » in X iff ¢ > ¢_ , where ¢_  1is that

as base. Clearly X is embedded in ¥, just as usual.Again as

usual,the name ' one point compactification ' is mislead-

ing,for when X is compact already,it is not dense in X -
see the following theorem,in which we have assembled the
simpler properties of OPC's.

A point x of a space X is said to be locally compact

iff ¢ contains a compact set,whenever x¢ 1s a pair from X.

The set of all locally compact points of X is written Xl’

and X itself is called locally compact iff it admits a cover

composed entirely of compact subsets,or equivalently,iff
each point is locally compact.

These definitions are tied together in

Theorem 1.8 : 1) X 44 aompact,ébn each space ¥,

2) % A8 dense in X A4§ X A8 not compact.

3) The sets i\\Xl and clz(é,) are equal,for all spaces.

4) X s T, i66 X 48 Lecally compact and T,
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Proof: We begin with 1, aiming to shew that every ultra-

filter Y on X converges in X. Two possibilities arise:

h

either ¢ has a trace on K, for some compact subset K o
X, or not. In the first case,there is a point keX such
that ynX » k in K, and also,we have Ke Y. Then if jK is

the inclusion map of ¥ in X, it follows that
Y= jl,(q)ﬂK) > k in X.
Mo

In the other case, ¢ is clearly finer than ¢_, and thus

converges to « in X.

The second claim is just as easy,for if X is compact,
then ¢ = <, Hence ¢, does not have a trace on X, shew-
ing that X is closed in X.

Conversely,when X 1is not compact, ¢, has a trace on X,

and accordingly, aX(X) = X. In other words, X is dense in X.

To .prove our third claim,we need a purely set-theoretic
result,whese proof is omitted,as it is standard Zorn:

Let Y be a set, K a family of subsets of Y closed
under finite unions,and ¢ a filter on Y disjoint from K.
Then the set 5f all filters on Y finer than ¢~ and dis-
joint from K possesses maximal elements (with respect to

the ordering > ), and for any such maximal elemént Y,
p 2 {YNK | KeK }.

We start with the inequality f\\XJ < cl%(¢w). Clearly

w € Cli(¢m)' Also,for each xe X\\X], there is a filter ¢~
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on X such that ¢~ is a pair from X, and no member of

o~ 'is compact. Applying the result quoted above here, with

Y = i, aﬁd K the collection of all compact subsets of X,
and for ¢ the filter j(¢7) on i, we gét a filter ¢ on
X, such that ¥ - % in" X, and- INKey, for all compact
subéets K of X. Hence ¢ > ¢_, and so xefcli(¢m).

| On the other hand,when xe clﬁ(¢w)F\X5 there is by defi;
nition a filter ¢ on X with ¢ > ¢ which converges to
x in X. This means that ¢0OX > x in X. But obviously the
filter ¢NX=2X\NK, for all compact subsets of X, shewing

Athat ¥ 1s not a locélly compact point of X.

We have thus proven the theorem,since the fourth part

of it is a direct application of the part just shewn.

Locally compact spaces as such come now into questioﬁ,
séme of their properties being given in the next theorem,in
part 2 of which we get less than the usual results (mainly
because in the case often discussed the space is locally
compact Hausdorff topological,and one has rather more to
work with). However new results appear in part 3, this fact
being due to ﬁhe difference between topological and conver-
gence space final structures. | |

Before stating the theorém,let us recall our notation:
for each g in a final family G of mappings into X, the.
domain of g 1s a set (convergence space) Xg' Now let K,
be’the sét of all finite subsets of X, and K1 the éet

of all images of compact sets: that is



Ky = { g(X) | K 1is a compact
subset of Xg’ and geG}.
Finally,let K~ be the closure of Ky;uK; under finite
unions.Clearly the members of K~ are all compact in X.

In the third part of this theorem,we shew how far K~ re-

presents the compact subsets of X.

Theorem 1.9

1) 14 X is a family of converngence spaces,

then the space TX A48 Locally compact L§4 all barn a fi-

nite numben of Zhe membens of X are compact,the excep-

tions being Locally compack.

2) Closed subspaces of Locally compacl spaces are

again Locally compact.

3) Let G be a final family of mappings Ainto a sei .

X,‘Then

L) if K is compact in X, there ane finite

subsets G, of G, and K, o4 X,such that
K<€ K,u UM%(Xg)! ge Gol, and

L4) when each domain space Ls Locally compact,

then 50 44 X, and K~ 44 a cover forn X.

I4 K 448 a compact subset of X, Lthere .l K

in K~ containing K. When X 48 T,, then

K Atself belovgs to K~

Proof: We prove only part 3, since there is nothing non-

standard involved in the first two.

First,we note that covering systems can be cut down to

subspaces 1in the same way as in topology,meaning that if Y
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is a convergence space,and A a subspace of Y, then each
cover S for Y yields a cover SMA = { SNA | SeS}
for A. Quilts can be cut down in this way,too.

To see %1 , we need only observe that Kok){g(Xé),ge G}
forms a quilt for X, ana then use Theorem 1.5&v

Now when every space Xg is locallyvcompéct,it follows
immediately from the definition of the final structure that

K*- 1is a cover. for X. However K~ is composed wholly of

compact sets,as remarked before, which shews the local com-~

pactness of X.

Since K~ 1is a cover for X closed under finite unions,

when K is compact in X, there is K’« K~ containing X,

~which was our next claim. More precisely, there is a finite

subset K; of X, and a finite subset G, of G, with com-

pact subspaces Kg of Xg for each geG,, such that
K e Kou UL 8(X,) | 826, 3.

Last,if X is T, then K 1is closed in X, and hence the
set Kgrwg'i(K) “is compact in Xg’ for all geG,. It is
now clear-how to change the inequality given above into an

equality,verifying our last assertion.
It does not seem possible to improve these résults much,
as the following example shews.

Example 1.10 : Let N = Nu{e}, and ¢ be a non-trivial

ultrafilter on N (such exist in profusion,as L}B,Theorem 9.é

demonstrates ). Further,let the set of all other non-trivial
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ultrafilters on PN be denoted by @.

Two structures (actually topologies) are now defined on
N, and we obtain.the usual OPC of N as a final structure.
(This is one occasion on which thé topological and conver-
gence space final structures do coincide.) However there are
compact subsets of El, such as E@ itself,which can not be
realised in the way described in Theorem 1.9

The space N; is defined as fellows: when ¢ 1s a fil-
ter on N, we require that ¢ » n in ﬁh iff ¢ = n, and
g » o inlNy 1ff ype {¢,®,¢A®}. That is,N; is principal
”and its structure differs from the discrete topology at

only one point, «. It is easy to check that such spaces

are always topological.

The space [\J» 1s also topological,being defined in

the same way as N, except at «, where we require

o> oo dinN, iff ¢ > on (AQ)

~

It is clear that N i1s obtained as the final structure on
N induced by the identity mappings id:N;, — N, ana
id:N, —> N. |

It is alsb easy to see that the compact subsets of ﬂj1
are exactlyvthe finite ones,using a cardinality argument.
The compact sets in N, are just the compact sets of EJ,
except for those which are members of ¢. Since every mem-

ber of ¢ has infinite cardinality, the compact space N

can not be expressed as N = M;UM,, where M; is com-

pact in N;, and M, compact in N,. Thus the claims of
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Theorem 1.9,3ii apply only to families of locally compact

spaces,in general.

Our last result in this section is an analogue for lo-
cally compact spaces of Proposition 1.6 , stating that CcX

and CkX coincide,when X is locally compact.

Proposition 1.11 : The Ldentdility map

id CCX-~~é CkX_

L8 contlnuous, porn all spaces K. When X i4 Locally

compact, LLX Ls a homeomonphism.

. Proof: Let 'K Dbe the colléction of all compact subsets of
X. Then,as was shewn in section 1.1 , the identity map

id CcX —3 C X is continuous. Also CnK and CCK are

K
the same,by Proposition 1.6 , for all Ke K. Thirdly, ¢, X

carries the initial topology induced by the family

{Jy + (X—=CK | Ke K 3},

and hence id : CyX——~9—CKX is a homeomorphism,for all
spaces X. Putting these facts together,we have our first
claim. The spaces CKX and . CQX coihcidegas soon as K

is a covering system for X, that is,as soon as X 1s lo-

cally compact. With this,the proof is complete.
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2 A Stone-Welerstrass theoren.

Stone~Welerstrass theorems tend to be very useful,where-
ever they exist.In particular,the case of CKX (the k inF
dicating that (X carries the topology of uniform conver-
gence on compacta) is worked'out,for'topological spaces X.
The situation is very different for CQX, though.Here we
have the SWT (our abbreviation for ' Stone-Weierstrass
theorem ' 1s SWT ) in the same form,for locally compact
topological spaces X, since for these CQX and CkX are

. the saﬁe space,and the classical SWT' applies. Then Binz
[7, Theorem é{ proved the following:
| Let X Dbe a completely regular topological space,and
A a closed subalgebra of CC(XJQ), containing the constant
functions. If also A generates the topology of X (meaning
that A and CX generate the same initial topology on X

then A = CX.

Questions are - how far can one get away from topology
generating? how far from closed? also what happens when the
algebra does not separate the points of X - for in the
cléssicai casé,the SWT can be stated in such a way as to
cope with this possibility [il, Chapter 17] ? Feldman [15]
in his thesis shews that it is énough in Binz's result to
demand that A be an algebra of bounded functions,satis-
fying Binz's conditions,apart from closedness.

In this chapter,we work towards a theorem relaxing both

the topology-generating and the closedness requirements,and
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which 1s moreover stated for algebras of g{« or € -valued
functions,which need not separate the points of X, or con-
tain the constant functions. In chapter L we give an example
shewing that our escape from topology-generation require-
ments is genuine. We should point out,though,that there is
no reason at all to expect our result té be in any sense

' best possible ' ; it just shews there was room for im-

provement ,and leaves the hope that there are better SWTs

yvet to be found.

2.1 Preliminary results.

Here are given a sequence of rather disconnected tech-
nical lemmas,to be used in the ﬁext section in the proof of
our SWT. First we introduce the symbol EZ, meaning the two
point compactification of ﬁ%;

Let now X Dbe a convergence space,and S é non~void
family of subsets of X. This defines on C€X and its sub-
sets the topology n(S) of uniform convergence on the mem-
bers of S. (The topologies of.pointwise convergence;of uni-
form convergence on X, and of ﬁniform convergence on the
_compacta of X are particular cases of this topology,) As

indicated in the proof of Proposition 1.11 , this topology

is generated in two ways; as ‘the initial topology induced by
g+ cx—>c 8| 8683,
or by the improper seminorms (improper,meaning ﬁifvalued)

fr—> sup{|[f(x)] | xeS }

w2



Further,let A(S) be the set of all functions in CX

which are bounded on each set Se8§;

M

namely,

!

A(S) = {fecCX | £(S) is bounded in ¥,for each Se S}.

A subset A of CX is called  S-bounded exactly when it

is contained in A(S), and locally bounded when it is

S-bounded for some covering system S for X. (It is the

locally bounded subélgebras-whioh we shall bhe able to deal

with in the SWT.)

It would perhaps be helpful to shew where (CX,n(S))

lies in relation to CcX and CSX9 and we do this here.

Remark: 1) For all collecticns S, the identity map
id : (CX,n(S)) —> CSX is continuous. When 1t is a
homeomorphism,and X 1is c-embedded,there is for each

set S$<€8 a compact set K .in X, which contains S.

2) The identity map id ¢ (CX,n(8)) —= CcX is contin-
uous iff § = {8 | SeS } is a quilt for X - where

denotes the closure operator in wX.

3) When each S&€S 1is contained in some compact subset

of X (which may depend on S ), then
id : C X —= (CX,n(8))

is continuous.On the other hand,if it is continuous,

and X is c-embedded,then each set S 1lies in some

compact subset KS of X.
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The proof is a straightforward calculation -~ except per-
haps at those parts involving c-embeddedness,where an as yet

unproven result, Lemma 3.4 is helpful - and is omitted.
3 >

Note: When X is c-embedded, and ch and (CX,n(S))
coincide,for some collection S of subsets of X, it fol-
lows from parts and % of the above femark‘that X is
locally compact, and that ST is a guilt for X.

This last fact is actually a particular case of our

Theorem 4.3
- Another easilly proved fact is that the composition map
© t (A(S),n(S)) x R —= (A(S),n(s)) 1
is continuous.Similarly,given any spaces VX, Y and Z,
o C (X,Y) % € (Y,2) —> C_(X,2)
is also continuous [M, Satz'éj, and in particular,
° i C X x ckRm‘;» ¢ X ' \

is continuous,for all spaces X. With these facts,we can
prove our next result,the third part of which generalises

one of Binz's [7, Theorem j]. Moreover,the proof is shorter.

Proposition 2.1 : Let X be a convergence space,and S

a non-empty family of subsets of X.
L) Wheneven AcCX 4s a subgroup (subring),the ad-

dition (and mulitiplication) Ls conlinuous,with nespect
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to the n(S)-fopology. The scafan multiplication (44
defined at all) need not be aoniinuoué.fn fact, it As
continuous L4g A A48 a vecton subspace of A(S), fLhe
algebra of atl S-beunded functions on X, (Compdne
with [13, exercise 2@}.)

AL} The n(8)-closune of any subset of CX Aib
S-bounded exactly when the subset Ls Ltself S-bounded.

1§ A 48 an S-bounded subalgebra of CX, then L£5%
n(S)-cLosure A is also a subalfgebra of CX, which 4%
furnthermore monotone.

LLL) The adhenence of any subalgebra of CcX L4

a monotone subalgebra of CX.

"Proof: The first two parts are well-known - we shall not
repeat their proofs (although it will become clear that the
second half of 1i can be proven in the same way as iii).

So’suppose A fto be a subaléebra of CX. Since the op-
erations in CCX are continuous, a(A) 1is clearly also a
subalgebra of (CX. Thanks to Lemma O.14ii , to shew that
a(A) 1s monotone,it is sufficient to shewythat V£ e alh)
whenever f‘ea(A),v

To this end,we take a sequence of polynomials with real
coefficients and no constant term,say,—(gn) , such that
(gn) »~ & in Ckﬁﬁ where we define g(a) = V|a| , for all uéﬂ?.
That this can be done,is due to the classical Weilerstrass
approximation theoren.

Next,since fea(A), there is a filter © on CX with

a trace on A, and converging to f in CcX° Hence the fil-
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ter

(gn)o @ > gef = V{f| in C.X,

and further,has a trace on A, sinc

@

A 1s an algebra.This,

though,completes our proof.

Remark: 1) Our proof is valid,whethér or not the subalgebra
A contains the censtant functions.

2) At the coét of retreating into calculations,one can
get a stronger result: |

When A dis an ( S-bounded ) subalgebra of (X, and
'Mfé a(h) (or feA ), then the function 1/f belongs
to a(A)_ ( or to A ) as well,provided £ 1s a unit of (X.

3) Finally in this connection,one defines in the obvious

way the sequential adherence operator o

v of' a convergence
space Y ( these operators also satisfying the same thfee
properties that adherence operators satisfy,as one easily
can check ). In pafticular,for any sﬁbalgebra of CCXQ its
sequéntial adherence is a monotone subalgebra of (X, closed

under inversion in the above sense.

The next proposition shews that when computing the adhe-

rence of subsets of ‘CCX, it 1s enough .to do it for the

n(S)-closed ones,where S is’ this time a cover for X.

Proposition 2.2 : For any cover S fon X,

and each subseft

H o¢f CX, we have a(H) = a(H ), where ~  de-

noftes the n(S)-closure operaton.




_57._
Proof: Clearly, a(H) @ a(H ), since H < H . Conversely,
suppose that 8 1s a pair from CoX’ and that 6 has a

trace on H . By definition,for each positive real number ¢

and each pair x¢ from X, there is S_,e S, C

X ex¢e ¢

_ . - .
and B€X¢€ 6 with C€X¢ = SX¢, and

w(B€X¢ % C€X¢)€; f(x) + eb.

Now 1let Dx¢ be the set of all functions in CX assuming

values between -1 and 1 on S and consider the set

x¢?

L { B€y¢ + 8Dx¢ | ceeR™  and x¢ 1s a pair from X }.

It obviously has the finite intersection property,generating
‘a filter ©° coarser than 6. Nevertheless, 6° still con-
verges to [ in CQX,
" We now shew that 6° has a trace on H. Let us take

any finite collection of triples,éay {eexXpde | k= 1,...,7.
By assumption there is a function

Kt EKXK¢KF\H"
and by definition of H , there is a functién f"e H, differ-
ing from f° Dby less than €y On SXK¢K’ for each index «.
Hence )

’t .
f"e Hn B ‘ + €.D )
£]< EXp by K %"

as required.

It is convenient now to give some more notation - this

will allow us to state some results more succinctly,and
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‘we hope,more clearly.
For each subset A of

the null-set of A, by defining

A { xeX | £(x)

The set N 1s closed in
A

initial topology induced on X by

On the other hand,for any subset B of

an ideal I(B) of CX by

I1(B) =
That we take

I1{(®) to be (X

X, being in fact

= 0 for all feA }.

closed in the

A.

X, we define

{ fecCxX | £(B) < {0} }.

is consistent with this de-

finition,and with the set theory that we use.

For a discussion of the relationship between the opera-

tors N and I, sece [9]. The only results that we need

therefrom,are that the ideals

ch’ and ?hat_ A < I(NA),

I1(B)

for all

are always closed in

A < CX.(These facts

are easlily verified directly,without consulting [9j§.) From

this it follows that the adherencé in CcX

A of CX i1s also contalined in

of each subset

I(NA).

The second hew notation will allow.us to deal with sub-

algebras of
Any equivalence relation - C
defines a subalgebra A(E) of

functions in CX

CXy

which are constant on

CX which do not separate the points of X.

orn the .convergence space X

namely ,the set of all

E-classes.It is

again easy to see that subalgebras obtained in this way are

always closed in CQX; more generally, if A 1s any subset
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of A(E), then a(h) & A(E

On the other hand,any subalgebra A (or even subset)
of CX idinduces an equivalence relation EA on X, whoée

equivalence classes are given by

- !A A
EAX - (1x> (X)_‘)
for each xe¥. (The symbols X and ii

being the point evaluation at x,

are those ex-
plained in section 0.2

©
S

cand the map : X r—» % respectively.)

For the rest of this section, X denotes always a com-

e

pletely regular fopological space,and CX means C(X,R),

exclusively.

The universal property of the 3tone-fech compactifica-
tion BX of X provides for each function fe(CX, a con-
tinuous mapping

£ R —T,

coinciding with f on X. Each subset A of (X yields
in this way a corresponding subset A of C(X,R), which

partitions BX, the equivalence classes being of the form

A

8 _
E 8% ,R

. )T (%),

x = (i

It is not hard to see that Ey is the restriction of EE

to X, that is, EEXFWX = E,x, for all xeX.

Let V denote the projecticn of BX onto Y = BX/EB,
and let Y . carry the final topology induced by V. For

each feA, the mapping
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iy =T,

defined by the equation { =

i

oV, 1s continuous,thanks
to the UP for the topological quotient structure.Further,
the topologies induced on Y by V, and by the initial fam-
ily A ={f | feA } are the same, since the former is

compact,and the latter Hausdorff and coarser than the first.

Using the notation just developed,we state the classical
SWT (mainly to see how it looks in this form), and then the

last two lemmas to be given in this section.

The classical SWI : Llet 2 be a completely negular fopo-

Logical space,and A a subalgebra of C(Z,F), closed
undenr complex conjugation Ln the complex case.Then the

closune of A An CK(Z,F) L8 exacitly the set

ACE,) N I(NA),

(That is,edthern the algebra A(EA) itselg,on the maxd-

mal Ldeal of that algebra consdlsting of functions van-

Lshing on the set NA’)

Lemma 2.3 : Suppose that x 44 a point of X, and C
a closed subset of BX. 1§ V(x)¢V(C) , there is a

function geh such that

g (glx) +A) < gxN\cC.

Furnthen, 44 1e A, then g can be chosen with g(x)

i
O
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This lemma needs no proof,beyond observing three things
first,that the set V(C) is closed in VY, second,that the

set A induces the topclogy on Y; and last, A 1s an algebra.

Lemma 2.4 : For an S-bounded and n(S)-closed subalgebra

A of CX, the algebra ANC’X A4 canconically Lisomorphic

to edlthen CY, on to a maximal Ldeal of CY.

Proof: We know from Proposition 2.1 ii , that A is a mono-

tone subalgebra of CX, and in particular,a sublattice.Hence |

AN C°X separates the points of Y, at least in the weak | |

sense.Moreover, ANC’X itself is nX—closed (recall our !

‘notation for sup-norms), and it is obvious that
ny (£) = ny(L),

for all feA. Ip follows that the map
t ¢+ ANCYX ——>CY

in which fr— f, 1is actually an injective,sup-norm pre-
serving homomorphism,whose image éilﬁii is thus a clo-
sed point separating subalgebra of (Y. The classical SWT
now says that it is either (€Y itself, or a maximal ideal

of CY. This establishes our lemma.
We add only the remark that the homomorphism
v : Y ———> (X

is injective,and a " left inverse for t. To see this,one

simply looks at the definition of V , and sees that

L

V() = foV = f, for all féAﬂCOX.
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2.2 The theorem.
We give here ocur main SWIT, a corollary,and then a dif-

ferent SWT, of use in chapter 3.

Theorem 2.5 : lLet X he a complefely regulaa topoﬁogicaﬁ
space, and A a Locally boundedléubaﬁgabna (not neces-
sardly containing 1 ) of C(X,), closed undern complex
conjugation in the complex case.

Funthen,suppose therne {s a subset G of X such that
1) G2{ xeX | Eﬁx\\X is nonvoid } , and |

s 2) G Ais compact Ln the Aindilial Zopology induced on X
by the algebra A(EA).

Then the adhenrence in cc(x;F) of A Ais exactly

fhe algebnra A(EA)f\I(NA).

Remark: The algebras discussed by Feldman and Binz were
topology generating; this corresponds in the statement above

to point separating, and being able always to choose G to

be empty.
Proof of the theorem: One inequality we already know -
a(A) s AEDOTON).

The other,in which we now engage,is somewhat harder.We con-
fine curselves until further notice to the real case only.

We assume also,as Proposition 2.2 allows us to,that A 1is

S-bounded and n(S)-closed,for some covering system S for X.

(For if A is S-bounded as we have assumed,its n(S)-clo-

sure A is also S-bounded, with

EA = EA“’ and




NA = NA", so that A satisfies the conditions of the

theorem when A does.)

First we shew that for each function fe A(EA)F\I(NA)
there is a function f"e¢ A agreeing with £ on G.

Let X° denote the set X, together with the initial
topelogy induced by the family A(EA). Then the subset
V(GwJNA) of Y dis closed,and inherits the same compact'

topology from Y as it does from X~ wvia V. Hence the

restriction of f +to GLJNA induces a continuous function

«0n V(GLJNA), which has by Tietze's theorem a continuous
extension £ to all of Y. Lemna 2.4 now furnishes a

‘function f£° = V (£) in A agreeing with f on G.

Conse@uently, it is enough to shew that any function
in A(EA)F’I<NAL)G) also belongs to a(A). Let now f be
such a function,that is, Tfe A(EA?F\I(NAg)G), and let X"
be the set X\\fmi(O). '

For each xe X" and positive real number e, we define

e(x) = min{e,

D e

ERCONEE NP

and

W(e,x) = {yeBX| [£(y) = £(x)] < e(x)INV(V(G)).

We have assumed that GUN, & f~1(0). Accordingly,the equi-

valence class V(x) = EEX lies entirely in X, and so does

not meet the closed set BX\ W(e,x). We get then from Lemma

2.3 a function U, € A such that

-1

SRR A < W(e,x).
ug, Cu () + A) & Wie,x)
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Let M(e,x) = {yeBX with iuﬁy(y) ~
N(e,x) = {ye X with |u_ (¥) -
3 = = RX J1t U 3 - Y < 2

U(e,x) {yve BX with !:EE(J> u_, (x)] 2},

and ‘
D(e,x) = {ge AnC'X with gly) - £(y)| < e(x),

for all ye M{e,x) 1}
Since M(e,x) 1is saturated with respect to Eﬁ, meaning that

g

it is a union of E,-classes,the closed sets V(M(e,x)) and
V(BXN\ W(e,x)) are disjoint in Y. Thus there is ge CY,
- “constant zero on the latter set,and one on the former.As be-
fore,the function g = Vb(g) belongs to ANCYX, and a
‘multiple of g, namely, f(x)g, belongs to "D(e,x). We note

further that the inequality
lety)| < 2t |

holds for all ye M(e,x) and ge D(e,x), thanks to our

choice of e(x).
We claim that the set
p = { D(e,x) | eeRY and xex" }

has the finite intersection property,arnd prove this in the
same way as Bingz E?, Theorem.il. |

Suppose {(ey,xy)| v = 1,...,n} is an arbitrarily cho-
sen finite collection of indices.It is no restriction to
require

e1(x1) & ... < Gn(xn).



oy,

Now let
N
My, = U M(e %, ), and
C=1 S
. §
= - [ 7
Du C\])( K’)K>
N o=t
for v = 41,...,n. We know that D, is non-void,and shall '
complete our proof by shewing that D is non-void,when

U+l

DU is. Suppose then that g<aDU.

Two possibilities arise: if MU = M then ge DU+

v+1? 1 ‘

autoﬁatically.@therwise,let E, F be any two EE-classes

both lying in M \\Mu‘ We next define a function

v+ 1

g

in
- V(Muu13u¢ UNA) - = K

assuming the values O at the point V(NA), and f(XU+1>

at the points V(E) and V(F), and agreeing with g on
V(MU). That this function is well-defined,is Dbecause all

the sets concerned are mutually disjoint,and Eg-saturated.

It is clearly continuous,since the three (or two,when E = F)
extra peoints are isolated from V(MU).

Now by using Tietze's theorem and Lemma 2.4, we get a
bounded function gEF

the function &g to the set ”V(MUU EuUF) coincides with

e A, such that the restriction of

fEF‘ Hence ?he set

( )}

X
v+l

Upp = {yeBX | gepy) > £(¥) - e,y

is a well-defined subset of BXQ containing M,uEUF. Thus

for fixed F; the collection
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e . , B
< M v 138 & ~class
{ Upp | ES U+1\\HU is a Eg-class |

forms an open cover for the compact set M from which

_ u+1’?
we extract a finite subcover
{ UElF"°"’UEXF 1.
This shews that the function
|
=V g, ., € AnC®X |
gF K=t gE’K11 ’ \\
’ \
. K P a g _3‘ > - € |
_.which agrees with g on MU, 1s greater than f CU+1(XU+1) ]
on MU+1, Similarly,the sets
Up = {ye=sx | ep(y) < £(y) + e, (x40 ]

are open,and contain MULJF. The resulting cover of MU+1

also admits a finite subcover {UFI,....;UFg}. Now clearly,
) 3 ,
g = ANg, € AncCX,

A
1K 1 b K

coincides with g on Mu’ and even satisfies the inequality

lg” ~ £| < e ¢

v+l XU+1)

on M . With these properties, g« D

U+l completing the

vt1?
induction step,and so verifying our claim, that 0 had the

finite intersection property.

We note in passing that for any ge DU, the inequality

Igl < 2]£l holds on MU. Further, if there are no over-

lapping equivalence classes,that is,if we can take G = @,
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then the filter generated by D itself converges to £  in

CcX’ shewing that fe« a(A).

. .

Otherwise,and in fact,in any case, let us define

Fe,x) { geh with |g(y) - £(y)] < e(x)

on N(e,x), and |g| < 2|f| on X}

and

-t
H

{ Fle,x) | ee R’ and xex" 3.

We claim ( again ) that F has the finite intersection pro-
~.perty.Consider then a typical finite collection of indices,

say, {(e1,X1)seee.. ,(gn,xn)}. The sets
il N L
N .
&iN{eK,xK, and BX \&iU(EK’XK>

defined at the top of page 64 are closed in gX, disjoint,
and Ei—saturated.Hence we can find a function he A, such
that 0 <h <1, being constant one on the fifst—named set,
and constant_zero.on'the other.

"
Now for any function g Gq:\D(EK,XK), it is clear that

By
lhg| < 2|f| on X, and further;since hg = g on gkN(sKﬁxK)
we have hg éF(eK,XK), for each = K. -

The filter 6 so generated has a trace in A, by con-
struction.We prove next that - f8 is a pair from CcX’
which is not hard to do.

For x eX", the filter w(6 x UX)'converges to f(x)

in W, since for any positive number e, the set N(e,x)NX

is a neighbourhood of x in X, with




-68-

w( F(e,x) » N(e,x)X ) & £(x) + 2els

(recall that {g(y) ~ f(xz)| < e(x) < e on N(e,x) ). Next,
suppose that f(x) = 0. Since f is continuous,for any
positive number e, there is a neighbourhocod V of x 1in X

with

w( {f} x V) <c eh.

- However,for any FeF, we have |g| < 2|f|, whenever geT.
Hence

Cw( F ox V) E 2eh,

A,

proving the convergence of w(8 % UX) to 0 in K.
In this fashion every point of X has been accounted
for,as only the possibilities xeX" or f(x) = O can

occﬁr,and the proof of the theorem is complete,for R.

‘The usual arguments allow us to extend the result to

‘subalgebras of C(X,C) which are closed under complex con-

Jugation.

From now on,we return to our convention,under which

CX * means C(X,F).

When A 1is a subalgebra of (X such that at most fi-

nitely many Eg—classes meet both X and BXN\ X, the set

iy meets BXN\X } dis itself compact,in the ini-

{yvex | E
tial topology induced on X Dby the family A(EA). Accord-

ingly,we can state’



Corollary 2.6 : When A& 4s a Locally bounded subalgebra
of CX, closed undém conjugaidlon in the complex case,
such that at most findtely many Eﬁ~c£a44eé meet boith
X and BXN\X, then

a(h) = A(EA)(WI(NA).

The section is ended with yét another SWT, applying
whenever X 1is a convergence space,making CcX topolo-
gical.There are no other restrictions on X at all.The

_result does depend on another (Theorem 3.3 ) which we prove

later,but without using ' circular logic ',

Theorem 2.7 : Let X be a convengence space such that
CcX 8 topological,and A be a subalgebra of CX,
closed under conjugation in the complex case. Then

a(h) = A(EA)K\I(NA).

Proof: The classical SWT stated earlier is used here,in
our proof. Since each compact subset of HomCCCX remains

compact in HothCX, the identity map
1d CkHomSCCK i Ckhomcccx
is continuous.Further,
d : X —— C Hom C X
c e e e

is a linear homeomorphism.Last, CcX is topological,and now
Remark 3.4 and Theorem 3.% are summoned,to shew thaﬁ

HomcCcX is a locally compact convergence space,and that
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id : CcHomCCCX-—w-» CkHomCCcX

is also a.hbmeomorphism.Putting these together,we see that

d_1 : CCHom C X —==C X
. k s ¢ e

<

is continuous.Also,the subalgebra d(A) of CkHomSCQX
satisfies the conditions of the usual SWT - the closure
under conjugation is easiiy'verified,as each member of
HochX is a point evaluation - and

A(A(E,)) = A(E

4, . :

a)y’

Our theorem follows directly from these facts.

Remark 2.6 : We have already noted what it means for a sub-

algebra (or even subset) A of CX to generate the topology

on X - an equivalent version reads:

A subset A of CX is topology-generating on X iff

no Es—equivalence class meets both BX X and X, and A

‘separates the points of X.

"We shall need this form of the statement later, in sec-
“tion 4.2 . Its proof, if not already known to the reader,

is a straightforward calculation.
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3 Topological algebras.

3.1 Generalities and Banach algebras.
Here we restate our blanket assumptions,that our algebras

are commutative ﬁ:—algebras,from now on always- possessing a

multiplicative identity element 1. -Artopological algebra -

AT is not always required to be Hausdorff; however,the |

multiplication should be (jointly) continuous.Further,

Hom A and Hom Ar denote the set of all Wj—valued,and all

continuous W:—Valued homomorphisms of. the topologicél E:—al-A
“ gebra AT. Other symbols to be seen are Ap- and AP’ which

mean that A carries the topolbgy generated by a seminorm p

defined on A, and that by a non-empty set P of seminorms

"on A respectively.

Those properties of normed algebras required as back-
ground are summarised below - prdofs can be found in Rickart

T,@N[lQ], for example.

1) Any normed algebra Ap can be given an equivalent
norm q, which is submultiplicative, and normalised so

that q(1) = 1. We assume this to have been done in future.

1

- 2) The complexification Ap2 of any normed algebra A

over R can be given a norm such that the injection

Gt A — o A2
p D

is norm-preserving ﬁO, Theorem 1}3.5].
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3) Every maximal ideal of a Banach algebra is an F:-ideal,
that is, the quotient field is F .when the algebra is over:

C , only C-ideals can appear as maximal ideals. . ‘

4) For any complex Banach algebra Ap, the. topological

space HomsA is compact and Hausdorff, and the inequality
In(a)| < p(a)

holds,for all homomorphisms he Hom A and points aeA.
Hence,every member of Hom A 1is norm-continuous,and the
~Gelfand map

d : A_—>C_(Hom A,C) - |
p n S
: Jis also continuous. ) : ‘ _ ) |

5) The results quoted in ‘4 are also true of real Ba—‘

nach algebras as well,as one may eaéily.check,using com-
.plexifications.

Suppose Ap _to be a real Banach algebra.We have seen
in section 0.3 that HomSA is (homeomorphic to) a closed
subspace of HomsAz,.which is compact, by 4 and 2. Thus
can HomSA be proved compact. |

Now let h, € Hom A and aelA. As in section 0.3, we
have hueHomrA , taking (d,a’) fo h;(ﬁ) + 1hgy(a”).

Hence

h((a,0))
< p’((a,0)) = p(a)

the inequality stemming from U, and the subsequent equality

ho(a>

from 2, if p° 1is that norm whose existence 2 furnishes.
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It follows that every real-valued homomorphism of A

is norm-continuous,as is the Gelfand map
d : Ap--——acn(quSA,R).

6) In any complex Banach algebra Ap, an element ae A

is invertible iff h(a) is non-zero,for all he Hom A.

7) For any real Banach algebra Ap, the;following con-

ditions are equivalent ( see [10, Theorem 3.1«21] )
i) Every maximal ideal of A 1is an R-ideal.
ii) 1 + a? is invertible,for all ae€A.

iii) The complexification of "Ap is symmetric.

Proof: Proposition 0.8‘ shews that 1i dimplies diii, and
also that i implies. iii.

We next prdve ' iii = i '. 'Since each member of
"Hom Ap2 is continuous,by 4, thé'symmetry of Ap2 is equi-
valent to its full symmetry. But from 3, every maximal ideal
of A it an ﬁj—ideal,and byvthe full symmetry of A%, even
an.ﬁz—ideal. Accordingly, 1 holds. »

Last,we prove that i and iii together imply ii,
which will be enough to prove the equi&alencé. For the rea-;
son given above,we assume wiﬁhoﬁt loss of generality that

A? is fully symmetric. Hence
h((1 + a?,0)) = 1+ h((a,0))? > 1,

for all heHom A%, and a<€ A. This shews that (1 + a?,0) .

is invertible in A?, by 6, and consequently 1 + a? is a




unit in A.

The preliminaries being over,we consider a Banach F -al-

gebra Ap, remembering'that theAsets; Hom Ap and Hom A

are equal,and that
id : qucAp———a-HomSA
is continuous ( section 0.2 ). On the other hand,since I*
’JHomSA is a compact space,the evaluation map
“ .~ w : C Hom A x Hom A — J
n S s

1s also continuous.It follows that

we( d xid ) : Ap * HomSAp —> 1= . ' o

(a,h) +———— h(aj

(which is none other than the evaluation map) is continuous,
and so,so is | |

id : HomSAp —f—> Hochp
by the UP for the stfucture of continuous convergence.We

have just proved

Proposition 3.1 : 'The épaces HomSA “and Hochp ~are Lden-
ticaﬂ,ﬁo@ any. Banach algebnra Ap.Thdt ib,the cannien
space {Lin our sense) c¢f any Banach algebra Ls a compact
Hausdong§ topological space.

Funthen, for any nbnmed Linearn algebra Ap; the
spaces HomsAp and Hochp goincide, and anre gompact

topological.
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3.2 " The carrier space of a topological algebra.

We. turn our attention to topological algebras in gene-
ral,and shall shew that the carrier spaée of any (commuta-
tive) topological algebra (with identity) is a localiy com-
pact c-embedded convergence space.Then the first bf a sequ;
ence of results on the universal repfesentation of these

algebras is given.

To start with,we know that C%X is a Banach algebra,

for each convergence space X, and that
jo ¢ C¥X ——(C X
n [d

is continuous.In particular,if -AT is a topological algebra

" with topology T, and E is a non-void subset of HochT,

the maps.

ig o id
E —= Hom C E —=Hom C'E == Hom C°E
leTe e n S

are all continuous - the last homeomorphism‘thanks to Pro-

position 3.1. Using this terminology,we state

Lemma 3.2 : Let E be closed 4in HochT’ and suppose thene
is a continuous T -algebra homomorphism
. 0
hE .‘AT,—~—%>-CnE
such that the diaghamme
B
: E‘—~—~—-e>HochT
'jo.oj_ .
AT
’ op as 0
HomSC E & HomchE

commutes. Then E A8 compact.
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To prove the lemma,it 1s.enough to remark that E is
a closed subset of the compact subspace hE(HomSCOE) of

HochT, and thus itself compact.

Theorem 3.3 : The space Hom AL L8 Locally compact and

c-embedded, for each topological algebhra Ar.

During the proof,we shall need the technical lemma given

below; it is of the same sort as Lemma 1.7

Lemma : 1§ X 44 a‘convengence_épace, H a non-void sub-
” Cset of CX, and x$ a pailr from X, there Lis {for each
positive numben A a covening system S(A,0) fon He.

consisting entinely of s-closed sets.

“ Proof of lemma : Suppose 6 > f in Hc' By definition there
are sets Bfeé A0 and Cfee d with , i
Cw( Bpg % Cpgi ) € £(x) 4 AR, B
Now we put
E(fo) = { getH | g(Cfe) c f(x) + AN}

and note that as 6 ranges over the pairs from Hc’ we get

a cover with the required properties.

/

Proof of Theorem 3.3 : Let 6 be the neighbourhood filter
at 0 in Ar . The lemma jusﬁ above yields a cover,say
S(1,8), of Hom Ar, such that for each pair h¢ from

HochT we have

w( E(h¢) x Upg YED, .. . oL (%)




for some.suitable neighbourhood Uh of 0.

¢

If jh¢ denotes the inclusion map of E(h¢) in the

space HochT’ the homomorphism

Jpg o Q¢ Ay —> RACEY

-

is continuous,as always.However,the set ~E(h¢)(a) is
bounded in ¥, for any"aeaA, since Uh¢ is absorbent.
Thus '

jh¢°o d(A) ¢ g°E(h¢).

“Next, (%) shews that the reduced map

» ° ‘ N 0
Jh¢ d : AT-———>CnE(h¢)
1is continuous as well. Last,for each h"eE(h¢) and aeA,

[ing = ol e do" 15 (ng) (M) (2) -

Jo * iE-(h¢><H)<jh¢. ° d(a)>

= IE(ng)(BM)e j°<jh¢.° d(a)> )

g s Aty
- d(a>(5h¢<h">) = n(a).

It- follows that jh¢ o d satisfies the condition of
Lemma 3.2, allowing us to conclude that E(h¢) is compact,
for all pairs h¢ from HochT. In other words, HochT

is locally compact; it is c-embedded, being 2 subspace of

the c-embedded space CQAT’ and the theorem stands proven.
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Remark 3.4 : 1t 4s now clear that CCHochT is a Locally

convex topological algebra whengvan AT L8 a topolo-
gical algebra, and in fact that

id :CcHochT —> %{HOﬁCAT .

A5 a homeomonphdism,

This result is needed in the proof of our second SWT,
Theorem 2.7 .It is clear,we hope,that nowhere in proving
this remark have we used any type of SWT; the next propo-

,%sition follows immediately from Theorem 2.7, though.

Proposition 3:5 : 11§ -AT 46 a Xopological Kz-aﬂgebna,on
’ a quasi-symmetnic topological U-algebnra,then the al-
gebra id(A) {5 dense in CcHochT.

The universal representation of any topological algébra
is,as mentioned earlier,always continuous,but need not be
an embedding,even when it is injective.It cannot be,if A
is not locally convex,for example.

In the coming sections we investigate this question
and obtain results,characterising those topological algebras

for which the universal representation is actually an em-

bedding.
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3.3 A special case,the submultiplicative seminorm.

The nature of the universal répresentation is investi=-
gated here réther more closely,for a certaiﬁ class of lo-
cally convex topological algebras,and results parallél to;

~and including,those well-known for commutative'Banach alge-

bras {12] are obtained.

First,a few pertinent definitions. A seminorm p on an

F:—algebra A is called weakly submultipliéative iff there

is a positive real number Bp such that

p(aa”) < 8 p(a)p(a’),

for all a, a”" €A, and submultiplicativé iff we can take
pr - 1.  For each seminorm D én A, the kernel of p
(written Ker p ) is exactly the set of all members of A
at which p vanishes.Obviously, Ker p 1is a subspace of - A,
‘being actually an ideal,if p 1is weakly submultiplicative.
In this case,the quotient algebra A/Ker p can be

normed,since p is constant on equivalence élasses.We shall
denote the completion of this normed algebra by KE, crea-
ting in this way a Banach algebra,whose norm p is weakly
submultiplicative, and even submultiplicative,if p is.

We call the natural homomorphism from A into KE , under

which. a F——%»[a], L That is, [a] wp(a).

If now AT is a topological algebra,and p a contin-

uous weakly submultiplicative seminorm on A , then

AL — > A-
"p T 'p
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is continuous and the map

Hom A= —> Hom A

LIS s p T

is well-defined,continuous and injective. (The first two

facts derive from Proposition 3.1 , the third from the den-

sity of A/Ker p in A

5 ) Further,the set g (HomSAﬁ)

is compact in Hom AT’ being the continuous image of a com-

pact space.

Using the notation set out above,we give now sufficient

condlitions on AT for 1its universal representation to be

an embedding - these conditions being actually necessary

also,in the case described below.

Prbposition 3.6 : Suppose Ay 44 a topologdical algebra

such that
L) 4 44 dnjective,and

—£L) fon each 5L£ten (orn net) 6 on A, 4§

d(e) converges 4An C Hom AT’ then ©6 converges in A

T
Tn this case, 4 44 an embedding. When also AT

S i complete,the image algebra d(A) 4Ls closed 4in
c Hom Ar, being 4in fact the whole algebra if A 48 an
W2~a£gebna on a quasi-symmetric C-algebra.
Proof : Conditions 1 and ii say exactly that d is an

embedding,since we know already that it is continuous.That

now the completeness of AT implies that of d(A) in
CéHochT is just as clear,since d 1is linear.Accordingly

d(A) 1is closed in CcHochT’ the last claim following now
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directly from Proposition 3.5

- To any submultiplicative seminorm p on an algebra A

corresponds a seminorm Vv on A, defined by

vp(a) = 1lim <p(an)')%l
‘ n o

for all ae<A. Its properties are described in [10; Theo-

rem 1.M.£] ; one which we need is that

vp(a) < pla),

“on A. If in addition,there is y > 1 with

p(a)? < yp(a?)

ron. A, then

P < Yv_.
- p
Such seminorms are here called y-seminorms.

The Banach algebra Kﬁ shares any such properties with

Ap, as |
~f=y\2 - » oy 2
p(a)? = 1lim p([an])
_ . ' 2
= 1lim p(an)
< ylim p(anz) = Yﬁ(az);
whenever 56555, and the sequence ([an]) +~ a in A-. Furt-

her,[;o, Corollary 3.1.%] states that

Vﬁ(a) > Sup{lh(é)ll |h € Hom Eﬁ },

for any a ¢ Kﬁ' Equality occurs,if KE is a complex alge-



-82- ‘ |
bra,or a real one whose every maximal ideal is an R-ideal -
conditions equivalent to this are given in paragraph 7 of

section 3.1 . Thus

(o) . . . vp(a) > sup{ |h(a)], with( klewp°(Hom Eﬁ) },

for all aeh, since p(a) = p(lal) . !

A real algebra A 1is sald to be good yé P, where P
is a collection of submultiplicative seminorms on A, iff
equality holds in (o), for all peP. It is cléarly suffi-

“cient for this to hold,if every closed G:fideallof Ap -
this symbol denoting A together with the topology induced

by P - is actually an R-ideal. The preamble now over,we

" can state our next results.

Theorem 3.9 : Let A be a Hausdonfg topological algebra
whose topology L4 generated by a family P of v-semdi-

noams.In the rneal case we demand in addition that A be
‘good wo P. Then the univensal nepresentation of Ap 4s
an embedding. |

Convernsely,if it is an embedding,the topology on A
45 generated by a gfamily of sup-seminorms (which are Ln

particular Y-seminorms). -

Proof : The converse follows without further comment from
the fact that CCHomQAT carries the topology of uniform

convergénce on the compact subsets of the (locally compéct)

'space Hach

T
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To prove the first part,we aim to appiy Proposition 3.6
Since Agr 1is Hausdorff,each'non—zero element a éf A is
'seen' by some seminorm pe P, that is, p(a) # 0. From

our assumptions,though,it follows that

pla) < ypvy(a)

some homomorphism h.enp°(Hbm Kﬁ). This shews the injecti-
vity of the universal representation.

for some positive number Yp? and hence h(a) # 0, for
Next ,we have also seen that
|
|

K*° = *(Hom A- ep
| { ( p) | p }
.1s a collection of compact subsets of HochT. Accordingly,

id d(A)k—H(d(A),n(KW )

and

a™l i a).nK) ) ——s Ay '

are both continuous,where k and n(K’) denote the topo-

logies of uniform convergence on the compacta in HochT’

and on the family K° respectively,and @ 1is the family

{ Vp | pé P } of seminorms on A. (That d 1is an isometry

" of seminorms guarantees us the continuity of d_l.) Hence

da : AT-—4> d(A)c

is a homeomorphism,since at one end AT and AQ coincide,
as topological spaces,and at the other,'d(A)C and d(A)k

also coincide,and in between,the continuous maps d and d
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help to complete the proof of our claim.

Corollary 3.8 : Suppose Ap o be as An the previous
Proposition. Then

L) the formula
p(a) = supl |n2)!, witﬁ he'ﬁp.(Hom Eﬁ) 1

appﬂie& to each Aemindnm pe P with Yp. = 1,
| id) when A 44 complete, A(A) is closed in C Hom Ag
and then also
- LAL)  An the real and quasi-symmeinic complex cases,
the univensal representation of Ap 45 a homeomorphism.
The proof_being clear,we move cn to the preparatioﬁs to .
our last result of this sort,dealing with topological alge-
bras with é (not necessarily cont?nuous)]involution.
.We recall that a set P of seminorms on an algebra A
is directed iff for any p,p e P there is p"eP with
p" > pvp . ‘-
Now let (A,°) be én élgebra with involution.A family P

of submultiplicative seminorms on A satisfies condition

() iff p(aa®) = p(a)p(a®), for all a €A

(8) iff p(a) = 0 = p(a®) = O, and pe P.

(y) iff the conjugate homomorphism h*¥ of h be-

longs to Hom Ap, whenever he Hom A for some p <P,

(8) irf p(a®) = p(a), ,
for all aeA and peP.
(e) iff p(aa®) = p(a)?,
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Remark : 1) Any Banach algebra with involution satisfies
conditions (g) and (y) automatically.
2) Condit}on (§) dimplies conditions (g) and (y),
and (¢) implies all the others.Plainly in both these

cases the involution is continuous.

We are now able to give a lemma,strongly resembling one

in (12, section 1.7.%] in form and proof.

Lemma 3.9 : Iﬁv.(A,°) L8 an algebra with involution,and
. P s a gamily of submultiplicative seminoams on A, then
Ap L4 symmetric Lf any o4 the folLlowding  statements holds:
1) P 4is directed,and () and (y) hold.
2y (o) and (§). hotd.
3) (e) hotds. |

Proof : Suppose the claim félseuThis means there is a homo-
morphism he Hom AP, for which n(b ) # h(b) for some
point b of A. In fact we can find an Hermitian element

aeh, with h(a) = 1, as noted in section 0.3 . Clearly
h(a + 1n1) = 1(1 + n)

. for all natural numbers n eN, ] ' :

Digressing slightly,we point out that for any submult-

iplicative seminorm p and any he Hom A, -

h(a) = p(a)

‘for all aeA iff h is p-continuous.

At this point,the proofs for the different cases start
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to diverge from éach other.The first case is dealt with first.
Since - h dis P-continuous and P 1is directed,there is a
seminorm p e P, such that h =Hom Ap. This means the conju-

gate homomorphism h* is also p-continuous. Thus

1

h((a - n{15°)—

]

h"(a - ni1)

n(a + n11) = =-1(1 + n),
for all neN, However,by the p-continuity of h and h*,

p(a + ni1) > 1h(a + nal)| = 1 +n
+and

p((a + n1H®) > |n*(a - nl)| = 1 +n,

and so

(1 +n)? < pla+ nmil)p((a + nil)®)
= p(a? + n?l), by (a)
i p(aZ) F n2,
for all neN, an impossibility.Thus case 1 is proved.
Case 3 being a particular instance of 2, we are fini-

shed when case 2 1is proven. With this as our intention,we

remark next that

p(x + ) > max{ p(x),p(y)} ,

when x and y are Hermitian in A, and p 1is any semi-.

norm on A satisfying (8). ( For then

p(x + wy) = p(x - 1y),

and hence
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p(x) < 3( p(x + 1y) + p(x - 1y) )

= p(x + 1y)

by the triangle inequality.By symmetry,the other inequality

needed is also true.) v |
| As before,we have he Hom Ap, and an Hermitian element

aeh with h(a) = 1.‘The first fact shews the exisﬁence of

a finite subset P° of P, such that h is P’ -continuous.

Let p = maxP” (that is,

p(b) = max{ q(b) | qe ?’-}

g

for all beA.) Then p 1is a submultiplicative seminorm,

not necessarily satisfying (§). Nevertheless,

1+ n = -|h(a + n11)|

I A

pla + nil),

I

for all natural numbers,and furthermore there is a seminorm

P, € P° depending on n, for which

“pla + nil) = pn(a + nil).

However, pn(a - nl) > n, as remarked above.Consequently,

n(n + 1) < pn(a + n112pn(a - nil)
= pn(a2 + n?t)
2

< p(a® + n?1) < p(a?) + n?

for all neN. Again this is impossible,and the proof of the

lemma is in this way completed.
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Note : . The last inequality derives from the triahgle ine-
quality,together with the fact that p(1) = 1. Now for

~any seminorm ¢ satisfying (o), we have

(]

a(1y = q(11°) = q(NHq(1®) = q(1)?,

since 1 = 1°. Hence,in the lemma, p(1) = max{q(l)|qe P}
and so p(l) = 1, as required.
'Proposition 3.10 : Suppose AT 45 an Hausdorf§ topologdi-

cal C-algebra with involution,whose topology Ls gene-
rated by a family P of submulitiplicative seminonms.

14 4in adddition conditiqné (a) and (B) ane satis-
§ied, then the universal representation is an embedding,

and fci all aehA and peP,

p(a) = supl lh(a)lAllleﬁp;(Hom,K§> }.

Proof : It is only necessary to shew that p(a?) and p(a)?
are always equal,and then appeal to Theorem 3.7 and CorolF
lary 3.8 i..

Accordingly,let as A and peP be arbitrarily éhosen.

Then

p( a? ) p( (a®)%) p( a?a?®)

]

= p( (aaf)(aa°)°)
2

= p( aa® )

p(a)?p(a®)?,
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by applying (o) several times.If p(a?) < p(a)?, this

i

equality can be preserved only if p(a®) 0, and with
this,also p(a) = 0, wusing (B). The ensuing contradic-

tion establishes the claimed equality,and the theorem.

Corollary 3.11 Let (AT,°) and P be aA»aboue.Then
- the undvernsal nep&ezentatioﬂ L5 a homeomorphism 4§
1) As L4 complete and quaéi—égmmetnic,and condd-
Xdons (o) and (B)  hotd,on
2) Ay is complete, P is dinected, and all 04
(a), (B) and (y) hotd,on

. 3) AT L4 complete, and both (a), (8) hotd,on

4) AT is complete, and (e) holds.
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4 Applications and examples.

4,1 Compactness and local compactness.
We apply here the results of the previous chapter to

get a different proof of Binz's characterisation [8, Satz 9]

" of compact'c—embedded,spaces in terms of CcX’ and then ex-

*

tend it as far as possible to locally compact c-embedded
spaces.Two examples follow,shewing that little better can
be done,for non-compact spaces.These examples have a number

of other properties of interest,some of which we point out.

For any convergence space X, we say that CcX is a

Banach algebra,when it is topological (and automatically

_complete - see E?] or {3] ), and the topology is norm-

able.Propcsition 3.1 is now adapted to our present ends.

Lemma 4.1 : When CQX‘ is a Banach algebra,the space

Hom C X L5 a compact Hausdonf§ topological space,and

CQX carnies the topology of undiform convergence on X.

Ppoof : Suppose p to be that ncrm on CX generating the

topology on C X. Then by 3.1 we have
il d
Hom CX —> Hom C X —s Hom C X
s c’p ee
are both homeomorphisms. Nexﬁ,
id.

d .
C X —=>C Hom C X —= C_Hom CX
c c c e n s

are also homeomorphisms,thanks to Theorem 0.18 iv and Pro-
position 1.6 . However,for each function f e CX,

£
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£(X) = d(f)(Hom ¢ %),
and so

C X
n

= C Hom C X
n c e

is a norm isometry,for all spaces X. These observations,

when put together,verify the lemma.

Theorem (Bingz) M.é .: Foﬁ any c-embedded convergence space, 1
the following statements are equivalent: |
L) X 44 compack. |
“ LL) X 4s compact and topclogical.
LALAL) C.X L5 a Banach algebra (in this case necessa-

rily carnrying the topology of undiform convergence on X).

Proof : Clearly ii implies' i, and we have already seen
in Perosition 1.6 that i dimplies iii. Now supposing iii,
we note that c-embeddedness and Lemma 4.1 together imply

[_that X ~is compact and topological.,

In order that ' iii = 1ii ' or even ' 11l = 1
should be true,c-embeddedness or sométhing very close is
needed - in example 4.4 a space X 1is constructed,satis-

" fying iii, and for which ' -
1: X —— HomcCcX
is a bijection,but X 1is not compact.

The extension to locally compact spaces follows just as

directly out of the apparatus we have set up.
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Théorem 4,3 : For any c-embedded space X, the statements
given below are equivalent:
L) X is Locally compact,
AL) X 4s Locally compact and Locally Iopoﬂogicaﬂ.
LAL) C.X is a topological algebra (whéée topology
is necessarily that oﬁ uniform cbnuengencé on the com-

pact subsets of X).

Proof : The term ' locally topological ' is to be taken i
as ﬁeaning,that the space under discussion has a covering
«gystem whose members all inherit a topological convergence
structure from the parent space.
Trivially, ' ii = i ' , and Proposition 1.11 shews
‘that ' i = iii ' . Last,Theorem 3.3 and c-embeddedness
imply the 10051 compactness of X. However,each'compact

subset of X 1is topological,by Theorem 4.2, so that X ,‘

is also shewn to be locally topological.

Two examples ( 4.5 and 4.6 ) of c-embedded locally
compact convergence spaces are presented,one not principal,
the other principal but not topological.These shew,inter
alia,it is not possible to théin a fesult as sharp as Binz's

in the locally compact case - namely,a c-embedded locally

|
compact space need not be topological. l
‘ \

Example 4.4 : Throughout these examples,we are concerned

with real-valued functions only,and use CX to mean C(X,R)

exclusively. Now let 2 be that convergence space whose
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underlying set 1s the interval [O,i], and whose structure
is the usual topology everywhere except at O. There the
structure is to be principal,with a base for the filter

¢, being the set
{ [0,2]n@ ] nel )

It is easy to check that CCZ = C[O,i], and also that
CcZ carries the topology of uniform convergence.However,
Z 1is not compact,since there is no finite ' subcover '

for the covering system
o,

([0,1]aQ, (3,1] UL (=5,1) | neN .

n+2°n

For the next two examples,let D be the right open
half plane in €, and X be the set Du{0}, with the
natural topology,in which the neighbourhood filter at a

point xe X 1s denoted T, -

Example 4.5 : Let (An) be a sequence of closed discs
all contained in X and all containing the point 0. More,
we suppose the sequence nested (that is,increasing strictly)

and that X = UA_ . For each neN, let
- n =t

¢1’l = Toﬂ An. |

The space X has underlying set X, and carries the

final structure induced by the family of injections

{3

A —X | neN 1,
n

n




—94—
Clearly if xeD then x¢ 1is a pair from X iff the fil-

ter ¢ 1is finer than T,» and ¢ > 0 in X* iff
o > J0e)
for some neN, G (

We shall prove that X° has the following properties:

1) It is a non-principal locally-compact‘c—embedded

convergence space.

- . 2) There are continuous functions on -X° which are

not contiinuous on X.

3) The spaces cX*, tX° and wX® all coincide,and

are not locally compact. -

Proof of 1 : Evidently X° 1is not a principal space.Part
3 of Theorem 1.9 tells us that X° is locally compact,
. being a final convergence structure derived from a family
of .locally compact spaces.Since
id : X" ——= X
is continuous,as one sees from the definition of X°, it
" follows that CX € CX’. One deduces from this that

i X -—~—>—H0mcCcX

is injective,allowing us to identify the sets X and

Hom CcX .
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The last thing to check in this group of properties is
the c-embeddedness of X . Let then 6° denote the neigh-
bourhbod filter at 0 in CCX' (which exists,since X’
is locally compact). One can now readily see from thé defi-
nition of the structure of continucus convergehce that x¢
is a pair from HomCCEX’ iff N

w(B” x é) > 0 in ﬂ%,‘
and
() » £(x) in R

Ly

for all fe(CX’. The second of these requirements is true

~in particular for functions from (X, and so, for all xeX,
$ >~ x in HamcCQX

implies that ¢ 1is finer than TX
When x ~1s not zero,this alone suffices for x¢ to be
a pair from X°. On the other hand,if ¢ - O 1in HomcCcX‘,

there are. Be6” and Ce¢ with
w(B x ¢) < [-1,1].

Thus there is a positive number A and a compact subset K

“of X’ _for-whiéh
Bo{ fecX | £(X) € [=2,4 1.

However,the inequalities A < 1 and C <K must hold

true,otherwise even the functions in (X yield a contradic-

tion. Theorem 1.9 1is used again,to shew that K, as a com-
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pact subset of X7, lies in An for some neN. This shews
that ¢ has a “base on An’ and hence that ¢ > jn(¢r)'
With this,we have proven also that X ° 1is c-embedded.
Proof of 2 : Let (xn) be a sequence in X, converging to
0 in X, and such that. X, € An+£\\An’ for all néﬁi. With
the help of Tietze's extension theorem,we can construct a

function f on X, satisfying
j—) f(Al) = {0}3
ii). f(xn) = 1, for all neN, and

iii) the restriction of £ to An is con-

tinuous,for all n < N.

It is clear that fe CX°, by the universal property of

final structures,and as well, f .cannot be continuous on X.

“Proof of 3 : The identity maps
cX’ ——» X" —> wX~

aré both continUous,as pointed out on page 7. Thus to shew

. the identity of all three spaces,it is_enough to shew that
id @ wX® ——— cX~

is continuous too.
From the definition of wX", a filter ¢ converges to
X in wX® iff £f(¢) » £(x) in WQ, for all feCX’. In par-

ticular, ¢ > T , which reduces our task to those filters
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suspected of convérging to O.

Thus in proving that each member of the filter ﬂfjn(¢n)

Nzl

contains a wX  -neighbourhood of 0O, we shall have proven all

our claims.

.

To each Ae€ ngn(¢n) we associate a monotone decreasing
sequence (an) in the following fashion:
There is an open disc N(O,a;) centred at O and of

radius a;, such that

A N(O,al) < AimA.

P

< a

For n > 1, we choose a, with O < a

A_AN(O,a_)c A_~A.
n n n

H

The boundary of the disc N(O,a ) and of A meet

-1
at points U Vo for all n > 1. The points u, - are to

be ail'above the real axis,and the Vn'S all below. Since

“the sequence (an) is monotone decreasing,we can join

u to v u to u and Vrl to v

5 57 n n+1 by straight

n+1
lines, for all n > 2, and obtain in this way a continuous

curve enclosing a portion U of X, with OeU.

By construction, U< A. We now shew that U is a neigh-
bourhood of 0 in wX". To see this;we construct a function
feCX” with U = { xeX | f(x)e (-1,1) }.

The set Al\\U is closed in A,, aﬁd does not ﬁeet 0.

That means that

g1(0) = 0, and g (A\U) = {1},
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and also 0 < g, < 1, for some g,e CA,, since A, 1is a com~
pletely regular space. Arguing by induction,we suppose we

have g, € CAn’ and that

gn'An—l - Bp-1o . : |
gn(An\\U) = {1}, and
0 < g, < 1.

Along the common boundary of An and An+i\\(AngJU), the

function g, is constant, 1. Consequently,we can define a

o,

continuous function hn on An\)(A

n+1\(AnuU)), extending

8> and constant 1 on the remaining part. Now since the

- domain of hn is closed in An+15 Tietze's theorem gives us

Baaq € CAn+1 extending hn’ bounded between 0 and 1, and

\constant 1 on An+1\\U' , ' | o
The desired map f 1is exactly that,whose restriction to

~each An is g for £ is continuous on X°, and

n’

£7h(-1,1) = U,

Last,one can see that the (identical) spaces c¢X°, tX~
and wX®~ are not locally compact,by noting that if any neigh- |
bourhoédvof 0 in wX® is compact,there is oné of the: form
£7'(-1,1] for f in CX° with £(0) = oO.

Such subsets are not compact,for a cover exists,without
finite subcover. The set F = f—l[—i,lj\\f;l(—i,% lies

entirely in D, and is not compact as a subset of (:,_since
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O is an accumulation point of ¥ in the usual topology.
Let S be a cover of F by open subsets of D, admitting

no finite subcover.Then S\J{f—l

(-4,3)} is a cover for
f~1[—1,1] also admitting no finite subcover.
Thus none of these sets f—l[-l,i]'is a compact neigh- i

bourhood of O in wX", and hence wX~ 1is not locally com-

pact.Next comes the seéond example of this sort.

Example 4.6 : Let X" be that space whose underlying set

_is X, and whose structure is the final structure induced

by
j ¢+ D— X, and
|
. |
Jm o fO,oo) —= X,
GD,

We put ¢" = i"(T, "[O,®) ), observing that for x
¢ » x in X" iff ¢ > TX;
and 0O¢ 1is a pair frqm X" iff ¢ > ¢". Further,
id ¢ X" —s X
is continuous,so that CX" 2 CX".
Soﬁe properties of Xﬂ of interest to us are:

1) there are functions in CX" which fail to be

continuous on X°,

2) X" 1is a principal c-embedded locally compact

convergence space which is not topological,and
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3) the spaces tX" and wX" are identical,and not

_locally compact.

'Perhaps we should explain why these claims are of inter-

est,before going any further.First,that non-topological loc~-

‘ally compact

particularly

convergence spaces exist,is itself interesting,

in view of our extension of parts of Gelfand

theory to topological aigebras,involving local compactness

through Theorem 3.3 . Second, it would be interesting to know

exactly when c-embedded locally compact spaces are topological.

Our example
not enough.
c—embédded,
- uous, then

examples at

shews that to require that they be principal is

Last, we suspect that if Z is locally compact

and if id : Z > 7° > WZ are both contin-
Z° 1s also locally compact only if Z = Z°. Our

least partially bear this out.

Turhiné now to the proofs of our claims,we observe that

the second may be proved in the same way as its counterpart

in the previous example,the details being accordingly omitted;:

Proof of _1

points xe D bj

and by f(0)

The function f : X-——>ﬂ% defined Tor all’.

F(x) = Gq_l_],.

x|

= 1, is continuous on X", but not on X

as one readlly verifies.

Proof of 3

We know already that id @ X" ——s wX"

is continuous,being actually a homeomorphism when restricted
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to D. Hence,as in the previous example,it is enough to shew
that-every. tX"-neighbourhood of 0 is even a wX"-neigh-~
bourhood. |

With this in mind,we introduce the idea of a staﬁdard
triangle,which is nothing more nor less than tﬁe set of
points in the open triangle with vertices ,O;-u, and Vv,
together with the point O, wheféby u and WV arercomplex
numbers such that u+ v is real and strictly positive. !
Each standard triangle is a wX"-neighbourhocd of O, as can
be seen with the help of the'function f constructed in the ;
Ifirst part of this example. |

It will be shewn that each tX“—neighbourhood of O con-
:tains a homeomorphic image of a sﬁandard triangle,and this
will be then the proof that wX" and tX" are the same.

Digressing momentarily,we recall that the'function

d( ,B) : Y——= R given by the formula
d(y,B) = inf{ d(y,b) | beB }

for y’ng‘is_cbntinuous s fof éach subset B of the metric
space> Y. In partichlar,if A is a tX"-neighbourhood of G,
the sets ANn[0,») and. AND are open in [0,») and D
respectively,whén A ditself is tX"-open.

For each x eX, let

)\X = d(x,X\\A), | A s

and note that the open disc N(x,kx) < AND, for each xe ANMD.

Now suppose that [O,a1] C A, and O < g < o < a;. It fol-




-102~
lows from the foregoing digression that AX attains a posi-
tive minimum on this interval. Let kl denote the lesser of

éal and the minimum of Ays computed on the interval

[%al,ai], then let n be the smallest natural number such

1
that lal < (ng - 1)x;. Clearly then,for i = 1, ... ,n

-1
2 1

the open discs N(xi,kl) all 1ie in A~D, where Xy is

' (i - 1)X1.

the point a
We repeat this construction,for the interval [%a2,aé];

for a, = xn1 . And then‘again - and so op. We should,of

Jcourse,do it formally with induction; the procedure is clear.
In this way the interval (O,ai] has been covered by an

‘infinite sequence of open discs N(X;,ux) of decreasing ra-

v of inter-

dius lying-in AnND. Further,the points Ugs Vo

section of_the boundary of the x=-th with the x+1-th
disc allow us to draw a curve (by joining uy to Vs and

u to and v to v as in the earlier example)

x Ugs1 X T x4+l
enclosing a . .. - region U, with U < A. Naturally,we have
included O in U as>ﬁell.

. Next we define a continuqus bijection g : X" ———= X"
with_the property that the set g(U) 4dis a standard set, in

fact that with vertices 0, u.,, and vi. This will establish

1)
the result,for then U 1is a wX'"-neighbourhood of 0, con- ‘
tained in A.

The mapping - g 1is constructed simply by vertical dilation, ~

as follows: if u =OQ[uﬂ, there is a continuous function

B (O,u]—~—ebﬂf , whose graph is that portion of the curve
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bounding U above the real axis.Now g 1s defined by

gy + 1v) = u + 1v, if 3_@?@JJ
gy + 1v) = u + ?vuj[u]ﬂﬂiulﬁ(u%iotherw1se.
except for g(0) = 0, for all ueiQf and veia; the con-

tinuity of g 1is easy to check,since g‘ leaves the posi-
tive real numbers uﬁchanged,and the restriction of g ¢to
D is also continuous,as #(u) 1is never zero.One can then

verify that g is indeed a homeomorphism of X" onto it-

“self, and of wX" onto itself also.

Remark 4.7 : The space X" just given enables us to con-

trovert two conjectures; it is not true that

i)lthe adherence operator in CCY is idempotent,
for all spaces Y, and ' | o
4ii) the algebraic operations are continuous in the

principal space associated to CcY’ for. all spaces Y.

Proof : We have seen that the adherence operator in X",
and‘hence inb HomcCcX", is not idempotent.The latter is,how;
ever,a subspace of CCCQX", whose adhe?ence operator there-
fore can not be idempotent (Lemma O.4 i ).

Next ,were the operations in cCCCQX" continuous,this
'principal space would already be topological (since princi-
pal convergence groups are topological [2, section 3.3,

Satz 5]). This would contradict the first part of this remark,

as then the adherence operator in CQCCX"' would be idempotent.
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4,2 The subalgebra A of CX.

Here a particular,already well-known,subalgebra A of
CX is introduced,and its relation to X, and particularly
to the subset of locally compact points of X, bfiefiy in-
dicated - at least for completely regular topoiogical spaces
X. Naturally we fit AC into this rélationship.

On the way,we run across a large class of spaces,for
whiéh A separates the points of X, but does not generate
the.topology on X. Our Stone-Weierstrass theorem applies,
(namely,Corollary 2.6), wﬁereas those of Binz and Feldman

.

ﬁdo not.

Throughout this section, X 1is a non-compact convergence
‘space,later restricted to be also completely regular topolo-
gical. Thus X is always dense in its one point compactifi-

cation X ; another symbol we recall - the coarsest filter

converging to o - in X is . We now define
. [e o]

A = { feCX | f(¢_mnX) 1is a Cauchy
filter in ¥ }, and
A =

{ feCX | f(¢wr\X) is a Cauchy

filter in ‘ﬁ'}.

It is an easy calculation .to shew that

(induced by the inclusion map J : X — X ) is a norm-pre-

serving isomorphism,allowing us in what follows to use An

~

and CnX interchangeably.
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Proposition 1.6 shews that Cci is a Banach algebra,

under the uniform-norm topology,and hence (Proposition 3.1 )
id : Hom C X —— Hom_CX
: ce s
is a homeomorphism,and HomSA (that is, Homsci under an-

other name) is a compact Hausdorff topological space.Further,

iz ¢ X ——e—HomsA

is surjeétive,and as a reéult, Hom A\\iX(X) can contain at
ﬁmost one point, &.  In fact,the sets Hom A and ii(X)

are equai if X is not locally compact.Clearly the one
point compactifica?ion of the space HomSA\\{Q} is exactly

,HomSA again.

The sets A and A are given in a different,but equi-

valent,way'when X 1is completely regular:

A { feCc’X | £ is constant on BRX\X },

and

A = {fecx | F: gX—>F is

&

constant on BX\\X 1,

with gX the.Stone—éech compactification of X, and T the
Stone extension of f e(CX. From now on,we consider completely
regular spacés only.

The set X of all points in X possessing compact neigh-

1
bourhoods 1s open in X, and 1océlly compact as a subspace

of X. Moreover, Xl and HomSA\\{&} are obviously homeo-

morphic,and so A generates the topology on »Xl.
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The algebra A can be regarded as a subalgebra of Cch’
in which it is dense,by the classical SWT. Thus A ié closed
in CcXI iff it is the whole algebra CXl. However,from the
foregoing remarks,we know that A = Ciie This meané simply
that the Stone-fech and one point compactificaéions of Xl
cdinéide,shewing that Xl is almost compa;t BB, page 9%}.
Conversely,if. X1 is almost compact,then A = CXl’ being

in particular closed in cbxl.

Let Xt denote the set BX\\Xl. The equivalence rela-

-tion generated on B8X by A, for which the symbol Ei was

used in chapter 2 , has equivalence classes

Eix = {x}, if x<X;, and
EBX = X otherwise
A t :

Further,since each function in A’ is bounded on X, the con-

ditions of Corollafy 2.6 are fulfilled,and we conclude
a(A) = | f‘éCX | £ is constant on X . NOX }.

(When thX'= @, this 1s to be interpreted as no restriction
at all; that is,if X is locally compact,then A is dense
in CQX = CkX,v as is well-known.)

Two possibilities arise, when A is closed in CCX.

First, if XtF\X is empty, then A = CX, which shews that

X 1s almost compact. Second, when X is not locally com-

pact, the set XtF\X of points without compact neighbour-

hoods in X 1s dense in X for otherwise there would be

t’

functions in CX constant on th\X but not on BX\X,

contradicting our assumption that A dis closed in CcX'
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In both cases the converse is clearly true.

Example 4.9 : A completely regular topological space is

‘called almost locally compact iff it has at most one point

without compact neighbourhoods. When X is almost locally
compact but not locally compact, A séparates the points of
X. but does not generate the topology thereon. Nevertheless
A 1is dense in ch’ by Cbrollary 2.6

An example of such a space is the space X of Examples
4,5 and U4.6 . Thus our relaxation of topology-generation

*requirements in our SWT is genuine, though small.

To summarise, we state

Theorem 4.8 : Suppose X 4s a completely regular topolo-
gical Apdce. Then.the following statements hold: |
1) A 4is closed 4in C X < ( edlthen X A& almost -
compact orn the set (BXN\X) NX 4s dense 4in  (BXN\X) . )
| 2) X 48 alkmost Locally dompact <> A separates |
the points of X <> A is dense in ¢ X.
3] X 4is Locally compaci <> A genenates the topo-
| Logy of X <= A, has a [necessarnily unique) dense
: maximaﬂ Ldeal <= ch L5 topoﬂog{caﬂ.
4) X is almost compact <=> A = CX <>
A sepanrnates the points of X and L5 closed 4An C;X.
5) X 4is Locally compact and o-compact <= the sets

A and A axe unequal <> CCX L4 iopoﬂogicaz,'the topo-

Logy stemming from a trhanslation-Lnvariant metrndic.
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Proof : The proofs of 1 and 2 have already been sketched.
That of 3 we give now.

When X 1s a locally compact Hausdorff topological
space, X. is a éompact Hausdorff topological sgace,whoSe
topology is generated by C€X. Thus A generates the topo-
logy of X. |

Next,let A De topoldgy—generating,and Ve BX\ X. Then
¥ € Hom A; However, A 1is a monotone subalgebra of (X and‘so
g Ac._;_> F dis not continuous (Prqposition 0.15 ). Hence
Fhe kernel of § 1s a non-closed maximal ideal in Ac’ and
accordingly-dense (since the adherence of any ideal is an
ideal as well). |

The maximal ideals of A are in one—td—one éorrespon-
dence with the set Hom:A, as is kﬁown from Banach algebra
;thedry.If one of these is dense in Ac’ it can only be that
corresponding to &, since & ié the only homomorphism
-with any chance of béing in - Hom A\\ii(X). This means that
X is locally compact =~ for otherwise & coincides with
some point evaluation on X, as noted earlier in this section.
.Last,the equivalence of the first and last statements
comes immediately from Theorem.l4.3, and with this,the proof
of glaim 3 1is complete. |

| We have already dealt witﬁ 4 in the observations pre-
ceding this theorem,and so only 5 remains to be proved.
The equivalence of the first and third conditions therein

is (modulo Theorem 4.3 ) a well-known result from the.theory

of the topology of uniform convergence on compacta - see

[1&, Theorem 2], for example.
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Now let X be a Hausdorff, O-compactjlocally compact
but not compact topological space.Then one can arrange that
X = %ﬁAg, where Ag+1
Ag+1\\Ag is non-void,and AE is compact,for all & eN,

is a neighbourhood of Ag’-

Using these sets,it is straightforward to construct a func-

tion f ¢CX such that f(¢ ,nX) > < in F . In fact,for each

positive integer <, there is fce CX, with 0 < fC <1,

{1}.

11

fg(AC) = {0}, and fc((X \AC) )

..(This derives from the complete regularity of X, and the

compactness of A_.) Now the function

c

f oz 5Ff X — F
Tt O

is well defined and continuous,and further,
£(¢,nX) »« in F.

-Hence fe A\A,
On the other hand,if é>\A, is non-empty,containing a-

function f, say,then for each p eN, the set

K, = { xeX with |[f(x)] < p }

is compact (being a closed subset of the compact space . i ).
However the collection { Kp_] peN} clearly forms a cover-
ing system for X, which is thus shewn to be locally compact
and o-compact,as required.

(Note that in the above paragraph,all we use is that

é\\A is non-void,and general properties of the one point

" compactification.)
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