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On the Solution of Systems of Equations by the

e-Algorithm of Wynn

Abstract. The e-algorithm has been proposed by Wynn several
times in order to accelerate the convergence of vector se-
quences, but one does not know much about the effect' it

produces on systems of equations. In this paper we prove

that the algorithm applied to the Picard sequence Xipq = F(Xi)

1
of an analytic function F: R">p + " supplies us with a

quadratic convergent iterative method and there is nd diffe-
rentiation of F needed. Two examples point out.the numerical
properties and’show that we can get convergence - eventually
with a modification of the method - even if F is not contrac-

tive near the fixed point.

1. Introduction

The e-algorithm is a nonlinear method in order to acce%erate
the convergence of sequenceS‘being‘identical in its siﬁplest
form with the 62—tranformation of AITKEN [1]. SHANKS [8]

and WYNN [9] developed it and WYNN examined it thoroughly
together with diverse sequences and series {10—13].For an
analytic func£ion f: T>D > € we gef by thé e-algorithm

higher (integer) order iterative methods without differen-

“tiation for the computation of a fixed point [2].

Using the generalized matrix inverse following MOORE [5]

-




ana PENROSE [6] the method has been recently applied to
éequences of matrices and Vectors, the same we get for
example in solving linear systems of equations [3, b, 7,
'1ﬁ, 17, 18, 19]. WYNN points to the fact, that the algorithm
~supplies us with good resdits in solving nonlinear systems,
too [1u; 15, 17, 18]. But there seem to be no statements
. about convergence up to now. In this paper we examine the
behaviour of the e¢-algorithm when applied to the Picard“
sequence of an ahalytic function F: R"> D » R™ with fixed
point Z. With the help of a theorem due to McLEOD [4] we
show that the algorithm, in a suitable approach similar to
Stéffensen's method; ié‘a qu@dratic convergent itefaﬁive method
for the computation of Z. The proof of convergence 1is, és
a matter of féct, of local nature énd uses the symbols of
Landau because of the complicated recursive relations. A
short discussion of the numerical properties follows at the

end of the paper.

2. The Algorithm and Nonlinear Systems of Equations

The e-algorithm [9, 18] is a computational procedure in

which successive columns of a matrix (E(p)) with
v q o<p, 0<q

row index p are obtained by the formula

(p) _ _(p+1) (p+1) _ (p).~1
(1) €q+1" €q-1 +_(€q - Eqp >.

starting from the initial conditions
- (p) _ (p) _
(2) e 3 = 0O, o 7 Sp (O < p).

If the inverse of a vector X is defined by [5,6]




-3_

(3) xt e o(xxx)7! 3,

then we can apply the algorithm to sequences'{Sp}osp of

vectors and we have here the fundamental theorem-[u, 19]

we need for our later statements:

Theorem 1. Let {Sp}O<p be a sequence of vectors with

complex coefficients which satisfy the irreducible linear

recursion
m m '
SO g:o ¢Sy 7 (E:O c.)S (9 <P,
where S is fixed and
' m
(5) ) c, * 0, c, e R.
r=o

If then the elements of the matrix (Eép)) are determined
by using (1), (2) and (3), and if all'Eép) with .
1 < qQ <2m, O £p £ 2m-q exist, then

(o)
E2m

= s.
Following a conjecture of WYNN [20] and GREVILLE (3]
Theorem 1 remains true, if relations (4), (5) hold for

complex scalars only, but this has not been yet proved.

As a conclusion we get

- Corollary. Let Z be the unique solution of the linear

system X = A X + C with real coefficients and let m be

the degree of the minimal polynom of the matrix A for

¥ = X, - Z. If the e-algorithm is applied to the Picard
x - P =) .

sequence {Xp,_X = A X + C}osp and if all~Eq with

p+1 p
1 <q<2m, O <p < 2m-q exist, then

(o)
E2m

= Z.




m
Proof: Let p(x) = § arxr be the minimal polynom of A for
r=o :
Y, then
m m ' m m.
] a.X = (] a)z+ (] aahyy=: (] a)z
r=o o P*T rzo T r=o T r=o ©

because Xp =7 + APy holds. By assumption we have

m .
Z a, # O, since 1 is not eigenvalue of A, and the Corollary
r=o o ' : :

Aresults from Theorem 1.

Let now ApEép) = Eép+1) - Eép) and let, as usual, any scalar

or vector-valued function be denoted by O(|X|), if it is

bounded for [[X|| + O after division by [ X|.

Lemma 1. Let m be the degree'of the minimal polynom of the

real matrix A for O # Y ¢ R” and let éép) be the elements

~

obtained from the sequence'{ép; S =7 + ApY; Z € Rn}o<

p 1Y
by the e-algorithm. If 1 is not eigenvalue of A and if all

Eép) with 2 £ q £ 2m, 0 £ p <€ 2m-g exists in a neighborhood

‘of Z, then
éép) = Z + O(”Y"), q even,
BP) = odyl™), q odd,
for 1 € q < 2m,.O <p <2m-q (||]..| = Euclid-norm).

Proof: For q = 1 we get Apéép) ='Ap(A - E)Y = BpY + 0O,

since 1 is not eigenvalue of A. Therefore

=(p) _ T_T -1
E.P) = (v BpoY) B,Y | |
1 vly 1 5y 2 HBQH
T T T 2 S = ’
Iyl v BB Y v P HY“ Amin




. . T '
where 0 < Amin i3 the smallest elgenvglue of Bpo. Let

now k ¢ N, k < m, and let the statement be true for all

- =(p) _ -1
g £ 2k - 1. By assumption we have 0O % ApE2k g c o(jy}

,v ~ —2
(s ESD) )" <ApE§§)1> = o] v

and thus

P D o B

Iy

z + oY) + o(uyuz)o(nY"'l) =z + oY .

ApEéi) +# 0, since by assumptlon, all E(p) which contribute

= (o) .
to E2m exlst. Therefore

(s ESP T By = (),

2(D) | a(p+1) L o, 2(p)\T (2)))1, 5 (p)
Eakrt = Eojer * ((apB5p?) (ApEai ™)) “apBay

oflel™ + odix ™o ¥l = o¢hyy?

and the assertion of the Lemma follows by induction.

Lemma 2. Let m be the degree of the minimal polynom of the
real matrix A for d + Y ¢ R and let Eép)-be the elements
obtained from the real sequence {Sp; Sp = Z.+ APy &+ O(ﬂYHz);
Z € Rn}osp by the e-algorithm. If 1 is not eigenvalue of A
-and if all Eép), éép) with 1<q<2m, 0 < p < 2m-q exist in

a neighborhood of Z, then

‘Eép) = éép) + O(ﬁ?ﬂz),v : q even
Eép) = éép)_+ o(1), - "quodd,



for 0 qg¢g 2m, 0 p < 2m—q.

Proof: For q = O the statement follows by assumption.
(®) ., =(p) w12y +
JEP = B Py ollly * o ana

ApEép) # 0 according to the proof of Lemma 1. Then.

For @ = 1 we get A

. (p)\T (p)y _
(8 EPN) (8 BP)) -
(Apéép))T(Apéép)) + 2(Apéép))TO(NYH2) + odly My
()T, =(p)
= (8PN BPY

“ (50T oy 2 | y
(a BP0y %) .o

(1 + 2

- - - = ).
(p)\T (p) ‘= (P)\T (p)y
(ApEo ),(ApEO ) (ApEo ) (ApEO )

Apéép) = O("Y”) by Lemma 1 and hence

(=P (a,m ) = (BT EP) v o).

(p)

Since ApEo

is an analytic function, we get
(PTG EPIN™ = (w EPH T EP )T+ oqpr)
and

E(p) 1

1

- ~ T ~ - -~
E5P) + (Ca EPH T B oy pa B LR
e (G EPHT Py T v o) otuY”2>
p o 8pFo _
- 5P |
= E1 + 0(1)
again by Lemma 1.

Let now k ¢ N, k < m, and let the statement be true




_ . (p) _ , z(p)
for all q < 2k. By assumption we have ApEzk = ApE2k +

O(IY!Z) + 0 and Apééi) +# 0. According to the proof for

q = 1 we get

(0),T,, g(®)y)-1, (@)
((a B3P’ (8 Ezp’)) s Eop

BPINT, 75(P)yy=1, F(P)
((a E3R") (8 E5R7)) 8 Eop’+ 0(1)

/

and hence

(p) _ z(p)
Espiy = Eopaq * O(1).

ApEé§Z1_: ApEéﬁzi + 0(1) and ApEéizl are equally supposed

to be different from null and therefore we get

-~

2k+1

p 2k+1 2k+1 2k+1 p 2k+1
=(p) T
(A E )T0(1) 0(1)
(1 + 2= = ey T T
 (a_ESP/ yt(p EXP7 (a ESP7 1y (ApE PJ

p-2k+1 p-2k+1. p2k+1

B} S(p) T, (D) L.
= (8,E;piq) (8 E300,) (1 + odlY]).

.E§i32 - Eé§+1) £ o) Y|I9)

p

BRI DT@REIR ) T+ 00 ) (s E5RY + o))

Yoy ESP)

- B 4 oqr?) + (o BR) T 5D ) P2kt

2k+2 p 2k+1 p 2k+

~ T ~ ‘. - ) R .
v (o ESRY HTa B DT+ oo

y o
- P, + oY i.

As conclusion we have the following result:

Theorem 2. Let F: R" ¢ D + R” be an analytic function with
. ‘ , s




o
fixed point Z € D and m the degree of the minimal polynom

of F'(z) for Y = S_ - Z. Further, let Eép) and Eép) be the

elements obtained likewise from the sequences {Sp; Sp+1
S .a - \ p _ .
F(Sp)}Osp and {Sp, Sp Z + (F (Z)) Y}osp by the e-algorithm.

If 1 is not eigenvalue of F'(Z) and if all E(p), éép) with

q
1 <qg=<2m, O £p <2m - q exist in a neighborhood of Z, then

(o) _ ' Y -
(6) E2m = G(So, oo S2m) = HF(SO)

and the computational procedure

X =_HF(Xi)_ (0 < 1)

i+1
is, near Z, a quadratic convergent iterative method for the

computation of Z.

Proof: By the Corollary and Lemma 2 we have

(o)

2m

2
Hp(X ) = E z + o(x, - z| ).

3. Numerical results

When a system of equations X F(X) of order n is to be solved

by the e-algorithm, the way of doing this is normally to put

m = n. Then we need for each‘step of iteration Mn3 + 2n2
multiplications, 2n2 + n divisions, 6n3 - n? additions/subtrac-.
~tions and the computation of S? = F(Sp_i) for 1< p.s 2n. The
computation of the vectors Sp produces rathe; quickly a characte-
ristic overflow, if the eigenvalue of the Jacobi matrix F'(XY
amount to much more then one near the fixed point. This disad-

vantage can eventually be eliminated by replacing the Picard

se = F(S_ ) b;
guence Sp _ ( p—l) vy



1

8, = Fo(s .

p ) = (1 - a)Sp?

+ aF(Sp_l) (0 = p)

with a suitable a, O < a < 1, by which we obtain a slowdown
of the increase. If we have for example p(F'(Z)) = 2 for the
spectral radius p of F'(Z), we get p(F'a(Z)) < 3/2 for a = 1/2.
The eigenvalue A of F'(Z) with |A]| < 1 are hereby increased,
but they remain smaller than one in absolute value. Besides
the convergence is detefiorated, if the eigénvalues of F'(X)

approach one near Z.

The rounding errors are partly of great influence. Perhaps it
'is possible that the numerical properties can be improved,‘if
a modification proposed by WYNN [16] is applied. If the
eigenvalues A of F'(X) with |r| < 1 predominate, we can indi-
cate a modification of the method by renouncing on the
(theoretic) quadratic convergence, which considerable reduces
the amount of work. To achieve this we replace in (6) 2m by

2 [m+1] and obtain for the basic formula of the algorithm

*

. (o) _ I
6%y | B, = (S, +n 5 5) = HE(S)

in case m = n even. We need now per step of iteration only

3

(n” + 8n2 - 4n)/8 multiplications/divisions, (6n3 - 2n2)/8

additions/subtractions and the ccmputation of Sp = F(Sp_l) for

1 £p £ n.
Let now
1 °1 1 1 1 1 1 1
1 1 -1 -1 1 2 3 4
_ 1 s V =
U = 5 1 -1 1 -1 1 3 6 10 ’
1 -1 -1 1 1 4 10 20
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(V = Pascal matrix for n = 4) and let D, = (0.9, 0.8, 0.7,
0.6), D, = (1.5, 0.8, 0.7, 0.6), D, = (2.0, 0.8, 0.7, 0.6)
be diagonal matrices, Aﬁ = 0.5k (1, 1, 1, 1) vectors

(O € ¥ € 4) and

p,(X) = - <x§ v ox,x)/2, q,(X) = - xf/u,
o2 .2

P, (X) = - x5/2 | , a,(X) = x5/,
S o2

pB(X) = x3/2 R qB(X)Y x3/u,
) 2 ) 2

py(X) = - (x,x, + x)/2, qu(X) = = x /4.

The following tables contain in column i the vaiues

lx, - Xi-l“E (compare Theorem 2) with rounded mantissae.

i
Generally Spreéking we have found out that in systems of

equations 1like
X =2+ F(Z)(X -2)+ o)X - z|F)

.the algorithm supplies us with better results, if F'(Z) is
symmetric. Finally, it should be mentioned that it seems to
be impossible at the moment to say more about the error than

that it is of quadratic order.

- 11 -
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Example 1: X = Ay + U D;UT(X - A,) + P(X - A,)
1=1 ¥ =4, |20 1.2 107 [ 1.0 07| 1.8 10° | |
1-2| Xo=A, o s 0™ hs 0 k0™ {6 107 ek 07 | s 0] 2 0
1=2| X =B, 60w |54 0P| e 0®| B
1=3 XO=A4,0L=% 1.8 15 07 3.7 1072 101 107 {0t 07| 22 07 | 11 1067 3.6 107
Eﬁample 2: as Example 1, using (6*) instead of (6)
1=1] X =8, |19 8.6 10| 5.5 107 | 5.0 107 | 5.2 167
1=2| X =Ao Lo | es 0 w30 13 07 | s 102 16 07| 51 1070 s 10
1=2) X =A, | 600" | 6017 u00° | N
1=3 [X_=A, yd=5| 1.5 32107 10107 |06 07 | 201 07 10 07| 0.5 1067 6.5 0™

 Example 3: X = A, + v DVHX - Ay) + QX - Ay

1=2 oA 0.9 | 8.2 07 2.7 16°
_ - -1 -6
1=2 Xo=43 2.0 9.9 10| 2.8 10

Example 4: as Example

3, using (6*) instead of (6)

L1

8.9 107

1.1 107"

3.2 107

2.4 1077

3.8 107

5.1 107"

11107

3.8 107"

1.1 10
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