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ABSTRACT

The set of functions in C(T) which have a strongly
unique best approximation from a given finite-dimensio-
nal subspace is denoted by SU(G). Since strong unicity
plays an important role in numerical computations and
since there the functions are only known up to some
error, it is natural to ask what are the functions from
the interior of SU(G). A complete characterization of
those functions is given and the result is applied to
weak Chebyshev and spline subspaces.

)

O. INTRODUCTION. In this paper we investigate some
questions concerning strong unicity of best approxima-
tions which arise from numerical considerations. Let G
be a finite-dimensional subspace of C(T), the space of
all continuous real-valued functions on a compact metric

endowed with the normspace T
A function
ximation of

11 f 11 = sup { I f (t)I: tET} •
gf E G is called strongly unique best appro-
f E C (T) from G, if there exists a con-

.stant K > 0 such that for all
Ilf-gll ~llf-gfll+Kllg-gfll
constant K(f) of f is defined

g E G ,

. The strong unicity
to be the maximum of

all such constants K. By SU(G) we denote the set
{f E C (T) : f has a strongly unique best approximation
from G}.

Strong unicity plays an important role in the numeri-



cal computation of best approximations. For example the
strong unicity constant can be used to estimate the
error of a computed approximation with respect to the
best approximation. For a given function fEe (T)
Remez type algori thms compute an approximation g E G
of fand a corresponding A > 0 wi th the propertyg
that

Ag:::;d(f,G) :::;11 f-g 11 •

(see e.g. Remez [15] for polynomials and Nürnberger &
Sommer [13] for spline functions). If f has a strong-
ly unique best approximation gf E G , then we. obtain
the following estimation:,

11 g-gf 1I :::; K(1f)(I1 f-'g 11 - 11 f-gf 11):::; K(1f)(11 f-g 11 - Ag) •
Formulas for computing the strong unicity constant have
been given by several authors (see'e.g. the references
in [10] and [11]).

Therefore it is of interest to characterize the
functions from SU(G) (see Bartelt & McLaughlin [1],
B'rosowski [2], Nürnberger, Schumaker, Sommer & Strauß
[14], Wulbert [22] and [8], [9]). Since in numerical
computation the functions fEC(T) are only known up
to some error, it is natural to ask which functions

~ f ESU(G) are "stable under small perturbations", i.e.
to characterize the functions f fram the interior of
SU(G) .

In section 1 we give a complete characterization of
functionsf Eint SU(G) for arbitrary finite-dimensio-
nal subspaces G of C(T) by using properties of the
error function. Then we apply this result to weak
Chebyshev subspaces and spline subspaces in section 2
and 3. It is also shown that those finite-dimensional
subspaces G of C(T) for which the set SU(G) is
non-empty and open are exactly the Haar subspaces.



Moreover, we consider in particular the role of strong
unicity in the computation of best spline approxima-
tions.

The results in this paper for C(T) also hold for
C (T) , the space of all continuous-real-valued func-
o
tions on a locally compact metric space T vanishing
at infinity.

In a further paper we consider similar questions for
semi-infinite optimization problems.

1. FINITE-DIMENSIONAL SUBSPACES . Let G=span{g1'...,gm}
be an rn-dimensionaljsubspace of C(T), fE C(T) and
gf E G . The function gf is called a best approxima-
tion of f from G, if for all 9 E G ,
1I f-g 11 ~ 11 f':"'gf11 • Given point::>t1,...,tm in T
we set

gm(t1) ••• gm(tm)

Furthermore, we denote by E(f) = {t E T: If(t)1=11f II}
the set of extreme points ,of f. A closed subset E
of E(f) is called extremal (with respect to G), if
for all gEG, min{f(t)g(t) :tEE} ~O . An extremal
subset E of E(f) is said to be primitive, if no
closed subset F of E with F * E is extremal.

The following result is well-known (see e.g. Singer
[19]) •

.(I) gf is a best approximation of f from G if and
only if for some p E {1,...,m+1} there exists an
extremal subset {t1,...,tp} of E(f-gf) if and only
if E(f-gf) is an extremal set.



Moreover, in this section we need the following two
theorems on strong unicity.

(11) gf is a strongly unique best approximation of f
from G if and only if for all g E G ,

min {(f(t) - gf (t))g (t) : tEE (f - gf) } < 0.

(111) g~ is a strongly unique best approximation of f
.1-

from G if and only if there exists a subset
{t1, ...,tm} of U{E: E is a primitive extremal subset
of E (f - gf)} wi th

i
D '(g1'... ,gm) * 0.
t1 ' ••• , tm

Statement (11) follows from a result of Wulbert [22]
on normed linear spaces and statement (111) is due to
Brosowski [2].

Since in numerical computation the functions
fE C(T) are only given up to some error, it is natural
to ask which functions f E SU(G) are "stable under
small perturbations", i.e. which are the functions f
from int SU(G) . By int SU(G) we denote the interior
of SU(G). We give the following characterization. Note
that, if T is a finite set, then by Nürnberger &
Singer [12] SU(G) = U(G) = {f E C(T) f has a unique
best approximation from G} •

THEOREM 1.1. Let G= span {g1'...,gm} be an rn-dimen-
sional subspace of C (T) , fE C (T) \ G and gf E G be
a best approximation of f. Then the following state-
ments (1) an0 (2) are equivalent:
(1) fEint SU(G)
(2)(a) f-gf has at least m+1 extreme points.



(b) For every subset {t1,...,tm+1} ofE(f-gf) which
consists of m+1 distinct points and is extremal with
respect to G,

i=1,...,m+1

Proof. We first show that" (1) • (2a).
Let fEint SU(G) . It follows from (III) that there
exists a subset {t1,...,tm} of E(f-gf) with

(
g1, ...,g )D m

i t1, ••• ,t. m * 0

by interpolation
contradicting state-

for some
..j E {1 , ••• , m+ 1 } •

C(T) such that
and E (h ) = Mn

If E(f-gf) = {t1,...,tm} , then
E(f-gf) is not an extremal set
ment (I).
Now we show that (1) • (2b).
Assume that (2b) fails, i.e. there exists an extremal
subset M={t1, ...,tm+1} of E(f-gf) such

D (g 1' ..•••. ,gm ) = 0
t1,...,tj_1,tj+1,...,tm+1

We set h = f-gf and show that
(3) there exists a sequence (h) inn
h -h, h (t) =h(t) forall tEMn n
for all n.
For the moment we assume that (3) holds. Since M is
an extremal subset of E (h) and h (t)= h (t) , tE M ,n
M is an extremal subset of E(hn) , it follows from (I)
that zero is a best approximation of h . Moreover,sincen

(
g1,. ... ,gm )

D = 0 ,t1,...,tj_1,.tj+1,...,tm+1
there exists a function g E G , g '* 0 , such that

s



and for
, but not
int SU (G) .

f - fn
f n

f ~

i*j, and h (t.).g (t.)~ 0 .
n J J

a strongly unique best appro-

zn E C (T) such
tE T \ Vn and
We set for all

g (t .) = 0 , i = 1 , ••• , m+ 1 ,
1.

Thus by (II) zero is not
ximation of hn
We set f - h + g fo:call n. Thenn - n f
all n, gf is a best approximation of
a strongly unique one. This shows that
Therefore it remains to prove (3).
Let (Vn) be an open neighborhood basis of M. Since
T is a compact metric space, it follows from Urysohn's
lemma that for each n there exists a function

1tha~ zn(t)= 1, t E M , zn(t)= 1 - n '
1 - n:S; zn(t)< 1 for all tE T\{t1 ,...,tm+1}.
n , h = z .h • Then (hn) has then n

desired property. This shows that (1)~ (2).
Now we show that (2)~ (1).
We assume that (2) holds. Since gf is a best approxi-
mation of f, it follows from (I) and (2a) that there
exists an extremal subset {t1,...,tm+1} of E(f-gf)
consisting of m+1 distinct points. By (2b) the set
{t1,•..,tm+1} is a primitive extremal subset of
E(f-gf) , since we can interpolate at any n points
of {t1,...,tm+1}. Thus it follows from (III) that
fE:SU(G) . i
Nowwe assume that( 1) fails" i.e. there exists a se-
quence (fn) in C (T) such that fn - fand fn does
not have a strongly unique best approximation for all
n . For each n we choose a best approximation gn E G
of fn. Itfollows from (I) that for each n there
exists an integer p E {1,...,m+1} and a subsetn
M = {t1 '...,t } of E (f -g) such that for alln ,n, Pn,n n~ n
gE G,

(4) min{(fn(t)-gn(t))g(t): t~Mn} :s; 0 .
Going to a subsequence of (fn) we may assume that for
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all n, p = p E {1,...,m+1} , g ..•gf and t. ..•t. E T,n n l,n 1
i=1,...,p.
Since for all n, I fn(ti,n) - gn (ti,n) I = 11 fn - gn 11 ,

i=1,•..,p, it follows by taking limits that

which implies that. M = {t1'...,tp} is a subset of
E (f-gf) •
Let gE G be given. It follows from (4) that for each
n there exists an integer jn E {1,...,p} such that
(f (t. ) - g (t. ))g(t. .)$ 0n J,n n J,n J,nn n, n

I

Going to a suqsequence and taking limits it follows
that there exists a j E {1,...,p} such that
(f(tj)- gf(tj))g(tj)$ 0 .
This shows that M is an extremal subset of E(f-gf).
We show that this leads to a contradiction. By omitting
some points of M, if necessary, we may assume that
all points of H = {t1'...,tp} are distinct.
CASE 1. P E {1 , • • • , m} •

By (2a) we can choose points tp+1,.•.,tm+1 in E(f-gf)
such that all points of {t1,...,tm+1} are distinct.
Since {t1,...,tm+1} is an extremal subset of E(f-gf)'
it follows from (2b) that

D ( g1'..•,gm.) * 0 •
t1 ' ••• , tm

Therefore we can interpolate at t1,...,tm which con-
tradicts the fact that {t1,...,tp} is an extremal
subset of E(f-gf) •
CASE 2. p=m+1 •
In this case M = {t1 '...,t +1 } for all n.n ,n m,n
Assume that there exists an integer n such that for
all i E {1,...,m+1} ,



(
g l' . ,gm

D t1 ,••. ,t, 1 ,t'+1 ,...,t +1,n 1- ,n 1 ,n m ,n
) * 0 •

Then as above Mn is a primitive extremal subset of
E(f-g )and by (III), fnESU(G) , a contradiction.n n
Thus going to a subsequence we may assurne that there
exists an integer j E {1,...,m+1 } such that for all n,

D (g1' • .•. ,g ) =
t1 ,...,t, 1 ,t'+1 ,... ,t

m
+1 .,n J- ,n J ,n m ,n

.By taking limits it follows that

o .

( g 1' , • •• ,gm )
D I = 0 •t1' ,tj":1,tj+ 1'.•.,tm+ 1

Since {t1, ,tm+1} is an extremal subset of E(f-gf)
thus contradicts (2b).
This shows (2) ~ (1) and completes the proof of Theo-
rem 1.1.

COROLLARY 1.2. Let G be an rn-dimensional subspace
of C (T) , f E C (T) \ G and gf E G such that f - gf
has exactly m+1 extreme points. Then f E:SU (G) if
and only if f E:int SU(G).

Proof. Let E(f-gf) = {t1, .•.,tm+1} and fE SU(G) •
Assurne that there exists an integer jE: {1, ...,m+1}
such that

D (
g 1' ••••.• ,gm ) = 0 .t1, •..,tj_1,tj+1, •.. ,tm+1

Then there exists a function g E G , g * 0 , such that
g (ti) = 0 , i=1,... ,m+1 , i * j , and
(f(tj) -gf(tj»g(tj) ~O . This contradicts (II). Now,
it follows from Theorem 1.1 that fEint SU(G) •
This shows Corollary 1.2.
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COROLLARY1.3. Let G = span {g1'... ,gm} be an rn-di-
mensional subspace of C (T) , f E C (T) \ G and gf E G
such that E (f-gf) = {t1, ...,tm+1} is a set of m+1
distinct points. Then the following statements are
.equivalent:
(1) fEint SU(G) and gf is the strongly unique best
approximation of f from G.
(2) There exists an integer 0 E {-1 ,1} such that

io • 0i (-1) (f (ti) - gf (ti)) = 11 f - gf 11 , i=1,.•.,m+ 1,

where

i=1 ,..•,m+1,

Proof. Since E(f-gf) = {t1, ••.,tm+1} , it follows
from (I) and Theorem 1.4 on p.182 in Singer [19] that
{t1, •.• ,tm+1} is an extremal subset if and only if
there exists an integer 0 E {-1 ,1} such that

0.0. (_1)i(f(t.) -gf(t.)) = 11 f-gf 11 , i=1, ..•,m+1.
1 1 1

Using this fact Corollary 1.3 follows immediately from
Theorem 1.1 and (I).

An rn-dimensional subspace G of C(T) is called
Haar subspace , if every g E G , g * 0 , has at least
m-1 distinct zeros.

The next result shows that for non Haar subspace G
of C(T) the set SU(G) is not open or empty.

COROLLARY1.4. Let T have no isolated points and
G be a finite-dimensional subspace of C(T) . Then
the following statements are equivalent:
(1) SU(G) is a non-empty open subset of C(T) •
(2).G is a Haar subspace.

j



( 3)

Proof. If G is a Haar subspace, then it follows
from Newrnan& Shapiro [7] that SU(G) =C(T) , i.e.
SU(G) is a non-empty open set.
Now we prove the converse. We assume that (1) holds and
(2) fails. It follows from (1) that there exists a
function fEint SU (G) . Let gf E G be the strongly
unique best approximation of f. Then by (I) and
Theorem 1.1 there exists a subset {u1,...,um+1} of
E(f-gf) such that

D (g1' . .. ,gm )
:j: 0 , i =1, ... ,m+ 1 ,u1,...,ui-1,ui+1,...,um+1

i E {1 , ••• ,m+ 1 }

of t. such that for
1.

{1,...,m+1} and all
there exists a neighbourhood Vi
all distinct integers Q1' ...,qm E
points v. EV , i=1,.•.,m ,

1. qi

where G=span{g1,! ..,gm} •
Since G is not a Haar subspace there exists a subset
{t1,...,tm} of T such that

D (g1,...,g~ ) = 0
t1 ' ••• , tm

It follows from (3) that for each

Since T has no isolated points, for each
i E {1,...,m+1} we can choose a point w. E V. such1. 1.
that {w1,...,wm+1} n {t1,...,tm} =0 . Now, we con-
struct ci function f E C (T) such that
fE SU(G) \ in-tSU(G) .
Since

D (g1,...,gm ) = 0
t 1 ' ••• , tm

there existreal numbers

,

°1, ... ,om such that
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m
and for each gE G, L aig(ti) =0 •

i=1
on {w1, ... ,wm+1} ~ {t1, .•. ,tm} as

m
L lail *0

i=1
We define f
folIows:
(4) f(ti) =sgn ai ' if ai *0', and

f(t.) = 1 , if a. = ° , i=1, •.. ,m •
1 . 1

(5 ) f (w.) = a. (-1)1 , i= 1,••. ,m+ 1 ,
1 1

where

(6) (
g 1' .•.•.. .,gm

a = Di w 1'••. ,w i_ 1'w i+ 1 '••• ,wm+ 1 ) * ° , i=1,...,m+1.

By Tietze's extension theorem we can extend f conti-
nuously to T such that 11 f 11 = 1 •

I

By using (5) and (6) it follows from (I) and Theorem
1.3 on p. 178 in Singer [19] that {w1' •.. 'wm+1} is
a primitive extremal subset of E(f) . Thus by (6) and
(II~ zero is a strongly unique best approximation of f,
i.e. f E ~U(G) •

such thatgEG
. Thenall i E {1, .•. ,m} , f(t.)g(t.) >0

m 1 1

a.g(t.) = L la.lf(t.)g(ti) > Ö, a contradiction.
1 1 i= 1 1 ].

Moreover, assume that there exists a
for
m
L

i=1
This shows that {t1, ..• ,tm} is an extremal subset of
E(f) . Then also {t1, ... ,tm,w1} is an extremal sub-
set of E(f) • But since

D (g1, ..• ,gm ) = °
t1 ' ••• , tm

it follows from Theorem 1.1 that f ~ int SU(G) . There-
fore, the set SU(G' is not open, which contradicts
(1). This shows Corollary 1.4.

REMARK 1.5. Let us consider extensions of Corollary
1.4. We assurne that T is an arbitrary compact metric
space and that G=span{g1, ... ,gm} is a finite-dimen-
sional subspace of C(T) • If G is a Haar subspace,



then by the proof of Corollary 1.4 SU (G)-= C (T) is a
non-empty open set.
Conversely, if G is not a Haar subspace, then there
exists a subset M1 = {t1, ... ,tm} of T such that

D (g1, ... ,gm ) = °
t1 ' ••• , tm

and in realistic approximation problems (also if T is
a finite set) there exists a further subset
MZ = {w1, ... ,wm+1} of T such that M1 nHZ = 0 and

D (g1' •.. j ••• ,gm) *0, i=1, ... ,m+1
w1, ... ,wi-1 ,wi+1, ... ,wm+1

Then by the proof of Corollary 1.4 SU(G) is not a
non-empty open set.

REMARK 1.6. The results applied in the proof of
Theorem 1.1 also hold for normed linear spaces (see
Brosowski [2], Singer [19] and Wulbert [22]). Thus the
proof can beused to show that the implication (Z) ~ (1)
in Theorem 1.1 has an obvious analog for normed linear
spaces (compare the notation on p. 245 in Brosowski [Zn.

2. WEAK CHEBYSHEV SUBSPACES. Now we apply the results
in section 1 to weak Chebyshev subspaces.

Throughout this section let T be a compact subset
of the real line. An rn-dimensional subspace G of
C (T) is called weakChebyshev, if all functions g E G
have at most m-1 sign changes, i.e. there do not
exist points t1 < ... <tm+1 in T vlith
g (ti) .g (ti+ 1) < ° , i= 1,...,m . We ca11 po int s
t1 < ..• < tp in T alternating extreme points of a
function f E C (T) , if there exists an integer
oE {-1,1} such that o(-1)if(ti) = 11 f 11 , i=1, ... ,p



The following characterization is due -to .rones &

Karlovitz [5] for T = [a,b] and in the final form due
to Deutsch, Nürnberger & Singer [4].

(IV) An rn-dimensional subspace G of C(T) is weak
Chebyshev if and only if for each f E C (T) there
exists a best approximation gf E G such that f - gf
has at least m+1 alternating extreme points.

By using Theorem 1.1 we prove the following charac-
terization of functions fEint SU(G) .for weak
Chebyshev subspaces G.

THEOREM 2.1. Let G = span {g1, ...,gm} be an
rn-dimensional weak Chebyshey subspace of C(T) ,
f E C (T) \ G and gf E G be a best approximation of f.
Then the following statements (1) and (2) are equiva-
lento

'.,

alternatingm+lof{t 1 ' ••• , tm+ 1 }
f-g f

(1) fEint SU(G) •
(2) (a) f - gf has at least m+1 alternating extreme
points.
(b) .For every set
extreme points of

) * 0 , i=1, ...,m+l.

Proof. We first show that (1) q (2)•--- .
It follows from (IV) that (1) q (2a) ..
Let {t1, ...,tm+1} be a set of m+1 alternating ex-
treme points of f - gf . If there exists a g E G ,
g * 0 , such that for all i E {1,...,m+l} ,

(f(t.) -gf(t.»g(t.) >0 ,
1 1 1

then g has at least m sign changes, which contra-
dicts that G is weak Chebyshev. Therefore



{t1, .•.,tm+1} is an extremal subset ofE(f - gf) and
the implication (1) ~ (2b) follows from Theorem 1.1.
Now we show that (2) ~ (1). We assurne that (2) holds. It
follows from Corollary 1.6 in [9) (see also [8)) that
fE SU(G). Now we assurne that (1) fails, i.e. there
exists a sequence (f) in C (T) such that f -+ fandn n
f does not have a strongly unique best approximation
n

for all n. It follows from (IV) that for each n
there exists a best approximation g E G such thatn
fn - gn has at least m+1 alternating extreme points,
i.e. there exist t1 < ... < t +1 in T and a,n m ,n
(J E {- 1 , 1 } w i th
n i

(Jn (-1) (fn (ti ,n) - gn (ti ,n» = 11 fn - gn 11 ' i=1,••.,m+ 1•
Since for all n, g is not a strongly unique bestn
approximation of f , it follows £rom Corollary 1.6n
in [9] that for each n there exists an integer
j E {1, .••,m+1} such thatn

(
g1,. ,gm ) = 0

D t1 ,.•. ,t. 1 ,t. +1 ,.••,t +1,n Jn-,n Jn,n m,n
Going to a subsequence we may assurne that for all n,
(J n = (J E {-1 ,1} , jn = j E {1,.•• ,m+ 1} , ~n -+ gfand
t. -+ ti E T , i=1, ••. ,m+1 .• Taking limits it follows. ~, n
that

i .
(J (- 1) (f (ti) - gf (ti» = 11 f ~ gf 11 , i=1,...,m+ 1 ,

and

(
g 1 ' •••• 0.. , g )

D t1, •.. ,tj_1,tj+1, ...,t:+1 . = 0 ,

which contradicts (2). This shows (2) ~ (1) and com-
pletes the proof of Theorem 2.1.

COROLLARY 2.2. Let G = span {g1'...,gm} be an
rn-dimensional weak Chebyshev subspace of C(T),



fEC(T) \G and gfEG such that

E (f - gf) = {t 1 ' ••• , tm+ 1 }

and t1 < .•. < tm+1 . Then the following statements are
equivalent:
(1) fEint SU(G) and gf is the strongly unique
best approximation of f from G •
(2) The points t1 < ... < tm+1 are alternating extreme
points of f - gfand

D (gt1' .t . t 'gtm ) * 0 , .i= 1, ...,m+ 1 .
1' ..• , i -1' i +1' •.• , m+ 1

Proof. It i5 well-knovln that if f - gf has at least
m+1 alternating extreme points, then g£ is a best
approximation of f from G . Usihg this fact Corolla-
ry 2.2 follows immediately from Theorem 2.1.

3. SPLINE SUBSPACES. Now we apply the results in sec-
tion 2 to the prototypes,of weak Chebyshev subspaces,
namely the spline subspaces.

Let k fixed knots a = Xo < x1 < ••. < xk < xk+1 = b
be given. The subspace of polynomial soline functions
of degree n with k fixed x1, ... ,xk is defined by

(n-1) ISn (x 1 ' • • • , xk ) = {s E C [ a , b]: s [ ]xi,xi+1

polynomial of degree n, i=O,1, ... ,k} •

is a

Let {S1' ... 'Sn+k+1} be a basis of
The first result on interpolation

berg & Whitney (see Schumaker [18]).

Sn(x1, ... ,xk) •
is due to Schoen-

(V) Let points a ~ t1 < •.. < tn+k+1 ~ b be given. Then
,....

D ( s 1'... ,sn+k+1 ) * 0
t1, ••• ,tn+k+1



j

[x ,x.) and
o J

contains at least
if and only if each interval
(xk+1~j,xk+1]' j=1, ...,k+1 ,
points from {t1,...,tn+k+1} .

A characterization of best spline approximations has
been given by Rice [16] and Schumaker [17].

(VI) A function sf E Sn (x1'...,xk) is a best approxi-
mation of fEC[a,b] if and only if there exists an
interval [x,x +] such that f - sf has at leastp p q
n+q+1 alternating extreme points in [x,x + ].p p q

The next result!is a characterization of strongly
unique best spline approximations which follows from
a more general result on weak Chebyshev subspaces both
given in [8],[9].

(VII) A function sfESn(x1, ...,xk) is a strongly
unique best approximation of fEC[a,b] \Sn(x1, ...,xk)
if anc1only if f - sf has at least n+k+2 alternating
extreme points in [a,b] and at least j+1 alterna-
ting extreme points ineach interval [x ,x.),o J
(xk+1-j,xk+1]' (xi,xi+j+n)c[a,b] (j~1).

By using Theorem 2.1 we prove the following charac-
terization of functions fEint SU(Sn(x1, ...;xk» and
fEint U(Sn(x1, ...,xk» •

THEOREM 3.1. Let fEC[a,b]\Sn(x1, ...,xk) and
sf E Sn (x1,...,xk) be a best approximation of f. Then
the following statements (1), (2) and (3) are equiva-
lent:
(1) fEint SU(Sn(x1, ,xk»
(2) f Ein t U (Sn (x1' ,xk) )
(3)(a) f - sf has at least n+k+2 alternating extreme



points in [a,b] .
(b) f - sf has at most n+q alternating extreme points
in each interval [x,x + ] ~ [a,b] .p p q ~ .

Proof. The implication (1) ~ (2) is obvious.
Now we show that (3) ~ (1). We assurne that (3) holds and
show that then (2) in Theorem 2.1 is satisfied. Assurne
that (2b) in Theorem 2.1 fails, i.e. there exists a set
of alternating extreme points {t1, ,tn+k+2} of
f - sf such that for some i E {1, ,n+k+2}

(51' ..... ,sn+k+1
D \t1, .. 1 ,ti-1 ,ti+1, •.. ,tn+k+2

o .

It follows
[x , x. ) or
o J

points of
[xj,xk+1]
points of
ShovlS that

from (V) that there exists an interval
(xk+1-j,xk+1] which contains at most j-1

{t1, ...,ti-1 ,ti+1, ... ,tn+k+2} . Then
or [xo,xk+1-j] contains at least n+k+2-j
{t1, ...,tn+k+2} , contradicting (3b). This
(3) IQ (1).

Now we show that (2) IQ (3). Let fEint U(Sn (x1' ...,xk)).
It follows from (IV) that (3a) is satisfied. Now we
assurne that (3b) fails, i.e. there exists an interval
[xp,xp+q] * [a,b] which contains at least n+q+1
alternating extreme points xp:::;t1 < .•. < tn+q+1 :::;xp+q
of f":'sf . We set h = f - sf . As in the proof of
Theorem 1.1, (1) ~ (2) there exists a sequence. (hm) in
C[a,b] such that h ...•h , h (t.) =h(t.) , i=1, ...,n+q+1m m 1 1
and E (hm) = {t1 '...,tn~q+1} . Then it follows from (VI)
that zero is a best approximation of h . Sincem
[xo,xp) and (xp+q'xk+1] contain no alternating ex-
treme point of f - sf and Xo < xp or xp+q < xk+1 '
it follows from Theorem 2.4 in Nürnberger & Singer [12]
that zero is not a unique best approximation of hn .
For all m, we set f = h + sf . Then f ...•fand form m m'

11-



all m, s£ is a best approximation of -fm ' but not
a unique one.This shows that f 4 int U(Sn(x1, ••• ,xk}},
a contradiction.
This shows (2) ~ (3) and completes the proof of Theo-
rem 3.1.

REMARK3.2. The connection between condition (3) in
Theorem 3.1 and the condition in (VII) 1s easy to veri-
fy. Let us consider the interval [x ,x.} in (VII).

o J
Since by (3) in Theorem 3.1, f - sf has at least
n+k+2 alternating extreme points in [a,b] and at most
n+k+l-j alternatirg extreme points in [xj,xk+1] , it
follows that f - sf has at least j+l alternating
extreme points in [x ,x.). The arguments for the other

o J
intervals in (VII) are similar.

The next result is an immediate consequence of Theorem
3.1.

COROLLARY 3.3. No ftinction in

U (Sn (xl'...,xk)} \ SU (Sn(xl' .:.,xk)}

is an interior point of U (Sn(xl' ...,xk)} .

RE~ffiRK3.4. Strong unicity plays a special role in
t.he computation of best spline approximations:

ARemez type algorithm for Sn(x1, ••• ,xk} was
developed in Nürnberger & Sommer [13] and it was shown
that for a given function f E: C[a,b] the algorithm
converges to a best approximation of f, if k:$ n+l ,
and to a nearly best approximation, if k > n+l . If f
has a strongly unique best approximation sf' then
the algorithm always converges to sf.

Moreover, when we tested our algorithm, we saw by



us ing (VII) tha t many standard functions f E C [a,b]
actually have a strongly unique best approximation
sf E Sn (x1'•..,xk) and f - sf has exactly n+k+2
extreme points, which implies that
fEint SU(Sn(x1, ... ,xk)) (see Corollary 1.2). In this
context compare also Theorem 3.6 below.

Veidinger [20] showed that under certain assumptions
the Remez algorithm for Haar subspaces converges qua-'
dratically (see also Wetterling [21]). The next theorem
shows that an analogous result holds for the simulta-
neous excha~ge algorithm in [13], when f has a strong-
ly unique best approximation.

DEFINITION 3.5. Let fEC[a,b] \Sn(x1, ... ,xk) and
sf € Sn (x1'...,xk) be a strongly unique best approxima-
tion of £ . The algorithm in [13] yields for the given
f a sequence of spline functions (sm) in
Sn(x1, •••,xk) and a sequence of real numbers (Am) .
We say that the algorithm converges quadratically, if

2
11 sf - sm+1 11 = O( 11 sf - sm 11 )

THEOREM 3.6. Let n ~ 3 and f E C (2) [a,b] have a
strongly tinique best approximation sf E Sn (x1'...,xk) .
If f - sf has exactly n+k+2 extreme points,
(f-sf)lI(t) *0 for all tEE(f-sf) n (a,b) and
(f - sf) I (t) * 0 for all tEE (f - sf) h {a,b} , then the
simultaneous exchange algorithm in [13J converges
quadratically.



Froof. The arguments are similar as for the Remez
algorithm for Haar subspaces (see Theorem 84 in Mei-
nardus [6]) by using the following facts. It was shown
in [13] that IAml ~d(f,Sn(x1, ...,xk)) and sm--.sf.
Since sfis a strongly unique best approximation of
fand f - sf has exactly n+k+2 extremepoints
a ::;t1 < ... < tn+k+2 ::;b , it follows from Corollary 1.8
in [9] that for all i E {1,... ,n+k+2}

,..,. ,..,.
D (S 1" . . . . .. ,sn+k+ 1 )

t1 '... ,ti-1 'ti+1 '... ,tn+k+2 * 0 •
Then it follows fr9m the proof of Theorem 84 in Mei-
nardus [6] that ,forsufficiently large m the algo-
rithm in [13] coincides with Newton's method and there-
fore converges quadratically. This. shows Theorem 3.6.

REMARK 3.7. The resultsin this section (except
Theorem 3.6) have obv~ous analogs for generalized
spline subspaces which satisfy the interlacing property
(see Nürnb~rger, Schumaker, Sommer & Strauß [14]).
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