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Abstract

Non—quadratic variational regularization is a well
known and powerful approach for the discontinuity—
preserving computation of optical flow. In the present
paper, we introduce an extension of nonlinear spatial
smoothness terms to monlinear spatio-temporal and
flow-driven regularization. To assess the performance
of our approach, the implementation is purely based
on the corresponding reaction-diffusion system and
dispenses with any pre—smoothing typically used for
canceling out noise and estimating partial derivatives.
Results for real-world scenes show that our spatio-
temporal approach (i) improves optical flow fields sig-
nificantly, (i) smoothes out background noise effi-
ciently, and (iii) enhances true motion boundaries.
The computational costs required are only twice as high
as with a pure 2D spatial approach.

1 Introduction

Robust motion estimation is of central importance
in computer vision. Motion is linked to the notion
of optic flow, the distribution of apparent velocities
of movement of brightness pattern in an image. Nu-
merous methods for calculating optic flow have been
proposed in the last two decades. A survey of the
state-of-the-art can be found in a paper by Mitiche
and Bouthemy [14], and for a performance evaluation
of some of the most popular algorithms we refer to
Barron et al. [1].

Bertero et al. [2] pointed out that, depending on
its formulation, optic flow calculations may be ill-
conditioned or even ill-posed. It is therefore common
to use implicit or explicit smoothing steps in order to
stabilize or regularize the process.

Implicit smoothing steps appear for instance in the
robust calculation of image derivatives, where it is very
common to use spatial or temporal smoothing (aver-

aging over several frames). It is not rare that these
steps are only described as algorithmic details, but in-
deed they are often very crucial for the quality of the
algorithm.

Thus, it would be consequent to make the role of
smoothing more explicit by incorporating it already
in a continuous problem formulation. This way has
been pioneered by Horn and Schunck [11] and im-
proved by Nagel and Enkelmann [16] and many oth-
ers. Approaches of this type calculate optic flow as
the minimizer of an energy functional, which consists
of a data term and a smoothness term. The data term
involves optic flow constraints such as the assumption
that corresponding pixels in different frames should
reveal the same grey value.

The smoothness term usually requires that the op-
tic flow field should vary smoothly in space. Such a
term may be modified in an image-driven way in or-
der to suppress smoothing across image boundaries;
see e.g. [16]. More recently also flow-driven modifi-
cations have been proposed which reduce smoothing
across flow discontinuities [3, 5, 6, 13, 20, 23]. These
nonlinear methods have already led to rather good re-
sults in spite of the fact that the smoothness term
imposed only spatial smoothness of the flow field.

The goal of this paper is to indroduce an extension
of spatial flow-driven smoothness terms into spatio-
temporal flow-driven regularizations. Such an exten-
sion is natural and leads to equations which are hardly
more complicated than in the pure spatial case. Our
experiments on real-world sequences, however, indi-
cate that this approach leads to significantly robuster
results, and that it is no longer necessary to use ad-
ditional implicit smoothing operations. Our research
is in line with a growing tendency to consider a larger
number of frames or the complete image sequence in
order to improve motion analysis; see e.g. Jéhne [12]



and the references therein.

To the best of our knowledge, temporal flow-driven
smoothness terms have not been used in the computer
vision community before. The only extension of a
smoothness constraint into the temporal domain we
are aware of is a proposal by Nagel [15]. He suggested
a spatio-temporal smoothness constraint which was
image-driven. No experiments have been presented
there.

Our paper is organized as follows. In Section 2 we
review optic flow approaches with spatial smoothness
terms, and Section 3 describes our novel method us-
ing a spatio-temporal smoothness constraint. A sim-
ple numerical algorithm is sketched in Section 4, and
Section 5 illustrates the potential of our approach by
applying it to real-world image sequences. The paper
is concluded with a summary in Section 6.

2 Spatial Smoothness Terms

Let us denote an image sequence by some function
f(z,y, z) where (x,y) denotes the location within some
rectangular image domain {2 and z is the time. In its
simplest case, optic flow calculations based on energy
functionals determine the optic flow vector (u,v)T
based on two assumptions:

1. Corresponding features are supposed to maintain
their intensity over time. This leads to the optic
flow constraint (OFC) equation

fzu+fyv+fz:O; (1)

where the subscripts denote partial derivatives.
Numerous generalizations to multiple constraint
equations and/or different “conserved quantities”
(replacing intensity) exist; see e.g. [8, 21].
Evidently such a single equation (1) is not suffi-
cient to determine the two unknown functions u
and v uniquely. In order to obtain a unique flow
field, a second constraint is needed.

2. Such a second constraint may impose that the
flow field should vary smoothly in space. This
can be expressed by requiring that

/\Il (IVul? + |Vv|?) dz dy (2)
Q

should be close to 0, where ¥ : R — IR is
an increasing differentiable function and V :=
(8z,0y4)T denotes the 2D nabla operator. This
assumption is called smoothness constraint. In
the sequel we shall assume that ¥(s?) is convex
in s. Examples for ¥ will be presented at the end
of this section.

In order to satisfy both the optic flow and smoothness
constaint as good as possible, they are assembled into
an energy functional to be minimized:

E(u,v) = /A((fzu'*'fyv'i-fz)z

Q
+ aT(Vul? + |w|2)) dedy  (3)

where the regularization parameter a > 0 specifies the
weight of the second summand (smoothness term) rel-
ative to the first one (data term). Larger values for a
lead to smoother flow fields.

It is a classic result from the calculus of variations
[7] that a solution (u,v) minimizing an energy func-
tional of type

E(u,v) := /F(m,y,u,v,Vu,Vv) dz dy (4)
Q

satisfies necessarily the so-called Euler equations

0;Fu, +0yFu, —F, = 0, (5)
0.F,, +8,F, —F, = 0 (6)

with reflecting boundary conditions:

Opu=0
Opv =0

on 09, (7)
on Of. (8)

Hereby, 0 denotes the boundary of the image domain
with normal vector n.

Applying this relation it is easily seen that mini-
mization of (3) corresponds to solving

0 = V- (¥(|Vu>+|Vv|?) Vu)
=L fo(fou+ fyv + f2), 9)
0 = V- (¥(|Vul*+|Vv[?) Vo)

—éfy(fzu'*'fyv'f'fz)’ (10)

where U’ is the derivative of ¥ with respect to its
argument, and V- denotes the 2D divergence operator,
ie. V- (}) = 0za+ 0yb. The preceding equations
can be recovered as the steady-state of the diffusion—
reaction processes

w = V- (¥ (|Vul?+|Vv?) Vu)
—1fe(fau+ fyv + f2), (11)

ve = V- (U (|Vul>+|Vv]?) Vo)
._%fy(fzu"'fy'u‘}'fz)- (12)

The diffusion time ¢ is an artificial evolution para-
meter which should not be mixed up with the time 2




of the image sequence f(z,y, z). For t — oo, the solu-
tion (u,v) gives the minimum of E(u,v). It is unique
if ¥(s?) is convex in s. We may also regard the pre-
ceding diffusion-reaction system as a gradient descent
method for minimizing (3).

The diffusivity in both equations is given by
' (|Vul|?+|Vu|?). It steers the activity of the
smoothing process: diffusion is strong at locations
where the diffusivity is large, and smoothing is reduced
at places where the diffusivity is small. We shall now
consider some examples which demonstrate how the
choice of ¥ influences the smoothing process.

1. Horn and Schunck [11] considered the linear case
¥(s?) = s?. This corresponds to the constant
diffusivity ¥'(s?) = 1. Therefore, the smoothing
activity of the Horn and Schunck method does not
depend on the flow variation s? = |Vu|? + |Vul|2.
As a consequence, the flow is also smoothed across
motion boundaries. This explains a well-known
drawback of this method: a blurry flow field
which is ignorant of the true motion boundaries.

2. Many modifications have been proposed to allevi-
ate this problem. Nagel and Enkelmann [16] for
instance reduce diffusion across image boundaries
with large |V f|. Thus, their method considers an
image-driven smoothness term for the flow field.
In many cases this modification outperforms the
Horn and Schunck approach. In specific situa-
tions, however, image discontinuities may not co-
incide with flow discontinuities: strongly textured
objects, for example, may have numerous tex-
ture edges which are not motion boundaries. In
such situations an image-driven smoothness term
would lead to an oversegmentation and it would
be desirable to replace it. by one which respects
flow discontinuities instead of image discontinu-
ities.

3. A flow-driven smoothness term can be con-
structed by using a nonlinear smoothness poten-
tial ¥(s?) with a decreasing diffusivity ¥’(s?).
This ensures that the smoothing is reduced at lo-
cations where the flow magnitude is small. Such
methods have been considered by Schnérr [20]
and Weickert [23]. In [23] the potential

T(s?) = A% /14 s2/X2

is used, leading to the diffusivity [4]

(A>0). (13)

1

VI+s2/x

¥'(s?) = (14)

We observe that A can be regarded as a contrast
parameter: If the flow variation s? = |Vu|?+| V|
is large compared to A%, then the diffusivity is
close to 0, and for s? << A? the diffusivity tends
to 1. Choosing a very small value for A relates this
method to total variation regularization, a power-
ful denoising technique permitting discontinuous
solutions [18].

4. Other flow-driven smoothness terms from the lit-
erature [5, 6, 13] replace the smoothness potential
T(|Vul?+|{Vv|?) by ¥(|Vu|?) + ¥(|Vv|?). This
leads to two diffusion-reaction equations where
the joint diffusivity ¥'(|Vu|?+|Vv|?) is replaced
by ¥/(|Vul|?) and ¥'(|Vu|?), respectively. Hence,
the coupling between the two equations becomes
weaker and flow discontinuities may be formed at
different locations for v and v. Problems may
also arise from the fact that in this case the en-
ergy functional is not necessarily rotationally in-
variant.

3 Spatio-Temporal Smoothness Terms
Using the knowledge from the previous section it is
straightforward to extend the smoothness constraint
into the temporal domain. Instead of calculating
the optic flow (u,v) as the minimizer of the two-
dimensional integral (3) for each time frame z, we now
minimize a single three-dimensional integral whose so-
lution is the optic frow for all frames z € [0,T:

E(u,v) := / ((facU'ny’U“*‘fz)2

Qx[0,T]

+a U (|Vul? + |Vw|2)) dz dy dz (15)

where V% := (8,,0y,0;)T denotes the spatio-temporal
nabla operator. In the same way as in Section 2 we
derive that the minimizer can be recovered as the so-
lution of the diffusion-reaction system

u = % (¥ (%ul*+|%v]?) V)
—Lfe(fou+ fyv + f2), (16)
vy = VB (¥ (|%u>+[%v)?) W%o)
=L fy(fou+ fyv + f2). (17)

for t = oo. In the present paper we study this process
for the nonlinear potential given in (13).

The diffusion part in (16)—(17) is closely related
to nonlinear diffusion filters for regularizing three-
dimensional vector-valued images. Such methods have
first been applied by Gerig et al. [9] in the context of
medical imaging. The latter approach, however, uses



diffusivities from [17] which may create ill-posed pro-
cesses. This cannot happen in our case, where convex
smoothness terms in the energy functional create well-
posed diffusion—reaction processes [19]. For an exten-
sive discussion of nonlinear diffusion filtering, we refer
to [10, 22].

4 Numerical Aspects

We approximate the 2-D diffusion-reaction system
(11)-(12) and its 3-D counterpart (16)—(17) by finite
differences. Derivatives in z, y and z are approxi-
mated by central differences, and for the discretization
in ¢ direction we use a slightly modified explicit (Eu-
ler forward) scheme. It should be stressed that no (!)
additional presmoothing or postprocessing is applied.

We used the time step size 7 = 1/4 in the 2-D
case and 7 = 1/6 in the 3-D case. The iterations
were stopped when the Euclidean norm of the relative
residue was below 0.001.

It should be noted that the 3-D scheme uses only
about two times the computational effort of a corre-
sponding 2-D scheme when applied to all subsequent
frame pairs of an image sequence. The main difference
is an increased memory effort, since, in the 3-D case,
the whole sequence is processed simultaneously. For
the typical test sequences in computer vision, this does
not lead to problems when conventional workstations
are used.

5 Experiments

In this section we illustrate the behaviour of our
method by applying it to two real-image sequences
shown in Fig. 1 and Fig. 3. The second one is available
via anonymous ftp from ftp://csd.uwo.caunder the
directory pub/vision.

We used 16 frames for the first sequence, 20 frames
for the second one, and compared pure 2D processing
(eqns. (11)—(12)) with 3D processing (egns. (16)—(17))
using the same parameter values. For better visibility,
vectors w with |w| < 0.2 pixels have not been drawn.

Comments and a description for each result are
given in the figure captions below.

6 Conclusion and Further Work

We have presented an nonlinear spatio—temporal
regularization approach for the computation of piece-
wise smooth optic flow. Our results show a signifi-
cant improvement over pure 2D processing at low ad-
ditional computational costs.

Our future work will include a critical performance
evaluation (cf. [1]) and research on highly efficient nu-
merical methods for the nonlinear variational regular-
ization proposed in this paper.

Figure 1: The hallway sequence. A person (see the
section right) is moving towards the camera.
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Figure 2: Results computed using the section shown in
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sampled by factor 4 for better visibility). Top: 2D
processing. Bottom: 3D processing. A comparison
clearly shows that the proposed extension of adaptive
smoothing to the temporal axis (i) improves the vec-
tor fields significantly, (ii) smoothes out background
noise, and (iii) enhances true motion boundaries.
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