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Abstract

Variational segment at ion and nonlinear diffusion approaches have been very
active research areas in the fields of image processing and computer vision during
the last years. In the present paper, we review recent advances in the development
of efficient numerical algorithms for these approaches. The performance of parallel
implement at ions of these algorithms on general-purpose hardware is assessed. A
mathematically clear connection between variational models and nonlinear diffu-
sion filters is presented that allows to interpret one approach as an approximation
of the other, and vice versa. Numerical results confirm that, depending on the
parametrization, this approximation can be made quite accurate. Our results
provide a perspective for uniform implement at ions of both nonlinear variational
models and diffusion filters on parallel architectures.

Keywords: energy minimization, variational segmentation, nonlinear diffusion, numer-
icallinear algebra, parallel computing, medical imaging
Sub-topics: 1.2 fast numerical procedures, 1.4 parallel implementation
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1 Introduction
Variational approaches for image processing and computer vision have been the subject
of considerable interest during the last years. A growing community has focused on
various research problems induding the mathematical foundations of image segmenta-
tion [27], nonlinear regularization approaches to image restoration [30, 17], stochastic
modeling of spatial context [24, 42], and in a wide range of corresponding applications
[28]. In each case, the approach is formulated in terms of an energy functional which
precisely specifies the goal of the criteria being used for judging the output of a process-
ing stage. Often results from various branches of mathematics like functional analysis,
convex optimization, or numerical mathematics, for example, can successfully be applied
to darify the properties of a variational approach. As a result, variational modeling has
contributed much to the fields of image processing and computer vision during the last
years.

Parallel to this development, the application of partial differential equations (PDE's)
to image processing has been a very active field ofresearch [18, 39, 9]. Research problems
that motivated corresponding work indude nonlinear extensions to the linear scale-space
paradigm [1]' invariant scale-spaces [31, 32]' active contours and surfaces [25, 8]' and
sound mathematical models for image enhancement through local backward diffusion.
For a review, we refer to [38, 39].

In many cases, these approaches are superior to conventional existing image process-
ing methods and thus provide new perspectives far various application areas like, for
example, medical image analysis. Consequently, there is an increasing interest in effi-
cient numerical algorithms enabling implementations of these computationa1]y demand-
ing approaches that work at acceptable computing speed. For example, achallenging
task concerns the processing of 3D medical image data with a PDE-based approach
such that interactivity becomes feasible.

In the present paper, we review recent advances in the development of efficient nu-
merical algorithms for both variational modeling approaches [20, 21] and PDE-based
approaches [41, 40] to nonlinear adaptive image processing. Numerical experiments
with parallel implementations of these algorithms on general-purpose hardware are re-
ported. Although the underlying mathematical models appear to be quite different
(non-quadratic minimization problems vs. nonlinear evolution equations), we show that
they can lead to very similar algorithms. One important tool to understand these dose
relations is a connection which has recently been exploited in [33] to establish scale-
space properties for regularization methods. Our paper mayaIso shed light on how the
algorithmic advances reported may interrelate in future work.

The remainder of this paper is organized as follows. Section 2 reviews non-quadratic
variational models for adaptive image processings and discusses a connection to ap-
proaches based on nonlinear parabolic evolution equations. Section 3 is devoted to effi-
cient numerical approximations by means of finite elements and finite difference methods.
It describes a linearization technique as weIl as corresponding algorithms suited to com-
pute minimizing functions efficiently. Furthermore it is shown how similar ideas can be
used for diffusion filtering, and how they can be modified towards an even more efficient
additive splitting scheme. Numerical experiments with parallel implementations of our
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algorithms using general-purpose hardware are reported in Section 4. We conclude with
pointing out possible directions of further research in Section 5.

2 Continuous formulations

2.1 Variational approaches

In this section, we sketch the mathematical formulation of a variational approach for
adaptive image processing. For a more detailed account we refer to [35].

Let 9 : x E n --t IR denote the grey-value function of a given image defined over
an m-dimensional image domain n c IRm. The goal is to find a filtered version u of
the original image 9 such that u minimizes a suitable energy functional which precisely
specifies the goal of our processing step. We consider minimization problems of the
following form:

(1)

where 1£ is some Hilbert space and a > 0 serves as a weight factor. The function A
depends on the gradient of admissible functions v and is piecewise defined:

O:S;S:S;c
S > c.

Typical definitions include Alow(S) rv S2 and Ahigh(S) rv S or Ahigh(S) rv const. (cf., e.g.,
[7, 15, 6]). Accordingly, the functional (1) can be written in a form which is easier to
interpret:

J(v) = ~[J(V-9)2dx+a J Alow(l"Vvl)dx+a J Ahi9h(l"Vvl)dx]. (2)
n {x:lV'vl:S;c} {x:lV'vl>c}

The first term of the right hand side of (2) measures the similarity between functions
v and given image data g. The second term measures the smoothness of functions v
within regions with a low gradient of v. The third term measures properties of functions
v where v refers to local features in terms of significant variations. For example, using
Ahigh (s) rv s, this term measures the length of iso-contour lines of v summed up over the
local contrast (cf. [34]). As a result, algorithms minimizing the functional (1) lead to an
approximation of the given image function 9 with a piecewise smooth function u. Since
the domains of integration in (2) depend on the solution u itself, the corresponding local
smoothing process generating u from 9 is nonlinear and adaptive. Figures 1 and 2 show
examples.

Vanishing of the first variation of the functional J (1) yields a variational equation
determining minimizing functions u:

L(u, v) :=1{(u - g)v + a p(l"Vul)"Vu. "Vv}dx = 0

3
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Figure 1: Nonlinear adaptive smoothing of a 1D-signal

Figure 2: Top: Variational restoration of a mammography. Bottom: The images from
above as 3D-plots.
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(4)

where the so-called diffusivity function p(.) is derived from >{) as

p(s) = A'(S).
2s

Partial integration in (3) shows that u is also a (weak) solution to the Euler equation

adiv(p(lV'ul)V'u) - (u - g) = 0

with reflecting (homogeneous Neumann) boundary conditions:

ouan = 0 on an,
where n denotes the normal to the image boundary an.

2.2 Related diffusion filters
2.2.1 Diffusion filters with monotone fluxes

(5)

(6)

Interestingly, the preceding variational approach has strong connections to nonlinear
diffusion filtering. This shall be explained in the sequel.

A simple nonlinear diffusion filter can be constructed as follows. A processed version
u(x, t) of the original image g(x) is obtained by solving the diffusion equation

with the original image as initial state,

(7)

u(x,O)

and reflecting boundary conditions:

g(x), (8)

ou
= 0 on an.an (9)

The "time" t is a scale parameter: larger values lead to simpler image representations.
One can assure well-posedness of the diffusion filter if the diffusivity p(s) creates a flux
p(s) . s, which is monotonically increasing for s 2: O. Such diffusivities p arise from
equation (4) when the smoothness potential A is convex.

By writing the Euler equation (5) as

u-g- = div(p(lV'ul)V'u)
a

(10)

it becomes clear that variational image restoration with regularization parameter a
approximates a diffusion filter at time a: indeed, (10) is nothing more than an implicit
time discretization of the diffusion equation (7). This relation has been exploited in [33]
for establishing various relations between variational image restoration and nonlinear
diffusion filtering.
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One would expect that this discretization is of higher accuracy for sm aller a. How-
ever, Figure 3 shows that also for rather large a, the approximation remains surprisingly
good. In this example we have used a diffusivity of type

1
p(s) = \/1 + S2/

V
2 (11)

with v = 2. It can be derived from the ,convex potential

(12)

This example illustrates that variational image restoration and nonlinear diffusion fil-
tering are basically equivalent. As a consequence, efficient numerical methods. for one of
these paradigms can also be used for the other.

We note that the diffusivity (11) is a decreasing function. As a consequence diffusion
is small at those locations where the gradient is large which in turn reduces blurring at
edges.

2.2.2 Diffusion filters with nonmonotone fluxes

(13)
(s = 0)
(s > 0)

Intuitively one would expect that edges are better preserved if the diffusivity decreases
more rapidely. For instance, a diffusivity of type

p(s) := { ~_ exp (-3.315)
(s/v)4

decreases more rapidely than (11).
However, the corresponding potential ,\ is only convex for gradient magnit:udes which

do not exceed v: the factor 3.315 ensures that the flux = sp(s) is increasing for Isl :::;v
and decreasing far Isl > v. Thus, v is a contrast parameter separating low-contrast
regions with (smoothing) forward diffusion from high-contrast locations where backward
diffusion may enhance edges [29]. In this case, we should not expect the existence of a
unique solution which is stable.

However, it is possible to regularize diffusion filters with nonmonotone fluxes in such
a way that they become well-posed [10]. This can be achieved by replacing the edge
detector IVul in p(IVul) by a Gaussian derivative IVuul:

(14)

(15)

After some time this filter creates segmentation-like results which are piecewise almost
constant. This is illustrated in Figure 4. For t -t 00, however, the image converges to a
constant grey-value function [39]. Well-posedness results for this filter can be found in
[10, 39] and a scale-space interpretation is given in [39].

It should be noted that such regularized diffusion filters cannot be written as a varia-
tional problem. We have presented them here because they offer additional perspectives
in terms of contrast enhancement. Moreover, they can be treated with the same numer-
ical techniques that are used for unregularized diffusion filters with monotone fluxes.
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Figure 3: Comparison between the nonlinear diffusion filter (7) and
the variational image restoration (10). (A) LEFT COLUMN: Temporal
evolution ofthe diffusion filter, t = 10,30,100. (B) RIGHT COLUMN:
Variation al restoration with regularization parameters a = 10, 30,
100.
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I
Figure 4: Temporal evolution of the regularized nonlinear diffusion
filter with nonmonotone flux function.
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3 Discrete formulations

3.1 Variational approach

3.1.1 Linearization

The goal of this section is to replace the nonlinear equation (3) by a sequence of lin-
ear equations, the solution methods of which are weIl understood and suited for parallel
implementations. In the following, we describe a particular linearization technique intro-
duced to image processing by Geman and Reynolds [16]' and furt her studied in [12, 21].
For alternative linearization techniques and a comparison within a more general frame-
work we refer to [21].

The key idea is to replace the non-quadratic functional (1) - from which equation
(3) is derived - by a sequence of quadratic functionals. Following Geman and Reynolds
[16]' we introduce an auxiliary function wand consider the problem of minimizing

(16)

where the function 'lj;(.) depends on A(') in (1) and is chosen such that J(v, w) is convex
in wand [16]:

J(v) = inf J(v, w).
w

The minimization of (16) is accomplished by the following two-step procedure (k denotes
the iteration index):

wk = arg minwJ(uk, w),

Uk+l = arg minuJ(u, wk).

Variational calculus shows that equation (18) is equivalent to

L {(uk+l - g)v + awk'Vuk+l . 'Vvdx }dx = O.

(17)
(18)

(19)

After discretization, Uk+l can be computed as solution to a linear system of equations.
Making equation (17) more explicit, however, is not as straightforward as with equa-

tion (18), in the general case. Nevertheless, the computation of wk is not difficult due
to the convexity of J(v, w) with respect to w. In the particular case of a convex original
functional (1) equation (17) explicitly reads:

wk = p(l'Vuk J)

with p(.) from (4). Note that in this case equation (19) amounts to "freeze" the nonlinear
part of equation (3) for one iteration step. To our knowledge, this so-called Kaeanov
method has been introduced more than 30 years ago [22, 14]. Nevertheless, it turned
out to be both efficient and competitive with respect to other techniques (see Section 4
and [21]).
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Figure 5: Left: Triangulation of the rectangular image domain n with mesh width 1.
The nodes correspond to pix~l positions. Right: An interior node Uc with adjacent
triangles di and the corresponding p-values (for piecewise linear basis functions p(k) =
p(IV'ul) = const. for each triangle dk).

3.1.2 Finite element discretization

In this section we explain briefly how a discrete version of the variational approach
(3) can be obtained using the Finite Element Method. Note that the linear system
corresponding to (19) can easily be computed by replacing p(IV'ul) in (3) with wk. For
asound introduction to the Finite Element Method we refer to, e.g., [13]. The Finite
Element Method can be extended easily to adaptive algorithms with a coarse resolution
in homogeneous regions and a fine one around edges. For more details on such speed-up
techniques we refer to [34] in the context of variational image restoration, and to [3] in
the context of nonlinear diffusion filtering.

The basic idea behind the Finite Element Method is the restriction of optimization
problems to finite-dimensional subspaces. Let {cPr, ... , cPN} be basis functions ofa finite-
dimensional subspace 1lh C 1l. Then, the restriction of (3) to 1lh reads:

L(Uh, cPi) = 0, Vi = 1, ... ,N,

with minimizer Uh E span{ cPI, ... , cPN}' If we define the mappings

I :]RN -t 1lh; U -t L UjcPj ,
j

and

then the solution of (20) is equivalent to the solution of the nonlinear system:

L(u) = 0, L = (LI, ..., LNf.

(20)

(21)

(22)

(23)

For the case oftwo-dimensional (2D) grey-value images we use piecewiselinear basis
functions as follows. The first step is to triangulate the underlying image domain, in
this case the rectangular area n = [0,NI - 1] x [0,N2 - 1]' as illustrated in Figure 5.
Next, we assign to each mesh node Pi,j a basis function cPi,j which is uniquely defined
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by the following conditions:

cPi,j (X) is linear within each triangle dk ,
cPi,j (x) = 1 at node Pi,j ,
cPi,j(X) = 0 at every node Pk,l i= Pi,j .

Given discrete grey-value images, and elements of the subspace Hh in general, images
are represented by simply interpolating the values of corresponding nodal variables Vi,j
in a piecewise linear fashion:

I : ~Nl XN2 -7 Hh, v -7 "" v .. rh ..
~ 2,J'f'~,J
i,j

with grey-value Vi,j. From (21) and (22) we thus obtain:

L(Uk,1 - gk,l) 1cPk,lcPi,j dx + L uk,ll P(I\7Uhl)\7cPk,1 . \7cPi,j dx = O. (24)
k,l n k,l n

These integrals vanish for all pairs of no des (i,j) and (k, l) which have no triangle in
common. The remaining integrals can be computed analytically to obtain a sparse
system of nonlinear equations in terms of the nodal variables of the solution image u.
Additional details and applications to different variational problems can be found in
[35].

The expressions in (24) are weighted sums. Applying the linearization technique
described in section 3.1.1, that is "freezing" the nonlinear part as in equation (19), the
nonlinear system (24) reduces to a linear system of type

Bkuk+1 = b , (25)

where

b=Dg.

The matrices D and Rare sparse, since they describe convolutions within a 3 x 3
neighbourhood. For some inner node, the corresponding stencil notations are given by

0 1 1
12 12

1 1 1
12 "2 12

1 1 012 12

(26)

for D, and by

0 .1... _ a p(2)+p(3) 1
12 2 12

.1... _ a p(3)+p(4)
1. + a p(2)+p(3) + a p(3)+p(4)

.1... _ a p(1)+p(6)222
12 2 +a p(1)+p(6) + a p(5)+p(6) 12 2

2 2

1 .1... _ a p(5)+p(6) 012 12 2

(27)
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for the system matrix Bk. It should be noted that the entries p(.) are functions of uk;

see also Figure 5. The necessary modifications of these stencils at boundary points are
automatically obtained by taking into consideration the correct domain of integration
in (24). It is not hard to see that Bk is symmetrie and positive definite.

3.2 Nonlinear diffusion filtering
3.2.1 Diffusion interpretation of the Kaeanov method

It is instructive to study also a finite difference discretization of the Kaeanov method
for variational image restoration: it follows that such a discretization can be regarded
as a fixed point iteration for solving the implicitly time-discretized diffusion equation
(10). This can be seen in the following way.

A discrete rn-dimensional image can be regarded as a vector g E ]RN, whose com-
ponents 9i, i E {I, ... ,N}, denote the grey-values at the pixels. Pixel i represents the
location Xi. By Ui and Pi we denote approximations to U(Xi, t) and p(I\7U(Xi, t)I), re-
spectively, where the gradient is replaced by central differences.

A spatial finite difference discretization of (10) is given by
m

_Ui_-_9i _ '" '" _pj_+_Pi (u. _ u.)
Cl! - L...J L...J 2 J t ,

1=1 jENI(i)

(28)

where Ni (i) consists of the two neighbours of pixel i along the l direction (boundary
pixels may have only one neighbour). In vector-matrix notation this becomes

m

u-g '"-- = L...J Al(u) U,
Cl!

1=1

where Al describes the diffusive interaction in l direction.
This equation can be rewritten in fixed point structure as

A corresponding fixed point iteration is given by

m 1

uHl = (I - Cl! LAl(Uk)) - g.
1=1

This is not hing else but the finite difference approximation

to the Kaeanov method (19), whose Euler equation is given by

(29)

(30)

(31)

(32)

(33)
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The fixed point iteration (31) requires to solve the sequence of linear systems

m(I - a LAl(Uk)) Uk+1 = g
1=1

(34)

with k = 1, ... ,00. Since this method is globally convergent, we may use an arbitrary
initial vector UD. A natural choice is UD := g. In practice, one stops the iterations when
uk and Uk+1 are sufficiently elose, or when the residue obtained from plugging uk into
(29) is elose to O.

The system matrix for the finite difference Kaeanov scheme (34) can be represented
by a convolution stencil of type

0 -a p(N)+p(C) 02

p(w)+p(C)
1+ a p(N)+p(C) + a p(W)+p(C)

p(E)+p(C)2 2- a 2 +a p(E)+p(C) + a p(S)+p(C) -a 2

2 2

0 -a p(S)+p(C) 02

(35)

where the diffusivity p(C) refers to some inner pixel, and p( N), p(W), p( E), and p( S)
represent the northern, western, eastern, and southern neighbours, respectively. They
are all functions of uk. We observe large structural similarities to the finite element
Kaeanov method. Both the finite difference and the finite element method boil down to
the solution of a sequence of linear systems of equations with a sparse and symmetrie
positive definite system matrix.

3.2.2 A semi-implicit scheme for nonlinear diffusion filtering

If one is interested in solving the nonlinear diffusion equation (7) for some time a, one
mayproceed iteratively in n steps with step size T = a/n. Let us denote by uk the finite
difference approximation at time kT. One possibility for a finite difference discretization
to (7) is the scheme

T

m

LA1(Uk) uk+1

1=1

(36)

with U(D) := g. We observe that we have to solve n linear systems of type
m(I - T LAl(Uk)) Uk+1 = uk.

1=1

(37)

Since this scheme does not give the solution Uk+1 directly (explicitly), but requires to
solve a linear system first, it is called a linear-implicit (semi-implicit) method. Its system
matrix has the same structure as the one used in the finite difference Kaeanov method.
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In the 1-D case the system matrix is tridiagonal and diagonally dominant. For such
a system a Gaussian algorithm for tridiagonal systems (also called Thomas algorithm)
is stable and solves the problem with linear complexity, both with respect to memory
and computational time.

For dimensions m ~ 2, however, it is not possible to order the pixels in such a
way that in the i-th row all nonvanishing elements of the system matrix can be found
within the positions [i, i - m] to [i, i +m]: Usually, the matrix possesses a much larger
bandwidth. Applying direct algorithms such as Gaussian elimination would destroy the
zeros within the band and would lead to an immense storage and computation effort.
Classical iterative algorithms like the Jacobi or Gauß-Seidel method become slow for
large T, since this increases the condition number of the system matrix. Just like in the
finite element case, a preconditioned conjugate gradient technique will be quite efficient.

This shows that there is also a large amount of structural similarities between discrete
variational approaches and discrete nonlinear diffusion filters. In contrast to variational
image restoration, however, the number of linear systems to be solved is a-priori fixed
to n and no aposteriori stopping criterion is required. Clearly, choosing a larger n
improves the approximation quality.

A possible speed advantage of semi-implicit nonlinear diffusion filtering ascompared
to the Kaeanov method for variational image restoration may result from the fact that
the time step size T is usually smaller than the regularization parameter a. Therefore,
nonlinear diffusion filtering has a better-conditioned system matrix than variational
image restoration. Thus, one may expect that iterative solvers for linear systems whose
convergence depends on the condition number will converge faster for nonlinear diffusion
filters. This also applies to preconditioned conjugate methods, although to a much
smaller amount than in classical iterative solvers.

3.2.3 AOS schemes for nonlinear diffusion filtering

Next we discuss a modification of the semi-implicit scheme

m 1

uk+1 = (I - TL A1(Uk)) - Uk

1=1

(38)

which leads to a furt her speed improvement. It takes advantage from two observations
that we made in the last section:

1. It is computationally easier to solve linear equations stemming from 1-D diffusions
than those from higher-dimensional diffusion processes.

2. For accuracy reasons, diffusion filtering often uses not too large time step sizes T.

Now the idea is to replace (38) by the additive operator splitting (ADS) scheme [40]

(39)
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Such a scheme has several interesting properties:
The operators I-mT Al (uk) describe one-dimensional diffusion processes along the Xl

axes. Und er a consecutive pixel numbering along the direction l they come down to
strictly diagonally dominant tridiagonal matrices. The corresponding linear systems of
equations can be solved directly in an efficient and stable way by the Thomas algorithm.
Its forward elimination and backward substitution step can be regarded as a causal and
an anticausal recursive filter, respectively.

Moreover, (39) has the same first-order Taylor expansion in T as the semi-implicit
scheme: although both methods are algebraically different, they are 0 (T + hi + ...+ h'?rJ
approximations to the continuous equation. Thus, the approximation quality improves
with decreasing T, and the solutions produced by the AOS scheme and the semi-implicit
one become more and more similar.

Since AOS is an additive splitting, we are assured that all coordinate axes are treated
in exactly the same manner. This is in contrast to the finite element discretization from
Section 3.1.2 and to conventional splitting techniques from the literature, which are
multiplicative [11]. They may produce different results if the image is rotated by 90
degrees.

Recently a general framework for discrete nonlinear diffusion scale-spaces has been
established, which guarantees that the discretization reveals the same scale-space prop-
erties as its continuous counterpart [37, 39]. One can verify [40] that the AOS scheme
creates such a discrete nonlinear diffusion scale-space for every step size T. As a conse-
quence, it preserves the average grey level I-t, satisfies a causality property in terms of a
maximum-minimum principle, and converges to a constant steady state. Moreover, the
process is a simplifying, information-reducing transform with respect to many aspects:
The p-norms

N

Ilukllp := (L lu~IP)l/P
i=l

and all even central moments

(p 2 2) (40)

are decreasing in k, and the entropy

N

S[uk]:= - Luj lnuj,
j=l

(41)

(42)

a measure of uncertainty and missing information, is increasing in k (if fj is positive for
all j).

For furt her algorithmic details and a performance analysis of AOS schemes we refer to
[40]. There it is demonstrated that, under typical accuracy requirements, AOS schemes
are one magnitude more efficient than the commonly used schemes for nonlinear diffusion
filtering. In Section 4 we will see that speed increase by another order of magnitude is
posssible by parallel implementations.
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Right: Computational eosts of different preeonditioners for exaet (left: rtol = 10-6)
and inexaet linear solvers (right: rtol = 10-1) (eomputed with 1 proeessing ulnit).

4 Parallel implementations

4.1 Variational approaches
To solve the linear system (25) sueeessively as part of the two-step iteration (17)-(18),
we implemented an inexaet version of the well-known conjugate gradient (CO) method
along with several preeonditioners on a multi-proeessor SGl Power-Challenge maehine
at the Computer Center of the University of Hamburg. We used the software paekage
PETSe (Portable Extensible Toolkit for Seientifie Computing) [4, 5]' whieh is based on
the message passing standard MPl [26].

Among the dass of iterative Krylov subspace solvers (cf., e.g., [23]), the CG-method
is nearly optimal for the dass of matriees Bk eonsidered here (sparse, symmetrie, positive
definite). "lnexaet" refers to the stopping eriterion rtol . Ilrkl12, that is eomparing the
relative reduetion of the initial linear residuals rk = Bkuk - b to a threshold. It turned
out in our experiments that the rat her erude eriterion rtol = 0.1 leads to a fast inner loop
of the iteration (17)-(18) (Fig. 6, left). The stopping eriterion of the overall iteration
(17)-(18) was rtol = 0.001 with respeet to the nonlinear residuals of the system (24).
We note that eonvergenee of the Kaeanoe method using an "inexaet" inner loop has
not been proven yet. For hints how this may be aeeomplished we refer to the work of
Axelson [2].

To improve the eondition number and, in turn, the speed of eonvergenee, preeondi-
tioners L, R were applied to the linear system (25):

Classieal preeonditioners are obtained through either an additive matrix-splitting
(Jaeobi or S(S)OR-preeonditioning) or a multiplieative matrix-splitting (lLU or lCC
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Figure 7: Left: Computational costs as a function of the image size (1 processing unit,
rtol = 0.1, Block-Jacobi preconditioning). Right: Speed-up factor as a function of the
number of processing units used.

factorizations). The approach of domain decomposition is an alternative way of precon-
ditioning (Block-J acobi or Block-Gauss:-Seidel, for example), which is more suited for
parallel implementations [36]. Figure 6, right, shows the influence of various precon-
ditioners on the convergence speed for both exact and inexact linear solvers. The less
expensive Block-Jacobi preconditioner combined with the inexact solver turned out to
be best and reduced the computational amount by one order of magnitude. Figure 7,
left, depicts the dependency of the computation time on the image size. Fig. 7, right,
finally shows a nearly optimal linear increase of the speed-up factor as a function of the
number of processing units (18 units were available to us). This proves the efficiency of
the parallel implementation.

These results show that the combination of appropriate problem-specific numerical
concepts (Kacanov linearization, inexact linear CG solver, Block-Jacobi precondition-
ing) with an efficient parallel implementation yields a reduction of the overall compu-
tational costs of two orders of magnitude. Using more massive parallelism a further
reduction of one order of magnitude should be feasible, enabling the processing of 2D
images in quasi-realtime (2-3 frames per second). Furthermore, application of the AOS
scheme to the variational approach, based on the relationship to nonlinear diffusion
filters described in sections 2.2.1 and 3.2.1, will be considered in future work.

4.2 Nonlinear diffusion filtering
For nonlinear diffusion filtering, the AOS schemes described in Section 3.2.3 work effi-
ciently on serial computer architectures. However, they also offer two intrinsic levels of
parallelism: coarse grain parallelism and mid grain parallelism.

The coarse grain parallelism can be described as follows. The result uk of an m-
dimensional AOS scheme can be regarded as the average of m filters of type

Vlk+l ._ (1_mTA1(uk)) -1 uk
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Since Vlk+l, ... , Vmk+l can be calculated independently from each other, it'is possible
to distribute their computation to different processors of a parallel machine.

Often parallel computers reveal more processors than the dimensionality m of the
problem. In this case it is interesting to exploit the mid grain parallelism which is
described next. Let Nj denote the number of pixels in the j direction. Then (I -
mTAl(uk))-l creates TIj:;fl Nj one-dimensional diffusion processes along the l direction.
These processes are completely independent from each other and can be computed in
parallel.

As a demonstratar far amid grain parallelization we have implemented a three-
dimensional AOS scheme on an SGI Power Challenge XL with eight 195 MHz RI0000
processors with 1 MByte secondary cache [41]. The test image is a 3-D ultrasound data
set of size 138 x 208 x 138 which depicts a 10-weeks old human fetus.

We used the AOS scheme for the regularized nonlinear diffusion filter from Section
2.2.2. The contrast parameter v was set to the 40% quantile of the cumulative histogram
for V(K(T * 1), and the standard deviation (J of the Gaussian was chosen as the unit
length of the cubic voxel. For our test image 8 iterations with T = 10 were sufficient to
give satisfactory denoising, as is seen in Fig. 8. Note the significantly improved visibility
of the skull and the hands.

Figure 8: Rendering of a 3-D ultrasound image of a 10-week old fetus.
LEFT: Original. RIGHT: Filtered.

Implementing the parallel AOS scheme was done in two steps: First we have further
optimized ourexisting serial AOS code by using the C++-based dedicated TULIP li-
braryl. This feature has led to a speed-up by a factor of three. In a second step the

ITuLIP has been developed by Karel Zuiderveld and Fred Appelman (Image Sciences Institute,
Utrecht) using cache memory addressing in a sophisticated way in order to speed up the way of accessing
neighbouring voxels.

18
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Table 1: Execution time for eight AaS itera-
tions on an SG r Power Challenge for an image
of size 138 x 208 x 138 using a varying number
of processors.

# proc. exec. time speed-up efficiency
1 158.22 s 1.00 100.0 %
2 93.11 s 1.70 85.0 %
3 71.48 s 2.21 73.7 %
4 59.75 s 2.64 66.0 %
5 51.96 s 3.05 61.0 %

optimized code has been split up into functions acting only within 2-D slices of the 3-D
image. These slices were then distributed to the different processors.

Table 1 shows the measured execution times as a function of the number of pro ces-
sors. We observe that an implementation of AaS schemes on a few processors is already
sufficient for filtering 3-D medical data sets within their typical acquisition time.

The execution time of an algorithm on a parallel systems is given by

T = Ts + Tp + Tsc(p),
p

where Ts and Tp are the serial and parallel components, respectively, and Tsc(p) is the
synchronization time for the parallel processes.

If we neglect Tsc(p), we find from Table 1 that Ts ~ 0.16 T, that means about 84
% of the code is parallel. The serial part is mainly caused by r/o from and to the
harddisk, and from the need to create copies of the volume data. For more iterations we
may expect further improvement with respect to the scaling behaviour. The measured
data indicate that due to parallel implementations, an efficiency increase by one order
of magnitude is realistic.

5 Conclusion and furt her work
We have described recent advances in the development of efficient numerical algorithms
for both nonlinear variation al approaches and nonlinear diffusion approaches to adaptive
image processing. The performance of parallel implementations of these algorithms on
general-purpose hardware has been reported. A mathematically clear connection be-
tween both continuous and discrete formulations of variational approaches and nonlinear
diffusion filters has been presented. Our work provides a basis for unifying efficient par-
allel implementations of these approaches and thus can be considered as an important
step towards many challenging real-life applications of these theoretically well-founded
methods.

Our further work will include the investigation of numerical multigrid schemes and
their connections to the algorithms described in the present paper, as weIl as corre-
sponding implementations on more massive parallel architectures.
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