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§1. Introduction

T. Gallai (3) proved a decomposition theorem for finite graphs in

terﬁs of their guasimaximal strongly autonomous vertex sets. It was
feviewed in D. Kelly's review paper on "Comparability graphs"”(S).
Apart from reviewing existing results on comparability graphs

D. Kelly generalized these‘results, as far as possible, to‘the case

of infihite g}aphs. Gallai's theorem is not among them. The theorem is,
however, true for a large class of infinite graphs - the so;called

"Non Limit - graphs", shortly "NL-graphs". Although partial aspects

of the result can be found in W.H. Cunningham & J. Edmonds (2) and

L.N. Shevrin & N.D. Filippov (6) (both papers make no reference to
Gallai's original paper) there is no theorem in the iiterature that
displays all features of Gallai's useful £heorem‘in the infinite
case:as, e.g. the role of strongly’autonomous subsets and their full
interaction with Gallai's "edge~classes". Therefore we formulate it
V(Theorem 1) and give a short direct proof.It iS-bésed;pgth on the"édge—
vertex~lemma" (Lemma 1) that Gallai derived (I quote) as a"remarkabie
consequence" from his finitary decomposition theorem- and on a useful
lemma of D. Kelly (Lemma 2). In this way a new proof arises even for
the finitary case. As indicated_above, parts of theorem 1 can be. found
ih L.N. Shévrin & N.D:~ Filippov (6) ( see §3, Proposition 3 and

§4, Lemma 16 ) in a different language. They usé Zornfs Lemma, we don't.
Theorem 2 appears as a natural and,néw supplement oerallaifé’theorem:
In order to formulate ft, we define a "Gallai—decomposition" as a
maximal_decémposition'into autonomous subgraphs such thaﬁ the "external
edge-classes" cbnstitute a single edgé-cléss.'TheOrem 2 states that
exacﬁly the NL-graphs have su¢h a décomposition{ffi-, o
_Two'examples illUstréte how the infinite version 6f Gallai;é-ﬁheorem
(i.e. theorems 1 and 2) can be uséfully appiied._fhe note ends with
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a remark on graphs G wi%h connected G and G that do not contain P4.
This remark analyses an example of D. Kelly in (5). (The referee

pointed out to me that R. M&hring announced a related result in

Methods of Operations Research 45 (1983), 287-291.)

"As for the concepts "autonomous”, "strongly autonomous”, "in general

position”, "edge-class” etc... see D. Kelly (5).

If G is a graph, V(G) denotes the set of vertices of G and E(G) the
set of edges of G. T denotes the complemented graph of G.

"NL-graphs” are graphs.that. contain at’ least one quasimaximal
strongly autonomous seﬁ'Qiﬁ? vertices (i.e. Q is maximal among all
proper strongly autonomous subsets of V(G)). For A€ V(G), G[A]
denotes the full subgraph of G with vertex set A. If ™ is a partition
of V(G) into autonomous subsets then G“-denotes the corresponding
quotient graph. For a,be V(G),"a~b"” indicates the.existence of the
edge ab. For . A,BE€V(G),"A~B" means "a~b for all aeA and beB” and
"A.#~ B" means "a «#b for all a €eA and beB". |

§2. The decomposition theorem and applications

Theorem 1 (Gallai's décomposition theorem):

Let G be an arbitrary non-trivial NI-graph:
(1) V(G) is the disjoint union of all its quasimaximal strongly
autonomous subsets Ai, iel,

(ar(c) := {Ai;i€I§ is called the "canonical decomposition of

G". An edge class D is called "internal" if Dﬁ?E(G[Ai]) for
some i, otherwise "external'.) '
ﬁl;)}ﬁ(G’ is obtained as follows:

i_l If G is not connected, then T (G) consists of the com =
ponents of G. There is no exterhalvedge class.

(2) If G is not connected, then T (G) consists of the com=
poﬁents of §. For any fixed i,jéI, i£j, we have AiF“Aj,

and the set Eij— of all AiAj -edges constitutes an

edge plass.,The,élasses Eij are exactly all external

edge classes. '

(3) If‘G and G are connecfed, then o (G) is the unique largest
partltlon of V(G) into proper subsets Whlch satisfies |
the follow1ng two properties. (a) (b):
igl A.AJA. or A, qu for all i,jel, 1#3.

(b 2 ‘The set C: \/(E '1 jel, 1#3) is a 81ngle edge class
(1n thls Case V(C) = V(G))
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It is possible to give a short proof of the next lemma based on
the "forbidden pattern lemma" (Afditti & Jung (1) and
Gilmore & Héffman (3), corollary 1 to Lemma 3). We leave it as an
exercise.

Lemma 1 (Edge-Vertex-Lemma Qf Gallai):  If G is a graph and E1, 2

are edge-classes, then V(E1)=V(E2) implies E,=E
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.We include a proof of the next lemma, since the original pfoof in

b. Kelly (5) contains a minor mistake.

Lemma 2( D. Kelly (5)):  Let ASV(G) be a non-trivial, independent

and autonomous vertex set of the graph G. There exists a strongly

autonomous vertex set B with (i) A £€B, (ii) (B\A) ~ A.

proof of lemma 2:

If A is strbnély autonomoﬁs, wé také B = A, therwise let

P ={Ci;i€-1} be the set of all autonomous subsets of V(G) that
are in general position with A and form E::(}(Ci; i€ I).

B:= HUA is autonomous and AS B, We have (B\A4)*A, since

(Ci\ qubA is easaly ;een to hold true for every i€ I. We will
show that B is strongly autonomous and are done:

Assume that'thére ié some autonomous X in general position with
B. If X(OA = §, then XOQH # 8, i.e. XNC; # ¢’for some ieT1.
Thus, XUCi = CjéB for some j€&€ I, a contradiction.

We conclude X2 A (otherwise X£F, i.e. X € B which is impossible) .
(B‘\A)'¢fA implies (XNA) o A from which we deduce that Li:=cigdx\A)

is autonomous. Lie F implies LiélBi hence X< B, a contradiction.

i'g.e.d.

proof'of theérem 1

! ) fo“lows, as in the finite case, 1mmed1ately from the fact
that two strongly autonomous subsets X,YEV(G) are either digjoint

_or comparable.
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mous subsets, T(G) consists of the components c;f G. Herice, ‘
Aif\/Aj for all i,je I, i#j. This fact shows that abAbc, ae A.i’ :
- be Ay (i#j) implies ce Ay, i.e. [ab];;Eij. If c€A, is arbitrary |
with c#a, then a and c are in the same component of (_}_fNG(b)]
(where NG(b) denotes the neighborhood of b in G), hence abAbc.
Thus, Eij =(ablz. (3): We first show that % (G) has properties
() and (b). (2) is clear. As to (b): If abe E_,» then abAbe
implies c%AS, hence [ab}ESC. Since V(([av)=) = U(Ai;i 6'11) for

S ome I1 €I with_ {r,s} &I we switch over to G" via the projection

4
p: G —=-> ¢ and study 2:={Ai;i€— I‘I-% . We are done if we can prove
that T GW(G) is impossible. For then V([ab]z) = V( [cd]=) = V(G)
for all cde Euv (u,velI, uv), and‘ lemma 1 settles the matter. |
Thus, assume T $M(G). SincelT]22, T is not strongly auto=

nomous (otherwise p_1 (T) would be strongly autonomous in G).

Let X be an autonomous subset of qr(G) in general position with T }
and consider XNT = {Ai;ie IZ?] with ‘12211. XaT and T\X are auto=
nomous. Thus, neither XAT nor TN X contain an _,‘endg_e, from'[ab]:—-)s |
amd XhTrJ(T‘\X), i.e. XN T (PN X) E_E"’?We can apply case (2)
of our theorem to the graph GT[T:( ,Vs'in.ce i-ts-complemented graph
is not connected. The edge classes of év[T]fall into two cate= = -
gories: internal ones and external ones.[ab].—’:‘ cannot be aninternal
one, since V([ab]‘:’.) =UYT. Thus, if is external and —(again since
V([ab]z) =UT)- the only external one. Thus, XN T andT~ X are the
two components of_f}_ﬂ['T]J and [ab_]; consists exactly of. all the

(XNT, T\ X)-edges. I.p., every autonomous set of Gﬁ-inte’rs'e'cting'
both XAT and T\ X must camtain all of T. Thus, there is no
autonomous Y in general position with XOT, resp. T NX, since
Vo'vtherwi’se Y%.U(T \ X), resp. YU (XhT) would be autonomous.

We conclude that XNt ar_ld T\ X ar:e: strongly autdnomdus, i.e; they
are single}ta. Thus, T consists of ‘2_’e~'1e'ments. Hence, T is inde=

ey

Pendent in G'randjfautonomous. By 1lemma 2, there exists a strongly. :

autonomous set D with T£D and P2(DSNT) in 6™, Since G is .connecé.‘-"

ted, we get DEW(E) ,i.e. {T| = [D| = 1, a contradiation.

Thus, T =

T(¢), and we are done.
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In order to prove the fact that o (G) is the (unique) largést
partition with properties (a),(b), we choose sbme‘parfition
;f (G) ={.Bj;je JS of V(G) satisfying (a),(b) and denote by R

the set of all BiBj -edges. No Bj is in general position with

any Ai. Hence, every Bi is either the disjoint union of suitable

Aj's or it is contained in some A, which then, in turn, is the
disjoint union of suitable By's. RANC # ¢ is clear, hence R=C.

Assume Bj =L/(Ai; i.eI1) for some I1£ZI with 111(2.2. Then

-—

C = R forces. the independence of {Ai; ié—I13 in g", By lemma 2, .

we obtain a strongly autonomous D € T(G) with {Ai;ié I{SE D.
The connectedness of " forces D # W(G) contradicting the fact

that Gw\has no non-trivial strongly autonomous vertex sets.

Hence, ?(G) £7(G). g.e.d.

Let us call a decomposition g(G) = {Ai;ie I‘g of a graph G a

"Ggllai-decomposition" if it is maximal among all partitions

satisfying the following two properties:

(a) Aivaj or AiqUAj for all i,j eI, i#j.

(b) The set of all AiAj_edges (i,je€I, i#j) constitutes a
single edge class ¢ (i.p. |I\22).

The next theorem constitutes a natural supplement of Gallai's

decomposition theorem.

Theorem 2: Let G be a graph and ?(G) a Galléi—decomposition.

Then ¢ is an NL-graph and we have the following situation: -

(1) v(C) is a component of G and V(C) = L/(Afieil1) for some
1,1, If 1, T, then P(G)_ = fasie I,Ju{DS where D is the
join of all components # V(C). '

(2) If G is coﬁnected; then S)(G) =T(G), and all proper
-autohqmous subsets Qf V(G) are containéd in a gquasimaximal

strongly autonomous set.




. proof:

(1):Assume that G is not connected and Cj’ je J, are the com=
ponents. Clearly, V(C) =\J(4,;i€ In A, NT(C) # #). Since V(C)
is connected, there is some Jg& J with v(Cc) € Cj and, hence,

0
V(C) = cjo. Since & (G):= {Ai; A S C, 1suil/(c-,:J&J J%—JOS is
.a partition satisfying (a),(b) and since Y(G)<G(G), we con= -
clude S)(G) 6 (G).

(2): If G is connected, we have V(C) = V(G) as the only compo=

nent. Let D be an arbltrary autonomeus set that 1ntersects both

A. and A, properly for some i 74 1 . Then A. uA. is
ig i ig i,

autonomous and, hence, A, YA (otherwise V(G) = V(C) SD).

~0 }
{A ,Lé I\{ 0,1133 'is a partition of

Hence, & (G) := {A. UA, g
10

V(G) satisfying (a),(b) and 6 (G) >f(G), a contradiction.

Thus, every autonomous set DEV(G) intersects at most one Ai'
R 0

properly. Therefore we have either D = U(A.;ie I ) for some

I,€I or D= (D nA )U(U(A 1612) for some lO% 12_ I WJ.th

g 4 Dr\Ai < LI In neither case can D contain an A, AJ edge,

0 0 v
if D is a proper autonomous subset. For such D we have either

il {D S (W) {Ai;ie I 118 or in '{D VA. Su{A io;éi_e I~ 123 a
partition of V(G) satisfying (a) (b). Hence, D = A. , Tesp.
1o
D CA depending on the case. Therefore the sets A; of f) (G}
1o
are ( exactly all ) quasimaximal strongly autonomous subsets of

V(G), and each proper autonomous set D is contained in one of
them. ' ’ q.e.d.

We contended in § 1 that the extension of Gallai's theorem to

NI-graphs (theorem 1) and the complementing theorem 2 con=

stitute the natural basis of other results also in the infinite

.case., To make out my case, let us prove two interesting results

Cof D. Kelly ([é]) in the light of our theorems:

1) Lemma'3;2 in [2] reads (rephrased) as follows: "If G is a ;
graph and A< V(G) an autonomous, eenhected subset, then each '

of the componeﬁte of‘@[h] is a strongly autonomous subset of

.v('G)."
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proof: TLet {Bi;i 3 ﬂ be the components of A inE[A]._w.l.o.g.
\I]22 (otherwise let X and A be in genefal position and auto=
nomous in Gj then ANX and AN (X nA) are autonbmous in G,

é contradiction). By theorem 1, the Bi are the quasimaximal
strongly autonomous sets of GEA], we have Bf”Bj for all i#j
and, for each i#j, the set Fij of all BiBj—edges constitutes a
single edge class of G[A]and, hence, of G. Fix iOéI and let

C be an autonomous vertex set of G properly intersecting Bi .

. . 0

Then CNA = C NB. and {B.n/CjL%%,; i€ I\{iﬁlare the components
ig ij i ; OJ

of T[avd. Tus, the (B;vC,B; )-edges and the B B;-edges

coincide, since both sets constitute the same edge class by

. <
‘ theorem 1. We conclude C\_Bio. | qg.e.d.
- 2) Theorem 3.4 in [2] reads as follows: " A non-trivial connected

graph G with a connected complement @_has no proper autono=
mous vertex sets if it has no proper strongly'autoﬁomous |
.vertex sets." v

prcof: G is an NI-graph with trivial canonical decomposition.

Theorem 2.2 proves the result. g.e.d.

§3. A remark on P

4_;

Let Pn denote the graph with n vertices B 3805 e0eensy and

edges 2,85, Bp8g,.ecniinnn. , a D. Kelly [2 ] refers to

a_.
n-1"n
various proofs for the fact that finite prime graphs (i.e.

graphs without proper autonomous vertex sets) contain P, as

; 4
a full subgraph (we write. P4<\G).

In the finite case the property P4:§'G holds even true for any




graph G such that G and T are connected, and this is the basis
of the finitary proofs. D. Kelly generalized the -result to

infinite prime graphs and showed via an example:that the

'
.

connectedness of Q_and G do not suffice any

| | | b
‘more. Thus, an alltogether new proof was a,*® :
askéd for. Kelly's example (see [2] ) is §
essentially the ordered set of diagram 3. //lbL
Its cOmparabilitY'gréph G is anl-graph : al'//£b4

such that G and G are connected andP4§(G.-

This comparabiiity graph G is the graph

{ . } ?bn-ﬂ
ggo_ on the.yertex set an;néwNﬁ4%n;ne¢N)‘ | :%?
defined as follows (see diagram 4): 0 an 0
, : ‘ 4:4 G ; Hy
(1) a,+a b, for all m<n; . "
' _ b

(2) b ~a,,b, for all m<n; ‘ POT |Hn
(3) b_~a. for all : | - * Qs

3) by~ay or all neW. ... Qdiagram 2

We denote by G _, H e, o

n? Gnr Hy the following graphs:

G, = Gh;ﬁ%ﬂ?f"’an}u {b1,....,bn3];
H_ := GHO[{a1,..,,an+1’]u{b1,.-...,bn}];
AT Y S |
HO := GHO[{aZ,...,an+1‘§ufb'1,....,bn?]]
Clearly, G, = Hg and H = Qg .

Remark: Let G be a non-trivial graph such that G and G are con=
nected: P4§? G 1mplles GHJ$ Gf
Thus, Kelly's example is the minimal model for his case.

Apart from this observation the result subsumes all finitary

proofs.




proof of the remark:

Since §4 = P, we have P, G. of course,'P3§'G’ since G and G
vare’cohnected. et G f@,b,c] = P3 with a~c~ b be giveﬁ..ihen
a~+c, bc in G, and we choose a shortest path (in G) from

¢ to b. Since P4§(a; it is of the form c~e ~b with a~e in G.
G[a,b,c,e] %G shows G [a,c,e] = E <L G.

1'\
Assume Hn (see diagram 4) £ G. Since G is connected, we have
a path an+,|~b +1~b in G. Let ge {b.; j<& nju iaj;jéns .

If bn+1A¢g, then G[én+1’ el ? n,g} =P 4.G, a contradiction.

Thus, bn 8 for all of the above g Hence, G[ﬁa .; jén+01
= G,,486G. Then Gn+1i— Hg+1 < T . Since T is connected, we have

a path of length %, say b ~ 3, ~ 3 from b to a

n+1 n+2 n+1? n+1 n+1
in G. 4s avove, Sffys semedfofny; j-sn+1j]=GO £ G.

n+1
_-..O

Hence, Gn+1

= H1+1‘<G- By our construction, H $H .36,

n+1
Thus, G g =U(Hn;new) £G. ' _ g.e.d.
) , : —
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