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0. Introduction

A tolerance relation © on a lattice L is a reflexive and symmetric binary relation satisfying

the substitution property.

In 1982, G. Czédli [1] proved that, for a lattice L and a tolerance relation ©, the maximal
©-connected subsets of L form a lattice. He considered lattices as algebras of type (2,2)
and gave an algebraic proof. In Section 1, we investigate tolerances from the point of view
of partial ordering in detail; in particulaf, we give an order-theoretical proof of Czédli’s
result. Our proof avoids Zorn's a?ciorn needed by Czédli. Some results on ©-block fixing

sets and consequences thereof are added.

Tolerances can be viewed as quotients of congruences in a natural way. Using this fact,
we extend the Second Isomorphism Theorem from congruences to tolerance relations in

Section 2.

In connection with the extended Second Isomorphism Theorem, a question on the product
of lattice varieties arises naturally. In Section 3 we answer it partially and illustrate the

situation with examples.

* The research of both authors was supported by the NSFRC of Canada




.1. The lattice /O

For concepts and notations not defined in this paper, see G. Gratzer [1].

Let L = (L; <) be a lattice and © a tolerance on L. 28y (z,y € L) denotés, as usual,
that (z,y) € © holds; also, H18H, (H;,H, C L).denotes that 28y holds for every
z€e€ Hy,ye H,.

" The following two lemmata are useful in many situations.

Lemma 1: XYYy
Let 2 < 2’ and y < ¢’ be elements of L Q
with 2/©z, y'Oy, 2z0y’, yOz'. Then (z' V¥')S(z A y).
x’ y’'
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Proof: ol LI =
X y
Oy, 202 imply that 28(2' Vv y').
Similarly, y©(z' V ¥’) holds. Thus, (z A y)B(2' V ¥'). O
, | XAy
q.e.d. - Diagram 1

Lemma 2: vy

Let z,y,2', ' be elements of L /O\
with z8z', yOy’ and z,y < 2’ A Y/, X'DO Cg y’
Then z8y and z/Oy’. g XAy O
]
[w] a
s a Xvy O
Proof: o o

\
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2Oz’ , yOy' imply that (z V y)8(z' V ¥).

/
\<

FromzVy<a',y <2'Vy', we conclude that 2/6y’. XAy

The second assertion follows analogously. ' Diagram 2




We use the following notations and terminology:

A subset H of L.is called © -connected if Oy holds for allz,y € H. If H is an arbitrary
subset of L, then we define Cy :={z € L;20h for all h € H}.

O’H is either empty or it is a convex sublattice of L. Cy is not necessarily © -connected.
We further define (H]:= {z € L;z < h for some h € H} and

[H) := {z € Liz > h for some h € H}. Finally, He := Cyg N (H] and H® :=Cy N [H).

Lemma 3:

Let H be a subset of the lattice L.

(1) He is a © - connected , convex, A-closed subset of L. If H is upward directed, then
Hg is either empty or it is a sublattice of L.

(2) H® is a ©-connected, convex, V-closed subset of L. If H is downward directed, then

H® is either empty or it is a sublattice of L.

" Proof:

We only prove (1). He is cléarly convex and A-closed. To show that it is ©-connected,
let z,y € Hg. There are z',y' € H withz < 2/, y <y, 202, y6s, 20y, ‘yey'.
By Lemma 1, 20y. If H is upward directed, we can choose 2/ =y’ and obtain zVy < 2/,
hence zV y € (H]. Since z Vy € Cy is clear, we get 2V y € Heg.

q.e.d.

Lemma 4:
Let H be a ©-connected subset of L.
(1) (He)e = H® and (He)e = Hg.

(2). H C Ho C (Ho)® =((Ho)®)o = ...... ,and (He)® is a ©-connected, convex

sublattice of L, if H # @.




Proof:

(1) is clear. As to (2): Lemma 3 yields that H C He- C (He)e - ((He)e )Ja. Let
z € ((Ho)®)o. Then ¢ <y > u < v for some y € (He)®,u € He and v € H. We claim
that z Au € He. Indeed, clearly, z A v < v, hence z Au € (H|. If h € H, then 26h.
‘Together with u©h we get (z A u)Oh; hence, zAu € Cy and z Au € Hg , ais claimed.
Now z € [He) N Cly = (He)®, and the first part of (2) has been proved. |

Hg is © - connected and A-closed, by Lemma 3. Hence, again by Lemma 3, { He|® is a

©-connected, convex sublattice of L.

q.e.d.

" The significance of {Hg)® comes from the next lemma.

Lermma 5:
Let X be a subset of L. The following two statements are equivalent:
(1) X is a maximal ©-connected subset of L.

(2) X = (Hg)® for some non-empty © -connected H C L.

Proof:

(1) implies (2) follows by taking H = X and by Lemma 4. In order to pros rethat (2)
implies (1), we choqse v € L with u©(He)®. .For every z € (He)®, we gt uAz €
| ((He)®)e. From uO((Hea)®)e, we get u € (({Ho)®)e)® = (He)®. Hence, ( Ho|® is a

maximal ©-connected subset of L.

q.e.d.




In view of the last lemma, we c‘all subsets of the form (Hg)® for ©- connécted
subsets H of L © —blocks of L.
The ©-blocks are convex sublattices of L. They enjoy a useful property with respect to

two natural preorderings on L. In order to prove it, we use the next trivial lemma.

Lemma 6:
For A,B C L, define AYB :={aVbja€ A,be B} and AAB :={aAbja€ A,be B}.

If A and B are ©-connected, then so are A ¥B and A AB.

Definition 1:

For A, B C L we define the following three binary relations:
(1) A B:& TForallbe B there‘is ana € A with a <b.
(2) A<oB:¢ Forallae A there isabe B witha<b.

(3) A< B:& Aoc<Band A S0B.

In general, the relations <o and o< are distinct. On convex subsets of L, the relation <

is a partial ordering. For ©- blocks, the three relations coincide:

Lemma 7:

If A, B are ©-blocks of L, then 4c< B, A <oB and A < B are equivalent.

Proof:

Assume that A <oB, i.e., for every a € A, there is a b € B with a < b. Hence,
a=aAbe AAB. Thus, A C A./QB. Since A AB is 6-c0nnlected by Lemma 6 and A
is a maximal ©-connected subset of L, we conclude that A = A AB. Hence, if 6 € B is

given, then b Aa € A for all a € A . Thus, Ae< B. The converse is analogous.

g.e.d.




Theorem 1 (see G. Czédli[1])
If © is a tolerance on the lattice L, then L/6, the set of ©-blocks, forms a lattice with
respect to the ordering <.

In addition, we have AV B = (AYB)® and AAB = (A AB)é forall A,B € L/G

Proof:

We prove that AV B exists and equals (A YB)®; the second fofmula follows by duality.
If C > A, B for a © -block C, then trivially C' > A YB, hence C-_>_<;(A VB)G. Assuming
that (A¥B)® Ihas been shown to be a ©-block, we are finished, since then C' > (4 ¥B)®
and, hence, (AVB)® = AV B.

Since (A YB)® is O-connected, we only have to.show that (AYB)® is a maximal
©-connected set. Let D D (A VB)e be a ©-connected subset of L. By Lema 6, DAA
and D AB are ©-connected sets. Since AY¥B C D, we obtain A C DAA and B C DAB
and, hence, A = DAA, B =DAB.Forde D,a€ A,b€ B, we get d/\a. €A, dAbEBRB
and d > (dAa)V(dAb) € A¥B. Now dOD implies that d©(4YB), hence 4 € (4YB)®.

Thus, D = (A YB)®, as claimed.

q.e.d.
The description of AV B and A A B in Theorem 1 can be generalized.

Remark to Theorem 1:

If Ay, A4, ....... ,An are ©-blocks, then 4; VA3 V...V A, = (A YA, V.. VA,,)e and

AT AAs A AA,={A RA AL AAL)e.



Proof:
(By induction on n) Forn =1,2 we'kn_ow the result. For n > 3 we obtain
AVaVAL VA, =((A1V...VA,_1) VA,)® =
((A; Y..VA4,_()® \VA,,)e (by the ipduction hypothesis) C ((A, V...Anl_l VYA,)®.
The maximality of A, V ...V 4, implies then that A; V...V A, = (4, ¥...VA,)8.

The second assertion follows by duality.

Cq.e.d.
We add a few observations.

If H C L is a non-empty, ©-connected subset of L, then both (He)® and (H®)e are

©-blocks containing H. As the next lemma shows, the first block is the smallest and the

second block is the largest ©-block containing H.

Lemma 8:
Let H C L be a non-empty, ©-connected set.
(1) H D 2 H is a ©-connected subset of L, then H® YD C H® and Hs AD C Hoe.

(2) If D is a ©-block with D 2 H, then (He)® < D < (H®)o.

Proof:

(1): Let z € H®VYD,i.e.,z = zVd for some 2 € H® and d € D. Then wehavez > 2> y

for some y € H and z0H (since z0H and dOH hold true). Thus, z € H®, and so

H® YD C H®. The proof of Hg AD C Hg is analogous.



(2): DS DA(H® YD) ¢ D AH® C D A(H®)e implies that D = D A(H®)e, ie.,

D < (H®)e. DC DY(Ho AD) C DVYHe C D Y(Ho)® implies D = D Y(Hg)®, i.e.,

- Definition 2:
If L is a lattice and © is a tolerance on L, then we call a 8-connected subset H of L a

O-block fizing set if there exists exactly one ©-block D with H C D.

Examples:

(1): If Ay, ....., A, are ©-blocks, then A, V...VA, and A, A...AA,, are ©-block fixing sets.

Let D D A; V...YA, be a ©-block, then D > 4; V..V A, = (4; V... Y4,)° holds.
)
If d € D, then d6(A, V... \YA,,) and there are a; € A; with d > a; V ... V a,; thus,

d€ (AL V...YA,)®. We obtain D C (A; V... YA,)® and therefore D = A; V ...V A,.

A dual argument shows that A; A...AA, is a ©-block fixing set.

q.e.d.

(2): If A, B, C are ©-blocks, then (A ¥B) AC is not, in general, a ©-block fixing set. The
following example illustrates the claim:
The 8-element-lattice L of diagram 3 has a tolerance ©

which is given by the five &-blocks A,B,C, D, E.

Obviously, (4 YB) AC = {y}, but {y} is not a 8-block fixing set. Diagram 3




B:fHCLisa 8-c0nnected set, then H® and Hg are ©-block fixing sets.

Proof:

If D D H® is a ©-block, then (H®)s = ((H®)s)® < D < ((H®)®)s = (H®)g, by
Lemma 8; thus, D = (H®)e, and H® is a ©-block fixing set. Dually, Hg is a

©-block fixing set as well.

q.e.d.

Theorem 2:
If H C L is a ©-connected set, then the following two statements are equivalent:
(1) H is a ©-block fixing set.

(2) (He)® = (H®)e.

Proof:

(1) clearly implies (2), and Lemma 8 shows that (2) implies (1).

q.e.d.

For H C L, let [H] denote the sublattice of L generated by H.

Lemma 9:
Let © be a tolerance on the lattice L.

(1) X,Y € L and X <oV C [X] imply Xe C Ye.

(2) If X,Y are 6-connecte_d subsets of L with Xe C Yo , then (Xg)® = (Ys)®.
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(1): Choose a € Xo. Then a©®X holds and there is some z € X with a < z. We choose
y € Y with 2 < y, hence a < y. a®X implies a8[X]; thﬁs, we have a8Y . We conclude
a€Yes.

(2): Xo and Yo are 8-block fixing sets (see Example 3 preceeding Theorem 2). Because
of Xo C (Xo)® and Xo C (Ys)® we conclude (Xo)® = (Yo)®.

g.e.d.

Lemma 9 is the crux of the next theorem.

Theorem 3:
Let L be a lattice and X = {z1,......zn} € L,n € IV, a ©-connected finite subset of L.

Then (Xg)® = ({z1 V...V zn}e)®.

(In words: All finitely generated ©-blocks are principal ©-blocks.)

Proof: -°
By Lemma 9, X <o{z; V...V z,} C [X] implies Xo C {2, V ...... V z,}e ; thus,
(Xe)® = ({z1V...V2,}6)®
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2. Quotients of Tolerances and the Second Isomorphism Theorem

Let L be alattice, ConL the lattice of congruences on L and TolL the lattice of tolerances
on L.

If © and $ are tolerances on L, then we define the binary relation ©/® on L/®

as follows: A®/®B holds if and only if there are a € 4,5 € B with a©b.

If © and ® are congruences and © > &, then ©/% is a congruence on L/®, and the well-
known Second Isomorphism Theorem states that L/ = (L/®)/(8/®)holds. In general,
©/® is only a tolerance on L/®. We will show that ev-ery tolerance on an arbitrary lattice
L' is of the form ©/® for congruences 6 and ® on a suitable lattice L.

Thus, let L' be a latﬁce and let ©' be a tolerance relation lon L.

We define the lattice L as sublattice of the direct product L' x (L//©’) on the carrier set
L= {(a,A);A€L’'f6' anda€ A}. If 7y : L — L' and 79 : L — L’/©’ are the re-
strictions of the two ca.nonical projecﬁions from L' x (L'/®’) onto L’ and L' /&', resp., then
T gnd 7o are lattice epimorphisms. We define © := kernel(r;) and & := kernel{r().
The homomorphism theorem yields L/® = L', and the corresponding isomorphism iden-
tifies a € L' with 7{'(a) € L/®.

Under this identification we get that L' = L/® and &' =6/$.

Definition 3:

Let L' be a lattice and ©' a tolerance on L’. The lattice L and the congruences ©, &

just constructed are called the lattice, resp. the congruences associated with (L', ©').
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We summarize:

Theorem 4:
Let L"be a lattice, © a tolerance on L’. Let L be the lattice and 6, ® the congruences
associated with {L’,©'). The canonical identification makes the following two statements

true:

() L/je=L' (i)6/o=6"

In case of a congruence &', weget ® =w,L =L’ and © ='8’ in Theorem 4. In case of a
tolerance ©', we have no natural correspondence between L/6 and (L/®)/(6/®),but a
suitable modification yields a generalized version of the Second Isomorphism Theorem.
In order to derive the result, we find another way of interpreting a tolerance &' on é

lattice L’. This interpretation associates &’ on L’ with #o® o ® on L.

Lemma 10:
Let L be a lattice and ©, ® tolerances on L. Then the following are true:

PoOcPeTollL, O PoBQoPand PoOoP/P=6/PeTolL/d.

An Example:

Quite different from the situation for congruences, not every tolerance © on a lattice L
is of the form ® o Z o ® for suitable tolerances ,2. E.g., the tolerance © on the lattice

L of Diagram 3 is not of that kind.

Theorem 5 (The Second Isomorphism Theorem):
Let L be a lattice, ® € ConL and © € TolL.

Then L/30@o® = (L/2)/(8/2) = (L/2)/(®0608/d).
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Proof: ©
Define L' := L/®, &' :=6/® and let 7 : L — L’ be the natural projection. If we
extend 7 to the respective powersets in the canonical way, then we obtain the mapping
7 : Pot{L) — Pot(L') and, by restriction, 7 : L/® 00 o0& — Pot(L').

(i) Claim: A € L/® o © o ® implies that 7(A) € L'/8' . Some @ -block

Assume that a® o © o $4, 1.e., adPzOyPbH (21§
for suitable z € [a]®,y € [b]® (a,be L).

By the definition of ©', we get ([a]®)O’([6]®}. [>J2

A}

Thus, 7“r(A.) is ©'-connected. Diagfaﬁ 4

To show the maximality of 7(A) with respect to ©'-connectedness, let [z]® € L’ be an
element with ([z]®)©'{[a]®) for all a € A. Thus, for every a € A, there are elements
2’ € [z]®, o' € [a]® with 2'Oa’. We conclude that 2®2'Ga’®a, i.e., 2d o ©o $a, and,

hence, o @ o $A. We deduce that z € A and, hence, [z]|® € 7(A). Thus, 7(A) is a

&'-block.
(ii) Claim: 4 € L'/®’ implies that 771 (A} € L/P B o D .

Let A :=7"! (A). Clearly, 7{A) = A. Choose a,b€ A arbitrarily.

Then [a]®, [6]® € A implies that ([a]$)6([6]®); thus, a®zOyPb holds for suitable

2z €[a]®,y e [b®, ie., we have a® o o ®b. Thus, A is ® 0 © o d-connected.

We embed A in some ¢ ° © o &-block A* and obtain #(A) = A C #(A*). Since A and,
by (i}, #(A*) are ©'-blocks, we obtain 4 =:7T'(A*) and, hence, A* C 77 !(4) = A.

Thus, A = A*.

(i), (ii) and the surjectivity of » immediately imply (iii) and (iv) below.
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iii) #7!(7(A)) = A holds for all $ 08 o ®-blocks A of L.
{iv) #(# 71(A)) = A holds for all ©'-blocks A of L'.

{v) Statements (i) to (iv) prove that the restriction 7 : L/‘I> 08P — L'/6 is a

bijection. Finally, we show that 7 is even a lattice-homomorphism :

771 {A) ={a € L; [a]®€ A} holds for every A € L'/®'. If, therefore, A, B € L' /6 are’
.arbitrarily chosen, then we get :
77 1{AVvB) ={zeL;[z]®e€ AV B}
2{aVb; a,beL and [a]® € A, [b|® € B}
= #-1(4) V2-1(B).
The last set is a ® 0 © o $-block fixing set. Thus, there is éxactly one ® o © o - block
of L containing #~1(A) Y7 ~1(B), namely 7~ 1(4) v-7-1(B). Thus, we proved that
7 HAV B) | = #71(A) Vv 7~ 1(B) holds.
Similarly, 7"!1(AAB) = #7~1(A)A 7~ !(B) holds.

g.e.d.
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8. Products of lattice varieties

If V and W are two varieties of lattices, then the product V o W consists of all lattices
L for which there is some congruence © satisfying the following two properties:

(i) All 8-blocks of L are in V,

(i) LjocwW.

We combine these two conditions by saying that © establishes that L is in Vo W,
G.Gratzer and D.Kelly 1] give an overview of these variety products.

V o W is not, in general, a variety. Howevef, one knows that the variety generated by
Vo W is H(V o W}, the class of all homomorphic images of lattices mV oW,

R. N. McKenzie conjectured that the variety H(V o W) can be characterized as follows:
"A lattice L' is contained in H(V o W) if and only if there is a tolerance ©' on L’ such

that all ©'-blocks of L’ are in V and L'/8' € W.”

The next theorem answers one direction of the conjecture in the affirmative.

Theorem 6:
Let V and W be varieties of lattices.
Let L’ be a lattice with a tolerance &’ that satisfies the following two properties:

(i) All ©'-blocks are in V, (ii) L'/&' € W.

Then L' € H(V o W).
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Proof:
Let L be the lattice and let ©, & be the congruences associated with {L',®’). Of course, |
ONé=wand L/6=L'/6" Thus, L/O€W.Ifr:L — L' andmy:L — L'/&'
are the projections yielding ® and ©, then the © -blocks of L are of the form 7r3—1 (Ao) for .
fixed Ag € L' /€. 75'(40) = {(a,40); a € Ao} = Ay shows that 75 !(4p) € V holds.
Thus‘, O establishes that L € Vo W. The projection 7, yields L’ € H(L) C H{V o W).

q.e.d. .

In order to tackle the opposite direction of the abové conjecture, we begin with some
fixed lattice L' €H(VoW). ' cH(VoW)means L' = L/® for some L € VoW and
a suitable congruence ® on L. L € Vo W is established by some congruence © on L.
Then‘ ©' ;= ©6/® is a tolerance on L', and McKenzie’s conjectqre seems to be based on
the hope that (i) all ©'-blocks of L’ zire in V and (ii) L' /&' € W is always true.

The next and last theorem states that the ﬁrst assertion is valid. An example will show
that the second one is, in general, not true. This suggests that the answer to

McKenzie’s conjecture is in the negative.

Theorem 7:
Let V, W be llattice varieties and assume that L' € H(V o W).
Then L’ = L /® for some L € VoW and some congruence ® on L. Let © be a congruence

on L establishing L € Vo W. If ©' := 8/, then all ©'-blocks of L’ are in V.
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Proof:

We will show that for every finite ©'-connected set {{ag]®, ....,[2n]®} of ®-blocks there is
a ©-connected subset {ug,....,un} of L with u; € [a;]® . This suffices, since then every
©’-block satisfies every identity which is satisfied by every ©-block.

Since tolerance blocks are sublattices, we may assume that [ao]® < [a,']<I> holds for all

By the definition of ©, we find suitable 4, € [a;]® and ab € [20]® with al < b; and af)éb,'
(t=1,2,..,n). Let a:=alVvadv.... Vaf e [ao]®-

Due to 5;0a} and a{Bal), we get (b; V 2)Oa and b; V aé [ai]® for ;= 1,2,..n.

With ug :=a and u; :=b; V a,1=1,2,...,,n, our claim has been proved.

g.e.d.

An Example:

We modify an example of G. Cz‘édli[l] to show that, under the hypotheses of

Theorem 7, we cannot, in genéral, conclude that L'/8' € W.

To do so, we describe a distributive lattice L and two congruences ©,® on L (with

©ON® =w ) such that L/®oOoP (= (L/@)/(G/@), by Theorem 5) is not distributive.

Let Ls be the 5-element lattice on {1,2,3,4,5} with1 <2 <3 <4 < 5.

Then L := (Ls x Ls) \ {(4,1),(5,1)} € D (variety of distributive lattices).
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On Ls we define the congruences ®;, ®;, 01,83 via the corresponding congruence blocks

listed below:

& — = = ~{{1,2},{3,4), {5})
By - — - —{{1},{2,3}, {4}.{5))
01— = — ~{{1},{2}, {31.{4,5})
©: - — - —{{L,2}, {3}, {1,5)}

Then &, x®y, ©;x8; € Con{LsxLs), and we define & := P x P2, ©:=0;x8,|;.
Diagram 5 shows the ©-blocks (indicated by bold borderlines) and the ®-blocks (indicated

by normal border lines) on L.

Diagram 5
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Diagram 6 shows the ® 0 © o ®-blocks on L. We recognize that L/® 0 © 0 ® = N; ¢D.

Diagram 6

Note: The conjecture referred to in this paper has in the meanwhile been answered in

the negative by E. Fried and G. Gratzer|1].
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