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O. Introduction

A tolerance relation e on a lattice L is a reflexive and symmetrie binary relation satisfying
- "

the substitution property.

In 1982, G. Czedli [11proved that, for a lattice Land a tolerance relation 8, the maximal

8.connected subsets of L form a lattice. He considered lattices as algebras of type (2,2)

and gave an algebraic proof. In Section 1, we investigate tolerances from the point of view

of partial ordering in detail; in particular, we give an order-theoretical proof of Czedli's

result. Our proof avoids Zorn',s axiom needed by Cz edli. Some results on' 8. block fixing

sets and consequences thereof are added.

Tolerances can be viewed as quotients of congruences in a natural way. Using this fact,

we extend the Second Isomorphism Theorem from congruences to tolerance relations in

Section 2.

In connection with the extended Second Isomorphism Theorem, a question on the product

of lattice varieties arises naturally. In Section 3 we answer it partially and illustrate the

situation with examples.

• The research of both authors was supported by the NSFRC of Canada
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1. The lattiee LI8. ,

For concepts and notations not defined in this paper, see G. Grätzer [1].

Let L = (Li ~) be a lattice and 8 a tolerance on L. x8y (x, y E L) denotes, as usual,

that (x,y) E 8 holdsj also, H18H2 (H1,H2 ~ L) denotes that x€>y holds for every

The following two lenunata are useful in many situations.

Lenuna 1:

Let x ~ x' and y ~ y' be elements of L

with x'ex, y'8y, x8y', y8x'. Then (x' V y')e(x 1\y).

x8y' , xex' imply that xe (x' V y').

Similarly, y8(x' V y') holds. Thus, (x 1\y)8(x' V y').

Lemma 2:

Let x, y, x', y' be elements of L

with xex', y8y' and x, y ~ x' 1\y',

Then x8y and x' 8y' .

x8x',y8y' imply that (x Vy)e(x' V y').

From x V y ~ x', y' ~ x' V y', we conclude that x'8y'.

The second assertion follows analogously.

Diagram 1

X'~ y'

X"" Y

Diagram 2
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We use the following notations and terminology:

A subset H of L is called 8 -connected if x8y holds for all x, y EH. If H is an arbitrary

subset of L, then we define CH :={x E Ljx8h for all h EH}.

CH is either empty or it is a convex sublattice of L. CH is not necessarily 8 .connected.

We further define (Hj := {x E Lj x ~ h for some hE H} and

[H) := {x E L: x ~ h for some hE H}. Finally, He := CH n (Hj and He := eH n [H).

Lemma 3:

Let H be a subset of the lattice L.

(1) He is a 8 . connected , convex, I\.closed subset of L. If His upward directed, then

He is either empty or it is a sublattice of L.

(2) He is a e.connected, convex, Y.closed sub set of L. If H is downward directed, then

He is either empty or it is a sublattice of L.

Proof:

We only prove (1). He is clearly convex and I\.closed. To show that it is 8.connected,

letx,yEHe.Therearex',y'EHwithx~x', y~y', x8x', y8x', x8y', y8y'.

By Lemma 1, x8y. If His upward directed, we can choose x' = y' and obtain x Yy ~ x',

hence x Y y E (Hj. Since x Y y E CH is clear, we get x V y EHe.

q.e.d.

Lemma 4:

Let H be a 8-connected subset of L.

(1) (He)e = He and (He)e = He.

(2) H ~ He ~ (He)e = ((He)e)e = ,and (He)e is a 8.connected, convex

sublattice of L, if H 1= 0.
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(1) is clear. As to (2): Lemma 3 yields that H ~ He ~ (He)e ~ ((He)e )6' Let

x E ((He )e)e. Then x ~ y ~ u ~ v for some y E (He)e, u EHe and v EH. 'Ve claim

that x /\ u EHe. Indeed, clearly, x /\ u ~v, hence x /\ u E (Hj. If h EH, th.en x8h.

Together with ueh we get (x /\ u)eh; hence, x /\ u E CH and x 1\ u E He , alS claimed.

Now x E [He) n CH a = (He)e, and the first part of (2) has been proved.

He is e -connected and I\.closed, by Lemma 3. Hence, again by Lemma 3, (Hele is a

8-connected, convex sublattice of L .

. The significance of (He)e comes from the next lemma.

Lemma 5:

Let X be a subset of L. The following two statements are equivalent:

(1) Xis a maximal e.connected subset of L.

(2) X = (He)e for some non-empty 8 -connected H ~ L.

Proof:

(1) implies (2) follows by taking H = X and by Lemma 4. In order to pro, ,etbt (2)

implies (1), we choose u E L with u8(He)e. For every x E (He)e, we gl ~t u/\ x E

((He)e)e. Fromu8((He)e)e, we get u E (((He)e)e)e = (He)e. Rence, (Hele is a

maximal e'connected subset of L.
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In view of the last lemma, we call subsets of the form (He) e for 8. connected

subsets H of L 8 -. blocks 0/ L.

The 8.blocks are convex sublattices of L. They enjoy a useful property with respect to

two natural preorderings on L. In order to prove it, we use the next trivial lemma.

Lemma 6:

For A, B ~ L, define A VB := {a vb; a E A, bEB} and A AB := {a /\ b; a E A, bEB}.

If A and B ~re 8.connected, then so are A ¥Band A AB.

Definition 1:

For A, B ~ L we define the following three binary relations:

(1) A~ B:# For all bEB there is an a E A with a ~ b.

(2) A ~B:# For all a E A there is ab E B with a ~ b.

(3) A ~ B:# A~ Band A ~B.

In general, the relations ~ and ~ are distinct. On convex subsets of L, the relation ~

is a partial ordering. For e. blocks, the three relations coincide:

Lemma 7:

If A, B are 8.blocks of L, then A~ B, A ~B and A ~ Bare equivalent.

Proof:

Assume that A ~oB, i.e., for every a E ..'1, there is a bEB with a .~ b. Hence,

a = a /\ bE A ~B. Thus, ..'1~ ..'1~B. Since ..'1AB is 8'connected by Lemma 6 and A

is a maximal e.connected subset of L, we conclude that ..'1= ..'1AB. Hence, if bEB is

given, then b Aa E ..'1£or all a E A . Thus, A~ B. The converse is analogous.

g.e.d.
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Theorem 1 (see G. Czedli[l])

If 8 is a tolerance on the lattice L, then L/8, the set of 8.blocks, forms a lattice with

respect to the ordering ~.

In addition, we have A V B = (A ¥B)6 and A AB = (A AB)e for all A, BE £/8.

Proof:

We prove that A.VB exists and equals (A ¥B)6; the second formula follows by duality.

If C ~ A,B for a 8 .block C, then trivially C ~A ¥B, hence C~(A ¥B)6. Assuming

that (A.VB)6 has been shown to be a 8.block, we are finished, since then C ~ (.l~VB)6

and, hence, (A ¥B)6 = A V B.

Since (A ¥B)6 is 8.connected, we only have to show that (A ¥B)6 is a maximal

8.connected set. Let D ~ (A ¥B)6 be a 8.connected subset of L. By Lemma 6, D AA

and D AB are 8.connected sets. Since A VB ~ D, we obtain A ~ D AA and B ~ D AB

and, hence, A = DI\.A, B = DIJ\B. For d E D, a E A, bEB, we get dAa E A, dAb E B

and d ~ (dAa) V (dA b) E A VB. Now d8D implies that d8(A \fB), hence d E (AV B)8.

Thus, D = (A ¥B)6, as claimed.

g.e.d.

The description of A V B and A A B in Theorem 1 can be generalized.

Remark to Theorem 1:

If Al, A2, ••••••• , An are 8.blocks, then Al V A2 V .•.• V An = (Al ¥A2 ¥ ... ¥An)e and

Al A A2 A .•• A An = (Al AA2 A .... AAn)e.
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Proof:

(By induetion on n) For n = 1,2 we know the result. For n ~ 3 we obtain

Al V ••.. V An-1 V An = ((Al V .•• V An_dVAn)e =

((Al V ... VAn-de VAn)e (by the induetion hypothesis) ~ ((Al V An-1 VAn)e.

The maximality of Al V .•. VAn implies then that A1V •.• V An = (Al V VAn)e.

The second assertion follows by duality .

. g.e.d.

We add a few observations.

If H ~ L is a non.empty, e-conneeted subset of L, then both (He)e and (He)e are

8-blocks containing H. As the next lemma shows, the first block is the smallest and the

second block is the largest 6.block containing H.

Lemma 8:

Let H ~ L be a non-empty, 8-connected set.

(1) If D;;2 His a e-conneeted subset of L, then He VD ~ He and He AD ~ He.

(2) If Dis a 8.block with D;;2 H, then (He)e ~ D ~ (He)e.

Proof:

(1): Let x E He 'UD, i.e., x = z Vd for some zEHe and d E D. Then w,ehave x ~ z ~ y

for some y E Hand xeH (since zeH and deH hold true). Thus, x E He, and so

He VD ~ He. The proof of He AD ~ He is analogous.
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(2): D ~ D ~(He ¥D) ~ D ~He ~ D ~(He)e implies that D = D ~(He)e, i.e.,

D ~ (He)e. D ~ D¥(He AD) ~ D¥He ~ D¥(He)e implies D = D¥(He)e, i.e.,

D~(He)e.

Definition 2:

If L is a lattice and 8 is a tolerance on L, then we call a 8.connected subset H of L a

6-block fi:ting set if there exists exactly one 8.block D with H ~ D.

Examples:

.(11 If Al, ..... ,An are e.blocks, then Al V ... 'fAn and Al I\ ... 'AAn are e.block fixing sets.

Let D ~ Al 0/ ... 0/An be a e.block, then D ~ Al V ..• V An = (Al 0/ ... o/An)e holds.
)

If d E D, then d8(Al ¥...¥An) and there are ai E Ai with d ~ al V ... V an; thus,

d E (Al ¥ ...¥An)e. We obtain D ~ (Al ¥ ...¥An)e and therefore D = Al V ... V An'

A dual argument shows that Al A ... AAn is a 8.block fixing set.

(2): If A, B, C are 8.blocks, then (.'1 'VB) I\c is not, in general, a e.blbck fixing set. The

following example illustrates the claim:

The 8.element.lattice L of diagram 3 has a tolerance e

which is given by the five 8.blocks A,B,C,D,E.

Obviously, (.'1¥B) Ac = {y}, but {y} is not a 8.block fixing set.

c

B

Diagram 3

A
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U1If H ~ L is a e.connected set, then He and He are e.block fixing sets.

Lemma 8; thus, D = (He)e, and He is a e.block fixing set. DuaHy, He is a

e.block fixing set as weH.

Theorem 2:

If H ~ L is a e.connected set, then the foHowing two statements are equivalent:

(1) H is a e.block fixing set.

(1) clearly implies (2), and Lemma 8 shows that (2) implies (1).

For H ~ L, let [H] denote the sublattice of L generated by H.

Lemma 9:

Let e be a tolerance on the lattice L.

,
(1) X,Y ~ Land X ~Y ~ [X] imply Xe ~ Ye.

(2) If X,Y are e.connected subsets of L with Xe ~ Ye ,then (Xe)e = (ye)e.
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Proof:

(1): Choose a E Xe. Then a8X holds and there is some x E X with a ~ x. We choose

y E Y with x ~ y, hence a ~ y. a8X implies a8[X]; thus, we have a8Y. We conclude

aE Ye.

(2): Xe and Ye are e.block fixing sets (see Example 3 preceeding Theorem 2).. Because

of Xe ~ (Xe)e and Xe ~ (Ye)e we conclude (Xe)e = (Ye)e.

g.e.d.

Lemma 9 is the crux of the next theorem.

By Lemma 9, X ~O{Xl V ..••.•• V xn} ~ [X] implies Xe ~ {Xl V ••.•.• V xn}e thus,

(Xe)e = ({Xl V •.•.• V xn}e)e.

g.e.d.
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2. Quotients of Tolerances and the Second Isomorphism Theorem

Let L be a lattice, ConL the lattice of congruences on Land TolL the lattice oftolerances

on L.

If 8 and <Pare tolerances on L, then we define the binary relation 8/<P on L/~

as folIows: A.8/~B holds if and only if there are a E A,b E B with a8b.

If e and <Pare congruences and 8 ~ <P,then 8/~ is a congruence on L/~, and the weIl.

known Second Isomorphism Theorem states that L/8 ~ (L/~)/(8/~) holds. In general,

e/1> is only a tolerance on L/ <P. We will show that every tolerance on an arbitrary lattice

L' is of the form e/~ for congruences 8 and ~ on a suitable lattice L.

Thus, let L' be a lattice and let 8' be a tolerance relation on L'.

We define the lattice L as sublattice of the direct product L' x (L' /8') on the carrier set

L:= {(a,A);A E L'/8' and a E A}. If?r1 : L ---+ L' and?r2 : L -- L'/6' are the re.

strictions of the two canonical projections £rom L' x (L' /8'1 onto L' and L' /8', resp., then

Jr1 and ?r2 are lattice epimorphisms. We define 8 := 'kernel(1T2) and ~ := kernel(?rd.

The homomorphism theorem yields L/~ ~ L', and the corresponding isomorphism iden-

tifies a E L' with ?r11(a) E L / ~.

Under this identilication we get that L' = L/~ and 8' = 8/<P.

Definition 3:

Let L' be a lattice and 8' a tolerance on L'. The lattice Land the congruences e, <P

just construrted are called the latt£ce, resp. the congruences associated W$'th (L', 8').
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We summarize:

Theorem 4:

Let L' be a lattice, 8' a tolerance on L'. Let L be the lattice and 8, oI>the congruences

associated with (L', 8/). The canonical identification makes the following two statements

true:

(i) L/oI>= L', (ii)8/oI> = 8'.

In case of a congruence 8', we get oI>= w, L = L' and 8 = 8' in Theorem 4. In case of a

tolerance 8', we have no natural correspondence between L/8 and (L/oI»/(8/oI», but a

suitable modilication yields a generalized version of the Second Isomorphism Theorem.

In order to derive the result, we find another way of interpreting a tolerance 8' on a

lattice L'. This interpretation associates 8' on L' with oI>0 e 0 oI>on L.

Lemma 10:

Let L be a lattice and 8, oI>tolerances on L. Then the following are true:

1>0 e 0 oI>E TolL, e ~ oI>0 e 0 1>and oI>080 oI>/oI>= e/oI> E TolL/oI>.

An Example:

Quite different £rom the situation for congruences, not every tolerance 8 on a lattice L

is of the form oI>0 S 0 oI>for suitable tolerances oI>,S. E.g., the tolerance 8 on the lattice

L of Diagram 3 is not of that kind.

Theorem 5 (The Second Isomorphism Theorem):

Let 'L be a lattice, oI>E ConL and 8 E TolL.

Then LfoI> 0 8 0 1> "" (LfoI»/(8/oI» = (LfoI»/(1> 0 e 0 oI>/1».
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Define L' := L / <f>, 8':= 8/ <f>and let if' : L --+ L' be the natural projection. If we

extend7r to the respective powersets in the canonical way, then we obtain the mapping

Assurne that a<f>080 <f>b, i.e., a<f>x8y<f>b

for suitable x E [al<f>,YE [bl<f> (a,bEL).

By the definition of 8', we get ([al<f»8'([bl<f».

ral~

Thus, ?f(A) is 8'.connected. Diagram 4.

To show the maximality of ?f(A) with respect to 8'.connectedness, let [xl<f>E L' be an

element with ([xl<f»8'([al<f» for all a E A. Thus, für every a E A, there are elements

x' E [xl<f>, a' E [al<f>with x'8a'. We conclude that x<f>x'8a'<f>a, i.e., x<f> 080 4>a, and,

hence, x<f> 080 4>A. We deduce that x E A and, hence, [xl<f>Eff(A). Thus, r,(A) is a

8'.block.

ilil Claim: A E L' /8' implies that r,-I (A) E L /<f>0 8 0 'p

Let A:= jf-I (A). Clearly, ?f(A) = A. Choose a, b E A arbitrarily.

Then [al4>, [bl4>E A implies that ([al<f»8'([bl4»; thus, a4>x8y<f>b holds for suitable

xE [al4>, y E [bl<f>,i.e., we have a4> 0 8 0 <f>b. Thus, A is 4>0 80 <f>-connected.

We embed A in some 4>0 e 0 <f>.block A * and obtain r.( A) = A ~ ff (A *). Since A and,

by (i), ?f(A*) are e'-blocks, we obtain A = ff(A*) and, hence, A* ~ lj'-l(A)= A.

Thus, A = A*.

(i), (ii) and the surjectivity of 7i immediately imply (iü) and (iv) below.
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(iiil jf-l(ff(A))= A holds for all 4>08 0 4>.blocks A of L.

liv) jf(ff-I(A)) = A holds for all 8/.blocks A of L'.

b:l Statements (i) to (iv) prove that the restriction ff : L/4> 0 e 0 4> -'-+ L'/8' is a

bijection. Finally, we show that jf is even a lattice.homomorphis~ :

ff-l (A) = {a E L; [aJ4>E A} holds for every A E L' /8/. If, therefore, A, B E L' /8/ are'

arbitrarily chosen, then we get :

ff-I(A VB) = {x E L;[xJ4> E A V B}

~ {aVb; a;bEL and [aJ4>EA,[bJ4>EB}

= ff-I(A) ¥ff-I(B).

The last set is a 4>080 4>.block fixing set. Thus, there is exactly one 4>0 e 0 4>.block

of L containing jf-I(A) ¥ff-I(B), namely ff-I(."1) Vjf-I(B). Thus, we proved that

jf-I(."1VB) = ff-I(A)Vjf-I(B)holds.

Similarly, jf-l (."1 A B) = jf-l (A) A jf-l (B) holds.

g.e.d.
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3. Produds of lattice varieties

If V and Ware two varieties of lattices, then the product V 0 W consists of alliattices

L for which there is some congruence e satisfying the following two properties:

(i) All e.blocks ofL are in V,

(ii) L/e E W.

We combine these two conditions by saying that e eBtabliBheB that L t'B t'n V 0 W.

G.Grätzer and D.Kelly [1] give an overview of these variety products.

V 0 W is not, in general, a variety. However, one knows that the variety generated by

V 0 W is H (V 0 W), the dass of all homomorphic images of lattices in. V 0 W.

R. N. McKenzie conjectured that the variety H (V 0 W) can be characterized as follows:

"A lattice L' is contained in H (V 0 W) if and only if there is a tolerance e' on L' such

that all 8'.blocks of L' are in V and L' /8' E W."

The next theorem answers one direction of the conjecture in the affirmative.

Theorem 6:

Let V and W be varieties of lattices.

Let L' be a lattice with a tolerance 8' that satisfies the following two properties:

(i) All e'.blocks are in V, (ii) L'/8' E W.

Then L' E H (V 0 W).



.16.

Let L be the laUice and let e, <Pbe the congruences associated with (L', 8'). Of course,

e n <P= wand L/8 ~ L' /8'. Thus, L/e E W. If JTI : L --t L' and JT2 : L --t L' /8'

are the projections yielding <Pand e, then the e .blocks ofL are of the form JT 21 (Ao) for

fixed Ao E L'/e'. ;Til.(Ao)'= {(a,Ao); a E Ao} ~Ao shows thatJTil(Ao) E V holds.

Thus, e est:ablishes that L E V 0 W. The projection JTI yields L' EH (L) ~ H (V 0 W).

In order to tackle the opposite direction of the above conjecture, webegin with some

fixed lattice L' E H(Vo W). L' E H(Vo W) means L' ~ L/<p for some L E VO Wand

a suitable congruence <Pon L. L E V 0 W is established by some congruence e on L.

Then e' := e/<Pis a tolerance on L', and McKenzie's conjecture seems to be based on

•
the hope that (i) all e'.blocks of L' are in V and (ii) L' je' E W is aIways true.

The nextand last theorem states that the first assertion is valid. An example will show

that the second one is, in generaL not true. This suggests that the answer to

~fcKenzie's wnjecture is in the negative.

Theorem 7:

Let V, W be llattice varieties ayd assume that L' EH (V 0 W).

Then L' ::: L lif! for some L E V 0 Wand some congruence <Pon L. Let e be a congruence

on L establishing L E V 0 W. If e':= 8/<p, then all e'.blocks of L' are in V.
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Proof:

We will show that for every finite e/.connected set {[aoJ4>, .... , [anJ4>} of 4>.blocks there is

a 8.connected subset {uo, .... ,Un} of L with Ui E [a.-J4> . This suffices, since then every

e/.block satisfies every identity which is satisfied by every e.block.

Since tolerance blocks are sublattices, we may assume that [ao]4> < [a.-J4>holds for all

i=I,2, ...,n.

By the definition of e',we find suitable b, E [a.-J4>and ab E [ao]4>with ab < biand ab8bi

(i = 1,2, ,n). Let a := ab V a6 v V a8 E [ao]4>.

Due to biE>ab and abeah, we get (bi V alBa and b, Va E [a.-J4>for i= 1,2, ... n.

With Uo := a and '!L,' := bi V a,i = 1,2, ... , n, our claim has been proved.

An Example:

We modify an example of G. Czedli[l] to show that, under the hypotheses of

Theorem 7, we cannot, in general, conclude that L' /8' E W.

To do so, we describe a distributive lattice Land two congruences e,4> on L (with

e n 4>= w ) such that L/4> 0 e 04> (s::: (L/4»/(8/<t?), by Theorem 51 is not distributive.

Let L5 be the 5.element lattice on {1,2,3,4,5} with 1 < 2< 3< 4 < 5.

Then L..:= (L5 x L5) \ {(4, 1), (5, I)} E D (variety of distributive latticesl.
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On L5 we define the congruences ~1, ~2, e1, 62 via the corresponding congruence blocks

listed below:

~1 - -- -{{1,2},{3,4},{5}}

~2 - - - -{{1},{2,3},{4},{5}}

e1----{{I},{2},{3},{4,5}}

62 - - - -{ {I, 2}, {3}, {4, 5}}

Then ~1 X~2, 81 x82 E C'on(LsxLs), and we define ~:= ~1 x~2IL, 6:= e1 x621L.

Diagram 5 shows the e.blocks (indicated by bold borderlines) and the ~.blocks (indicated

by normal border lines) on L.

Diagram 5
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Diagram 6 shows the cl>0 e 0 cI>.blocks on L. We recognize that L/cI> 0 e 0 cl>~ N6 f/.D.

Diagram 6

Note: The conjecture referred to in this paper has in the meanwhile been answered in

the negative by E. Fried and G. Grätzer[l].
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