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Abstract: Weakly efficient points of a mapping F: S-Y are
characterized, where the feasible set S is given by infinitely
many constraints, and Y is equipped with an arbitrary convex
ordering. In the linear and in the convex case a necessary and
sufficient condition is given, which needs no constraint quali-
fication. '

Zusammenfassung: Es werden schwach effiziente Punkte einer Ab-
bildung F : S» Y charakterisiert, wobei der zuldssige Bereich S
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Bedingung angegeben, die keine Regularitidtsvoraussetzung bend-—
tigt.
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1. Introduction

Recently B.Brosowski [ 3] has given characterization theorems for weakly
efficient points (sometimes called weak Pareto-points) of a mapping

F: S—»Hgﬂ if S, the feasible set, is described by infinitely many con-—
straints, and if ng the range space of the mapping F, is provided with
its natural ordering. In what follows we extend these results to mappings
into a linear topological space provided with an arbitrary convex ordering.
Also instead of differentiable mappings we consider mappings which admit -
convex approximants. Two types of conditions are considered. The first ome,
which concerns inconsistency of a system of strict inequalities, reduces,

if F is scalar-valued, to a certain generalization of Kolmogorov's criterion
which has been described in [6, p.163] and, for convex approximants, in
(21, [1, p.291]. The second type of conditions involves Lagrange multi-
pliers. Here passing from linear to convex approximants is made possible
through the use of Helly's theorem. In each case the corresponding results
of [ 3] can be obtained readily by specialization. We conclude with a neces-
sary and sufficient condition which, contrary to [3] and to similar condi-

s found in the literature, does not need a constraint qualification.

tion




2. Preliminaries

Throughout this paper we make the following assumptions:

Y is a real linear topological space, Y* its topological dual;
PcY is a convex cone with int P=#¢l);
P¥: = {y*€Y¥|<y*,y>20 Vy€P} is the polar cone of P.

P will be used as an ordering cone in Y, i.e., we define for arbitrary

1 2
y ,y €Y:

! 2 1_.2
Yy Spy 1=y -y €-P,

y]'<Py2 e yl —yzE.int(—P).

Given the ordering cone P in Y, a mapping F:C-Y, and a subset Sc=C, we

consider the problem
(1) w-eff {F(x),P|x€S}.

By definition, % is a solution of (1) iff x" €S and there is no x€ S such
that F(x)-—F(xo) <I’O; x° is then said to be a weakly efficient point of F
over the feasible set S. Note that for Y==HJ and P=IR1 the above problem (1)

reduces to the ordinary minimization problem
min {F(x) | x€ S}.

In what follows, we assume in particular that the feasible set S is of the

form

Sf:= {x€C| £(t,x) <0 Vt€T},

i.e., we consider

(2) w-eff {F(x),P | x€C,f(t,x)<0 VELET},

whefe |
F:C->Y, £f:TxC->1R,

T is a topological space,

C is a subset of a real linear topological space

(the latter two assumptions will be relaxed in the final section). The precise
assumptions to be made on T,C,F and f will be different with each section and

will be formulated as needed.

]) Hi

nt'" denotes the topological interior of a set, "cl" the closure.
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For the present we give some more definitions. For a fixed element

XOESf, we define

™° := {teT| £(t,x°) =0},
sg = x€C| £(t,x) <0 VtETY.

Problem (2) will be called weakly regular in xo, i1ff S;#Q’ implies Schl Sz.
Moreover, (2) will be called strongly regular in xo, iff v

Cyi= (RECI £(t,x) <0 VEEM, F(x) - F &%) <p 0@ implies x*€ecl Cy for all
closed sets M with T°cMcT.

Recall that F:C-Y is called P-convex iff C 1s convex and
F(Ax +(1- }\)x )< AF(x )+ (1= A)F(x )

for all xl,x2€C and all A€ [0,1]. Convexity is closely related to regularity,

as shown in the following lemma.

Lemma 1. Let C be convex. 7
(i) If £(t,+) is convex for all t€T, then (2) is weakly regular in x°.
(ii) If £(t,*) is convex for all t€T and F(-) is P-convex, then (2) is

: . o
strongly regular in X .

Proof From the convexity assumptions it follows that f(t X )<0 and
f(tx)<0 1mp11es f(t,x) <0 for all x€[x x), and F(x)—F(x)< 0
implies F(x) —F(x )< 0 for all x€ [x X ) qg.e.d.




3. The non-convex case

. ; . . o .
In this section we want to characterize a solution x of (2) by the incon-

sistency of the system
(3) x€C,  f(t,x)<0  VteT, F(x)—F(xo)<PO.
We assume in this section that

T is a compact set,

F(+) : C~»Y and £(+,-) : TxC> IR are continuous mappings.

Theorem |.
(i) Let (2) be weakly regular in xOEZSf and S§:#¢. If (3) has no solution,

then x° solves (2).

(ii) Let (2) be strongly regular in XOEISf. If x° solves (2), then (3) has

no solution.

Proof.
. .. o )
(1) Assume, for contradiction, that x does not solve (2). Then there exists

£E Sf with F(E)-—F(xo) <I’0' But weak regularity and the continuity of F imply |
o

that we can find an element EOE Sf

still satisfying F(£°) - F(x") <50, i.e., 5
g° 1s a solution of (3).
(ii) Assume, for contradiction, that & is a solution of (3). Then, since T°

is compact and f£(-,£) is continuous, we can find a constant K>O such that
£(t,£)<-K<0 vteT.

Let us set U:= {t€T ] £(t,&) <~ E}, which implies in particular that ° U,
The set T~U 1is again compact, and by the same argument as before we can find

a constant L >0 such that
£(t,x0)<-L<0 VEtETNU.
Now £ satisfies the inequalities
£(t,£) <0 Vt€clU,  F(&)-F(x’)<,0.

Since ToczcllJC:T, _strong regularity guarantees that -in any neighbourhood W

o .
of x  there exists an element waZw such that

(4) xEC, - f(6x) <0 VEEU,  Flx)-FG&) <, 0.
In view of the continuity of £(-,+) we can choose W in such a way that

o L
f(t,xw) -f(t,x ) S~2—

L
f(t,x )S- 3<0 VEe€T~U.

With (4), this contradicts x° being a solution of (2). q.e.d.

for all t€ T~U, and hence




4. Convex approximants

In this section we assume that, in addition to functions F: C-Y and
f:IxC>IR we are given functions ¢ : C-»Y and ¢@: TxC-» 1R such that the

following requirements are satisfied:

T is a compact set; C is a convex set;
®(+) is P-convex, @(t,+) is convex for all t€T;
©(*,x) is upper semicontinuous for all x€C;
@(XO)=F(XO), q)(t,xo)=f(t,x°) VtET;
for all £ € C there exist Landau-functions ol(-) : [0,1]1-Y and
02(-) : [0,1]> R such that for all A€ [0,1]: .
) PO () <, 0+ A (6x7) + 0, (),
£(t,x7+A(E=x")) <o(t,x*+A(g-x")) +0,(}) VEET.
Here ol(-) being a Landau-function means: for all neighbo.urhoods W of 0Y

there exists A0>O such that M€ [O,AO]=>01(>\) € AW. Similarly for 02(-).

Let now be x° € Sf. We want to consider the analogue of (3) with f and F

replaced by their convex approximants ¢© and ¢, i.e.,
(6) X€C, ©(t,x) <0 VteT, 8(x) - &(x°) <, 0.

As before, T° := {teT| f(t,xo) =0} ={t€T] m(t,xo) 20} is compact, since

cp(',xo) is upper semicontinuous. No topology on C is needed in this section.
Theorem 2. If x° solves (2), then (6) has no solution.

Proof. Assume that (6) has a solution &, i.e.,
gec, 0(t,£) <0 VteT®, 4>(5)—<1>(x°)<Po.

" In view of the compactness of T and the upper semicontinuity of ®(-,£) there

exists a constant K>O0 such that
o(t,E) <-K vteTe.

With U:= {t €T | @(t,g) <~- «125} we obtain for some L >0 that
Lp(t,xo)S—L VtETNU,

since T~U is compact and disjoint from 1°. Likewise
P(t,E) <M< Vt€TNU.

1= AL+ (]—A)xo. Then there exists A, >0 such that

For A€ (0,1] let us set x )

for all t€U it follows

A



£(t,%,) =@(t,x,) +0,(})
SAB(E,E) + (1-1)@(e,x°) + 0, ()
<he (= 3) +0,00)
<0 if A€ (0,X)).

Similarly there exists A2>O such that for all t€ T~U we obtain

f(t,x)\) < A<M+ (1-2)-(-L) + 02(>\)
<0 if A€ (0,),).
Furthermore, since ¢(§) - @(xo) € int(-P), there exists a neighbourhood W of

OY such that ¢(&) - <I>(xo)+wc int{(-P). Then there exists }\3>O such that

ol()\) €EA-Wif A€ (0,A,). Consequently with
) o
F(x,) - F(x )spelx)-e(x )O+ o, ()
SP)\(CD(E;) -d(x)) +ol(A)
it follows for all M€ (O,A3) that

F(x,) - F(x°) € A (0 (E) - 0(x°) +W)'- P

Cint('f) E_int(_f),
and hence
E (}; ) E (}{ ) < O
)\ P :

. o) o ..
Altogether we have obtained that x does not solve (2), a contradiction.

q.e.d.

Remark. 1f among the above assumptions we replace (5) by the following:

e(x) <, F(x) Vx€C, o(t,x)<f(t,x) Vx€C,VteET,

S$:= {xecC|o(t,x) <0 vt€eT} @,

then the converse implication of theorem 2 is also true, i.e., if x° € Sf .and if

(6) has no solution, then x° solves 2.

Indeed, if x° does not solve (2), then there exists £ € C such that
£(t,) <0 VGtET, F(g)-p(x°)<Po,

and hence
W(t,E) <0 VteT, @(E)-@(XO)<PO.

Let £OEIS$ ; then due to the convexity assumptions all x€ [go,g)

sufficiently close to £ satisfy

w(t,x) <0 ¥V tETO, @(x)—@(xo) <"PO’

i.e., they solve (6), a contradiction.




5. The convex case

From now on we shall utilize the polar cone P*, defined in Section 2. The

following lemma will be needed repeatedly; it is similar to [4, Thm. 5.13].

Lemma 2. Let S be any convex set and let ¢ : S»Y be P-convex. Then x° € S

solves
N w—eff {¢(x),P | x€S}
if and only if there exists y* € P*~ {0} such that

<y*,®(x)-®(x°)>20 VxXES.

Proof. It can easily be seen that y*€P*~ {0} implies <y*,y><0 for all
y €int(-P). Hence, if <y*,d>(x)—d>(xo)>20 for all x€ S, there exists no x€ 8§
such that @(x)—@(xo) <PO, i.e., x° solves (7).
For the converse implication let x° solve (7) and set V:=¢(S) - @(xo) +P.
V is a nonvoid convex set, and, since x° solves (7) and P+ int P=int P,
one has VNint(~-P) =@. Hence it follows from the weak separation theorem
that there exists y*€ Y*~ {0} such that

<0 Vye-p,

<y*,y>
>0 VyEv.

The first inequality yields y* € P*. The second inequality yields then

<y*,<I>(x)—<I>(xo)>2 sup <y*,y>=0 VxES, q.e.d.
y€-P
If ¢:C>Y is P-convex and y* € P*, then the function <y*,9(+)> is easily
seen to be convex. We define & :C-Y to be P-lower semicontinuous iff

<y*,2(-)> is lower. semicontinuous on C for all y* € P*,
In the remainder of this section we consider the problem
(8) w—eff {o(x),P I x€C, @(t,x) <0 VtET}.

We assume:
T is compact;
C is a closed convex subset of ]Rn;
®(+) : C-Y is P-convex and P-lower semicontinuous;
@(t,+) :C> TR is convex and lower semicontinﬁous for all t€T;

@(+,x) : T> R 1is upper semicontinuous for all x€C.

In analogy to our previous notation let us set

S(D:={X€C | (t,x) <0 VtET},

and, for a fixed element XOES(D,

T := {t €T | o(t,x°) =0}.




In the following theorem solutions of (8) are characterized by the existence

of Lagrange-multipliers. The technique of proof is similar to [ 1, pp.90-100 1.

Theorem 3. Assume that

. - o) .
for all finite subsets yCT there exists an element x €C such

that @(t,x) <0 for all t€ J.

9

Then XOES solves (8) if and only if there exist a finite subset TOCTO with
I'.To | <n, utZO (t € 7°), and y* € P*~ {0} such that

(10) 0<<y*,0(x)-e(x)>+ £ uolt,x) VxEC.
teJ°

Proof. 1If (10) is satisfied with nonnegative numbers u, (t € 'J'O), then
<y*,<I>(x)—<I>(xo)>20 for all xESq). Hence, by lemma 2, x° solves (8).

For the converse implication - in order to avoid trivial case distinctions —
let us suppose that T° contains at least n elements. Let x°esq) solve (8). By

lemma 2, there exists y* € P*¥~ {0} such that x° is a solution of
min {<y*,2(x)>|x€C, o(t,x) <0 Vt€T},
a special case of weak efficiency with P= IRl . With Cp :=CN {xEIRnl Hx-x"ll<p}

for some p >0 and ©(0,x) :=<y*,<b(x)—<b(xo)> it follows from theorem 2 that the

system
x€C , o(t,x) <0 YteTU{0}
has no solution; hence, for €>0, the system
x€c,, o(t,x) <-¢ VeteT°U {0}

has no solution either. Since the sets {xECp | @(t,x) <-¢} .are convex and
compact for all t €T° U {0}, it follows from a theorem by Helly and Konig about
the intersection of closed convex sets over a compact subset of R*[ 5] that

there exist ts e % U {0} (i=1,...,n+1) such that the system

XECp, (D(ti,X) <-e (i=]:-°°,n+l)
has no solution. Hence max._, ot (p(ti,x) >-¢g VXEC . By a result of
L B b +
Fan-Glicksberg-Hoffman [ 8, p.65] .there exists w€A L E {uE]Rn ! |
n+]

uz0, . u. = 1} such that
i=1 "1

1

Zr.lﬂ u.o(t.,x) 2-¢€ Vx€EC .
i=1 1 1 o)




+1
Hence with K := ('I‘o U {O})Il the sets

F(e) := {(tl""’t "un+l)€KxAn+ |

a1’ 1

n+1
. > -
Zi=l ui(p(tl,x) >-c VxECp}

are nonempty for all ¢>0. This implies at the same time that any finite collec-
tion of these sets F(e) has nonempty intersection. Since the sets F(e) are closed
and K x‘An_H is -compact, the collection of all F(e) with €>0 has nonempty inter-

- 1 ’un+1) €n e>0
cp(ti,xo) =0 and the functions (p(ti,-) are convex, that

section. Now from (—t':_1 s oo ’_t—n+1 ,_u-1 yeos F(e) follows, since

s T 0T, ,x) 20 VxEC.
i=1 1 1

Due to assumption (9) this implies that O€ {?1""’En+l}’ and that one of the

multipliers Ei corresponding to Ei=0 must be positive. Altogether we have obtain-

ed -El,...,—t—HETo and u_>0, 3120,..., .-JnZO such that

Tt MpB O

u_ ©(0,x) +

T.o(t. ,x) 20 VxEC.
=1+t

1
Since we may normalize (Eo’zl’ .. .,-Jn) such that EO= 1, this is the desired result.

q.e.d.

Assumption (9) is commonly termed a constraint qualification.

Let us specialize theorem 3 to the case
C=TR", 0(x) 1= Ax, ©(t,x) :=<a(t),x>+b(t),
where

n . ) . . .
A: IR -» Y is a ¢ontinuous linear mapping,

a: '].‘—»]Rn and b: T-» IR are both continuous.

Then problem (8) becomes
(11) w-eff {Ax,P | x€ R, <a(t),x>+b(t)<0 VtE€T},"

and condition (10) becomes

OS<y*,Ax-—Ax0> + Z oY% (Ka(t) ,x>+b(t)) vx€ER.
teY :

. o o)
Since J <T and hence <a(t),xo>+b(t) =0  Vt€ 3'0, this is equivalent to

0 = <y*,Ax> + Z:rout<a(t),x> VXER, i.e.,
te
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O=A*y*+ 2 _u a(t),
e ° °©
where A* : Y*> R is the adjoint of A. Making use of Carathéodory's Theorem
(that every point of the convex conical hull of a set Bc K" can be represen—

ted as a nonnegative linear combination of at most n elements of B), we can

then specialize theorem 3 as follows:

Let (9) hold. Then XOE:Sw solves (11) if and only if

(12) 0 € AX(P*~ {0} ) + conv cone {a(t) | et .

1f Y=imp,P==P*=iRT; this yields theorem 6.3 in [ 3]. The usefulness of (12)
as a necessary condition for a solution of (11) is somewhat limited,
since its validity requires a constraint qualification, finite-dimensionality

of the underlying space, and continuous dependence on t. In the next section

we shall get rid of these limitations.

2 .
) "eonv cone' denotes the convex conical hull.




z

6. Elimination of the constraint qualification

In this section we want to characterize weakly efficient points in a more
general setting and without need for a-constraint qualification. First we

consider the linear case, i.e.,
(13) w-eff {Ax,P | x€X, <a(t)*,x>+b(t) <0 Vte€T},
where we assume:

T is an arbitrary set;

X is a linear topological space; X*, its topological dual, is
equipped with the weak*-topology;

A:X->Y is a continuous linear mapping with A* : Y¥->X* its adjoint;

a(t)*€ X* and b(t) €ER for all t€T.
S(p is the set of feasible solutionms of (13)..

Let us recall that, for BcX¥, E* i{s an element of the weak*-closure of B
if and only if for all finite subsets %X X and for all ¢>0 there exists

x* € B such that

l<e*, x> - <x¥,x>|se VxE x.

Theorem 4. x° € sgp is a solution of (13) if and only if there exists

y* € P*~ {0} such that
(14) (Oy4,0) € (A¥y*,<y*,~Ax">) +clT,
X %

where T := conv cone {(a(t)*,b ()1 t€ T} cX*x IR.

Proof. Let <° be a solution of (13); then, by lemma 2, there exists

y* € P*~ {0} such that the system
(15) <a(t)*,e>+b(t) <0 VEET, <y*,AE-Ax"> <0

has no solution. Assume now that (14) does not hold for this particular

choice of y*. Then the point (—A*y*,<y*,AxO>) is disjoint from the closed
convex cone cll. By the strong seﬁaration theorem, and since X* is pro-
vided with the weak*—-topology, there exists (x,r) €XxR(i.e., a continu-

ous linear functionmal on X*x IR), such that

—<A¥yF x>+ <y*,Axo>-r >0,
<a(t)*,x>+b(t)-r<0 VteT.

In case r>0 we obtain that
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<y*,A(r7]x—xo)> <0,
<a(t)*,r"1x>+ b(t) <0 VtET,

and therefore £ :=r 1x is a solution of (15). In case r<0 we obtain, since
r-(<a(t)*,x>>+b(t)) 20, that

<y*,A(x—'rx0)> <0,

<a(t)*,x—rxo>50 VtET,
and therefore £ :=x° +x-rx_ is a solution of (15). In both cases we have
obtained a contradiction. Hence (14) must be satisfied.
Assume now that (14) holds. Let X <X be a finite subset and €>0. Then it

follows from (14), since X* is provided with the weak*-topology, that there

exists (x*,r) €T such that

—<A*y* x> —<x*, %> | < VXEX,

£

2
I<y*,Ax> -1 | < %,

and hence
<y*,AxD> S<yF Ao +<x¥ x> +r+e VxE X,

Taking into account that (x*,r) €T has a representation

(x*,r) = = v (a(t)*,b(t)), v 20 (teT)

tey
with some finite subset 3 <T, it follows that
(16) <y* AxO> S <y*¥ ,Ax>+ I v, (a(e)*,>+b(t)) +e VxEX.

ted
Choosing in particular ¥ = {x}, where x€ S(p, we obtain from (16) that
<y*,Axo>S <y* Ax> + €.

Since € >0 was arbitrary, it follows that <y*,Ax—AxO>ZO for all x€ S(D' In

view of lemma 2, x° solves (13). q.e.d.

In the proof of theorem 4 we have established that from (14) follows (16).
Moreover, if Y= ]R], P=P*= ]R'l, then y* € P*~ {0} may be normalized to y*=1.
Combining these two observations we obtain the following corollary to theorem 4,

where c* € X*,

Corollary. If x° solves

(17) min {<c*,x> Ix€X, <a(t)*,x>+b(t)<0 VtET},

then for all finite subsets X c X and for all €>0 there exist a finite subset




...13_

T<T and thO (t €T ) such that

<c*,x0>s<c*,x>+ r vt(<a(t)*,x>+b(t))+e vx€ X.
t€EY

Now we consider the convex case, i.e., we consider the problem
(18) w-eff {8(x),P | x€C,p(t,x)<0 Vt€T},
where we assume:

T is an arbitrary set;
C is a convex set (in some real linear space);
$(e) : C»Y is P-convex;

@(t,+) : C»>R is convex for all te€T.

S denotes the set of feasible points of (18).

Theorem 5. XOGZS(.p is a solution of (18) if and only if there exists
y* € P*~ {0} such that for all finite subsets ¥X =C and for all €>0

there exist a finite subset J =T and thO (t€73) satisfying

(19) <y*,<I>('xo)>S<y*,<I>(x)>+ Y v (t,x)+e VxXEX.
: e °©

Proof. 1f (19) holds, then <y*,d(x)-¢(x")>20 for all x€ 5, hemce it

follows from lemma 2 that x° solves (18).

Conversely, let %x° be a solution of (18). Then, by lemma 2, there exists

y* € P*¥~ {0} such that
<y*,0(x)~o(x)>20 VXES.

With the abbreviation S(X) :=<y*,0(x)> this means that x° solves

(20) min {8(x)Ix€C,o(t,x) <0 Vt€T}.

Now let X be an arbitrary finite subset of C. Without loss of generality

we may assume that x°€ ¥. So let X := {xo,xl,...,xn}. With

+ . .
u:= (uo,ul,...,un) e R ! we consider the following problem:
oL n+l O i
(21) min{):ui@(x)luEJR s Zuiq)(t,x)SO VtET,
i=0 i=0
n
uiZO (i=0,...,n), Zui—l=0}. .
i=0

. . . . o L. .
Tn view of our convexity assumptions, and since x solves (20), it is easily

verified that w® i= (1,0,...,0) E]Rm-1 solves (21). If we replace the equality
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constraint by two inequalities, (21) has the same structure as (17). Hence
we may apply the corollary. For this purpose let WU be a finite subset of
IRn+1 and € >0, Then it follows from the corollary that there exist a finite

subset J T and multipliers thO (teJ, uiZO (i=0,...,n) and v€E R such

‘that
~ o no : n 5 n . n
P(x ) X uié(x Y+ Z vt( pX ui(p(t,x ) - Z uiui+\)( z ui_—l) + e
i=0 tey i=0 i=0 i=0
vuelW.
3 ov i, o~ 0
Here we have used the fact that X ui<1>(x ) =®(x"). Choosing in particular
i=0
. i n+l . ..
for W the set of all unit vectors e € R (i=0,1...,n) we obtain in turn
~ o, _~, 1 i .
P(x )<Lo(x )+ X Vtkp(t,x)—pi+e (i=0,1,...,n),
teJ
and since uiZO (i=0,!,...,n), this is the desired result
~ [e] ~ 7 .
P(x )<d(x)+ X vtw(t,x)+s Vx€X. q.e.d.

tey

We cannot maintain in theorem 5 that TCTO = {tE€T)] cp(t,xo) =0}, but

setting X :=x° in the last line of the proof we obtain the bounds
-e< T th)(t,xo)so.
teY

If T is finite, the closure in (14) can be omitted, since I as a finitely
generated convex cone in a separated space is then already closed. If we
apply (14) in this strengthened form in the proof above, it follows that
for T finite theorem 5 even holds true with €=0.

Theorems 4 and 5 improve upon previous results in [ 7] and [ 9].
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