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ISOMETRIC EUCLIDEAN EMBEDDINGS OF A COMPACT MANIFOLD FORM A
FRECHET MANIFOLD

E. Binz

Abstract: Let E(M,R") be the collection of all smooth em-
beddings of a compact smooth manifold M into RM. Given a fixed
scalar product < , > on R, the 'pull-back of < , > by
j € E(M,RD) is denoted by m(j). We show that m (m(j)) is a
Fféchet manifold,forvany j ¢ E(M,R™). This manifold is infinit
dimensional if the codimension of M in R is large enough. The
result 1links wiﬁh Einstein's »evclution equation and with

elasticity theory.

Introduccicn:_ Throughout these notes M is a compact .smooth

manifold. The collection of all smooth embeddings of M into R™
is ‘caiied- E(M,R“). This set 1is equipped with Whitney's
C®-topology and since it is open in the Frechet space C®(M,Rn)
(consisting of i'al'l smooth RPr-valued maps of M and carrying
Whltney s fC?—tcpology)'.it is evidently a smooth Frechet
manlfold B ‘

.leen a- flxed scalar product < , > on R™ each j ¢ E(M,R™)
deflnes a Rlemannlan metric m{(j) on M, namely the pull-back of
< , > bx_J. It assigns to any two tangent vectors v,w € T M
the‘fegi;ﬁumber <djv,djw> for any p € M. Here d3j denotes the
m“—valued 3‘form,‘ called the differential of 3j, which
locally represented 1s the Frechet differential of 3.
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What we show is that m'{(m(i)) the set of all j ¢ E(M,R") with
m(i) = m(j) for a fixed i ¢ E(M,R™) is a Frechet hanifold when
endowed with the C®-topology, a result which holds verbatim if
E(M,R") is replaced by the collection of all smooth immersions

from M into R,

At this point let us refer to [Jal, who showed that m™(m(i))
admits isometric deformations. These beautiful investigations
are based on an extension of Nash's implicit function theorenm.
Let us refer thgrefore. to any 3 € m (m(i)) as an isometric

deformation of 1i.

The method by which we establish the manifold structure of
m!(m(i)) is the following one: _
If j 1is near enough to i then its differential dj is
represented by

dj = g-di-£f.

Here g ¢ C°(M,SO(n)) and f is a smooth strong bundle
isomorphism of TM self-adjoint and positive definite (fibre-
wise) with respect to m{(i). If v, € T,M then the above

equation means

dj vp = g(p)(di £(vy))
-
holding for any p € M. Hence j € m*(m(i)) iff £ = idpm. The
parameter space of a chart at i in m?*({m(i)) consists of the
Frechet space formed by  all h e C®(M,RN) for which the-
derivative Dm(i) (h) of m at i in the direction of h vanishes.

This means that
- Dm (i) (h) (vp,wp) = <dh v,,di wp> + <di v, dh wp> =0

holds for all Vp, Wy € T M and all p € M. Such an h is called

an infinitesimal isometric deformation of 1.
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Let us point out that the c¢alculus used in locally convex
vector spaces is the one of [Gul or [Mil. In tQ}s‘context'we
refer via [Fr] also to the beautiful calculus of Frdlicher and

Kriegel.

Now dh of each h ¢ C®{(M,R™) can be.written as
dh = s-di

with s ¢ C°(M,End{(RM)). Hence Dm(i)(h) =0 iff

<s-di Vp,dl Wp> + <di v ,s-dl.wp> = 0

P

for all v Wp € TpM and all p € M.

p ’ p . .
The construction of a chart at i in m?'(m(i)) is based on the

observation that if dh satisfies Dm(i) (h) = O then
(expos) -di

is the differential of an embedaing 7 J e m*{m(i)) ~ if
s € C°(M,End(m5)) is near enough to zero. exp is the usual
éxponential given on End(R™). Hence our construction of charts
in m”(m(i)) is based on an integration scheme of infinitesimal

Euclidean isometric deformations.

If the codimension of M is high enough then m?(m{(i)) is not
finite dimensional. ' :
The fact that m*(m(i)) is a Frechet manifold plays a crucial
role if isometric deformations of embeddings have to- be
considered. Hence it 1links in particular to Einstein's

evolution equation formulated on Euclidean immersions and to

elésticity theory where the space of_configurations consists -

of all embeddings of a body M into R™. In:the first case the

above result allows the rigid evolution giﬁen bf an equation

for infinitesimal isometric deformations to be  realized by

space-like sections of the four manifold. We refer to [Bi,1]
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'and [Bi,2] as well as to - the “excellent book {Ma,Hu] for

studies in those areas.
The fact that m (m(i)) forms  a Frechet manifold for each

i € E(M,Rn) reveals a structure additional to the principal
bundle structure of E(M,R") described in (Bi,Fi].

1) The space of embeddiﬁgs E(M,RM)

E(M,RR™) denotes the collectlon of all smooth embeddings of
a compact m-dimensional manifold M 1nto Rr. As shown e.g.
in [Hi] this set is open in C®(M,R™) which is endowed with
the C“ftopology. Since C®(M,Rn) is, due to the compactness

of M, a complete _metrizableA locally convex topological
vector space, a so called Frechet space, E(M,Rr) is

obviously a smooth Frechet manifold.

Any h € C°(M,R™M) defines a smooth symmetric two tensor mi(h)
given by A B
m{h) (X,Y) = <dh X,dh ¥>

for all pairs X,Y € 'TM. By I'M we denote the cdllection of
all smooth vector fields on M, a Frechet space when endowed
with the C®-topology. dh is the differential of h, which
locally is .given by the Frechet derivative of h. Clearly
the tangent map Th decomposes into Th = (h,dh) .

Evidently .m(j)  is a  smooth - Riemannian metric if
j € E(M,RP). L | | ' '

If s2(M) stands for the collection of all smooth symmetric
two tensors of M equipped with the C®-topology

m:C® (M,RP) —> S2(M)

is a smodth map in the sense of. [Gul or [Mi] as a routine
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calculation shows (cf. [Schl).
By R(M) we denote the collection of all smooth Riemannian
_metrics endowed with the C®-topology. This set R(M) is an
open cone in S2(M) and hence a Frechet manifold. Clearly
- m{(E(M,Rn)) c R(M) and

m:E(M,RN) — R(M)

~is a smooth map. It is generally not surjective as the
- theorem of Nash (cf. [Ja]) tells us.

The derivative of m at j ¢ E(M,R?) in the direction of
h ¢ C°(M,R™) is

"Dm(3j) (h) (X,Y) = <dh X,dj ¥> + <dj X,dh >

for any two vector fields X, Y € I'TM.

The relative description of differentials of embeddings.

lAny two 1,3 € E(M,R“) can be smbothly.linked within E(M,Rn)
fbnly if j is in the connected component 0 of i ¢ E(M,R™).
Clearly any E(M,R")-valued smooth curve ¢ of which the
‘domain contains [0,11 and which satisfies 0(0) = i and
-0(1) = j is a homotopy. It is such a homotopy which allows
us to describe dj of any Jj € O3 relatively to di. This

description is done as follows: -
»?ssociated with j ¢ E(M,R™) we.have its Gausé map
j:M — G(m,n)
mapping any p € M into d4j TgM an element of the Grass-

mannian G(m,n) consisting of all planes of dimension m in

R™. This map-ﬁ is smooth. On G(m,n) we have two canonical
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bundles § and 1n namely the m-plane and the (n-m)-plane
bundle respectively (cf. [G,H,V]). These two bundles add up
to G(m,n)xR™". Hence the Whitney sum of their pull- backs 3 §

and J n with respect to the Gauss map is

5*B @ 3"n = M x Rn.

Clearly 3*§ = Tj TM and Ej'n is isomorphic to v{(j). the

normal bundle of Tj TM in RIMxRn, _ ,
If thus 1i, j‘e O; and therefore smoothly homotopic we have
a smooth homotopy of their respective Gauss maps i and 3
which in turn yields a smooth strong bundle 1somorphlsm
(cf. [G,H,V])

Y: Ti TM & v(i) —> T ™ & v(3j)

preserving the Whitney sums. Since moreover range . and

domain of ¥ are trivial bundles ¥ yields a smooth map

¢: M — GL(n)
such that
¢(p) (di vp).= dj Vo

for all Vp

equation by
dj = ¢-d4di.

This description of dj with respect to di however is not

unigque at all. To see this one chooses aﬂy strong smooth
bundle isomorphism 8 of v(i) and extends it to all of MxRn

by the requirement that 8)i*r = id. Then we have:

p-di = (¢-8)-4i

Decomposing ¢ polarly into ¢ = g-f where g(p) ¢ SO(n) and -

f(p) is self-adjoint with respect to < ,'> for any choice

of p ¢ M implies

€ T,M and all p ¢ M. We abbreviate the last

"
A
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m(3) (v, Wp) = <g-£-di vp,g-f-di wp> = <£-di v, E-di wpd

for all v,, W, € T M. Representing m(j) with respect to
m{(i) by a smooth strong bundle isomorphism A of TM as

m(j) (v, wp) = m(1) (A vy, W)

provides us with f := Jz', formed fibrewise. The smooth
strong bundle isomorphism f of TM is evidently self-adjoint
and positive definite with respect to m(i). By what we have

so far the followind is easy to show:

Theorem 1: -The differential dj of any Jj € O; in the

connected - component O; of a fixed i e¢ E(M,R™) allows a

description of the for
B e e e e

dj = g-di-f

with g ¢ C”(M,sO0(n)) and f being a smooth strong bundle

isomorphism of TM fibrewise self-adjoint and positive

definite with respect to m(i). ;g'this representation £ is

unique and determines the metric m(j) via the equation

I

m(j) (v, wp) = m(i) (£2 v, w,)

holding for all v, wé € T,M and all p € M. The factor g is
PG, _ e ——— Tt e N r—— —

not unique. However if g: M — End(R") is given by
e baad . ——— o —

———

9P 1qi T = 9P g o 3 I y(4) =0

then
dj = g-di-f

is a unique representation of 4d4j bg di. If j and i vary
NAWW — P— el |
smoothly, both g and f vary smoothly as well.

e

—~ g, P L e B ol e
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Remark: In general the exterior differential 6(di:-f) of the
‘Rh-valued one form di-f does not vanish. Thus g can be

regarded as an "integrating factor" of di-f.

We pause briefly to illustrate the above mechanism by

looking at the covariant derivative of m(j). If
P(j): R x R —> TM

dénotes the orthogonal projection along v(j) followed by
" (Tj)" then the covariant derivative of Levi-Civita of m(a)
is inen by .

Vim(3))xY = P(3)(d(d3 ¥) (X)).

Hence for all X, Y € 'TM the vector field V(m(3))xY is

‘represented via Vim(i)) by
Vim(3))x¥ = £7-V(m(i))xE-¥ + £ -P(i)-g"-dg(X)-di £-Y.
' Thu; if we set
Vig)x¥ = V(m(i))xY + P(i)-g” dg(X)-di ¥
then ’

Vim(3))xY = £ -V(g)xEf-Y

and thus its curvature R(m(j)) expressed by the curvature
R(g) of V(g) is

“R(m(3)) (X,¥)2 = £ R(g) (X, Y)E-Z..

As it is easy to see g is ih particular responsible for the
vanishing of the torsion of the Levi-Civita connection
V(m(j)). For further remarks along these lines we refer to
[Bi,Pel]. ' :
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Next we investigate the infinitesimal situation and remind
us of T;E(M,R") = Cc*(M,R™) for all i ¢ E{(M,R™). Given any
h ¢ C°(M,R") we choose a smooth curve ¢ defined on a
neighbourhood of 0 € R with values in E(M,R™) such that
o(0) = i and 6(0) = h.

By the theorem above we have thus

do(t) = g(t)-di-f(t)

and consequently

a d
gt do(t) | o = 4 [ at 78 [¢=0 ]
= dh
a

=43 - di .S |
= S5 9(t) |pog -4 + Qi-Fg £(8) | g-

'We therefore can represent dh by

dh = a-di + di-b
with

d

IR S - |
a = 3% g(t)|t=o and b = 3t f(t)|t=0 .

Let us point out that for all v,, w, €T M and p ¢ M

Dm(i)(h)(vp,wp) = <dh vb,di wp> + <di Vp:dh wp>
= m(i)[ %? E(8) [¢=0 Ve ¥p ] + m(i)[vp' %F £(E) oo ¥p ]

= m(i) (b vy, wp) + m(i) (vy,b wp)
implying
<a-di,di> + <di,a-di> = 0.

,Clearly"aw(i) =0 and b: TM — TM is self-adjoint with
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respect to m(i). Let us investigate the above'description

of dh somewhat further.

_ There is a unique C: ™ — TM, a smooth. strong bundle "
endomorphism of TM (fibrewise) skew-adjoint with respectfto

m(i) such that for all v,, w, € T M

<a(p) {di vp),di wp> + <di vp; a(p) (di wp)$.=u
= m(i) (C(p) vy, wp) ; m(i) (v, C(p)wy).

Therefore.we find a smooth EndkR“)—vélued.map

c:M ——4 End(ﬁ")
such that
a(p)(di vp) = c(p)(di VP),+ di C(pl)vy.

Without loss of generality we can assume that c(M) C so(n)

(where so(n) is the Lie algebra of SO(n)).

We hence have furthermore

i

c(p) (di T M) € v(i), and cp) (v(i)p) € di TM

for all p € M. Here v(i), denotes the normal of‘di,TQM.'
Thus ¢ is uniquely determined by a and can be viewed as a
vector field along i. The ' following is thus eésilyl

verified:

Proposition 2: The differential dh of any h ¢ C°(M,R5)’i5»

B .

uniquely represented by
WWM

dh = c-di + di-C + di-b

where i € E{(M,Rn) is fixed. C and b are smooth strong-

bundle endomorphisms of TM which are skew- respectively

P - I ~— T ————— . S pp—
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self—adjbint with respect to m(i). For each p ¢ M the map

c: M — so(n)

maps di TpM into wv(i), and vice versa. Hence c¢ can be

A T

viewed as a vector field along-the‘Gauss map i. The maps ¢,
A — P L ranan e P Y - - ——’

B S

C and b depend smoothly on h.

Corollary 3: The differential dh of any.h € C°(M,R™) can be
I Nt N st N Ny Pt gttt

represented via s € C°(M,so(n))as
WM e ¥

dh = s-di where s = a + C + b.

Pt

The maps C and b are gi#en on di TM by V '

NN AASmem e AT e ™
C-di = di-C and b-di = di-b

respectively and are both supposed to vanish on v(i).
T A — T g™ rr—

P i PRI —— P—————

An integration scheme.

As we saw in the previous section the differential of any

jJ € O3 can be described by
dj = ¢-di with ¢ '€ C*(M,GL(n)).

Similarly the differential dh of anyih’é C®{(M,R™) is given
relatively to di by R C

dh = s-di with s € C®(M,End(Rn)).

Let us call ¢ a di-factor of dj and s an infinitesimal

di—factor' of dh. In both cases we have not insisted on

uniqueness in the description.
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The question arises as to whether the di-factors can be
computed via the infinitesimal ones. The answer will be

prepared by the following:

Lemma 4: Given h € C®(M,R™) of which the differential 1is

P —— R, P Pt

dh = s-di
then for each natural number n
§(sn-di) = 0.
Proof: We form
F(s',3j) := s'-dj with 3F(s',j) = 0

where s' varies in C®°(M,so(n)) and j in O; respectively. By
proposition 2 we may assume that F depends smoothly on its
variables. The total derivative od F at (s,i) in the direc-

tion of s, € C°(M,so(n)).and k ¢ C°(M,R™) is

DF(s,1i) {s1,k) = s,-d1 + s:dk = s,-di + s-s5-di

where we set dk = s;-di. We demand that d(s,-di) = 0. Hence
3((s's3)di) = 0. A simple induction on the power r com-

pletes the proof.no

Now one immediately deduces the following:

Corollary 5: Given any h € C°(M,Rn) of which the
At — . — Pt

N ———

P N it tarrnns. | ——

differential dh is represénted as
M

dh = s-di
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!

with s € C®(M,End{(Rn)) EEE Rnr-valued one form
(expos) -di

is the differential of some smooth R"-valued immersion on M

—

and is EES differential of some j € O4, provided that s is .

——

near enough to zero.
P g ————

m—— N

Proof: By proposition 4 we know that 8((expds)-di)‘=
showing that'(exp°s)-di can be regarded as the differential
of an R"-valued smooth immersion Jj(s) defined on the

universal covering M of M. Let

Tn: ﬁ — M
be the canonical projection. Then if t varies in R

(j(t-s) - iem): M — RN

is a smoothly parametrized family of maps with;; 
dji(0) = dieoTm.

Hence'dj(t-s) (regarded as an R"-valued one férmion M) and

di belong to the same cohomology class in SR

H*{(M,R™) = H*(M,R) ® RP

showing that j(sf factors to M and hence is. an - immersion of

M. If s is near enough to zero then j(s) . ¢ Oi.nl

m (m(i)) as a manifold. 5 , E{;?gf~

The purpose of the next few developments iS'to:show that
given i ¢ E(M,R™) the set m (m(i)) is a Frechet manlfold
when regarded as a topological subspace of E(M, R“)

First we consider S € C®(M,Rn) and 1dent1fy S/Rn w1th the
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set {dh/ he S}, which carries,hence”theequotient topologyb

determined by S.
Due to proposition-z and corollary 5 there‘is a map
Qexp: C°(M,RM) /pn — C°(M,R™) /gn
given by ' o R \
Qexp(dh) = (expos)-di
where dh is uniquely represented as s-di with

0;%4'! WIQP

(Both C and b are as in corollary 3) The smoothness follows
by the so called Q-lemma (cf. [Gu] or [Ml])

Due to the continuity of Qegpiwevfihd"en_open neighbourhood :

U C C°(M,R™) /Rn ofvzero for which
DLasep (V) C“di/lR.'fl'_-
For dh‘e U we‘immediareiy;oeduoei‘rtf
o;xp(oh) c mé(m(if)/ﬁniifrrbmkii(hi =0

Thus we have the firstfpart:of;-ﬂ-‘

Proposition 6: There is an open nelghbourhood
W’MMM ~.,W

_w c {dh/ Dm(i)(h)_g'd} o
such that ' AR S

A PN

Q;XP(W)fc m*(h(i)))ﬁii;

is an open nelghbourhood of d1 € m (m(l))/mn If W is small

enough, then
——

P
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Qexep|y: W — mq(m(i))/mn

is a homeomorphism onto Qa,p(W).
NPt N NN et et stnn.

P r—

To verify the last part of proposition 6 we have to choose
W that small that the infinitesimal di-factor s of each
dh ¢ W maps M into the domain of injectivity of '

exp: so(n) — So(n)_

which is posSible, due to the,continuity'of Qeoxp-

Moreover the following is now evident:

Corollary 7: Given i € E(M,R™) then mq(m(i))/pn is a smooth
P e G—— — o A\ e,

-Fréchét manifold. An atlas ii.formedfgy_Eikinq for each

P e s

dj'e'mq(m(i))/mn a suitable small open neighbourhood W in .

‘Tas(m* (m(i)) /ga) := {dh/ Dm(3) (h) = 0}

as ifchart at dj and Qexp!W »§;z’chart map .

Finally our main theorem is immediate: -

Theorem 8: Given i ¢ E(M,R™) the set md(m(i)).equippéd with

[

Whitney's C®-topology is a smooth Frechet manifold.
LT S— e s P A o

Réﬁarksi‘f ‘ _ ‘ »

i) The manifold m™(m(i)) is infinit dimensional if n is
large enough. To see this let n =n' + r for some
natural number n'. If i € E(M,m“') then i € E(M,Rn'*r)

-.and any h € C™(M,RT) satisfies
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Dm(i) (h) = 0.

Hence m"'(m(i)) is infinite dimensional.

On the other hand if the codimension of M is small
enough and i(M) € RM satisfies some additional geo— -
metric conditions then m (m(i)) is diffeomorphic to
the Euclidean group of RM (cf. [B,B,Gl).

If E(M,R") is replaced by I(M,R™), the collection of
all smooth immersions of M into R™, and if m means the
map

m: I(M,RP) — R(M)

given by restricting m: C®(M,R") — S2(M) to I(M,Rn),
then m (m(i)) is a Frechet manifold as well. The proof
follows exactly the same lines except for some (minor)
simplifications.
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