Nr. 74 - 1987

The description of an $\begin{aligned} & \mathbb{R}^{n} \text {-valued one form relative to an } \\ & \text { embedding }\end{aligned}$
E.Binz
(Universität Mannheim)

The description of an \mathbb{R}^{n}-valued one form relative to an embedding

E.Binz

1) Introduction

Let M be a compact, smooth and oriented manifold. The collection of all smooth embeddings of M into \mathbb{R}^{n} equipped with the C^{∞}-topology is a Frechet manifold and is denoted by $E\left(M, \mathbb{R}^{n}\right)$. The collection $A^{1}\left(M, R^{n}\right)$ consisting of all smooth \mathbb{R}^{n}-valued one forms of M, also endowed with the C^{∞} topology, is a Fréchet space. \mathbb{R}^{n} is assumed to be oriented and is equipped with a fixed scalar product <,> .

These notes describe relations between a given $\alpha \in A^{1}\left(M, \mathbb{R}^{n}\right)$ and a given $i \in E\left(M, \mathbb{R}^{n}\right)$: Two sorts of decomposition of a relative to i are discussed and related. First we show that a splits into

$$
\alpha=d h+\beta \quad h \in C^{\infty}\left(M, R^{n}\right),
$$

where β has only the zero as integrated parts. The other decomposition is

$$
\alpha=c_{\alpha}(i) \cdot d i+d i \cdot c_{\alpha}(i)+d i \cdot B_{\alpha}(i)
$$

with $c_{\alpha} \in C^{\infty}(M, s o(n))$ and $C_{\alpha}(i)$ as well as $B_{\alpha}(i)$ are smooth, strong bundle maps of TM skew-, respectively selfadjoint with respect to the Riemannian metric $m(i)$, the pullback of $<>$ by i.

The relation among these two splittings as well as the techniques presented play a crucial role in elasticity theory.

Smoothness is always meant in the sense of [Gu].

2) Relations between α and i

Throughout these notes $i \in E\left(M, \mathbb{R}^{n}\right)$ is a fixed (smooth) embedding and $\alpha \in A^{1}\left(M, R^{n}\right)$ a fixed (smooth) \mathbb{R}^{n}-valued one form di $\in A^{1}\left(M, \mathbb{R}^{n}\right)$ is locally given by the Fréchet derivative of i. Clearly $m(i)(X, Y)=<d i X, d i Y>$ for all $X, Y \in \Gamma \top M$.

Our first observation is as follows:

Proposition 1 Given $\alpha \in A^{1}\left(M, R^{n}\right)$ and $i \in E\left(M, R^{n}\right)$ then there is a map $h(i) \in C^{\infty}\left(M, \mathbb{R}^{n}\right)$, determined up to a constant such that

$$
\begin{equation*}
\alpha=d h(i)+\beta(i) \tag{1}
\end{equation*}
$$

$h(i)$ is called the integrable part of α. The decomposition (1) of α is maximal in the sense that the integrable part of $B(i)$ is zero

Proof: Let e_{1}, \ldots, e_{n} be an orthonormal basis of \mathbb{R}^{n}. Then

$$
\alpha(X)=\sum_{s=1}^{n} a^{s}(X) e_{s} \quad \forall X \in \Gamma T M
$$

for a uniquely determined family $\alpha^{1}, \ldots, \alpha^{n} \in A^{1}(M, \mathbb{R})$ of smooth
\mathbb{R}-valued one forms of M. Clearly

$$
\alpha^{s}(x)=\left\langle\alpha(X), e_{s}\right\rangle
$$

For each $s=1, \ldots, n$ the one form α^{s} can be represented as

$$
\alpha^{S}(X)=m(i)\left(Y_{S}, X\right) \text { for all } X \in \Gamma T M
$$

for a well defined $Y_{S} \in \Gamma T M$. This vector field splits according to Hodge's decomposition uniquely into

$$
Y_{S}=\operatorname{grad}_{i} \tau_{S}+Y_{S}^{0}
$$

where $\operatorname{grad}_{i} \tau_{s}$ means the gradient of $\tau_{s} \in C^{\infty}(M, \mathbb{R})$ with respect to the metric $m(i)$ and $\operatorname{div}_{i} \gamma^{0}=0$. By $\operatorname{div}_{\boldsymbol{i}}$ we denote the divergence operator associated with $\mathrm{m}(\mathrm{i})$. Thus

$$
\alpha^{s}(X)=d \tau_{s}(X)+m(i)\left(Y_{s}^{0}, X\right)
$$

Now we define

$$
h(i):=\sum_{s=1}^{n} \tau_{s} \cdot e_{s}
$$

and

$$
\beta(i)(X):=\sum_{s=1}^{n} m(i)\left(Y_{s}^{0}, X\right) \cdot e_{s} \quad \forall X \in \Gamma T M .
$$

Then

$$
\alpha=d h(i)+\beta(i)
$$

Let us verify that this decomposition does not depend on the basis chosen. To this end let $\bar{e}_{\underline{1}}, \ldots, \bar{e}_{n} \in \mathbb{R}^{n}$ be any other orthonormal basis of \mathbb{R}^{n} and define $\bar{\alpha} \bar{s}^{s}, \bar{\tau}_{s}, \bar{\gamma}_{s}^{0}, \bar{h}$ and $\bar{\beta}$ analoguously as above. Omiting the variable i then for any $\bar{s}=1, \ldots, n$

$$
\begin{aligned}
\bar{\alpha}^{-\bar{s}}(X)=\langle\alpha(X), & \left.\bar{e}_{\bar{s}}\right\rangle=\left\langle d h(X), \bar{e}_{s}\right\rangle+\left\langle\beta(X), \bar{e}_{s}\right\rangle= \\
= & \left\langle\sum_{1}^{n} d \tau_{s}(X) \cdot e_{s}, \bar{e}_{\bar{s}}\right\rangle+\left\langle\sum_{i}^{n} m(i)\left(Y_{s}^{0}, X\right) \cdot e_{s}, \bar{e}_{\bar{s}}\right\rangle \\
= & \left.m(i)\left(\operatorname{grad}_{i}^{n} \sum_{1}^{n}\right)\left(\tau_{s} \cdot\left\langle e_{s} \bar{e}_{\bar{s}}>\right), X\right)+m(i)\left(\sum_{1}^{n} Y_{s}^{0} \cdot<e_{s}, \bar{e}_{\bar{s}}\right\rangle, X\right) \\
= & \left\langle d \overline{d h}(X), \bar{e}_{\bar{s}}^{-}\right\rangle+\left\langle\beta(X), \bar{e}_{\bar{s}}\right\rangle+ \\
= & m(i)\left(\operatorname{grad}_{i} \bar{\tau}_{-}, X\right)+m(i)\left(Y_{\bar{s}}^{0}, X\right) .
\end{aligned}
$$

Since $\operatorname{grad}_{i}{ }_{\Sigma}^{n}\left(\tau_{s}<e_{s}, e_{-}>\right)$is a gradient with respect to $m(i)$ and since

$$
\operatorname{div}_{i}\left(\Sigma Y_{s}^{0}<e_{s}, \bar{e}_{-}>\right)=0
$$

we conclude due to the uniqueness of Hodge's decomposition

$$
\operatorname{grad}_{i} \sum_{s=1}^{n}\left(\tau_{s} \cdot<e_{s}, e_{\bar{s}}>\right)=\operatorname{grad}_{i} \bar{\tau}_{s}
$$

and

$$
\sum_{\mathrm{s}=1}^{n} \quad Y_{\mathrm{s}}^{0}<e_{s}, \tilde{e}_{\bar{s}}>=Y_{\bar{s}}^{0} .
$$

Thus for any $X \in \Gamma T M$ we have

$$
\operatorname{dh}(X)=\sum_{\bar{s}=1}^{n}<\operatorname{dh}(X), \bar{e}_{s}>\bar{e}_{s}=\sum_{\bar{s}=1}^{n}<d \bar{h}(X), \bar{e}_{s}>\cdot \bar{e}_{s}=\operatorname{dh}(X)
$$

and

$$
\left.\beta(X)=\sum_{\bar{s}=1}^{n}<\beta X\right), \bar{e}_{s}>\cdot \bar{e}_{s}=\Sigma<\bar{\beta}(X), \bar{e}_{\bar{s}}>\cdot \bar{e}_{s}=\bar{\beta}(X) .
$$

Let us investigate the decomposition (1) in proposition 1 somewhat closer. We have

$$
\alpha=d h(i)+\beta(i)
$$

for some $h \in C^{\infty}\left(M, \mathbb{R}^{n}\right)$. Obviously

$$
h(i)=d i X_{n}+h^{\perp}(i)
$$

for some well-defined $X_{h} \in \Gamma T M$. By $h^{\perp}(i)$ we denote the pointwise formed component of h normal to $i(M)$. The vector field X_{h} again decomposes according to Hodge's decomposition into

$$
X_{h}=X_{h}^{0}+\operatorname{grad}_{i} \psi_{h} \text { with } \operatorname{div} X_{h}^{0}=0 \text { and } \psi_{h} \in C^{\infty}(M, \mathbb{R}) \text {. }
$$

Hence

$$
\begin{aligned}
\operatorname{dh}(i) X=\operatorname{di} \nabla(i)_{X} X_{h}^{0} & +\operatorname{di}\left(\nabla(i)_{X} \operatorname{grad}_{i} \psi_{h}+W(i)_{h} X\right) \\
& +S(i)\left(X_{h}, X\right) .
\end{aligned}
$$

Here $\operatorname{diW}(i)_{h} X=d h^{\perp}(i)(X)^{\top}$, where the upper indices T and \perp denote the pointwise formed component tangential respectively normal to $i(M)$. We remind the reader that $W_{h}(i)$ is a smooth strong bundle endomorphism of $T M$ 'selfadjoint with respect to $m(i)$. Let now $h^{1}=h+z$ for some $z \in \mathbb{R}^{n}$. Then if we regard z as a constant map in $C^{\infty}(M, \mathbb{R})$ we again have

$$
z=d i X_{z}+z^{\perp}
$$

However the vector field on \mathbb{R}^{n} assigning to any $z^{i} \in \mathbb{R}^{n}$ the vector $z \in \mathbb{R}^{n}$ is a gradient of some map $\varphi \in C^{\infty}(\mathbb{R}, \mathbb{R})$ say. Hence if we form ตoi then

$$
X_{z}=\operatorname{grad}_{i}(\varphi \circ i) .
$$

Therefore

$$
\begin{aligned}
h^{1}(i)^{\top} & =\operatorname{di} X_{h}^{0}+\operatorname{grad}_{i}\left(\psi_{h}+(\rho o i)\right. \\
& =\operatorname{di}_{X_{h}}^{0}+\operatorname{grad}_{i} \psi_{h} 1 .
\end{aligned}
$$

Again due to the uniqueness of Hodge's decomposition of $X_{h} 1$ we conclude:

Proposition 2 Given $\alpha \in A^{1}\left(M, \mathbb{R}^{n}\right)$ and $i \in E\left(M, \mathbb{R}^{n}\right)$, then
if the splitting $\quad \alpha=\operatorname{dh}(i)+\beta(i) \quad$ is maximal
for some $h(i) \in C^{\infty}\left(M, \mathbb{R}^{n}\right)$ determined up to a constant and if for some $h^{1}(i) \in C^{\infty}\left(M, \mathbb{R}^{n}\right)$ with $h^{1}(i)=h(i)+z$ and $z \in \mathbb{R}^{n}$ $\alpha=d h^{1}(i)+\beta(i)$
then

$$
x_{h}^{0}=x_{h}^{0} 1 .
$$

Here X_{h}^{0} and $X_{h}^{0} 1$ denotes the divergence free part of X_{h} and $X_{h}{ }^{1}$ respectively.

Next we will study $\alpha \in A^{1}\left(M, \mathbb{R}^{n}\right)$ in relation to a fixed $i \in E\left(M, \mathbb{R}^{n}\right)$ from a quite different point of view.

For any pair X, Y we set

$$
T(\alpha, i)(X, Y):=\langle\alpha(X), \text { di } Y\rangle
$$

Hence $T(\alpha, i)$ is a smooth two tensor on M, splitting uniquely into a symmetric and an antisymmetric part $T(\alpha, i)^{s}$ and $T(\alpha, i)^{a}$ respectively. If $P: T M \longrightarrow T M$ denotes the unique smooth strong bundle endomorphism for which

$$
T(\alpha, i)(X, Y)=m(i)(P X, Y)
$$

then

$$
T(a, i)^{S}(X, Y)=m(i)\left(\frac{1}{2}(P+\tilde{P}) X, Y\right)
$$

and

$$
T(\alpha, i)^{a}(X, Y)=m(i)\left(\frac{1}{2}(P-\tilde{P}) X, Y\right) .
$$

Here \tilde{p} denotes the fibrewise formed adjoint of P with respect to $m(i)$.
Let us set

$$
B_{\alpha}(i)=\frac{1}{2}(P+\tilde{P}) \text { and } c_{\alpha}(i)=\frac{1}{2} \cdot(P-\tilde{P}) .
$$

Therefore

$$
\alpha(X)=\alpha^{1}(X)+d i c_{\alpha} X+d i B_{\alpha} X
$$

holds for any $X \in \Gamma T M$. Clearly $\alpha^{1}(X)(p)$ is a vector in the normal space of $T i T_{p} M$ for each $p \in M$. Hence there is a unique smooth $c_{\alpha} \in C^{\infty}(M$, so $(n))$
where $s o(n)$ denotes the Lie algebra of $S O(n)$ such that

$$
\alpha^{1}(X)=c_{\alpha} \cdot \operatorname{di} X \quad \forall X \in \Gamma T M .
$$

Thus we may state that a second decomposition of α relative to \mathfrak{i} :

Proposition 3 Given $a \in A^{1}\left(M, \mathbb{R}^{n}\right)$ and $i \in E\left(M, R^{n}\right)$ there are uniquely determined smooth, strong bundle endomorphisms

$$
C_{\alpha}(i): T M \longrightarrow T M
$$

and

$$
B_{\alpha}(i): T M \longrightarrow T M
$$

which are with respect to $m(i)$ skew-respectively selfadjoint and there is a uniquely determined $c_{\alpha}(i) \cdot \in C^{\infty}(A, s o(n))$ such that the following relation holds for all $X \in \Gamma T M:$

$$
\begin{equation*}
\alpha(X)=c_{\alpha}(i) \cdot d i X+d i \cdot c_{\alpha}(i) X+d i \cdot B_{\alpha}(i) X \tag{2}
\end{equation*}
$$

Remark: Given $\alpha \in A^{1}\left(M, \mathbb{R}^{n}\right)$ and $i \in E\left(M, \mathbb{R}^{n}\right)$ then the exterior differential $\partial T(\alpha, i)^{a}$ of $T(\alpha, i)^{a}$ satisfies

$$
\begin{equation*}
\partial T^{a}(\alpha, i)=0 \quad \text { iff } \quad \partial \alpha=0 . \tag{3}
\end{equation*}
$$

The reason is that the one-form $<i, \alpha>\epsilon \cdot A^{1}(M, R)$ assigning to any $X \in \Gamma T M$ the function $\langle i, \alpha(X)>$ satisfies

$$
\partial<i, \alpha>=T(i, \alpha)^{a} \text { iff } \partial \alpha=0 .
$$

Now we will link the two descriptions of α relative to i as expressed by the two propositions (1) and (2). To this end let $\alpha \in A^{1}\left(M, \mathbb{R}^{n}\right)$ and
$i \in E\left(M, \mathbb{R}^{n}\right)$ be given. Let

$$
\alpha=\operatorname{dh}(i)+\beta(i)
$$

be the decomposition described in proposition (1). We split $h(i)$ into

$$
h(i)=d i X_{h}+h^{\perp}(i) .
$$

Hence for any $Y \in \Gamma T M$

$$
\begin{align*}
& d h(i) Y=d i \nabla(i)_{Y} X_{h}+W_{h}(i) Y+ \tag{4}\\
& \quad+S(i)\left(Y, X_{n}\right)+\left(d\left(h^{\perp}\right)(Y)\right)^{\perp}+\beta(Y) \quad .
\end{align*}
$$

Forming $T(d h, i)$, decomposing it into $T(d h, i)^{s}$ and $T(d h, i)^{a}$ and using (4) yields immediately

$$
T(d h, i)^{S}(X, Y)=m(i)\left(X, \nabla(i)_{Y} X_{h}\right)+m(i)\left(X, W_{h}(i) Y\right)
$$

Therefore

$$
T(d h, i)^{a}(X, Y)=\frac{1}{2}\left(m(i)\left(X, \nabla(i)_{Y} X_{h}\right)-m(i)\left(Y, \nabla(i)_{X} X_{h}\right)\right.
$$

and

$$
\begin{aligned}
T(d h, i)^{S}(X, Y)= & \frac{1}{2}\left(m(i)\left(X, \nabla(i)_{Y} X_{h}\right)+m(i)\left(Y, \nabla(i)_{Y} X_{h}\right)\right. \\
& +m(i)\left(X, W_{h}(i) Y\right)=\frac{1}{2} L_{X}(m(i))(X, Y)+m(i)\left(X, W_{h}(i) Y\right)
\end{aligned}
$$

Here $L_{X_{h}}(m(i))$ is the Lie derivative of $m(i)$. Writing for any $Z \in \Gamma T M$

$$
L_{\mathbb{Z}_{h}}(m(i))(X, Y)=m(i)\left(\mathbb{L}_{\mathbb{Z}_{h}} X, Y\right)
$$

where

$$
\mathbb{K}_{\mathbb{Z}}: T M \longrightarrow T M
$$

is a strong smooth bundle endomorphism given by the theorem of FischerRiesz, then $C_{\alpha}(i), C_{\alpha}(i)$ and $B_{\alpha}(i)$ relate to h as follows

$$
\begin{align*}
& c_{\alpha}(i) d i Y=\left(d\left(d h^{\perp}(i)\right) Y\right)^{\perp}+S(i)\left(Y, X_{h}\right)+c_{\alpha}(i) \cdot d i Y \tag{5}\\
& c_{\alpha}(i) Y=\frac{1}{2}\left(\nabla(i) X_{h}-\tilde{\nabla}(i) X_{h}\right) Y+c_{\beta}(i) Y \tag{6}
\end{align*}
$$

and

$$
\begin{aligned}
B_{\alpha}(i) Y= & \frac{1}{2}\left(\nabla(i) X_{h}+\widetilde{\nabla}(i) X_{h}\right) Y+W(i)_{h} Y+B_{\beta}(i) Y= \\
& =\left(\frac{1}{2} L_{X_{h}}(i)+W(i)_{h}+B_{\beta}(i)\right) Y .
\end{aligned}
$$

Here $\tilde{\nabla}(i) X_{h}$ means the fibrewise formed adjoint with respect to $m(i)$, which applied to $v_{p} \in T_{p} M$ is written as $\tilde{\nabla}(i) X_{h}\left(v_{p}\right)$ for any $p \in M$. If we split furthermore X_{h} into

$$
x_{h}=x_{h}^{0}+\operatorname{grad}_{i} \psi \text { with } \operatorname{div}_{i} x_{h}^{0}=0
$$

(according to Hodge's decomposition) and taking

$$
0=m(i)\left(\left(\nabla(i) \operatorname{grad}_{i} \psi-\tilde{\nabla}(i) \operatorname{grad}_{i} \psi\right) X, Y\right)=0
$$

into account yields finally the desired relations

Proposition 4 Let $a \in A^{1}\left(M, \mathbb{R}^{n}\right)$ and $i \in E\left(M, \mathbb{R}^{n}\right)$. Given any
$h(i) \in\left(M, \mathbb{R}^{n}\right)$ with

$$
h(i)=\operatorname{di}_{h}(i)+h^{\perp}=X_{h}(i)^{0}+\operatorname{grad}_{\psi} \psi(i)+h^{\perp}
$$

as split according to the Hodge decomposition of X_{h} and

$$
\alpha=\operatorname{dh}(i)+\beta(i)
$$

then the coefficients in

$$
\alpha=c_{\alpha}(i) \cdot d i+d i c_{\alpha}(i)+d i B_{\alpha}(i)
$$

are determined by

$$
\begin{equation*}
c_{\alpha}(i) \cdot d i=d\left(d h^{\perp}(i)\right)^{\perp}+S(i)\left(X_{h}(i), \ldots\right)+c_{\beta} \cdot d i \tag{8}
\end{equation*}
$$

$$
\begin{align*}
C_{\alpha}(i) & =\frac{1}{2}\left(\nabla(i) X_{h}(i)-\tilde{\nabla}(i) X_{h}(i)\right)+C_{\beta}(i) \tag{9}\\
& =\frac{1}{2}\left(\nabla(i) X_{h}(i)^{o}-\tilde{\nabla}(i) X_{h}(i)^{o}\right)+C_{\beta}(i)
\end{align*}
$$

and

$$
\begin{equation*}
B_{\alpha}(i)=\frac{1}{2} L_{x_{h}}(i)^{0}+\operatorname{grad}_{j} \dot{\psi}(i)^{+} W_{h}(i)+B_{\beta} . \tag{10}
\end{equation*}
$$

Hence

$$
\begin{aligned}
\operatorname{tr} B_{\alpha}(i) & =\operatorname{div} X_{h}(i)+\operatorname{tr} W_{h}(i)+\operatorname{tr} B_{\beta}= \\
= & -\nabla(i) \Psi(i)+\operatorname{tr} W_{h}(i)+\operatorname{tr} B_{\beta}
\end{aligned}
$$

with $\nabla(i)$ is the Laplace Beltrami operator of $m(i)$.

The rest of this section is devoted to the covariant divergence of $B_{h}(i)$ and $C_{h}(i)$. The covariant divergence $\operatorname{div}_{j} A$ of any smooth strong bundle endomorphism

$$
A: T M \longrightarrow T M
$$

is defined as follows: Let e_{i}, \ldots, e_{m} be any moving orthonormal frame of TM . Then

$$
\begin{equation*}
\operatorname{div}_{i} A=\sum_{r=1}^{r=m} \nabla(i)_{e_{r}}(A) e_{r} \tag{12}
\end{equation*}
$$

First we compute $\operatorname{div}_{i} \nabla(i) X_{h}$. For any $Y \in \Gamma T M$ the equation

$$
m(i)\left(\nabla(i) e_{r}\left(\nabla(i) X_{h}\right) e_{r}, Y\right)=m(i)\left(\nabla(i) e_{r}\left(\nabla(i) e_{r} X_{h}\right)-\nabla(i){ }_{\nabla(i)} e_{r} e_{r} X_{h}, Y\right)
$$

implies

$$
\begin{equation*}
\operatorname{div}_{i} \nabla(i) X_{h}=-\Delta(i) x_{h} \tag{13}
\end{equation*}
$$

$\Delta(i)$ being the Laplace Beltrami operator of $m(i)$. To find div $\hat{i}(i) X_{h}$ consider for any $Y \in \Gamma T M$ the equations

$$
\begin{aligned}
m(i)\left(\nabla(i) e_{r}\left(\tilde{\nabla}(i) x_{h}\right) e_{r}, Y\right) & =e_{r}\left(m(i)\left(\tilde{\nabla}(i) x_{h}\left(e_{r}\right), Y\right)\right)-m(i)\left(\tilde{\nabla}(i) x_{h}\left(\nabla(i) e_{r} e_{r}\right), Y\right) \\
& -m(i)\left(\tilde{\nabla}(i) x_{h}\left(e_{r}\right), \nabla(i) e_{r} Y\right) \\
& =m(i)\left(e_{r}, \nabla(i) e_{r} \nabla(i) Y_{Y} X_{h}\right)-m(i)\left(e_{r}, \nabla(i)_{\nabla(i)} e_{r} X_{h}\right) \\
& =m(i)\left(e_{r}, \nabla(i) e_{r}\left(\nabla(i) X_{h}\right) Y\right)
\end{aligned}
$$

and

$$
\begin{aligned}
m(i)\left(\nabla(i)_{Y}\left(\widetilde{\nabla}(i) X_{h}\right) e_{r}, e_{r}\right) & =m(i)\left(e_{r}, \nabla(i)_{Y} \nabla(i)_{e_{r}} X_{h}\right)-m(i)\left(e_{r}, \nabla(i)_{\nabla(i)}^{Y} e_{r} X_{h}\right) \\
& =m(i)\left(e_{r}, \nabla(i)_{Y}\left(\nabla(i) X_{h}\right) e_{r}\right) .
\end{aligned}
$$

Thus we find

$$
\begin{gathered}
\sum_{r=1}^{m}\left(m(i)\left(\nabla(i) e_{r}\left(\tilde{\nabla}(i) X_{h}\right) e_{r}, Y\right)-m(i)\left(\nabla(i)_{Y}\left(\tilde{\nabla}(i) X_{h}\right) e_{r}, e_{r}\right)\right)= \\
=\operatorname{Ric}(m(i))\left(Y, X_{h}\right)
\end{gathered}
$$

and consequently

$$
m(i)\left(\operatorname{div}_{i} \tilde{\nabla}(i) X_{h}, Y\right)=\operatorname{tr} \nabla(i)_{Y}\left(\nabla(i) X_{h}\right)+\operatorname{Ric}(m(i))\left(Y, X_{h}\right) .
$$

Here Ric(m(i)) denotes the Ricci tensor of $m(i)$. The last equation yields

$$
\begin{equation*}
\operatorname{div}_{i} \tilde{\nabla}(i) X_{h}=\operatorname{grad}_{i} \operatorname{div}_{i} X_{h}+R(i) X_{h} . \tag{14}
\end{equation*}
$$

Here $\operatorname{Ric}(i) X_{h}$ is defined via:

$$
m(i)\left(R(i) X_{h}, Y\right)=\operatorname{Ric}(m(i))\left(X_{h}, Y\right) \quad \forall Y \in \Gamma T M
$$

Now we immediately conclude

$$
\begin{align*}
\operatorname{div} E_{X_{h}}(i) & =-\Delta(i) X_{h}+R(i) X_{h}+g r a d \operatorname{div} X_{h} \tag{15}\\
2 \operatorname{div} C_{h}(i) & =-\Delta(i) X_{h}-R(i) X_{h}-g r a d \operatorname{div} X_{h} \tag{16}
\end{align*}
$$

showing

$$
\begin{equation*}
\operatorname{div}_{i}\left(\frac{1}{2} L_{X_{h}}(i)+C_{h}(i)\right)=-\Delta(i) X_{h} \tag{17.}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{div}\left(\frac{1}{2} \mathbb{B}_{X_{h}}(i)-C_{h}(i)=\operatorname{Ric}(i) X_{h}+\operatorname{grad}_{i} \operatorname{div}_{i} X_{h} .\right. \tag{18}
\end{equation*}
$$

These equations will be of interest later.

Let us restrict our attention to the case of

$$
1+\operatorname{dim} M=n .
$$

Then since M is oriented we have the oriented unite normal vector field $N(i)$ along i. Hence $h \in C^{\infty}\left(M, R^{n}\right)$ splits into

$$
h(i)=d i X_{h}+\tau(i) \cdot N(i)
$$

for some $\tau(i) \in C^{\infty}(M, \mathbb{R})$. Thus $W_{h}(i)=W(i)$ if $\tau=1$. Denoting tr $W(i)$ by $H(i)$ we immediately find

$$
\begin{aligned}
& m(i)\left(\operatorname{div}_{i}(\tau(i) \cdot W(i)), Y\right)=\sum_{r=1}^{m} m(i)\left(\nabla(i)_{e_{r}}(\tau(i) W(i)) e_{r}, Y\right)= \\
= & \sum_{r=1}^{m} m(i)\left(\operatorname{grad}_{i} \tau(i), W(i) Y\right)+m(i)\left(\tau(i) \operatorname{div}_{i} W(i), Y\right)
\end{aligned}
$$

and hence

$$
\begin{equation*}
\operatorname{div}_{i}(\tau(i) W(i))=W(i) \operatorname{grad}_{i} \tau(i)+\tau(i) \operatorname{div}_{i} W(i) . \tag{19}
\end{equation*}
$$

Now by Codazzi's equation (cf.[K]]) yields

$$
\begin{align*}
& \sum_{r=1}^{m} m(i)\left(\nabla(i) e_{r}(W(i)) e_{r}, Y\right)=\sum_{r=1}^{m} m(i)\left(\nabla(i)_{Y}(W(i)) e_{r}, e_{r}\right)= \tag{20}\\
& \quad=m(i)(\operatorname{grad} H(i), Y) .
\end{align*}
$$

We therefore have

$$
\begin{equation*}
\operatorname{div}_{i} \tau(i) W(i)=W(i) \operatorname{grad}_{i} \tau(i)+\tau(i) \operatorname{grad}_{i} H(i) . \tag{21}
\end{equation*}
$$

In turn equations (19),(20),(9),(10),(15),(16),(17) and (18) yield
and

$$
\begin{equation*}
\operatorname{div}_{i}\left(B_{h}(i)+C_{h}(i)\right)=-\Delta(i) X_{h}+W(i) \operatorname{grad}_{i} \tau(i)+\tau(i) \operatorname{grad}_{i} H(i) \tag{22}
\end{equation*}
$$

$$
\begin{align*}
& \operatorname{div}\left(B_{h}(i)-C_{h}(i)\right)=R(i) X_{h}+\operatorname{grad}_{i} \operatorname{div}_{i} X_{h}+ \tag{23}\\
& +W(i) \operatorname{grad}_{i} \tau(i)+\tau(i) \operatorname{grad}_{i} H(i) .
\end{align*}
$$

We close this section by showing the following result:

Lemma 5 Let $a \in A^{1}\left(M, \mathbb{R}^{n}\right)$ and $i \in E\left(M, \mathbb{R}^{n}\right)$. If a has no integrable part then $\alpha=\beta$ and hence

$$
\begin{equation*}
\operatorname{div}_{i}\left(C_{\beta}(i)+B_{\beta}(i)\right)=0 \tag{24}
\end{equation*}
$$

Proof: We have for any $X \in \Gamma T M$

$$
\alpha(X)=\beta(X)=\sum_{s=1}^{m} m(i)\left(Y_{s}{ }^{0}, X\right) \bar{e}_{s}
$$

and any orthonormal frame $\bar{e}_{1}, \ldots, \bar{e}_{n}$ in \mathbb{R}^{n}.

Hence

$$
\langle\alpha(X) \text {, di } Y\rangle=m(i)\left(\left(C_{B}(i)+B_{\beta}(i)\right) X, Y\right)=\sum_{S=1}^{m} m(i)\left(Y_{S}^{0}, X\right)\left\langle\bar{e}_{S}, \text { di } Y\right\rangle .
$$

Thus if e_{1}, \ldots, e_{m} is a moving orthonormal frame in $T M$, then

$$
m(i)\left(\operatorname{div}_{i}\left(C_{\beta}(i)+B_{\beta}(i)\right), Y\right)=\sum_{r=1}^{m} \sum_{s=1}^{m} m(i)\left(\nabla(i) e_{r} Y_{s}{ }^{0}, e_{r}\right)<\bar{e}_{s}, d i Y>
$$

Interchanging the summation yields (24).

Therefore we have due to (24) and (22)

Corollary 6 Let $\alpha \in A^{1}\left(M, R^{n}\right)$ and $i \in E\left(M, R^{n}\right)$ and let $\alpha=d h+\beta$
as in (1). If $h(i)=d i X_{1}+\tau \cdot N(i)$ then

$$
\begin{aligned}
& \operatorname{div}_{i}\left(B_{\alpha}(i)+C_{\alpha}(i)\right)=\operatorname{div}\left(B_{h}(i)+C_{h}(i)\right)= \\
& =-\Delta(i) X_{h}+W(i) \operatorname{grad}_{i} \tau+\tau \cdot \operatorname{grad}_{i} H(i) .
\end{aligned}
$$

References:

[Gu] Gutknecht J.
"Die C_{Γ}^{∞}-Struktur auf der Diffeomorphismengruppe einer kompakten Mannigfaltigkeit". Diss.ETH 5879, Zürich 1977.
[K1] Klingenberg W.
"Riemannian Geometry", de Gruyter Series in Mathematics (1982), Walter de Gruyter, Berlin, New York.

