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1. Introduction and Problem Statement

Throughout this paper let us make the following assumptions:

Y and Z are real topological vector spaces, with Y being locally
convex;

PcY and QcZ are nonvoid convex cones with P closed and

int Q#¢1);

ScYxZ is a nonvoid convex set, and

SY:= {y€Y|(y,z)€S, z€Z} .

We want to obtain a necessary and sufficient condition of Lagrangean type for

the non-existence of a solution (y,z) €YxZ of the following system
(1) (y,z) €8, y €-P, z € int(-Q).

Such a characterization, which should not require any additional regularity
hypotheses, is desirable, since many notions of optimality, efficiency, or
infeasibility reduce to the inconsistency of a system like. (1). For any real
topological vector space E let us denote by E* the continuous dual. For x€E
and x*¥ € E¥ we writé <x*¥ x> instgad‘of x*(x), and if KcE is a.convex cone, we

denote the polar cone of K by
K* := {x* €E* | <x*,x>20 Vx€K}.

Then the classical Lagrangean condition concerning the inconsistency of (1)

may be formulated as follows: There exists (y*,z*) € Y¥x Z* such that
(2) y*¥EP*, z¥€Q¥, z*+0, O0<S<y*,y>+<z*,z> V (y,z) €8S.

It is obvious that the consistency of (2) is a sufficient condition_for.the
inconsistency of (1). Indeed, (l)land (2) cannot have solutions at theAsamé
time (note that z € int(-Q) and z* €Q*, z¥#%0 imply <z*,z><0). However, the
consistency of (2) is not a necessary condition for.the inconsistency of (1),
unless an additional regularity assumption is impoéed. A classical example of

such a regularity condition is the following:
(3) int P+ @, and OY € int(SY+P) .

Under (3) it can be shown that (2) has a solution if (1) is inconsistent. Hence,
under the regularity assumption (3) we have a theorem of the alternative: Of the

two systems (1) and (2) ome, and only one, has a solution.

1)

Throughout the paper, "int" denotes the interior, cl" the closure, and
"conv'" the convex hull.




Theorems of the alternative furnish a convenient tool to derive optimality
conditions for many types of optimization problems. We refer the reader to [2],
[3] for a comprehensive bibliography of theorems of the alternative in connec-
tion with optimality conditions. Unfortunately, assumption (3) is too strong
for many purposes. So, there have been numerous attempts to weaken this assump-—
tion. In this note we want to propose a necessary and sufficient condition for
the inconsistency of (1), which is close in form to (2) and which needs no reg-
ularity assumption at all. This condition is given in Theorem 1 below. Moreover,
under the classical assumption (3) this condition is readily shown to be equiv-
alent to the classical Lagrangean condition (2). This equi?alence is established
in Theorem 3. In the linear case, i.e., if S:= (AxB)(X), where X is a locally
convex topological vector space and A: X-Y, B: X>Z are continuous linear
mappings, our condition is equivalent to the following statement: There exists

z* € Z¥ such that
2* €Q*, z*¥+0, - B*z* € yweak*-cl A¥(P¥)

(where A*, B¥are the adjoints of A and B). A similar equivalence holds in the

affine case and is established in Theorem 4.




2. The general case

We turn now to the proposed theorem of the alternative. The relevant
assumptions on Y, Z, P, Q and S have been collected at the beginning of

Section 1.

Theorem 1. The following two statements are equivalent:
(i) System (1) has no solution.

(ii) There exists (z*,t*) € 7z*¥ x IR such that

_ z* € Q¥, t*zlo, (z*,t*) #0;
(%) for all €>0 and for all finite subsets wWes
there exists y* € P* such that

pkeg < <y¥,y> + <z¥, 2> ¥ (y,2z) € W .

Proof. a) Let (z*,t*) €2*¥x R satisfy (4). From (4) it follows in particular

that t*<<z*,z> for all (y,z) €S with y € -P. Let (—37,;) be a solution of (1).

Then t* —<z*,z><0. But here both terms on the left hand side are nonnegative,
and from (z*,t*) #0 at least one is positive, a contradiction, ji.e., (1) has no
»solution.

b) For the converse implication let (1) have no solution. We have to comsider

two different cases.

Case I: O¢SY+P. In this case for any finite subset 'Lé, CSY the compact convex
set conv '% is disjoint from the closed convex cone ~P. Since Y is locally convex,
the strong separation theorem [9, p.65] is applicable and yields y* € P* and k>0
such that <y*,y>2k Vy€conv 14, . Since (y*,k) can be normalized such that k= 1,
(4) 1is satisfied with_z*=0, k=1,

Case 2: OESY+P. in this case the conveX set V:={z€2 l (y,2z) €8S, y€-P} is non-
. empty, and since (1) has no solution, V is disjoint from the convex cone int (-Q).
The weak separation theorem [9, p.64] yields z*€Q*~ {0} 'such that

<z*,z>>0 VzE€V. It follows that the system

(y,2) €S, y €-P, <z*,z><0

has no solution. Fix W= { (yi’zi),_‘ i=1,...,0}, a finite subset of S, and €>0.
Choose’ (yo,zo) €S with yOE—P (which is possible due to the hypothesis of case 2).
Set t; := <z*,z.> (i=0,1...,1), and U':=conv { (y'i"t.,i)-li =0,1,...;0n} €Y X R.
It follows that the system

(y,t)E’U', y € -P, tg— €

has no solution either. Hence the compact convex set Y+ (0,€) is disjoint from the




closed convex cone -Px IR , and the strong separation theorem yields

(y*,t*) € P*x R,_ such that <y*¥,y>+1*(t+e) >0 V. (y,t) €' U. If t¥=0, then in
particular <y*.,yo>>0, contradicting the fact that y* € P* and yOG—P. Conse-
quently t*¥>0, and we normalize (y*,t*) in such a way that t*=1. We obtain

<g¥,y>+t=2~eV(y,t) € V', hence in particular
<y¥,y> +<z¥,z2>2-¢ V¥ (y,z) € W,

i.e., (4) is satisfied with z*+0, t*=0. q.e.d.

Remarks

1) Let OESY+P (i.e.., let there exist (y,z) €S with y € -P). Then it is
obvious that (4) cannot be satisfied otherwise than with z* % 0. Hence in
this case we may replace the condition (z*,t*) #0 by z*#40 in (4), and
Theorem ] continues to hold. Once z*#O_is ensured, we may of course set
t¥=0 as well in (4).

2) OESY+P (i.e., there does not exist (y,z) €S with y€-P) if and only
if there exists t*>0 such that (4) is satisfied with z*=0. The necessity
of this condition has been shown in part b),case | of the proof of Theorem 1;

the sufficiency is obvious.

3) Theorem 1 also gives a necessary and sufficlent condition for the incon-

sistency of the system
XEC; f(x)ﬂ (-P)#¢: g(x)ﬂint(—Q)#¢,

where C is a convex set and f:C3Y, g: C3Z are multivalued mappings. For
this purpose we have to assume that f is P-convex (which means { (x,y) éC ><Y'|
yE€f(x)+P} has to be convex) and that g 1s Q-convex (which meaﬁs

{(x,z) €ECxZ I z€g(x) +Q} has to be qonvex). We set
S:=(fxg)(C)+ (PxQ).

Then S is convex. Since P+P=P and Q+ int Q=1int Q, the inconsistency of the
above system is then equivalent to the inconsistency of (1). It is easily seen
that in this case in (4) we can replace the finite subsets W< by the finite
subsets Wc (f xg)(C), and Theorem 1 continues to hold. In particular, if f and
g are sing1e¥valued,~ then it is enough to consider the sets W= (fxg)(¥),

where ¥ runs over all finite subsets of C.

4) If we assume that Q#% Z, then we can replace t*>0 by t*¥=0 in condition (4)
of Theorem 1. We only have to verify the necessity of this modified condition,

for which we give an alternative proof:



Like in case 2 of the proof above we obtain z*€ Q*~ {0} such that the system
(y,2z) €S, y € -P, <z*,z><0

has no solution (if V is empty, then any z*€ Q*~ {0} will do). Now let
’LJ':= {(yi,zi) I i=1,...,n} E S be finite. Then with c := (cl,...,cn), where

s :=<z*,zi> (i=1,...,n), and with the continuous linear mapping A : R ->Y

n

defined by Au := Uy the system
. i=1

(*) u€R', u=0, Au€ -P, <c,u><0

has no solution either (because if u solves (*), then we may normalize Ziui =1,

so that (y,z) :=Ziui(yi,zi) solves the previous system). With A¥ dénoting the

adjoint of A this implies that
(%) - c€ cl(A*P* - RD).
Otherwise, the strong separation theorem would yield u€ R such that

0<<~c,u>,
02 <A*y* - w,u>=<y*¥,Au>-<w,u> Vy*€P¥, VwER,

the latter inequality implying in particular that u20 and, since P is closed
and Y is locally convex, Au € -P**=-P, Hence, altogether, u would solve (*),
a contradiction. Now, if U denotes the set of all unit vectors in R’ , it
-follows from .(**) that for all e€>0 there exists y*€P* and w€ IRi1 such that
for all ueWU, | <—c-A*y* +w,u> | <e. Hence, since w20, - e <<y*¥ ,Au> +<c,u>

for all_u€u,, i.e.,—es<y*,yi>+<z*,zi> (i=1,...,n). q.e.d.

"In particular, if Y=TR" and P=P*= IR:l , .then AP~ ]R:_1 is a finitely generated
cone, and therefore closed. In this case the closure in (**) may be omitted,

and condition (4) remains even true with € =0.




3. Equivalent formulations

In this section we establish, under additional regularity assumptions,
two equivalent - and more familiar - versions of statement (ii) in Theorem I.

Our overall assumption, stated in the introduction, remains in force.

Theorem 2. Assume that there exists a finite subset 'Ié'c SY such that
(5) 0 € int (conv '\j, +P).

Then the following statements are equivalent:
(i) There exists (z*,t*) € Z*x R satisfying (4).
(ii) There exists (y*,z*) € Y*x Z* satisfying (2).

Proof. Obviously, if (y*,z*) satisfies (2), then z* and t* := O satisfy (4).
Conversely,. let (z*,t*) satisfy (4). From (5) it follows that OESY+P, hence
z¥+0 (see remark 1 following Theorem 1). Choose a finite subset 'LJ’OCS such

that {y€ Y,|(y,z) E'LJ’O, z€Z}= 14, . We consider the family of sets
YV, e) 1= {y* €P* |- e<<y*,y> +<z*,z> V (y,2) €JI,

where WecWe S, W finite, and 0<e <!l. From (4) all sets v*(1J,e) are non-—
empty, and this implies then also that any finite collection of these sets has
nonempty intersection. The sets Y*(W,e) are clearly weak*-closed, and they are

contained in the set
K:= {y*€Y* | -1-as<<y*,y> Vy€conv'l4, +P},

where o :=max {<z*,2>|(y,2) eW°s. By assumption (5) conv'lé +P is a neigh-
" borhood of the origin, and K - as a polar of this neighborhood - is then
" weak*-compact from Alaoglu's Theorem [6, p.70]. It follows from these facts
that the entire family of the sets v*(WJ,e) has nonempty interséction, i.e.,

there exists y* € Y¥ such that
y*en { Y*(W,e) ‘wOCUCS, W finite, 0<e<1}.

This y* together with z* satisfies (2). q.e.d.

Remark. If int P+@ or if Y is finite-dimensional, then

(6) O €int(Sy+ P)

is a sufficient condition for the existence of lé, satisfying (5).




Proof. a) Assume that intP +@, and let (6) hold. Then (SY+P) Nint(-P) # @,

and therefore 0€ (SY +P) +intP=S_+int P. Choose y0 € SY such that O€ yo +int P,

Y
Then (5) 1s satisfied with 'lj,:= {yo} . b) Assume that Y is finite-dimensional,
and let (6) hold. Then there exists a finite subset 'UCSle-P such that 0€
int conv U , and obviously we can find '%CSY finite such that conv U <

vconv’g+P. 'lj, fulfills (5). q.e.d.

Besides regularity assumptions of interior point type - such as (5) - regu-
larity assumptions of closedness type are equally important. With regard to the
latter we show the equivalence of statement (ii) in Theorem | with a condition
which has been established in [8] under the additional hypothesis that S is
closed and Z locally convex. For this purpose we adjoin to the convex set

ScYxZ the convex cone KSch Zx IR given by

Kg = {te(y,z,1) | (y,2) €S, t>0} .

Let K¥ be the polar cone of K,. It is easily seen that

S
(y*, 2%, t*) EKE= = <y¥,y>+<z¥, 2>+ t*¥20 V (y,z) €8S.

If S is closed, then (y,z) €S < (y,z,1) €cl KS. With the overall assumption

still presupposed we have the following result.

Theorem 3. Let S be closed and let Z be locally convex. Then the following
statements are equivalent:

(i) There exists (z*,t*) € Z*x R satisfying (4).

(ii) There exists (z*,t*) € Z*x IR satisfying

Z¥€Q*, t*¥>0, (z*,t*) 0,

N .
(0,-z*, t*) € weak*—cl A, .

i=— * * *
where A : K§‘+(P X{OZ*}AX{OJR})CY‘XZ XIR

Proof. a) Let (z*,{:*) satisfy (7). Let W be an arbitrary finite subset of S,
and let € >0. Then (0,-2z*,t*) € weak*~cl A implies that there exist
(n*,c*,1%) E-Kg and y* € P* such that -

| <n*+y*,y> +<gk 42k 2>+ 1k —t* | < e V(y,2) €W,
Since <n*,y>+<g*,z>+ 1t*<0 V (y,z) €S, it follows that

y .

- <yk,y>-<z¥,z>+ t*¥<e V.(y,z) €W,

i.e., (z*,t*) satisfies (4).



b) Let (z*,t*) satisfy (4). Assume that (z*,t*) does not satisfy (7), i.e.,
(0,~2*%,t*) ¢weak*—cl A. Then the strong separation theorem provides
(y52,t) EYxZx R such that (y,z,t) € -0% and <-z*,2> 4+ t*t>0. (y,z,t) €-A*

implies that (y,z,t) €K§*= cl KS and y € -P** = -P, By definition of K_ we

have t20. Let us first consider the case t>0. Normalizing (y,z,t) sich

that t=1 we obtain (y,z,1) €cl KS’ and thereby, since S is closed, (y,z) €S.
Moreover y € -P and t*><z*,z>. But (4) implies that t¥<<z*,z> for all (y,z) €S
with y € -P. Hence we have obtained a contradiction. In case t=0 we have
0><z¥,z>, (y,z,0) €cl KS’ y € -P. Assume that there exists (yo,zo,l) €cl KS
with yOE—P. Then for all r =0 sufficiently large it follows that
(y°+ry,zo+rz) €8s, 'yo+ry €-P, t*><z*,zo+rz> ; .this contradicts (4) again.
If there is mo (yo,zo,l) €cl KS with yOE-P, then z*=0, t*=1 meets the
requirements of (7). Otherwise, if (0,0,1) ¢weak*-c1-A, then as before the
strong separation theorem provides (y,z,t) €YxZx R such that (y,z,t) €cl Kgs
y€-P and t>0. This gives a contradiction to the non—existence of (yo,zo,l)

as above. So altogether we have obtained that (7) must be satisfied. q.e.d.

Remark. 1f A is weak*-closed, then statement (ii) “in Theorem 4 is easily seen
to be equivalent to the following: There exists (y*,z*,t*) € Y¥x Z¥x IR such

that

y*¥E€P*, z¥€Q*, t*2>0, (z2¥%,t*) %0,
t¥<<y*,y>+<2*,2> V (y,2) €S.

By a result of Dieudonné ([1], see also [4, p.80]) the comne A=—K§+
(P* x {OZ*'} X {OIR}) is closed, .if P* is locally weak*-compact and
Kgﬂ (P* x {Oz*} X {O]R}) is a linear subspace. The latter condition amounts to

the requirement that {y* € P¥ | 0 <<y*,y> Vy€SY} is a linear subspace of Y¥*.




4, The affine case

In this section we specialize Theorem | to the affine case, i.e., we assume

that
S:= (Ax B) (X) - (a,b),
where

X is a real locally convex topological vector space,
A:X-Y and B: X->Z are continuous linear mappings,

(a,b) €EYxZ is fixed.

The assumptions concerning Y, Z, P, Q remain as before. With these specifications

system (1) becomes then
(8) x €X, Ax-a€-P, Bx-b€int (-Q),
and condition (4) becomes

2¥ € Q*, t*¥>0, (z*,t*) %0;
for all €>0 and all finite subsets ¥ <X
9

there exists y* € P* such that.
t* - ¢ < <y¥,Ax-a> + <z*,Bx-b> Vx€ X.

From Theorem 1 we know that (8) has no solution if, and only if, there exists
(z*,t*) € Z*¥x IR satisfying (9). Let A*: Y¥-X* and B*: Z*¥->X* denote the ad-
joint mappings of A and B. Then we obtain the following equivalent character=-

ization.

Theorem 4. The following statements are equivalent:
(i) There exists (z*,t*) € Z*x R satisfying (9).
(ii) There exists (z*,t*) €Z*x IR satisfying

z¥ € Q¥*, t¥20, (z*,t*) *0;
(-B*z*, <b,z*>+ t*) € weak*-cl T,

(10)
where T := { (A*y*, <-a,y*>) | y* €P*} cX*x RR.

Proof. Obviously, (10) implies (9); this is easily seen by spelling out the con-
dition for being an element of the weak*-closure as in the proof of the preced-
ing theorem. For the converse implication let (z*,t*) € Z*x IR satisfy (9).

Case 1: There exists XOEX, Axo-aE‘-P. In this case we shall construct a suit-—

able t*€ IR such that (z*,t*) satisfies (10). From (9) follows that the system




x €X, Ax-a€-P, <z*,Bx-b><T

has no solution for t<t*. But it does have a solution for T><Z*,on—b>. Let
t* be the infimum of all 1 such that this system has a solution. Then
t*< 1¥ <o, hence t*20 and (z*,t*) #0. Moreover, by the definition of t* the

system
* x€X, Ax~a€-~P, <z¥,Bx-b><T*

has no solution. Assume now that (z*,t*) does not satisfy (10). Then
(-B¥z*,<b, 2*> + %) ¢weak*—c1 I'. By the strong separation theorem we obtain

(x,t) €EXx IR such tﬁat

0> <A*y* x> + <-a,y*> + t = <y*,Ax-at> Vy* € P*,
0 < <-B*z* x> + (<b,z*> + %) « t = ~<z* ,Bx-bt> + t*t.

Since P**=7P this implies
Ax - at € -P, <z*,Bx-bt> < t*t.

Clearly it is enough to consider the cases t= 1,'.t=0, and t=-1.1f t=1,
then x solves (*¥), a contradiction. If t=0, then for all r>0 large enough
it follows that x°+rx solves (*), again a contradiction. If t=-1, then
there exists € >0 such that Ax+ a€-P, <z*,Bx+b> <~ 1*¥-¢. Then by the defini-
tion of T* there exists xl €X such that Ax1 —a€—P,_<z*,Bxl-—b><r*+ e. It
follows for all r>0 large enough that x] +r(}§+x1) solves (*), 6nce more a
contradiction. So (z*,T*) satisfies (10).

Case 2: x€X, AXx—a€-P has ﬁo solution. In this case (10) is satisfied for -
z*¥=0, t*=1, Otherwise we have (0,1) § weak¥*—cl I', and similar to case .1 the
strong separation theorem gives (x,t) €Xx IR such that Ax - at€-P and t>0.

This contradicts the hypothesis of case 2. ‘ qg.e.d.

If Y=1R" and P=P*= ]RI: , then T is weak*-closed, and (10) simplifies in

the same way as indicated in the remark following Theorem 3.
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5. Characterization of weakly efficient points

The results obtained so far can be used to characterize weakly efficient

points. Besides our overall assumption concerning Y, Z, P, Q we assume that

C is a convex set,
f:C-Y and g: C—Z are mappings which are P-convex

and. Q-convex respectively,
D:={x€C ] f(x) €-P}.

We consider the problem
(1 eff {g(x),Q|x€D},

where x° is, by definition, a solution of ('11), iff x°€D and there does not
exist x €D with g(x)—g(xo) €int (-Q). So x° €D is a solution of (11) if and

only if the system
Xx€EC, f(x)€-P, gx) -g&x°)€int (-Q)

is inconsistent. Therefore a straightforward application of Theorem 1
(together with the remarks .l and 3 following it) and Theorem 2 gives the fol-

lowing result.

' Corollary. Let x° €D. Then x° is a solution of (11) if, and only if, there
exists z* € Q¥, z* ¥:Q,'such- that for all >0 and for all finite subsets X <C

there exists y*E P* satisfying
<z*,g(xo)>—es<y*,f(x)>+<z*,g(x)> vx€EX.

If there exists a finite subset XOC.C such that 0 € int (conv f(Xo) +P), then
x° €D is a solution of (11) if, and only if, there exist y*€P¥*, z¥€Q*, z*%*0

such that

<z*,g(x°0) > < <y*, £ (x)> + <z*,g(x)> VxXEC.

In a previous paper [5] the authors have obtained similar results for .

problem (11) with D:= {x€C l ft(x) <0 Vt€eT]}, where ft(-) :C>R 1s a convex

function for all t €T, and T is an arbitrary set.
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