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I. Introduction and Problem Statement

Throughout this paper let us make the following assumptions:

Y and Z are real topological vector spaces, with Y being locally
convex;
Pe Y and Q c Z are nonvoid convex cones wi th P closed and
int Q * (1) ;
ScY x Z is a nonvoid convex set, and
Sy:={yEYI(y,z)ES, zEZ}

We want to obtain a necessary and sufficient condition of Lagrangean type for
the non-existence of a solution (y,z) E Y x Z of the following system

(I) (y,z)ES, y E -P, z E int(-Q).

Such a characterization, which should not require any additional regularity
hypotheses, is desirable, since many notions of optimality, efficiency, or
infeasibility reduce to the inconsistency of a system like (I). For any real
topological vector space E let us denote by E* the continuous dual. For xEE
and x* E E* we write <x*,X> instead of x*(x), and if KcE is a convex cone, we
denote the polar cone of K by

K* := {x* E E*I <x*, x> ;:::° V xE K} .

Then the classical Lagrangean condition concerning the inconsistency of (I)

may be formulated as follows: There exists (y*,z*) EY*xZ* such that

(2) y*EP*, z*EQ*, z**O, O=:;<y*,y>+<z*,z> V (y,z) ES.

It is obvious that the consistency of (2) is a sufficient condition for the
inconsistency of (1). Indeed, (1) and (2) cannot have solutions at the same
time. (note that zEint (-Q) and z* E Q*, z* * ° imply <z*, z> < 0). However, the
consistency of (2) is not a necessary condition for the inconsistency of (I),

unless an additional regularity assumption is imposed. A classical example of
such a regularity condition is the following:

(3) int P * 0, and 0Y E int(Sy+P).

Under (3) it can be shown that (2) has a solution if (I) is inconsistent. Hence,
under the regularity assumption (3) we have a theorem of the alternative: Of the
two systems (1) and (2) one, and only one, has a solution.

I) ". "d h.." 1" h 1 dThroughout the paper, ~nt enotes t e ~nter~or, . c t e c osure, an
"conv" the convex hull.
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Theorems of the alternative furnish a convenient tool to derive optimality
conditions for many types of optimization problems. We refer the reader to [2],
[3] for a comprehensive bibliography of theorems of the alternative in connec-
tion with optimality conditions. Unfortunately, assumption (3) is too strong
for many purposes. 80, there have been numerous attempts to weaken this assump-
tion. In this note we want to propose a necessary and sufficient condition for
the inconsistency of (1), which is close in form to (2) and which needs no reg-
ularity assumption at all. This condition is given in Theorem 1 below. Moreover,
under the classical assumption (3) this condition is readily shown to be equiv-
alent to the classical Lagrangean condition (2). This equivalence is established
in Theorem 3. In the linear case, i.e., if 8:= (AxB) (X), where X is a locally
convex topological vec tor space and A: X ~ Y, B: X ~ Z are continuous linear
mappings, our condition is equivalent to the following statement: There exists
z* E Z* such that

z* E Q*, z* =1= 0, - B*z* E weak*-cl A*(P*)

(where A*, B*are the adjoints of A and B). A similar equivalence holds 1n the
affine case and is established in Theorem 4.
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2.. The general case

We turn now to the proposed theorem of the alternative. The relevant

assumptions on Y, Z, P, Q and S have been collected at the beginning of

Section 1.

Theorem 1. The following two statements are equivalent:

(i) System (1) has no solution.

(ii) There exists (z*, t*) EZ*x lR such that

(4)

z*EQ*, t*~O, (z*,t*) *0;
for all £ > 0 and for all finite subsets 'lJ" eS

there exists y* Ep* such that

t*-£~<Y*,y>+<z*,z> V (y,z) E V.

Froof. a) Let (z*, t*) EZ*x lR satisfy (4). From (4) it follows in particular

that t*~<z*,z> for all (y,z) ES with yE-P. Let (y,-;') be a solution of (1).

Then t*-<z*,-;'>~O. But here both terms on the left hand side are nonnegative,

and from (z*,t*) *0 at least one is positive, a contradiction, Le., (1) has no

solution.
b) For the converse implication let (1) have no solution. Wehave to consider

two different cases.
Case 1: 0 ~ Sy+P. In this case for any finite subset '\t c Sy the compact convex

set conv ~ is disjoint from the closed convex cone -Po Since y is locally convex,

the strong separation theorem [9, p. 65] is applicable and yields y* Ep* and k> 0

such that <y*, y>~ k VYEconv 1.f . Since (y*, k) can be normalized such tha t k = 1,

(4) is satisfied with z* =0, t* = 1.
Gase 2: OESy+P. In this case the convex set V:= {zEZ I (y,z) ES, yE-P} is non-

empty, and since (1) has no solution, V is disjoint from the convex cone int (-Q).

The weak separation theorem [9, p. 64] yields z* EQ*" {O} such that

<z*, z>~ 0 Vz EV. It follows that the system

(y, z) ES, YE -P, <z*,z> <0

has no solution. Fix 'Li:= {(Yi,zi) I i= 1, ... ,n}, a finite subset of S, and £>0.
Choose (y , z ) ES with y E-P (which is possible due to the hypothesis of case 2).

000
Set t. :=<z*,z.> (i=O,l. .. ,n), and 'tf:=conv{(y.,t.)li=O,l, ..•. ;nlc.y~JR.

1 1 1 ~. .

It follows that the system

t~-£y E -P,(y, t) E V ,
has no solution either. Hence the compact convex set 'lf + (O,e) is disjointfrom the
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closed convex cone -px IR_, and the strong separation theorem yields

(y*,.*) EP*x lR+ such that <y*,y>+'t'*(t+e) >0 V.(y,t) E'lr. 1£ 1''''=0, then in

particular <y*,y »O,contradicting the fact that y*EP* and y E-P. Conse-o 0

quently .* > 0, and we normalize (y*,.*) in such a way that .* = I. We obtain

<y*, y> + t ~ ;.. E: V(y, t) E 'V', hence in particular

<y* ,y> +<z * , z> ~ - E: V(y,z)E1J',

Le., (4) is satisfied with z*=I=O, t*=O.

Remarks

q.e.d.

I) Let OESy+P (Le., let there exist (y,z) ES with yE-P). Then it ~s

obvious that (4) cannot be satisfied otherwise than with z* =1=o. Hence ~n

this case we may replace the condition (z*,t*) =1=0by z* =1=0 ~n (4), and

Theorem 1 continues to hold. Once z* =1=0 is ensured, we may of course set

t* = 0 as well in (4).

2) 0 E Sy + P (i.e., there does not exist (y,z) ES with y E -P) if and only

if there exists t* >0 such that (4) is satisfied with z* = o. The necessity

of this condition has been shown ~n part b),case 1 of the proof of Theorem I;

the sufficiency is obvious.

3) Theorem 1 also gives a necessary and sufficient condition for the incon-

sistency of the system

xE C, fex) n (-P) =I=~, g(x) n int(-Q) =I=~,

where C is a convex set and f : C::+Y, g: C:f Z aremultivalued mappings. For

this purpose we have to assume that f is P-convex (which means {(x,y) E C x Y

YE f (x) + P} has to be convex) and that g is Q-convex (which mea~s

{(x,z) ECxZ I zEg(x) +Q} has to be convex). We set

S : = (f x g) (C) + (P x Q) •

Then S is convex. Since P + P = P and Q+ int Q= intQ, the inconsistency of the

above system is then equivalent to the inconsistency of (l). It is easily seen

that in this case in (4) we can replace the finite subsets 1JV~s by thefinite

subsets 'L.Y~ (f x g)(C), and Th~orem I continues' to hold. In particular, if fand

gare single-valued, then it is enough to consider the sets 'l.J:= (fxg)()lS),

where )t runs over all fi~ite subsets of C.

4) If we assume that Q=1=Z, then we can replace t* ~ 0 by t* = 0 in condition (4)

of Theorem I. We only have to verify the necessity of this modified condition,

for which we give an alternative proof:
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Like ~n case 2 of the proof above we obtain z* EQ*' {O} such that the system

(y,z) ES, y E -P, <z*,z> < 0

has no solution (if V is empty, then any z*EQ*' {O} will do). Now let

'lJ:= {(y.,z.) li=I, ••. ,n}~S be finite. Thenwith c:=(cl, .•• ,cn), where~ ~
c. := <z*,z.> (i = I, ••• ,n), and with the continuous linear mapping A: JRn....•y~ ~

n
defined by Au:= L ti.y., the system

i= 1 ~ ~
n(*) uE JR, u~O, AuE -P, <c,u><O

has no solution either (because if u solves (*), then we may normalize L.U. = I,~ ~
so that (y,z) :=Lu. (y. ,z.) solves the previous system). With A* denoting the

.~ ~ ~ ~
adjoint of A this implies that

(**) - c E cl (A*P*- JR~).

Otherwise, the strong separation theorem would yield u E JRn such that

0< <-c,u>,

o ~ <A*y* - w,u> =<y* ,Au> - <w,u> Vy* EP*,

the latter inequali ty implying in particular that u ~ 0 and, since P is closed

and Y is locally convex, AuE -p** = -Po Hence, altogether, u would solve (*),

a contradiction.Now, if U denotes the set of all unit vectors in JRn, it

follows from .(**) that for all .E:> 0 there exists y* Ep* and wE JR~ such that

for all uEU, I <-c-A*y*+w,u> I ~E:. Hence, since w~O, -E:~<y*,Au>+<c,u>

for all uEU, Le., -E:~<Y*,y,>+<z*,z.> (i= I, ..• ,n). q.e.d.~ ~

In particular, if y = JRn and P =p* = JR~, then A*P*- JR~ ~s a fini tely genera ted

cone, and therefore closed. In this case the closure ~n (**) may be omitted,

and condi tion (4) remains even true wi th E:=O.
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3. Equivalent formulations

In this section we establish, under additional regularity assumptions,
two equivalent - and more familiar - versions of statement (ii) in Theorem I.

Our overall assumption, stated in the introduction, remains in force.

Theorem 2. Assume that there exists a finite subset 1f"csy such that

(5) 0 Eint (conv ¥ + P) •
Then the following statements are equivalent:
(i) There exists (z*,t*) E Z* x JR satisfying (4).

(ii) There exists (y*,z*) E y* x z* satisfying (2).

Froof. Obviously, if (y*,z*) satisfies (2), then z* and t* := 0 satisfy (4).
Conversely,.let (z*,t*) satisfy (4). From (5) it follows that OESy+P, hence
z* =1= 0 (see remarkl following Theorem I). Choose a finite subset 1,]0 c S such
that {yE Y I (y,z) E tJ'0, z E Z} = 'ti . We consider the family of sets

y*(V,d:= {y*EP* I-E:::;<y*,y>+<z*,z> V (y,z) EV},
where 'lJ'°cUcs, V finite, andO<E:::;1. From (4) all sets y*(1J',E) are non-
empty, and this implies then also that any finite collection of these sets has
nonempty intersection. The sets y*(1f,E) are clearly weak*-closed, and they are
contained in the set

K := {y* E y* I - J - a :::;<y* ,y> V y E conv tf + P },

where a :=max {< z*,z> I (y,z) E 'W'0}. By assumption (5) conv V + P is a neigh-
borhood of the origin, and K - as apolar of this neighborhood - is then
weak*-compact from Alaoglu's Theorem [6, p.70]. It follows from these facts
that the entire family of the sets Y*(~,E) has nonempty intersection, i.e.,
there exists y* E y* such that

y*En {Y*('W',E) ItJ°ct.JcS, tJ' finite, O<E:::;I} •

This y* together with z* satisfies (2).

Remark. If int P =1= f/J or if Y ~s finite-dimensional, then

(6) 0 E int(Sy + P)
~s a sufficient condition for the existence of lf satisfying (5).

q.e.d.
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Proof. a) Assume that int P * C/J, and let (6) hold. Then (Sy +P) n int.(...,P)* C/J,

and therefore OE (Sy + P) + int l' = Sy + int P. Choose yOE Sy such that OEyO+ int P.

Then (5) is satisfied with ~:= {yo}. b) Assume that y is finite-dimensional,

and let (6) hold. Then there exists a finite subset 'l!c Sy+P such that OE

int conv V', and obviously we can find ~ C Sy finite such that conv 1f C

conv~+p.1.f fulfills (5). q.e.d.

Besides regularity assumptions of interior point type - such as (5) - regu-

larity assumptions of closedness type are equally important. With regard to the

latter we show the equivalence of statement (ii) in Theorem 1 with a condition

which has been established in [8] under the additional hypothesis that S is

closed and Z locally convex.For this purpose we adjoin to the convex set

SC Yx Z the convex cone KSc Yx Z x 1R gi ven by

KS:= { .t • (y, z, I) I (y, z) ES, t ~ °}
Let K~ be the polar cone of KS. It is easily seen that

(y*, z*, t*) EK; ~ <y*, y> +<z*, z>+ t* ~ ° V (y, z) ES.

If S is closed, then (y,z) E S ~ (y,z, I) E cl KS. With the overall assumption

still presupposedwe have the following result.

Theorem 3. Let S be closed and let Z be locally convex. Then the following

statements are equivalent:

(i) There exists (z*, t*) EZ* x 1R satisfying (4).

(ii) There exists (z*, t*) E z* x 1R satisfying

(7) {Z*EQ*, t*~O, (z*,t*) *0,
(O,-z*, t*)E weak*-cl /:,.,

where /:,.:= - KS+ (P* x {Oz*} x {01R}) c y* x Z* x :IR•

Proof. a) Let (z*,t*) satisfy (7). Let tJ be an arbitrary finite subset of S,

and let £>0. Then (O,-z*,t*) Eweak*-cl /:,.implies that there exist

(n*, Z;*,.*) E - K; and y* Ep* such that

I <n* +y*,y> +<Z;*+ z*,z> +.* - t* I :::::;£ V (y,z) EV.
Since <n*,y>+<Z;*,z>+.*:::::;O V(y,z)ES, it follows that

- <y*,y>-<z*,z>+t*:::::;£ V.(y,z) E1..J,

~.e., (z*,t*) satisfies (4).
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b) Let (z*,t*) satisfy (4). Assume that (z*,t*) does not satisfy (7), ~.e.,

(O,-z*,t*) ~weak*-cl lJ.. Then the strong separation theorem provides

(y,z,t)EYxZX]R such that (y,z,t)E-£'I* and <-z*",z>+t*t>O. (y,z,t)E-£'I*

implies that (y, z, t) EKS*= cl KS and y E-P**= -P. By definition of K
S

we

have t~O. Let us first consider the case t>O. Normalizing (y,z,t) such

that t = 1 we obtain (y,z, 1) E cl KS' and thereby, since S is closed, (y,z) ES.

Moreover yE-P and t*><z*,z>. But (4) implies that t*~<z*,z> for all (y,z) ES

with y E-P. Hence we have obtained a contradiction. In case t =° we have

O><z*,z>, (y,z,O) Ecl KS' yE-P. Assume that there exists (yO,zo,l) Ecl K
S

with yOE -Po Then for all r ~ ° sufficiently large it follows that

(yo+ry,zo+rz) ES,yo+ryE-P, t*><z*,zo+rz> ; this contradicts (4) again.

If there is no (yO,zo,l) Ecl KSwith yOE-P, then z*=O, t*= 1 meets the

requirements of (7). Otherwise, if (0,0, I) ~weak*-cl" £'I, then as before the

strong separation theorem provides (y,z,t) EYx Zx]R sucl). that (y,z,t) Ecl KS'

yE-P and t>O. This gives a contradiction to the non-existenceof (yO,zo,l)

as above. So altogether we have obtained that (7) must be satisfied. q.e.d.

Remark. If !.lis weak*-closed, then statement (ii) "in Theorem 4 is easily seen

to be equivalent to the following: There exists (y*,z*,t*) Ey*xZ*x]R such

that

y*EP*, z*EQ*, t*~O, (z*,t*) *0,

t*~<y*,y>+<z*,z> 'v' (y,z) ES.

By a result of Dieudonne ([ I], see also [4, p.80]) the cone £'I= - KS+

(P* x {OZ*} x {0]R}) ~s closed, .if p* is locally weak*-compact and

KSn (P* x {Oz*} x {0]R}) is a linear subspace • The latter condi tion amounts to

the requirement that {y* Ep* I °~<y*, y> 'v' YESY} is a linear subspace of Y*.
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4. The affine case

In this section we specialize Theorem 1 to the affine case, ~.e., we assume

that

S:= (Ax B) (X) - (a,b),

where

X is areal locally convex topological vector space,

A : X-+Y and B : X-+Z are continuous linear mappings,

(a, b) E Y x Z is fixed.

The assumptions concerning Y, Z, P, Q remain as before. With these specifications

system (1) becomes then

(8) x E X, Ax-aE-P, Bx - b Eint (-Q),

and condition (4) becomes

(9)

z* E Q*, t* ~ 0, (z*, t*) =1=0;

for all e: > 0 and all finite subsets 'i.. cX

there exis ts y* E p* such that_

t* - e:::;; <y*,Ax-a> + <z*,Bx-b> Vx EX.

From Theorem 1 we know that (8) has no solution if, and only if, there exists

(z*,t*) EZ*x]R satisfying (9). Let A*: Y*-+X* and B*: Z*-+X* denote the ad-

joint mappings of A and B. Then we obtain the following equivalent character':"--

ization.

Theorem 4. The following statements are equivalent:

(i) There exists (z*, t*) E Z* x JR satisfying (9).

(ii) There exists (z*, t*) E z* x JR satisfying

(10) { z* E Q*, t* ~ 0, (z*, t*) =1=0;

(-B*z*, <b,z*>+ t*) Eweak*-cl r,

where r := { (A*y*, <-a,y*» I y* E P*} cX* x ]R.

Proof. Obviously, (10) implies (9); this is easily seen by spelling out the con-

dition for being an element of the weak*-closure as in the proof of the preced-

ing theorem. For the converse implication let (z*, t*) E Z* x]R satisfy (9).

Case 1: There exists X
O E X, Axo - a E'-P. In this case we shall construct a suit-

able .*EIR such that (z*,.*) satisfies (10). From (9) follows that the system
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<z*, Bx-b>< T

ohas no solution for T::;t*. But it does have a solution for T> <z*,Bx -b>. Let

T* be the infimum of all T such that this system has a solution. Then

t*::; T*< 00, hence T*~ 0 and (z*, T*) =I: O. Moreover, by the definition of T* the

system

(*) x E X, Ax - a E -P,. <z*, Bx-b> < T*

has no solution. Assume now that (Z*,T*) does not satisfy (10). Then

(-B*z*,<b,z*>+ T*) ~weak*-cl r. By the strong separation theorem we obtain

(x, t) EX x lR such that

O~<A*y*,X>+<-a,y*>. t=<y*,Ax-at> Vy*EP*,

0< <-B*z*,X> + (<b, z*> + T*) • t = - <z*, Bx-bt> + T*t.

Since P** = P this implies

Ax - at E -P, <z*,Bx-bt> < T*t.

Clearly it is enough to consider the cases t = l,t = 0, and t = - 1. If t = 1,

then x solves (*), a contradiction. If t = 0, thenfor all r > 0 large enough

it follows that xO+ r x solves (*), again a contradiction. If t = - 1, then

there exis ts £ > 0 such that Ax+ a E-P, <z*, Bx+b>< - 1'*- £. Then by the defini-

tion of T* there exists xl EX such that Axl - a E-P, <z*,Bxl-b> <.* + £. It
. 1 1

follows for all r > 0 large enough that x + r(x+x ) solves (*), onee more a

contradiction. SO (Z*,1'*) satisfies (10).

Case 2: x EX, Ax- a E -P has no solution. In this case (10) is satisfied for

z* = 0, t* = I. Otherwise we have (0,1) ~weak*-cl r, and similar to case I the

strong separation theorem gives (x, t) EX x lR such that Ax - at E-P and t > O.

This contradicts the hypothesis of case 2. q.e.d.

1£ Y=]Rn and P = p* =n\, then r is weak*-closed, and (10) simplifies ~n

the same way as indieated in the remark following Theorem 3.
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5. Characterization of weakly efficient points

The results obtained so far can be used to characterize weakZy efficient

points. Besides our overall assumption concerning Y, Z, P, Q we assume that

C is a convex set,

f : C~ Y and g : C~ Z are mapp~ngs which are P-convex

and Q-convex respectively,

D := {x EC I f(x) E -P } .

Weconsider the problem

(11) eff {g (x) ,Q I xE D},

where xO is, by definition, a solution of (11), iff X
O ED and there does not

exist xED with g(x)-g(xo) Eint (-Q). SOxOED is a solution of (11) if and

only if the system

xE C, fex) E -P, g(x)-g(xo) Eint (-Q)

~s inconsistent. Therefore a straightforward application of Theorem 1

(together with .the retnarks.1 and 3 following it) and Theorem 2 gives the fol-

lowing result.

Corollary. Let X
OED. Then X

O is a solution of (11) if, and only if, there

exists z* EQ*, ;Z;.* =l:O,such that for all E: > ° and for all finite subsets ~ c C

there exists y*EP* satisfying

<z*,g(xo» - E: :5<y*, f(x» +<z*,g(x» Vx EX.

If there exists a finite subset XOcC such that OE int (conv f(Xo) +P), then

xOED is a solution of (11) if, and only if, there exist y*EP.*, z*EQ*, z*:*O

such that

o . .
<z*,g(x »:5<y*,f(x»+<z*,g(x» VxEC.

In a previous paper [5] the authors have obtainedsimilar results for

problem (11) with D:= {xECI ft(x):50 VtETJ,where ft(.): C~]R is a convex

function for all tE T, and T is an arbi trary set.
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