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1. ctio

Decomposition methods for finding saddle points of a function ¢ : X XY — IR are

characterized by an alternating succession of master programs and subprograms [7]. The

master programs determine the proper iteration points, which are approximate saddle

points over a subset X" x Y of the original domain. The subprograms calculate auxili-
ary points, which serve to update the subset under consideration. For certain structured
problems the subprograms may decompose; this fact accounts for the name and the prac-
tical importance of decomposition methods, but is not essential for their mathematical

theory of convergence, which is our main concern here.

In {12] a symmetric decomposition scheme for finding convex-concave saddle points has
been described, which subsumed several previously known methods. More recently in [1]
another general scheme has been described, which introduced regularisation in solving
the subprograms. The present paper synthesizes these two approaches and may also be

viewed as a survey of some classical decomposition methods.

We work essentially within the setting of Sion’s celebrated minimax theorem [15],i.e. the
function ¢ considered will be quasi-convex-concave. The compactness assurmption for the
underlying domain, which has already been relaxed in [1], will be further weakened. We
also admit more general regularizing functions than in [1]. The procedure is descri-
bed in such a way that the extension to Nash equilibrium points in n-person games is

straightforward.

We recall that a function f : X — IR is called quasiconvex iff the level sets
{z € X|f(2z) < a} are convex for all « € IR. Furthermore f is called quasiconcave
iff —f is quasiconvex. A function ¢ : X xY — IR is called quasi-convex-concave iff
©(-yy): X = IR is quasiconvex for all y € Y and ¢(2,-) : Y — IR is quasiconcave for all
z € X. We denote by convA the convex hull of the set A. v




3. Preliminaries
Let there be given two nonvoid sets X, Y and a funct.ioﬁ plz,y) : X XY — R.
A point (§*,7*) € X xY is called a saddle point of p on X x Y iff

p(€*,y) < plz,n*) Y(z,9) € X xY. (1)
Henceforth we shall use the functions
M(z) := sup p(z,y) : X = RU {+oo}, (2)
yE .
m(y) := xiggf p(z,y): Y = RU {—o0}. (3)

Condition (1) can then be written as M(€*) < m(n*), and this inequality can only
be satisfied as an equality, since one has always m(y) < ¢(2,y) < M(z) for arbitrary
(z,y) € X x Y. If (€*,7°) is a saddle point, then £* solves the primal problem

(P): int{M(2)} € X, “
and 7* solves the dual problem

(D): sup{m(y)ly € Y}, (5)
and the extreme values are equal. Hence if the set of saddle points is nonempty, then it

consists of all the pairs (£*,9*) where £* solves (P) and * solves (D).

Let us now assume
(H1) X and Y are nonvoid closed convex sets in some normed linear spaces;
© : X xY — IR i3 quasi-convex-concave and continuous.
Under (H1) the function M(-), being the supremum of a family of lower semicontinuous
functions, is again lower semicontinuous. Likewise m(-) is upper semicontinuous. By
Sion’'s minimax theorem [15, 9] ¢ has a saddle point over X x Y if, in addition to (H1),
X and Y are compact. The latter requirement can be weakened as follows:

(H2) We are given a nonempty finite subset Z® C X x Y such that the set
S:={(¢,n)e X xY|p(€ ) < plz,n) V(z,y) € Z°} is compact.

Lemma 1. Under (H1) and (H2) ¢ has saddle points on X x Y, and all saddle points
lie in S.

Proof.

Assume that there exists no saddle point (£*,9*) € X x Y satisfying (1). Consider the

sets

S(z,y) :=={(&,n) € X xY|p(€,v) S e(z,n)}, (2,9) € X x Y.
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Then the family of closed sets {S(z,y)|(z,y) € X x Y} has empty intersection over S.
Since S = N{S(2,¥)|(z,¥) € Z°} is compact by (H2), there exist finite subsets X! Cc X
and Y! C Y with Z° C X! x Y! such that the family {S(z,v)|(z,¥) € X! x Y}
has empty intersection over X x Y. Let E! := conv X' and H! := convY!. These
sets are convex and compact, and by Sion’s original result there exists a saddle point
(fi,nl) € B! x H! of x over B! x H!. But then
(€, 7") e N{S(z,9)|(z:9) € X' x Y1} #8,

a contradiction. Hence © has saddle points over X X Y.

If (¢*,9*) is a saddle point over X x Y, then clearly ¢ (£*,y) < p(z,7*) for all (z,y) € 29,
hence (£*,9*) € S. q.e.d.

Remark. A closer inspection of the proof of the lemma shows that in (H2) the re-
quirement of Z° being finite can be replaced by the requirement that Z° = X0 x Y'°
with convX? and convY?® being compact. In particular, if Y itself is compact and
{¢ € X|M(€) £ M(Z)} is compact for some Z € X, then (H2) is satisfied with
Z% := {7z} x Y, since in this case

S={(6&,n) e X xY|M(£) < o(Fn)} c {§ € X|M(§) < M(F)} <Y,

and S is compact.

Example. We go through an example in detail to illustrate the usefulness of hypothesis
(H2). We assume in addition to (H1) that Y is a cone, and that p(z,y) := f(z) +g(2,y)
with g(z, ) positively homogeneous in Y for every z € X. Then

— 1 /(z) ifglz,y) <0 VyeY
M(a) = {+oo else,

and the primal problem (4) becomes
(P): inf {f(z)|z€ X, g(2,9) <0 VYyeVY}. (8)
We assume further that /() is inf-compact, meaning that the level sets {z € X|/(z) < o}
are compact for all @ € IR, and we aséume that the following Slater-type regularity
~ assumption (RA) is satisfied: ‘
(RA) Y is locally compact, and there exists a finite subset X 0 ¢ X such that
min g{(z,y) <0 VyeY\{oy}.

rc X0
Then hypothesis (H2) is satisfied with Z°9 := X x {0y}.
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Indeed: From local compactness of ¥ follows the existence of a compact subset B C
Y \ {ov} such that ¥ = IR, - B, and since g(z,-) is upper semicontinuous (RA) implies
the existence of § > 0 such that a'r.gi)g) g(z,y) £ =6 Vy € B. Let # € IR be arbitrary,
and choose k € IR such that k& > max f(z) and k > B. Since g(z,°) is positively
homogeneous it follows for all A > 0:
min (f(z) +9(2,9)) S k- A6 Vye AB.

In particular if A > §~1(k — ) =: ro we have gi}o p(z,y) < # Vy € AB. Hence for
A > ro the set AB is disjoint with the level set {y € Ylfgi}no plz,y) 2 F}; the latter
is therefore contained in the compact set [0,ro] - B and is itself compact. Now choose

Z% := X° x {0}. Then

S= {(¢&,1) € X xY|p(£,0) < p(z,7) Vze X°}

c {(ex|f(§) e’} x{ne¥|min o(zn) 26

where af := sup 151{131 ©(z,y) and §° := n}f f(z). a® and F° are finite since the functions
Y
being extremized are continuous and have compact level sets. Now S, being contained

in a compact set, is itself compact, and so (H2) is satisfied. q.e.d;

Hence under the assumptions of the example © has a saddle point (§*,9*). By what has
been said previously this implies that £* solves (P’) and that f(§*). < f(z) + g(z,7"*)
Vz € X.

3. Decompaositio rinciple

For notational simplicity it is convenient to represent the saddle point problem (1) as 5
variational inequality problem. Set Z := X x Y and define &(-,-): Z x Z — R by
®(z,¢) = p(2,1) — (£, 9), 2= (2,9), ¢ = (). (7)
Then the problem of finding (¢*,7*) satisfying (1) is equivalent to finding ¢* = (£*,7°)
satisfying |
¢* €2, 8(z,¢") 20 VzeZ. (8)
Note that ®(¢,¢) =0 for all ¢ € Z. Moreover ® is continuous from (H1). But ®(:,¢) is
not necessa;rily quasiconvex (unless ¢ is convex-concave, in which case &(-,¢) is convex).
Note that ¢* satisfying (8) maximizes the function ’em.g ®(z,-) over Z. Under (H1) and
(H2) problem (8) has a solution. Moreover any solution of (8) is in S. This result

4




obviously remains true if in (8) we replace the set Z by a closed, convex product set

N=ExHwithZ°cQc2Z.

Several other assumptions which we have to make are collected in the following hypothesis
(H3), where &, S, Z have the same meaning as before.
(H3) a) We are given a lower semicontinuous function H :2Z x Z — IRU {+oco} with
H(z,¢) 20 for all (2,¢) € Zx Z and H(z,2z) =0 for all z € Z.
b) The function ¢ +— Pexfz' (® + H)(2,¢) is upper semicontinuous.
c) (®+ H)(z,¢) 20 for all z € Z implies $(z,¢) > 0 for all z € Z.
d) There exists a compact set K C Z such that {z € Z|(®+ H)(z,¢) <0} C K
forall¢ e $.

Examples.
a) Let Z be finite-dimensional, and let © be convex-concave, which implies that &(,¢)

is convex. Moreover let ® be defined on an open neighbourhood of Z x Z. Then from
[13;theorem 24.7] it follows that the subgradients of ®(-,¢) are uniformly bounded on the
compact set S %X .S. Hence

®(z,¢) = ®(z,¢) — B(s,¢) 2 —kllz—¢|| Vz€Z YseS8.
Now choose H(z,¢) := ||z — ¢||*>. Then (® + H)(2,$) <0 (2 € Z, ¢ € S) implies
0 > —k||z—¢||+]|z—¢||?, and thereby ||z —¢|| < k. Hence there exists a set K as required
in (H3)d). Moreover, if H is choosen this way, and &(-, ¢} is convex, then (H3)a)-c) is
trivially satisfied. If ® is continuously differentiable, one can also choose

(@ + H)(2,6) == (s, ¢) + (V1®(s,¢), 2 — ¢} + k- |2 = ¢},
with k& > 0 so large that H > 0.
b) Let Z be finite-dimensional again and consider the choice

=10 forfz—¢| <,
Hizs): {+oo else

for some p > 0. Then (H3)a), b}, d) are satisfied. Moreover (H3)c) is satisfied if every

local minimum of $(:,¢) is a global minimum.

- In what follows we always assume that (H1), (H2), (H3) hold. For ease of notation we
describe the symmetric decomposition scheme in terms of ¥ and Z above. From this

basic model we derive by specialization various unsymmetric implementations.
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The decomposition method

At the start we are given the finite subset Z° C Z from assumption (H2). At the beginning
of the n-th iteration we need the previously calculated auxiliary points z*,---,2""! € Z.
Choose a set Z" such that Z° U {z!,-.-,2" !} € Z™ c Z. Choose a product set
Q" =E" x H" closed, convex, such that Z® C Q" C Z.

te 0
Select the iteration point ¢" &€ Q" such that &$(z,¢") 20 Vze Z". (9)
Subprogra

Select the auxiliary point z” € Z such that (10)
10
(& +H)(z",¢") < (2 + H)(2,¢") VYVzeLZ

This completes the n-th iteration.

We convince ourselves that the above rules are consistent. The existence of ¢" satisfying
(9) follows from the fact that ¢ has a saddle point on E” X H". Moreover, since Z%c zn,
we have ¢” € S. In addition, since (3+H)(s",¢") = 0, it follows from assumption (H3)d)
that the lower semicontinuous function (®+H)(-,¢") assumes its minimum over Z within

the compact set K. Hence z" satisfying (10) exists, and moreover z" € K.

As a stopping criterion we introduce the quantity

T = (® + H)(2",¢"). (11)
It follows from (10) that 7, < 0 and
™ < (®+H)(z,¢") VzeZ. (12)

If 2" = z*o for some kg < n, then 7, =0, since (9) and H > 0 imply

0 < (®+ H){zko,¢") = (@ + H)(2",¢") =, L 0.
In this case it follows from (12) and (H3)c) that ¢ is already an exact solution of (8},
i.e. the algorithm terminates after finitely many steps. If this case does not occur, for

the sequence {¢"} generated by the above rules we have

Theorem 1. The sequence {¢"} has cluster points, and every cluster point is a solution
of (8) Moreover, for the quantity 7, := (® + H)(2",¢") there holds lim r, =0.

n-—o0

Proof. Since ¢" € S, where S is compact, it follows that the sequence {¢"} has cluster
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points. Let ¢* be an arbitrary cluster point of this sequence. Since 2" € K, and K
is compact, the sequence {(z",¢")} contains a subsequence {(z"U),¢"V)} (j € V)
converging to (z*,¢*) for some z* € K. From (9) we have 0 < &(z%,¢") Vk <n. In
particular, for n := n(s), we obtain in the limit 0 < ®(2*,¢*) Vk. Now, for k := n(y)
we obtain in the limit
0 < ¥(»*,¢*).
From (10) and H > 0 follows ®(2",¢") < (2 + H)(2,¢") Vz € Z. By (H3)b) this yields
in ‘the limit
P(2*,¢*) < (P +H)(2,¢*) Yze2Z.
Altogether we have
0< (8+H)(z,5*) VzeZ. (13)
From assumption (H3)c) it follows that
0 < ®(z,¢*) VzeZ.
Hence ¢* is a solution of (8). Moreover, it follows from (13) that
| 0< (®+H)(a06°).
But 0 > (& + H)(2",¢") for all n, as stated above, and due to the lower semicontinuity
of & + H we obtain (® + H)(z*,¢*) = 0. In view of our compactness assumption this

means that 7, — 0 for the entire sequence {r,}. q.e.d.

In the absence of further information about H beyond that given in (H3), the condition
~& < 7, (where ¢ > 0 is given) may be used as a convenient stopping criterion to

terminate the procedure.

Example. The cutting method for the problem
ey (inf, #(=9)),
~ where Z is compact and & is continuous, runs as follows:

n .
¢"solves rgneazx (zlenzfn ®(2,¢)),

z"solves min ®(z,¢"),
€2

where 2% € Z is arbitrary and {z9,2!,---,2""1} C Z™ C Z. Clearly 2", ¢" satisfify (9)
and (10) with Q" = Z and H = 0, provided (8) is solvable. If $ is given by (7) and
Zn = X" x Y ", then the cutting method with ¢" = (€",9™), 2" = (2", y") decomposes
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as follows:

€™ solves gg(y?lgn o(£,9)), (14)

7" solves may (inf o(2,n)), | (15)

z" solves fél}é plz,1"), ~ (18)

y" solves max ©(€",y). (17)
yeY

Hence we obtain two parallel, unrelated algorithms: The first one, involving §", y"
and given by (14), (17) is the cutting method for solving xexg)I} M(€). The second one,

involving 9", z" and given by (15), (16) is the cutting method for solving max m(n).
n

In the remaining parts we shall restrict ourselves to the case where Z" = X" x Y" for
all n and
H(z,¢) == F(z,€) +Gly,n)
with F: X x X = IR and G :Y x Y — IR continuous, nonnegative functions satisfying
F(z,2) =0 Vze X, G(y,y)=0 VyeyY,

o(z,9) + F(z,€) 2 0(€,n) Ve € X implies p(z,7) 2 e(é,n) VzeX, (18)

ol(€,9) — Gly,n) < v(€,n) Vy €Y implies p(£,¥) < w(é,n) YyeY. (19)
Then (H3)a), b), c) are satisfied. We have

(® +H)(2,6) = plz,n) + Flz,€) - (#(&,¥) - Gy, 7)),
and therefore (9), (10) take the following form:
a) Select (£",7") € E" x H" such that

e(é",y) < p(z,7") Yee X", VyeY". (20)

b) Select z* € X such that
z™ solves ilélg{l (e(z,n") + F(z, €")). (21)

Select y® € Y such that
y™ solves max (p(€™y) — Gly,n™))- (22)

Here X" C X and E" C X have to be chosen such that X° U {2!,.-.,z" 1} c X" C E"
with E" closed, convex. Similarly for YY" and H".
i H? =Y " =Y for all n, then the auxiliary points y™ are not needed for the procedure,
and (22) becomes void. In this case, if only {” € X", we can use

n = p(z",9") — (€, ") + F(2", €M)

as stopping criterion.




We remark that if the problem is separable in the following sense:

gp(z,y) = Z‘Pl’j(zisyj)a X = HXi, Y =HYj9
zaf) "ZFt 31’&) G(%ﬂ) —ZG (y_),ﬂj

then the subprograms (21) and (22) disaggregate into subproblems of smaller size.

4 iant
Let us consider in more detail a particular implementation of the procedure (20)-(22).

We assume that o is convex-concave and that X° = {z°} is a singleton. For the n-th

l‘;ela';l()ll’ ven 3" "y E A s we le‘;
n—1

=X =(Xo, "y An=1) E R™[A 20, Z A =1},
’ {=0
and for A € " and y € Y we define

Ya(A,y) :="‘Z‘: Xie(z',y)-

=0
H" is as before. The n-th iteration consists of the following steps:

Determine (A", 7") with A" := (A3, -+, A%_})

as a saddle point of ¥n(),y) on T" x H".

n-1
Set £":= Y AP (24)

Determine z, y" according to (21}, (22}.

Setting X" = {2%,---,2""1} and E" := conv(2%,--,2""!), we have {" € E", and the
couple (¢™,7") defined above satisfies (20), since |
Yn(A"9) S ¥a(X,n") VAEZI", Vye H

implies

p(€"y) < pl2',n") Vi=0,--,n—1, Vye H".
The existence of a saddle point of ¥, over £" x H" is guaranteed, since the validity
of (H2) for © with regard to X x Y implies the validity of (H2) for ¢, with regard to
" xY.

Note that 3™ can be found as a solution of

(Dn): ;gggg(xggnzowwm) = max(,_min_ p(z,1)),




and A" can be found as a solution of

(Pn): A%( sean Z die(e,9))
If one chooses Y = H" =Y for all n (which implies that y” is superfluous), one obtains
algorithm 2 of [1]. Provided that in addition F = G = 0 one obtains for algorithm (23),
(24), (21) the following two-sided bounds for the saddle value ©(£*,7*):

p(z",q") =m(a") < p(€%,9°) S M(§") < sup Pn(A",¥) = ¥a (A" 0"),

where the last inequality follows from the convexity of (-, ¥).
If go(."c,y) = f(2) + g(z,y) with Y a cone and g(z,-) positively homogeneous in ¥ for
every z € X, then the primal problem, as already stated, becomes

(P): inf{f(z)|z € X, g(z,¥) <0 VyeY},
and with Y" = H® =Y step (23) reads as follows:

(Ph): Alsolves  min (sup E/\ (=*,9)))

yGY

—mm{zz\f )| e £, EM (=1,y) S0 VyeY},
(D3) : n”solves meayyg(,\leng"z:/\(f(z)+g( ,,,)))
= max(min(f (2') +¢(<',7)))-

Note that the convexity of g(-,y) implies that £" is feasible for (P’).

Finally, in case that Y = R? and p(z,y) := f(2z) + {v,9(2)}, g : X — IR", (P’) reads

(.P”): inf{f(z)|z € X, g(z) <0},

and (P}) and (D}) become a pair of dual linear programming problems:
(P2): mm{z:/\ f(=)|rezn, Z \ig(e') < 0},
(DR): max{mgn( (&) + (n.9(=)n 2 0).

This method with F = 0 has been given by Dantzig [7, Ch.24.1] and - with a different
motivation — in {16, Ch.14.4]. With F' = 0, but ¢ arbitrary, algorithm (23}, (24), (21) has
been described in [12] as an extension of Dantzig’s method for © not necessarily being a
classical Lagrangian. v

Algorithm 1 of [1] is obtained if one treats y in the same way as z: One defines

Ya(h ) =Y Nipsele’,y7),

i,

10



where ¢, § run from 0 to n — 1, one requires (A", 4") to be a saddle point of ¢ (), &) over
" x L™, and one sets
=T 1= S
i j
The determination of (A", 4") is a dual pair of linear programming problems:
A" solves A@Emg‘(mjaxz: gl 97)),
t
n 1 3 . LI | .
p™ solves :rég,(mgnzj: pie(e',v%))
(20) is again satisfied with X" := {°,---,2""1}, 8" = conv (2%, -+, 2" 1),

no.— {yo’. ..,y""l}, H? = corw(yo," _,,yn—l)'

Huard’s method. For the case that ¢ is an ordinary Lagrangian function Huard [5] has
given a modification of Dantzig’s decomposition algorithm. We can generalize Huard’s
method for problem (8)
¢* €2, (2,¢*) 20 VzeZ

as follows. We assume that we are given a continuous function H :Z x Z — IR, which
satisfies all the requirements of (H3) with one exception: H > 0 is replaced by the weaker
requirement that for every a € Z

®(z,¢) 20 Vz € |[¢,a] implies (& + H)(2,4) 20 Vzels,al (25)
Wev assume for simplicity that Z is compact and choose (1" a convex, compact product

set such that Q" D conv{z%,2!,---,2"1}. Then the algorithm reads:

Choose ¢" € Q" such that $(z,¢") 20 Vze Q" (26)
Choose z" € Z as a solution of ngg(‘b + H)(z,¢™)- (27)

Note that (26) is essentially a sharpening of (9) (now Z" = Q"), (27) remains practically
the same as (10). The existence of ¢" and 2" with the required properties is ensured,
and moreover they lie in a compact set. Any cluster point ¢* of the sequence {¢"} is a
solution of (8). |
Indeed: There exists a subsequence, indexed by n(s), such that ¢"U) — ¢*,
2") — z* € Z. From (28) follows in view of (25) that (® + H)(2,¢") 20 Vz € 0",
Hence in particular (® + H)(z*,¢") 20 Vk < n. In the limit this gives
(® +ﬁ)(z‘,¢') > 0.

From (27) follows in the limit that

(@ + H)(2*,¢*) < (8 +H)(2,¢") VzeZ.
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Altogether we have 0 < (® + H)(2,¢*) Vz € Z, and in view of (H3)c) this implies
. 0< &(2,¢*) VzelZ.
Hence (8) is satisfied. . q.e.d.

Suppose in particular that we choose 3* = conv(z?,---,2"~1) x Y, in which case the
need for calculating y" disappears. Then we choose H{z,¢) := F(z,&n) and subproblem
(27) becomes to find |

z" € X minimizing o(z,n") + F(e, €, 9").
In particular, if ¢ is continuously differentiable, we may choose F in such a way that
o(z,n") + F(z,€",9") = p(€",1") + (Vip(£",0"), 2 — £°) + k|z - ¢"|°
for some k > 0. Then condition (25) is satisfied. Condition (H3)c) is satisfied if o(-,7)

is pseudoconvex.

5 tion of auxili oint

It is an unpleasant feature of the methods described so far that the auxiliary points
z", y™ have to be stored and used in all subsequent iterations. Here we want to obtain
versions which allow for the deletion of auxiliary points. The crucial hypothesis which
we need for this is (H4):

(H4) (=2, ) is unimodal, i.e., for all z € X there exists at most oney € Y where o(z,-)

assurmes its supremum over Y .

With this hypothesis' the master program (20} in the decomposition method may be
drastically simplified towards a method of feasible directions [4]. A first example of the
method to be described below has been given in [12]. A more elaborate version for the
quadratic case, together with an estimate of the rate of convergence, has been described

in [14].

Besides (H4) we make in this section the following additional assumptions:
1) The set Y is compact.
2) For some Z € X the set Q := {¢ € X|M(§) < M(Z)} is compact. Let S=QxY.
3) There exists a compact set K C X such that ’
{s € X|p(z,7) + F(2,€) < p(& 1)} K for all (,1) € .
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From 1) follows the continuity of M (-}, and from 1} and 2) follows the existence of saddle
points of o over X XY - see the remark after lemma 1. Assumption 3) replaces (H3)d).

The modified iteration runs as follows: For the start we choose £° € Q and 2° € K
arbitrarily. At the beginning of the n-th iteration we are given £"~! € Q and z"~! € K
calculated in the previous iteration. The n-th iteration consists of the following steps a)
and b):
a) Select {€”,9") € X x Y such that
M(€") = p(€™,9"), M(E") < p(€"1,0™), M(€") < p(z""1,n"). (28)
b) Select z" € X such that
| z" solves i[é.l? {(p(z,n") + F(z,€"))- ‘ (29)
The requirements under a) are consistent, since any saddle point (€7,n") of p over
[en=1,27~1] x Y is a solution. If we choose (£",7") in this way, then the computation
of (§",7") may be conceived as; taking place in two stages. First we calculate {" by
minimizing M(-) over [§"~!,z""!]. Then we calculate #" by maximizing ©(€",-) over
Y. Due to (H4), (€",7") so calculated is indeed a saddle point on [¢n-l,2n" 1 x Y.
Since £"~! € Q and M(€") < o(€"~ 1, ") < M(E"71), it follows that " € @, too.
Hence (§",7") € S, and from assumption 3) follows the existence of z" satisfying b);
moreover z" € K. The sequence {{¢",7")} has cluster points, since it is contained in

the compact set S.

Theorem 3. Every cluster point of the sequence {(¢",7")} generated by (28}, (29) is a
saddle point of ¢ on X x Y.
Proof.
Let (£*,7*)be a cluster point of {(£",7")}. Due to the compactness of K there exists a
subsequence, indexed by n(7), such that
Enl) — g*, ﬂ"(j) — p*, 2n0) o gt Ul g,
From (28) we obtain v
O M(E7) =p(En, ") < p(€7L ") S M(EnY).

Hence the entire sequences {M(¢")}, {©(é",7")}, and {p(£"~!,9™)} are decreasing and
are converging towards the same value. Due to continuity we obtain then _

M(&*) = (€, n*) = (£*,7), (30)
and (H4) implies n* = 7. Furthermore, (28) gives M(§") < p(2"~1,9"), and substitu-
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ting n := n(s) + 1 we obtain in the limit
M(€*) £ p(2*,7) = ol2*,9*);
hence, from (30)
p(€*n*) S (e, n%). (31)
From (29) it follows that
plz", ") + F(2",€") € o(2,9") + F(2,§") VzeX.
Since F > 0, this yields in the limit for the subsequence
plz*,n*) < plz,n*) + F(2,€*) VzeX.
Using (31) we obtain
e(€*n*) < p(z,9*) + F(2,6*) VeeX.
Then from (18) it follows that
| o(€,n°) < pla,n*) VzeX,

hence M(£*) < m(n*), and (€*,7°*} is a saddle point. o q.e.d.
Rate of convergence. Since the variant (28)-(29) is close to a method of feasible di-

rections, it is natural that we can estimate the rate of convergence by adapting results
for the latter class. We borrow from [4]. We specialize algorithm (28)-(29) as follows.
F(z,€) = ||z — €|, and (£",7") is chosen as a saddle point of © on [,z x Y.
So we have
é" solves min {M(€)|€ €[, 2" ]},
n" satisfies M(€") = p(€",77),
z" solves min{p(z,7") + ||z — €"||*|z € X}.
We assume in addition
1. ¢(-, ) is convex;
2. there exist constants 0 <v <V such that for all £ € Q
) M(E + ) ~ M(&) 2 p(E+h1(€)) - p(6(6) +olhl? VheX -,
b) M(E +4) ~ M(§) S p(& +hyn(€) — p(€,1(€) + VIR Vhe X —¢,
where 7(€) is (uniquely) determined by the requirement ¢ (§,7(£)) = M(¢).
Theorem 8. With A, := M(£") — xhe]g(M(x) we have A, < Ap(l - %), where

7 =min{l,v}, and V = max{1,V}.
Proof. Set 7, := p(z",7") — o(€",9") + |z — £"||?. Then from the definition of 2"
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follows
n L p(z,9") — p(€™n") + ]z - €"|? Vz e X,
hence
Th L (6" +h,q") — (€, n") + A2 Vhe X —¢n.
Since 7 < 1, h € X — €™ implies h :=7h € X — €. So we obtain, using the convexity of
¢(-,y), that

n ST (p(€" +R,0") ~ (€7, 17) + 7 [A]1°
<7 (p(€" +h,0") - w(€",9") +o|R)|?) VEe X -¢n.
From assumption 2a) it follows that
ST (M(n+h) ~M(E) VheX-¢n,
hence
Tn ST (=An).
1

Furthermore with ) := = and A" := 2" — £” we obtain

<

M(¢n +Xh") - M(£")

e(E" +Xr", ") — (€™ q") +V - ||h"||2 {from assumption 2b)]
< X( (2", 9") — (€™, 7™)) +V - - fl2"|? [from assumption 1)]
<7 (so(z",n") (€% 1" + A7) [sinceX < 7]

*Tne.

Since €™ + Ah" € [é",2"] it follows from the definition of ¢"+! that
M(€nt1) — M(é") < Arn.
Hence Apy; — An <) - 7(—Ap) and Apy; S Ap(l - :;;:) q.e.d.

The same rate of convergence, but under somewhat different assumptions, has also been

established in [14].

If we require in addition to the assumptions made for algorithm (28)-(29) that ©(-,y)
is convex and p(z,-) is strictly concave (thus sharpening (H4)), then algorithm (28)-
(29) can be modified as follows: Given £"~! € Q and z”~! € K we define for (z,y) €
[¢n-t, 271 x Y:

Ynl2,y) == Ap(€"~1,y) + (1 = Ap(z"1,y),

15




where X € [0, 1] is determined by z = Aé”~! + (1 — A\)2"~1. The n-th iteration consists

of the following steps:
a) Select (£",7") € X x Y such that
(€7,7") is a saddle point of ¥ (€,n) over [~ 1, 2" 1| x Y.
b) Select z” € X according to (29).
This is essentially algorithm 2 with the deletion rule from [1]. Again the sequence
{(¢",7")} is contained in the compact set S. Every cluster point of the sequence
{(€7,7™)} is a saddle point of p on X x Y. _
Indeed: Let (£*,7*) be a cluster point of (§”,%"). Due to the compactness of K there
exists a subsequence, indexed by n(s) (5 € IV), such that
gnl) — g*, gnl) o ge, 2nl) o g*) gn)+L 5, gnU)-1 g, z?-1 3,

Then £* = A* §+(l—,\‘)5 for some \* € [0,1]. Let ¥, (£*,y) :== A o(€, ) +(1-2")e(3, y)-
From step a) follows in particular

sup Pnl(€",y) S Pn(€”,0") S ¥al(€”1n") = p(€""1,9").
From the convexity of p(:,y) follows p(£",y) < ¥ (€™, y). So we obtain

M(¢r) < sup $al€™y) S ¥n(€"0") < p(€"7 10" S M(E"1).

Hence the entire sequences {M(£"}}, {sup ¥n(€™, %)}, {¥n(€",9")} and {p(€""1,9")}
are converging towards the same valu::E };‘rom continuity and ©(€*,y) < ¥«(€%,y) we
obtain then )

M(¢) = sup Ve (€%,9) = %o (€%,0%) = 0(€°,7) < ¥ (€%,7)-
Since . (£*, ) is strictly concave and therefore satisfies (H4), this implies * = 7. So we
obtain

M(E) = p(€,71°) = $u (€, 7%).
Step a) gives furthermore
Ya (€% n") < ¥n(2” 1 0") = o2, 9").
Substituting n := n(7) + 1 we obtain in the limit that
Do (§%,0%) < 0(2*,7) = p(a*,1").
Hence
M(§*) =p(§"n*) S pl*,n%).

Since subprogram (29) remains unchanged the same argument as in the proof of theorem

2 shows then that M(§*) < m(n*), and (£*,7*) is a saddle point. q.e.d.




The notion of a (Nash-) equilibrium is of fundamental importance in the theory of non-
cooperative n-person games. Let there be given a finite family of sets Z (tel) and a

corresponding family of functions f; : H Z; — R (i € I). We abbreviate
jel
z:=[]2, 2= [ 2 (i€l),sothat Z =7 x Z. Similary for z =: ()ie1 € Z
el JELj#¢
we abbreviate z.; := (2;)jer,j2i € Zui, 50 that z = (2is 2u)-
A point ¢* € Z with ¢* = (¢*)icr is called an equilibrium point of the system of functions
fiiffforalliel '
Filer,s%) € Jilzinek) Vu€Z.

Let us assume that foralls e 1

1. the sets Z; are nonempty, convex, compact, (32)
2. the functions f;{-) are continuous on Z , (33)
3. the functions fi(-, z.;) are quasiconvex on Z; for each fixed z.; € Z.;. (34)

Then there exists at least one equilibrium point - see {10, 11], and the remark below.

We define the function ® : Z x Z — IR by means of
&(z,6) =) _(fil#ir i) = filsis 64))s

. where z = (z,)icr € Z and ¢ = (c,-);e'fle Z. Then ®(¢,¢) =0 for all ¢ € Z. It can easily

be seen that ¢* € Z is an equﬂibriuxﬁ point if and only if ®(z,¢*) > 0 for all z € Z. This

is again problem (8), and we can apply the general decomposition scheme (9}-(10) given

above. A simple realization with H = 0 is as follows:

At the beginning of the n-th iteration we are given finite subsets Z* C Z; (¢ € I).
We determine ¢" € Z with ¢ = (¢"')iecs such that for alls e [

35
filshysn) £ filzinel) VzieZr. 3

We determine z” € Z with z" = (27},es such that for allz € I
f,<(z'-",§;'-) < f:'(ziaf:‘) Vz € Z;.
We set Z"t! := Z» U {21}, and start the next iteration.

Recall that (35) is solvable because of the existence of an equilibrium point on

H conv Z!. Every limit point of the sequence {¢"} is an equilibrium point.
el
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Remark. For algorithmic reasons we needed the theorem of Sion [15, 9] only in the
situation where the functions occuring are continuous (whereas the original formulation
of this theorem needs only appropriate semicontinuity requirements). Under the stronger
assumption of continuity Sion’s theorem as well as Nash’s result [10, 11] follow readily
from Fan’s fixed point theorem. Indeed, to obtain Nash’s result assume that (32), (33),
(34) are satisfied. Define multivalued mappings 4, : Z2Z; (i€ I) by

Ai(2) = A{s! € Zi|fils?s2w) < filsis2z4) Vi € Zi}. Let

A(z) =] A4iz): 22 2.
el
Then A(2) is convex, compact and nonempty for all z € Z, and by the result of [2, p.123]

A(‘) is upper semicontinuous. Hence by Fan’s fixed point theorem [8] A has a fixed point
¢* € A(¢*). With ¢* = (¢*)ics this means that ¢* € Z; minimizes f;(-,¢%) over Z;, hence
¢* is an equilibrium: Nash’s result. Sion’s result becomes a special case of Nash’s result:
choose ¢ = f; = —f3 in the latter to obtain

el y) S o(€*n*) < o(2,n*) Vze X, Vyey,

which is Sion’s result.
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