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Introduction

In [Bi,1] we deduced the force density of an internal constitutive law for a
deformable medium, moving in R". The geometric type of the body was
given by a smooth orientable compacti manifold of dim n—1. In the normal
component of that force density a pressure is hidden, which des;ribes the
energy needed to change the instantaneous volume of the deformable
medium.

In these notes this pressure will be exhibited.

In addition to that a natural coefficient of viscosity, called the structural
coefficient of viscosity will be exhibited in case that the internal
constitutive law depends on an external parameter, namely a tangent vector

of the phase space.

We conclude by investigating the interplay between a densit map and scalar
curvature, mostly in case of dim M = 2. Finally we show that the qualitative
behavior of the wvolume active pressure for two—dimensional surfaces

depends heavily on the Euler characteristic of the body.

We thank D. Socolescu for suggesting the term ”structural viscosity” for the

type of viscosity we observed.




1) Differential geometric background

Let M be a connected, compact, smooth and oerientable manifold.

The collection C°°(M,1Rn) of all smooth R"—valued maps is an R~-vector space
- under the pointwise defined operation and moreover is a complete
metrizable and locally convex vector space if endowed with the

Cm—_topology. Hence C7(M,R") is referred to as Frkchet space.

The subset of CT(M,R") consisting of all embeddings of M into R" is
denoted by E(M,R"). ’

" Since E(M,R") is open in C”(M,R®) it is a Fréchet manifold.

The tangent manifold of E(M,R") is
TE(M,R®) = E(M,R™ x C™(M,R")

To introduce a metric on E(M,R") we fix a scalar product <,> on R". Then a

metric G on E(M,R?) is given by

Gk = [ <nkou().
M
Here p(j) is the Riemannian volume associated to the Riemannian metric

(J 3 J vV 2 .] 3 | q

By dj we mean the one R"-valued form on M which locally is determined

by the Friéchet derivative of j.

Given any h € C”(M,R") and an embedding j € E(M,R®) the map h splits

into



1.1) ’ h=djXx )+ ht

with ¥, {j) in T'TM, the collection of all smooth vector fields on M, and

where h' is pointwise orthogonal to djX, (j).
Using Hodges decomposition we furthermore get

1.2) %,(3) = grad 7 (1) + X0

Here Th(j) € C(M,R), gradj denotes the gradient with respect to m(j) and
Xg(j) is the divergence free part of X, (j). By the divergence of any
Y € 'TM we mean

div; Y : = tr V() ¥

where V(j) is the Levi-Civita connection of m(j).

Let n = 1 + dim M. We fix an orientation on each of R" and M. The
positively oriented unite normal vector field associated with any
embedding j € E(M,R") is called N(j). Hence (1.1) turns into

1.3} h = djZ, (j) + 8,(j)N(j)

with ©,(j) € CT(M,R).

We conclude this section by the description of any smooth R"-valued one
form « on M relative to a given embedding j € E(MR").
Let Al(Q,IR) denote the smooth R"-valued one form defined on the

manifold Q. This manifold may be finite or infinite dimensional.

Given o ,a map h € CT(M,R") is called the integrable part of o, if

o« = dh + B(j)

where (3(j) has only constants as integrable parts.




Proposition 2 :
Given o € ANM,R™) and i € E(M,R"), then
& = dh(i) + B(i)

for some h(i) € CP(M,R"), determined up to a constant, where f(j) has only

constants as integrable parts. If for some n'(i) € C”(M,R") with

h'(i) = h(i)+z and ze R® then

« = dh i)+ Bl1)
and moreover
X)) = Xl .

Here Xg(j) and X&(j) denote the divergence free part of X,(j) and
Z1{j) respectively. Hence 'Xg(j) depends only on dh.




2) The volume active pressure

Given a smooth constitution law on E(M,[R“), that is a smooth R—valued one

form
F: E(MR™) x C(M,R™) — R

the value F(j)k) for any j € E{(M,R") and any h € C™(M,R) can be
regarded as the energy necessary to deforme j(M) 'infinitesimally in the
direction of h. What we are concerned with in this pafagraph is to find to
what extend the change of the volume of Jj(M) contributes to F(p)(h).

We do this by introducing the volume active pressure g associated with F.
To execute this program let us assume that

2.1) F(i)h) = [ <Pe(i)hopli) , v h € C”(M,R™)
’ M
for some smooth map

2.2) ' Pp : E(M,R") — C™(M,R™)

called the force density.
Clearly if F is interpreted as an energy functional, it splits from a physical
point of view, into the energy determined by internal_and»exterr\]al force

densities.

To specify F further as to express the deformation energy determined by
internal force densities let us identify C°°(M,an)/[Rn with {dhlhE c®(M,R™)}

via the differential
. d '
C®M,R") — {dn|ne CTMR™)}

Similarily E(M,IR“)/[Rn denotes {dj|j€ EMRM}. Both C*(M,R") and in
turn E(M,R") are assumed to carry the Cm—topology. Now we require the

existence of a smooth one form




Fgn : E(M,an)'/[Rn X Cm(M,[Rn)/[Rn —3 R

~ (both factors of the domain carry the C°°~topology) such that

2.3) F=d Fpn.

Next we demand that Fpn admits an integral representation of the form
2.4) Fpeldi)dh = [ oc(dj)-dh u(j)

where the '+ on the right hand side mearis the following:

Each ¢ Al(M,an) is uniquely représented with respect to aﬁy givéJn

 JEE(M,R") as
2.5) T = ¢ (§)-dj+djC (3)+dj B ()

asshownin [Bi,1]. Here Cy(j) and B,r(j) are smooth étrong bundle endomorphisms
of TM skew respectively selfadjoint with respect tom(j) and Cj(j) € C™(M,so(n)).

Then the integrand in (2.4 ) is defined as

2.6) a(dj)-dh: = = tr(Cy 1) "Can*Cotd;)Can) + ¥ Bux(dj)Ban -
Since according to proposition 1
«(dj) = dl(dj) + B(d)) V¥ dj € E(MR") /pn

with 1{dj) as the integrable part of «l(dj), the force density "OF is
determined by
Pe(df) = = dj divy(Cqy (g * Biqpyd) =~
= 2dj Ugyqj{) = (tr By gy (3 WIdid) N ().

Here dj Udl(dj)(j) is by definition cdl(dj)(j)'N(j).

The form « in (2.4) is called the stress form associated with F.




The volume active pressure of F is now determined as follows:

The map
Vol: E(M,R") — R
sending each j € (M,R") into fu(j) is obviously smooth. An easy exercise
shows that the gradient Grad(Vol(j)) with respect to G of D Vol(j) at Jis
| Grad Vol(j) = H(j)'N(j) V j € EQMR™) "
since
DV(i)(h) = [@ H(Eu() .
To find the part of F(j)(h) which is due to the infinitesimal expansion

of the volume in the direction of h we split

an element of LZ(M,IR), the Hilbert space of all_(R—vaiuediLZ—integrable
functions of M, into a component along H(j) (also contained in that space)

and into a component normal to H(j). This splitting then reads as
2.9) tr By)(qq)(DWE) = weldj)HG) + g(§) v § € E(LRY .
Here m(dj) € R and g(j) € C”(M,R). Clearly

We call wg(dj), which varies linearily in di(dj), the volume active pressure

of F at ].

In ‘'an analoguous way we proceed in the case of such constitutive laws F
that admit an integral representation by ¥, but are not of the form

F = d'Fgn for any Fpn € AEQOLRY) /gnR). Since
Pe(i) = dj Xp(§) + ©p()) N(j)

we treat ©p(j) just as in the same way as trBdl(J-)~W(j) and obtain the



volume active pressure mg(dj) for any j € E(M,R™).

The reason that we call n(dj) the volume active pressure is the following

theorem, now easily proved by the reader.

Theorem 2 Let F € A(E(M,R"),R) admit an integral representation by g€
CT(M,R") as

F(i)(n) = [ <#p(ihh> pli) , v b € CTOLRY) .
M-
Then if f(j) split into

Peli)=dj Xp(j) + Oplj)N() ¥ j € (MR")
with ©p(j) € C®(M,R) then there exists a unique number npldj) € R" and
$.(j) € C*(M,R™), such that

2.11) F(j}h) = f<¥F(j),h>g(j) + w(dj)D Vol(j)n) .
Here %(j) is given by

2.12) (i) = £LU)) = m(Aj)N)

and satisfies

2.13) | J<PLUGLHGING )= 0 .

In case F = d*F[Rn and Fpn admits at (dj) an integral representation by

the stress form 1(dj), the
2.14) tr Byy(gj)' W) = wp(dj)lH() + g()) V] € E(MRY)

where g(j) is L%—orthogonal to H(j). Moreover m:(d}j) depends linearily on

#p(j) and hence linearily on dl(dj). 4
1f B?il(dj) and T(dj,dl) denote the trace free part of Bdl(dj) and the

trace of By)(44) then the following holds for all j € E(M,R™)

2.15) (T(dj,d1) = TE(df)H() = P) = tr By q5)W0)




Corollary :
If F(j)h) = O for some j € E(M,R") and all h € CN(M,IRN') then

2.16) () =0 and m(dj) =0 .

Proof: We have

[@linhop(i) = w(dj) [HGNG), )

and hence
[<#pi) = mg(DHGLORE) = 0 ¥ h € CPOLRY
shé)wing
Pe(j) = mp(dj)-H(j)
However

[<PLHGINGDRG) = o
proving our assertion.
The following is evident:
Corollary 4 If F € ANEM,R") splits intq.
2.17) = F,+F,

for some F,F, € AI(E,(M,!R“),lR) admitting both integral representatipns by

Py, and g, respectively then for each dj € E(M,R™) /R

Fy
2.18)  m(d) = mp (i) + mp,(d)) and F () = P (i) |
Hence if F(j) = o for some j € E(M,R™

2.19) mp,(d) = = mp(di) and Fp(j) = = PR () .




3) The concept of structural viscosity

In this section we assume that F depends on a parameter. Moreover let

Frn be a smooth map
: 1
Fga ¢ CTOMR™) /pn —) AYEQLR") /pnR)

of which we require

1.) F = d*F{Rn
and that Fpn satisfies

2.) Fra(dk,dj)(dk) = [ di(dk,dj)-dk ()

v dlLdj € CTMR | pa .

As mentioned before 1(dk,dj) decomposes into

l(dk,dj) = dj grad; X} (dk,dj) + ©(dk,dj):N(p)

with Xlotj) € 'TM being divergenbe free. In fact X?(j) only depends

on dl(dk,dj), as expressed in proposition 1. We split k into
k = dj grady, + dj X0 + ©,())-N().

The splitting allows us to decompose X?(dk.dj) into a component along X?(j)

and another one pointwise perpendicular to Xf (j) as follows :
Z]ldk,dj) = vldk,dj) X3) + Xj(dk,dj)

with v(dj,dk) € C7(M,R"). The coefficient v(dk,dj) is called the coefficient of
structural viscosity.

A routine calculation shows that B .v{j) , the symmetric coefficient in the
_ dl{dk,dj) :

representation of dl_(dk,dj) represented by dj can be written as




v . A
Bar(ak,a) P = z Ly(ak,aixi) * Mulak,aj)’
1 ) 3 -
* ELgradj vy (dk,dj) + 0,(dk,dj)W(j)

Hence mwg(dk,dj) is given by

no(dk,dj) = div v(dk,d)ES + div X, (dk,dj) - A(J) ¥y{dh,dj)

where Bdl(dk,dj)(j) = Bdl(dk,dj)(j) - mgldk,dj)idyy. The R"—valued one—form
to which B,(dk,dj) belongs is evidently

dl(dk,aj) = dl(dk,dj) - mp(dk,dj)dj

for any j € E(M,R™ and any keCT(M,R).
Y



4) Density map and curvature

By a density map p we mean a smooth map

p : EIMRY) — C(MRY) ,
for which the real m(j), called the mass at j, being defined as
m(j) = [ p(§) u(i) vV j € EQ4RD)

is positive, and for which the following continuity equation
. _ 1 .
4.1) ‘ Dp(j)(h) = - 3 trm(j)Dm(J)(h)

is satisfied for any j € E(M,R") and any h ¢ C”(M,R™).

By tr ) We mean the trace taken with respect to the Riemannian metric

m(]
m(j). Clearly

Dm{j)(h)(X,Y) = <dhX,djY> + <djX,dhY>

for any j € E(M,K") and any h € C"(M,R").

To show the existance of such a density map p , let us consider i € E(M,R")

and its connected component 0, ¢ E(M,R"). Then by [Bi,2] any dj € E(M,R") {pn
with j € O, satisfies

4.2) . dj = g(j)djf(j)

with g(j) € C”(M,so(n)) and f(j) : TM —) TM being a smooth strong
bundle isomorphism, positiv definit with respect to m(j). By so(n) we
denote the Lie—algebra of SO(n).

Then



4.3) ulj) = det £(j)u(i)

and hence

4.4) p(j) = pli)det £}

is a density map provided that
[ ) pi
is a positive real.
( Clearly the assumption. of codim M = 1 did not play any role in

constructing pf{i). )

A straight forward computation shows the following set of reformulations of

the continouity equation

1.5) Dp(i)(h) = — 2L ¢

m(j)PRER) = = p(G) tr £7G)DEG)(h)

It

~ Pkt By (i) = = pliktr £ Byy(1)

for any j in Oi; the connected component of 1 € E(M,R™) and any h € C°°(M,!Rn).
He‘nce if h = N(i) then

4.8) Dp(j)(N(j)) = — p(j)H(j) ,

with H(j) = tr W(j) and W(j) the Weingarten map associated with N(j).

The link to the scalar curvature is made by Vcomputing the second
derivative of p(j). To exhibit this, let us first find the derivatives of W(j)

and of its trace, the mean curvature H(j).

Since for any j € E(M,R")



dj W(j) X = dN{(j) X Y X el'T™
we obtain by differentiation
dh W(j) X + dj DW(j)(h) X = d DN(j)(h) X .

The equations

<N(j),djZ> = 0 and <N(j),N(j)> =1

yield by differentiation

4.7) <DN(j)(h),djX> = — <N{j),dhZ> = <c i (jIN(j),djx> .
If we replace c,N(j) by

4.8) cdh(j)N(j.) = dj Uy, (J)

for some U, (j) € I'TM, we find.

4.9) DN(j)(h) = dj Uy (j)

and consequently

4.10) DW(j)(h) = V(j) Uy (§) — (Cy(3) +By (§)) » W(J) .

To represent U, in terms of h, let us write h as
~h = djXp () + 6, (j)N{j)

for some X, € I'TM and some ©, € c”(M,R™).

Then



dh = cg()+dj + dj+(Cyp(§) + By (1)) |
SN Epper) + dO, (NG + AIVIDEK () + O (1)-djW().

Therefore cth(j) is given by
Cegp(IN(ILAIY> = mHW(IZ, (3),Y) — mij)grad;8, (3),Y)

for all Y € I'TM saying that
4.12) Uy () = WXL () — grad ©,(j) .

Thus DW(j)(h) rewrites by (4.11) and (4.12) as

DW(j)h) = VID(WIDZX, () — grad ©,(j)) — (VDX (I + ©,(1)W(j)W(j) .

Hence

4.13) DW(j}(h) = V(IW(PHX, () + WYX () — VK, ()W)
- V(j)grad ©,(j) - ©,(j)W(j)* .

Let us introduce LX'h , which we define by

4.14) M(j)(Lxh(j]X,Y) = Lxh(ﬂ(m(j))(X,Y) ; Y X,Y e 'TM,
with Lxh(j) the Lie—derivative with respect to ¥,.

Since DW(j)(h), VGIW(X,(3), V(i grad (i) and ©,()-W(j)* are
“selfadjoint with respect to m(j) and since

, W(iCyp (i) — CyprW(J)
is selfadjoint as well as we deduce from (4.13) for any j € E(M,R") the

equation

4.15) W(j)Ly = Ly W(J) VX EDT™.

As a consequence of (4.10) we get :



div Uy, (§) = tr By, (3)W(j)

4.16) DH(j)(h)
= AMB() + divWEX () = Fr Ly (W) = O irtr WP,

where A(j) denotes the Laplace—Beltrami operator of m(j).

Since for any X € I'TM

4.1;7) %tr L W(j) = tr V(j)X-W(]) = diij(j)X - dH(jN(X) ,
(4.15) turns into

4.18) DH(j)(h) = dH(jNX, (j)) + A(})B, (j) — 8, (j)tr \\vf’(j)2 .

Let us observe that DH(j)(h) = 0 and dH(j}(X) = O can not hold
simultaniously for all h € Cc™(M,R™), fore otherwise

0 = [DHO®NGNRG) = [tr Wi .
However the right—hand term is unequal to zero sirnce in case of W(j} = 0,
M has to be a piece of a plane in R" contradicting the compactness of M.

Hence H : E(M,R") —) R does not have critical values.

Clearly if h = N(j) then

4.19) DW(NG)) = — W(3)?
and hence
4.20) DHG)N(G)) = — tr W(H)? = 2 Alj) - H(P ,

where A(j) is the scalar curvature ( that is the metric trace of the
Ricci tensor of the metric m(j) ) . |

Combinating (4.20) together with the requirement that dim M = 2 and
with the theorem of GauB—Bonnet (cf.[G.H.V]) , saying that




4.21) o D = xan

where X{(M) the Euler characteristic of M, vields immediately :

Theorem 4.1 :
In case of dim M = 2 the following equation holds for ény j € E(M,R")

4.22) X0 = L. (H(G)? - DHGOWGN) p(i)
and
4.23) [ HG pi) = [ DHGDND) pl@) iff X(M) = 0.

Theorem 2 and equation (4.15) yield

Theorem 4.2 :
Given any smooth stress form dl : C”(M,R™) R™ —) Al(M,(Rn), then the following

equation holds for any h € CM(M,[R") decomposed as

h = dj¥, (j) + ©,()N()
4.24) 1(dj)DV(h) = [ 8, (3 tr By(i) « W) u(3)
= - [ 8, (i) (DH()U) - div Uy(§)) pli)
and in particular
1.25) mp(dj) « DV(ING)) = = [ DH(A) p(i) .

Here F is the force density determined by the stress form dl.
Now let us turn back to the second derivative of p.
We have by

4.27)  D?p(MN(G)Lh) = = (Dp(i(h)H() + p(j)-DH(j)) — Dp(i)(DN(j)(h))
| p(D(H(}) tr By () + tr By (§)+ W(J) — div Uy (§))

I

— plj) div Uy (j)

i
|
!
{
!
i
J{
z
!




and thus
1.28) D*p(H(N(j),h) = p(I(H(§) tr By (j) + tr By (i) W(j)) .

. Therefore we find

p()(HGY + tr WD)

4.29) Do (IING),N())
' 2 p(N(HG? = A ()

I

In case p(j)(p) >0 for all P € M, then

4.30) D log p(J)N(j)) = - H(})
and hence
4.31) D% log p(j)(N(j),h) = DH(j)(h) — D log p{i}(DN(j)(h))

tr Bdh(j)° W(j)

This yields :

Theorem 4.3 :

In case of dim M = 2 , then

4.32) /D% 1og p(DINGILNGY = [HG? p(i) - X))

with X(M) the Euler characteristic of M.

Equation (4.31) together with (2.9) yields

Theorem 4.4 :

Given any stress form dl € E(M,R") and any density function with
p(i)(p) > O for all p € M, then for any j in the connected component O, of i
and any h € Cc™(M,R™) following equation holds |

4.33) Mp(dj)-DV(j)(h) = [©,(j)D* log p(HI(N(j);h) p(j)



with

4.34) h = djX, + ©,N(j) .

Moreover

2.35) [ D% log p(DINGLh) = [p(i)e T(h,dDH) (i) = wp(dj)DV({HN())
+ KB, W(§)p(5)

holds if

4.36) 7(j,d1) = tr By(j,dl)

and B(j,dl) = B(j,dl) + w(dj)-H(j)id — tr B(j,dl)-id .

Here F is the force density determined by the stress form dl.

Next let us turn to dim M = 2 and to equation (4.21).
By differentiation of (4.21) we get for any j € E(M,R") and any h € C™(M,R™)

£.37) JoaGih) + M tr D)) = 0

a continously equation in integral form.
Let us hence compute DA(j)(h).

By the Cayley—Hamilton theorem we have due to dim M = 2

4.38) : W(i)? - HG)IW() + A = 0
and hence :

2.39) A = 2 HGE = tr Wi




Therefore we find

4.40) DA(j)(h) = H(j)DH(j)(h) — tr DW(})(h)-W(j)
or
3.41) DA(j)(h) = H(§)(div Uy () = tr By (j)+ W(3))

- tr V(§) Uy (3)W(J) + tr By (GIW()*
= H(j) div Uy (3) = tr V(3) Uy (33°W(§) = 2 A(§)-trBy, (j)

or reordered

4.42) DA(j)(h) = = Aj)etr By (§) + H(§)ediv Uy (3) = tr V(3) Uy (3)W(5) .
Since-
4.43) tr W(j) V(j) X = divj W(j) ¥ — dH()I(X) ,

for any X € I'TM, (4.425 vields

4.44) ~ DAY = = (A()) tr By () + divj((W(j) —H(j)id)U, ()
and in partiéular

4.45) D}(j)(N(j)) = = XMJj)HG) .

By (4.12) we get a more refined version of 4.43) in ternms of ¥,(j) and

©,(j) as follows
2.46)  div;((W(j) — HGIAU, (1)) = div;(W()Z, ~ HHWIX,)
- divHGIWGX,

- divj(W(j)'gr‘adj@h - H(j)-gradjeh) .

Since moreover the Ricci—tensor Ric(j) of m(j) is

4.47) Ric(iNX,Y) = — m(HD(WHZ = HHWGE)LY)




as easily shown by using the Gauss—equations and

4.48) div W)Y = m(j) (divyW(i,Y) + tr V(Y-W()

= dH{HI(Y) + tr V(HY-W(])
and -
4.49) divj(W(j)z — H(HWG) = — gradjr(j) ,
we find
4.50) divj(W(j)ZXh — HOPW(Z) = $dA()X,) — dHGUW(Z,)

+ dH(j)(grad®,) - divjw(j)gradj@h .

Therefore DA(j)(h) reads as
4:51) DA(j)(h) = = A(j)etr By (j) + = dA(j)(X,)

+ dH(j)(grade - WX — diAij(j)gradj@h .

Let us pause here to remark that there is no continuity equation of A
along the manifold j(M) for any j € E(M,R"), however as (4.45) shows, A

satisfies such an equation along the N{j) of j(M) for every j € E(M,R").

Now let us compute Dzl(j)(N(j),j) for any h € C”(M,R"). We have

DA (j)(N(j),h) = = DA()(h)-H() — A(j)DH(j)(h) — DAGHDN()(h)) ,

and then

4.52) DA () (N(j),h) = H(G)A(j)tr By (§).
+ H(j)div((W()) — H{id)U ()
+ Aj)etr By (3)-W(J)




This we conclude by (4.27) :

Lemma :
Let dim M = 2 and p be a density map.
If i € E(M,R") satisfies ‘

(i) Ai)p) >0 VpEM
and

(ii) piXp) > O YpeEM,
then there is an open neighbourhood V of i in E(M,R") such that

4.53)  DAog A(j)(N(j),h) = DAlog p(i(N(j)h) VeV,
This Lemma yields immediately.

Theorem 4.6 :
- Let dim M = 2, p a density map, dl : E(M,R") R" — Al(M,IRn) a smooth stress—

form determining a constitutive law F. Themn if
(i) A(i)(p) > O VpeM
(ii) pl)pP) >0 VpeEM,

and

then there is an open neighbourhood V on which the following equations

hold for any h € CP(M,R™) :
4.54) D’log A(I)(N(j),1) = tr By(i)W()

4.55) [ ©,(3) DYlog A(HNGLD (i) =
e, (i) tr BG.dl) = m(3)DV()(h)

where

4.56) 7(dj,dl) = tr By(j)
and B(j,dl) = B(j,d1) + w.(dj) DV(j)(h) .




Equation (4.54) shows how the force density in normal direction

(determined by the stress form) affects the geometry of j(M) and vica

veria.

Let us turn back to (4.49) in case the embedding i € E(M,R") satisfies the

following :
A(i)(p) > 0O VpeEM
and the density map fulfills accordingly
p(i)(p) > 0 VpeM.
Then if n : (~a,a) — E(M,R") for a positive real a € R is a smooth map
for which
n(0) =i
and
4 n(t) = N(n(t)) VieE(-aa) ,

_we immediately deduce

4,57) log An(t)) = log p(n{t)) + gq(n(t)) Vvt € (-aa).

Hence for any t in the normal evolution of the scalar curvature A\ is

determined as foilows :

Proposition 4.7 :
Suppose dim M = 2. Let moreover p € C™(E(M,R"),C”(M,R")) a density map
and i € E(M,R") be fixed, such that i and p satisfy the following couple of

equations
4.58) (1) A(i)(p) > 0 YpeM: and
4.59) (ii) pl)p) >0 V¥ pe€EM

Then if n : (-a,a) — E(M,R") for some small enough positive real a € R
is a smooth curve for which

n(0) = i
and

g—; n(t) = N(n(t)) Yte€(-a,a)

then the scalar curvature X is given related to p by

4.60) An(t)) = %&% « p(n(t)) = Ali)det £(nt) !,




where f(n(t)) is determined by the equation

4.61) mn(t))(X,Y) = m@E)(F(n(t))?K,Y) VAY € ITM, t € (—a,2).

Let us turn our attention to the volume function, which occurs quite often
in our formulas. | | .

We will describe the wvalue of the vblume function via the volume of a
given embedding i € E(M,R") and a unite normal vectorfield N(i) in case of
dim M = 2 and a special sort of embedding j, namely j =1i + 7:N(j) for a
small positive real 7 € R.

In doing so we will observe the influence of H(j) and A(j) on the normal
evolution of the volume function. ) '

By Taylor’s formula we obtain via (4.20), we get for any small real T > 0,

for which 1 + 7+N(i) € E(M,R") the formula

4.62) VG + TN = V@A) + 7 Hip) - o [aipd)
" and hence
1.63) VG + TN = VE) ~ mXOD-r7 + 7 Hpd)

Therefore if p is a density map the evolution of the volume along N(j)

in terms of matter density is given by the equation
VA + TN() = V@A) 5 mX(M)7? - 7] D log p()(NG))-p(i) ,

provided that p(i){p) > 0 V p € M, and that dim M = 2,

Similarily we obtain

1.64) pli + TN()) = pli)(1 + THA) + 35 (HGE) — tr W(i)D) |

Finally we return to the volume active pressure me associated with a

constitutive law determined via (2.9) by a given smooth stress form

dl : EQLRY | e — AMMRY)

for any oriented, smooth M with dim M = n—1.




The purpose of the last part of this section is to study the influence of the

topology of the body M to w.

According to (2.14) w.(d]) splits as follows

4.65) mp(d)HG) + gldf) = tr By g0 W) -

To use the form of the term on the right hand side of (4.65), we observe,

that if L{(TM,TM) denotes the collection of all smooth strong bundle maps
of TM, then
(A,B) = [ tr AB p(dj) ¥ A,B € L(TM,TM)

is a scalar product.

Hence we can split H(j)°Bd1(dj)(j) with respect to ( , ) into a component
aldj,di(dj))Ww(j) along W(j) and a component W{(j) normal to W(j).

Thus we have

weldi)e [ HG () = al@idlid): [ tr Wip) .
By the Cayley—Hamilton theorem applied on W(j), we therefore find

X(M)
4.66) - we(d)) = aldjdidj)) - jH(J) L3 )

Another splitting of Bdl(dj)(j) is

4.67)  Bgyap@) = TlA5ANANddry *+ By gy
and then
4.68) a(dj,dl(@j)e [ tr W(3)p(j) =

[r(as,aidiNHGPpG) + 2%j,aidi)- [t Wi?

where ao(dj,dl(dj))'W(j) is the component of H(j)’B(c)il(dj)(j) alongW(j).'




Decomposing 7(dj,dl(dj))<H(j) according to the Lz—scalar—product into a

component ) )
v{dj,d1{dj))H(j)

along H(j) then (4.68) turns into

7(dj,d1(dj) [H(G) = (a=a") (¢j,dl(di)([H()*u()) — X (D)
or '

1.69) 7(d5,d1d]) = (a-a%) (@j,dlaj)+(1 - YH )um

Thus we get

gldj) fH(J) M(j) = T(d],dl(d])) fH(J) u(J)
+ 2%dj,dl(dj))e ftr w(j)?

or

X(M)
me(dj) = v(dj,dl(d) + a%(dj,dl(dj))e ]H DA )

With the above defined terminology we have
Theorem 4.8 :

Let dim M = 2 and dl : E(M,an)hRn -3 Al(M,!R") “a smooth stress form
determining a constitutive law F : TE(M,R") — R.

Then

X(M)
4.70) m(dj) = a(dj,dldi))(1 - ]H(J) Ly )
and

M)
L7 meldi) = y(djdldi) + a%dg,didin-(1 - TH_LFJ) o)

In particular, if X(M) = O then

4.72)  w(dj) = aldj,dl(dj) = v(dj,Ald))) + a(dj,dldj) .
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