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DUALITY AND REGULARIZATION FORv INF-SUP PROBLEMS

JOACHIM GWINNER AND WERNER OETTLI

Introduction. Let X and Y be nonvoid sets and let L : X XY — R be a real-valued function.
This gives rise to a pair of optimization problems, name_ly the primal problem of finding

a :=inf sup L(z,y) (primal value),
z€X yeY :

and the dual problem of finding

B :=sup inf L(z v) (dual value).
yeY zeX

The inequality a > S being always valid, one is interested in the equality a = § (duality). The
classical von Neumann minimax theorem, as well as its infinite dimensional extension by Fan
[3] and more recent refinements due to Fuchssteiner and Konig [4], which guarantee the duality,
require among other conditions the compactness of at least one of the sets X or Y. However, the
compactness assumption is too strong for many applications in optimization and related fields.
Therefore we are led to consider regularized values a* < a and B* > B such that, under suitable
assumptions, a* = (* (regularized duality) holds. In this paper we analyze this approach with
three different regularization schemes and provide in each case sufficient conditions for regularized
duality to hold: '

1. We study the case where Y is a cone and L(z,y) := f(z)+hA(z,y), h(=z, )posmvely homogeneous.
Then the primal value is given by

a=inf{f(z)|]z€e X,(Vy € Y)h(z,y) <0}.
We start from the representation Y := ;e Y (t), introduce -

p(z,t) := sup h(z,y),
yeY ()

and consider

o = sup inf {f(z)|z € X, p(z,t) < 1},
g := sup inf [f(z)+P(r,t)]-
: teT z€X

The determination of /* may be understood as an abstract penalty method (2, Chapter 10}, [5,
Chapter 6] connected with the primal problem.
2. We embed L by a function ¢ : X XY x U X Y — R such that L(z,y) = ¢(z,y,0,0), introduce

P(u,v) :=inf sup o(z,y,u,v) (v € U, v €Y), and consider
z€X y€eY

a* := sup inf P(u,v),
veY uel
g = B.



In this way we extend the Fenchel-Rockafellar perturbation approach in optimization theory [8] to
inf-sup problems.
3. We introduce

C {veRX |(y € Y)(Vz € X) L(z,y) > v(z)},
D := {ueRY|(3zeX)VyeY)L(z,y) <u(y)},

endow the linear function space RX with the product topology, and consider

o* = inf sup u(y),
u€conv D yeY
B = sup inf o(z),

vEcleconvC z€X

where ¢l and conv denote the topological closure and convex hull, respectively. Here we establish
- regularized duality without any further assumptions and, as an immediate consequence, obtain
duality under suitable convexity and closedness assumptions. Thus we derive a version of von Neu-
mann’s minimax theorem that avoids compactness assumptions and extends an earlier result of
Aubin (1, Theorem 2]. '

We point out that this third scheme opens the access to a broad duality theory which we
will present elsewhere.

Regularization (1). Let us introduce the following hypothesis
(H1): X is a convex subset (in a linear space); Y is a closed convex cone (in a linear topological
space); L(z,y) := f(z) + h(z,y), where f(.) and (Vy € Y') k(.,y) are convex functions;
moreover (Vz € X) h(z,.) is concave, positively homogeneous, and upper semicontinuous.
By (H1),

f(z) if(VyeY)h(z,y) <0,

L(z,y) = -
;S;lell12 (2,9) {-i—oo otherwise.

Thus, following the convention that inf § = +oo, our primal problem takes the following form
(1.1) a=inf{f(z)|z€ X,(Vy € Y)h(z,y) <0}.

The cone Y being not compact, we need the following hypothesis

(H2): We are given a family of nonvoid convex, compact sets Y(¢) (¢ € T') such that Y = U Y(t).

teT
Of course we could choose the family of one-element subsets of Y, but our subsequent

results will be the more meaningful, the “smaller” - compared to Y — the index set T can be chosen.
Now by (H1) and by the compactness of Y(t), we can apply the Fan-von Neumann
minimax theorem {3, Theorem 2] to L in X x Y (¢) and obtain

(1.2) sup inf L(z,y)zinf sup L(z,y).
. yeY (1) z€X z€X yeY(t)

Using the real-valued function
= h :
p(z,1) nax, (z,9) (z€X,t€T),

which forall t € T is convex with respect to z, we may rewrite (1.1) equivalently as follows

(13) o =inf{f(z)|z € X, (Vt € T) p(z,t) < 0} .
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The regularized dual value is defined as

B = sup inf [f(z) +p(z,2)].
teT =€

We obtain »
(1.4) B=p".
Indeed, using (1.2) we have
| 7 B = sup inf L(z,y)
Yy X

= sup sup inf L(z,y)
T Y(@#) X

= sup inf sup[f(z)+ h(z,y)]
T X Y(t)

= sup inf [f(z)+ p(z,2)] =8
T X

Remark. The function f(z)+p(z,t) has the structure of a penalty function associated to the problem

(1.1), and therefore the calculation of * may be considered as an abstract penalty procedure [2,

Chapter 10]. The penalty function f(z) + p(z,t) is “exact” in the following sense: If there exists

§ € Y such that 8 = infx L(z,9), then there exists € T such that 8* = infx [f(z) + p(z, 1))
The regularized primal value is defined as

o :=sup inf {f(z)|z € X, p(z,t) < 1}.
teT

Since

inf {f(z)|z € X, (Vt € T) p(z,?) < 0}
inf{f(z)|z € X, p(z,t) < 1}

R
AV

holds for all ¢t € T, we obtain
(1.5) azat.

Finally to_establish a relation between o* and 8* we require a further — in this section our last —
hypothesis ‘
(H3): For every ty,t; € T and every pq,pu2 € Ry there exists t3 € T such that

p(,ta) + p2p(.,t2) < p(., ) -

, THEOREM 1. Let (H1), (H2), and (H3) be satisfied. If B* > —oco or a* < 400, then
a* = g3* hold_s. '

Proof. Let us first show §* < o*. To this end, fix ¢ > 0 and ¢; € T. By (H3) there exists t, € T

such that p(.,t;) < ep(.,t2). Hence

inf (@) + (e, )] € nf{f() 4 plz, ) |2 € X, e, 1) < 1)
inf{f(z) + ep(z,12) |z € X, p(z,12) < 1}
inf{f(z)+e|z € X, p(z,t2) < 1}
a”+e¢. '

A

IAIA A
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Therefore 8* < o* + ¢ for arbitrary € > 0, proving our claim 8* < a*.

Now let us establish a* < 8*. Here we first consider the case that for every ¢t € T there
exists some z € X such that p(z,t) < 1. This entails that for every t € T there exists some z € X
that satisfies p(z,t) < 1. Indeed, if for some ¢; € T and for all z € X, p(z,t;) > 1, then by (H3),
there exists t € T such that p(.,t2) > 2p(.,?1) > 2 contradicting our assumption. Hence, for all
t € T, the convex program

1) = inf{f(2) |2 € X, p(z,1) < 1}

satisfies the Slater condition, and consequently {2, p. 72] for all ¢t; € T with 7(t1 —o0 the
Kuhn-Tucker condition holds: There exists 4 € Ry such that

7(th) < inf [f(2)+ A (p(z,1) - 1)]
< inf [f(z)+ A p(z,1)]
< inf [f(z) + p(z, 1)) =2 6(25)
where t, € T is chosen according to (H3). Hence we conclude — what is clear if y(¢;) = —oo - that

for every t; € T there exists t; € T such that y(t1) < 8(¢2). Thus we arrive at a* < * in the case
considered. Now it remains to prove o* < 3* in the case that 4(t;) = 400 for some t; € T. Then
a* = 400, and by assumption, 8* > —co. So we have p(z,?;)-> 1 for every z € X, and for some
1s € T,

FC)+p(t2) 2 6(t2) > ~c0.
Because of (H3), for every k € Ry, we find some ¢3 € T such that
F)+p(0t) 2 f()+2(s12) + £p(., 1)
> it + k.
This shows that 8* = 400, and we arrive at §* = a*. |
From the preceding theorem, (1.4), and (1.5) we derive the following

CoRrROLLARY 1. Let (H1), (H2), and (H3) be satisfied. Suppose that o < +00 or f > —oo0.
Then a > a* = §* = f holds. ~ :

The case @ = 400 and # = —co cannot be excluded by our hypotheses. This case occurs already in
linear programming, as soon as the primal and the dual program do not possess feasible solutions;
see e.g. (2, p. 21].

Fzample. We suppose (H1) and that ¥ = Ut B, where B is convex and compact with 0 € B.
We fix Y(¢) :=t- B (t > 0). Then (H2) and (H3) are satisfied. Moreover using
P(z):=max h
(¢) = max Az, ),
we have
p(z,t)=1t-P(z).
Since 0 € B, the function P is nonnegative. By monotony we obtain
g7 = lim inf [f(z)+1- P(c)],
o = lim inf{f(z)]z € X, P(z) < %},
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whereas from (1.3)
a=inf {f(z)|]z€ X, P(z) L 0}.
In particular, if A(z,y) := (H(z),y), H: X = R™,Y :=RT ,and B = {y € R} %} y; <1}, then
the primal problem (1.1) reads '
(1.6) Ca=inf{f(z)|z € X, Hi(z)<0,...,Hn(z) < 0},
and moreover,
f(z)+ p(z,t) = f(z) +t-max {0, Hi(z),..., Hm(z)}.

Thus we arrive at a well-known exact penalty function for the convex program (1.6); see [5, Chap-
ter 6], [6].

Regularization (2). Let, as in the introduction, L : X X Y — R and the optimal values o
and 3 be given. Here we need a further set U and suppose that Y and U are contained in linear
spaces E; and E,, respectively, such that Og, € Y and 0, € U. We embed L by a function
¢: X xY xUxY — R in the following way

L(z,y) = ¢(<,3,0,0),
and i_ntroduce the subsequent hypotheses: ‘
(H1) VzeX,yeY,veY) <p(_j:,y,0,v)§go(a:,y,0,0),'
(H2) | (‘v’zEX,yEY,uEU) ©(z,9,0,0) < ¢(z,9,4,9).
Note that both’ hypotheses are satisfied in the setting v
o(z,y,u,9) := L(z,9) — (v, y - v},

where (.,.) denotes the duality form for the spaces Ey and E; in duality.
In addition, we defineforue U,veY,

¥(u,v) :=inf sup p(z,y,u,v).
z€X yeY
Obviously a = (0,0), and the regularized primal value is defined as

a” :=sup inf ¥(u,v).
vEY ueU

We claim that (H1) implies
(2.1) : a>a.
Indeed, for all v € Y, by (H1)
a = 'inf sup ¢(z,¥,0,0),
z€X yeY

inf sup ¢(z,y,0,v),
z€X yeY

inf inf sup ¢(z,y,u,v)
uclU z€X yeY

inf 9Y(u,v),
uelU

v IV
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which results in

a > sup inf ¥(u,v)=a",
veY ueU

proving our claim.
Here we simply set

B* :=p =sup inf ¢(z,y,0,0).
ye€Y z€X

To establish a relation between o and % we require the additional hypothesis

(H3) Ve X,yeY) inf sup o(z,9,4,79) < ¢(z,7,0,0),
uel

which we shall discuss in detail in an example after presenting the results of this section.
THEOREM 2. Let (H2) and (H3) be satisfied. Then there holds o™ = 3*, i.e

(2.2) sup inf ¥(u,7) = sup mf ¢(z,7%,0,0).
yeY uelU

Proof. Take § € Y arbitrarily. Then by (H2),

inf ¢(z,%,0,0) < inof inf ¢(z,7,u,7)
zeX z€X uclU

inf inf sup ¢(z,y,u,7)
u€UzeX yeY

inf ¥(v,7).
uelU

IA

Conversely by (H3),

inf ¥(u,y) = inf inf sup ¢(z, y,u 7)
uelU z€X ueU yeY

< inf ¢(z,7,0,0).
zeX

Therefore equality holds in the estimates above leading to the desired relation (2.2). |

The preceding theorem yields at once the following
CoroLLARY 2. Let (H2) and (H3) be satisfied. Then there holds a = B if, and only if,

a=a".
Ezamples. (i) Define
o(z,y,u,v) = L(z,y) - G(u,y — v),
where G:Ux (Y -Y)—>R sativsﬁes G(0,.)=0, G(.,0)=0 and
(23) (Vz€X,J€Y,e>0)(FueU)VyeY) L(z,y)- L(z,7) < G(u,y—7) +¢.

Theﬁ all our hypotheses are satisfied. This being obvious for (H1) and (H2), (H3) follows from
(2.3). Indeed, (2.3) means that for any fixed z € X,j€ Y,

(Ve>0)(ue U)VyeY) ¢(z,9,4,7) < ¢(2,7,0,0) +¢,
: 6



hence
(VE > 0)(3”6 U) sup w(z,y,U,?/_)Sﬁo(m,ﬂ,O,O)‘*‘Ev
yeY

hence

inf sup o(z,y,4,7) < ¢(2,7,0,0);
uelU yeY
thus (H3). — The condition (2.3) can be interpreted as follows: Forany z € X, 5 €Y , ¢ > 0 there
exists some u € U such that the function G(v,.) is an e-support from above to L(z,.) at §. This is
a natural assumption, when L(z,.) is concave and G(u,.) is linear.
(ii) Let more specifically, for any v € U, G(«, ) be linear. Suppose (H3) is satisfied. Then

Y(u,v) = inf sup [L(z,y) - G(u,y — v)]
z€X yeY
= inf sup[L(z,y)- G(v,y)]+ G(u,v)
z€X yeY

=: o(u) + G(u,v),

where o is the perturbation function for the primal problem. This gives

a = $(0,0)=0(0),
a® = sup inf ¥(u,v)= sup mf [a(u)+G(u v)].
veY uelU vE

Now suppose in addition that @ = ¢(0) is finite and, for any u € U\{0}, sup,cy G(%,v) = 4+
Then we obtain

o(0) = inf sup [o(u) + G(u,v)],
uclU veY

and our result a = § & a = a* reads

inf sup L(z,y) = sup inf L(z,y)

z€X yeY yeY z€X
< inf sup [o(u) + G(u,v)] = sup mf [o(u) + G(u, v)]
uelU veY

(iii) To arrive at the standard case of convex optimization, we choose
L(z,y):= f(z) + (v, H(z)), H: X - R™,Y =R}, G(u,v):= (v,u).
Then ' o

a =inf sup L(z,y)=inf{f(z)|z € X, H(z) < 0},
z€X yeY

" and
o(u) = inf sup (f(z) + (y, H(z)) - (y, )]
z€X y€
= mf{f(:z)leX,H (z) < u}

is the classical perturbation function.

Thus the existence of a saddle value a = B of the Lagrangian L is intimately connected
to the existence of a saddle value of the “condensed” Lagrangian L*(u,v) := o(u) + G(u,v). This
is already known for the special inf-sup problem of the classical Lagrangian stemming from convex
optimization (compare [8, Theorems 15,16], [7, p. 213]). Here we have recovered this connection in
a more general framework. :



Regularization (3). Let, as in thé introduction, L : X X Y — R and the optima.l values a
and 8 be given. In this section we use the linear function spaces

X ={v|v:X ->R},RY ={u|u:Y - R}.

We provide RX with the product topology . With conv we denote the convex hull in RX or RY,
and with ¢l the 7-closure in RX. For any x € R we den_ote by p € RX the function having constant
value p on X. We define

C
D

{veRY | (e Y)(Vz € X) L(z,y) > v(z)},
{ueRY |(3z € X)(Vy € Y) L(z,y) < u(y)},

and consider

o = inf sup u(y),
u€convD yeY
ﬂ*

sup .inf wo(z).
vEclconvC z€X

THEOREM 3. There holds a > a* =*> f3.
Proof. (i) a > a*, since

a = inf sup L(z, y)—-mf sup u(y)
z€X y€Y ueD yeY

> inf  sup u(y)=a".
u€convD yeY

Likewise 8* > [ is verified.
(ii) Let us show o® > B*. Fix u € conv D arbitrarily, i.e.,

u:Zp;u;,Zp;:l, (pl,...,pk)ER'j_ for some k'€ N,

where u; € D, hence for some z; € X
(VyeY) wly)> L(ziy)-
Fix v € conv C arbitrarily, i.e.,
v_ZTJv,,ZTJ—l (r1,...,m) €ER, forsomel €N,
7=1
‘where v; € C, hence for some y; €Y
- (Vz e X) L(z,y;) 2 vi(z).

Consequently,

l 1 k
ZT:‘U(%‘) = Z Z piti(y;)
1= ’; -’: .
PIEDD

v

T;

piL(z:,y;)

fany
-.
-

W,
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k !
= Y. piy, miL(zi,y5)

=1 j=1

k {
> o pi Y Tivi(z:)

=1 j=1

k
= Zp,-v(:z:,-) .

i=1

v

1
sup u(y) > Y _ mu(y;)
yey j=1
it follows for the fixed u € conv D that

k
(Vv € conv C) sup u(y) > Zp,-v(z,-) .
vey

=1
Since the linear functional v — %, p;v(z;) is 7-continuous, it follows

k
(Vv € clconv C) sup u(y) > D piv(zs) .
yeY

=1

Hence

(Vu € conv D, Vv € clconv C)  sup u(y) >inf v(z),
yeY zeX

which results in

a*= inf supu(y)> sup inf o(z)=p".
uEconvD y€Y vEcleconvC zeX
(iii) It remains to show a* < B*. Assume this is not true. Then there exists some p € R
such that a* > p > #*. This means that, for any v € ¢l conv C, p > inf.ex v(z) holds. Therefore
¢ & el conv C. The separation theorem yields 2 ¥ € R and a w-continuous linear functional A # 0
on RX such that '

(Vv €ecleconvC) Alv) <7y <A(p).

Now A can be represented by
A(v) = Z Anv(Zn)
n=1

with appropriaté m €N, Ay ER, z, € X (n = 1,...,m). Because of C — RY C C, a standard
argument shows A\, > 0(n = 1,..,m). Since A # 0, A, > 0 holds. Therefore we can assume
LA, = 1. In particular we obtain, since, forany y € Y, v = L(.,y) € C,

(VyeY) 3 Anl(zny)<y<p.

n=1

9



Since L(zn,.) € D(n =1,...,m), it follows that ¥ := 3 70, AnL(zn,:) € conv D. Thus we arrive
at a

(VyeY) ay)<v<u,

hence
supa(y) < p,
veY
hence
a*= inf  sup u(y) <p,
u€convD ye€Y
contradicting a* > p > f*. . |

Actually part (iii) of the proof above shows somewhat more: If B* < 400, then there
exists v* € ¢l conv C such that 8* = inf,ex v*(z).

COROLLARY 3. If D is convez and if C is conver and w-closed, then a = ﬂ holds.

Concerning duality, this corollary includes an earlier result of Aubin [1, Theorem 2]. There more
concrete conditions for convexity and w-closedness are given.
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