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DUALITY AND REGULARIZATION FOR INF-SUP PROBLEMS

JOACHIM GWINNER A1'IDWERNER OETTLI

Introduction. Let X and Y be nonvoid sets and let L : X X Y -+ R be a real-valued function.
This gives rise to a pair of optimization problems, namely the primal problem of finding

a :=inf sup L(x, y)
zEX lIEY

and the dual problem of finding

ß := sup inf L(x, y)
lIEY zEX

(primal value),

(dual value).

The inequality a ~ ß being always valid, one is interested in the equality a = ß (duality). The
dassical von Neumann minimax theorem, as weil as its infinite dimensional extension by Fan
[3] and more recent refinements due to Fuchssteiner and König [4], which guarantee the duality,
require among other conditions the compactness of at least one of the sets X or Y. However, the
compactness assumption is too strong for many applications in optimization and related fields.
Therefore we are led to consider regularized values a* ~ a and ß* ~ ß such that, under suitable
assumptions, a* = ß* (regularized duality) holds. In this paper we analyze this approach with
three different regularization schemes and provide in each case sufficient conditions for regularized
duality to hold:
1. We study the case where Yis a cone and L(x, y) := f(x)+h(x, y), h(x,.) positively homogeneous.
Then the primal value is given by

a = inf{f(x)lx EX, (Vy E Y)h(x,y) ~ O}.

We start from the represent;üion Y := UtET Y(t), introduce

p(x, t):= sup hex, y),
lIEY(t) .

and consider

a* supinf{f(x)lxEX,p(x,t)~l},
tET

ß* .- sup inf [j(x)+p(x,t)).
tET zEX

The determination of ß* may be understood as an abstract penalty method [2, Chapter 10], [5,
Chapter 6] connected with the. primal problem.
2. We embed L by a function <p: X X Y X U x Y -+ R such that L(x, y) = <p(x, y, 0, 0), introduce
'ljJ(u,v) :=inf sup <p(x,y,u,v) (u EU, v E Y), and consider

zEX lIEY

a- .- sup iM 'ljJ(u,v},
vEYuEU

ß* .- ß .
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In this way we extend the Fenchel-Rockafellar perturbation approach in optimization theory [8] to
inf-sup problems.
3. We introduce

c.- {VERxl(3YEY)(VXEX)L(x,y)~v(x)},
D {u E RY I (3x E X)(Vy E Y) L(x, y) ::; u(y)} ,

endow the linear function space RX with the product topology, and consider

a*.- inf sup u(y) ,
uEconv D lIEY

ß*.- sup inf v(x) ,
vEd conu C :tEX

where cl and conv denote the topological closure and convex hull, respectively. Here we establish
regularized duality without any further assumptions and, as an immediate consequence, obtain
duality under suitable convexity and closedness assumptions. Thus we derive aversion of von Neu-
mann's minimax theorem that avoids compactness assumptions and extends an earlier result of
Aubin [1, Theorem 2].

We point out that this third scheme opens the access to a broad duality theory which we
will present elsewhere.

Regularization (1). Let us introduce the following hypothesis
(H1): X isa convex subset (in a linear space); Y is a closed convex cone (in a linear topological

space); L(x,y) := fex) + h(x,y), where f(.) and (Vy E Y) h(.,y) are convex functions;
moreover (Vx E X) h(x,.) is concave, positively homogeneous, and upper semico~tinuous.

By (H~) ,

sup L(x, y) = {f(x) if (Vy ~ Y) hex, y) ::; 0,
lIEY . +00 otherwise.

Thus, following the convention that inf 0 = +00, our primal problem takes the following form

(1.1) a = inf{f(x) I x EX, (Vy E Y) hex, y) ::;O} .

The cone Y being not compact, we need the following hypothesis
(H2): We are given a family of nonvoid convex, compact sets Y(t) (t E T) such that Y = U Y(t).

tET
Of course we could choose the family of one-element sub sets of Y, but our subsequent

results will be the more meaningful, the "smaller" - compared to Y - the index set T can be chosen.
Now by (Hl) and by the compactness of Y(t), we can apply the Fan-von Neumann

minimax theorem [3, Theorem 2] to L in X x Y(t) and obtain

(1.2) sup inf L(x, y) = inf sup L(x, y).
IIEY(t) :tEX :tEX IIEY(t)

Using the real-valued function

p(x,t}:= max h(x,y) (XEX,tET),
IIEY(t)

which for all t E T is convex with respect to x, we may rewrite (1.1) equivalently as follows

(1.3) a = inf{f(x) I x EX, (Vt E T)p(x,t)::; O}.
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The regularized dual value is defined as

ß* := sup inf(J(x) + p(x, t)].
tET zEX

We obtain

(1.4)

Indeed, using (1.2) we have

ß = ß*.

ß sup inf L(x, y)
Y x
sup sup inf L(x, y)
T Y(t) X

sup inf sup (J(x) + h(x, y)]
T X Y(t)

sup inf (J(x)+p(x,t)]=ß*.
T X

Remark. The function f(x )+p(x, t) has the structure of a penalty function associated to the problem
(1.1), and therefore the calculation of ß* may be considered as an abstract penalty procedure [2,
Chapter 10]. The penalty function f(x) + p(x,t) is "exact" in the following sense: If there exists
iJ E Y such that ß = infx L(x, iJ), then there exists i E T such that ß* = infx (J(x) + p(x, i)].

The regularized primal value is defined as

at := sup inf {f(x) I x EX, p(x,t) ~ I}.
tET

Since

a inf {f(x) I x EX, (Vt E T) p(x, t) ~ O}
> inf{f(x) I x EX, p(x, t) ~ I}

holds for all t E T, we obtain

(1.5) a 2: a* .

Finally to_establish a relation between a* and ß* we require a furt her - in this section our last -
hypothesis
(H3): For every t1, t2 E T and every J.Ll, J.L2ER+ there exists tg E T such that

J.LIP(., tl) + J.L2P(.,t2) ~ p(., tg).

THEOREM 1. Let (H1), (H2), and (H3) be satisfied. 1f ß* > -00 or a* < +00, then
a* = ß* holds.

Proof. Let us first show ß* ~ a*. To this end, fix E:> 0 and tl E T. By (H3) there exists t2 E T
such that p(., t1) ~ E:p(., t2)' Hence

inf (J(x) + p(x, tl)] < inf{f(x) + p(x, tl) I x EX, p(x, t2) ~ I}
zEX

< inf{f(x) + E:p(x, t2) I x EX, p(x, t2) ~ I}
< inf{f(x)+E:lx E X ,P(X,t2) ~ I}
< a* + E: •
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Therefore ß* ~ a* + c for arbitrary c > 0, proving our claim ß* ~ a* .
Now let us establish a* ~ ß*. Here we first consider the case that for every t E T there

exists some x E X such that p( x, t) ~ 1. This entails that for every t E T there exists some x E X
that satisfies p(x, t) < 1. Indeed, if for some tl E T and for all x EX, p(x, tl) ~ 1, then by (H3),
there exists t2 E T such thatp( " t2) ~ 2p( " tl) ~ 2 contradicting our assumption. Hence, for all
t E T, the convex program

,(t) := inf{f(x) I x EX, p(x, t) ~ 1}

satisfies the Slater condition, and consequently [2, p. 72] for all tl E T with ,(tl) > -00 the
Kuhn- Tucker condition holds: There exists jJ. E R+ such that

<

inf [j(x)+jJ.(p(x,tl)-l)]
",EX

inf [j(x)+ ßp(X,tl)]
"'EX
inf [j(x) + p(x, t2)] =: 8(t2),
",EX

where t2 E T is chosen according to (H3). Hence we conclude - what is clear if ,(tl) = -00 - that
for every tl E T there exists t2 E T such that 1'(t1) ~ 8(t2)' Thus we arrive at a* ~ ß* in the case
considered. Now it remains to prove a* ~ ß* in the case that ,(tl) = +00 for sometl E T. Then
a* = +00, and by assumption, ß* > -00. So we have p(x, tl)-> 1 for every x EX, and for some
t2 E T,

Because of (H3), for every K E R+, we find some t3 E T such that

f(,)+P(.,t3) ~ f(.)+P(.,t2)+Kp(.,tl)
~ 8(t2)+K.

This shows that ß* = +00, and we arrive at ß* = a*. •
From the preceding theorem, (1.4), and (1.5) we derive the following

COROLLARY 1. Let (H1), (H2), and (H3) be satisfied. Suppose that a< +00 or ß > -00.

Then a ~ a* = ß* = ß holds.

The case a = +00 and ß = -00 cannot be excluded by our hypotheses. This case occurs already in
linear programming, as soon as the primal and the dual program do not possess feasible solu tionsj
see e.g. [2, p. 21].

Example. We suppose (H1) and that Y = U t. B, where B is convex and compact with 0 E B.
t>O

We fix Y(t) := t . B (t > 0). Then (H2) and (H3) are satisfied. Moreover using

P(x) := maX h(x, y), .
liEB

we have

p(x,t)=t.P(x).

Since 0 E B, the function P is nonnegative. By monotony we obtain

ß*

a*

lim inf[j(x)+t.P(x)]'
t-+oo "'EX

11m inf {f(x) I x EX, P(x) ~ ~},
t-+oo t
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whereas from (1.3)

Cl = inf {fex) I x EX, P(x) ~ O} .

In particular, if hex, y) := (H(x), y), H : X - Rm
, Y := R+ , and B = {y E R+ I ~ Yi ~ I} , then,

the primal problem (1.1) reads

(1.6)

and moreover,

Cl = inf{f(x)lx E X, HI(x) ~ O, ... ,Hm(x) ~ O},

fex) + p(x,t) = fex) +t .max{O,HI(x), ... ,Hm(x)}.

Thus we arrive at a we11-known exact penalty function for the convex program (1.6); see [5, Chap-
ter 6]' [6].

Regularization (2). Let, as in the introduction, L : X X Y - Rand the optimal values Cl

and ß be given. Here we need a further set U and suppose that Y and U are contained in linear
spaces EI and E2, respect4vely, such that OE1 E Y and OE, E U. We embed L by a function
ep : X X Y X U X Y - R in the following way

L(x,y) = ep(x,y,O,O),

and introduce the subsequent hypotheses:

(H!)

(H2)

(\Ix EX, Y E Y, v E Y) ep(x,y,O,v) ~ ep(x,y,O,O),

(\Ix EX, Y E Y, u E U)ep(x,y,O,O) ~ ep(x,y,u,y).

Note that both' hypotheses are satisfied in the setting

ep(x, y, u, v) := L(x, y) - (u, y - v) ,

where (., .) .denotes the duality form för the spaces EI and E2 in du ali ty.
In addition, we define for u EU, v E Y,

~(u,v) :=inf sup ep(x,y,u,v).
"'EX yEY

Obviously Cl = ~(O, 0), and the regularized primal value is defined as

Cl* := sup inf ~(u, v) .
vEY uEU

We claim that (Hl) implies

(2.1)

Indeed, for all v E Y, by (Hl)

Cl ~ Cl*.

Cl inf sup ep(x,y,O,O),
"'EX IIEY

> inf sup ep(x,y,O,v),
",EX yEY

> inf inf sup ep(x,y,u,v)
uEU"'EX yEY

inf ~(u, v),
uEU
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whieh results in

a ~ sup inf 1/J(u,v) = a* ,
vEY uEU

proving our claim.
Here we simply set

ß*:= ß = sup inf lp(x,y,O,O).
lIEY zEX

To establish a relation between a* and ß* we require the additional hypothesis

(H3) (Vx EX, Y E Y) inf sup Ip(x, y, u, y) ~ Ip(x, y, 0, 0) ,
uEU lIEY

which we shall diseuss in detail in an example after presenting the results of this seetion.

THEOREM 2. Let (H2) and (H3) be satisfied. Then there holds a* = ß*, i.e.,

(2.2) sup inf 1/J(u,Y) = sup inf lp(x,y,O,O).
yEY uEU yEY zEX

Proof. Take y E Y arbitrarily. Then by (H2),

inf Ip(x, y, 0, 0) < inf inf Ip(x, y, u, y)
zEX zEX uEU

< inf inf sup lp(x,y,u,Y)
uEU zEX lIEY

inf 1/J(u, y) .
uEU

Conversely by (H3),

inf 1/J(u,y) inf inf sup Ip(x,y,u,y)
uEU zEX uEU lIEY

< inf Ip(x, y, 0, 0).
zEX

Therefore equality holds in the estimates above leading to the desired relation (2.2). •

The preeeding theoremyields at onee the following

COROLLARY 2. Let (H2) and (H3) be satisfied. Then there holds a = ß if, and onlyif,
a = a*.

Examples. (i) Define

Ip(X, y, u, v) := L(x, y) - G(u, y - v),

where G: U x (Y - Y) -4 R satisfies G(O,.) == 0, G(., 0) == 0 and

(2.3) (Vx E X,y E Y,€ > 0)(3u E U)(Vy E Y) L(x,y) - L(x,y) ~ G(u,y - y) + €.
Then all our hypotheses are satisfied. This being obvious for (Hl) and (H2), (H3) follows from
(2.3). Indeed, (2.3) means that for any fixed x E X, Y E Y,

(V€ > O)(3u E U)(Vy E Y) Ip(x,y,u,y) ~ lp(x,y,O,O) + c,
6



hence

(\f[ > 0)(3u E U) sup cp(x, y, u, y) ~ cp(x, y, 0, 0) + [ ,
yEY

hence

inf sup cp(x,y,u,y) ~ cp(x,y,O,O);
uEU yEY

thus (H3). - The condition (2.3) can be interpreted as follows: For any x EX, Y E Y , [ > ° there
exists some u E U such that the function G(u,.) is an [-support from above to L(x,.) at y. This is
a natural assumption, when L(x,.) is concave and G(u,.) is linear.

(ü) Let more specifically, for any u EU, G(u,.) be linear. Suppose (H3) is satisfied. Then

?/J(u,v) inf sup[L(x,y)-G(u,y-v)J
",EX yEY
inf sup[L(x,y)-G(u,y)J+G(u,v)
"'EX yEY

-. a(u)+G(u,v),

where a is the perturbation function for the primal problem. This gives

a ?/J(O,0) = a(O) ,
a* = sup inf ?/J(u, v) = sup inf [a(u) + G(u, v)].

vEY uEU vEY uEU

Now suppose in addition that Cl = a(O) is finite and, for any u E U\{O}, supvEyG(u,v) = +00.
Then we obtain

a(O)=inf sup[a(u)+G(u,v)]'
uEU vEY

and our result a = ß {::? a = a* reads

inf sup L(x, y) = sup inf L(x, y)
",EX IIEY IIEY",EX

{::? inf sup[a(u)+G(u,v)]=sup inf [a(u)+G(u,v)].
uEU vEY vEY uEU

(üi) To arrive at the standard case of convex optimization, we choose

L(x,y):= fex) + (y,H(x)}, H: X -+ Rm, Y:= R+, G(u,v):= (v,u).

Then

a =inf sup L(x, y) = inf {fex) I x EX, H(x) ~ O},
"'EX yEY

and

a(u) inf sup(J(x)+(y,H(x)}-(y,u}]
",EX yEY
inf {f(x) I x EX, H (x) ~ u}

is the classical perturbation function.

Thus the existence of a saddle value a = ß of the Lagrangian L is intimately connected
to the existence of a saddle value of the "condensed" Lagrangian L*(u, v):= a(u) +G(u, v). This
is already known for the special inf-sup problem of the classical Lagrangian stemming from convex
optimization (compare [8, Theorems 15,16], [7, p. 213]). Here we have recovered this connection in
a more general framework. -

7



Regularization (3). Let, as in the introduction, L : X X Y - Rand the optimal values a
and ß be given .. In this section we use the linear function spaces

RX = {v I v: X - R} , RY = {u I U : Y - R} .

We provide RX with the product topology 7l".With conv we denote the convex huH in RX or RY,
and with cl the 7l"-c1osurein RX. For any J.L E R we denote by l!:.E RX the function having constant
value J.L on X. We define

c .- {v E RX I (3y E Y)(\lx E X) L(x,y) ~ v(x)},
D .- {u E RY I (3x E X)(\ly E Y) L(x,y) ~ u(y)},

and consider

a*.- inf sup u(y) ,
u Econl1D yEY

ß*.- sup inf v(x).
11 E cl Conl1 C ",EX

THEOREM 3. There holds a ~ a* = ß* ~ ß.

Proof. (i) a ~ a*, since

a inf sup L(x,y) =inf sup u(y)
",EX yEY uED yEY

> inf sup u(y) = a* .
uE Conl1 D yEY

Likewise ß* ~ ß is verified.
(ii) Let us show a* ~ ß*. Fix u E conv D arbitrarily, Le.,

Ie Ie

U = L PiUi , L Pi = 1, (Pl, ... ,Pie)E R~ for some k E N ,
i=l i=l

where Ui E D, hence for same Xi E X

Fix v E conv C arbitrarily, Le.,

I I
v = L TjVj , L Tj = 1 , (Tl, ... , 71) E R~ for same I E N ,

j=l j=l

where Vj E C, hence for same Yj E Y

(\Ix E X) L(x,Yj) ~ Vj(x).

Consequently,

I

LTjU(Yj)
j=l

I Ie

= LTj LPiUi(Yj)
j=l i=l

I Ie

> LTj LPiL(Xi,Yj)
j=l i=l
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(Vv E cl conv C)

lc I

= LP;LTjL(x;,Yj)
;=1 j=l

lc I

> LP; L TjVj(X;)
;=1 j=l

lc

Lp;V(X;) .
;=1

By

I

SUp U(y)~ L TjU(Yj)
yEY j=l

it follows for the fixed U E conv D that

lc
(Vv E conv C) sup u(y) ~ Lp;v(x;) .

IIEY ;=1

Since the linear functional v r-t 2:::=1 p;v( X;) is rr-continuous, it follows

lc

sup u(y) ~ Lp;v(x;).
IIEY ;=1

Hence

(VU E convD, Vv E clconvC) sup u(y) ~inf v(x),
yEY :z:EX

which results in

a* = inf sup u(y) ~ sup inf v(x) = ß* .
u EccmuD IIEY u Ecl ccmu C:z:EX

(iii) It remains to show a* ~ ß*. Assurne this is not true. Then there exists some J.' E R
such that a* > J.' > ß*. This means that, for any v E cl conv C, J.' > inf:z:Exv( x) holds. Therefore
I:!.. rt cl conv C. The separation theorem yields alE Rand a rr-continuous linear functional A =I 0
on RX such that

(Vv E cl conv C) A(v) ~ I < A(~.

Now A can be represented by

m

A(v) = EAnV(Xn)
n=l

with appropriate m E N, An E R, Xn E X (n = 1, ... , m). Because of C - Ri c C, a standard
argument shows An ~ 0 (n = 1, ... , m). Since A =I 0, r;An > 0 holds. Thereforewe can assurne
r;An = 1. In particular we obtain, since, for any y E Y, v = L(., y) E C,

m

(Vy E Y) L AnL(xn, y) ~ I < J.'.
n=l
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Since L(xn,.) E D (n = 1, ... , m), it follows that u:= L:~1 AnL(xn,.) E conv D. Thus we arrive
at

(Vy E Y) u(y) ~ l' < J.L,

hence

sup u(y) < J.L,
yEY

hence

a* inf sup u(y) < J.L ,
u E eonv D yEY

contradicting a* > J.L > ß*. •

Actually part (iii) of the proof above shows somewhat more: If ß* < +00, then there
exists v* E cl conv C such that ß* = inf:eEXv*( x).

COROLLARY 3. If D is convex and if C is convex and 1T'-closed, then a = ß holds.

Concerning duality, this corollary includes an earlier result of Aubin [1, Theorem 2]. There more
concrete conditions for convexity and 1T'-closednessare given.
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