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On Generalized Bernstein PolYllornials in CAGD

Guido Walz

Abstract: A central topic in CAGD is the representation of curves and surfaces by,
polynomial interpolation operators, in particular by Ben'1stein polynomials.

In this paper we present two different types of generalized Bernstein polynomials.
The first one goes back to an idea of D.n.Stancu [5, 6, 7]; here a dass of polynomials

qnv is defined, which depend continuously on an additional parameter a. For a = 0,

the qnv coincide with the ordinary Bernstein polynomials, whereas for a = -1/n
they are identical with the Lagrange polynomials.

A second type of generalization is essentially due to G.G.Lorentz [3]; here, the Bern-

stein polynomials are defined with respect to a generalizedpolynomial space, consi-
sting of functions of the form L:~=o al/xo" for some 0 = ao ::; ... ::;an .
Very important for application in CAGD is the fact that the "nice" properties of

the Bernstein polynomials, such as positivity, partition of unity and the recursive
computability carry over to these generalizations.
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1. Introduction
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Very important tools in OAGD are so-called linear interpolation operators for the

representation of curves in IR2 or IR3 and also - iI one uses for example tensor product

methods - of suHaces in IR3.

Here, following DeVore [2, p.26], an operator L is called linear interpolation operator,

if it is of the form
n

L(J, x) = L f(xv)hnv(x) ,
v=o

where f denotes a certain prescribed function, and the Xo, ••• , Xn as weIl as the variable

x are real numbers, usually restricted to the interval [0,1]. It is not meant that L really

inteipolates the function f in the points Xv ; the term interpolation only indicates that

the shape of L(J, ) depends only on a finite number of values f (xv) - in contrast, for
,

example - to integral operators. i'

For application in OAGD, one replaces the f(xv) by the control points bv, where

bv E IR2 or IR3 , v = 0, ... ,n, and the resulting
n

L(x) = L bvhnv(x)
£1=0

represents a curve which depends only on the controlpoints bv (cf., also for the following,

the excellent survey paper of Böhm, Farin and Kahmann [1]).

The two most important choices for the basis functions hnv are the Lagrange

polynomials

lnv (x)

and the Bernstein (basis) polynomials

Pnv(x) = (~)xv(1-x)n-v

for x E [0,1]. In particular the latter ones are of great interest; the theoretical back.

ground is given by the weU-known theorem of Bernstein and Korovkin, which says that

for fE 0[0, 1J the pol~'nomial operators
n

Bn (J, x) = L f(~)Pnv(X)
v=o v
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converge to f ,as n tends to infinity.

The crucial point for the applicabiJity of the corresponding operators

n

Rn (a') = I:bvPnv (x)
£1=0

in OAGD are the following rour properties:
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(1.1)

(1)

(2)

(3)

(4)

Pnl/(X) ~ 0 for xE [0,1],
nI: Pnv(X) == 1,

£1=0

For nEIN and 1 ~ v ~ n - 1 :

Pnv(X) = (1 - x) Pn-l,v(X) + X Pn-l,v-I(X), J

(1.2)

where in particular (4) is importanl;, because it leads to the development of de Casteljau

type algorithms; (3) guarantees that two operators ofthe type (1.1) can be continuously
,

connected. ,.

In this paper we present two different generalizationsof the Bernstein polynomi.

als, whieh are both suited to improve the ßexibility of curve representation methods in

CAGD.

The first one goes back to an idea of D.n.Staneu 151 and will be presented in the next

section; a dass of polynomials q"v is defined, which depend on just one additional real

parameter, say a, and cover, for example, the Lagrange as weIl as the Bernstein polyno'

mials as special cases. To our believe, this concept will be of great interest for designers

of OAGD systems.

In section 3, we present another type of generalization, which is due to G.G.Lorentz [3];

here the basic idea is to use Bernstein polynomials, which are defined with respect to the

space {xao, ... ,xa",}, O=ao < ... <anEIR,insteadofthespace TIn'

It is important that both types of generalizations preserve the properlies (1.2) of

the Bernstein operators.
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2. Tlle Stanen Polynomials and Operators
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As it is known the Bernstein operators (1.1) are quit~ suitable for the represen.

tation of curves, due to their ruce properties (1.2); furthennore, they do not tend to an

oscillating curve, as n increases - in contrast, for example, to Lagrange polynomials.

On the other hand, one sometimes would like to have (polynomial) operators which react

a little bit more sensitive on alterations of the control points bll; and, even more, that

the degree of this influence can be controlled by a user-defined parameter.

Such a possibility is given by using the following operators, which were introduced by

D.D.Stancu in [5] and fnrther investigated by the same author in [6, 7] and G.Mühlbach

_ [4]:

Definition 2.1: Let x and a be arbitrary real nuinb~rs and define for v E INo :
j'

11-1

\Oo(x,a):=l, \01I(x,a):= II(x+,\a), and
).=0

( ) ._ (n) )Oll(x, a). )On-lI(l- x, a)
qnll X, a .- ()' nEIN.v )On 1, a

Then for V = 0, 1, ... , n the qnll are polynomials (in x) of degree n, which depend

on the parameter a (assunring \On (1, a) 1= 0); they will be denoted as Stancu poly-

nomials.

The corresponding operators
n

Qn(X, a) .- I: bllqnll (x, a)
11=0

will be called Stancu operators.

(2.1 )

if a ~ 0,

Their main properties, which shonld be compared to (1.2), are summarized in

terms of the following theorem (cf. [4]):

Theorem 2.2:

(1) For x EX, qnv (x, a) ~ 0, where

{
X = [0,1],
X = [a(l - n), 1- a(l - n)], if a < O.
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(2) For fixed a,
nL qnv(x,a) = 1.

v=o
(3) Qn(O,a) = bo and Qn(1,a) = bn•

(4) For nEIN and 1 ~ v ~ n - 1 :
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qnv (x, a) =
1 .
( ). ((1- x + (n - 1/ -1) a) qn-l v(x, a) + (x + (1/ -1) a) qn-l v-dx, all.l+n-1a ' ,

Proof: The properties (1), (2) and (4) can already be found in G.Mühlbach's paper

[4]; the proof of (3), however, can be done by straightforward calculations, using the fact

that

,
Now is is interesting to analyse the dependence of Qh(x, a) on the parameter a:

Stancu already pointed out that qnv (x, a) coincides with the Bernstein polynomial

Pnv(x), if a = 0, and with the Lagrange polynomial lnv(x) , if a = -lln, where

in the latter case the Xv must be chosen equal to v In [6].
Now we have a closer look onto the behaviour of Qn(X, a} for several values of a; first,

if a< -lln, we have a highly oscillating curve, which has - to our believe - no practical

applications.

Much more interesting is the range -lln ~ a ~ 0; here we get operators, which lie

"between" the Lagrange and the Bernstein operators (and depend continuously on the

parameter a). ]\:[ore precisely, the Qn behave as folIows: starting, for a = 0 , with the
well-known Berstein operators, one gets, as a tends to -tin, operators, which become

more and more interpolatory with respect to the control points bv, until one ends up

at the Lagrange operators, which do in fact interpolate the bv • Figure 1 sketches this

behaviour for n = 3 and a= 0, -1/3n, -2/3n, -lln.
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Figure 1: Qa(x, a) for various values of a

Finally we show that for a -;. +00 , the resulting curves tend to a straigth line:
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Lemma 2.3:

then

For fixed x E [0,1], let Qn(x, a) denote the Stancu operator (2.1);

lim Qn(x,a) - (l-x)bo+xbn•a .•..•+=

Proof:

Therefore

First we note that

nl1-1(1 - x + ,\a)qnO (x, a) = ( )
.\=0 l+,\a

(l-x)(n - I)! an-1 + O(an-2)
(n - I)!an-1 + O(an-2)

lim qnO (x, a) = 1 - x ,a ....•+oo

for a -;. 00 •

and, as it can be shown in a completely analogous manner,

lim qnn(x,a) = X •
a~+oo

So we are left to prove that

lim qnv(x,a) - 0 for1<v<n.
a--++oo
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But this follows at onee, beeause
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-0 for a - +00. L.l

So, roughly spaken, the shape of the curves defined by the Stancu operators (2.1)

varies £rom a highly oseillating polynomial eurve to a straight line, as a moves from -00

to +00; the most interesting range for CAGD applications is given b~, -1/n ~ a ~ o.

For example, one could leave the definition of the parameter a free to the user of

the CAGD system; ifhe wants to construct a curve (01' surface), which depends stronger

on the control points, he would have to choose a value near -l/n. If, on the other hand,

a curve is wanted whieh is not so sensitive against moves the control points, a value of

a near 0 would be suited.

From trus point of view, one could denote a as the "sensitivity parameter" of the system.

3. The Lorentz Polynomials and Operators

In the following, we sketch a completely different type of generalized Bernstein

polynomials, which is due to G.G.Lorentz.We restrict ourselves to a very short presen.

tation of the mathematieal background and refer the interested reader to Lorentz' book

[3].

Let 0'0 = 0 and av ~ 0 be arbitraryand xE [0, I}. Define, for nEIN,

Pnn(X) .- 1, and for v = 0, ... , n - 1 :

1 f X
Z dzPnv(X) := (_1)n-v av+l ... an. -. ('

2'n c (z-O'v) .. ' z-an)
(3.1)

where C is a simply dosed curve in the complexplane such that all the points 0'1,"" an

lie in the interior of C.
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If the a/l are mutually different, then
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(3.2)

In particular, if aJ.l = 11 for 11 = 0, ... , n, Pnv coincides with the ordinary Bernstein

basis polynomials Pnll' In this sense the Pnv can be denoted as generalized Bernstein

polynomials.

For completeness we treat also the case that some of the aJ.l coincide; then Pn/l

is a linear combination of functions of the form

where. kJ.l denotes the multiplicity of aJl •

It can be shown (cf. [3, sect. 2.71) that the properties/(1.2) carry over also to this

type of generalization. For numbers (1) through (3) this is true for all 0 = ao :$ ... :$ an .

For example, using the identity

1 1 an al ... an- ---- -------- + ... + ---------
z z-an(z-an-I)(z-an) . (z-ao)"'(z-an)

(note that ao = 0) and the definition (3.1), one proves,that

n 1 1 zL Pnll(X) = ~ ~dz = 1.
11=0 ~z C z

The validity of recursion formulas like (1.2), (4) cannot be proved in general, but for

some special choices of the exponents aJl • For example, in the important case that

for some pE IR, p > 0 , one easily shows - e.g. using (3.2) - that

Pnv (x) =(1 - xP) Pn-l,v(X) + xP Pn-l,v-dx)

for nEIN and 1:$ v :$ n - 1 .
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