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On Generalized Bernstein Polyndmials in CAGD

Guido Walz

Abstract: - A central topic in CAGD is the representation of curves and surfaces by
- polynomial interpolation operators, in particular by Berf;stein polynomials.
In this paper we present two different types of generalized Bernstein polynomials.
The first one goes back to an idea of D.D.Stancu [5, 6, 7]; here a class of polynomials
gny 15 defined, which depend continuously on an additional parameter a. For a =0,
the gn, coincide with the ordinary Bernstein polynomials, whereas for a = —1/n
they are identical with the Lagrange polynomials. .
A second type of generalization is essentially due to G.G.Lorentz [3]; here, the Bern-
stein polynomials are defined with respect to a generalized polynomial space, consi-
sting of functions of the form Z;.—.o a,z®v forsome 0 =g < ---<ap.
Very important for application in CAGD is the fact that the “nice” properties of
the Bernstein polynomials, such as positivity, partition of unity and the recursive

computability carry over to these generalizations.
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1. Introduction

Very important tools in CAGD are so-called linear interpolation operators for the
representation of curves in JR? or JR® and also - if one uses for example tensor product
methods - of suffaces in JR3.

Here, fdllowing DeVore [2, p.26], an operator L is called linear interpolation operator

3

if it is of the form _ .
L(f1 :t) = Z f(zu)hnr/(‘b) y
v=0

where f denotes a certain prescribed function, and the zo,...,z, aswell as the variable
z are real numbers, usually restricted to the interval [0,1]. It is not meant that L really
interpolates the function f in the points z, ; the term interpolation only indicates tﬁat
the shape of L(f, ) depends only on a finite number of values f{z.) - in contrast, for
example — to integral operators. P

For application in CAGD, one replaces the f(z,) by the control points b, , where
b, € R? or R®, v=0,...,n, and the resulting

L(z) = Zi: by hny ()

represents a curve which depends only on the control points b, (cf., also for the following,

the excellent survey paper of Bhm, Farin and Kahmann [1]).

The two most important choices for the basis functions h,, are the Lagrange

polynomials

n
T — T
mete) =TT 222
ny() A:Cbx’/—.a:A

Ay

and the Bernstein (basis) polynomials

bny(m) = (n)xV(l ~g)n-v

v
for z € [0,1]. In particular the latter ones are of great interest; the theoretical back-
ground is given by the well-known theorem of Bernstein and Korovkin, which says that

for f € C[0,1] the polynomial operators

Bn(fax) = Zf(g')pm/(a’)
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converge to [, as n tends to infinity.

The crucial point for the applicability of the corresponding operators

Bn(a‘) = i:bvpnu(m) . (11)

in CAGD are the following four properties:

(1) pavle) 20 for z € 0,1], \
(2) Z—: pnu(a’) =1,
(3) B;(O) = by and B,(1) =b,, (1.2)

(4) ForneNandl1<v<n-—1:

Pnv (55) = (1 - 37) pn—l,u(m) +z pn—l,ll—l(m)s

where in particular (4) is importani, because it leads to the development of de Casteljau
type algorithms; (3} guarantees that two operators of the type (1.1) can be continuously
connected. "

In this paper we present two different generalizations of the Bernstein polynomi-
als, which are both suited to improve the flexibility of curve representation methods in
CAGD.

The first one goes back to an idea of D.D.Stancu [5] and will be presented in the next
section; a class of polynomials g, is defined, which depend on just one additional real
parameter, say a , and cover, for example, the Lagrange as well as the Bernstein polyno-
mials as special cases. To our believe, this concept will be of great interest for designers
of CAGD systems. |

In section 3, we present another type of generalization, which is due to G.G.Lorentz [3};
here the basic idea is to use Bernstein polynomials, which are defined with respect to the

space {z%°,...,z%"}, 0=0p <...< @, € IR, instead of the space II, .

It is important that both types of generalizations preserve the properties (1.2) of

the Bernstein operators.
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2. The Stancu Polynomials and Operators

As it is known the Bernstein operators {1.1) are quite suitable for the represen-
tation of curves, due to their nice properties (1.2}; furthermore, they do not tend to an
oscillating curve, as n increases — in contrast, for exﬁmple, to Lagrange polynomials.
On the other hand, one sometimes would like to have (polynomial) operators which react
a little bit more sensitive on alterations of the control points b, ; and, even more, that
the degree of this influence can be controlled by a user-defined parameter.

Such a possibility is given by using the following operators, which were introduced by

D.D.Stancu in [5] and further investigated by the same author in [6, 7] and G.Miihlbach

14k

Definition 2.1: Let 2z and a be arbitrary real numbers and define for v € IV, :
X
v-1
po(z,a):=1, p,{z,a) = H(z + Aa), and
A=0
— n SOU(:":, a‘) ) <pn—l/(]- — &, a)
dny (Q!, a) = (Ij) {pn(l, a) ’ nelV.

Then for v =0,1,...,n the gn, are polynomials {in ‘.'z:) of degree n, which depend
on the parameter a (assuming pn(1,a) # 0); they will be denoted as Stancu poly-
nomials.

The corresponding operators

Q,,(Q:? a) = Z—: by gny (xy a) (2.1)

will be called Stancu operators.

Their main properties, which should be compared to (1.2}, are summarized in

terms of the following theorem {cf. [4]):

Theorem 2.2:
(1} For z€ X, guy(z,a) >0, where
X =10,1], if g >0,
{X= l[a(1 = n),1—a(1—n)], ife<oO.
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(2) For fixed a ;

n

Z gnv(z,0) = L.

v=0
(3) @u(0,a) =bg and Q.(1,a)=b,.
(4) ForneIV and 1<v<n-—-1:

Gnu (.’2:, a) =

15 m=1a (nl_ Ta A{(l—z+(n—v—1)a) ga-1,(z,a) + (z+ (v —1)a) qn—l,u;l(m, a)).

Proof:  The properties (1}, (2} and (4} can already be found in G.Miihlbach’s paper
[4]; the proof of (3), however, can be done by straightforward calculations, using the fact

()6 - -

Now is 1s interesting to analyse the dependence of Q};(m, a) on the parameter a:

that

Stancu already pointed out that g¢,, (a:,a) coincides with the Bernstein polynomial
pnv(z), if @ = 0, and with the Lagrange polynomial [,,(z), if @ = —1/n, where
in the latter case the z, must be chosen equal to v/n [6].

Now we have a closer look onto the behaviour of Qn(z,a) for several values of a; first,
if a < —1/n, we have a highly oscillafing curve, which has - to our believe — no practical
applications. .

- Much more interesting is the rénge ~1/n VS a < 0; here we get operators, which lie
“between” the Lagrange and the Bernstein operators (andv depend continuously on the
parameter a ). More precisely, the @,; behave as follows: starting, for a = 0, with the
well-known Berstein operators, one gets, as a tends to —1/n, operators, which become
more and more interpolatory with respect to the control points b, , until one ends up
at the Lagrange operators, which do in fact interpolate the b, . Figure 1 sketches this
behaviour for n =3 and a=0,-1/3n,-2/3n,—1/n.
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Figure 1: Q3(z,a) for various values of a

s
R
i

Finally we show that for a — 4o, the resu]ting curves tend to a straigth line:

Lemma 2.8: For fixed z € [0,1], let Qn(2,a) denote the Stancu operator (2.1);
then

lim Q.(z,a) = (1—z)by+zb, .

a—++o0
Proof: First we note that
dno (‘5’ a) =

(1—z){n—1)1a""! 4+ Ofa""?)
(n—1)lar—1 + Ofan-2)

for a — oo .

Therefore
im gno(z,a) = 1 -z,

a——+co

and, as it can be shown in a completely analogous manner,

Lm gun(z,0) = z.
a—+-T 00

So we are left to prove that

m gn(2,a) =0 fori<v<n.

a—-+00
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But this follows at once, because

Gnv (cr., a’) =

(n) (v —=1)1a"" 1+ 0(a""?)) - ((n—v - 1)la” ¥~ 4+ Ofa"~*~2))
v (n —1)tan-1 4 Ofan-2)

Ofa"~?)
{n—1)tar-1 4+ O(an—2)

—0 fora— +4co0. A

So, roughly spoken, the shape of the curves defined by the Stancu operators (2.1)
varies from a highly oscillating polynomial curve to a straight line, as a moves from —co

to +ooc; the most interesting range for CAGD applications is given by —1/n <a <0.

For example, one could leave the definition of the parameter a free to the user of
the CAGD system; if he wants to construct a curve {or surface}, which depends stronger
on the control points, he would have to choose a value near —1/7n. If, on the other hand,
a curve is wanted which is not so sensitive against moves the control points, a value of

a near 0 would be suited. i

From this point of view, one could denote a as the “sensitivity parameter” of the system.

3. The Lorentz Polynomials and Operators

In the following, we sketch a completely different type of generalized Bernstein
polynomials, which is due to G.G.Lorentz. We restrict ourselves to a very short presen-

tation of the mathematical background and refer the interested reader to Lorentz’ book

[3].

Let ag =0 and o, > 0 be arbitrary and z € [0,1]. Define, for n € IV,

Panfz) =1, and forv =0,...,n—1:

1 z? dz (3.1)
5 = (=1} ¥ N
p"”(x) ( ) Qy+1 @n 27”:/‘0(2'—0:/) ...(z.__an) ’

where C is a simply closed curve in the complex plane such that all the points aq,...,a,

le in the interior of C.
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If the o, are mutually different, then

n n
P (2) = (=) Yausrcan D 2 [ [ (ew —a). (32)

Bp=v . i=v

i#a
In particular, if oy, = p for p=0,...,n, P, coincides with the ordinary Bernstein
basis polynomials p,, . In this sense the p,, can be denoted as generalized Bernstein

polynomials.

For completeness we treat also the case that some of the a, coincide; then 5,,

is a linear combination of functions of the form
z%» log®(2) , k=0,....k, — 1,
where k, denotes the multiplicity of o . |

It can be shown (cf. [3, sect. 2.7]) that the properties/(1.2) carry over also to this
type of generalization. For numbers (1) through (3) thisis true forall 0 = op < -+ < a, .
For example, using the identity

1 ' Q1 Op

- z—on (z—an_l)(z—an)+ +(3—00)---(z—an)

W et

(note that oo = 0) and the definition {3.1), one proves that

n
v=90

The validity of recursion formulas like (1.2), (4) cannot be proved in general, but for

some special choices of the exponents o, . For example, in the important case that |
oy = p- i :

for some p€ IR, p> 0, one easily shows — e.g. using (3.2) - that
Brv(2) =1 =) BPn-1,0(2) + 2 fu-1,0-1(2)

for n€elV and 1<v<n-—1.
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