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complete Riesz space G, we give a condition on the algebras
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1. Introduction

Throughout this paper, let Q be a set, let M and N be
algebras of subsets of Q , and let G be an order complete
Riesz space. Two vector measures u : M —> @G and v : N — @G
are consistent if wu(A) = v(A) holds for all A€ MNN , and
they have a common extension if there exists a vector measure

2Q —> G extending both 1 and v . Obviously, consisténcy is

a necessary condition for a common extension to exist , and this
condition is also sufficient; see [3]. For consistent vector
measures which are positive or order bounded, however, there
need not exist a common extension which is positive or order

bounded as well; see ([2].

In the present paper we study order bounded vector measures:
We introduce a new condition on the algebraé M and N under
which any two consistent order bounded vector measures on M
and N possess an order bounded common ‘extension. Our result
extends and unifies the result proven by Lipecki ([2] in the

case @G = R .

Let us now recall some definitions and facts which will be

needed in the sequel:

For a Riesz space M , a linear operator T : H—> & is

order bounded if it maps the order bounded subsets of H into

the order bounded subsets of @ . For further details on Riesz

spaces and linear operators, see [1].
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For an algebra F of subsets of Q , a vector measure

¢ : F — &G 1is order bounded if it maps F 1into an order

bounded subset of @G . Let
E(F) := lin{xAlAEF}
and define x : F —> E(F) by letting

x(A) == X

for all A €F , where denbtes the indicator function of A .

Xa
Then E(F) is a Riesz space with order unit Xq 7 and x is a

vector measure. Moreover, each vector measure ¢ : F —> G

defines its representing linear operator T : IE(F) —> G ,
given by
n n _
T( = oa;Xp ) = I o0(A)
i=1 i i=1

and each linear operator T : IE(F) — & defines a vector
measure ¢ : F —> G , given by
6] := Tox .

It is not hard to see that ¢ 1is.order bounded if and only if

T 1is order bounded, and in this case ¢l := ov(-¢) and
IT| := Tv(-T) exist and satisfy
lol = ITlox ;

see [1; Theorem 1.18] and [5; Theorem 4.1.2 and its proof].




2. Order bounded operétors

For a vector space E , a mapping P : IE—> G 1is sublinear
if P(x+y) < P(x) +P(y) and P(Ax) = AP(x) holds for all

X, vy € E and AE]R+.

2.1, Proposition.

Let ]E:: be a vector space, let F be a subspace of E , and
let S : F—> @G be a linear operator.

If there exists a sublinear mapping P : E—> G satisfying

Sx < P(x) for all x € F , then there exists a linear operator
T : iE—>(E satisfying Tx = Sx for all x € F and Tx < P(x)

for all x € E .

For a proof of the previous Hahn-Banach theorem, see [1; Theorem 2.11].

If ]E1 and ]E2 are subspaces of E , then two linear operators

'I',I s ]E1——>(I; and T2 :.IE2—>CG are consistent if T1x = sz

holds for all x € IE1n]E2 , and they have a common extension if

there exists a linear operator T : IE—> G satisfying Tx = T.lx

for all i€{1,2} and x €E, .

2.2. Theorem.

Let E be an Archimedean Riesz space with order unit e € E_ , and

let ]E:1 and ]E2 be Riesz subspaces of E satisfying e€1E1n]E2 .

If there exists some a € ]R+ such that for all x ¢ lin(IE:1U]E2)

satisfying Ix!| < e there exist X, € E; satisfying x = x, +X,

and |x1lle2I 5 ae , then any two consistent order bounded

operators '1‘1 : IE1——>-CG and T2 : IE2———>(G have an order

bounded common extension T : E—> G .




Proof.
consistent, the mapping S :
:= T1x1 +

and arbitrary

Sx T2x2

for all x € F

is well-defined and linear.

Define TF := lin(IE1U]E2) . Since T

1 and T2 are

F¥r—> G , given by

€ E,
i i

satisfying x = x1 +x2 ’

Furthermore, since E is Archimedean, the Minkowski functional
e : E—>R_, given by

P(x) := inf { A €R_| Ixl <2e} ,
satisfies p(x) = 0 if and only if x = 0 , as well as

1 I _

| 5T !
for all x € E~{0} . Define now

u  := 2a(IT1le vITzle) .

Then the mapping P :

P(x) := p(x) u ,

is sublinear. To see that Sx < P(x)

consider first x € F

there exist Xy € Ei

and this yields

Sx = T1X1 + T2X2

< IT1||x1

|A

= u .

Therefore, we have

(%) S(—v

Sx = P (x)

< p(x)u

= P (x)
for all x € ¥~{0} , and thus
' P (x)

Sx <

for all x € F .

satisfying

satisfying

2a(IT1Ie vlT2|e)

x)

IE—> G , given by

holds for all x € F ,

ixl < e . By assumption,

X = %, +x, and |x1lle2l < ae ,
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It néw follows from Proposition 2.1 that there exists a linear
operator T : E—> @ satisfying Tx =“Sx for all x € F ,
and hence Tx = T.x for all i €{1,2} and x €E, , as well as

Tx < P(x)
for all x € E . To see that T is order bounded, it is sufficient
to show that T maps the order interval |[-e,e] into an order
bounded set of G , and this is true since

ITx|] < P(x) < Ple) = u

holds for all x € [-e,e] , by the definition of P . o

Theorem 2.2 is related to a result of Ptak [4] concerning common
extensions of linear functionals on closed subspaces of a Banach

space.



3. Order bounded vector measures

A partition of @ is a finite collection of mutually disjoint

nonempty subsets of Q whose union is equal to Q .

Let G and H Dbe partitions of Q@ . For k € N , a finite
sequence { G, €6 | 1= j,...,k } is an (H,k)-bridge, or simply
an H-bridge, from G1 to Gk if
(i) G, # Gj holds for all i,j€{1,...,k} satisfying

1 < li-jl| < k-2 , and
(ii) for all i€{1,...,k=-1} there exists some Hi€f¥

satisfying G,NH, # ¢ and G, ,qNHy # 0 .

Two sets G, G' € G are (#H,k)-equivalent if there exists an

(H,k)-bridge from G to G' , and they are H-equivalent if they

are (H,k)-equivalent for some k € N ; in this case we shall

. - .
write G H G' .

3.1. Lemma.

~H is an equivalence relation on G .

Proof. It is immediate from the definitions that ~, is

reflexive and symmetric. To see that ~y is also transitive,
consider G, G', G" € G satisfying G ~H G' 'and G' ~y G" .
Obviously, G ~y G" holds whenever at least two of the sets

G, G', G" are identical. Let us now assume that these sets are

all distinct, let { Gi€(3| i 1,...,k } be an H-bridge from

G to G' , and let { G5€(3| j=1,...,k'" } be an H-bridge

from G' to G" . Since Gk = G' = G% , there exists a smallest

i€{1,...,k} satisfying G, = Ga for some j€{1,...,k'} , and

j is unique since, by assumption, the sets %, cear Gi, are



all distinct. Define k" := i+k'~-3j and, for all he{1,...,k"}

define
I Gh ‘, if h€{1'oo-,i}
Gl"'l HE 1
Glfl_i+j » if he{i+1,...,k"} .
Then { Gp | h=1,...,k" } 4is an H-bridge from G to G" ,
and we have G ~H G" . Therefore, ~H is transitive. [n]

The algebras M and N are weakly independent if for any two

partitions G < M and H < N there exist G'€G and H'E€EH
satisfying G'NH # § for all HE€H and GNH' # § for all GEG

and they have a controlling constant if there exists some k € N

such that for any two partitions G < M and H < N either any
two H-equivalent sets in G are (H,k')-equivalent for some
k'€ {1,...,k} or any two G-equivalent sets in H are

(G, k') -equivalent for some k'€ {1,...,k} .

3.2. Lemma.

If either
(a) M and N are weakly independent, or
‘(b) M or N is finite,

then M and N have a controlling constant.

The proof of Lemma 3.2 is immediate.

3.3. Lemma.

If M and N have a controlling constant, then there exists
some o € R, such that for all g € E(M) and h € E(N)
satisfying lg+h| 5 Xq there exist g' € E(M) and h' € E(N)

satisfying g' +h' = g+h and |Ig'lvlih'l < aAxXg -




Proof. Define

a := 2k -1 ,
where k € W 1is a controlling constant of M and N .
Consider g € E(M) and h € E(N) satisfying

lg+hl < x5
and choose partitions

G =1Ggs.../Gl =M and H = {H,...,H } =N
satisfying

m n

g = 151 YiXGi and h = j§1 nijj

for suitable Y1”'°’Ym’n1""’nn € R . Without loss of generality,

we may assume that any two H-equivalent sets in G

(H,k')—equivalent_for some k'€{1,...,k} . Let G1, eees, G

are

1

denote the equivalence classes of G with respect to ~y o

Fix p€{1,...,1} . Choose

ip€{1,...,m}

satisfying

ip P
and define
M HE G
P GEG
and P
N 1= \_J H .
p HEH
HNM
o # 0

For HE€EH satisfying HnMp # @ , there exists some G' EGP

satisfying HNG' # @

, and for each GE€G

satisfying HNG # @

we have G ~H G' and hence G(EGp . This yields
H < G < G = M r
GEG GEG p
HNG # @ P
hence
N M '
p - p
and thus
N = M € MnN
p p !
since H 1is a partition.




Define now

m 1
g' = T Y.X - I Y. X
i=1 16 pey M
and
n 1
' .=
ht 2= T omgxy ot TOvy Xy -
J=1 J p=1 PP
\
Then we have g' € E(M) and h' € E(N) , as well as g' +h' = g+h
and
1 1
tg'+h'l < xq -

Furthermore, for each G€G , there exists some p€{1,...,1} with

c;er and an (H,k')-bridge { Gj€G | i =1,...,k'" } with k' <k

from Gy to G , and for each i€{1,...,k'-1} there exists some
P
1 : : L v 1 )
}%_EH satisfying GNH} # ¢ and Gi+1”Hi # @ , hence
lg'(w)l < Th'(w")l + 1
for all w € G!UG! and all w' €H! , and thus
i” i+ i
lgt(w) | < Jg'(m")l + 2
1] ”
for all 0)€Gi' and all o EG!l+1 '
and this together with G = Gi , G) = Gi , and g'xG = 0
i
gives
' [
lg xGl < 2(k 1)xQ .
Since GE€G was arbitrary and since G 1is a partition, this yields
fg'l < 2(k'-Nxg s
and from |h'l < Ig'l +x, and k' < k we obtain
tg'lvih'l < a ,

which completes the proof. a

We can now state and prove the main result of this paper:



3.4. Theorem.

If M and N have a controlling constant, then any two consistent

order bounded vector measures Uy : M — &G and v : N — @ have

an order bounded common extension o : 2Q —> G .

Proof. Define ZE1 := E(M) , E@ := E(N) , and IE := E(2*) ,

and let T1 : ]E1—>CG and T2 : IE:2—>CG denote the representing
linear operators of 1 and v , respectively. By Lemma 3.3 and

and Theorem 2.2, T1 and T2 have an order bounded common
extension T : ﬂZ¥—>(E , and it now follows that the vector measure

O : 2Q —> @G , given by ¢ := Tox , is an order bounded common

extension of u and v . a

By Lemma 3.2, Theorem 3.4 extends and unifies the results proven

by Lipecki [2] in the case &G = R .




4. Remarks

Let us now assume that &G 1is a Banach lattice. For an algebra F
of subsets of Q@ , a vector measure ¢ : F — @ 1is bounded if

it maps F into a norm bounded subset of &G , and it has

bounded variation if sup X lle(a;) Il is finite, where the
supremum is taken over all partitions (A1,A2,...,An) in F .
If @G 1is an order complete AM-space with unit, then a vector
measure IE—> G 1is bounded if and only if it is order bounded,
and if G is an AL-space, then a vector measure IE— @ has
bounded variation if and only if it is order bounded; see [6].

Therefore, the following results are immediate from Theorem 3.4:

4.1. Corollary.

Let G Dbe an order complete AM-space with unit.
If M and N have a controlling constant, then any two consistent
bounded vector measures u : M —> & and v : N — &G have a

bounded common extension ¢ : 29 —> G .

4.2, Corollary.

Let @G be an AL-space.
If M and N have a controlling constant, then any two consistent
vector measures U : M — @G and v : N — G of bounded variation

have a common extension @ : 2Q —> G of bounded variation.

It would be interesting to know whether Corollary 4.2 can be

extended to a larger class of Banach lattices.
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