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Throughout this paper, let Q be a set, let M and N be

algebras of subsets of Q, and let ~ be an order complete

Riesz space. Two vector measures ~ M ~~ and v N~~

are consistent if ~ (A) = v (A) holds for all A E MnN , and

they have a common extension if there exists a vector measure

2Q ~~ extending both ~ and v • Obviously, consistency is

a necessary condition for a common extension to exist , and this

condition is also sufficient; see [3]. For consistent vector

measures which are positive or order bounded, however, there

need not exist a common extension which is positive or order

bounded as weIl; see [2].

In the present paper we study order bounded vector measures:

We introduce a new condition on the algebras M and Nunder

which any two consistent order bounded vector measures on M

and N possess an order bounded common 'extension. Our result

extends and unifies the result proven by Lipecki [2] in the

ca se CG = :IR •

Let us now recall some definitions and facts which will be

needed in the sequel:

For a Riesz space JH , a linear operator T : JH~ ~ is

order bounded if it maps the order bounded subsets of JH into

the order bounded subsets of ~ • For further details on Riesz

spaces and linear operators, see [1].
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For an algebra F of subsets of g, a vector measure

~ : F ~~ is order bounded if it maps F into an order

bounded subset of ~ • Let

JE(F) : = lin { XA A E F }

and define X: F ~E(F) by letting

X(A) :=

for all A E F , where XA denotes the indicator function of A.

Then E(F) is -aRiesz space with order unit Xg, and X is a

vector measure. Moreover, each vector measure ~

defines its representing linear operator T : JE(F) -~ ~ ,

given by
n

T ( La. XA )
i= 1 1 i

and each linear operator

n
: = La. <p (A. )

i= 1 1 1

T : JE(F) ~ ~ defines a vector

measure ~: F ~~ , given by

~ := ToX

It is not hard to see that ~ is order bounded if and only if

T is order bounded, and in this case I~I := ~v(-~) and

ITI := Tv(-T) exist and satisfy

I~I = ITlox

see [1; Theoreffi1.18] .and [5; Theorem 4.1.2 and its proof].
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Order bounded operators

For a vector space E , a mapping P : lE ~ CG is sublinear

if P(x+y) ~ P(x) +P(y) and P(AX) = AP(X) holds for all

x, y E E and A E JR+ .

2.1. Proposition.

Let E be a vector space, let JF be a subspace of E , and

let S JF~ CG be a linear operator.

If there exists a sublinear mappingP lE ---* CG satisfying

Sx ~ P(x) for all x E JF , then there exists a linear operator

T : lE ~ CG satisfying Tx = Sx for all x E JF and Tx < P (x)

for all x E E .

For a proof of the previous Hahn-Banach theorem, see [1; Theorem 2.1].

If E1 and E2 are subspaces of E , then two linear operators

T1 : lE1 -~ CG and T2 : lE2 ~ CG are consistent if T1X = T2X

holds for all x E lE1 nE2 ' and they have a common extension if

there exists a linear operator T lE ---* CG satisfying Tx = TiX

for all and x E E .•
l

2•2• Theorem.

Let E be an Archimedean Riesz space with order unit e E E+ ' and

let E1 and E2 be Riesz subspaces of E satisfying e E lE1 nE2 .

If there exists some a E JR+ such that for all x E lin (lE1 UE2)

satisfying lxi< e there exist xi E Ei satisfying x = x1 +x2

and IX1Ivlx21 ~ ae , then any two consistent order bounded

operators T1 : lE1 ---* CG and T2 : lE2 ---* CG have an order

bounded cornrnonextension T : lE ---+ CG.
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Define JF : = lin (JE1 UJE2) . Since T 1 and T2 are

consistent, the mapping S : JF~ <G , given by

for all xEJF and arbitrary x. E JE.
1 1

satisfying
is well-defined and linear.

Furthermore, since JE is Archimedean, the Minkowski functional

P : JE~ JR+ , given by

p(x) : = inf { A E JR+ I lxi < Ae }-
satisfies p(x) =0 if and only if x = 0 , as weIl as

I p (~) x I = 1

for all x E JE'{O} . Define now

u : = 20. ( 'T 1 Ie v IT 2 Ie) •

Then the mapping P: JE -+ <G , given by

P(x) := p(x) u

is sublinear. To see that Sx < P(x) holds for all x E JF ,

consider first x E JF satisfying lxi < e • By assumption,

there exist x. E JE.
1 1

satisfying x = x1 + x2 and Ix1lvlx2' < o.e ,
and this yields

Sx = T1X1 + T2X2
< IT1 I Ix1 I + IT211x21

< 20. ( IT 1 Ie v IT2 Ie)-
= u

Therefore, we have

Sx = p(x) S(P(~) x)
< p(x) u

= P(x)

for all x E JF'{O} , and thus

Sx < P(x)

for all x E JF •
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It now follows from Proposition 2.1 that there exists a linear

operator T : JE----7 <G satisfying Tx = Sx for all x E lF ,

and hence Tx = T.x for all iE{1,2} and x E JE. , as weil as
l. l.

Tx < P(x)-
for all x E JE . To see that T is order bounded, it is sufficient

to show that T maps the order interval [-e,e] into an order

bounded set of <G , and this is true since

ITxl < P(x) < P(e) = u

holds for all xE [-e,e] , by the definition of P. [J

Theorem 2.2 is related to a result of ptak [4] concerning common

extensions of linear functionals on closed subspaces of a Banach

space.
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Order bounded veetor measures

A partition of Q is a finite eolleetion of mutually disjoint

nonempty subsets of Q whose union is equal to Q.

Let G and H be partitions of Q . For k E:N , a finite

sequenee { Gi E G I i = 1, ...,k } is an (H,k)-bridge, or simply

an H-bridge, from G1 to Gk if

(i) G. t- G. holds for all i,j E{1, ...,k} satisfying
l J

(ii)

1 < li-jl ~ k-2 , and

for all i E {1,.•.,k-1} there exists some H. E H
l

satisfying G.nH. t- C/J
l l

Two sets G, GI E Gare (H,k)-equivalent if there exists an

(H,k)-bridge from G to GI , and they are H-equivalent if they

are (H,k)-equivalent for some k E:N ; in this ease we shall
write G ....•H GI .

3.1. Lemma .

....•H is an equivalenee relation on G.

Proof. It is immediate from the definitions that ....•H is

reflexive and symmetrie. To see that ....•H is also transitive,

eonsider G, GI, G" E G satisfying G ....•H GI and GI ....•H G" .
Obviously, G ....•H G" holds whenever at least two of the sets

G, GI, G" are identieal. Let us now assume that these sets are

all distinet, let { G. E G I i = 1, ...,k } be an H-bridge from
l

G to GI , and let { GI,EG j = 1,...,kl } be an H-bridge
J

from GI to G" . Sinee Gk = GI = GI , there exists a smallest1
iE{1, ...,k} satisfying G. = G~ for some jE{1, ...,k'} , and

l J

j is unique sinee, by assumption, the sets Gi' ..., Gkl are
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all distinct. Define kll := i+k' -j and, for all hE{1, •••,kll} ,

define

f Gh if hE{1, .•.,i}
GII

h := 1 Gh .. if hE {i+1, •••,kll
}-~+J .

Then { GII I h = 1, ...,kll } is an H-bridge from G to GIIh ,
and we have G "'H GII

• Therefore, "'H is transitive. Cl

'rhe algebras M and N are weakly independent if for any two

part itions G c M and H c f~ there exist G' E G and H' E H

satisfying G' nH :f C/J for all H E Hand GnH' :f C/J for all G E G ,

and they have a controlling constant if there exists some k E ~

such that for any two partitions G c M and H c N either any

two H-equivalent sets in Gare (H,k')-equivalent for some

k' E {1, ...,k} or any two G-equivalent sets in H are

(G,k')-equivalent for some k' E {1, .•.,k} •

3.2. Lemma.

If either

(a)

(b)

M and N are weakly independent, or

M or N is finite,
then M and N have a controlling constant.

The proof of Lemma 3.2 is immediate.

3.3. Lemma.

If M and N have a controlling constant, then there exists

some a E JR+ such that for all g E JE(M) and h E JE(N)

satisfying Ig+hl ~ Xg there exist g' E JE(M) and h' E JE(N)

satisfyinq g'+h' =g+h and Ig'lvlh'l~aXg'
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where k E n is a controlling constant of M and N.

Consider g E E(M) and h E E(N) satisfying

Ig+hl <

and choose partitions

G = { G1'..•,Gm} c M and H = { H1'...,Hn} c N

satisfying

g =
m
L YiXG.i=1 l

and h = n
L n,xHj=1 J j

for suitable Y1, ... ,ym,n1, ...,nn E m . Without loss of generality,

we may assume that any two H-equivalent sets in Gare

(H,k')-equivalent for some k' E {1, ...,k} • Let G1, ••• , Gl
denote the equivalence classes of G with respect to -H .

Fix pE {1, •••,l} • Choose ip E {1, •••,m} satisfying

G. E Glp P
and define

satisfying HnG' "f ctl , and for each GEG satisfying

we have G - GI and hence GEG . This yieldsH p
H c U G c U G = M

GEG GEG P
HnG "f ctl

p

hence

N c M
P P

and thus

Np = M E MnNp
since H is a partition.

:=
and

For HEH

:= U G
GEG

P

UH
HEH

HnM "f ctl
p

satisfying HnMp "f ctl , there exists some G' E G
P

HnG "f ctl
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Define now

and

gl
m

:= L Y,XGi= 1 l i

I
L Yi XM

p= 1 P P

h' :=
n
L n,xHj=1 J j

+
I
L Yi XN

p=1 P P

Then we have g I E JE(M) and h I E:JE(N)

and

as weIl as gl +h I = g +h

Ig'+h' I < Xg

Furthermore , for each GEG , there exists some p E {1 , ••• , I} wi th

GEG and an (H,k')-bridge {G! EG li = 1, ••• ,k' } with k' < kp l

G , and for eachtofrom

H ~ E H
l

G.lp
satisfying G!nH! t- (2)

l l
and

i E {1 , ••• , k 1-1 } there exists some

G! 1nH! t- (2), hencel+ l
Ig'(w)1 < Ih'(w')1 + 1

for all w EGiUGi+1 and all wl EH! , and thus
l

Jg'(w)1 < Ig'(w")1 + 2

for all wEG! and all w" EG!l l+1 '

and this together with

gives

GI =
1 G.

l
P
, and g'X = 0G.

l
P

IgIXGI < 2(k'-1)Xg
Since GE G was arbitrary and since G is a partition, this yields

Ig' I < 2(k'-1)X g
and from Ih' I < Ig' I +Xg and k' < k we obtain

Ig'lvlh'l < a.

which completes the proof.

We can now state and prove the main result of this paper:

o
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If M and N have a controlling constant, then any two consistent

order bounded vector measures u: M ~m and v N ~m have

an order bounded common extension °<p : 2 ~m.

Proof. Define IE1 := JE (M) , IE2:= JE (N) , and IE:= JE (2°)

and let T 1 : IE1 ~ m and T2 : IE2 ~ m denote the representing

linear operators of U and v , respectively. By Lemma 3.3 and

and Theorem 2.2, T1 and T2 have an order bounded common

extension T IE~m , and it now follows that the vector measure

~ : 2° ~m , given by ~:= ToX , is an order bounded common

extension of u and v . o

By Lemma 3.2, Theorem 3.4 extends and unifies the results proven

by Lipecki [2] in the case CG = JR •
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Let us now assume that ~ is a Banach lattice. For an algebra F

of subsets of Q, a vector measure $ : F ~~ is bounded if

it maps F into a norm bounded subset of ~ , and it has

bounded variation if sup L 11 $ (Ai) 11 is finite, where the

supremum is taken over all partitions (A1,A2, ...,An) in F.
If ~ is an order complete ~1-space with unit, then a vector

measure JE~ ~ is bounded if and only if it is order bounded,

and if ~ is an AL-space, then a vector measure JE-+ ~ has

bounded variation if and only if it is order boundedi see [6].

Therefore, the following results are immediate from Theorem 3.4:

4.1. Corollary.

Let ~ be an order complete AM-space with unit.

If M and N have a controlling constant, then any two consistent

bounded vector measures

bounded common extension

4.2. Corollary.

Let ~ be an AL-space.

U : M -+~ and
Q

$ : 2. -+~ .

v : N -+~ have a

If M and N have a controlling constant, then any two consistent

vector measures u: M ~~ and v : N -+~ of bounded variation

have a common extension $: 2Q -+~ of bounded variation.

It would be interesting to know whether Corollary 4.2 can be

extended to a larger class of Banach lattices.
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