Common Extensions of
 Order Bounded Vector Measures
 Klaus D. Schmidt and Gerd Waldschaks

$$
91-1989
$$

Common extensions of order bounded vector measures

Klaus D. Schmidt and Gerd Waldschaks, Mannheim

For algebras M and N of subsets of some set Ω and an order complete Riesz space \mathcal{G}, we give a condition on the algebras under which any two consistent order bounded vector measures $\mu: M \longrightarrow \mathbb{G}$ and $v: N \longrightarrow \mathbb{G}$ possess a common extension to an order bounded vector measure $\varphi: 2^{\Omega} \longrightarrow \mathbb{G}$.

1980 Mathematics Subject Classification (1985 Revision). Primary 28B15; Secondary 47B55.

Key words and phrases. Order bounded vector measures, order bounded operators, common extensions of vector measures and linear operators.

Throughout this paper, let Ω be a set, let M and N be algebras of subsets of Ω, and let \mathbb{G} be an order complete Riesz space. Two vector measures $\mu: M \longrightarrow \mathbb{G}$ and $\nu: N \longrightarrow \mathbb{G}$ are consistent if $\mu(A)=\nu(A)$ holds for all $A \in M \cap N$, and they have a common extension if there exists a vector measure $2^{\Omega} \longrightarrow \mathbb{G}$ extending both μ and ν. Obviously, consistency is a necessary condition for a common extension to exist , and this condition is also sufficient; see [3]. For consistent vector measures which are positive or order bounded, however, there need not exist a common extension which is positive or order bounded as well; see [2].

In the present paper we study order bounded vector measures: We introduce a new condition on the algebras M and N under which any two consistent order bounded vector measures on M and N possess an order bounded common extension. Our result extends and unifies the result proven by Lipecki [2] in the case $G=\mathbb{R}$.

Let us now recall some definitions and facts which will be needed in the sequel:

For a Riesz space \mathbb{H}, a linear operator $T: \mathbb{H} \longrightarrow \mathbb{C}$ is order bounded if it maps the order bounded subsets of \mathbb{H} into the order bounded subsets of \mathbb{G}. For further details on Riesz spaces and linear operators, see [1].

For an algebra F of subsets of Ω, a vector measure $\varphi: F \longrightarrow \mathbb{G}$ is order bounded if it maps F into an order bounded subset of \mathbb{G}. Let

$$
\mathbb{E}(F):=\operatorname{lin}\left\{x_{A} \mid A \in F\right\}
$$

and define $x: F \longrightarrow \mathbb{E}(F)$ by letting

$$
x(A):=x_{A}
$$

for all $A \in F$, where X_{A} denotes the indicator function of A. Then $\mathbb{E}(F)$ is a Riesz space with order unit X_{Ω}, and X is a vector measure. Moreover, each vector measure $\varphi: F \longrightarrow G$ defines its representing linear operator $T: \mathbb{E}(F) \longrightarrow \mathbb{G}$, given by

$$
T\left(\sum_{i=1}^{n} \alpha_{i} x_{A_{i}}\right):=\sum_{i=1}^{n} \alpha_{i} \varphi\left(A_{i}\right)
$$

and each linear operator $T: \mathbb{E}(F) \longrightarrow \mathbb{G}$ defines a vector measure $\varphi: F \rightarrow \mathbb{G}$, given by

$$
\varphi:=\text { ToX } .
$$

It is not hard to see that φ is order bounded if and only if T is order bounded, and in this case $|\varphi|:=\varphi \vee(-\varphi)$ and $|T|:=T v(-T)$ exist and satisfy

$$
|\varphi|=|T| O X ;
$$

see [1; Theorem 1.18] and [5; Theorem 4.1.2 and its proof].

For a vector space \mathbb{E}, a mapping $P: \mathbb{E} \longrightarrow \mathbb{G}$ is sublinear if $P(x+y) \leq P(x)+P(y)$ and $P(\lambda x)=\lambda P(x)$ holds for all $\mathrm{x}, \mathrm{y} \in \mathbb{E}$ and $\lambda \in \mathbb{R}_{+}$.
2.1. Proposition.

Let \mathbb{E} be a vector space, let \mathbb{F} be a subspace of \mathbb{E}, and let $S: \mathbb{F} \longrightarrow \mathbb{G}$ be a linear operator.

If there exists a sublinear mapping $P: \mathbb{E} \longrightarrow \mathbb{G}$ satisfying $S x \leq P(x)$ for all $x \in \mathbb{F}$, then there exists a linear operator $T: \mathbb{E} \longrightarrow \mathbb{G}$ satisfying $T x=S x$ for all $x \in \mathbb{F}$ and $T x \leq P(x)$ for all $\mathrm{x} \in \mathbb{E}$.

For a proof of the previous Hahn-Banach theorem, see [1; Theorem 2.1].

If \mathbb{E}_{1} and \mathbb{E}_{2} are subspaces of \mathbb{E}, then two linear operators $\mathrm{T}_{1}: \mathbb{E}_{1} \longrightarrow \mathbb{G}$ and $\mathrm{T}_{2}: \mathbb{E}_{2} \longrightarrow \mathbb{G}$ are consistent if $\mathrm{T}_{1} \mathrm{x}=\mathrm{T}_{2} \mathrm{x}$ holds for all $x \in \mathbb{E}_{1} \cap \mathbb{E}_{2}$, and they have a common extension if there exists a linear operator $T: \mathbb{E} \longrightarrow \mathbb{G}$ satisfying $T x=T_{i} x$ for all $i \in\{1,2\}$ and $x \in \mathbb{E}_{i}$.
2.2. Theorem.

Let \mathbb{E} be an Archimedean Riesz space with order unit $e \in \mathbb{E}_{+}$, and let \mathbb{E}_{1} and \mathbb{E}_{2} be Riesz subspaces of \mathbb{E} satisfying $e \in \mathbb{E}_{1} \cap \mathbb{E}_{2}$. If there exists some $\alpha \in \mathbb{R}_{+}$such that for all $x \in \operatorname{lin}\left(\mathbb{E}_{1} \cup \mathbb{E}_{2}\right)$ satisfying $|x| \leq e$ there exist $x_{i} \in \mathbb{E}_{i}$ satisfying $x=x_{1}+x_{2}$ and $\left|x_{1}\right| v\left|x_{2}\right| \leq \alpha e$, then any two consistent order bounded operators $\mathrm{T}_{1}: \mathbb{E}_{1} \longrightarrow \mathbb{G}$ and $\mathrm{T}_{2}: \mathbb{E}_{2} \rightarrow \mathbb{G}$ have an order bounded common extension $T: \mathbb{E} \longrightarrow \mathbb{G}$.

Proof. Define $\mathbb{F}:=\operatorname{lin}\left(\mathbb{E}_{1} \cup \mathbb{E}_{2}\right)$. Since T_{1} and T_{2} are consistent, the mapping $S: \mathbb{F} \longrightarrow \mathbb{G}$, given by

$$
S x:=T_{1} x_{1}+T_{2} x_{2}
$$

for all $x \in \mathbb{F}$ and arbitrary $x_{i} \in \mathbb{E}_{i}$ satisfying $x=x_{1}+x_{2}$, is well-defined and linear.

Furthermore, since \mathbb{E} is Archimedean, the Minkowski functional $\rho: \mathbb{E} \longrightarrow \mathbb{R}_{+}$, given by

$$
\rho(x) \quad:=\inf \left\{\lambda \in \mathbb{R}_{+}| | x \mid \leq \lambda e\right\},
$$

satisfies $\rho(x)=0$ if and only if $x=0$, as well as

$$
\left|\frac{1}{\rho(x)} x\right|=1
$$

for all $x \in \mathbb{E} \backslash\{0\}$. Define now

$$
\mathrm{u}:=2 \alpha\left(\left|T_{1}\right| e v\left|T_{2}\right| e\right) .
$$

Then the mapping $P: \mathbb{E} \longrightarrow \mathbb{G}$, given by

$$
P(x) \quad:=\rho(x) u,
$$

is sublinear. To see that $S x \leq P(x)$ holds for all $x \in \mathbb{F}$, consider first $x \in \mathbb{F}$ satisfying $|x| \leq e . B y$ assumption, there exist $x_{i} \in \mathbb{E}_{i}$ satisfying $\mathbf{x}=x_{1}+x_{2}$ and $\left|x_{1}\right| v\left|x_{2}\right| \leq \alpha e$, and this yields

$$
\begin{aligned}
S x & =\mathrm{T}_{1} \mathrm{x}_{1}+\mathrm{T}_{2} \mathrm{x}_{2} \\
& \leq\left|\mathrm{T}_{1}\right|\left|\mathrm{x}_{1}\right|+\left|\mathrm{T}_{2}\right|\left|\mathrm{x}_{2}\right| \\
& \leq 2 \alpha\left(\left|\mathrm{~T}_{1}\right| \mathrm{ev}\left|\mathrm{~T}_{2}\right| \mathrm{e}\right) \\
& =\mathrm{u} .
\end{aligned}
$$

Therefore, we have

$$
\begin{aligned}
S x & =\rho(x) S\left(\frac{1}{\rho(x)} x\right) \\
& \leq \rho(x) u \\
& =P(x)
\end{aligned}
$$

for all $\mathbf{x} \in \mathbb{F} \backslash\{0\}$, and thus

$$
S x \leq P(x)
$$

for all $x \in \mathbb{F}$.

It now follows from Proposition 2.1 that there exists a linear operator $T: \mathbb{E} \longrightarrow \mathbb{G}$ satisfying $T x=S x$ for all $x \in \mathbb{F}$, and hence $T x=T_{i} x$ for all $i \in\{1,2\}$ and $x \in \mathbb{E}_{i}$, as well as $T x \leq P(x)$
for all $x \in \mathbb{E}$. To see that T is order bounded, it is sufficient to show that T maps the order interval [-e,e] into an order bounded set of \mathbb{G}, and this is true since $|T x| \leq P(x) \leq P(e)=u$ holds for all $x \in[-e, e]$, by the definition of P. ㅁ

Theorem 2.2 is related to a result of Ptak [4] concerning common extensions of linear functionals on closed subspaces of a Banach space.

A partition of Ω is a finite collection of mutually disjoint nonempty subsets of Ω whose union is equal to Ω.

Let G and H be partitions of Ω. For $k \in \mathbb{N}$, a finite sequence $\left\{G_{i} \in G \mid i=1, \ldots, k\right\}$ is an (H, k)-bridge, or simply an H-bridge, from G_{1} to G_{k} if
(i) $\quad G_{i} \neq G_{j}$ holds for all $i, j \in\{1, \ldots, k\}$ satisfying $1 \leq|i-j| \leq k-2$, and
(ii) for all $i \in\{1, \ldots, k-1\}$ there exists some $H_{i} \in H$ satisfying $G_{i} \cap H_{i} \neq \varnothing$ and $G_{i+1} \cap H_{i} \neq \varnothing$.

Two sets $G, G^{\prime} \in G$ are (H, k) -equivalent if there exists an (H,k)-bridge from G to G^{\prime}, and they are H-equivalent if they are (H, k) -equivalent for some $k \in \mathbf{N}$; in this case we shall write $G \sim_{H} G^{\prime}$.
3.1.

Lemma.
\sim_{H} is an equivalence relation on G.

Proof. It is immediate from the definitions that \sim_{H} is reflexive and symmetric. To see that \sim_{H} is also transitive, consider $G, G^{\prime}, G " \in G$ satisfying $G \sim_{H} G^{\prime}$ and $G^{\prime} \sim_{H} G^{\prime \prime}$. Obviously, $G \sim_{H} G^{\prime \prime}$ holds whenever at least two of the sets G, G', G" are identical. Let us now assume that these sets are all distinct, let $\left\{G_{i} \in G \mid i=1, \ldots, k\right\}$ be an H-bridge from G to G^{\prime}, and let $\left\{G_{j}^{\prime} \in G \mid j=1, \ldots, k^{\prime}\right\}$ be an H-bridge from G^{\prime} to $G^{\prime \prime}$. Since $G_{k}=G^{\prime}=G_{1}^{\prime}$, there exists a smallest $i \in\{1, \ldots, k\}$ satisfying $G_{i}=G_{j}^{\prime}$ for some $j \in\left\{1, \ldots, k^{\prime}\right\}$, and j is unique since, by assumption, the sets $G_{1}^{\prime}, \ldots, G_{k}^{\prime}$ are
all distinct. Define $k^{\prime \prime}:=1+k^{\prime}-j$ and, for all $h \in\left\{1, \ldots, k^{\prime \prime}\right\}$, define

$$
G_{h}^{\prime \prime}:= \begin{cases}G_{h} & , \text { if } h \in\{1, \ldots, i\} \\ G_{h-i+j}^{\prime}, & \text { if } h \in\left\{i+1, \ldots, k^{\prime \prime}\right\} .\end{cases}
$$

Then $\left\{G_{h}^{\prime \prime} \mid h=1, \ldots, k^{\prime \prime}\right\}$ is an H-bridge from G to $G "$, and we have $G \sim_{H} G "$. Therefore, \sim_{H} is transitive.

The algebras M and N are weakly independent if for any two partitions $G \subseteq M$ and $H \subseteq N$ there exist $G^{\prime} \in G$ and $H^{\prime} \in H$ satisfying $G^{\prime} \cap H \neq \varnothing$ for all $H \in H$ and $G H^{\prime} \neq \varnothing$ for all $G \in G$, and they have a controlling constant if there exists some $k \in \mathbb{N}$ such that for any two partitions $G \subseteq M$ and $H \subseteq N$ either any two H-equivalent sets in G are (H, k^{\prime}) -equivalent for some $k^{\prime} \in\{1, \ldots, k\}$ or any two G-equivalent sets in H are (G, k^{\prime})-equivalent for some $k^{\prime} \in\{1, \ldots, k\}$.
3.2 . Lemma.

If either
(a) M and N are weakly independent, or (b) M or N is finite, then M and N have a controlling constant.

The proof of Lemma 3.2 is immediate.
3.3. Lemma.

If M and N have a controlling constant, then there exists some $\alpha \in \mathbb{R}_{+}$such that for all $g \in \mathbb{E}(M)$ and $h \in \mathbb{E}(N)$ satisfying $|g+h| \leq X_{\Omega}$ there exist $g^{\prime} \in \mathbb{E}(M)$ and $h^{\prime} \in \mathbb{E}(N)$ satisfying $g^{\prime}+h^{\prime}=g+h$ and $\left|g^{\prime}\right| v\left|h^{\prime}\right| \leq \alpha x_{\Omega}$.

Proof. Define

$$
a \quad:=2 k-1 \text {, }
$$

where $k \in \mathbb{N}$ is a controlling constant of M and N.
Consider $g \in \mathbb{E}(M)$ and $h \in \mathbb{E}(N)$ satisfying

$$
|g+h| \leq x_{\Omega}
$$

and choose partitions

$$
G=\left\{G_{1}, \ldots, G_{m}\right\} \subseteq M \text { and } H=\left\{H_{1}, \ldots, H_{n}\right\} \subseteq N
$$

satisfying

$$
g=\sum_{i=1}^{m} \gamma_{i} x_{G_{i}} \quad \text { and } \quad h=\sum_{j=1}^{n} \eta_{j} x_{H_{j}}
$$

for suitable $\gamma_{1}, \ldots, \gamma_{m}, \eta_{1}, \ldots, \eta_{n} \in \mathbb{R}$. Without loss of generality, we may assume that any two H-equivalent sets in G are
(H, k^{\prime})-equivalent for some $k^{\prime} \in\{1, \ldots, k\}$. Let G_{1}, \ldots, G_{1} denote the equivalence classes of G with respect to \sim_{H}. Fix $p \in\{1, \ldots, 1\}$. Choose $i_{p} \in\{1, \ldots, m\}$ satisfying

$$
G_{i_{p}} \in G_{p},
$$

and define
and

$$
M_{p}:=\bigcup_{G \in G} G
$$

$$
N_{p}:=\bigcup_{\substack{H \in H \\ H \cap M_{p} \neq \varnothing}} \text {. }
$$

For $H \in H$ satisfying $H \cap M_{p} \neq \varnothing$, there exists some $G^{\prime} \in G_{p}$ satisfying $H \cap G^{\prime} \neq \varnothing$, and for each $G \in G$ satisfying HOg $\neq \varnothing$ we have $G \sim_{H} G^{\prime}$ and hence $G \in G p$. This yields

$$
H \subseteq \bigcup_{\substack{G \in G \\ H \cap G \neq \emptyset}} \subseteq \bigcup_{G \in G} G=M_{p}
$$

hence

$$
N_{p} \subseteq M_{p},
$$

and thus

$$
N_{p}=M_{p} \in M \cap N,
$$

since H is a partition.

Define now

$$
g^{\prime}:=\sum_{i=1}^{m} \gamma_{i} x_{G}-\sum_{p=1}^{l} \gamma_{i} X_{M_{p}}
$$

and

$$
h^{\prime}:=\sum_{j=1}^{n} \eta_{j} x_{H_{j}}+\sum_{p=1}^{1} \gamma_{i} x_{N_{p}}
$$

Then we have $g^{\prime} \in \mathbb{E}(M)$ and $h^{\prime} \in \mathbb{E}(N)$, as well as $g^{\prime}+h^{\prime}=g+h$ and

$$
\left|g^{\prime}+h^{\prime}\right| \leq x_{\Omega}
$$

Furthermore, for each $G \in G$, there exists some $p \in\{1, \ldots, 1\}$ with $G \in G_{p}$ and an $\left(H, k^{\prime}\right)$-bridge $\left\{G_{i}^{\prime} \in G \mid i=1, \ldots, k^{\prime}\right\}$ with $k!\leq k$ from $G_{i p}$ to G, and for each $i \in\left\{1, \ldots, k^{\prime-1\}}\right.$ there exists some $H_{i}^{\prime} \in H$ satisfying $G_{i}^{\prime \cap H_{i}^{\prime}} \neq \varnothing$ and $G_{i+1}^{\prime} \cap H_{i}^{\prime} \neq \varnothing$, hence

$$
\left|g^{\prime}(\omega)\right| \leq\left|h^{\prime}\left(\omega^{\prime}\right)\right|+1
$$

for all $\omega \in G_{i}^{\prime} U G_{i+1}^{\prime}$ and all $\omega^{\prime} \in H_{i}^{\prime}$, and thus

$$
\left|g^{\prime}(\omega)\right| \leq\left|g^{\prime}\left(\omega^{\prime \prime}\right)\right|+2
$$

for all $\omega \in G_{i}^{\prime}$ and all $\omega^{\prime \prime} \in G_{i+1}^{\prime}$,
and this together with $G=G_{k}^{\prime}, G_{i}^{\prime}=G_{i_{p}}$, and $g^{\prime} X_{G_{i}}=0$ gives

$$
\lg ^{\prime} x_{G} \mid \leq 2\left(k^{\prime}-1\right) x_{\Omega}
$$

Since $G \in G$ was arbitrary and since G is a partition, this yields $\left|g^{\prime}\right| \leq 2\left(k^{\prime}-1\right) x_{\Omega} \quad$,
and from $\left|h^{\prime}\right| \leq\left|g^{\prime}\right|+x_{\Omega}$ and $k^{\prime} \leq k$ we obtain

$$
\left|g^{\prime}\right| v\left|h^{\prime}\right| \leq a
$$

which completes the proof.

We can now state and prove the main result of this paper:

If. M and N have a controlling constant, then any two consistent order bounded vector measures $\mu: M \longrightarrow \mathbb{G}$ and $\nu: N \longrightarrow \mathbb{G}$ have an order bounded common extension $\varphi: 2^{\Omega} \longrightarrow \mathbb{G}$.

Proof. Define $\mathbb{E}_{1}:=\mathbb{E}(M), \mathbb{E}_{2}:=\mathbb{E}(N)$, and $\mathbb{E}:=\mathbb{E}\left(2^{\Omega}\right)$, and let $T_{1}: \mathbb{E}_{1} \longrightarrow \mathbb{G}$ and $T_{2}: \mathbb{E}_{2} \longrightarrow \mathbb{G}$ denote the representing linear operators of μ and v, respectively. By Lemma 3.3 and and Theorem 2.2, T_{1} and T_{2} have an order bounded common extension $T: \mathbb{E} \longrightarrow \mathbb{G}$, and it now follows that the vector measure $\varphi: 2^{\Omega} \longrightarrow \mathbb{G}$, given by $\varphi:=$ Tox , is an order bounded common extension of μ and ν.

By Lemma 3.2, Theorem 3.4 extends and unifies the results proven by Lipecki [2] in the case $G \mathcal{G}=\mathbb{R}$.

Let us now assume that \mathbb{G} is a Banach lattice. For an algebra F of subsets of Ω, a vector measure $\varphi: F \longrightarrow \mathbb{G}$ is bounded if it maps F into a norm bounded subset of \mathbb{G}, and it has bounded variation if $\sup \Sigma\left\|\varphi\left(A_{i}\right)\right\|$ is finite, where the supremum is taken over all partitions $\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ in F. If \mathbb{G} is an order complete $A M-s p a c e$ with unit, then a vector measure $\mathbb{E} \longrightarrow \mathbb{G}$ is bounded if and only if it is order bounded, and if \mathbb{G} is an AL-space, then a vector measure $\mathbb{E} \longrightarrow \mathbb{G}$ has bounded variation if and only if it is order bounded; see [6]. Therefore, the following results are immediate from Theorem 3.4:
4.1. Corollary.

Let G be an order complete AM-space with unit.
If M and N have a controlling constant, then any two consistent bounded vector measures $\mu: M \longrightarrow \mathbb{G}$ and $\nu: N \longrightarrow \mathbb{G}$ have a bounded common extension $\varphi: 2^{\Omega} \longrightarrow \mathcal{G}$.
4.2. Corollary.

Let \mathbb{G} be an AL-space.
If M and N have a controlling constant, then any two consistent vector measures $\mu: M \longrightarrow \mathbb{G}$ and $\nu: N \longrightarrow \mathbb{G}$ of bounded variation have a common extension $\varphi: 2^{\Omega} \longrightarrow \mathbb{G}$ of bounded variation.

It would be interesting to know whether Corollary 4.2 can be extended to a larger class of Banach lattices.

We would like to thank Gerald Fries for his careful reading
of the first draft of this paper.

References

[1] Aliprantis, C.D., and Burkinshaw, O.: Positive Operators.
New York - London: Academic Press 1985.
[2] Lipecki, Z.:
On common extensions of two quasi-measures. Czech. Math. J. 36 (111), 489-494 (1986).

Maharam, D.:
Consistent extensions of linear functionals and of probability measures.
In: Proc. Sixth Berkeley Symp. Math. Statist. Probab., vol. 2, pp. 127-147.
Berkeley: University of California Press 1972.
[5] Schmidt, K.D.:
Amarts - a measure theoretic approach.
In: Amarts and Set Function Processes.
Lecture Notes in Mathematics, vol. 1042, pp. 51-236.
Berlin - Heidelberg - New York: Springer 1983.
Schmidt, K.D.:
Decompositions of vector measures in Riesz spaces and Banach lattices.
Proc. Edinburgh Math. Soc. 29, 23-39 (1986).

Authors' address:
Fakultät für Mathematik und Informatik
Universität Mannheim
A 5
6800 Mannheim
West Germany

