Common Extensions of Order Bounded Vector Measures

- 54 Z

Klaus D. Schmidt and Gerd Waldschaks

91 - 1989

Common extensions of order bounded vector measures

Klaus D. Schmidt and Gerd Waldschaks, Mannheim

For algebras M and N of subsets of some set Ω and an order complete Riesz space G, we give a condition on the algebras under which any two consistent order bounded vector measures $\mu : M \longrightarrow G$ and $\nu : N \longrightarrow G$ possess a common extension to an order bounded vector measure $\varphi : 2^{\Omega} \longrightarrow G$.

1980 <u>Mathematics Subject Classification</u> (1985 <u>Revision</u>). Primary 28B15; Secondary 47B55.

<u>Key words and phrases</u>. Order bounded vector measures, order bounded operators, common extensions of vector measures and linear operators.

1. Introduction

Throughout this paper, let Ω be a set, let M and N be algebras of subsets of Ω , and let \mathbb{G} be an order complete Riesz space. Two vector measures $\mu : M \longrightarrow \mathbb{G}$ and $\nu : N \longrightarrow \mathbb{G}$ are <u>consistent</u> if $\mu(A) = \nu(A)$ holds for all $A \in M \cap N$, and they have a <u>common extension</u> if there exists a vector measure $2^{\Omega} \longrightarrow \mathbb{G}$ extending both μ and ν . Obviously, consistency is a necessary condition for a common extension to exist, and this condition is also sufficient; see [3]. For consistent vector measures which are positive or order bounded, however, there need not exist a common extension which is positive or order bounded as well; see [2].

In the present paper we study order bounded vector measures: We introduce a new condition on the algebras M and N under which any two consistent order bounded vector measures on Mand N possess an order bounded common extension. Our result extends and unifies the result proven by Lipecki [2] in the case $G = \mathbb{R}$.

Let us now recall some definitions and facts which will be needed in the sequel:

For a Riesz space \mathbb{H} , a linear operator $\mathbb{T} : \mathbb{H} \longrightarrow \mathbb{G}$ is <u>order bounded</u> if it maps the order bounded subsets of \mathbb{H} into the order bounded subsets of \mathbb{G} . For further details on Riesz spaces and linear operators, see [1].

- 2 -

For an algebra F of subsets of Ω , a vector measure $\varphi : F \longrightarrow \mathbb{G}$ is <u>order bounded</u> if it maps F into an order bounded subset of \mathbb{G} . Let

 $\mathbb{IE}(F) := \lim \{ \chi_A \mid A \in F \}$ and define $\chi : F \longrightarrow \mathbb{IE}(F)$ by letting

$$\chi(A) := \chi_A$$

for all $A \in F$, where χ_A denotes the indicator function of A. Then $\mathbb{E}(F)$ is a Riesz space with order unit χ_{Ω} , and χ is a vector measure. Moreover, each vector measure $\varphi : F \longrightarrow \mathbb{G}$ defines its <u>representing linear operator</u> $T : \mathbb{E}(F) \longrightarrow \mathbb{G}$, given by

φ := Τοχ .

It is not hard to see that φ is order bounded if and only if T is order bounded, and in this case $|\varphi| := \varphi \vee (-\varphi)$ and $|T| := T \vee (-T)$ exist and satisfy

 $|\phi| = |T| \circ \chi$;

see [1; Theorem 1.18] and [5; Theorem 4.1.2 and its proof].

2. Order bounded operators

For a vector space \mathbb{E} , a mapping P : $\mathbb{E} \longrightarrow \mathbb{G}$ is sublinear if $P(x+y) \leq P(x) + P(y)$ and $P(\lambda x) = \lambda P(x)$ holds for all x, $y \in \mathbb{E}$ and $\lambda \in \mathbb{R}_{\perp}$.

- 4 -

2.1. Proposition.

Let ${\rm I\!E}\,$ be a vector space, let ${\rm I\!F}\,$ be a subspace of ${\rm I\!E}\,$, and let S : $\mathbb{F} \longrightarrow \mathbb{G}$ be a linear operator. If there exists a sublinear mapping $P : \mathbb{E} \longrightarrow \mathbb{G}$ satisfying $Sx \leq P(x)$ for all $x \in \mathbf{F}$, then there exists a linear operator T: $\mathbb{E} \longrightarrow \mathbb{C}$ satisfying Tx = Sx for all x $\in \mathbb{F}$ and Tx $\leq P(x)$ for all $x \in \mathbb{E}$.

For a proof of the previous Hahn-Banach theorem, see [1; Theorem 2.1].

If \mathbb{E}_1 and \mathbb{E}_2 are subspaces of \mathbb{E} , then two linear operators $T_1 : E_1 \longrightarrow G$ and $T_2 : E_2 \longrightarrow G$ are <u>consistent</u> if $T_1 x = T_2 x$ holds for all $x \in \mathbb{E}_1 \cap \mathbb{E}_2$, and they have a common extension if there exists a linear operator $T : \mathbb{E} \longrightarrow \mathbb{C}$ satisfying $Tx = T_i x$ for all $i \in \{1,2\}$ and $x \in \mathbb{E}_{i}$.

2.2. Theorem.

Let ${f E}$ be an Archimedean Riesz space with order unit e $\in {f E}_{ot}$, and let \mathbb{E}_1 and \mathbb{E}_2 be Riesz subspaces of \mathbb{E} satisfying $e \in \mathbb{E}_1 \cap \mathbb{E}_2$. If there exists some $\alpha \in \mathbb{R}_+$ such that for all $x \in lin(\mathbb{E}_1 \cup \mathbb{E}_2)$ satisfying $|x| \le e$ there exist $x_i \in \mathbb{E}_i$ satisfying $x = x_1 + x_2$ and $|x_1|v|x_2| \leq \alpha e$, then any two consistent order bounded operators $T_1 : \mathbb{E}_1 \longrightarrow \mathbb{C}$ and $T_2 : \mathbb{E}_2 \longrightarrow \mathbb{C}$ have an order bounded common extension T : $\mathbb{E} \longrightarrow \mathbb{G}$.

Proof. Define $\mathbb{F} := \lim(\mathbb{E}_1 \cup \mathbb{E}_2)$. Since \mathbb{T}_1 and \mathbb{T}_2 are consistent, the mapping $S : \mathbb{F} \longrightarrow \mathbb{G}$, given by

$$\mathbf{x} := \mathbf{T}_1 \mathbf{x}_1 + \mathbf{T}_2 \mathbf{x}_2$$

for all $x \in \mathbb{F}$ and arbitrary $x_i \in \mathbb{E}_i$ satisfying $x = x_1 + x_2$, is well-defined and linear.

Furthermore, since \mathbb{E} is Archimedean, the Minkowski functional $\rho : \mathbb{E} \longrightarrow \mathbb{R}_+$, given by

 $\rho(\mathbf{x}) := \inf \{ \lambda \in \mathbb{R}_+ \mid |\mathbf{x}| \le \lambda e \} ,$

satisfies $\rho(x) = 0$ if and only if x = 0, as well as

$$\left| \frac{1}{\rho(\mathbf{x})} \mathbf{x} \right| = 1$$

for all $x \in \mathbb{E} \setminus \{0\}$. Define now

 $u := 2\alpha(|T_1|ev|T_2|e)$.

Then the mapping P : $\mathbb{E} \longrightarrow \mathbb{G}$, given by

 $P(x) := \rho(x) u$,

is sublinear. To see that $Sx \leq P(x)$ holds for all $x \in \mathbb{F}$, consider first $x \in \mathbb{F}$ satisfying $|x| \leq e$. By assumption, there exist $x_i \in \mathbb{E}_i$ satisfying $x = x_1 + x_2$ and $|x_1| \vee |x_2| \leq \alpha e$, and this yields

$$Sx = T_{1}x_{1} + T_{2}x_{2}$$

$$\leq |T_{1}||x_{1}| + |T_{2}||x_{2}|$$

$$\leq 2\alpha(|T_{1}|e \vee |T_{2}|e)$$

$$= u$$

Therefore, we have

 $Sx = \rho(x) S(\frac{1}{\rho(x)} x)$ $\leq \rho(x) u$ = P(x)for all $x \in \mathbb{F} \setminus \{0\}$, and thus $Sx \leq P(x)$

for all $x \in \mathbb{F}$.

- 5 -

It now follows from Proposition 2.1 that there exists a linear operator $T : \mathbb{E} \longrightarrow \mathbb{C}$ satisfying Tx = Sx for all $x \in \mathbb{F}$, and hence $Tx = T_i x$ for all $i \in \{1,2\}$ and $x \in \mathbb{E}_i$, as well as Tx < P(x)

for all $x \in \mathbb{E}$. To see that T is order bounded, it is sufficient to show that T maps the order interval [-e,e] into an order bounded set of \mathbb{G} , and this is true since

 $|Tx| \leq P(x) \leq P(e) = u$ holds for all $x \in [-e,e]$, by the definition of P.

Theorem 2.2 is related to a result of Ptak [4] concerning common extensions of linear functionals on closed subspaces of a Banach space.

Order bounded vector measures

A partition of Ω is a finite collection of mutually disjoint nonempty subsets of Ω whose union is equal to Ω .

7.

Let G and H be partitions of Ω . For $k \in \mathbb{N}$, a finite sequence { $G_i \in G \mid i = 1, ..., k$ } is an (H,k)-<u>bridge</u>, or simply an H-<u>bridge</u>, from G_1 to G_k if (i) $G_i \neq G_j$ holds for all $i,j \in \{1,...,k\}$ satisfying $1 \leq |i-j| \leq k-2$, and (ii) for all $i \in \{1,...,k-1\}$ there exists some $H_i \in H$ satisfying $G_i \cap H_i \neq \emptyset$ and $G_{i+1} \cap H_i \neq \emptyset$. Two sets G, G' \in G are (H,k)-<u>equivalent</u> if there exists an (H,k)-bridge from G to G', and they are H-<u>equivalent</u> if they are (H,k)-equivalent for some $k \in \mathbb{N}$; in this case we shall write $G \sim_H G'$.

3.1. Lemma.

3.

 \sim_{μ} is an equivalence relation on G .

Proof. It is immediate from the definitions that $\sim_{\mathcal{H}}$ is reflexive and symmetric. To see that $\sim_{\mathcal{H}}$ is also transitive, consider G, G', G" \in G satisfying G $\sim_{\mathcal{H}}$ G' and G' $\sim_{\mathcal{H}}$ G". Obviously, G $\sim_{\mathcal{H}}$ G" holds whenever at least two of the sets G, G', G" are identical. Let us now assume that these sets are all distinct, let { G_i \in G | i = 1,...,k } be an *H*-bridge from G to G', and let { G'_j \in G | j = 1,...,k' } be an *H*-bridge from G' to G". Since G_k = G' = G'₁, there exists a smallest $i \in \{1, \ldots, k\}$ satisfying G_i = G'_j for some $j \in \{1, \ldots, k'\}$, and j is unique since, by assumption, the sets G'₁, ..., G'_k, are all distinct. Define k'' := i + k' - j and, for all $h \in \{1, \ldots, k''\}$, define

$$G_h^{"} := \begin{cases} G_h & , \text{ if } h \in \{1, \dots, i\} \\ G_{h-i+j}^{"} & , \text{ if } h \in \{i+1, \dots, k^{"}\} \end{cases} .$$
Then $\{ G_h^{"} \mid h = 1, \dots, k^{"} \}$ is an *H*-bridge from *G* to *G*", and we have $G \sim_H G^{"}$. Therefore, \sim_H is transitive. \Box

The algebras M and N are <u>weakly independent</u> if for any two partitions $G \subseteq M$ and $H \subseteq N$ there exist $G' \in G$ and $H' \in H$ satisfying $G' \cap H \neq \emptyset$ for all $H \in H$ and $G \cap H' \neq \emptyset$ for all $G \in G$, and they have a <u>controlling constant</u> if there exists some $k \in \mathbb{N}$ such that for any two partitions $G \subseteq M$ and $H \subseteq N$ either any two H-equivalent sets in G are (H,k')-equivalent for some $k' \in \{1, \ldots, k\}$ or any two G-equivalent sets in H are (G,k')-equivalent for some $k' \in \{1, \ldots, k\}$.

3.2. Lemma.

If either

(a) M and N are weakly independent, or
(b) M or N is finite,
then M and N have a controlling constant.

The proof of Lemma 3.2 is immediate.

3.3. Lemma.

If *M* and *N* have a controlling constant, then there exists some $\alpha \in \mathbb{R}_+$ such that for all $g \in \mathbb{E}(M)$ and $h \in \mathbb{E}(N)$ satisfying $|g+h| \leq \chi_{\Omega}$ there exist $g' \in \mathbb{E}(M)$ and $h' \in \mathbb{E}(N)$ satisfying g' + h' = g + h and $|g'| \vee |h'| \leq \alpha \chi_{\Omega}$.

- 8 -

Proof. Define

 $\alpha := 2k - 1$,

where $k \in \mathbb{N}$ is a controlling constant of M and N. Consider $g \in \mathbb{E}(M)$ and $h \in \mathbb{E}(N)$ satisfying

$$|g+h| \leq \chi_{\Omega}$$
,

and choose partitions

 $G = \{G_1, \dots, G_m\} \subseteq M \text{ and } H = \{H_1, \dots, H_n\} \subseteq N$ satisfying

$$g = \sum_{i=1}^{m} \gamma_{i} \chi_{G} \quad \text{and} \quad h = \sum_{j=1}^{n} \eta_{j} \chi_{H}$$

for suitable $Y_1, \ldots, Y_m, \eta_1, \ldots, \eta_n \in \mathbb{R}$. Without loss of generality, we may assume that any two *H*-equivalent sets in *G* are (H,k')-equivalent for some $k' \in \{1, \ldots, k\}$. Let G_1, \ldots, G_1 denote the equivalence classes of *G* with respect to \sim_H . Fix $p \in \{1, \ldots, 1\}$. Choose $i_p \in \{1, \ldots, m\}$ satisfying

 $G_{ip} \in G_{p}$,

мр

and define

and

$$:= \bigcup_{G \in G_p} G$$

$$N_{p} := \bigcup_{\substack{H \in H \\ H \cap M_{p} \neq \emptyset}} H$$

For $H \in H$ satisfying $H \cap M_p \neq \emptyset$, there exists some $G' \in G_p$ satisfying $H \cap G' \neq \emptyset$, and for each $G \in G$ satisfying $H \cap G \neq \emptyset$ we have $G \sim_H G'$ and hence $G \in G_p$. This yields

$$H \subseteq \bigcup_{\substack{G \in G \\ H \cap G \neq \emptyset}} G \subseteq \bigcup_{\substack{G \in G \\ G \in G \\ p}} G = M_p,$$

hence

$$N_p \subseteq M_p$$
 ,

and thus

$$N_p = M_p \in M \cap N$$
 ,

since H is a partition.

Define now

$$g' := \sum_{i=1}^{m} \gamma_i \chi_G - \sum_{i=1}^{m} \gamma_i \chi_M_{p=1} \sum_{p=1}^{m} \gamma_p \chi_M_{p=1}$$

and

h' :=
$$\sum_{j=1}^{n} n_j x_H + \sum_{p=1}^{l} \gamma_i x_N$$

j=1 j p=1 p p

Then we have $g' \in IE(M)$ and $h' \in IE(N)$, as well as g' + h' = g + hand

$$|g'+h'| \leq x_0$$

Furthermore, for each $G \in G$, there exists some $p \in \{1, \ldots, 1\}$ with $G \in G_p$ and an (H, k')-bridge $\{G_i' \in G \mid i = 1, \ldots, k'\}$ with $k' \leq k$ from G_{ip} to G, and for each $i \in \{1, \ldots, k'-1\}$ there exists some $H_i' \in H$ satisfying $G_i' \cap H_i' \neq \emptyset$ and $G_{i+1}' \cap H_i' \neq \emptyset$, hence $|g'(\omega)| \leq |h'(\omega')| + 1$

for all $\omega \in G_i^{!} \cup G_{i+1}^{!}$ and all $\omega' \in H_i^{!}$, and thus

 $|g'(\omega)| \leq |g'(\omega'')| + 2$

for all $\omega \in G'_{i}$ and all $\omega'' \in G'_{i+1}$,

and this together with $G = G'_k$, $G'_1 = G_i_p$, and $g'\chi_{G_i} = 0$ gives

 $|g'x_{G}| \leq 2(k'-1)x_{\Omega}$.

Since $G \in G$ was arbitrary and since G is a partition, this yields

which completes the proof.

We can now state and prove the main result of this paper:

3.4. Theorem.

If *M* and *N* have a controlling constant, then any two consistent order bounded vector measures $\mu : M \longrightarrow \mathbb{G}$ and $\nu : N \longrightarrow \mathbb{G}$ have an order bounded common extension $\varphi : 2^{\Omega} \longrightarrow \mathbb{G}$.

Proof. Define $\mathbb{E}_1 := \mathbb{E}(M)$, $\mathbb{E}_2 := \mathbb{E}(N)$, and $\mathbb{E} := \mathbb{E}(2^{\Omega})$, and let $T_1 : \mathbb{E}_1 \longrightarrow \mathbb{G}$ and $T_2 : \mathbb{E}_2 \longrightarrow \mathbb{G}$ denote the representing linear operators of μ and ν , respectively. By Lemma 3.3 and and Theorem 2.2, T_1 and T_2 have an order bounded common extension $T : \mathbb{E} \longrightarrow \mathbb{G}$, and it now follows that the vector measure $\varphi : 2^{\Omega} \longrightarrow \mathbb{G}$, given by $\varphi := \text{Tox}$, is an order bounded common extension of μ and ν .

By Lemma 3.2, Theorem 3.4 extends and unifies the results proven by Lipecki [2] in the case $G = \mathbb{R}$.

- 11 -

4. Remarks

Let us now assume that G is a Banach lattice. For an algebra F of subsets of Ω , a vector measure $\varphi : F \longrightarrow \mathbb{G}$ is <u>bounded</u> if it maps F into a norm bounded subset of G, and it has <u>bounded variation</u> if $\sup \Sigma ||\varphi(A_i)||$ is finite, where the supremum is taken over all partitions (A_1, A_2, \ldots, A_n) in F. If G is an order complete AM-space with unit, then a vector measure $\mathbb{E} \longrightarrow \mathbb{G}$ is bounded if and only if it is order bounded, and if G is an AL-space, then a vector measure $\mathbb{E} \longrightarrow \mathbb{G}$ has bounded variation if and only if it is order bounded; see [6]. Therefore, the following results are immediate from Theorem 3.4:

4.1. Corollary.

Let G be an order complete AM-space with unit. If M and N have a controlling constant, then any two consistent bounded vector measures $\mu : M \longrightarrow G$ and $\nu : N \longrightarrow G$ have a bounded common extension $\varphi : 2^{\Omega} \longrightarrow G$.

4.2. Corollary.

Let G be an AL-space.

If *M* and *N* have a controlling constant, then any two consistent vector measures $\mu : M \longrightarrow \mathbb{G}$ and $\nu : N \longrightarrow \mathbb{G}$ of bounded variation have a common extension $\varphi : 2^{\Omega} \longrightarrow \mathbb{G}$ of bounded variation.

It would be interesting to know whether Corollary 4.2 can be extended to a larger class of Banach lattices.

- 12 -

Acknowledgement

We would like to thank Gerald Fries for his careful reading of the first draft of this paper.

References

[1] Aliprantis, C.D., and Burkinshaw, O.: Positive Operators. New York - London: Academic Press 1985. [2] Lipecki, Z.: On common extensions of two quasi-measures. Czech. Math. J. 36 (111), 489-494 (1986). [3] Maharam, D.: Consistent extensions of linear functionals and of probability measures. In: Proc. Sixth Berkeley Symp. Math. Statist. Probab., vol. 2, pp. 127-147. Berkeley: University of California Press 1972. [4] Ptak, V.: Simultaneous extensions of two functionals. Czech. Math. J. 19 (94), 553-566 (1969). [5] Schmidt, K.D.: Amarts - a measure theoretic approach. In: Amarts and Set Function Processes. Lecture Notes in Mathematics, vol. 1042, pp. 51-236. Berlin - Heidelberg - New York: Springer 1983. [6] Schmidt, K.D.: Decompositions of vector measures in Riesz spaces and Banach lattices. Proc. Edinburgh Math. Soc. 29, 23-39 (1986).

Authors' address:

Fakultät für Mathematik und Informatik Universität Mannheim A 5 6800 Mannheim West Germany