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Abstract — A branch-and-bound method is proposed for minimizinga convex-concave
function over a convex set. The minimization of a de-function is a special case, where

the subproblgms connected with the bounding operation can be solved effectively.

1. Introduction. In what follows we propose a branch-and-bound method for minimi-
zing a convex-concave function over a convex set. A similar scheme for minimizing an |
indefinite quadratic function over a convex set has been described in our earlier paper [3].
Here, due to the more general form of the objective function, the branching operation
must be different from the one used in [3], whereas the bounding operation is essentially
the same and is based on a suitable relaxation of the constraint set. An important special
case is the minimization of a dc-function (i.e., a fanction which is representable as the
difference of two convex functions — see [1], [4]). In this case the subproblems occuring

in the bounding operation can be solved effectively.

2. Problem Statement. Let S C JR" X IR™ be a closed convex set. Let the continuous
function f(-,-) : § — IR be convex in the first argument and concave in the second
argument. We consider the problem

(P) min {f(z,y)|z € R",y € R™,(z,y) € S}.

We suppose that problem (P) admits a solution, and we denote by /* the optimal value
of (P). We suppose furthermore that we can fix two compact convex polyhedra X c R"
and Y C IR™ such that X xY contains a solution of (P). Given a compact polyhedral

subset B C Y we shall have occasion to consider the problem
R(B) min {f(z,y)|z€ X,y € B,u € B, (z,u) € S}.

By #(B) we denote the optimal value of R(B) (we set #(B) := oo, if R(B) has no feasible
points). If (2B, yB, u®) is a solution of R(B), then clearly
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B(B) = f(2B,y®) < min {f(z,u)|z € X,v € B,(z,u) € S} < f(zB,uB)
and f* < f{z?,uf). If X x B contains a solution of (P), then #(B) = f(z5,y5) < s*.
The solution of R(B) will be discussed below in connection with the dc-problem.

8. Description of the Algorithm. The algorithm can now be described as follows

(comments are inserted in brackets).
Instialization. Set g :={Y'}, a_; :=o00. Solve R(Y).

Iteration k. At the beginning of iteration k (k = 0,1,..) we have a collection T of
compact polyhedral subsets B C Y such that X x U{B|B € I';} contains a solution of
(P). For each B € I'x we have determined 8(B) and, if #(B) < oo, a solution (22, y5, u5)
of R(B). Furthermore we are given a3 2 f°*.
Let oy := min {a4_1,min {f(2?,4P)|B € T, #(B) < oo}} [= f* < el
Select By € I'y such that #(Bx) = min {#(B)|B € T+}.
Let (z*,y*,u*) be a solution of R{B:) [= f(zF,y*) < f* < f(2*,«¥)}.
If f(z*,y*) > f(2*,u¥), then terminate: (z*,u¥) solves (P).
If f(z*,y*) < f(2*, uF), then let li(y) := (u* — y*,y) and c = (I (v*) + le («*})/2, and
set
By = {y € Be|l(y) < c&}, B ={y € Bi|l(y) 2 cx}
[=y* € By #8, u* € Bf #4].
Solve R{B; ), R(B;).
Let Ag :={B €T|#(B) < ar} [= Br € Ak).
Let Titr == Ax \ {B:} U {B; ,B}}.
Go to iteration k + 1.

This completes the description of iteration k.

4. Convergence of the Algorithm. If the algorithm terminates at i'teration k, then
f(z%,y%) = f* = f(2%,uF), and (2F,u*) € S is clearly a solution of (P). Otherwise
we have again that X x U{B|B € I't4,} contains a solution of {(P). Moreover we have
B{Bi) < A(Bi+1), hence f(zF,y*) < f(z*t1,y**1} < f*. If the algorithm does not

terminate, then the sequence {(z*,u¥)} has a cluster point.

Theorem. If the algorithm does not terminate, then every cluster point of {(z*,u*)} ¢

a solution of (P). Moreover f(z*,y*) / f*.
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Proof: Let (%,4) be a cluster point of {(2*,u*)}. By extracting a subsequence, if ne-
cessary, we may assume that z¥ — z, «f¥ — 5, y* — ¥, and furthermore that either
Bity € B for all k or Biy1 C B for all k. If Byyy C By for all k, then in particular

w1 € B, , hence I (u**!) < ¢;. This gives

¥ ~ 917 =t () = e (4#) = 20 () = cx) < 201 (0*) ~ (1))

< 2ffuk — g - fJuk — ukH1,
hence

lu* - y*|| < 2fju* — w4+t - 0.

If Byyy C Bff for all k, then we use y*+! € B to obtain in a similar way
lu* — ¥l < 2[ly*+! — y*] — 0.
Hence in both cases we obtain @ = §. Therefore f(2*,3*) / f(%,%), and from

f(z*,y*) < f* < f(2F,u*) follows f(Z,T) = f*, i.e., (Z,%) € S is a solution of (P).

q.e.d.
5. DC-Problems. The above algorithm can be applied to the so-called dc-problem
(DC) min {g(z) — h(z})|z € G},

where G C IR™ is a closed convex set, and g,k : G — IR are continuous convex func-
tions (supposed to be known explicitly). This problem has earned considerable interest
recently, see [1], [4]. We bring problem (DC) into the form (P) by choosing

f(z,y) =g(z) - h(y) : G x G — R,
S:={(z,y)eGxGlz=y} CR™ x R™.
We need a compact convex polyhedron ¥ € IR™ such that Y contains a solution of

(DC). Then, if B C Y is a compact polyhedral subset , the problem R(B) with the above
choices of f and S and with X :=Y takes the form

R(B) min {g(z) — h(y)lz€ GN B,y € B,u = z}.

Clearly we may drop the variable « from R(B) and substitute in the description of the
algorithm zB for u® and z* for u*. Every cluster point of the sequence {2*} generated by
the algorithm solves (DC). The bounding problem R(B) becomes manageable in this case.
Namely, if v (¢ = 1,...,4p) are the vertices of B, then due to the concavity of k()
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one has néig-—h(y) = min —A(v'), and therefore R(B) with the variable u suppressed
v i
becomes

R(B) min {g(z)|z € GN B} +ml,in —h(v').

Hence solution of R(B) requires solving a standard convex programming problem and
searching the vertices of B. The latter problem can be solved with reasonable effort, due
to the fact that B is generated from some predecessor B’ by adding an affine inequality,
see [2]. The starting polyhedron Y should be chosen as a simplex or as a rectangle, so
that the vertices of Y are easily at hand.
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