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An Algorlthm tor Mlnlmizing a Convex-Coneave
Funetlon over a Convex Set
La D. Muu1 and W. Oettl12

Ab.trad - A branch-and-bound method is proposed for minimizinga convex-concave

function over a convex set. The minimization of a dc-function is a special case, where

the subproblems connected with the bounding operation can be ,olved eft'ectively.

1. Introdudion. In what foUows we propose a branch-and-bound method for minimi.

zing a convex.concave function over a convex set. A similar scheme for minimizing an

indefinite quadratic function over a convex set has been described in OUT earlier paper [3].

Here, due to the more general form of the objective function, the branching operation

must be different from the one used in [3], whereas the bounding operation is essentially

the same and is based on a suitable relaxation of the constraint set. An important special

case is the minimization of a dc-function (Le., a function which is representable as the

difference of two convex functions - see [1], [4]). In this case the subproblems occuring

in the bounding operation can be solved effectively.

2. Problem Statement. Let S c ./Rn x./Rm be a closed convex set. Let the continuous

function / (., .) : S -+ ./R be convex in the 6.rst argument and concave in the second

argument. We consider the problem

(P) min {/(z, y)lz E ./Rn, y E ./Rm, (z, y) ES}.

We suppose that problem (P) admits a solution, and we denote by r the optimal value

of (P). We suppose furthermore that we can fix two compact convex polyhedra X c./Rn

and Y c ./Rm such that X X Y contains a solution of (P). Given a compact polyhedral

sub set BeY we shall have occasion to consider the problem

R(B) min {/(z, y)lz EX, YE B, u E B, (z, u) ES}.

By ,8(B) we denote the optimal value of R(B) (we set ,8{B) := 00, if R(B) has no feasible

points). If (zB, yB, uB) is a solution of R(B), then clearly
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,8(B) = /(ZB, yB) ~ min {J(Z, U)IZ EX, '11. E B, (Z, '11.) E S} ~ /(ZB, UB)
and r ~/(ZB, UB). If X x B contains a solution o£(P), then ,8(B) = /(zB, yB) ~ r.
The solution o£R(B) will be discussed below in eonneetion with the de'problem.

3. Desulptlon of the Algorithm. The algorithm ean now be deseribed as follows

(comments are inserted in brackets).

In itialization. Set ro := {Y}, Q-l := 00. Solve R(Y).

Iteration Je. At the beginning of iteration k (k = 0,1, ... ) we have a eolleetion rk of
eompad polyhedral subsets BeY such that X x U{BIB E rk} eontains a solution of

(P). For eaeh B E rk we have determined ,8(B) and, i£,8(B) < 00, a solution (zB, yB, uB)
o£R(B). Furthermore we are given Qk-l ~ r.
Let Qk:= min {Qk-l,min {J(zB,uB)IB E rk,,8(B) < oo}} [=* r ~Qk).

Seleet Bk E rk such that ,8(Bk) = min {,8(B)IB E rk}.

Let (zk,yk,uk) be a solution ofR(Bk) [=* /(zk,yk) ~ r ~/(zk,uk)).

I! /(zk, yk) ~ /(zk, uk), then terminate: (zk, uk) solves (P).

I! /(zk, yk) < /(zk, uk), then let Ik(Y) := (uk - yk, y) and Cl' := (lk(yk) + Ik(uk))/2, and

set

B; := {y E BkI1k(Y) ~ Cl'}, Bt := {y E BkI1k(Y) ~ Cl'}

[=* yk E B; :#:', uk E Bt :#: ').
Solve R(B;), R(Bt).
Let ak := {B E rkl,8(B) ~ Qk} [=* Bk E ak).

Let rHl := ak \ {Bk} U {B; , Bt}.
Go to iteration k + 1.

This eompletes the description o£iteration Je.

4:. Convergence of the Algorithm. If the algorithm terminates at iteration Je,then

/(zk,yk) = r = /(zk,uk), and (zk,uk) E S is dearly a solution o£ (P). Otherwise
we have again that X x U{BIB E rHl} contains a solution of (P). Moreover we have

,8(Bk) ~ ,8(BHd, henee /(zk,yk) ~ /(zHl,yk+l) ~ r. If the algorithm does not

terminate, then the sequenee {(zk, uk)} has a duster point.

Theorem. I/ the algorithm doe, not terminate, then every dufter point 0/ {(zk, uk)} "
a .olution 0/ (P). Moreover / (zk, yk) / r.
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Proof. Let (i", ii) be a cluster point of {(zk, uk)}. By extracting a subsequence, if neo

cessary, we may assume that zk - i", uk _ ii, yk - y, and furthermore that either

BHI c Bk for alllc or Bk+! C Bt for allie. If BHI c Bk for alllc, then in particular

uH1 E Bk' hence Ik(UH1) S Cl'. This gives

lIuk - ykll~= Ik(Uk) -lk(yk) = 2(lk(Uk) - Cl') S 2(lk(Uk) -lk(uk+1))

S 211uk-7lll.lluk - uH111,
hence

Iluk - ykll S 211uk- uH11I_ O.

If BHI c Bt for alllc, then we use yHl EBt to obtain in a similar way

Hence in both cases we obtain ii = y. Therefore f(zk,yk) / f(i",ii), and from

f(zk,yk) sr s f(zk,uk) follows f(i",ii) = r, i.e., (i",ii) ES is a solution of (P).

q.e.d.

5. DC-Problems. The above algorithm can be applied to the so.called dc.problem

(00) min {g(z) - h(z)lz E G},

where G c IRm is a closed convex set, and g, h : G - IR are continuous convex £une.

tions (supposed to be known explicitly). This problem has earned considerable interest

recently, see [I), [4]. We bring problem (00) into the form (P) by choosing

f(z,y) := g(z) - h(y) : G x G -IR,

S:= {(z,y) E G x Glz = y} C IRm x IRm.

We need a compact convex polyhedron Y C IRm such that Y contains a solution of

(00). Then, if BeY is a compact polyhedral subset , the problem R(B) with the above

choices of f and S and with X := Y takes the form

R(B) min {g(z) - h(y)lz E GnB,y E B,u = z}.

Olearly we may drop the variable u from R(B) and substitute in the description of the

algorithm zB for uB and zk for uk. Every cluster point of the sequence {zk} generated by

the algorithmsolves (00). The bounding problem R(B) becomes manageable in this case.

Namely, if vi (i = 1, •.. , iB) are the vertices of B, then due to the concavity of -h(.)
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one has min-h(y) = ~ -h(vi), and therefore R(B) with the variable'U suppressed
yEB ,

becomes

R(B) min {g(z)lz E G nB} +mPt -h(vi).
I

Hence solution of R(B) requires solving a standard convex programming problem and

searching the vertices ofB. The latter problem can be solvedwith reasonable effort, due

to the fact that B is generated !rom some predecessor B' by adding an affine inequality,

see [2]. The starting polyhedron Y should be chosen as a simplex or as a rectangle, so

that the vertices of Y are easily at hand.
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