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1. Introduction

Using sympleétic geometry on the classical phase space, geometric quantization [1]
provides a coordinate independent quantization scheme avoiding the ambiguity of operator
ordering. In [2] it has been suggested to consider field theoretic anomalies in the context
of this scheme. However it is not clear in the literature [3], to what extent geometric
quantization is applicable to field theories. In [3] it was claimed (without proof) to yield
the correct quantum field theory for linear systems and semiclassical approximations in
general.

In previous work [4] the authors have contributed to this discussion: Considering the
non conservation of the quantized chiral charge in time they have shown, how to calculate
the chiral U(1) anomaly of a non Abelian gauge theory in 4 dimensions within the geometric
quantization scheme. As the chiral anomaly is a well established feature of gauge theories,
one can regard its determination to be a significant test for the application of geometric
quantization to field theories.

In [3] the space V of solutions of the Dirac equation in a gauge background has been
taken as the classical phase space for the Dirac system. In [4] a slightly different approach
has been chosen: As in [3] the solutions ¥ € V have been represented by their initial
values ¥(z,t)|s=¢9 =: ¥o(z). However in accordance to the usual treatment of Fermionic
field theories the 1, (z) have been regarded as anticommuting coordinates on a graded
symplectic manifold.

Although graded manifolds are extensively used in the physics literature [6,7], the
subject of geometric quantization on such manifolds has been investigated systematically
(to our knowledge) only in (5] and only up to the prequantum level. Hence it suggests itself
to deal with the formalism of geometric quantization on phase spaces with the structure
of the one used in [4]. This will be done in section 2 of the present paper. More strictly
speaking we will consider the quantization of a graded symplectic manifold (X, A,w) (in
the notion of [5]), where X is pointlike and A is the exterior algebra over the dual of
a vectorspace. Results of [5] will be revisited as far as necessary to keep the paper self
contained. However the consideration of a complex structure and the induced polarization
as well as the construction of a quantum Hilbert space exceeds the material presented in
5. |

In section 3 of the present paper the geometric quantization formalism developed in
section 2 is applied to Dirac theory in even dimensions D. An appropriate polarization for
a Dirac theory with gauge background is presented and the Fock space structure of the
quantum Hilbert space is lined out.

A shortcoming of [4] was the restriction to the chiral anomaly in 4 spacetime dimen-
sions. In section 4 the chiral U(1) anomaly in arbitrary even D dimensions as well as the
(covariant) non abelian anomaly are calculated. Generalizing [4] the results are in full
agreement with the standard ones [15]. The calculation shows that the half form contri-
bution, corresponding to the transformation property of the measure in the Hilbert space,
plays a crucial role in determining field theoretical anomalies. In an appendix we will point
out technical details of the calculations done in section 4.




2. Graded Manifolds and Geometric Quantization

Geometric quéntization on the one hand and the theory of graded manifolds on the.

other hand are well established in the physics as well as in the mathematics literature.
Already in 1975 Kostant showed in a remarkable work [5] that the notion of graded sym-
plectic manifolds induces a natural connection between these two fields. However with few
exceptions (c.f. [16]) this connection has not been paid much attention to in the literature.
Hence to the extent we need later we will start this section repeating the main ideas of
[5] in short. For more details on graded manifolds (supermanifolds) in finite and also in
infinite dimensions we refer to [6] and [7].

Let A be an algebra decomposed into A = Ay @ A; such that A; - 4; C 4;4;,4,5 €
Z,. We call a; € A; homogeneous element of A with degree gr(a;) = i. A is a graded
(commutative) algebra over Z,, if the product of each two homogeneous elements a,b € 4
is graded commuting, i.e. '

a-b=(-1)s"@ep. 4 (2.1).

In this sense Ay and A; are referred to as the even respectively the odd part of the algebra
A.

Let X be a smooth manifold and {U;} the set of all open subsets of X. Let A be
a graded algebra, equipped with an appropriate topology and consider smooth functions
fi + Ui = A. The set of these functions also forms a graded algebra under pointwise
operations, denoted by A(U;). For a pair U; C U; the (natural) restriction

pg; : A(U;) — A(T;)
Pg".(fi) = filu;

is an algebra homomorphism and the tupel (X, A(U;), pU ‘) is a special example of a sheaf.

(For our purpose it is sufficient to consider a sheaf as an obJect of this type, for the exact
definition we refer to [8].) If for an atlas {U,} of X any function f, € A(U,) can be
written as -

(2.2)

falz) = fa("’) + Z Z (9e(2))jr.inbis + - o -+ 05, | (2:3)

n>0 ji...jn

~ the sheaf (X, A(Ui),pg:,) together with this decomposition defines a graded manifold de-
noted by (X,.A). In (2.3) z € U, is a point, fu,(gu)i...j. Tespectively are usual C>(Uy)

functions and 6;, -...- §;, are the generators of A. Note that A = IR also fits into the

definition of a graded algebra (with trivial odd part), hence each usual manifold X can
also be considered as a graded manifold (X,C®). If in contrast A = Gr is a Grafimann
algebra the corresponding (X, 0r) is also called a supermanifold.

For the application we have in mind we let V be a vector space and V* its dual. In
the case of infinite dimensional V' let the dual be defined with respect to some pairing (e.g.
in the sense of [9]). The exterior algebra @, A "(V*) over this dual space is a Z, graded
algebra, with respect to the A product. If we consider W := @ _A "(V*) as a (trivial)
sheaf over the pointlike manifold X = {p}, this defines a graded manifold
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« My := ({p}, W) (24)

Here the splitting (2.3) holds trivially, considering the elements of V = A'(V*) as odd
generators of W. As shown by Batchelor [7] the fact that V may be infinite dimensional
does not spoil the construction. (In the same way as constructed above @, S™(V*), the
symmetric tensor algebra of V* defines a graded manifold ({p}, @, S™(V*)) with trivial
odd part. This example should be of interest in geometric quantization of Bosonic field
theories, however it will be considered elsewhere [17].)

For graded manifolds the notion of a tangent space is not so natural as for a usual
manifold. Nevertheless it is possible to do differential geometry and proceed with geometric
quantization by considering the space of all superderivations instead of T(X). This space
of superderivations Der(.A) C End(.A) over the algebra of functions A is defined as the
space of all linear maps § : A — A obeying a graded Leibnitz rule :

Der(A) = {6= 6o + 8 € End(A)I6(f ) = 5(F) - g + (~1FDEO £ . 5,(g) ke 2,)

(2.5)
where § = § + 6; is understood with respect to the naturally induced (Z,-)grading of
End(A). Der(.A) does not define the tangent space of the graded manifold (X,.4), but
generalizes the (algebraic) definition of T(X') as the space of all derivations on C*(X). In
coordinates (z;,6;) on (X, .A) we have

0 o
& = ;aia—xi + zj:bjgaj =: ;aiazi + zj: bjagj (2.6)

with coefficients a;,b; € A. For 6,6 € Der(.A) the commutator between (homogeneous)
superderivations naturally generalizes the commutator between vector fields

[6,8]4 =68 + (—1)8=Dex(®)+1 5 5 (2.7).

In the example (2.4) superderivations § of My are completely determined by their action
on a base of V* via linearity and Leibnitz rule. Thus Der(W) may be identified with W@V
where the elements of V act on W as superderivations of homogeneous grading 1.

To generalize the definition of differential forms to graded manifolds (c.f. [5]) we
consider (for all open U; C X) the tensor algebra T(U;) of Der(.A(U;)) with coefficients in
A(U;) and denote by T™(U) the space of all m-tensors. Then the space of differential m-
forms Q™ (U, A(U;)) is given as the set of all A(U;)-valued linear forms on 7™ (U;) obeying
a graded symmetry, specified below. Using the sheaf structure of (X,.A) we get globally
2™(X,.A) as the space of all m-linear maps on Der(.A) with values in .4, characterized by
the additional graded symmetry condition on o € Q™(X, A)

a(él) e 7€j7£j+1, R 7€m) = (_1)(sr(fj)+1)(gr(ej+1)+1)a(£l; e )€j+17 fja v ’ém) ‘ (28)

with ¢; € Der(A) homogeneous. (Note that our sign conventions coincide with [6] but not
with [5].) For My all elements in V are of homogenous degree 1, so Q™(My) simplifies
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to the space of symmetric m-forms over V with values in W. Hence, denoting by S™(V*)
the space of symmetric m-tensors over V*

O™(My) =S™(V*) @ W (2.9).

This may become more apparent in a coordinate description : Assume a basis set {e;}
is given on V, so each v € V may be written as

v = Z 8;(v)e; (2.10).

The set of coordinates {6;} may be identified with the corresponding dual basis on V*, i.e.
8:(e;) = &;;. Regarding 6; as Grafimann numbers (anticommuting variables) elements of
W become polynomials in ;. In these coordinates Der(W) is spanned by {8s;} with

39,-(0]') = 5.,']' (2.11).

Note that {8y;} also determines a base of V that is anticommuting in contrast to {e;}.
For the construction of Q™(My ) we denote the basis elements of S1(V*) by d6; with

d0;(8s;) = Be;_ld; = &; (2.12).

This notation becomes consistent if we take df; to be commuting, in contrast to the 6;.
Then the symbol d coincides with the exterior derivative on W, in coordinates

d=db; ® De; (2.13)

that acts as a derivative of grading 1 and is nilpotent (d? = 0). On a graded manifold we
also have the notion of an interior derivative i with degree gr(i¢) = gr(¢) + 1 defined as
on a usual manifold by

ifa(fl’ ‘e 7£m—1) = f__}a(élv ceey €m—1) = a(é, 619 < ,Em—l) (2-14)-

Now let A¢ = A® € be the complexification of the algebra A and let {U,} be an open
covering of X. Then a (complex) line bundle sheaf L over the graded manifold (X,.A) is
locally determined as

L(Us) = Ao(Us) ® 7a (2.15).

Here 7, are even generators of A¢ with invertible transition functions ¢®? € A(U, N Up)
given by 7, = ¢®P75. Using the sheaf structure of (X, .A) this can be globalized. The space
of sections of a line bundle L over a graded manifold is defined as in the usual case and
will be denoted by I'(L) = L(X). For geometric quantization L has to carry a Hermitian
structure, i.e. a bilinear, Hermitian operation

(w )LxL— Ag (2.16)
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mapping pairs of sections S(z),S(z) € I'(L) smoothly to a section (S,8)(z) of the trivial
line bundle Ag over (X,.A). As for usual manifolds a connection V on a line bundle sheaf
L can be written as a map V¢ : L — L, locally given by

VeS =€S 4 (ig9)S for any € € Der(A) (2.17)

where ¢ € 0(.A) has degree gr(9) = 1. The curvature of the connection then is curvV = dd
(with d given by (2.13)) and a Hermitian structure on a line bundle sheaf is said to be
compatible with the connection, if

6(573) = (st’g) + (S, Vﬁg) (2'18)

For more details we refer to [5].

Symplectic mechanics on a graded manifold proceeds as for usual manifolds : w €
N%(X, A) is called a graded symplectic form, if it is even with respect to the grading of
A, closed ( dw = 0) and (weakly) nondegenerated on Der(A), (i.e. if w(V, W) = 0 for all
V € Der(A) then W = 0, c.f. [9]). Then due to the graded Darboux theorem there exist
local coordinates with

= 5 Z f”d;c,-d:cj + —;' Z g”d&,-d&_,- : (2.19)
ij ij

where the matrices f%/ (antisymmetric) and g%/ (symmetric) are constant and of grading
0. Also there is a graded Poincare lemma that (locally) guarantees the existence of © with
w = dO. For My the Darboux theorem and the Poincare lemma hold globally and the f%
in (2.19) vanish. To generalize the Poisson algebra from C*°(X) to A one assigns via

¢r_Jw+dF =0 (2.20)

a Hamiltonian vectorfield {z € Der(.A) to each observable F € .A. Then the Poisson
algebra over A is given by

{F,G} = (-1)8F)¢p@ = (—1)8 g g w (2.21),
with épG = €p_|dG. In Darboux coordinates this is
BF BG 1OF 0G
ijy-1 98 9= gr(F) z.7 - -

This includes the usual P01sson bracket and also gives an anticommutator on the level of
classical mechanics.

The first aim of geometric quantization is to associate to each observable F € A an
operator O, acting on sections of a complex line bundle sheaf L over the graded symplectic
manifold (X, A,w) such that a represention of the Poisson algebra is provided and the unit
element 1 € A is represented as the unit operator :

[OF,Ogl+ = —ihOp,g}

2.23
0. =1 (2.23)
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Such a representation is called prequantization. If we consider a usual symplectic manifold
with [w] integral Weil’s theorem guarantees that there exists a Hermitian line bundle L
over X with a connection V such that V is compatible with the Hermitan structure on L
and induces the symplectic form by w = curv(V). For a graded manifold (X,.4) such a
Hermitian line bundle sheaf has been shown in [5] (c.f. section 6.3) to exist if X has trivial
cohomology. This is the case for our application (2.4), moreover the line bundle over My
can be chosen trivial, i.e. Ly = W ® €. The prequantum operator on such a line bundle
sheaf is then given by

Or : (L) » I(L)

2.24
Op = —ihV¢, + F (2.24)
where thé covariant derivative V; may be written as
7
Ve=¢— —ﬁf_]G) (2.25).

However full quantization demands an irreducible representation of the Heisenberg
subalgebra (c.f. [1]), not given by (2.24). On a usual manifold X this problem is solved
by choosing a polarization (Lagrangian subspace) P C T% X) of the complexified tangent
space. An appropriate polarization for geometric quantization is provided by a Kihler
structure [10] on X. We use the notion of [3] and define an (almost) Kahler structure on
X as a linear involution J : T(X) — T(X) with

JP=-1
w(J(€), J(n)) = w(&,m)

If one can choose on X local coordinates {zk,z;:} solving over T%(X) the eigenvalue

problem
8 3 17/ [ 0O

This defines a K&hler polarization P spanned by the eigenvectors é =: Bz:. . This descrip-

(2.26).

tion of a Kahler structure easily generalizes to graded manifolds given by an automorphism
J : Der(A) — Der(.A) obeymg (2.26). A Kahler polarization on a graded manifold is then
determined by

P =Span({9,4}) C Der(4) with 7 [0.+] =-i (2.+) | (2.28).

To fulfill the irreducibility condition we have to represent classical observables as operators
on the space of polarized sections

TP(L) = { S € T(L) | V¢S =0 for all £ € P} (2.29).
For a Kahler polarization this means that the wave functions S € T'P (L) have to be

holomorphic sections, i.e. covariantly constant under V., +.
k
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On a usual (2m-dimensional) manifold X the symplectic form w induces a natural
volume element (w9)™. Using this for integration over X the Hermitian structure (2.16) on
L extends to an inner product on I'(L) by

,.>: (L) xT(L) = @

(2.30).
<&n>= [(Emer
Such is not the case on a graded manifold, where integration over forms is not defined
directly. Due to Berezin [6] integration over anticommuting variables is identified with dif-
ferentiation. A naive identification would yield a coordinate dependent integral. However
considering the symplectic graded manifold My and a complex structure J defined on it
Berezin’s idea can be used to determine a coordinate independent integration : On My
the symplectic form w determines a map 7 between superderivations and one forms by

7 : Der(My) — QY (My)
() :=¢{ lw

On the other hand the symplectic form and the complex structure yield an antisymmetric

tensor field g on Der(My) by

(2.31).

g(&n) =w(J(€),n) & n € Der(My) (2.32).

We note that w € QZ(MV) and hence g € W ® A\*(V*), so we can define an antisymmetric
form w' € W®/\ (V)

w'(a,B) =g(r7e,771B) a,B € Q'(My) (2.33).

For 2m dimensional V' the m-fold tensor product (w')™ € W ® A\>™(V) provides a natural
volume element for the integration of functions over My, i.e. integration of sections F €
T'(Lv) in the following way : We have

F-(W)"ewe ) ™V) (2.34)

and the integration is carried out applying the /\zm( V') part as product of superderivations
to W. This yields a coordinate indepéndent map -

/ (W)™ T(Ly) > @ (2.35)

that gives in coordinates the Berezin integral with ,/det gi; used as integration measure.
We note that this generalizes to infinite dimensions (c.f. chapter 1.3 of [12]).

In contrast to I'(L) on the space of polarized sections I'P(L) the natural volume
element (w)™ (respectively (w')™) does in general not induce a pairing by integration.
Therefore it is necessary to introduce the notion of half forms [1]. Essentially a half
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form on a usual manifold X is a function on the bundle of frames F¥(X) spanning the
polarization P  *

v: f'P(X) 4 (2.36)

which transforms under right group actions g on P according to

vog=(detpg)~/%w (2.37)

Roughly speaking v reflects the transformation property of the measure in the Hilbert space
build from the space of polarized sections I'’(L). For infinite dimensional manifolds one
furthermore has to choose a proper regularization to make the determinant well defined.
The notion of half forms can also be applied to our graded manifold My ({p}, W) :

v: FE(W)->Ww (2.38)

where 77 is the frame bundle of the polarization P C Der(W) and v transforms under
group actions according to (2.37). _

Quantum states are now taken as products of a (normalizes) polarized section S €
I'P(L) and a half form v corresponding to the polarization P. The quantum operator F'
of a classical observable F' € A then becomes the sum of the prequantum action O on S
and the Lie derivative of v with respect to the Hamiltonian vector field ¢5 :

F(Sv) = OpS v +iS - Lepv (2.39)

Note that this gives the right quantum operator only if F respects the polarization in the
sense that

[€r, PlC P (2.40).

In the case of a Kahler polarization a holomorphic projection [18] is needed to obtain the
correct quantum operator for observables not respecting the polarization. However this
will not be crucial for our following considerations.




3. Geometric Quantization of Dirac Theory
To elaborate geometric quantization for a Dirac field we consider (according to [3])
the space of solutions of the (massless) Dirac equation

158, + Au(2,8))¥(z,t) = 0 | (3.1)

in D spacetime dimensions in a non Abelian background. The elements ¥ of this space
are complex D-spinors and the field A(z,t) is regarded as an external gauge connection
A(:z: t) = Aq(z,t)T® with T® generating the gauge group. Our conventions are similar as
in [4] and can be found in the appendix (Al). A solution of (3.1) is umquely determined
by its value ¥,(z) at a fixed time T via

Y(z,t)|t=r =: Y-(2) (3.2)

what respects the linear structure of the solution space. An inner product between solutions
of (3.1) is given by :

¥0 ¥ = [47(2)4.(2)d7 7z (3.3),

z,

where ¥, denotes the ¢ = r hypersurface. This fixes the space under consideration

V := {¥ solution of (3.1) | T ¥ < oo} (3.4)

As explained above (2.4), this yields a graded manifold with the dual V* determined by
(3.3) :

My ={p}, QA V) (3.5)

The (D — 1) dimensional é-functions span (formally) V* assigning to each ¥ € V its value
¥-(z) at some space point z. As explained in (2.10), (2.11) we use %.(z) as anticommut-
ing coordinates on My. (Note that our notation does not distinguish between %.(z) as
elements of V* and as functions on £.!) With the symplectic form

w=1 / dypt(z)dpr(z)dP 1z (3.6)

Z,

on My the Poisson bracket (2.22) yields the well known equal time anticommutator

{$r(2), 95 (")}, = —Ep ()b (=") = +i5(rcv —z') (3.7).

V is per construction a complex vector space, but the Kahler polarization with respect
to the natural complex structure is not acceptable from the physical point of view : It would
lead to an energy spectrum which is unbounded from below. For the free theory (4 = 0)
an appropriate polarization is given in [1]. There the operator
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is used to split the space of solutions of the free Dirac equation V into a positive and a
negative frequency part in order to define a complex structure by

Jie[¥a] = isign(A)  for eigenstates Bpia(z) = AYa(z) (3.9).

A natural generalization of (3.8) for a theory in a background field is

- B, = 7" (i8; + Aj(=,1)) (3.10).

We proceed in analogy to the free case and decompose at ¢ = 7 the function ¥, into a
formal sum of eigenfunctions ¢, of the Hermitian operator B,

Yr =) cheh with B,pl(z)= ¢l (z) (3.11) .

n

In contrast to the free case A}, determines the time evolution of ¢ only up to first order,
nevertheless o7 provides a basis of V. Considering (3.11) one should note that the decom-
position is not discrete, so the sum over ¢, is only formal and has to be understood as an
integration.

In the corresponding coordinate system {c7} we now can define the complex structure

J™ by

1871 I R
J [Bc;;] +1 sign(A7, )8" J [8c§+}— —1 sign(A], )8( VT | (3.12).

This complex structure explicitly depends on 7. As T can be chosen arbitrarily it defines
a time dependent complex structure J(t) by J(t)|¢=- := J". To describe this in a small

neighborhood of 7, i.e. for ¢t = 7 + §t, we use the (unitary) transformation matrix ,6,(-,:,’:)
between the eigenstates of B, and B,

f =3 a0 (3.13).
Then we have in {c] }-coordinates the complex structure
6] ) (r:8)y- 2
J(T + 6t) [E] Z,B sign (A})(8;07) ! o = + o 6t%) (3.14)

with a similar expression for ¢],*. The complex structure is also a functional of the gauge
background (J(t) = J(¢)[4]) a.nd transforms cova.na.ntly with respect to local (fixed time)
gauge transformations a(z) = a,(z)T*

(2 J(£)[Ale™*(®) = J(t)[poA] (3.15).

The Kahler polarization P”, determined by J(t)|:=- is then given as
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. b3} 3]
T = — | AT r 3.16
P span< {Bc}; A< O}GB{BCZ'{*' /\n>0} > (3.16)

and naturally induces holomorphic (anticommuting) coordinates

< AT>0 T AT<0 v
me{d Mo @r={3 N5 (31)

In order to simplify our notation we will suppress the index T in the sequel whenever this
is possible.

We proceed in the coordinates {z,,2;} on the graded manifold My where the sym-
plectic form (3.6) is

w=1 Z dztdz, (3.18)

and © can be chosen as

0= % (Z 2 dzn + Xn: dz:zn> (3.19).

n

According to (2.29) polarized sections S € I'¥(Ly) have to obey
Vo ,S(z,zT) =0 (3.20)
"k
Hence with (2.25) and © given in (3.19) (see also [1]) we obtain

S(z,2%) = a(2) exp(—l/ZZznz;f) (3.21)

where the o(z) are holomorphic functions. On the (trivizﬂ) line bundle Ly over My the
Hermitian structure defined by

(8,8) =88 8,8 eI(Ly) (3.22)

is compatible with the covariant derivative (2.25) on Ly (c.f.[1] respectively [5]). It extends
(formally) to the inner product on the space I of sections of Ly, :

<S(z2%),5(z,2) >= lim [@)m(s, 8, (3.23)

To make this formal definition meaningful we can approximate V as a sequence of finite
dimensional vectorspaces V,, as proposed in [12] and [3]. However as a pairing between
sections § € T'P(L) (3.23) is well defined if it is understood in terms of the Fock space
structure given below.

Geometric quantization of the Dirac equation means to determine the quantum op-
erators (2.39) of any observable and apply it to polarized sections S € T'F(Ly). For the
coordinate functions zk,z: as classical observables the half form contribution Lx_ v in
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(2.39) vanishes for an appropriate normalization of the half form v (c.f. (3.33)) and we
obtain L. :

5 S(z,2%) v = (8,,0(2)) exp(=1/2)  za2f) v

n

(3.24).
£8(z,27) v = (21 - 0(2)) exp(—1/2 Z znzl) v

This coincides with the well known holomorphic representation of Fermionic field theory
(c.f. [11],[12]). We define the vacuum state |0 >€ T'P(Ly) by

0>= (H z,,,) exp(—-l/22zmz;‘;) v= (H zn> v (3.25)

n

where [] z, means the formal product over all coordinates z,. This yields formally

<0[0>=1 (3.26)

what may be regarded either as a definition or as the result of a limiting procedure defining
(3.28) and (3.25) properly. Then (3.24) gives the interpretation of 2z and 2, respectively,
as creation and annihilation operators

ka0> =0
o (3.27)
2710> =: k>

for they fulfill the (usual) anticommutation relations
[Br, 214 =[5, 871+ = 0
o (3.28)
(24, 2]+ = éni

Together with (3.26) this yields the orthonormality relation

<k'l>= Sk (3.29)

The construction of the Fock space given above corresponds to the polarization P? only at

¢t = 7. To extend this to a time ¢ = 7 + §¢ we use (3.14) to define holomorphic coordinates
by

t cr B AL >0 N 0 At <0
zn = (zn) = (3'30)’
BSPy-lert AL <0 (BSmP)~ler AL >0

what in some sense corresponds to the interaction picture of quantum mechanics. The
dynamics of the system then is determined by the (time dependent) Hamiltonian

o= [0 (@000 + 45(e, )00, 0% = NI 5 (33)
2, n
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where we choose the A9 = 0 gauge for sake of simplicity. At ¢ = 7 the corresponding
Hamiltonian vector field of H; is given by

0 0
tn. =+ 3 1 (6D 5 — ) (3.32)

preserving the Kahler polarization J7. To quantize H, we have to consider further the
half form contributions. Choosing a reference half form vy on PT (3.16) normed by
1 (0,+,.+.,0,+,...) =1 quantum states are determined as

1 k

|Z >=8(2,2" vy = exp(—1/2 Z ztz,)o(2)v (3.33)

Then we obtain for the quantum operator H,

N 1] 1
B9 > = —e 2 T et (Z P Wczf)) v = 2 [T (Cer,)] w0
) k

(3.34),
- Z+Z T a T T 1 T
SRR TS ) P SIS
k k n

This confirms the interpretation (3.27) of 2,7 =8/8z as creation operator of a one particle
state in Fock space with energy A, > 0. The vacuum contribution

<O|H|0>,=—(1/2) ) |A]] (3.35)

of the Hamiltonian may be compensated by a redefinition of the classical Hamiltonian due
to Hr — H, +1/2%7|A7|, what does not effect the dynamics of the system.
n
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4. The Chiral Anomaly
a) U(1) Ano>maly in 4 Dimensions
The chiral transformation on a Dirac field ¥
§%(z,t) = —ay’ ¥(z,t) (4.1)
is a symmetry of the equation of motion (3.1). Noether’s theorem yields for the 4° current

(5°) () t) = ¥ (2, t)y°v*(iar°) ¥(z, t) (4.2)

the conservation law

3,(5°)*(z,t) =0 (4.3).
To obtain the anomaly of (4.3) we consider the nonconservation of the chiral charge, defined

by

/(]5) (z,t)d*z = Z/(gon )T (=)iar ol (z)d3z ¢t em (4.4).

mn
Z,

This is precisely the momentum map [13] of the chiral symmetry (4.1) with respect to the
symplectlc form w, (3.6). To express (4.4) in the holomorphic coordinates (3.17) we note
that 4° and B, commute, so they have a common eigenbase {¢r}. With the notion

3, =i / (68 ) (=)o’ o (2) (4.5)

T,

we see that these matrix elements ®f,, vanish if A\, # X! and obtain

F* = 3 () ot [(hn) se 50 — (i) ne <o) (4.6).

This yields the Hamiltonian vector field

s =+ 3 [ (@) g 50 = (Bhm) e <o) ((z;)+ B(Z‘Z - _Z;B%) (4.7).

mn

As the chiral transformation (4.1) is a symmetry of the theory, the chiral charge (4.4) is
conserved under the (classical) Hamiltonian dynamics (3.32) :

d

a _ 5
dt|, =& F

5|, F5 =0 (4.8).

Note that the term 8/8¢F® occurs due to a possible explicit time dependence via the
external field. Quantizing (4.8), i.e. considering the corresponding quantum relation

14



) (4.9)

t=r1

= [8,,5)+ 2

di

t=1

with (3.19) we obtain for the prequantum operators (2.24)

On, = —iém, Ops = —ips (4.10).

Furthermore {rs preserve the Kahler polarization provided by J(t) (3.14). So we obtain
at t = 7 for a state |X > given by (3.33)

. 1
5L >= —i(¢rsS)vo — 58[Trpr (Le,e)] - vo (4.11).

Fixing 7 = 0 for the sequel and using (4.7) we have

< 0]F3|0 >o=< 0| — ifms|0 >o= —% Z /((pg)"'(z)sign(Ag)a75<p?L(m)d3m (4.12).

™ S
Then the anomaly is determined by
d f5
A= —| <O0[F50>, (4.13).
dt t=0

To compute < 0|F5|0 >, at ¢ # 0 we have to use the coordinates provided by (3.30)
because of the time dependent polarization P?. By the classical conservation law it is clear
that the prequantum operators commute ([Op,,Ops] = 0) so we obtain

A= 53; _ ) %/(SO?L)+(:c)(,353;,2))—1sign(,\3n)a7557(:£)tp?z(w)+a(6t)2
a t=0 n . Eo (4.14).
= ot|,_, Xn: 22{(90?,)+(z)3t(3t) V22 (z)

Here ~ refers to replacing the eigenvalue expression sign(A*) = A*-(A*)~%/2 by the corre-
sponding formal series in the operator B;. This an identity in (4.14). However the infinite
potentially divergent series demands a regularization. Thus we start the summation over
the o2 from small energy eigenvalues A2, i.e. we choose a regulator

Ry = exp (—(;\‘3‘22) ~ exp (—%) (4.15)

and take the limit M — oo after the summation:

15



AP ' NN
A== Tim Y2 / d*z (p3)* (2)iBu(Bf) ™/ ar* Ropl(z) (4.16).
Ot|,_g M- 2 .

n Yo
This expression is well defined and we can proceed in analogy to [14], changing the basis
set to plane waves. We let Tr refer to both the trace over gauge group tr, and the v indices
tr, and define

' Sk ik 2\~1/2 B\ ik
K¥(z,t) := hm Tr— /(2 )3 et***B, (B?) ay® exp (—W)e (4.17)
to obtain ,

9 3, 14
A= — d’zK*(z,1) (4.18).

ot |,_, ,

To calculate K*(z,t) we define the operator
; i Aj(z,1)

Bi(k,z) :=~"4 [ k . 4.19),
+(k,z) ‘77(+M+M> (4.19)

substitute k — kM , eliminate the plane wave from the k integral and obtain

&3k
(27)°

B}(k,z) contains the gauge curvature Fji(z,t) = i9; Ay — 10k A; + [4;, Ag) :

Ki(z,t) = A}ExlerMaé/ ——5Bi(k,z) (Bi(k,z))~ 12 av® exp(—B3(k,z))  (4.20).

B2(k,z) = (k2 + %(M(z,t) +1kd) + %(2i§(z,t)5+ 164 + A% + 5%) - g k(2 t))

2M?
(4.21).
Expandmg K*(z,t) in M and using results of the appendix (A6), we see that only
terms proportional to €¥4;F;; will contribute in the limit M — oco. Then with (A10)
the Taylor expansion yields

4 ik 1 kg
K*(z,t) = —2ie*try | = [ ——s|kle™ aFji(z,0)4;(z,0)

(27)?
—5_/_(5—7r)_3|—k—|e A,(z,t)aij(:c,O)
= [ ——=—e " F; i 4.22).
(2m)3 |k|e ij(m,t)aA,(:c,O) ( )

1 Bk 1

-1 e A OF 00
1 [ %k K e,

+3 ) e Af@’t)ka(z’““)
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The last two terms are logarithmic divergent but can be properly regulated using (A14).
With a cyclic g permutation and the integration (A11) for the convergent terms we have

ietik
K*(z,t) = —amtrq (24;(z,0)Fji(z,0) — 24;(z,t)Fjr(z,0)

 +Ai(z,0)Fji(z, 1) — Ai(z,t)Fii(z,t))

what determines the integrated anomaly to be

(4.23),

(4.24)

From the computations it is clear that < 0|F®|0 >,_o= 0. Furthermore we can repeat
the above calculations for the other components of the v° current :

/ (%) (=, t)d’e = / (PL) T (@)’ v (iar® el (2)dP2 ccn (4.25).
2:

mn Eg

Using (A2) one can show

<0 ’/E‘(j%)k(z,t)dsm o>t=0 =0 (4.26)

All the calculations hold even if the transformation parameter a in (4.4) is taken to be
local, i.e. a = a(z). Choosing a(z) = §(z — y) this allows to quantize also the local

relation (4.3) and derive the nonintegrated form of the anomaly, what coincides with the
celebrate result (c.f.[15])

i
1672

8, < 0|(5°)*(z,)|0 >40= trye?° F,, F,, (4.27).

17




b) The Chiral U(1) Anomaly in D Dimensions

To determ.me the chiral anomaly in D dimensions (D even) we replace v° by
(—(3)P/24P*1) and all above considerations naturally generalize from the 4 dimensional
case. However to compute

KP(z.t)=— 1 T d_D—l_k +ikz p (B2 -1/2 (.\D/2 __D+1 _
(z,t) = Moo T (QW)D—1C ¢ (B?) ()" Pay” T exp

B§
M?

—ikz

(4.28)
explicitly is a more tedious work. Again we make use of the appendix (A6) to argue that
in the limit M — oo only terms proportional to

6ij1.njD—1AiFj1jz se FjD-zJ'D—1 (4'29)
will contribute. With the Taylor coefficients of (1 — z)~!/2 given by
(2n)!
bn = (nl)24n (4.30) .

the expansion of (4.28) yields

)= (e [ o <ZA<’” 9o () o i (252)
—Z%—IMA( ) )( ékz ))"a(Ni . (F(z,o))N—n

F(z,1) AN —n+1) k2 [F(z,0)\" "
;b"( 2k? ) a(N—n+1)!D—1 2 A(z,0)
(4.31).
Here we suppressed the indices, set N := D/2 — 1 and used (A7). The n = N terms of

the first and second sum in (4.31) are infrared divergent and have to be integrated with
(A14). The rest is a usual Gau integral (A11) and yields

KP(z, 1) (%) ™ q(%z 1),) (2bNA(:c,t)(F(ac,t))Na + 26y (F (2, )V aA(z, 0)
+]:=01 ( )! ('}sr _‘n)l!) Az, 1)(F(z, 1)) a(F(z,0))N "
_ :\;: (D ‘; = 2”) 32(?;‘ _1)7’:;!“ Az, t)(F(=, ) a(F(=,0))N -
_ :: (D - i_ 2”) ; sz’_"n)!(p(z,t))na(p(w, 0N A(s, 0)>

(4.32).
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After a cyclic g permutation this determines the anomaly in D dimensions by

[ 9

KP(z,t) = —ikper-in-1gr (aA (z,0)F;,5,(z,0)... F;p_,ip_.(, 0)) (4.33)

N e
Rl

t=0

where the coefficient kp computes from (4.32) to

D/2 _
KD = (W) (J()I;Z_ 11)' (bN + Z b ) (4.34).

This induces a recursion formula for kp that will be solved by

_ 2D (4"”)17/2 ﬁ (4.35).

Hence the integrated anomaly in D dimensions is determined by

(i)D/Z-}-le/.Lo...p,D..l : D1 ' _
A=-2 (D/2)! (am)D72 d" e aFou o Fup_sup s (4.36).
)]

(4]
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c) Non Abelian Anomaly

Also the non Abelian anomaly [15] can be discussed in this framework. Introducing
the pair of orthogonal projection operators

1 1
I =35 (1-4#7°) I =35 (1+i7°) (4.37)

the space of solutions of the Dirac equation is split into the direct sum V = Vi @ Vg of
left and right handed spinors. Now we consider Vy, to be the space of left handed solutions
only. As Il commutes with B, (because v° does so) we can choose the base {¢,} in (3.12)
to be given by eigenstates of II;,. Thus a base of Vf, is provided by the eigenstates to the

eigenvalue 1, denoted by {¢%}. The gauge transformation
§¥(z,t) = —1a,T°¥(z,t) (4.38)
yields for the Noether current
(=, t) = —UF (2, )7 v* (e T*)¥(z, t) (4.39)

on classical level a covariant conservation law

D,j*(z,t) = 0 (4.40).

On the quantum level we may obtain the (integrated) non abelian anomaly from

A2 = /(ao < 03010 >¢ + < 0|[H, 5°]|0 >, +[A%(z, 1), < O[5%[0 >,)d®z (4.41).

The last two terms on the r.h.s can be shown to vanish at ¢ = 0. Thus for a theory with
left handed Fermions only we have

< 0|FZ|0 >, v (4.42),
t=0

where similar to (4.4)

FP = Z (D/(gog)*'(z)aaT“*yscpgn(m)dsm cten (4.43).

©m,¥n€VL

For Il eliminates Vg we can rewrite the summation over Vy, as a sum over all of V and
obtain

FP = Z (E/(cpg)+(z)aaT“ I o2 (z)d3z | cten (4.44).
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The technical calculations of the anomaly now proceeds in the same way as above.
However the matrix elements ®,,, (4.5) have to be replaced by

+ of1— i75 3. :
Prn — | om(z)a,T > on(z)d’z (4.45)
o

Thus we have to compute instead of (4.17)

d3k

, _ 1 — 245
K:q(m,t) = 1\}1—1}100 Tl'/ (27!")3 e+zszt (Btz) 1 a, T* ( al

) B
(4.46).

With B? from (4.21) and the properties (A2) on the gamma trace we see that only the
part containing s will contribute. After a cyclic g permutation we obtain

iekrPo

3272

A7 = try /ds.'c a,T°F,, F,, (4.47)

Zo

On the other hand the non Abelian chiral transformation

§¥(z,t) = —a, Ty ¥(z,1) (4.48)

can be discussed similarly. For the matrix elements ®,,, we have instead of (4.45)

+ .5 o f1-— 575 3
Dnn — | om(z)iv a,T 5 on(z)d’z (4.49)
o '
and we obtain for the left handed Fermions
5 1etvPe 3 a
'AL = mtrq d’z aaT F#,,Fpa- (450)

Zo

The same considerations made for a theory with right handed Fermions only yield

9 1ekvoe 3 a
AR = —Wtrq/d :caaT Fp.qua-
Yo
. - (4.51)
Ag = mtrq/dsw a,T*F,, F,e
Zo

In a theory with different gauge connections Ay and Ag for the left handed and right
handed Fermions we thus obtain the (covariant) gauge anomaly and the chiral anomaly,
respectively as
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T .
Aq = 327!'2 /daw aaT (FﬂV[AL]FPU[AL} - F,uu [AR]Fpa[AR])
Zo
5 Xistdad 3 L L A A (4.52)
A= 3272 /d z oo T" (F#V[A |Fooe[A™] + Fyu [A7 ] Foo[A ])
Zo

For the calculation of the consistent anomaly one notes, that the current (4.39) is
defined by the gauge transformation (4.38) only up to a constant (in the phase space).
Thus the anomaly is determined in our framework only up to the covariant derivative of
a (local) polynomial in the gauge field. As shown in [15] the difference between covariant
and consistent anomaly is an expression of this type.
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Appendix

£

1) For the calculations involving 4 matrices in D (even) dimensions we use the the
conventions

{7} =29 = 2diag(+, ..., _)
()" =7"7*4° (A1).
7D+1 — 7071 . .7D—1 = (7D+1)+ — (_)D/2—17D+1

From this one derives the trace formulas

D+1_0 : y _ 0 k < .D - 1
tr,y (7 FlyOyn "'7“) = {2D/2€j1,-~jo-1 k=D-—1
tr., (7D+17j1...’yj“) =0 for 0 & {71,...7x} (42)
try (Y09 ...y*) =0 for 0 ¢ {jy,...5k}

2) In computing the integral XP(z,t) one has not to take care on ultraviolet diver-
gences because of the Gauflian regulator. However infrared divergences may appear from

o O0ni k. , .D.
B, (B2) V=12 Ei+D; .(1+2k’DJ

TR (A3)

L 1'Fu(z,t) + D;D;\ 72
k2M k2M?

with D; = Aj(z, t)+iaj; Each term of order (37)™ in the expansion of (A3) will contributes
with factors ()™! and (%)". Hence for the resulting D — 1 dimensional integral

1
MP-1 / kP~2dk Polynom (mk) (A4)
no IR divergences appear in order M7 for j > 0. In order M° there are logarithms

divergent contribution and for negative powers of M rational divergences appear, what
will be discussed below.

3) From (A2) it can be seen that in the 7 expansion of KXP(z,t) only terms will
contribute under the y-trace containing at least %:—2- factors

1
e

On the other hand no more then % such factors can contribute in the limes M — oo.

So performing the y-trace and suppressing the indices all terms in the expansion will have
the form

In® Fjy , (45)

dP-1p e—k’ F )D/2—1 A

. D—~160D/2 2 — —_— '
A}Enwtqu 2 e/ 2m)P—1 k| P(k )( e i (A8).
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where P(k?) is a Laurent polynom in k2, determined by the M-expansion of KP(z,t). Note
that one has to take care on the order of terms in (A6), what will be considered below. For

computing the polynom P explicitly we have to replace terms of the form k; (kA) under
the surface integral :

/dD-lk ki(EA) = E%T/ dP1k k2 4; (A7)

4) Determining P(k?) in (A6) one gets from the expansion of KP terms of the form

Eh’ win FJ1J2 (t) Jl 1(t)aFJz+1 ( ) Rjk—l(o)[iajk + Ajk(o)]ij+1'(0) N Fju—ljn (0)

(A8).
Then we can eliminate the spatial derivative 8; from the expression by using
€78 [i0: Fi(t)] = €% [Fij(t) An(t) — Ai(t)Fi(2)] (49)
and shift at ¢ = 0 the field 4(0) to the right. So we get for (A8)
6]'1,---,_7'" Fjljz (t) FJ! 2J1- 1(t) .71+1Jt+2(0) Jn 2Jn— 1(0)A.7n (0) (AlOa)

After integration by parts 9;, acts to the left, so we can use the same argument to show

I By o (8) - Foy_ ()05, + A, (1) Fjpa (8) - jk(t)aij“ (0)...F;,(0) =
eh’ ’]“AJx(t)FJJ.Jz(t) Jl 21— 1(t)aFJx+1Jl+z(0) Jn 2jn~ 1(0)A1n(0))

(A100)
5) The GauBian integrals in D — 1 dimensions yield
4P-1 D/2 —1)! _
f: |k|”e“’°2 _(1 (D/2—-1)! (D —-3+4+n | (411)
(2r)P-1 T 2(D - 2)! 2
for D — 2 4+ n positive and odd.
Furthermore one has to consider the IR divergent integrals
—k? D2 N r N+1
e " k¥ 4%dk 1 2(kk)
e e YO
with N = D/2 —1 (c.f. (4.22) and (4.31)). To regulate the logarithmic divergence we
substitute |k| — v/k2 4+ ¢ — € and expand the denominator around k? := k% + e. This

yields
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\ . 1 N+j+1/2
I = szv/e_’c kD_2c§N+le’ (———k2 n ) dk
- €

N
2bz\r+1(N‘|' 1) E/ e~ 1D 2N+3 1 tivs/ dk
k2 + € + €

(A13)

with c?M *1 the Taylor coefficients of (/1 — €)2M+1, More rigorously we would have to

substitute k> — k% + MZ%e — MZe in (4.21) before the expansion of B_l/ in M. By this
IR contributions are avoided not only for M° but in any order. However this also yields

A13). Expressin c21 +3 by cu ! and byy4q b by we receive after an integration by
g +1 by g
parts of the second term of (A13) :

2 p 2N+1 1 N+j+1/2
— ~k
I-sz/ k ZD—I (k2+6) dk

by —k2,p 1 Al4
=2—b__1/6 k kD—ldk ( )
"~ D-1
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