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Abstract
For the Kriehever.Novikov algebras and modules of meromorphie vector 6elds and forms
with more than two poles on higher l(enusRiemann surfaees explicit expressions of the
generators are given. These are expressions in terms of theta functions and prime forms
for 9 ~ 1, expressions in terms of the Weierstra8 (1 function for g = 1 and rational
expressions for 9 = o.



1. Introdudlon

In [1,~] Krichever and Novikov studied the algebra of meromorphic vector Helds which
.have poles only at two generic but find points on aRiemann surCaceof arbitrary genus g.
This algebra (with or without) central extension is now usually called Krichever.Novikov
algebra (short KN algebra). It is a generalization of the Virasoro algebra to higher genus
and it is of considerable interest in conCormal SeId theory ([6-8] and references [6-14]
in (a)). In (a] I reported on work done in (4]. The above results where generalized to
the situation where one allows the meromorpmc vector fields and forms to han poles at
more than two points. Similar results were achieved independently by Reiner Dick [al.

In [al ( and (ö] ) the existenee and uniqueness of a special set of generators and of
a basis of these generalized KN algebras and modules were proven by Riemann.Roeh
type arguments. Due to special interest in more explicit forms of the basis wmch were
used in [6-8] to ealeulate propagators in the two point case I decided to report in this
supplement to [al on the results I'] coneerning these more explicit forms. This will be
done for Riemann surfaees of genus g ~ 1by the use of theta functions and prime forms.
In the g = 1 case I give an alternative description in terms of the Weierstra8 (f function.
For the sake of completeness I repeat for g = 0 the result in terms of rational functions,
as it can already be found in [3,a].
For the details of the notation I refer to [3]. Let me just repeat the fundamental

definitions. We start with X aRiemann surface of genus, and ehoose a set of die
stinet points PI, P'J, ..• , Pk (k ~ 2) wmeh are in generie position. The KN algebra
KN(P1, P'J, ..• , Pk) is the Lie algebra of meromorphie vector SeIds whieh are holomor.
pme on X \ {P1,P'J, ... ,Pk}. F~(PllP2, •.• ,PIr) is the nctor space of meromorphic
forms of weight A E Z which are holomorpmc on X \ {PI, P2, ..• , Pk}. A meromorphic
form of weight A is a meromorphie section of the line bundle K~~. Here K denotes the
canonieal line bundle. Its seetions are the (1.) differentials. By taking the Lie deriva.
tive with respeet to the vector Helds in the KN algebra, F~ (Pb P2, ... , Pk) will become
a Lie algebra module over KN(Pll P'J,. .. ,Pk), called the KN module of weight A. oe
course, F-I(PlJP2, ••• ,Pk) =KN(P1JP2, ..• ,Pk). One can also allow non.integer A by
considering spin bundles (for half integer..\) or coverings of X (for rational or real A, see
[4,8]).
We denote by

(1)

a form of weight A wmch has a zero of order flj at Pj for i= 1,... , Ieand is holomorphic
elsewhere. As usual a zero of negative order is a pole. We set

(2) M(..\) = (2..\-1)(, -1) - 1 .
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It was proven in ['I and reported in [3,Prop.1 and 2] that in the case 9 = 0 or 9 ~ 2
and A :F 0,1 the elements (1) with~ Er=1 ni = M(A) are uniquely determined (up to
multiplication with a constant) and that the set of such elements forms a set of generators
for F>' (PI' P'J, ••• , PIt). By choosing a loca! coordinate ZIt at PIt and requiring that the
lowest coefficient in the Laurent series expansion of (I) at PIt should be equal to 1, we
can fix (1) uniquely. In the remaining cases a finite set of generators have to be modified.
A veetor space basis of F>' (PI' P2, ••• , PIr) can be gained as a subset of the above set of
generators, see [3] for details.

~. The c:onstrudion via theta func:tionsand prime forms in the cue
9 ~ 1 • General cue.

Here I follow the technique used in [6]. Let me first colleet the relevant facts on the
building blocks~[9.1~1.

Let X be aRiemann surface of genus 9 ~ 1. al , a'J, .•• , a" bl, b'J, ••• , bg a sYJnplectic
homology basis. "-'I, "-''J,.' ., w, the corresponding set of holomorphic (1-)differentials

(3) 1= bi,j,Jai 1= 1ri,j,
Jbi

The Jacobian Jac(X) of X is given as

(4) ('/£,

The theta function is defined as

(5) 19(z,IT)= L exp(1rltn.IT.n+2dtn.z)
nE Z'

for :e E ('. 19 is a holomorphic function on (' with the following quasi-periodic behaviour
under translation of :e with veetors from the lattice £ (m E Z')

(6)
(7)

t9(z + m, II) = 19(z, IT)
19(z + II. m,IT) = exp(-ll'itm' IT. m - 2dtm. z)' t9(z,IT) •

We fix X and our homology basis. Hence we will drop the period matrix n in the
notation.

The Riemann surface can be embedded via the Jacobi map J into its Jacobian. For
tros we choose a base point Q E X and set

(8) X -+ Jac(X) , P 1-+ J(P) := (hP "-'I,f;"-'2"", kP"-',) mod £ .
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(J; is an arbitrary path from Q to P.) I will use J (P) for both the image of P in
Jac(X) and _themulti valued image in C'.

The pullback P H 19(J(P) of -0 is a multi valued function on X. Riemann's theorem
(10,I,p.149)] says: There exists a vector ~ E C' (the Riemann vector) such that for
every w e C' either 19(J(P) +w) vanishes identieally on X or it has exactly 9 zeros
QI, Q2, ... ,Q, (not neeessarily distinct) with,
(9) LJ(Q;) = -w +~ mod L .

j=1

In the following, we will use as vector w eertain values which will depend on our points
PI, P2, ••• , Pir' Ir we choose them generic the first case will never oecur [12, theorem
VI.3.3] . Immediately from (9) it follows that

(10) 19(J(P) - gJ(PIr) +~)
has a zero of order 9 at Pir and vanishes nowhere else.

The next building bloek is the prime form E(P, R) [10,ß,p.3.210]. It is a multi valued
form on X x X of weight -(1/2) in each argumentl. It has the following properties:

(11) E(P,R) = 0 iI and only iI P ~ R

and this zero is of order 1. It is antisymmetrie in its arguments.
If P is moved around the homology cydes, ,
(12) P H pi = P +L:njaj +L:mjbj (" = Pli)

;=1 ;=1

weget (with tm=(ml,m2, ... ,m,))

(13) E(PI, R) = E' exp(-dtm . TI. m + 21rtm. (J(R) - J(P)). E(P,R) .

Eisa sign factor which depends on the eyde and the charaeteristie of the theta function
used to define the prime form.

The third building block is the q. difFerential. We define it as

(14)

It is a holomorphic multi valued form of weight g/2 without zeros. Under (12) it
transforms as

(15) q(P') = E' . exp (i1r(g - l)tm. TI. m - i21rt (~ - (g - I)J(P))) q(P) .
If q' is another g/2 form with the same transformation (15) it will be a constant multiple
of q. Hence up to multiplication with a constant our q agrees with the q in [11, p.31]
and [6].

10( course, it can also be considered as single valued form on some covering i xi, or as some section
of a a suitable line bundle on X x x.
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PROPOSITION, Let g ~ 2 and ,\ =F 0, 1 and

Ir

(16) nl, n~", " nk e Z, Lni =M('\) = (2'\ - 1) (g - 1) - 1
i=1

then there exits a constant K e «: such that

(17)

k-l
1.\(n1l "'2," " nk)(P) =K. rr E(P, Pi) n, . E(P, PIr)n.-(2.\-I), .

i=1
k

d(J(P) - gJ(Pk) +A)(2.\-I). d(J(P) +L niJ(Pi) - (2'\ -1)A) ,
i=1

PROOF: By an easy calculation (details in I']) it is verified that the right hand side is
a form of weight ,\ which is single valued, It has exactly the zero order ni at the point
Pi (resp, pole order -ni at P;), Tllls is due to the fact that the last theta function
term cannot increase the order of the zeros at the points Pi. Otherwise there would be
a meromorphic section of K.\ which has more zeros at the Pi as the prescribed one, By
a Riemann.Roch type argument it was proven in 14], resp, [3,(15)] that there is no such
section beside the trivial onel, Because the generator on the leh hand side is lind up to
a multiplicative constant this shows the claim.

The constant K depends on the points Pi, the multiplicities niand the weight ,\, It
can be calculated by calculating the lowest coefficient of the Laurent series expansion of
the right hand side of (17) with respect to the coordinate Zk around PIr which was chosen
to fix I.\(n},n~, .• "nk) (see [6] in the case k = 2),

Using the definition of u we can simply rewrite (17) as

(18)

Ir

I.\(nll n2, .. " nlr)(P) = K. rr E(P, Pj)n,. O'(P)(~.\-I) .
;=1

k

d(J(P) +L njJ(P;) - (2'\ -1)A)
;=1

which reduces in the case k = 2 to the form given in 16].

lThe nonvanishing 01 the last term eao also be proven by usiog Riemaon's theorem.
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3. The CODltructloDvia theta functloDI and prime forml In the ca••
9 ~ 1. ExceptloDal cuel.

We consider first 9 ~ 2 and A = 1, hence M(.\) = 9 - 2. As it was described in
[3,(22).(24)] we have to consider 3 different types of generators. Type (3,(23)] is the
generic one

Ie
(19) />'(nl' n~, ••• , nie), at least one nj S -2, all nj :f: -1, Enj =M(..\) = 9 - 2 .

i=1

Here again (17) and (18) give the generators. For example (17) specializes to

(20)

k-l
/1 (nI!n~,... , nk)(P) = K . n E(P, p.-)"j . E(P, Pk)na-g •

i=1
Ir

-t9(J(P) - 9J(Pk) +A) . t9(J(P) +LniJ(Pi) - A) .
j=1

(21)

To get the generators ofthe form [3,(24)] we start for every pair of points Pi, Pj, i< i
with

d (I E(P, Pi) )
Wi,j := og E(P, Pj) . -

It is a meromorphic (1.) differential on X, which is holomorphic on X \ {PI!P~} . It
has pole order 1 at the points Pj and Pj with residues +1 and -1. If integrated along
the ai cycles it has zero periods [10,11,3.212]. By adding a suitable linear combination
of holomorphic differentials Wl we can achieve that the resulting differential has pure
imaginary.periods [O,p.116]. The result is

(22)
/1 (0,... , -1,0, ... , -1, ... ,0) = Wi,j +

j L: (L:((ImIIt1)r •. (Re tWi,j)) Wr •
r • ~

Here i and i denote the indices I with nl = -1.
It remains [3,(22)]

(23)
k

/1(nl' n~, ... , nk), all ni ~ 0, L nj = (g - 1) .
j=1

To construct such a form we have to take an additional point REX different from all
Pi and get
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(24)

.-1
11(ni, n:;l,..• , nk-)(P)= K . TI E{P, Pi)"' . E(P, Pk)nt-' •E(P, Rt 1 •

i=l

•
19(J(P) - gJ{P.) +~) . 19(J{P) +E niJ{Pd - J{R) -~) .

i=l

As in the general case this is a differential on X. The pole of E{P,R)-l at P = R is
annihilated by a zero of the last theta function term. Otherwise, the right hand side
would be a differential with exactly one pole of order one. But this is impossible due to
the residue theorem. The form does not depend on the point R chosen, ooly the constant
K does. A possible choice could be the base point Q of the Jacobi map.
Here agam we can rewrite (24) as

(25)

•
11(ni, n:;l,..• , n.)(P) = K .TI E{P, Pi)"' . o(P) . E{P,Rtl •

i=l

•
19(J(P)+ EniJ(Pd - J{R) -~) .

i=l

This coneludes the case >. = 1.

Now we consider 9 ~ 2, >. = 0 or 9 = 1 and all >.. We have M(O) = -go Agam there
are 3 types of generators as described in [3,(28).(30)). Clearly, type [3,(30)] is

(26)

Type [3,(28)] is the generic one

1°(0, ... ,0) == 1 .

(27)

We get

(28)

k

1° (nI, n:;l,... , nk), at least one ni > 0, L ni = -g .
i=l

k-I
10(nll n2, ..• ,nk)(P) = K. rr E(P,Pi)"' . E(p,PIr)nt+' .

i=l

•
19(J(P) - gJ(PIr) +~r1 .19(J(P) +L niJ(Pd +a)

i=l
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or

(29)

Ir

JO(nI! n:), ... , nl;)(P) = K . IIE(P, P.-)"' . u(Pt 1 .
i=1

Ir

d(J(P) +L njJ(Pi) +~) .
i=1

It remains the case [3,(29)]

(30)
Ir

JO(nI, n:), ... , nl;), all ni S 0, 1:nj = -(g +1) .
i=1

Agam we choose a point R and set

(31)

or

(32)

1;-1

JO(nb n:), ... , nl;)(P) = K . IIE(P, P.-)"' . E(P, PIr)"t+g . E(P,R) .
i=1

I;

19(J(P) - gJ(Pk) + ~rl.19(J(P) +1:niJ(P;) + J(R) + a)
i=1

I;

JO(nI' n~, ... , nl;)(P) = K .IIE(P, Pi)"' . U(P)-1 . E(P,R) .
i=1

I;

d(J(P) +Ln.-J(Pi) + J(R) +~) .
i=1

The function has a zero at the point R. By varying R we get different functions. This
reßects the fact .that in this case we wen only able to fix the generator up to addition
of a constant function and multiplication with a constant. The function can be find by
requiring the duality relations given in [S,prop. 8] to be valid.
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,. Tbe con8truction via tbe Welentral O'-fundion in tbe 9 = 1 cale.

As it was done in [1,13] for Je= 2 we will describe a different construction in the genus
1 case. Let T be a torus (Le. a genus 1Riemann surface ) given as (/L with La lattice
in (. We can restrict ourselves to the case

(33) L = Z EBr. Z, rE (, Imr > 0 •

An arbitrary torus is always complex analytic isomorphie to such a torus. WeierstraB
O'.function is de6ned as

(34)

0' is a holomorphic function. It is odd and has only zeros at the lattice points. The order
of each zero is equal to one[I']. Of course, 0' is not a doubly periodie function, hence
not a function on the torus. But if we take

(35)
m

/(z) =n(O'(z - ai))nl
i=1

we get that / is a doubly periodic function with zeros of order fti at the points ai +L if
and only if

(36)
m

(a) Lni=O
i=1

m

(b) Lniai = O.
i=1

Let PI, P2, ••• , Pk be the points chosen to de6ne the Krichever. Novikov algebra on T.
We choos4lai E ( with

(37) ai mod L = Pi, i = 1, ... , Je

and fix them. Because the canonical bundle K on T is trivial we have

(38)

Rence it is enough to determine /O(nl' ft2,... , ftk).
Agam we have the 3 different types of section 3. (26) remams the same: /0 (0, ... ,0) == 1 .
In the generic situation (27) we set

(39)
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and get

(40)
Ir

/0 (nb n~, ••• , nlr) = C . II(O'(z - ai))n, . 0'(% - b) •
i=1

The conditions (3ß) are fulIfiIled. Renee the right hand side of (40) is a doubly periodic
function. If the Pi are chosen to be in general position the point b mod L will never
coincide with any ai mod L . Otherwise O'(z - b) would increase the order of the zero
at the point Pi. As in the generic case (section 2.), we know there is no such nontrivial
funttion. Rence (40) is in fact the generator we are looking for. If we choose the Iocal
coordinate Zir= z - alr around the point Pie we can determine the constant C as

(41)
Ir-I

C-l = TI(O'(alr-ai))n'.O'(alr-b).
i=1

The remaining case (30) consists of two possibilities

(42) /°(0, ... ,0, -2,0, ... ,0) and /°(0, •.. , -1,0, •.• , -1,0, ..• ,0) .

Let the points of nonzero order be ai, resp. ai and aj with i< i. We determine Wl and
W:l such that

(43)

and that

(44) Wb w~ =1= al mod L for l = 1, ... , Je.

Generators of the types in (42) are now given by

(45) /°(0, ,0, -2,0, ,0) = CO'(z - a;)-~ . u(z - wd . O'(z - w~) +D
(46) /°(0, ,-1,0, ,-1,0, ... ,0) =Cu(z-a;)-l.u(z-aj)-I.

O'(z - wd . O'(z - W:l) +D .

Here C and D are constants which ean be suitable fixed. In the ease of the basis in [S]
(where only (4ß) and only i= Jeoccur) the choice compatible with the duality is
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6. The construction via rational functions In the g = 0 case.

For the sake ol completeness I will repeat the generators ror the g = 0 case (X = Ipl).
They have already appeared in [3,5]. We choose a parametrization % or Ipl, such that PI
corresponds to z = 0 and Pk corresponds to z = 00. The remaining points P, correspond
to a, :F 0,00. Let nj be given such that E~=Inj = M().) = -2). then we have

(48)
k-I

f~(n},n3, ... ,nk)(%)= (-1)~.%nl rr(%-a;)n'(d%)~.
j=2

In fact, Üwe calculate this form in the local coordinate around Pit given by w = !we
zget

(49)

Rence we have exactly the prescribed zero of order nk = -2). - Er;ll nj at Pli:.

Note added.
While_this manuscript was typed I received a written version of a talk presented by Reiner
Dick at the workshop: Physics and Geometry 1989 [15] where he gave expressions similar
to those in section 3 and 4 ror bis generators in [5].
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