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Abstract

For the Krichever-Novikov algebras and modules of meromorphic vector fields and forms
with more than two poles on higher genus Riemann surfaces explicit expressions of the
generators are given. These are expressions in terms of theta functions and prime forms
for g > 1, expressions in terms of the WeierstraB o function for ¢ = 1 and rational
expressions for g = 0.




1. Introduction

In [1,3] Krichever and Novikov studied the algebra of meromorphic vector fields which
‘have poles only at two generic but fixed points on a Riemann surface of arbitrary genus g.
This algebra (with or without) central extension is now usually called Krichever-Novikov
algebra (short KN algebra). It is a generalization of the Virasoro algebra to higher genus
and it is of considerable interest in conformal field theory ([6-8] and references [6-14]
in [8]). In [3] I reported on work done in [4]. The above results where generalized to
the situation where one allows the meromorphic vector fields and forms to have poles at
more than two points. Similar results were achieved independently by Reiner Dick [5].

In [8] ( and [5] ) the existence and uniqueness of a special set of generators and of
a basis of these generalized KN algebras and modules were proven by Riemann-Roch
type arguments. Due to special interest in more explicit forms of the basis which were
used in [6-8] to calculate propagators in the two point case I decided to report in this
supplement to [3] on the results [4] concerning these more explicit forms. This will be
done for Riemann surfaces of genus g > 1 by the use of theta functions and prime forms.
In the g = 1 case I give an alternative description in terms of the Weierstra o function.
For the sake of completeness I repeat for g = 0 the result in terms of rational functions,
as it can already be found in [8,5].

For the details of the notation I refer to [3]. Let me just repeat the fundamental
definitions. We start with X a Riemann surface of genus g and choose a set of di-
stinct points Py, Py,...,Px (k 2> 2) which are in generic position. The KN algebra
KN(Py, Ps, ..., Pg) is the Lie algebra of meromorphic vector fields which are holomor-
phic on X \ {P,, Pa,...,Px}. F>(P,,P,,...,P;) is the vector space of meromorphic
forms of weight A € Z which are holomorphic on X \ {Py, P;,...,P:}. A meromorphic
form of weight ) is a meromorphic section of the line bundle KX®*, Here K denotes the
canonical line bundle. Its sections are the (1-) differentials. By taking the Lie deriva-
tive with respect to the vector fields in the KN algebra, F* (P1, Pay ..., Py) will become
a Lie algebra module over KN(Py, Py,..., P), called the KN module of weight A. Of
course, F~1(Py,Py,...,Py) =KN(Py,P,,...,Px). One can also allow non-integer A by
considering spin bundles (for half integer )) or coverings of X ( for rational or real ), see
[4,8)).

We denote by

(1) fx(ﬂl,nzy---,nk), all n, el

a form of weight A which has a zero of order n; at P; for s =1,..., k and is holomorphic
elsewhere. As usual a zero of negative order is a pole. We set

(2) MQ)=@2\-1)g-1)-1.
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It was proven in [4] and reported in [3,Prop.1 and 2| that in the case g =0 or g > 2
and A # 0,1 the elements (1) with- 15 n; = M(\) are uniquely determined (up to
multiplication with a constant) and that the set of such elements forms a set of generators
for FA(P,, P3, ..., Pi). By choosing a local coordinate z; at P; and requiring that the
lowest coefficient in the Laurent series expansion of (1) at Pi should be equal to 1, we
can fix (1) uniquely. In the remaining cases a finite set of generators have to be modified.
. A vector space basis of FX(Py, Py,..., P) can be gained as a subset of the above set of
generators, see [3] for details.

3. The construction via theta functions and prime forms in the case
g 21 . General case.

Here I follow the technique used in [6]. Let me first collect the relevant facts on the
building blocks_[9-13].

Let X be a Riemann surface of genus g > 1. a1,43,...,44, b1,b3,...,b; a symplectic
homology basis. w;, w3, ...,wy the corresponding set of holomorphic (1-)differentials

(3) f;} = 8i,jy f;{ =7y M=(m,).
The Jacobian Jac(X) of X is given as

(4) /L, L=T6l Z¢9.

The theta function is defined as

(5) 9(z,1I) = Z exp(#ifn -1 -n <+ 2zi'n- z)
ne !

.

for z € €9. 9 is a holomorphic function on €9 with the following quasi-periodic behaviour
under translation of z with vectors from the lattice L (m € 29)

(8) 9(z + m, 1) = 9(z, 1)
(7) 9(z+1-m,I0) =exp(—#l'm - -m — 2xi'm - 2) - §(2,10) .

We fix X and our homology basis. Hence we will drop the period matrix IT in the
notation.

The Riemann surface can be embedded via the Jacobi map J into its Jacobian. For
this we choose a base point Q € X and set

8 X — Jac(X), PHJ(P):=(/pr1,pr9,...,pr,) mod L .
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(f; is an arbitrary path from Q to P.) I will use J(P) for both the image of P in
Jac(X) and the multi valued image in C9. '

The pullback P — ¢(J(P) of ¢ is a multi valued function on X. Riemann’s theorem
[10,1,p.149]] says: There exists a vector A € €f (the Riemann vector) such that for
every w € C7 either 9(J(P) + w) vanishes identically on X or it has exactly g zeros
Q1,Q3,...,Qy (not necessarily distinct) with

g
(9) E-’(Qi)=-w+A mod L .
=1 .

In the following, we will use as vector w certain values which will depend on our points
P, P,,...,P;. If we choose them generic the first case will never occur [13, theorem
V1.3.3] . Immediately from (9) it follows that
(10) 9(J(P) —gJ (P) +4)
has a zero of order g at Py and vanishes nowhere else. .

The next building block is the prime form E(P, R) [10,11,p.3.210]. It is a multi valued
form on X x X of weight ~(1/2) in each argument!. It has the following properties:
(11) E(P,R)=0 ifandonlyif P=R

and this zero is of order 1. It is antisymmetric in its arguments.
If P is moved around the homology cycles

(12) PHP'=P+2g:n,'a.-+zg:m.-b,- (“=P")
i=1 =1

we get ( with ‘m = (m;,ma,...,my) )
(13) E(P',R)=¢-exp(~7i'm-Il-m + 22'm - (J(R) — J(P))- E(P,R) .
€ is a gign factor which depends on the cycle and the characteristic of_ the theta function
used to define the prime form.

The third building block is the o- differential. We define it as
(14) o(P)=9(J(P) - gJ(Pe)+ A)- E(P,Py)~*
It is a holomorphic multi valued form of weight g/2 without zeros. Under (12) it
transforms as
(15) o(P')=¢-exp(ir(g—1)'m -M-m~i22*(A - (g - 1)J(P)})o(P) .
If o is another g/2 form with the same transformation (15) it will be a constant multiple

of 0. Hence up to multiplication with a constant our o agrees with the o in (11, p.31]
and [8].

1Of course, it can also be considered as single valued form on some covering X x X, or as some section
of a a suitable line bundie on X x X.




PROPOSITION. Let g > 2 and A # 0,1 and
k
(18) ny,N3,..., Nk €L, En,-=M(A)=(2/\—l)(g—l)—l
i=1

then there exits a constant K € € such that
k-1
/"(m, ng,...,nx){(P)=K- H E(P,P;)" - E(P, Pk)"'“(”“l)’ .

i=1

(17) : |
(I (P) —gd (P) + 8) 2"V . 9(J(P) + Zk:n.'J(P.') - (2A-1)a) .

(=1

PROOF: By an easy calculation (details in [4]) it is verified that the right hand side is
a form of weight A which is single valued. It has exactly the zero order n, at the point
P; (resp. pole order —n; at P;). This is due to the fact that the last theta function
term cannot increase the order of the zeros at the points P;. Otherwise there would be
a meromorphic section of K* which has more zeros at the P; as the prescribed one. By
a Riemann-Roch type argument it was proven in [4], resp. [8,(15)] that there is no such
section beside the trivial one!. Because the generator on the left hand side is fixed up to
a multiplicative constant this shows the claim. :

The constant K depends on the points P;, the multiplicities n; and the weight ). It
can be calculated by calculating the lowest coefficient of the Laurent series expansion of
the right hand side of (17) with respect to the coordinate z; around Py which was chosen
to fix f2(ny,n3,...,nk) (see [6] in the case k = 2).

Using the definition of ¢ we can simply rewrite (17) as

k
JAn1ng,. ) (P)=K - HE(P, P)™ - g(P)3-1) .
(18) o
(I (P)+3_niJ (P) — (21 - 1)A)

which reduces in the case & = 2 to the form given in [6].

1The nonvanishing of the last term can also be proven by using Riemann’s theorem.
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3. The construction via theta functions and prime forms in the case
g 2 1. Exceptional cases. _

We consider first g > 2 and A =1, hence M{\) = g ~ 2. As it was described in
[3,(22)-(24)] we have to consider 3 different types of generators. Type [8,(23)] is the
generic one

(19) f*r1,nay...0n5), at least one n; < =2, all n; # -1, in; =M(A)=g-2.
i=1
Here again (17) and (18) give the generators. For example (17) specializes to
k-1
fH(riymay..omi)(P) = K - [] E(P, P)™ - E(P, P9 .
(20) = \
F(J(P)—gJ(P)+4)-9(J(P)+) nJ(P)-4).

i=1

To get the generators of the form [8,(24)] we start for every pair of points P;, Pj,i<y
with

— E(P,P; ]
(21) wiji=4d (log E—(-P,—PJ))') .

It is a meromorphic (1-) differential on X, which is holomorphic on X \ {P,, P} . It
has pole order 1 at the points P; and P; with residues +1 and —1. If integrated along
the a; cycles it has zero periods [10,11,3.212]. By adding a suitable linear combination
of holomorphic differentials w; we can achieve that the resulting differential has pure
imaginary periods [9,p.116]. The result is

S0, .., =1,0,. ., =1,...,0) = w; ; +
) i (E((Imﬂ)“),, . (Re-{b .w.',j)) W .

Here ¢ and ; denote the indices | with n; = —1.
It remains [8,(22)]

k
(23) S n1,nay..yng), alln; 20, En,-=(g—l).

i=1

To ‘construct such a form we have to take an additional point R € X different from all
P; and get



k-1
S ni,na, ..} (P) =K - ]'I E(P,P)™ -E(P,Py)™~$-E(P,R)™" -
(24) =1 R
9(J(P)—gJ (P) +4)-9(J(P)+)_ nid (P)) — J(R) - &) .

i=1

As in the general case this is a differential on X. The pole of E(P,R)"! st P =R is
annihilated by a zero of the last theta function term. Otherwise, the right hand side
would be a differential with exactly one pole of order one. But this is impossible due to
the residue theorem. The form does not depend on the point R chosen, only the constant
K does. A possible choice could be the base point @ of the Jacobi map.

Here again we can rewrite (24) as

k
SHr1,na,..om)(P) = K - [ E(P, P)™ - o(P) - E(P,R)"! -

i=1

(25) \
9(J (P) + En.-J(P.-) - J(R)-4).

=1

This concludes the case A = 1.

Now we consider g 22, A=00r g =1 and all \. We have M(0) = —g. Again there
are 3 types of generators as described in [8,(28)-(30)]. Clearly, type [8,(30)] is

(26) 1°00,...,0)=1.
Type [8,(28)] is the generic one

k

(27) f%n1,nay...,nk), at least one n; > 0, Zn,- =-—g.
. =1
We get
k-1
S°(n1yns, .. ni)(P) =K - [ E(P,P)" - E(P, Py)m+s -
(28) =1

k
9(J(P) ~gJ (Pe) +A) ' -9(J(P)+_ nid (P) +4)

=1




or

k
fo(nl,ng,,..,n,,)(P) =K. IIE(P,P',)M . U(P)"l .
(29) o
O(J(P)+ > niJ(P)+4) .

=1

It remains the case [3,(29)]

k .
(30) fo(nx,nz,...,m,), all n; <0, En,- =—(g+1).

=1
Again we choose a point R and set

k-1

Io(niynay ..o ni)(P) =K - ]'I E(P,P)" - E(P,P,)"**9 - E(P,R) -
(31) =1 \
9(I(P)=gJ(P)+A4)"" - 9(J(P) +Zn-'1(P-') +J(R) +4)
k
f(n1yn3,. i) (P)=K - [ E(P, P)™ - o(P)~' - E(P,R) -
(32) =1

9(J(P) + in.-J(P.-) +J(R)+4) .

. i=1

The function has a zero at the point R. By varying R we get different functions. This
reflects the fact that in this case we were only able to fix the generator up to addition
of a constant function and multiplication with a constant. The function can be fixed by
requiring the duality relations given in [3,prop. 8] to be valid.




4. The construction via the Weierstrai os-function in the g =1 case.

As it was done in [1,18] for ¥ = 2 we will describe a different construction in the genus
1 case. Let T be a torus (i.e. a genus 1 Riemann surface ) given as €/L with L a lattice
in €. We can restrict ourselves to the case

(33) L=2®r-%, r€C Imr>0.

An arbitrary torus is always complex analytic isomorphic to such a torus. Weierstraf§
o-function is defined as

4 oey=s- IT (1= Dem (24 327)) -

wel

o is a holomorphic function. It is 0odd and has only zeros at the lattice points. The order
of each zero is equal to one[14]. Of course, o is not a doubly periodic function, hence
not a function on the torus. But if we take

(9 ) =[Ttete -

we get that f is a doubly periodic function with zeros of order n; at the points a; + L if
and only if a

(36) (a) in:n.' =0 (b) Zn:n.-a.- =0.

Let Py, P,..., Py be the points chosen to define the Krichever-Novikov algebra on 7.
We choose a; € € with

(37) a; modL=P;, i=1,...,k

and fix them. Because the canonical bundle K on T is trivial we have
(38) I (n1yna, .. yne) = f0n,na, .., n) (d2)
Hence it is enough to determine f%(ny,n3,...,nk).

Again we have the 3 different types of section 3. (26) remains the same: f°(0,...
In the generic situation (27) we set

(39) b= (Ek: n,-a.-)

1.

=]
'
n
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and get
k
(40) : fo(nl,ng,...,nk)=C-H(a(z—a.-))"‘-a(z—b) .

The conditions (36) are fullfilled. Hence the right hand side of (40) is a doubly periodic
function. If the P; are chosen to be in general position the point 5 mod L will never
coincide with any a; mod L . Otherwise o(z — b) would increase the order of the zero
at the point P;. As in the generic case (section 2.), we know there is no such nontrivial
function. Hence (40} is in fact the generator we are looking for. If we choose the local
coordinate 2z = z — a; around the point Py we can determine the constant C' as

k-1
(41) S Cl= H(o(a}, —ai))-ofer - b) .
=1

The remaining case (30) consists of two possibilities
(42) r°0,...,0,-2,0,...,0) and f°(0,...,~1,0,...,~1,0,...,0) .

Let the points of nonzero order be a;, resp. a; and a; with s < j. We determine w; and
wy such that -

(43) wy + w3 = —2a; Tresp. wy+wi=—(a; +a;)
and that
(44) w,wg#a modL for I=1,...,k.

Generators of the types in (42} are now given by

(45) /°,...,0,-2,0,...,0) =Co(z —a;)~2-o(z —w1) - 0(z ~ w3) + D
(46) r°(,...,-1,0,...,-1,0,...,0) =Co(z — a;) "} - oz — a;) "1 -
o{z—w1)-o(z—w3)+D.

Here C and D are constants which can be suitable fixed. In the case of the basis in [3]
(where only (48) and only j = & occur) the choice compatible with the duality is

(47) D=0 and C'=oc(ar—a;)"! o(ax —wi)- o(as —ws) .
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8. The construction via rational functions in the g = 0 case.

For the sake of completeness I will repeat the generators for the g = 0 case (X =P,
They have already appeared in [8,6]. We choose a parametrization z of IP! , such that P,
corresponds to z = 0 and P corresponds to z = co. The remaining points P; correspond
to a; # 0,c00. Let n; be given such that Zle ni = M()A) = —2) then we have

k-1

(48) PArsnay. i) (2) = (=1) 2 J] (2 - a)™ (d2)* .

i=2

In fact, if we calculate this form in the local coordinate around Py given by w = ! we
z v
get

- -1 k-1
(49)  SAnaina,...ome)(z(w) = w (- ZiZ o) [10 - aiw)(du)* .

Hence we have exactly the prescribed zero of order n; = —2)\ — Ef;ll n; at Pg.

Note added.

While this manuscript was typed I received a written version of a talk presented by Reiner
Dick at the workshop: Physics and Geometry 1989 [15] where he gave expressions similar
to those in section 3 and 4 for his generators in [5].




References

10.
11.

12.
13.

14.

15.

. M. Krichever and S.P. Novikov, Algebras of Virasoro Type, Riemann Surfaces and

Structures of the Theory of Solitons, Funk. Anal. i. Pril. 21 (2) (1987), 46.

. IM. Krichever and S.P. Novikov, Virasoro Type Algebras, Riemann Surfaces and

Strings in Minkowsks Space, Funk. Anal. i. Pril. 31 (4) (1987), 47.

- M. Schlichenmaier, Krichever-Novtkov Algebras for More Than Two Posnts,

KA-THEP-1989-6 (April 89) and Man.Fak.M.IMannheim 97-1989 (to appear in
Lett Math.Phys.).

- M. Schlichenmaier, Verallgemesnerte Krichever-Novikov Algebren und deren Darstel-

lungen, (to appear).

- R. Dick, Krichever-Novikov-lske Bases on Punctured Riemann Surfaces, Desy 89-059

{May 89) (to appear in Lett.Math.Phys.).

. L. Bonora, A. Lugo, M. Matone and J. Russo, A Global Operator Formalism on

Higher Genus Riemann Surfaces: b-c Systems, Comm. Math. Phys. 128 (1989),
329-352. '

- A.Lugo and J. Russo, Hamiltonian Formulation and Scattering Amplitudes in

String Theory at Genus g, SISSA 83/88/EP.

- L. Bonora, M. Matone and F. Toppan, Real Wesght b — ¢ Systems and Conformal

Field Theory in Higher Genus, ISAS/SISSA 55/89/EP.

- M. Schlichenmaier, “An Introduction to Riemann Surfaces, Algebraic Curves and

Moduli Spaces”, Lecture Notes in Physics Vol. 322, Springer, 1989.

D. Mumford, “Tata Lectures on Theta LII”, Birkhauser, 1983(1984).

1.D. Fay, “Theta Functions on Riemann Surfaces”, Lecture Notes in Math. Vol.352,
Springer, 1973.

H. M. Farkas, I. Kra, “Riemann Surfaces”, Springer, 1980.

L. Mesincescu, R.I. Nepomechie, C.K. Zachos, (Super)conformal Algebra on the
(Super)torus, UMTG-144 and ANL-Hep-Pr-88-23.

A. Hurwitz, R. Courant, “Allgemeine Funktionentheorie und elliptische Funktionen” ,
Springer, 1964.

R. Dick, Holomorphic Differentials on Punctured Riemann Surfaces, Talk presented
at the workshop : Physics and Geometry , Lake Tahoe 3-8 July 1989 (to appear in
the proceedings).

12



	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012

