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1. Introduetion

Given subsets T, C and a function f : T x C -> IR, consider the following infsup-

Problem (P)

minimize {sup ft(x) : x E C}
tET

where ft(x) = f(t, x).

If Cis a subset of a finitedimensional space X then (P) is known in the literature as

a semi-infinite program (SIP) whose theory is given in [2,5,6,9,12,14,19-21,23]. Second

order necessary and sufficient optimality conditions for SIP are obtained in [9,23] under

the assumption that !(t, x) are twice continuously differentiable in both variables t, x and
T is defined as a solution set of finitely many equalities and inequalities involving twice

continuously differentiable functions. The case of SIP where f(t, x) is not necessarily

differentiable in t and T is an arbitrary compact set is treated in [2,5,6,12,19,21,23]. The

reader who is interested in the general theory of higher order optimality conditions for

mathematical programming is referred to [1,3,11,15,17,19].

The aim of the present paper is also to give second order necessary and sufficient

optimality criteria for the problem (P) but, unlike [2,5,6,9, 12,14,17,23], X is of infinite

dimension and C is a geometrie constraint which may not coincide with X. (For the

first order necessary conditions of such a problem, see [8].) Instead of assuming the

differentiability properties of f(t,.) we shall introduce its approximations, suitable for

deriving the desired results. We shall see that the first and second derivatives of f(t, .)

can be used as approximations in our sense.

The organization of the paper is as folIows. Section 2 is devoted to the discussion of

three necessary optimality criteria for the infsup- Problem (P) where X is an arbitrary

topological vector space. In the first criteria we prove that the " Lagrange multipliers"

exist for any finitedimensional subspace of X. The second one is obtained by using the

continuous dual of the Banach space of the continuous functions defined on a compact set.

In the third criteria which is valid for a Banach reflexive space X necessary conditions

are written in terms of c:-objects. Section 3 deals with sufficient optimality conditions

which correspond to the necessity part stated in the first two criteria. Section 4 discusses

the results in the case X being a finitedimensional space. In Section 5 we give some

examples of approximations of the data used in Sections 2 and 3. In particular, we shall

show that the approximating functions introduced in [12] to write optimality conditions
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for SIP can be served as approximations in OUf sense. For the sake of completeness we

prove in the Appendix two assertions of Convex Analysis which are needed for deriving

the results of Section 1.

We conclude the introduction by recalling that in the present paper by a cone H

we mean a subset of a linear space such that >'x E H for all >. ~ 0, x EH. A function

f : H -+ IR is said to be positively homogeneous of degree 1 (resp. degree 2) if f(>'x) =

>.f(x) (resp. f(>'x) = >.2 fex)) for all >. ~ 0, x E H. The symbol 0(-) will denote a

function of e > 0 such that lim 0(e)e-1 = O. For different functions having the just
£ .•••0

written property we shall use the symbols 01('),02(-), Ot(-) ...

2.Second order necessary conditions

In this section we shall consider the infsup-Problem (P) under the assumption that

T is an arbitrary compact set,

C is a subset of a topological vector space X

and

f(t, x) is a function which is u.s.c. in t.

We say that Xo E C is a solution (resp. strict solution) of (P) if there is a neighbourhood

V of Xo such that f(xo) ~ fex) (resp. f(xo) < fex)) whenever x E C nV and x f. xo.

Here fex) = sup ft(x). Let Xo be a solution of (P). Without loss of generality we may
tET

assume that f(xo) = O. In view of the upper semicontinuity of ft(xo) as a function of t

the set

To := {t E T : ft(xo) = f(xo) = O}

is compact.

Necessary conditions for the optimality of Xo will be written in terms of some appro-

ximations of the data of (P). Examples of such approximations can be found in Section

4. They show that our assumptions are fulfilled for a large dass of infinite programs.

Let HeX be a convex cone and D C H be a cone (not necessarily convex) such

that there is a map h : H -+ C with the property that

Vd E D, "Ix E H, Ve> 0 sufficiently smalI: h(ed + e2X) - (xo + ed + e2X) = 0(e2)
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where 00 may depend on d and x. In other words, we require that

(2.1) Vd E D, Vx E H, 300 such that x£ E C for t: sufficiently small where

and

(2.3) lim 0(t:)t:-1 = o.
£-+0

Let !l : H -+ IR ( H being the closure of H ) and !l : D -+ IR such that the
following requirements are satisfied:

(1) !l(x) is Ls.c., convex, positively homogeneous of degree 1 in x and u.s.c. in t.

(2) Il(x) is positively homogeneous oIoegree 2 in x and u.s.c. in t.
(3) Vd E D, Vx E H, 3OtO such that

where:1:£ is given by (2.2) and

lim 0t(t:)t:-1 = 0 uniformly with respect to tE T.£-+0

Remark 2.1.0bserve that Il(O) = O. Hence, by setting d = 0 in (2.3) we obtain
the following relation between It and !l:

Definition 2.1. d E X is called a critical direction if

dED,

(2.5) It(xo) + 8Il(d) :5 0, Vt E T,
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where 8 is a positive constant not depending on t E T.

Remark 2.2. It is a simple matter to check that (2.5) implies

(2.6) ft(xo) + efl(d) ~ 0, Vt E T, Ve E [0,8].

In the sequel we shall need the following result.

Lemma 2.1 . Assume that Xo is a solution of (P). Then for any critical direction d

we have

(2.7)
--

q(x, d):= sup {fl(x) + !l(d)} ~ 0, "Ix E H.
tETa

Proof. Let us set

and assurne the contrary that there is a point xE H such that qt(x, d) < 0 for all tE To.

From the compactness of To it follows the existence of a positive constant 1 such that

qt(X, d) < -I ,Vt E To.

The set

is open and contains To. Hence T2 :=T \ Tl is compact and disjoint from To. Therefore

for some ko > 0 we have

sup ft(xo) ~ -ko.
tET,

Let

kl = sup fl(d) ~ +00,
tET,

k2 = sup qt(x, d) ~ +00.
tET,
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Setting x = x, XE = Xo + ed + e2x + 0(e2) and taking account of the sublinearity of flO
and the homogeneity of J?O we obtain from (2.4)

(2.8)

For t E Tl it follows from the just written inequality that

since d is acritical direction. Hence there is 61 > 0 such that

For t E T2 inequality (2.8) shows that

which implies the existence of 62 > 0 such that

We have thus obtained that XE E C and

for all £ sufficiently small. This contradicts the local optimality of xo.

Before going further , let us formulate the following lemma which can be established

by using the same argument as in [16,Theorem 1] or [4,p. 99- 100]. For the sake of

completeness we include its proof in the Appendix.

Lemma 2.2. Let iI. c !Rn be a nonempty closed convex set, T be an arbitrary

compact set and rp :T x iI -+ !R be a function, convex and l.s.c. in x E iI and u.s.c. in

tE T. If the system

(2.9) xE iI,<p(t,x) < O,Vt E T,
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is inconsistent (that is, it has no solution) then there are a finite subset T C f with

ITI ~ 1 + n, such that the system

xE B, <p(t,x) < 0, 'r/t E T,

is inconsistent. Here ITI denotes the number of the elements of T.

We recall also a result of Fan-Glicksberg-Hoffman which can be found in [18, p. 65].

For the sake of completeness we include in the Appendix a short proof based on the

separation theorem in JRn.

Lemma 2.3. Let H be a convex set of a linear space X, f be a finite set and

<p : f x H -+ JR be a function, convex in x E B. If the system (2.9) is inconsistent then

there are nonnegative numbers Aj(t E T) satisfying

(2.10)

(2.11) I>j<p(t, x) 2: 0, 'r/x E H.
JET

As a consequence of Lemmas 2.1-2.3 we obtain

Theorem 2.1. Assume that Xa is a solution of (P). Then for any critical direction

d and any subspace SeX with dirn S < 00, there are a finite subset T C Ta with

ITI ~ 1 + dimS, A 2: O(t E T) satisfying (2.10) and

(2.12)

(2.13)

where

(2.14)' Li(x) = L,Adt(x) (i = 1,2).
JET
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Proof. Let d be a critical direction and S be a subspace of X such that dim X < 00.

We derive from Lemma 2.1 that q(x, d) ~ 0, 'Vx E H1 := H n S. Since S is of finite

dimension and q(x, d) is convex in x we have by [19,Corollary 7.3.3] that

(2.15) q(x,d) ~ O,'Vx E H1

where H 1 denotes the closure of H1 in the subspace S. Hence (2.15) means that the

system (2.9) with iI = H 1; rp(t, x) = qt(x), T = Ta is inconsistent. Applying Lemmas 2.2

and 2.3 yields the existence of a finite subset T C Ta with ITI ~ 1+dimS and nonnegative

numbers At(t E T) such that (2.10) is satisfied and

(2.16)

Observe that L1(0) = 0 (since 1l(0) = 0, 'Vt E T), we derive (2.13) from (2.16) by setting

x = O. The inequality (2.12) follows from (2.16) and the homogeneity of #0.

To state the second optimalitycriteria we have to introduce some notations. Let T
be a nonempty compact set and C(T) be the Banach space of the continuous functions

F : T -;. IR with the norm

IIFII= m~lFtl.
tE T

We shall denote by C.(T) the continuous dual of C(T):

C.(T) = {C(T)} •.

For J1. E C.(T) we shall write J1. ~ 0 if (J1., F) ~ 0 for all F E C(T) such that Ft ~ 0, 'Vt E

Ta.

We shall need the following lemma.

Lemma 2.4. Let iI be an arbitrary set, T be a nonempty compact set and rp :

T x iI -+ IR be a funetion, continuous in t E T. If the system (2.9) is inconsistent then

there is J1. E C" (T) satisfying
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(2.17)

(J.t, 'P(t, x)) ~ 0, Vx E iI.

Proof. By assumption, for fixed x E iJ , 'P(t, x) is continuous as a function oft E T..
Hence, 'P(t, x) =: Fl(x) E C(Ta).

Let

Ql = {F E C(i') : Ft < 0, Vt E i'},

Q2 = {F E C(i') : 3x E H such that F ~ F1(x)}

where the inequality F ~ G(F, GE C(i')) means that Ft ~ Gt, Vt Ei'. It can be verified

that Qi(i = 1,2) are nonempty convex sets and int Ql f. 0 where int Ql denotes

the interior of Ql in the topology of C(i') induced by the norm defined above and 0

stands for the empty set. On the other hand, the inconsistency of (2.9) shows that

Ql n Q2 = 0. Hence, by the separation theorem we can find J.t E C. (i') satisfying the

required conclusion of the lemma.

Theorem 2.2 . Assume in addition that If(x)(i = 1,2) are continuous in t E T.

If Xa is a solution of IP then for any critical direction d there is J.t E C. (Ta) satisfying

(2.17) and

(2.18)

(2.19)

where

(2.20) Li(x) = (J.t, I/(x) (i = 1,2).

Proof. Take iJ = H, i' = Ta, 'P(t, x) = Jl(d) + Ilex) and observe by Lemma 2.1

that the system (2.9) is inconsistent. It remains to apply Lemma 2.4.
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The following additional requirement will be used in Theorem 2.3:

(4) For any critical direction d the condition

q(x,d) ~ O,'v'x E H,

implies

q(x,d) ~ O,'v'x E H.

Obviously, this requirement is satisfied if either of the following conditions holds:

(a) q(x, d) is u.s.c. in x.

(b) H is closed.

(c) int H f: 0.

Theorem 2.3. Assume that X is a Banach reflexive space and the additional

requirement (4) is satisfied. If Xa is a solution of (P) then for any critical direction

d and positive numbers c, r there are a finite subset T C Ta, At ~ O(t E T) satisfying

(2.10) and

(2.21)

(2.22)

where £i(x) is defined by (2.14) and Er stands for the closed ball with radius r around

the origin.

Proof. We first claim that for any critical direction d and any c > 0 there are a

finite subset TC To, At ~ O(t E T)such that (2.10),(2.22) are satisfied and

(2.23)

Indeed, as Ta is compact and J?(d) is u.s.c. in tE Ta, there is a positive constant 0' such

that

(2.24) ft2(d) ~ 0', 'v't ETa.
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Let K = H nBß where ß = (e + a)C1 > O. The set K is weakly compact since X is a

Banach reflexive space. Consider a family of sets Kl(t E To) defined as folIows:

Kt = {x E K : fl(x) + f?(d) ~ -e}.

Observe that flO being l.s.c. and convex is weakly l.s.c .. From this we can verify that

Kl is a weakly closed set. On the other hand, by Lemma 1.1 and the requirement (4)

n Kt = 0.
IETo

Hence, there is a finite subset T C To such that

which means that the system

xE K, fl(x) + f?(d) ~ -e, 'Vt E T,

is inconsistent. We invoke Lemma 2.3 to derive the existence of nonnegative numbers

>'t(t E r) satisfying (2.10) and

(2.25)

Taking account of the fact that 0 E K and L1(0) = 0, we obtain (2.22) by setting x = 0

in (2.25). Observe now by (2.10) and (2.24) that L2(d) ~ a. Consequently, we get from

(2.25)

By the positive homogeneity of Ll(.) this yields

The above claim is thus established. To complete the proof of the theorem it remains to

apply this claim with er-1 in place of e.
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3. Second order suflicient conditions.

In this section we assurne that X is a normed space, C C X and T are arbitrary

sets. Fix a point Xo E C and assurne as in the previous section that sup I,(xo) = O.
'ET

We shall introduce approximations quite different from those used to_derive necessary

conditions. Observe that the similar situation occurs in mathematical programming [3]

and semi-infinite program [12].

Let there be given a cone HeX and a map h : C -+ H such that

(3.1) lim Ih(x) - (x - xo)llx - xol-1 = O.
X -+ Xo
xEC

In this case, Maurer and Zowe[19]say that C is approximated by H. This approximation

property was used in [19]as a main tool to derive sufficiency theorems for mathematical

programming. Details can be found in [19].

Let I; :H -+ IR (i = 1,2) be such that the following requirements are satisfied:

(1) Ilex) is positively homogeneous of degree 1 in x.

(2) f?(x) is positively homogeneous of degree 2 in x.

(3) 3o~O such that 'Vt E To, 'Vx E C:

(3.2)

(3.3)

where lim o~(£)£-l = 0 (i = 1,2).
£-+0

Remark 3.1. If f?O is l.s.c. at h = 0 then (3.2) is a consequence of (3.3). Indeed,

from f?(O) = 0 and the lower semicontinuity follows the existence of Ö > 0 such that

f?(h) ~ -1 for a11h E H with Ihl < 6, hence by homogeneity It2(h) ~ _ö-2IhI2 for a11

h EH. Therefore for all h E H we have

This shows that (3.3) implies (3.2).
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(3.4)

Definition 3.1. A sequence dk is called weakly critica1 if

lim supfl (dk) ~ 0, 'VtE To.k-tex)

Theorem 3.1. Assurne that, for every weakly critical sequence dk, there are a finite

subset TC To, At ~ 0 (t E T) such that

(3.5)

(3.6) limsupL2(dk) > 0,
k-oo

where Li(x) is defined by (2.14). Then Xo is a strict solution of (P).

Proof. Assurne the contrary that Xo is not a strict solution of (P). Then there is a

sequence Xk E C such that qk := Xk - Xo -> 0, qk f; 0 and 0 ~ f(Xk) - f(xo), 'Vk. The
last inequality implies

(3.7)

Let h be the map appeared in (3.1). Putting hk = h(Xk) it follows from (3.1) that

This implies, since qk -> 0, that Ihk - qk I -> 0, and therefore hk -> O. Hence

O~(/hk/)Ihkl-l -> 0 (i = 1,2). Combining (3.7) and (3.2) yields

(3.8)

or, equivalently,

(3.9) o ~ fl(dk) + o;(lhk/)lhkl-1, 'Vk, 'Vt E To,
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where

By letting k -+ 00 in (3.9) we get (3.4). This shows that dlt: is a weakly critical sequence.

By assumption there are a finite subset rC Ta, At ~ 0 (t E r) satisfying (3.5) and (3.6).
Putting x = Xlt: in (3.3) and using (3.7) we have

(3.10)

Multiplying (3.10) by At and summing up we obt~n

(3.11)

where 00 is some function satisfying (2.3). Dividing (3.11) by Ihlt:12 and taking account
of (3.5) we find

(3.12)

which implies

o ~ limsupL2(dlt:),
k .....•cx,.

contradicting (3.6). The theorem is thus proved.

Remark 3.2. If oH-) in (3.2) is independent oft ETa then the following condition

is sufficient for the assumption of Theorem 3.1 to be satisfied: there are positive numbers

6,'Y, a finite subset rC Ta, At ~ 0 (t E r) such that (3.5) holds and L2(d) > 'Yfor all
d E H6 where

H6 = H n {x: lxi = 1, Il(x) ~ 6, Vt ETa}.

Indeed, if dlt: is a weakly critical sequence then, for all k sufficiently large, dlt: E H6 hence
L2(dk) > 'Ywhich implies (3.6).
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Theorem 3.2. Assurne that !t(x) (i = 1,2) are continuous in t and o~O in (3.3)

is independent of t E To. Assurne that for every weakly critical sequence d" there is a

functional J.L E C*(To), J.L ~ 0, such that (3.5) and (3.6) are satisfied where Li(x) =

(J.L,I/(x)} (i = 1,2). Then Xo is astriet solution of (P).

The proof is similar to that of Theorem 3.1 and will be omitted.

Remark 3.3. If 0;0 in (3.2) is also independent of t E To then the conclusion

similar to that of Remark 3.2 can be stated for Theorem 3.2.

Remark 3.4. The results of Seetions 2 and 3 can be used to obtain optimality

conditions for the problem (Po):

minimize Uo(x) : x E C, It(x) ~ 0, Vt E T}

where 10 : C -+ IR is a given function. To see this, it is enough to consider the following

problem (Pd having the same strueture as (P):

minimize { sup (lo(x) - lo(xo); It(x)) : x E C}
tET

and observe [12]that

Xo is a solution of (Po) if it is a solution of (Pd;

Xo is a strict solution of (Po) if it is a feasible point for (Po) and is astriet solution

of (Pd.

4. Finitedimensional ease

In this section we assurne that dimX < 00. Applying Theorem 1.1 to the subspace

S = X we get

Theorem 4.1. Ir Xo is a solution of (P), then for any critical direetion d there are

a finite subset T C Ta with ITI ~ 1+ dirn, >'t ~ 0 (t E T) satisfying (2.10) and

•

(4.1)

(4.2)
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where Li(-) is given by (2.14).

Turning now to sufficient conditions, we first introduce

Definition 4.1. A vector d E X is called a weakly critical direction if

d E H, Idl = 1,

fl(d) :::;0, Vt E To.

Here we assurne that the functions ffO (i = 1,2) are defined on Hand satisfy the

requirements (1)-(3) of Section 3. Obviously, if d E H is a weakly critical direction then

the stationary sequence dk == d is a weakly critical sequence (see Def. 3.1).

Theorem 4.2. Assurne that ff(x) . (i = 1,2) are l.s.c. in x. If forevery weakly

critical direction d there are a finite subset rC Ta, At ~ 0 (t E r) such that

(4.3)

(4.4)

then Xo is a strict solution of (P).

Proof. Take an arbitrary weakly critical sequence dk• By the compactness of the

unit sphere in X and the lower semicontinuity of NO we may assurne that dk converges

to some weakly critical direction d satisfying (4.3) and (4.4) for suitable r C To, At ~

o (t Er). Since (4.4) implies (3.6), it remains to apply Theorem 3.1.

5. Exarnples

This section gives some examples of approximations of the data of (P) used in

Sections 2 and 3. Clearly, combining these examples with the previous results yields

various optimality conditions for the problem under consideration.

Example 5.1. Assurne that Cis a convex set of a topological vector space X. Let

D = H = co ne (C - xo] := {A(e - xo) : .>. ~ 0, e E Cl.
16



We shall show that 00 = 0 satisfies (2.1) for all d E D,:c EH. Indeed, take a > 0 and
ß > 0 such that dl := :Co+ a-ld E C and :Cl = Xo + ß-l:c E C. Since Xo + cd + c2:c =
(1 - Q:c- ßc2)xo + Q:cdl+ ßc2Xl E C for c sufficiently smalI, the desired condusion
folIows.

Example 5.2. Let C = {x : g(x) = O}where 9 : X -+ Y is a map between Banach

spaces X and Y. Assurne that 9 is of the dass C2 (that is, 9 is twice continuously

differentiable in the sense of Frechet) and the first derivative g/(xo) is surjective. Take

D = {d: g'(xo)d = O,g"(xo)[d,d] = O},

H = {x : g'(xo)x = O}
where g"(xo) denotes the second derivative of 9 at :Co. That the condition (2.1) is satisfied
follows from a result of Ljusternik [13,p. 30].

We now turn to examples of approximations of the function It(x). Throughout the

forthcoming, unless otherwise specified, we shall assurne that X is a normed space and

ItO is of the dass Cl (that is, ItO is continuously differentiable in the sense of Frechet).
In Examples 5.3 -5.6 we shall set

D=H=X

(5.1)

where 1;(xo) denotes the first derivative of It(-) at x = xo. Since in these examples the

requirements (1) and (2) of Section 2 are obviously satisfied, we shall verify only the

requirement (3). We emphasize that this requirement will be fulfilled for all d EX, :c E

X and 0(') being an arbitrary function with property (2.3). So our approximations If(:c)

are independent of the approximations D and H of the constraint set C. Henre they can

be used to formulate optimality conditions for various approximations of C ..

Example 5.3. Assurne that It(-) is of the dass C2 and the derivatives (in :c)
J:(x) , I:'(x) are jointly continuous in (t, x). Taking

(5.2)
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we have by the second order Taylor expansion theorem

where

and e E [0,1] is a number depending on t and c. Evidently, as c _ 0 I lpt(c) converges

to zero uniformly with respect to t E T. Hence (2.4) is satisfied.

Example 5.4. Assurne that If(x) is jointly continuous in (t, x) and, for any d EX,

the convergence of the limit

(5.3)

is uniform with respect to t. We have

(5.4)

where

By the mean value theorem

where e E [0,1] is some suitable number depending on t and c. Note that lpt(c) _ 0

uniformly with respect to t. Therefore, by taking

(5.5)
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we derive from (5.4) and the uniform convergence in (5.3) that (2.4) is satisfied.

Examples 5.5. Let V be a (convex) neighbourhood of Xo E X = !Rn. Following

[10]we denote by Cll(V) the dass offunctions F which are differentiable in V and whose

gradient F'(x) is locally Lipschitz in V. Let 62F(xo) be the generalized Hessian matrix

of F at xo, defined as in [10]:

Here the space of n x n matrices M is topologized by taking some matricial norm 11 . 11

on it and "co" stands for the cQnvex hull. Observe [10] that 62F(.) has the following
properties:

1. 62F(xo) is locally bounded in the sense that

IIMII ~ a, "IM E 62F(xo), "Ix E V,

where a is a Lipschitz constant for F'O on V.

2. max (Me,d) = limsup e-I[F'(x +ce)d - F'(x)d] , Ve,d EX,
MEC>F(~o) X ~ Xo

e ~-O
where (., -) denotes the inner product.

3. The second order Taylor expansion theorem is true:

such that

Assume now that ItO is of the dass Cll(V) and

(!) IHx) isjointly continuous in (t, x) and is locally Lipschitz in x uniformly
with respect to t (that is, there is a positive constant a not depending on t E T such

that 11:(xd - IHx2)1 ~ alxl- x21, Vt ET, VXI,X2 EV).

(!!) The function St(x, d, d) is u.s.c. in x at Xo uniformly with respect to t
where

(5.7) St(x, e, d) := limsup e-1[1:(u + ee)d - I:(u)d].
u~xe~O
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Observe that by (!) St(x,e,d) is continuous as a function oft and the above mentioned

property of the generalized Hessian matrix yields

(5.8) St(X, e, d) = max (Me, d) .
ME62 ft(:t:)

Also, (!!) is satisfied if either St(x, d, d) is u.s.c. in(t, x) at every point (t, xo), tE Tj or

62 ft(-) is u.s.c. at Xo uniformly with respect to t.

Let us check (2.4) for

(5.9)

Condition (!) implies the existence of a > 0 such that

If:(xo)1 ~ a, Vt E T,

This fact together with the second order Taylor expansion theorem gives

(5.10)

where M is a suitable element of Pft({.), {. E [xo, x.].

It follows from (5.10)

(5.11)

ft(x.) - ft(xo) ~ fl(€d + c2x) + ft2(cd) +T1c2[St(e., d,d) - St(xo,d, d)] + f:(xo)o(c2).

On the other hand, by the continuity of f£(xo) as a function of t E T

(5.12) lim f:(xo)o(c2) = 0 uniformely with respect to t
£ ..••0

and by the condition (!1)
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(5.13) lim max {O,8t(ee, d, d) - 8t(XO, d, d)} = 0 uniformly with respect to te-+O

Combining (5.11), (5.12) and (5.13) proves (2.4).

Exam,ple 5.6. Assume that ft(-) is of the class Cl1(V) and the condition (!) is

satisfied. For TJ > 0, e EX, d E X let us set

(5.14) St(TJ, e, d) = sup C1[f:(x + Ae)d - f:(x)d]
Ix - xol < TJ

Ix + e - :1:01 < TJ
0< c <TJ

It is shown in [12] that for all e EX, d E X we have

1. St(TJ1, e, d) ~ St(TJ2, e, d) if TJ1 ~ TJ2.

2. St(TJ, e, d) - St(TJ, e, d) ~ a(/e - elldl + Id - dlle!), Ye,d EX.

3. 2-1st(ldl, d, d) 2:: ft(xo + d) - ft(xo) - f:(xo)d.
We claim that (2.4) holds if

(5.15)

when TJ is an arbitrary positive constant. Indeed, setting Xe = cd + c2x + o(c2) we see

that Ix~I ~ TJ for c sufficiently small. For simplicity of notation we shall write St(TJ, d)

instead of St(TJ, d, d). Using the above properties of St(TJ, e, d) we obtain

ft(xe) - ft(xo) ~ f:(xo)[cd + c2x] + f:(xo)o(c2) + 2-1st(lxe/,:l:e),
St(lxe I,xe) ~ St(TJ, Xe) = St(TJ, cd) + [St( TJ,Xe) - St(TJ, cd)]

~ St(TJ, cd) + alc2x + o(c2)1(lxel + Icd!).
From the just written inequalities it is clear that (2.4) is satisfied if we set

Consider now examples of approximations of ft(.) used in Sec ti on 3. We shall assume

in Examples 5.7 - 5.9 that C is an arbitrary set of a normed space X. We take H =
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cone [C - xo], h(x) = x - xo, n(z) = If(zo)z and we shall see that the requirements

(1) - (3) of Section 3 are fulfilled by a suitable choice of 1,2(.). All we have to check in

these examp1es will be the inequality (3.3).

Example 5.7. Assurne that ItO is ofthe dass C2 and I?O is given by (5.2). Then

(3.3) follows directly from the twice continuity of ItO.

Example 5.8. Assurne that ItO is of the class Cll(V) and

(5.16) f;(z) = 2-1 min (Mz,z) ( = -2-1st(zo, -x,x)).
. ME 62/t(zo)

We invoke the second order Taylor expansion theorem formu1ated in Example 5.5 to
derive

for same M E 82/t(e), e E [zo, z].

Taking account of (5.8) and (5.16) we can write

It(zo + z) - It(zo) ~ Il(z) + Il(x) + 2-1[st(xo, -z, x) - St(e, -z, x)]

~ n(z) + It2(x) + If't(x)

where

If't(x) = 2-1 min {O,St(zo, -x, z) - St(e, -z, xH.

Using (5.8) and the upper semicontinuity of 82/tO (see [10)) we verify without difficulty
that

1imIf't(z)lzl-2 = O.z ...•o

This shows that (3.3) holds.

Example 5.9. Assurne that ItO is of the dass Cll(V) and, for fixed positive
number 1],
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(5.17)

The desired inequality (3.3) is an immediate consequence of the following inequality (see
[12, Proposition 5])

and the observation that

St(lxl, -x, x) ~ St(17, -x, x)

if lxi ~ 17.

Remark 5.1. The definition of the functions (5.7) and (5.14) is given in [12] to

study semi-infinite programms with equality constraints.

Let us compare shortly the results of Section 4 with those of loffe [12] under the

assumption that equality constraints are absent. Since in that case C = X we can take

D = H = X. Setting Il(x) = I{(xo)x and defining 110 by (5.9) or (5.10) we see that

Theorem 3 (hence Theorem 4) in [12] is a consequence of our Theorems 4.1 and 4.2. (It

should be noted [12] that optimality criteria proved in [2] for SIP is weakerthan [12,

Theorem 4]). Applying Theorem 4.1 to the case where 110 is defined by (5.15) yields

necessary conditions different from those of [12, Theorem 1]. The sufficiencyTheorem 2

in [12] is stronger than Theorem 4.2 applied to (5.17). The reader is referred to [6,9,13]
for similar sufficient optimality conditions for SIP.

APPENDIX

Proof of Lemma 2.2. For simplicity we assume that T has at least n+ 1elements.

Let Xo EH and Hp:= {x EH: Ix - xol ~ p} (p> 0). Ir (2.9) has no solution then
for all £ > 0, p > 0 the system

x E Hp, <p(t, x) ~ -£, Vt E T

has no solution. Since the sets
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{z E Hp: tp(t, z) ~ -e}

are convex and compact for all t E T and have empty interseetion it follows from [22,

Corollary 21.3.2] that thereis a subfamily of n + 1 sets having empty intersection, i.e.,
- +lthere is (tl,t2, ... ,in+d Ern such that the system

z E Hp, tp(ti, x) ~ -e (i = 1,2, ... , n+ 1)

has no solution. Hence the sets

are nonempty for all e > 0, P> O. This implies at the same time that any finite collection
of the sets F(e, p) has nonempty interseetion since

n F(e;, Pi) :) F(minei, maxPi).

The sets F(e, p) are being closed subsets of the compact set jn+l, the collection of all

F(e,p) with e> O,p > 0 has nonempty intersection. But from

(tl, t2, •.. ,ln) E n F(e,p)
e>O
p>O

follows. max tp(ti, z)~, "Ix E iI.
.=1,2, ... ,n+l

Hence, setting T := {tl, t2, ... ,tn+d we obtain the desired conclusion of Lemma 2.2.

Proof of Lemma 2.3. Let 1,2, ... , n be the elements of l' (n = 11'1). From the
hypothesis it follows that 0 E IR" is not an interior point of the convex set

Q := {( E IR" : (i ~ tp(i, x), i= 1,2, ... , nj xE H}.

Hence there is J.L= (J.Ll,J.L2' •.. ,J.ln) E IR", J.L =P 0, such that (J.L,() ~ 0, V( E Q. From

Q+JR+ c Q follows J.Li~ 0, Vi (IR+. being the nonnegative orthant of IR"). We normalize

J.L such that EJ.Li = 1 and choose as (E Q the point (= (tp(1,x),tp(2,x), ... ,tp(n,z»
with x E iI to obtain the conclusion of the lemma.
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