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ABSTRACT

One of the foundations of eontinuum meehanies is the deseription of forees in terms of
a symmetrie tensor. The fundamental observation that the existenee of a symmetrie stress
tensor is a consequence of the material frame indifference is due to Noll (No63,Tr]. This in
turn means a local symmetry of the system under the action of the Euklidean group. In
this paper we will show that the assumption of locality in the axiom of frame indifference
is not necessary for a wide dass of modells. We will prove the existence of asymmetrie
stress tensor, demanding only the invariance of the system under global rigid infintesimal
Eukledian group action. The loealization of that global symmetry will be done by means
of Hodge theory on manifolds with boundary.



1. Introduction

By means of differential geometrie methods serveral progress has been made in the field of

continuum mechanics within in the last two decades, cf. [AMR,J\1arJ and references therein.

The purpose of this paper is to adopt such geometrie notions in rational mechanics to the

question of objectivity [No63,TrJ.

To obtain a geometrie appropriate description of the deformations of a piece of material, we

use the embeddings of a material body ß into the lR n as ambient space, cf. [HuMa]' where

the body is a Riemannian manifold. We denote by E( ß, lR n) the set of all embeddings

J : ß ---+ lR n, which itself carries the structure of an infinite-dimensional manifold. In

the classical notation such J is also called a placement of the body and elements of the

tangent space of E(ß, lR n) are refered to as virtual displacements. In this setting dynamics

means to formulate of continuum mechanics in terms of curves J(t) of embeddings. Since

our intention is to explore the geometrical structure of a system, we restrict ourselves to

statics, cf.[BSS].

Under a global model we now understand a system, where the respective non-linear equa-

tions of continuum mechanics are determined by some functional on,E(ß, lR n), depending

on the placement J in a possibly non-local way. Such a functional is refered to as the

(non-local) constitutive function of the theory. Here we start with the principle of virtual

work first introduced in continuum mechanics as d'Alambert's principle by [He] and refor-

mulated in a geometrie context by [EpSe] : There the constitutive function is the virtual

work F[ J] which is a linear functional on the space of all virtual displacements, i.e. the

tangent space of E(ß, lR n), depending on the configuration J in a non-linear and non-local

way. With appropriate geometrie and functional analytic specializations - cf. section 2 -

the principle states that J describes an equilibrium iff the int'egral

F[J](A) = J < ~(J),A >IRn PB

B

(1.1)

vanishs for all virtual displacements A E T]E(ß,IRn). Here ~(J) is a prescribed physical

force density and <, > IR n means the scalar product on IR n. As a special case this principle

indudes the description of hyperelasticity, where the equations of continuum mechanics

can be derived from a local energy fuctional or a Lagrangian [HuMa,TrTo].

Taking the principle of virtual work as such we will investigate the effect of a dass of

symmetries on the functional F[ J] and in consequence on the equations of continuum
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mechanics : For classical mechanics the symmetry group of special interest is the Euclidean

group E( n) [Thi] describing all rigid motions in the ambient space IR n. Since the internat

properties of a system are independent on the placement and on the orient at ion of the

embedded body as a whole, they cannot be influenced by rigid motions. Hence E(n) is

a natural symmetry group in continuum mechanics. An explicite im"estigation of that

symmetry is due to Noll [No63,59], who introduced it under the notion of material frame

indifference or objectivety. The action of E(n) on an embedding J E E(ß,IRn) is

9(T,R)[J] = R(J + T) (1.2)

where g(T,R) E E( n) is represented by a translation T E IR n and a rotation R E SO( n).
In this context Noll's axiom of objectivity reads as follows : A system is called material

frame indifferent if the constitutive function is such that no work is done against any

virtual displacement, which is rigid infinitesimal action of E( n) restricted to an arbitrary

subbody U c ß. This means

J < ep(J),g(z,C)[J] >IRn J1-B= 0
u

(1.3)

for any infinitesimal action g(z,C) of the Euclidean groups. We note that this is a local

demand. Noll's eelebrate result [No63,Tr] is to prove the existence of a symmetrie stress

tensor, starting from that assumption.

The eentral result of this paper is that the loeality of the E( n)-invarianee, assumed by

NoH's axiom (1.3), is redundant for the existenee of a symmetrie stress tensor. It suffies to

start with a weaker global demand on the global funetional F[ J], whieh is an integral over
the whole body ß : Tms has to vanish if it is evaluated on all virtual displaeements, wmeh

are rigid infinitesimal actions of E( n), what means for the special case of the virtual work
given by (1.1) that

F[J](g(z,C)[J]) = J < ep(J),g(z,C)[J] >}Rn PB = 0
B

(1.4).

In continuum mechanics fundamental quantities, as the deformation gradient or the 1st

Piola-Kirchhoff stress tensor, are described by two-point tensors [Er,HuMa]. Such objects

may alternatively be considered as veetor-valued differential forms. The motivation for

using differential forms instead of the weHknown tensor calculus lies in the fact that there
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is a Hodge theory, whieh serves as powerfull tool for solving boundary value problems.

Generalizing classieal results on the Hodge theory on manifolds with boundaries [Mo58,62]

in seetion 3 we will give a lemma eoneerning a Neumann and a modified Diriehlet boundary

value problem for veetor-valued differential forms. As a by-product we obtain a result on

an interesting boundary value problem for the divergenee of vector fields.

The solution of the Neumann problem will be used in section 4 to prove the tensorial

eharacter of the stress. The physieal input therefore is the global demand of invarianee

of virtual work under infinitesimal rigid translations, whieh is a eonsequenee of (1.4).

By performing a Piola transformation we derive the weak form of Cauehy's equation of

eontinuum meehanies from the prineiple of virtual work in the general form (1.1) and the

symmetry argument. We then observe that the stress tensor is not uniquely determined

from the kernel of F[J], but it owns a gauge freedom.

In seetion 5 we will use the Diriehlet problem to show the existenee of a symmetrie stress

tensor from the physieal demand of invarianee of the virtual work under rigid rotations. By

Noll's theorem the existenee of a symmetrie stress tensor is equivalent to the loeal demand

(1.3) of frame indifferenee. Henee the use of Hodge theory, required for our proof, may be

eonsidered as a loealization of the global invariances.

Finally in seetion 6 we eonsider eonstitutive theory under the aspect of the Euclidean

group aeting as symmetry group in eontinuum meehanies. It is shown how our approach to

the E( n )-symmetry of elastieity may be understood in the redueed phase spaee formalism

[MaWe] of sympleetie geometry.

2. The Principle of Virtual Work and Material Frame IndifFe~ence

In this paper we will deseribe meehanieal properties of a eontinuous medium in terms of

embeddings of a Riemannian manifold, as presented e.g. in (HuMaJ. For the physical space,

i.e. the ambient space of the embeddings, we take the Euclidean IR nj a generalization to

other ambient manifolds is possible, but requires more effort (BiFi]. To fix the notation we

introduce the following definitions :

By a body B we mean a eompact orinentable Riemannian Ck-manifold with boundary,

where the dimension dimB ~ n. We denote by GB the Riemannian metric on B, by N the

(outward pointing) unite normal field on the boundary aB c B and have the Riemannian

volume elements PB on B and pa = iN'PB on aB. Points of B are refered to as material
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points; they manifest themselves by their configurations in the ambient physical space

IR n. By a configuration (or placement) of the body 8 we then mean a Ck-embedding
J : 8 ~ IR n and call

£(8, IR n) := { J : 8 --t IR n I J is a Ck -embedding } (2.1)

the configuration space of the system. £(8, IR n) can be given the structure of an infinite
dimensional manifold with

as tangent bundle, cf. [BSF,MarJ. In the language of classical mechanics [Thi] a tangent

vector on the configuration space, i.e. some A E TJE(8, IR n), is called a virtual dis-

placement. Although non-smooth configurations are important we restict our interest to
Ck-embeddings with k ~ 1 or k = 00.

Within the general framework of (infinite-dimensional) manifolds as configtiration space

of physical systems the principle of virtual work is naturally described by considering

the generalized force as an element of the co-tangent bundle. For continuum mechanics

Epstein and Segev [EpSeJ gave the appropriate formulation, writing the work, done by

a virtual displacement A E TJE(8, IRn) as the evaluation with some co-tangent vector

F E TjE(B, IR n). For our considerations, we restrict the dual of the infinite-dimensional

space TJE(B, IR n) to the space of co-vectors having a special L2-representation on the

manifold with boundary 8. This means to take only such linear functionals on TJE(B, IR n)
into account, which have an integral representation of the form

F(J]: TJE(B,IRn) ~ IR

F[J](A) = J < 4)( J), A > lR n J.lB +J < 'P( J), A > lR n J.la

B aB

(2.3)

where <,> IR. n denotes the Euclidean scalar product on IR n. The precribed functions

4)(J) E Ck(B;IR
n
) and 'P(J) E Ck(8B;IRn) are to be understood as the physical force

densities, effecting the material points inside the body and on the surface of B, respec-
tively. They may depend on the configuration J in a non-linear and non-Iocal way. For

boundaryless manifolds, the virtual work (1.1) appears as a specialization of (2.3). Without

going into details about the proper treatment of forces in continuum mechanies, cf. (Tr],
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we remark that our considerations hold true, independent of the interpretation of ~(J) as

a traction force, a body force or a combination of both.

Given the functional dependence of ~ and y on the configuration J, the princi pIe of virtual

work (for a static problem) reads as :

J E E(ß, IR n) is an equilibrium configuration {:}F[J](A) = 0 for all A E T]E(ß, IR n).

Searching for equilibrium configurations of the body by means of this principle is nothing

but solving of the weak boundary value problem of non-linear elastostatic (with traction

boundary conditions). It has been shown by [AnDs] that under some technical conditions

the balance laws in continuum mechanics are equivalent to this principle. Also a description

of dynamics can easily be included into this framework [BSS,BiSc].

For our consideration we take the principle of virtual work as such and show, how the

symmetries of the ambient space IR n can be used to specify the form of the virtual work

and consequently the equations of continuum mechanics.

In the classical treatment this question has been attacked by searching for a material

frame indifferent formulation of elasticity and is answered by Noll's theorem [No63,Tr].

The symmetry group in quest ion is the group of rigid changes of frame on IR n which is the

semi-direet product IR n 05 SO(n) and ealled the Eucildean group E(n), cf. [Thi,MRW].

An element g(T,R) E E(n) is uniquely represented by a translation TE IRn and a rotation

R E SO( n) and its action on IR n is given as

E(n) x IRn --+ IRn

9(T,R)[V] = R(v + T)

The corresponding action of the Lie algebra e(n) is

(2.4).

(2.5)
g(z,C)[v] = Cv + z

where z E JRn, CE so(n) and so(n) denotes the Lie algebra of SO(n), whieh is the spaee

of all anti-symmetrie n x n matriees. By pointwise action on J(p) E IR n this induces

naturallyan action on E(8, IR n).
Demanding the symmetry of a physical system under the group E( n) is the contents of

Noll's axioms of frame indifference of forces and of frame indifference of working. The first

one claims
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<I>(R(J +T)) = R<I>(J) and V(z,R)EE(n) (2.6)

for all body forces <I>(J) and all surface forces ~(J). Its physieal content is to consider only

those forees as relevant for the theory which are due to either interior interactions between

material points or tracition boundary cond~tions and whieh transform as vectors under

rigid rotations R E SO( n).

The seeond axiom, whieh is fundamental far our eonsiderations, demands that rigid Eu-

clidean motions eause no work on any subbody U c ß. Originally this was posed in terms

of the meehanieal power of a motion, but for staties it is equivalent to the following : For

any subbody U eßthose virtual displacements eause no work, whieh are infinitesimal

rigid Euclidean motions (2.5) the with domain restricted ta this subbody :

J < <I>(J),g(z,C)[J] >IR" 11-8+ J < ~(J),g(z,C)[J] >IR" l1-a= 0

u au
v U e B (2.7),

holding far any z E IR n and any anti-symmetrie matrix C E so( n), where 'P( J) deseribes
the foree densi ty on the surfaee au and is apriori independent from the foree acting on

aB. Since invariance is demanded for any U e B this axiom is a local one, which appears

somewhat artificial from a global point of view. To motivate it from physical considerations

requires some more arguments like the axiom of the cut principle of Euler and Cauchy [Tr]

or the demand that only short distance interactions have an effect [LaLi]. Also due to the

locallity of (2.7) it is not clear how results, deduced from this axiom, are infiuenced by

preseribed boundary conditions on aß.
Hence we drop the postulate of locality in the frame indifference of the working and replace

(2.7) by an axiom that is more obvious from a physical point of view : We start with the

demand that the prescribed force densities determines a virtual work, obeying the global

invariance property

F[J](g(z,C)[AD = F[J](A) Vg(z,C) E e(n) (2.8)

under the action of the Lie algebra of the Euclidean group. As worked out below this global

property of constitutive function suffies to reproduce the classical theory.
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Theorem 1

Let the preseribed foree densities <fl(J) and y( J), aeting on the body ß and its boundary

aß, respectively, determine the virtual work by (2.3). If this work is e(n)-invariant in the

sense of (2.8), i.e. if

J < <fl(J),g(z.C)[J] >!Rn /1B + J < c.p(J).g(z,C)[J] >/Rn /1a = 0 (2.9)
B aB

then the equilibrium eonfiguration (respectively the motion) of the body ß is determined

by the divergenee of a symmetrie stress tensor.

The erueial point of this theorem is that a gobal rigid symmetry eondition suffies to prove

the existenee of a symmetrie stress tensor. Under the stronger (loeal) assumption (2.7) the

eorresponding result is known as Noll's theorem [Tr]. Similar theorems have been derived

by Green, Rivelin and Naghdi [GrRi], who replaeed the working axiom (2.7) by starting

with an E(n)-invariant energy funetional E[J] E COO(ß; IR). Again this is a loeal invarianee

demand and furthermore the existenee of an energy funetional restriets the theory to the

speeial ease of hyperelastieity.

The proof of the theorem above is based on Hodge theory on manifolds with boundaries,

whieh makes it possible, to obtain from the global axiom (2.8), the existenee of symmetrie

stress tensor as a loeal result. In this sense the eut prineiple of Euler and Cauehy, whieh

fills the gap between Noll's loeal axiom and the global invarianee demand in the physi-

eal argumentation, may be understood as a refiection of Hodge theory. Before doing the

eonstructions in detail we have to present some fundamental results of that theory for

manifolds with boundaries.

3. Vector-valued differential forms, Hodge Theory and Boundary Value Problems

Considering E(B, IR R) as the configuration space for elasticity, two-point tensors [Er] over

the body manifold B are natural objeets to describe the phyiscal properties of the medium.

Such tensors are the canonical generalizations of vector fields and one forms over maps,

respectively. Restricting the general definition [HuMa] to the case of interest we define :

A two-point tensor T of type (~ ~), shortly denoted as a (r, s )-type two-point tensor,

at pE B over an embedding J E E(B, IR R) is a multilinear mapping
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T : (Tpß x ... x Tpß) x (Tj(p)IR n x ... x Tj(p)IR n) __ IR
\" 'V I" 'V' ;

(3.1).

r-times s-times

One can think of a two-point tensor having two tensor legs, one in ß and one in IR n. For

s = 1 a bvo-point tensor over J at p E ß can also be considered as a multilinear form on

ß with values in TJ(p)IR n, in other words any such T is a J*(T IR n)-valued form on ß.

Hence the skew-symmetric (r, 1)-type two-point tensors fit into the notion of vector-valued

differential forms, which we define more generally for any Riemannian manifold M and

any finite dimensional vector space V :

Definition and Remark [GHV]

A V-valued differential form w E !'Y(AI; V) of degree r over a rn-dimensional manifold lvI

is a smooth assignment of skew-symmetric r-linear maps to the points of M, where

Wp : (TpM x ... x TpM) -- V
•••• I

'V'
r-times

VpEM (3.2).

The algebra of all V-valued forms on M is denoted by Q(Mj V) = E9::1 Qr(M; V). There

is a natural identification n(M; V) ~ n(M; IR) 0 V, such that the algebraic and analytic

structures on the algebra of usual (m-valued) differential forms, carry over to Q(M; V).

In terms of a fixed scalar product <,>v the isomorphism can be given by means of the

palnng

«,»: V 0 Qr(M; V) ---+ Qr(M; m)

« v,W »(Xl"" Xr) := < v,w(XI, ... Xr) >v
(3.3).

Fundamental quantities in continuum mechanies as the deformation gradient or the 1st

Piola-Kirchhofftensor, are described by (1, l)-type two-point tensors on the body manifold

and hence can also be considered as mn -valued one forms. The use of vector-valued forms

instead of the weil known tensor language is motivated by the fact that the Hodge theory

on the algebra of differential forms is a usefull tools to solve boundary value problems on

Riemannian manifolds, cf. [EbMaJ. Thus the idea is to formulate boundary value problems

in continuum mechanies in terms of V-valued forms w E Q(M; V) with M = 8 and

V = mn and use weH known results from Hodge theory instead of solving theproblems

directly by tensor calculus.
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To do so we introduce, in view of (3.3), the exterior derivative

d : {Y( .M; V) ----+ Slr+I (AI; 'V)

«v,dw» := cl« v,w» \/v E V
(3.4)

"•.here cl is the exterior derivative on the algebra Sl(iVf, IR) of real-valued forms. Similarly

the Hodge *-operator on Sl(.JVI, IR) induces the operator

«V,*w»:= *«v,w» \/v E V
(3.5)

and it makes sense to define by 8 := (-1) mr+ I * d* the co-differential 8 : Sl r+ I (M; V) -t

Slr(lv.[; V). Like the corresponding co-differential on Sl(M, IR) this is a nilpotent operator,

i.e. 82 = 0 on Sl(M; V). Furthermore it computes on a one form w E SlI(M; V) as minus

the divergence of the induced tensor wU, cf. [AMR], defined via a Riemannian metric GM

on .1V! by

\/Y E rTM (3.6).

In generalization of that property the co-differential can be computed [MatJ by means of

a local orthonormal frame {EI,' .. Ern} on TM as

n

(8w)(XI, ... Xr) := - L)VE.W)(Ek,X1""Xr) with X1, ... Xr E rTM (3.7)
k=l

where V is the Levi-Civita eonneetion. Furthermore we ean equip eaeh spaee {Y(M; V)

with a Riemannian structure, indueed from the sealar product <, >v and the metrie GM

by setting

<, >nr : !Y(M; V) x !Y(M; V) -+ nO(M; IR)
rn

<w,,,, >nr:= L <w(Eit, ... ,Ejr),,,,(Eit, ... ,Ejr) >v
it <...<jr

(3.8)

where the (loeal) fields Ejr run through the orthonormal frame on TM. This definition

is frame independent and yields for r = 0 the sealar produet <, >v. It eorresponds (for

V = IR) to the usual inner produet w /\ *", =< w,'" >nr JLM on nr(M; IR) and one ean

prove [Ack] that (3.8) also given an expression for the "dot"-produet, used in [BSS] to
formulate the virtual work in terms of stress forms. With that sealar produet the spaee
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(3.9).

f:Y(M; V) can be furnished with the structure of the Sobolev space H1n.r(1\1; V), given as

the completion of the space of C1-differentiable forms w E f:FUv[; V) with respect to the

norm

IIwl12 = J (< W,w >w + < dw, dw >nr+1 )J.lAJ
M

In that Sobolev space of H1-forms over 1\1 the operators 8 and d are adjoint to each other

up to a boundary term. Especially for any pair of w E H1n,1(1'1; V) and TJ E H1n,°(M; V)

we have

J < w, dTJ >nI J.lM = J < 8w, TJ>no J.lM + J < w(N), TJ>no J.la (3.10),
M M 8M

which is a consequence of the Stokes theorem. It yields the Gauß theorem in terms of

differential forms by taking TJ to be constant.

Now we have introduced all stuctures, necessary to face the question of solving boundary

value problems by means of Hodge theory. The Sobolev space H1n,r(M; V) carries the

same topology as the one, used in the book of Morrey (Mo62], henc,e we have :

Theorem 2

Let M be a compact Ck-manifold with boundary, where k ~ 2 or k = 00 and let N denote

the (outward pointing) unite normal field on 8M C M. Call furthermore w E H1 ~Y(M; V)
to be of dass ci if its derivatives of order k are lI-Hölder smooth.

a) For any funetion W E H1n,°(M; V), there is a decomposition

W = 8ß-q, + C-q, (3.11)

where ß-q, E H1n1(M; V) is a one form obeying ß-q,(N) = 0 and C-q, E V is a cottstant.

If W E C:-2(M; V) then ß-q, is also of dass C:-2•

b) Given ar-form ß E H1nr(M; V) with ßlaM E H1nr(8M; V), there exists a (r+ 1)-
form e E H1nr+1(M; V) obeying the boundary conditions

elaM = 0

(8e)laM(X1, ..• ,Xr) = ßlaM(X1"" ,Xr)

(3.12).

If ßlaM is of dass C:-2 on 8M then e can be chosen of dass C:-2 on M.
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.--------------------------------------~-- - --~- ---

vVith this theorem we have reformulated some - at least for II = IR - well established

results. Part a) is usually refered to as Kodeira decomposition of the function llJ and

the solvability of the problem (3.12) is due to [Mo56]. This result is not quoted literally,

but taken from the proof of the lemma 6.2 there, where the assertion is given and ex-

plicitely used. By means of the identification n(I'vl; ll) ~ n(I'vl; IR):2) 'v the generalization

to H1n(A'{; ll) is obvious. Hence we obtain on a compact Riemannian Ck-manifold AI with

boundary:

Lemma 1

a) Given a pair of vector-valued functions <P E H1nO(Nf; ll) and <.p E H1nO(oI'vf; ll),

which obey the integrability condition

J <PI-lM + J <.pfL8 = 0
M 8M

there is a one form a E H1n1(M; ll) solving the boundary value problem

(3.13),

Da = <P

a(N) = <.p

onM

onoM
(3.14).

If furthermore <I>and r.p are of dass C:-2 on their respective domains then a is also

of dass C:-2 on M.

b) Given a ll-valued function E> E H1nO(M; ll), which obeys the integrability condition

J E> I-lM = 0
M

there is a one form I E H1n1(M; ll) solving the boundary value problem

(3.15),

onM

onoM
(3.16).

If E> is ~f dass C:-2 then I is of dass C:-2, as wen.
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Proof :

By the Kodeira decomposition (3.11) some ,3q, E H10,1(Al; V) is determined from <P,

obeying

and ßq,(JV) = 0 (3.17).

On the other hand one can choose for any y E H1 0,O( aAl; "V) some one-form

<jJE H10,1(lvI;"V) such that <jJ(.,\f) = y on alv!. Applying Kodeira's decomposition to the

funetion D<jJ E H1 0,0 (lvI; v') yields

with (3.18).

Then the boundary value problem (3.14) is soved by the one-form

(3.19).

To see this itremains to show that the eonstants Cq, and clf' eaneel eaeh other by using the

integrability eondition (3.13) and the Gauß theorem, cf. (3.10) :

j (cq, - clf') J.lM = j(<P - Da) J.lM = j <P J.lM+ j <PJ.la= 0
M M M aM

(3.20).

To prove b) we start similar as above and deeompose 8 by (3.11). From the integrabilty

eondition (3.15) the constant ce has to vanish and hence

8 = 8ße with ße(N) = 0 (3.21).

Then there exists by part b) of theorem 2 some ee E H1n2(M; V) sueh that

and ee laM = 0 VX E fToM (3.22).

We choose '1 = ße - 8ee and obtain

8'1 = 8

'1laM(X) = 0

onM

onoM
(3.23),

holding for all veetor fields X along aM. It remains to show that also '1laM(N) = o.
To do so we use the tubular neighbourhood theorem [La], which guaranties the existence
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of a local orthonormal frame of the form {N, E2, ..• , Ern} with NlaM = N and Ei/aM
tangential to oM near any p E olv[. Then (3.7) yields

m

(8~e)(jV) = -((V'N.~e)()V,jV) + I)V'Ek~e)(Ek,N))laM
k=2

m

= - LV' Ek(~e(Ek,N))laM
k=2

(3.24)

since (~e)'aM == '0 by (3.22). Also due to that fact (~e)laM is covariantly constant under

the action of the vector fields Ek along oM, what proves (8~e)laM(N) = O. Since also

ße(N) = 0 by (3.21) the V-valued one form ,laM = ße - 8~e vanishs identically on oM.
Finally the differentiability results directly read off from theorem 2. 0

Both assertions of that lemma are not original. Part a) mayaIso be derived using a solution

theorem for the Neumann problem!::::'H = q>and dH(N) = 'P, cf. [Hö], and setting Q' := dH.
This (stronger) result has been applied in [Bi] to similar questions as we consider here. Also

the (modified) Dirichlet boundary value problem of part b) has been considered elsewhere

[vWa,Bo]. These results coincide with ours, however the authors are more restrictive in

choosing M (M c IR n being a sum of starlike connected domains [Bo] or M C IR 3 [vWa],

respectively) to obtain also estimates for the growth on the boundary. To relate their

approach to the one used here we remark that the operator 8, acts on a one form, like

the divergence of the corresponding vector field, induced from GM by (3.6). Having this

in mind the result b) of the lemma 1 reads in the language of dassical boundary value
problems:

Corollary

Let M be a (compact) Riemannian Ck-manifold (k ~ 2) with boundary and let E> E

C:-2(M; V) be given function, obeying the integrability condition IM E> PM = O. Then
the boundary value problem

div Z = E>

Z=O

onM

onoM (3.25)

has a solution Z E r(T M 0 V) of differentiability dass C:-2. For V = IR the section Z
becomes a C:-2 vector field on M.
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(4.1)

(4.2),

(4.3).

4. Translational Invariance, Stress Tensors and the Piola Transformation

No\v we have all technical tools at hand to apply Hodge theory to the boundary value

problems we have in mind. To prove our central assertion, made in secction 2, we note

that due to the product structure of the Euclidean group we can consider the translational

and the rotational invariance separately. So we first use the invariance under global rigid

translations as an integrability condition to show that any virtual work, given in the form

(2.3) and obying a translational symmetry, also allows a tensorial description. Starting

from Noll' s axiom (2.7) of frame indifference of working such tensorial character of the

stress is evident. Under the (weaker) global assumption (2.9), however, we need Hodge

theory to obtain the local result, that any virtual work allows a description in terms of a

two-point tensor on the body manifold ß.

Theorem 3

Let the body ß be a Riemannian Ck-manifold with boundary and let the virtual work be

determined from a pair (ep( J), r.p( J)) of force densities, each of Sobolov dass HlnO on its

domain, as

F[J](A) = J < ep( J), A > IR n J.L8 + J < r.p(J), A > IR n J.La

8 88

with the virtual displacement A E TJE(ß,.IR n) of Sobolev dass H1nO(ß;.IR n). If global

rigid translations cause no work, i.e.

F[J](z) = J < ep(J),z >IRn J.L8 + J < r.p(J),z >IRn J.La = 0
8 88

there exists a .IRn-valued one form a(J) E H1n1(ß;.IRn), called the stress form of the

system, such that the virtual work becomes

F(J](A) = J < a(J),dA >nt J.L8

8

Here dA E HOn1(B;.IR n) is the differential of the virtual displacement and <, >nt means

the scalar product (3.8). a( J) is C:-2-differentiable if ep( J) and r.p( J) were of dass C:-2•

14



Proof:

Given the pair offunctions (<I>(J),6(J)) we observe that the invariance condition (4.2) is

equivalent to the integrability condition (3.13) since z E IR n is arbitrary. Hence part a) of

lemma 1 above guaranties some a(J) E H1n,1(B; IR n) to exist, such that the virtual work

becomes

F[J](A) = J < 8a( J), A >no 1-l8+ J < a( J)(JV), A >no I-la (4.4).
8 a8

By applying Stoke's theorem in the form (3.10) we shift the operator 8, acting on a(J), to

its adjoint d acting on A, such that the boundary terms cancel, what proves (4.3). 0

This result enables us to link the description of the virtual work via force densities with

the usual formulation of continuum mechanics. In terms of the stress form a( J), which is

a (l,l)-type two-point tensor on B, the principle of virtual work rewrites as :

J is an equilibrium configuration <=} 18 < a( J), dA >n1 1-l8 = 0 for all A E T]E(B, IR n).

As an immediate consequence of this weak problem we can derive the equilibrium equation

for elastostatics in terms of the stress form, what yields the interpretation of a( J) as
the 1st Piola- Kirchhoff stress tensor of the system. Therefore we let U eBbe some

open (connected) subbody with boundary au and assume that au n aB = 0, for sake
of simplicity. By UE we denote a family of open sub set of B, containing the closure of U,

i.e. U C UE C B, and require that the measure of the set UE \ U to be bounded by €, Le.

Iu. \u1-l8 < €. Then infinitesimal displacement A E T]E(B, IR n) we choose such that it

takes an arbitrary constant value A E IRn on the subbody U, vanishs on B\UE and is

smooth inbetween, i.e.

(4.5).

Since dA; = 0 on U and on B\UE, we obtain for the virtual work (4.3) done by A; by

using Stokes's theorem

F[ J]( A;) = J < 80:( J), AE >no 1-l8+ J < 0:(J)(NE),)..E >00 1-l8 (4.6)
u.\U 8(U.\U)
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where N€ denotes the outward pointing normal on a(u€)\U). By construction boundary

splits into a(u€\U) = au€ u au and we have N€lau = -N where N is the outward

pointing normal of U. Since A€(p) vanishs on aUf and takes the constant value ,\ on au
and furthermore < 5a( J), A€>no is bounded, we obtain

F[J](A;) = - J < a( J)(N), A >no Pa + 0\€)
au

(4.7).

Considering the limit € --t 0 and observing that A E IR n was chosen arbitrarily, the

principle of virtual work in terms of the stress form a( J) yields

J is an equilibrium configuration <=? Jau a(J)(N)pa = 0 for any sub set U C B.

So we have obtained a weHestablished formulation for the integral equation of elastostatics,

where the a( J) is to be considered as the 1st Piola-Kirchhoff stress tensor. To make this

interpretation more explicite and to invetigate the symmetry of the corresponding tensor,

we have to study the Piola transformation in our framework.

Therefore we restrict our consideration to an-dimensional body B. Then any embedding

J E E(B; IR n) is a regular map, saying that dJ, the principle part of the tangent map

T J = (J, dJ) is an isomorphism. It makes sense to introduce the adjoint dJt of the tangent

map, which depends on the Riemannian metric G8 as weHas on the scalar produet <, > IR n ,

by writing

G8(W, dJtw) := < dJW, w >IRn (4.8).

If t::,.J denotes the Jakobian determinant of the map J, then

(4.9)

yields a weH defined tensor Aa (J) : IR n --t IR n over each point J (p) in the image of B. It
is the inverse of that transformation, sending the tensor Aa (J) into the stress form a( J),

which is denoted as the Piola tranformation [Ci] in continuum mechanics. To establish

Aa( J) as the Cauchy stress tensor we rewrite the virtual work (4.3) by pulling back the

virtual displacement A : B --t IRn to a IRn-valued function L = A 0 J-1 on J(B) c IR".
Then the differential becomes

(4.10)
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(4.11)

where grad L is the vector gradient in the usual sense [TrToJ. vVith (3.8) for the scalar

product <, >ni we get

F[JJ(A) =t J 6.J < Ao.(J) 0 (dJ-1)t(Ed,dA(Ei) >IR" flB

1=1 8

= t J G8(Ei, dJ-10A:(J)ogradLodJ(Ei)) flIR"

1=1 J(8)

where A~( J) is the adjoint with respect to <, >IR" and we notice that the Riemannian

volumes element on Band JR n are related to each other via the Jakobian by J* fl8 =
6.71. flIR". Observing finally that {EI,"" En} is a orthonormal base on TpB we use the

cyclic property of the trace to obtain

F[J](L) = J trace(A:(J).gradL)flIR" =: J (Ao.(J):gradL) flIR"

J(8) J(8)

Then the principle of virtual work becomes :

(4.12).

J equilibrium configuration {:}JJ(8) (Ao.(J):gradL)flIR" = 0 for all L E H1nO(J(B),JRn
)

This is the standard form of the weak equilibrium equation of contiIiuum mechanics, written

in terms of the Cauchy stress tensor Aa( J) and the gradient of the virtual displacement

L: J(B) -+ JRn, [HuMaJ.
To be ahle to reformulate the computations, made above, in terms of the Cauchy stress

we furt her establish the celebrate Piola identity for one forms. To do so we observe that

for K E nl(B, JR) the induced vector fields K# and (K 0 dJt)# on B and J(B), respectively,

are related by

(4.13).

We remark, that U-operator(3.6) is defined with respect to the (different) metrics <, >IRn

and G8 on the left and right hand side, respectively. Then we can prove the Piola identity.

Lemma 2

The co-differential operator 68 : nl (B, JRn) -+ n° (B, lR n) acting on the body manifold 8
and the corresponding operator 6JRn : nl(J(8),JRn) -+ nO(J(8),lRn) on the embedded

manifold J(8) are related to each other via a Piola transformation by

(4.14).
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Proof:

Let f.lJRn E nn(J(8),IR) be the Riemannian volume form on J(8) and v E IRn a constant

vector. By using some standard properties of the Hodge *-operator [AMR] we obtain with
(3.5) for the co-differential bJRn

(4.15 )

where KA :=< v, AQ( J) >JRn is a IR -valued one form on J(8). Replacing A
Q
( J) by its

Piola transformed we set "'Q :=< v, a(J) >IRnE n1(8,IR) and obtain from (4.13)

(4.16).

Using tl71'f.lJRn = J*f.lB for the puB back ofthe volume form f.lB this yields

(4.17).

and respelling (4.15) for "'~ we finish the proof by observing that

As mentioned above, cf. (3.6), the action of the co-differential on one forms and the di-

vergence correspond to each other. Applied to the Cauchy stress tensor A
Q
( J), which is a

IR n-valued one form on J(8), this reads as

(4.18).

Using the Gauß theorem and the Piola identity (4.14), the integral equation for the pt
Piola-Kirchhoff stress tensor, cf. (4.7), yields U c 8

(4.19)VUcB0= J hBo:(J)f.lB = J diVlRnA~(J)f.llRn
U J(U)

as the equilibrium equation of the system. This is the balance law of linear moment um for

the Cauchy stress, as usually considered in contiumum mechanics. For a direct derivative

of that equation from the virtual work (4.12) we refer to [AnOs], where also possible
functional analytic suptilies are studied in detail.
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(5.1)

Finally we remark that the stess form o( J), and henee also the Cauehy stress tensor

Ao( J) are not uniquely determined by the eonstruction made above. The stress form may

be redefined to any o(J), whieh eorreponds to the same phyiseal data (cI>(J),<p(J)) by

60( J) = cI>( J) and o(JV) = <peJ); a similar argument holds for Ao( J). This gauge freedom

eorresponds to the fact, that only 6o( J) or div A~( J), respeetively, enter the equilibrium
equation (4.19).

One ean imagine several sueh modifieations : From the mathematieal point of view it

seems natural to have o(J) E nI(B; IR n) to be an exact one form, i.e. to be the gradient of

some stress funetion H(J) E nO(B;IRn
). This is possible without furt her assumptions, as

show in [Bi]. Considering eontinuum meehanies in its the classieal formulation, however,

a deseription of the Cauehy stress in terms of a symmetrie tensor is needed : The virtual
work (2.3) should admit some tensor Ao(J) on J(B), whieh is symmetrie.

5. Rotational Invariance and the Symmetry of the Stress Tensor

To investigate the symmetry of the Cauehy stress tensor we start from a translational

invariant work of the form (2.3) for whieh theorem 3 guaranties the existenee of a stress

form a( J). Performing an inverse Piola transformation we know by using the Piola identity
(4.14) that the Cauehy stress tensor solves the boundary value problem

6.r6JRnAQ(J) - cI>(J) on J(B)

6.rAQ(J)n - 'P(J) onJ(8B)

where n is anormal field along J(88), defined by dJtn :=N. By means of Hodge theory

we then can prove the existence of a symmetrie stress tensor AQ( J), taking the (rigid)
rotational invariance (2.9) of F[J](A) as integrability condition.

Theorem 4

Let 8 be an-dimensional Riemannian Ck-manifold with boundary and let the work done
by any virtual displacement L E HIQO(J(B),IRR) be

F[J](L) = J (AQ(J):gradL) ~JRn (5.2)
J(B)

where the Cauchy stress tensor AQ(J) is determined from the forces (.p(J), 'P(J» by (5.1).
If infinitesimal rigid rotations of the whole body cause no work
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(5.3)ve E so(n)J traee( A:(J).e) I1JRn = 0
J(B)

and there exists of a symmetrie tensor AQ(J) : lR n ---.. lR n obeying also (5.1). If <f>(J) and

:,p(J) were differentiable of dass e:-2 on their respeetive domains then AQ(J) is of dass
ek-2v .

Proof:

With x and z veetor fields on J(8) we write the anti-symmetrie part of the A
Q
( J) as

< x,SQ(J)z >JlP:= ~« x,AQ(J)z >IRn - < z,AQ(J)x >IRn) (5.4)

and thus get a so(n)-valued zero form SQ(J) E nO(J(8);so(n)). Rewriting the so(n)-

eontent of (2.9) in terms of the tensor AQ(J) yields (5.3) and sinee so(n) is the spaee of
all anti-symmetrie n x n-matriees

J SQ(J) PIR" = 0 (5.5).
J(B)

This is an integrability eondition to apply part b) of lemma 1 what yileds the existenee of .

some C7Q(J)E n1(J(8); so(n)), solving the boundary value problem

with C7o:(J)IJ(8B) == 0 (5.6).

Sinee C7o:(J)(x) E so(n) is an anti-symmetrie matrix at each point q E J(8), we can define
an JRn-valued two form ~o:(J) E n2(J(B);JRn) by

< x,~o:(J)(Y,z) >lRn :=(5.7)

< x,C7o:(J)(Y)z >IRn - < X, C7o:(J)(z)Y >IRn - < z,C7o:(J)(X)Y >IRn

where x, Y and z are arbitrary vector fields over J(B). The co-differential of the JR n-valued
two form Eo:(J) computes according to (3.7) as

n

< x,h~o:(J)(z) >lRn = -(L:vei < X, Eo:(J)(ei,Z) >lRn - < VeiX,~o:(J)(ei,Z) >lRn
i=l

(5.8)
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where {eI, ... , en} is a (loeal) orthonormal frame on J (ß). Expanding this by (5.7) yields

n

+ L::«x,VeJO'(\'(J)(z))ei >IRn - < x'O'(\'(J)(Veiz)ei >IRn (5.9).
i=l

We obtain a symmetrie tensor on J(ß) by setting

(5.10),

what is the symmetrie part of A(\'( J), cf. (5.6), modified by asymmetrie eorreetion term.

Due to the nilpotenee of the co-differential on J(ß) we furthermore have 8A(\'( J) = 8A(\'( J).
Henee it remains to study the behavior of A(\'(J) on aß. Therfore we argue similarly

as in seetion 3, cf. (3.24), by ehosing the (loeal) orthonormal frame as {ii, e2, ... , en}
with edJ(8B) tangential and iiIJ(8B) normal to J(aß) near the surfaee of the body. By
eonstruction 0' (\'(J) vanishs on J( aß) and we obtain

n

< x,8~o(J)(ii) >IRn = < ii, V~(O'o(J)(x))ii >IRn +I:(< x, V;;(O'o(J)(ii))ej >IRn

i=2

(5.11).

But this expression vanishs on J(a8) sinee 17o(J)(x) is anti-symmetrie and - as a eonse-

quenee of 17o( J) IJ( 8B) = 0 - it is also eovariantly eonstant under the fields ej IJ( 8B), whieh are
veetor fields along the boundary. We remark that in general ii # n but 8~o(J)(ii)18B = 0
guaranties that Ao( J)(o) = Aar(J)(ii) for any field 0 normal to J( (8). 0

With that result on the existenee of asymmetrie Cauehy stress tensor A
ar
( J) the eentral

assertion, we made in section 2, is proven. A loeal so(n) invarianee, as assumed by Noll's

working axiom (2.7), would direetly yield the symmetry of Ao( J), but the global invariance
(2.9) - and in eonsequenee (5.3) - just gave the integrated symmetry result (5.5) and thus

the eonstruction, above was needed. Similar arguments as used in the proof are reputed to
be due to Belinfante [MPP).
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(5.12).

(5.13)

It is now is a matter of routine, to derive the balance law of angular momentum. We take

U C Ui C 8 as in seetion 4 arid construct the virtual displacement as

{

C'q for q E J(U)c -
Li (q) = Ci.q for q E J(Ui\U)

o for q E J(8\Ui)

Here C'q denotes the action (2.5) of some constant matrix C E so(n) on q E J(8) C JRn

and Ci means a so( n )-valued function, which is such that Lf becomes smooth. Since
grad( C. q) = C and AcA J) is symmetrie we derive in analogy to (4.7) :

F[ J]( L~) = J trace( Aa( J). grad( Ci' q) ) PlR n

J( U,\U)

= - J < Aa(J)ii, C'q >lRn PlRn + a(E)
J(8U)

for any U C 8 with ii now denoting the unite normal field along J( aU). In the limit E -+ 0

this yields the usual form for the balance law of the angular moment um in equilibrium.

6. Remarks on the Constitutive Theory

Considering the Euclidean group as a symmetry in continuum mechanics also allows to

face the constitutive question of the theory. This concerns the functional form of the stress

tensor and means to figure out which mathematical information about the embedding

J is necessary to determine o(J) or Aa( J), respectively, and which is redundant. First

we observe that taking E(8, JRn) as the configuration space of the system is a primary

- physically fundamental - constitutive assumption. For more general theories, e.g. for

Cosserat media or for systems with defects, the virtual work in the form (2.3), depending
only on the embedding J, will not yield a proper description.

To investigate the effect of the E( n)-symmetry on the constitutive question, we remark

the tree different tensorial pictures for the stress. First there is the description in terms of
the 18t Piola-Kirchhoff stress, given by a JR n -valued one form

o(J): T8 -+JRn (6.1),

which we derived in section 4. As a (l,l)-type two point tensor, having one leg in 8 and one

in JRn it should transform like a vector under the E(n)-action (2.4) on an embedding J.
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Second we worked in the spacial (Eulerian) picture by performing an inverse Piola trans-
formation on the stress form o( J) which yields the tensor

(6.2).

This is a proper tensor on J(8) C IR n and should transform tensorial under the group

E( n). Third we can introduce the material (Lagrangian) picture, which is the most appro-

priate one to investigate the constitutive question. To do so we pull back the 1st Piola-

Kirchoff tensor o( J) under the embedding J and obtain the 2nd Piola-Kirchhoff stress
tensor Aa( J) given by

dJ 0 Aa(J) = o(J) where Aa(J) : T8 -t T8 (6.3).

By the symmetry of Aa( J) it also can be chosen symmetrie. Since the Euclidean group

acts on the configuration space E(8, IR n) only via a transformation in the ambient space

IR n, it should not touch Aa( J) which is a proper tensor on the body 8. Hence the 2nd

Piola-Kirchhoff stress should behave as a scalar under the E(n)-action.

To make this explicite we investigate Noll's axiom of material frame indifference of forces

(2.6), claiming that the forces densities (ep( J), c.p( J)) obey a vectori~tl transformation law

and c.p(9(R,T)[J]) = Rc.p(J) V 9(R,T) E E(n) (6.4)

under the action of the Euclidean group. In the virtual work approach this axiom appears

quite naturally : Since the virtual work is defined as a linear functional on TJE(8, IR n),
it transforms-under the canonicallift [AbMa] of the E(n)-action (2.4) from the m~fold

E(8, IR n) to its co-tangent bundle T* E(8, lR n). By definition (2.3) this functional F[J]

has a kerneI, induced from the force densities ep( J) and c.p( J) by the fixed scalar product

<, >IR n. In consequence these force densities have to transform under the tangential lift
of (2.4), saying they have to transform like vectors in lRn.

By construction then also the stress form o( J) obeys a vectorial transformation law in its

IR n -argument under the e( n )-action on E( 8, lR n) and the axiom of the frame indifference

of forces (6.4) becomes, written in terms of the 2nd Piola-Kirchhoff tensor:

V 9(T,R) E E(n) (6.5).

To obtain from this invariance the proper constitutive description for the stress we note,

that (6.5) makes that the 2nd Piola-Kirchhofftensor into a (tensor-valued) functional on the
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quotient E(ß, IR n)/ E(n), cf. [Bi]. Due to the product structure of the Euclidean group we

again can investigate the translational and rotational part of the E( n )-action in sequence.

Considering the translation group IR n there is the natural identification

(6.6)

where d is the exterior derivative acting on E(B, IR n), which 1S an open subset of

nO(B; IR n). Hence an element of E(ß, IR n)/ IR n is to be indentified with the differen-

tial of an embedding. With the same argument as used for (4.10), that differential dJ
corresponds to the deformation gradient. For the rotational symmetry we then introduce

the Green deformation tensor as the pull- back of the scalar product <, >IR" under the

embedding J, defined explicitely by

CJ:TßxTB--+-IR

CJ(X,Y) = < dJX,dJY >IR" 'v' X, Y E rTß
(6.7).

It is a matter of routine, cf. [HuMa]' to prove from (6.5) that the 2nd Piola-Kirchhoff stress

tensor Aa( J), is a functional of the deformation tensor CJ only. So we may set in abust of

notation Aa( J) = Aa( CJ) for the stress considered in the material picture as a functional

on E( ß, IR n) / E( n). Hence we obtain as the final result concerning the principle of virtual

work:

Theorem 5

Let a system in continuum mechanies be determined by an E( n )-invariant virtual work

in the sense of (2.3), (2.6) and (2.9). Then an embedding J describes an equilibrium

configuration of the system, iff the work integral

F(J](A) = J (Aa(CJ): DA) J-t8

8

(6.8)

vanishs for all virtual displacements A E TJE(B,IRn). Here CJ is the Green deformation

tensor, DA denotes the symmetrie part of the tensor dJ-1o dA on TB and Aa(CJ) is the

2nd Piola-Kirchhoff tensor.

Let us finally examine our results in the light of another standard approach to physical

systems with symmetries. Therefore we specialize the treatment to a Lagrangian formula-

tion, which it contained in our setting by considering the virtual work functional FJ(A) to
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be the Frechet derivative of a (static) Lagrangian functional

FJ(J)(A) = DJL (J)(A) where JL(J) = J £'(J)PB
B

(6.9).

Such an approach is equivalent to the consideration of the special case of a hyperelastic
medium in continuum mechanics.

Symmetries of a Lagrangian (field) theory may be studied by means of Noether's theorem

[Noe], which claims that each symmetry of £, yields some conserved quantities. For an ap-

plication to the Euclidean symmetry in elasticty we refer to [HuMa], where it is shown that

Noether's conserved quantities for the E( n)-action in elasticity correspond to the existence

of a symmetrie stress tensor Ao( J). Hence for the hyperelastic case Noll's result may be

understood as an application of Noether's theorem. We note, however, that assuming an

E(n) invariant Lagrangian (6.9) means to investigate a local symmetry, in contrast to our
global treatment.

Equivalent to using Noether's theorem is - under certain assumptions - the moment um

map technique [AbMa] in sympleetic geometry. There the existence of conserved quantities

in consequence of a symmetry is expressed as a constraint on the phase space of the system.

The constraint subset C is determined from the moment um map of the given symmetry

group 9 and the content of the Marsden- Weinstein reduction [MaWe] is to observe the

quotient C/g as a symplectic manifold. Furthermore all physical investigations for a g_
invariant system reduce to studies on that the reduced phase space.

Applied to our treatment of elasticity, the constraint for the Euclidean group action turns

out to be the invariance (2.9) of the virtual work under rigid motions. The explicite con-

struction of the coresponding moment um map will be given elsewhere [BiSe]. The dis-

cussions on Noll's theorem in section 4 and 5 then show that the constraint set C can

be represented by the space of all symmetrie tensors over J(8), considered as functionals

over the configuration space E(8, IR n). On the other hand the transformation properties

for the stress tensor, which were presented in this section, e.g. the relation (6.5), express

the fact, that the proper reduced phase space is by C/ E( n). In the material description

this manifests itself in the fact, that the (symmetrie) 2nd Piola-Kirchhoff stress tensor is
functional dependent on the embedding J only via the deformation tensor CJ.
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