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Abstract

Let A be an arbitrary regular triangulation of a simply connected compact
-polygonal domain Q@ C R? and let S;(A) denote the space of bivariate polyno-
mial splines of degree ¢ and smoothness 1 with respect to A. We develop an
algorithm for constructing point sets admissible for Lagrange interpolation by
S;(A) if ¢ > 4. In the case ¢ = 4 it may be necessary to slightly modify A,
but only if exceptional constellations of triangles occur. Hermite interpolation
schemes are obtained as limits of the Lagrange interpolation sets.
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1 Introduction

Let Q C R? be a simply connected compact domain with polygonal Jordan boundary,
and let A denote a regular triangulation of 0, i.e., A is a set of (closed) triangles
whose union coincides with  such that the intersection of any two triangles in A
is either empty set, or a common vertex, or a common edge. The space of bivariate
splines of degree q and smoothness r with respect to A is defined by

Sq(A)i={s€C(Q) : s, €ll; forall TeA}, 0<r<yg,

where .
Hq ::Spa,n{.'bly‘7 . ZZO, ]20’ Z+]Sq}

is the space of bivariate polynomials of total degree q.

In the literature, point sets that admit unique Lagrange and Hermite interpolation
by spaces S57(A°) were constructed for crosscut partitions A°, in particular for A!
and A2-triangulations [1, 4, 14, 19, 20, 21, 25, 26]. Results on the approximation
order of these interpolation methods were given in [4, 9, 14, 18, 19, 22, 25, 26].
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Much less has been known about interpolation by S7(A), r > 1, if A is an ar-
bitrary triangulation. (Recall that even the dimension of the space S;(A) is known
onlyifr=1,¢g>4o0rr>2 g>3r+2.) An explicit Hermite interpolation scheme
for S3(A), ¢ > 5, can be obtained by using the nodal basis of this space constructed
in [15]. However, this sheds no light on the problem of constructing Lagrange inter-
polation sets. Recently it was shown [23, 24] that a natural multivariate analogue
of well known Schoenberg-Whitney theorem holds true for almost interpolation sets,
i.e., point sets that can be transformed into a Lagrange interpolation set by an
arbitrary small perturbation. Several Schoenberg-Whitney type characterizations of
almost interpolation can be found in 7, 11, 12, 13, 23, 24]. A particularly simple char-
acterization theorem is available [13] for spline spaces that admit a locally linearly
independent basis. Since the spaces S;(A), ¢ > 5, are of this type (see [8]), general
algorithms of transforming almost interpolation sets into interpolation sets [7, 11, 23]
can be applied to construct Lagrange interpolation sets for these spaces. For ¢ =4 it
was shown in [2] that a spline in S}(A) exists which coincides with a given function at
the vertices of A. Under certain restrictions on the triangulation, analogous results
were obtained in [5, 6, 16] for function and gradient values at the vertices. (Note that
the dimension of S}(A) is about six times the number of vertices of A.)

Thus, no explicit Lagrange interpolation schemes for S;(A) and arbitrary trian-
gulations A were given in the literature. In this paper we describe an algorithm for
constructing such interpolation schemes for ¢ > 4. In the case ¢ = 4 it may be
necessary to slightly modify A, but only if exceptional local constellations of trian-
gles occur. In these cases we simply split one of the triangles or perturb one of the
vertices. Our algorithm for constructing interpolation points is inductive. Starting
with one triangle, in each step we add one vertex to the subtriangulation considered
before, and simultaneously choose interpolation points on the newly added triangles.
Therefore, the interpolating spline can also be computed step by step, by solving
small systems of linear equations. By shifting interpolation points to the vertices,
we also obtain Hermite interpolation schemes. It is important to note that for A!
and A? triangulations our method leads to the interpolation schemes with (nearly)
optimal approximation order developed in [18] and [22], respectively. In addition, our
recent numerical results confirm that our interpolation methods yield nearly optimal
approximation order for S;(A), ¢ > 4, and general classes of triangulations (see [10]).

The paper is organized as follows. Section 2 contains some auxiliary concepts and
results. In Section 3 and Section 4 we describe our interpolation schemes for S}(A)
and S;(A), ¢ > 5, respectively. Finally, in Section 5 we give the proofs of the main
results.




2 Preliminaries

'To simplify notation, we set

T _(g+1)(g+2)
(2.1) dy = dimIl; = =,

g=0,1,....

Given a regular tridngulation A, we denote by N the number of triangles, by V;
and Vp the number of interior and boundary vertices respectively, and by E; and Ep
the number of interior and boundary edges respectively. It is well known that

EB = VB;
(2.2) Er = 3Vi+Vp -3,
N = 2Vi+Vg—2.

It was shown by Morgan & Scott [15] (for ¢ > 5) and by Alfeld, Piper & Schu-
maker [2] (for ¢ = 4) that

(2.3) , dim $;(A) = dg + dg2Er — (dg = d1)Vi+ 0, ¢2>4,

where ¢ is the number of singular vertices of A, i.e., those interior vertices for which
the adjacent edges of each attached edge are collinear, so that exactly four triangles
share a singular vertex and their union is a quadrilateral with the diagonals drawn
in (see Fig. 2.1).

A finite set of points {z,...,2n} C §, where n = dim 5;(4), is said to be a
Lagrange interpolation set for S;(A) if it is admissible for Lagrange interpolation
from S ;(A), i.e., for any continuous real function f on () there exists a unique spline
s € S;(A) satisfying the following Lagrange interpolation conditions

(2.4) s(z) = f(z), i1=1,...,n.

If we consider not only function values of f but also partial derivatives, then we speak
of Hermite interpolation conditions.

Any finite set A C Q is said to be total with respect to a subspace § C S3(A) if
the only spline s € S vanishing at all points z € A, is the zero function. It follows
easily from basic linear algebra, that A is a Lagrange interpolation set for S ;(A) if
and only if it is total w.r.t. S}(A) and the number of points in A is equal to the
dimension of S;(A). ‘

Our construction of interpolation sets depends on the following local properties
of the triangulation.

Definition 2.1 [2] Suppose €', e, e’ are three consecutive edges attached to a vertex
v. The edge e is said to be degenerate (at v) whenever the edges €’ and e” are collinear.
Otherwise e is nondegenerate (at v). (See Fig. 2.2.)




Definition 2.2 The union of all triangles sharing one common vertex v is called the
star of v, denoted by ST'(v).

For any subtriangulation: A’ C A we set

QAI = U T.

TeA!

Definition 2.3 Let A’ C A. We say that a vertex v € int 2Nbd Qa: is semisingular
of type I with respect to A’ if ST'(v) \ Q4 includes precisely two triangles T;, T, €
A\ A’ with a common edge e which is degenerate at v (see Fig. 2.3, a)). A vertex
v € int QNbd Qs is said to be semisingular of type II with respect to A’ if ST(v)\Qa
includes precisely three consecutive triangles 71,75, T3 € A \ A’ such that both the
common edge e; of T;,T> and the common edge e; of T3,T5 are degenerate at v
(see Fig. 2.3, b)). We say that a vertex v is semisingular with respect to A’ if it is
semisingular of either type.

Fig. 2.1. A singular vertex.

a) b)

Fig. 2.2. Edge e is a) degenerate or b) nondegenerate at v.




a) ' b)

Fig. 2.3. Vertex v is semisingular w.r.t. A'.

Our analysis will involve second partial derivatives of s, where s € S;(A) and
T € A, at the vertices of the triangle 7. While s is generally not twice differentiable
at a vertex v, the following weaker condition always holds. Let T',T"” € A have a
common edge e attached to a vertex v and let r be the unit vector in the direction
of e away from v. If 7 is another unit vector in the plane, which may, in particular,
coincide with r, then
P(s,), | Pl

(23) Bror )= arar )
Equation (2.5) immediately follows from the fact that

3(s),,) (8| p)
_8—7‘——(2) = —(—,;f———(z), forany z€e.

Following [15] we define “edge derivatives” of a function.

Definition 2.4 Suppose that f € C'(Q) and f . € C*(T), for any T € A. Let v
be a vertex in A, let e;, e; be two consecutive edges attached to v, and let T be the
triangle with vertex v and edges e;, e2. By the first, respectively, second e;-derivative
of f at v we mean

8 8 & 8*(f .
(2.6) ai (v) := a7{_(1}) and —5;1;—(1)) = ——C,grlTT)(v), 1=1,2,

1

where r; is the unit vector in the e; direction away from v. Furthermore, by the cross
(e1, €2)-derivative of f at v we mean

9 f (A

Be1des ) Bridr, v).

(2.7)

In our construction of interpolation sets, some special subtriangulations play an
essential role.

Definition 2.5 We say that A’ C A is a tame subtriangulation if the following
conditions (T;)—(T3) hold:




(T1) Qar:=Urea Tis sim_ﬁl%y connected.

(T2) For any two triangles T/, T" € A', there exists a sequence {T1,...,T,} C A’
such that T} and Tjy; have a common edge, 7 = 1,...,u — 1, where T} =T,
T,=T". ‘

(T3) If two vertices vq,v, € s/ are connected by an edge e of the triangulation A,
then e C Qar. - 7 ’ ‘

It is easy to see that condition (T3) in the above definition may be substituted by
(T%) Qas has a Jordan boundary.

Therefore, A is a tame subtriangulation of itself.

We note that a set M C R? is simply connected if and only if it does not have
holes, where by hole of M we mean any bounded connected component of R?\ M.
If M is connected but has holes, then obviously every such hole is simply connected.

Lemma 2.6 Let A’ be a tame subtriangulation of A, with A’ # A. Then there ezists
a vertez v € O\ Qar such that

(2.8) QaNST(v) includes an edge e of the triangulation, and,
(2.9) Qar U ST(v) s simply connected.

Proof. Since A is a regular triangulation and A’ is tame, it is easy to see that there
‘exists at least one vertex v; € 2\ Q4+ such that Qa N ST'(vq) includes an edge of the
triangulation. If v; also satisfies (2.9), we set v = v;. Otherwise, Qs U ST (v;) has a
hole Hy with H; = Ty U---UT,, where T; € A\ A', 5 =1,...,u. Then Qar N Hy
evidently includes an edge e. Consider the triangle T;, C H; attached to this edge.
Since A’ is tame, it follows from (T;) and (T3) that the third vertex of T} cannot
be in Qas. (Indeed, if all three vertices of T}, were in Qa/, then by (T3) also all three
edges of T; would be subsets of Qa/. Since Qs is simply connected by (T;), we
would have T}, C Qa, a contradiction.) We denote by v, the vertex of T}, that does
not lie in Qas. If v, satisfies (2.9), we set v = v,. Otherwise, Qa/ U ST (v2) has a hole
H, C H; (see Fig. 2.4). Since T}, C H; \ H,, we have H, # H;. Then we can find a
triangle T}, C H, attached to a common edge of Q0a: and H,, and denote by v the
vertex of of T}, that does not lie in Q.. If v5 satisfies (2.9), we set v = v3. Otherwise,
we proceed with this method and construct a sequence of vertices vy, v,,... € 2\ Qas
satisfying (2.8) such that Qa/ U ST'(v;) has a hole H;, j = 1,2,..., with

Hjy1 CHj, Hjp # Hj, vjgn € Hy \ Hyp, J=L2,....

Since there is only a finite number of vertices in H;, this process terminates after
finitely many steps, and we finally obtain a vertex vy € Hg_;, k > 1, such that
Qar U ST'(vk) has no hole, which means that v = vi satisfies (2.9). B




o

Fig. 2.4. Filling a hole: v = v3, H=T\U---Ts H =TsU---Tia.

3 Interpolation by C' Quartic Splines
We now constrﬁct a chain of subsets €); of Q such that
D=QQCc CQHC---CU =9,

and correspond to each ; a set of points ,Cz(-4) CU\Qing,2=1,...,m.
For i =1, we take A; = {T}}, where T} is an arbitrarily chosen “starting” triangle

(1) (2 (3)
1

in A with vertices v, ’, v; and v{”’, and set

Ql = ‘QAl =T1.

We choose [:54) to be an arbitrary set of 15 points lying on 7 and admissible for La-

grange interpolation from II4. For example, we can choose three vertices vgl), v?), v§3)
ﬂ , wf])-, wﬁ) in the interior of the edge e, ;, for each
J = 1,2,3, where e; ; denotes the edge of T} which is opposite to the vertex vig ), and
any three noncollinear points zgl), z§2), z§3) in the interior of the triangle T;.
Proceeding by induction, we take 1 > 2 and suppose that A;_; has already been
defined and is a tame subtriangulation of A, with £,_; := Q,,_, being a proper subset
of Q. In order to construct A;, we apply Lemma 2.6 to the subtriangulation A;_; and
choose a vertex v; € Q\ ;-1 such that Q,_; N ST (v;) includes at least one edge and

Q-1 U ST (v;) is simply connected. It follows that there exists a sequence of (different)

of T, any three distinct points w




vertices v;g, Vi1, - ., Viy;, where u; > 1, such that v; ;_, and v; ; are connected by an
edge e;; of the triangulation, j = 1,...,u;, and Qi_; N ST(v;). = e;1 U -~ U e,
Denoting by T;; the triangle with vertices v;, vij—1 and v;;, 7 = 1,..., i, we set
(see Fig. 3.1)

A,’ = A,'_1 U {T,',l, coey T,',m} and Q,‘ = QA‘. .

It is easy to check that A; satisfies (T;)—~(Ts), hence it is tame. In order to define
_[,,(.4) , we need some further notation. Denote by é;; the edge attached to v; and
Vij, J = 0,... i ¢t = 2,...,m (see Fig. 3.2). For each 1 € {2,...,m} we define
J; € {0,...,ui} as follows: '

‘ é;; is nondegenerate at v; ;, and
(3.1) j € J; if and only if if 7 € {0, 4}, then, in addition,

‘ : v; ; 1s semisingular w.r.t. A,.
Moreover, for every i € {2,...,m} we set

(3.2) 9. = 1, if v; is semisingular w.r.t. A;, but nonsingular,
: 10, otherwise.

(Thus, 6; = 1 if and only if v; is semisingular w.r.t. A; and either é;o or é;,, is
nondegenerate at v;.)

Fig. 3.1. Constructing A,;.



Fig 3.2. Q,’ \ Q,‘_l (,LL,' = 3)

We distinguish three cases.

Case 1: §; = 0.
Then 554) C Q \ Qi1 consists of

(3.3)  the vertex v,

3.4 any point w; ; in the interior of the edge é; ;, for each 7 € {0,..., u:}\ Ji,
17 g 3J ILL

(3.5)  two points w;,w;, different from (3.4) and lying in the interiors of two
noncollinear edges é; j» and é; j» respectively, for some 7', 7" € {0, ..., u},
and

(3.6)  any point z; in the interior of a triangle T; j», for some 7 € {1,...,u}.

Case 2: §; =1 and there exists j* € {0, 4;} \ Ji, such that é; j« is nondegenerate at
V;.

Then ,654) C i\ Q- consists of (3.3),

(3.7)  any point w;; in the interior of the edge é; ;, for each 7 € {0,..., i} \

(iU {s}h),

(3.8)  two points w},w!, different from (3.7) and lying in the interiors of
two noncollinear edges é; j and é;;» respectively, for some 7',7" €
{0, ce ,/J,'} \ {j*}, and

(3.9)  any point z; in the interior of a triangle T; jw, for some j” € {1,...,ui}\
{7 7" +1}.

(It is easy to see that such j', 7 and ;" exist.)

Case 3: 6; = 1 and é;; is degenerate at v; for every j € {0, u;} \ J:.




Fig. 3.3. Clough-Tocher split of a triangle in Case 3.
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In this case we slightly modify the triangulation A locally as follows. The first
possibility is to perform a Clough-Tocher split of the triangle T; that lies outside ;
and shares the edge é; o with T} ;. Therefore, we add a new vertex ¥; in the interior of
T; and connect ¥; with three edges to each of the vertices of T; (see Fig. 3.3). After
this mod1ﬁcat10n vertex v; is-no longer semisingular w.r.t. A;, hence §; = 0, and
we choose [I C Q; \ Q- according to the rule described in Case 1. Furthermore
we choose v;y; := ¥;." It is easy to see that Q; N ST(%;) includes an edge of the
triangulation, namely é; o, and ; U ST'(%;) is simply connected since §;_; U ST (v;) is
simply connected. Therefore, A;;, defined by adding to A; the triangle with vertices
v;, Vi and 5, is a tame subtriangulation of A. Moreover, we have 8;;; = 0. Thus,
we choose £,(-i)1 C Qiy1 \ & according to Case 1. The second possibility is to shift the

vertex v; so that §; becomes 0. Then we choose .C,(-4) C O\ Q- as in Case 1.
In both cases we denote the resulting modified triangulation by A*.

Theorem 3.1 The set. of points £ = U, £f4) described above is a Lagrange
interpolation set for S;(A*). In particular, A* = A if Case 3 does not occur.

The proof of Theorem 3.1 will be given in Section 5.

Remark 3.2 (i) For i = 2,...,m the choice of the interpolation points in ,Cf4) C 2\
Qi1 is based on the following consideration. (For details see the proof in Section 5.)
Let s € S}(A) vanish on £;_;. Since s is a C'-spline, certain derivatives of s along the
edges in §; \ Q;_; are implied to be zero, and certain sets of interpolation points can
be chosen on £2; \ Q;_;. Now, what conditions are implied depends on nondegenerate
edges and semisingular verticesin €;\€;-;. This leads to the definition of the sets J; in
(3.1) and the indicator values §; in (3.2). Roughly speaking, nondegenerate edges and
semisingular vertices in 2, \ £;_; reduce the number of interpolation points in £E4).

(ii) We had to split the case 6; = 1 into two subcases (Case 2 and Case 3) depending
on whether or not there exists j* € {0,u;} \ Ji, such that é; ;» is nondegenerate at
v;. If Case 3 is given, then, as said above, the triangulation A has to be slightly
modified. This is necessary since in this case a spline in S§(A;_1) that interpolates
at the points of the set L_Jz ! E ) cannot in general be extended to a spline in S}{A,).

Remark 3.3 (i) We note that Case 3 is an exceptional case. It is easy to see that it
may occur only in the following three specific situations:

o v; is semisingular of type I w.r.t. A;, and both v, v; ,; are semisingular w.r.t.

A;, see Fig. 3.3, a),

e v; is semisingular of type I w.r.t. A;, one of two vertices v;;, 7 = 0, u;, is
semisingular w.r.t. A;, and the other one is such that é;; is degenerate at v;,

see Fig. 3.3, b), or

e v; is semisingular of type II w.r.t. A;, and both v, o, v; ,; are semisingular w.r.t.

A, see Fig. 3.3, c).
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(ii) In particular, the occurrence of Case 3 requires that A should include subtrian-
gulations shown in Fig. 3.4, where a vertex is connected with five or four collinear
vertices. Therefore, no modification of A is needed. if each vertex is connected with
at most three collinear vertices. In.particular, this last condition is satisfied for any
triangulation obtained from an arbitrary convex quadrangulation by inserting one or
two diagonals of each quadrilateral.

(iii) We also note that*our method works without modifying A if the total number

of edges attached to v; is odd. Then £$4) consists of (3.3), (3.4) and (3.5) in Case 3.

ﬁ@

a) b)

Fig. 3.4. Subtriangulations in Case 3.

Remark 3.4 (Hermiteinterpolation.) It is easy to see from the proof of Theorem 3.1,
that Lagrange interpolation of f at some points of the above scheme can be replaced
by interpolation of appropriate first or second partial derivatives of f provided that
such derivatives exist. Namely, instead of interpolating function values at the points
w&?, wfj)-, 7 =1,2,3, one can require that

s g 5 ‘ s (. : _
e =Ze), Fe=Zeh, =123,

For each 7 = 1,2,3, interpolation of f at wﬁ)

of second e, j-derivative of f at any of two vertices of e; ;, and interpolation of f at
zij) can be replaced by the interpolation of cross derivative of f at vgj). For each
i =2,...,m, interpolation of f at w}, w! can be replaced by the conditions

Js _0f ds, . _0Of
a_x(vl) - 5;(7)1)7 'ag(vl) - ’é;(vt)’
interpolation of f at w;; can be replaced by

d%s o f

aé—?j(vi) = @;(W),

can be replaced by the interpolation

12



and interpolation of f at z; can be replaced: by

A ) . ——
) = e/ (vi) .
aei,j”’—'laei,j’” aei,j”’—laei,j”'
Particularly, our Hermite interpolation scheme includes the function and gradient
values at all vertices of, the triangulation.

=
S\

Fig. 3.5. Location of Lagrange interpolation points for S;(A).
(Numbers and bold faced lines show the construction of {A;}2,.)

Remark 3.5 The computation of interpolating spline s € S;(A) according to our
scheme is easy to perform step by step, by constructing s Qs after s Qi \Qin”
This can always be done by solving small systems of linear equations. In general,
there exist much freedom in choosing the starting triangle T as well as the vertices
vi, 1 = 2,...,m, when constructing the chain of subtriangulations A; with required
properties. Therefore, in practice it is advantageous to take into account the special
structure of the triangulation if it is known. For example, for three- and four-direction
meshes our method leads to the interpolation schemes developed by Niirnberger [18]
and Nirnberger & Walz [22], respectively. These schemes possess (nearly) optimal
approximation order. (See also the numerical examples in [18] and [22].) In addition,
our numerical experiments with Franke’s test function on general classes of triangu-
lations by using up to 40 000 interpolation conditions show that for S ;(A), q > 4, our

v methods also yield (nearly) optimal approximation order (see, e.g., [10]). So far our
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numerical tests show that it is suitable to choose some of the Lagrange interpolation
points near the vertices of A. If data are only given at the vertices, we approxima-

tively compute the interpolation conditions needed for our algorithm by using local
methods.

4 Interpolation by C!' Splines of Degree q¢ > 5
We construct a chain of subsets 2; of {2 such that
0=QoCQ1CQ2C"'CQm=Q,

as in Section 3 and assign to each §; a set of points ,Cf-q) CU\ -1, 2=1,...,m, as
follows. (In the case ¢ > 5 no modification of the given triangulation A is necessary.)
We choose qu) to be an arbitrary set of d; points lying on 7} and admissible for

Lagrange interpolation from II;. In order to define £

., 1 > 2, we distinguish two
cases.

Case 1: ;= 0.
Then £§q) C Qi \ Q- consists of

(4.1) the vertex v,
(1) (g-3)

(4.2)  any q — 3 distinct points w; /,...,w;5 ~ in the interior of the edge é; ;,
foreach 7 € {0,..., i} \ Ji,
(4.3)  any ¢ — 4 distinct points wflj), . ,wf:’j_4) in the interior of the edge é; ;,

for each 7 € J;,

(4.4)  two points wi, w/, different from (4.2) and (4.3) and lying in the interiors
of two noncollinear edges é;;; and é;;» respectively, for some j’, ;" €
{0,...,p},

1 (dg—4)

(4.5)  any dg-q4 distinct points z; i, ..., 2 "’ lying in the interior of a triangle
T; jm, for some j” € {1,... ,,u,} and admissible for Lagrange interpola-
tion from II,_4, and

(1) (dq

(4.6) any d4-s distinct points Z,J,...,z”‘s) lying in the interior of T;;

and admissible for Lagrange interpolation from II,_;, for each j €

{1, w3\ {U"}

Case 2: §; = 1. (Hence, there exists 7* € {0, 4}, such that é; ;« is nondegenerate at
v;.)
Then ﬁf‘n C Q; \ Qi consists of (4.1),
(4.7)  any ¢ — 3 distinct points w(l) .,w(';;_‘o’) in the interior of the edge é; ;,
for each j € {0,. ..,p,}\(.] U{] b,

14




1) (g-4)

(4.8)  any g — 4 distinct points w;/,...,w;;  in the interior of the edge €, ;,
for each j € Ji \ {57}, N
(4.9)  any q —« distinct points w( ). , wquj *) in the interior of the edge é; j»,

where k = 5 if 5* GJ,,a,ndfc—41f] ¢ Ji,

(4.10)  two points w!,w!, different from (4.7), (4.8) and (4.9) and lying in the
interiors of twob noncollinear edges é; j and é; ;» respectively, for some
7" € {07 s 7#1'} \ {j*}’

4.11) any d,_4 distinct points Z(l)/u, z(d,,, lying in the interior of a triangle
q-— 1,7 g g

T; jm, for some 7" € {1,.. .,,u,}\{] J*+1}, and admissible for Lagrange
interpolation from II,_4, and

(1) (dg-s)

(4.12) any d,_s distinct points z;/,...,%;; lying in the interior of T;;

and admissible for Lagrange interpolation from. II, s, for each j €

{17 s a/-"i} \ {jm}'

Theorem 4.1 The set of points L9 = Jo, ,Cf-q) described above 1s a Lagrange
interpolation set for S;(A), ¢ > 5.

Remark 4.2 In contrast to the algorithm of Section 3, we do not need to split the
case §; = 1 into subcases. The reason is that even if é; ; is degenerate at v; for every
7 € {0,u} \ Ji, we can choose j* € {0, u;i} N J; such that & ;» is nondegenerate at
v;, which, by (4.9), simply reduces to ¢ — 5 the number of interpolation points to be
taken in the interior of the edge é; j». Therefore, ¢ — 5 must be nonnegative, which
shows that this scheme is not applicable to S;(A).

Remark 4.3 As in the case ¢ = 4, the above Lagrange interpolation scheme can
be transformed into an appropriate Hermite interpolation scheme for S;(A), q>5
(cp. Remark 3.4).. Moreover, Remark 3.5 about computation and approximation
order of our interpolation method remains true in the case ¢ > 5.

The following result on the dimension of SJ(A), ¢ > 5, restricted to a tame
subtriangulation is a consequence of Theorem 4.1.

Corollary 4.4 Let A’ be a tame subtriangulation of A. Then

(4.13) dim S)(A), =dimS;(A) —&(A"), ¢>5,

la,,

where G(A’) denotes the number of semisingular vertices w.r.t. A" which are nonsin-
gular.

The proofs of Theorem 4.1 and Corollary 4.4 will be given in Section 5.
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5 Proofs

We prove Theorem 3.1 and Theorem 4.1 simultaneously and divide the proof into a
series of lemmas..

First, we describe some relations between second derivatives of a C'-spline on
adjacent triangles. Note that (5.1) was given in [15].

Lemma 5.1 Lets € S;(A), q > 2. Suppose that €, e, " are three consecutive edges
attached to a vertex v. Denote by 0’ and 6" the angles between e and € and between
e and €" respectively. Then
0%s 9?%s d?%s

. " . . /
(5.1) sin(8' + 6 )555(0) = sin §” - (v) +siné 6606”(0) .
If, in addition; €' is degenerate at v and e* denotes the edge attached to v which is
opposite to e (see Fig. 5.1), then

PP L | . 0% ., 0%
(5.2) sin(¢' + 0 )5;5(1)) = —sind 36*56’(v) +sin § aeae”(v) .
Finally, if € 1s also degenerate at v, then
d?s d%s d?s
. : / " — : " : 9/
(5.3) sin(¢’' + 6 )_062 (v) =siné Eyrryen (v) + sin aeae”(v) ,

where e** is the edge attached to v and opposite to €.

7

e**

Fig. 5.1.

Proof. Denote by r, v/, ", r* and r** the unit vectors emerging from v in directions
of e, €, €, e* and e** respectively, and by T", T”, T* and T™* the triangles formed
by vertex v and pairs of edges e, ¢’; e, €”’; e*, ¢’ and e*, e** respectively. Since

rsin(f +6") =r'sinb” + r"sin§’,
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we have of of of
sin(¢' + 6 )E(U) =sinf %(v) +sin 6 57/—,(1)) ,

for any differentiable at v function f. Therefore, by (2.5)~(2.7),

sin(6’ + 9")%};—(1}) = sin(f + 9“)%%'{’-%@
2 2
= sin0"%—£%:—;)(v) +sin9'a—a%%—)( )
= sin 9”5%(1)) + sin ¢’ g:éi),,(v) ;
so that (5.1) holds. Furthermore, since r* = —r, we have
s\ _Pg) sy Ps.) o

6eaef(v) ~ 9r'dr (v) = or'or (v) = - or!or* (v) = 86*86’(0)’

/
)

%5 *(si,.) 0*(si7.) (7. 8%s
Geoe ") = Tror )T Grom ) T T omge (V) T eV

and (5.3) follows from (5.2). W

so that (5.2) follows from (5.1). Similarly, since r** = —r

For any finite-dimensional linear space U of real-valued functions defined on a set
{2, let v, denote the restriction of u € U to a subset ' of 2. We set

Uy ={yg : weU},

U/ :={uel: y, =0}

Suppose that a set of points £{9 C Q, ¢ > 4, has been constructed according to
the algorithm of Section 3 or 4. For ¢ = 4 we may assume that Case 3 of the algorithm
never occurs. Indeed, let A* be the triangulation obtained from A by splitting some
triangles T, respectively by shifting some vertices v;, as described in Section 3. Then
it is easy to see that £, are chosen in the same way as if the algorithm were applied
to A* instead of A. (In fact, a difference could appear only if we split a triangle
T. attached to the edge &; o such that v;o is semisingular with respect to A;_;. But
then é;4 is degenerate at v;g, hence 0 ¢ J; and é;¢ is nondegenerate at v;, which
never happens in Case 3. Therefore, we never split such a triangle.) Moreover, for
A* further modification is not needed since Case 3 does not occur. Thus, in the
following we assume that Case 3 never occurs for A.

Consider the spaces

(5.4) S 1= (S1(A)/ Qo) CSHAY,  i=1,...,m.

Q
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Since Ag = 0 and A, consists of a single triangle T}, it is obvious that

(55) S¥ =y, , dms®=d,.
For: > 2,
(56) S =00 S C S(ANAL) = S;({Tu, - Tow}).

Lemma 5.2 Every spline s € S§Q), 1 > 2, satisfies the following two conditions:

Js Js
(5.7) s(z) = 03:( z) = ay( 2)=0, z€eU---Ueiy,
and 5
(58) > (vi) =0, jEUi.

Y
8ei,j

Proof. Given any spline s € S,-(_q) , it follows from (5.6) that s satisfies (5.7). Making.
use of Lemma 5.1, we now prove that (5.8) also holds. First consider the case' j €
J;n{l,...,u; —1}. By (5.7), we have

d?%s d?%s
Vi) = 35—
9é; j0ei 5 9&; j0¢i i1

Then, by (5.1), with e = é.,',j, e = €45 and e’ = €i,j+1,

9%s 9%s . 9%s
) = S8 (0;,) + sin '
EE 2 (v 4) = sin aé,-,,-ae,-,j(v ) +sin

: 9/ 9//
SIH( + ) aeid‘aei,]‘.;.l

('U,"J‘) = 0 .
Since é; ; is nondegenerate at v; ;, we have sin(#’ + ") # 0, which ensures (5.8). Let
now j € J; N {0, u:}, say 7 = 0. By the definition of J;, the vertex vio is semisingular
w.r.t. A;. If it is semisingular of type I, then there exist two edges €', e* attached to
v; o such that €' is degenerate and lies outside ();, and e* is opposite to €;¢ and lies
on the boundary of §2;_;. Since Sg, , = 0, we have

9%s 9%s
m(’l),‘yo) = m(viio) = 0 .
Therefore, by (5.2),
9%s sin 8" 8%s sin @’ 9%s

32, ") =~ + 67 eve 0 T (@ 1 67) 9500, ) =0

and (5.8) holds. If now v, is semisingular of type II, then there exist three edges
e/, e*, e* attached to v;o such that €' and e* are degenerate and lie outside ), e
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is opposite to ;o and e** is opposite to ¢’ and lies on the boundary of {;_;. Since

Sa,_, = 0, we have

d%s d%s
Berodens ) = Gerge Vo) =0

Therefore, by (5.3),

»
8%s sin 8" 3%s sin @' 9%s

aézo(vi,o) = sin(6' + 0") De~Be (vio) + Sin (0 + 07) 96,000 (vig)

=0,
which completes the proof of the lemma. W

Lemma 5.3 Let T be a triangle with vertices v, v(?) and v®. Denote by e; the
edge of T opposite to v, 7 = 1,2,3. Suppose that p € Iy satisfies the following
conditions

p(z)EO, z€eyUeyUes,

P oy 9P g
_683661 v N 862661 (U

=0,

and either o2
=L W)=,
663662

or there ezists a point 2z’ in the interior of T, such that

p(z") =0.
Then p is the zero function.

Proof. First we show that

ap(z)EO, z€e.

(5.9) EP

Indeed, p := <§2—) le, is a univariate polynomial of degree 3, such that

ﬁ(U(I’»)) — ﬁ/(U(B)) — ﬁ(v(2)) —~0.

Moreover, 7 (v(?) = %&(vm) is a linear combination of %”e—s(v(z)) and %Z?(v@)),
both ‘being zero. Hence 7 (v(?) = 0, which proves (5.9).
For each j = 1,2, 3, let
lj(z) =0
be the equation of the straight line containing the edge e;. Since p(z) = 0 for all
z € e; U ey Ues, and (5.9) holds, it follows that

p(z) = A(li(2))?la(2)ls(2)
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where ) is a real constant. (S_ee, for example, [3, p. 42].)
It is easy to see that either of the two conditions
d%p
063682

(W) =0 or p(2)=0

implies

A=0,

which completes the proof of the lemma. B

Lemma 5.4 For eachi1=1,...,m, [,,(-Q) is a total set with respect to Si(q).

Proof. We first consider the case ¢ = 4 in details. For ¢ = 1 the assertion follows
from the fact that /.'§4) is admissible for Lagrange interpolation from II4. Let z > 2.
Since 8; € {0,1}, we have two cases.

Case 1: 6, =0.
Let s € 5(4), and.

1

s(vi) = s(w}) = s(w) = s(z;) = 0,

(5.10)
s(w; ;) =0 forall je{0,...,m}\Ji,

where the points v;, w!, w?, z; and w; ; are chosen according to (3.3)-(3.6). We have
to show that

b; = 8, =0, 7=1,...,ui.
To this end we will check that the assumptions of Lemma 5.3 are satisfied for each

p; on the corresponding triangle T; ;.
By Lemma 5.2, the spline s satisfies (5.7) and (5.8). It follows from (5.7) that

pj(Z)EO, Zeei,j: j:lr--)ui,

8°p; 9%p; :
= Vij—1) = m——=—V; ; 20, :1,..., i -
aei,jaei,j—l ( 2] 1) aei,jaei,j( ,J) J H
Moreover, p; := 5|, is a univariate polynomial of degree 4 such that, by (5.7) and
€:.j

(5.8),
Pi(vij) = Bivig) =0, J=0,... 0,
pi(vij) =0, j€Ji,
and, by (5.10),
Pi(wi) =0, 7€{0,...,u}\Ji,
- pi(v) =0, 7=0,..., 1,
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from which it immediately follows that pJ = 0 and pj» = 0. Then, since s is
differentiable at v;, we have . .

s as'
“ a_w(vi) = @(Ui)'—ﬂ,

and, hence, v
ﬁ;(v;)=0, j=0,...,,u,~.

Therefore, it follows that p; = 0 for all 7 = 0,...,u;. Going back to the bivariate
polynomials p;, we have

pj(z)zo, z€6&;-1Ué&;, 7=1,...,u.
Since pjm(z;) = 0, it follows from Lemma 5.3 that
Pj'" = 0 .

Lemma 5.3 can also be applied to theother: polynomials p; if we show that

5.11 5 ) =0, j=1,...,p, j#i".
(5.11) 6é,~,_16é,~j(v) J Bi, J#J

It follows from (5.1) that for j = 1,...,pu — 1,

d%s d*p;

. d*p;
a 2 ('U,) = sin 0]+1m(’0,') + 51n9-—7——--’{f-1——(v,-) 5

Sin(ej + 9j+1) ;66_ 5e. 1
1,] 1,]

where §; is the angle between ¢é; ; and é; j—;. Since s(z) = 0 for all z € é; ;, we have

d%s :
W(U;):O, j=0,...,/.t,'.
HJ

Then it follows from the above equations that

1 ’p1 1 9%p,
S S N S < )
sin @y 0é;00¢é;1

sin 8, 0é;108; -

= ... =(_1)m—1

2
1 3*p,;
sin Oy, 0€iu-108iu,

(vi) -
However, we have already proved that p;» = 0, hence

a2p]‘///

(i) =90
66,"j/u_1a€,"j///( 1) ’

and (5.11) follows.
Case 2: 8, =1.
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Then there exists j* € {0, p,}, for which é; j» is nondegenerate at v;. Moreover, by
construction, we may assume:that j* ¢ J;. Therefore, [,,(-4) is defined by (3.3), (3.7),
(3.8) and (3.9). Suppose s 6?'5}.4) satisfies

s(vi)= s(w}) = s(wf) = s(2;) =0,
s(w;,jz =0, forall j€{0,....,m}\Ji, 7#£7*.
If we show that
(5.13)

(5.12)

d%s

0é% .
then the proof will proceed exactly as in Case 1, except that (5.13) will be used
instead of s(w; ;+) = 0. In order to prove (5.13), we first deduce from (5.1) that

(Ui) = Oa

9 d?s
sin(6; + 01’+1)W(Ui) =
(5:14) 8% o
sin ;41 (vi) +sin@j=——Fs—wi), J=1,...,m—1.

3é;,jaéi1j_1 7 8é,~,j8é,‘,j+1
Moreover, since §; = 1, v; is semisingular with respect to A;. If it is semisingular of
type I, then, by (5.1), we get
d%s d?s d%s
in(4, +8)——(v;) =sin 8§ ————(v;) + sin b, ———(v;),
sin(6: + )Béﬁo( ) =sint e, ) +sinbigag (v

and, by (5.2),

d?%s o s . s
Wz,m(vi) =sinf' ———(v;) —sin 9mm(v;) ,

sin(§' — 4,,)

aéi,maéi,u;—l

where € is the edge attached to v; such that €' does not lie in §2;, and &' is the angle
between é; o and €’. Therefore,

sin(f; + 6') 9%s sin(6' — 0,,,) 0°s _
siné’sin §; 0€}, (vs) + sin6'sin6,, 0€} . (vi) =

2 2
1 0%s (01) + 1 d%s

(5.15)

. 7 . —> vi) .
sin @y 0€;,008;, sinf,,, @ei,maei,u‘._l( 2

Similarly, if‘vi is semisingular of type II w.r.t. {;, then, by (5.1) and (5.3), we have
sin(f; +8") 9%s (01 sin(#' +46,,) s (03
Vi) — = - . V) =

sin 6’ sin 6, 0&Z, sin#'sin6,, 0é}
1 9%s 1 9%s

: - 2 \Vi) — = = =
sinf, 06;008;, =~ sind,, 0&; 08, _,

(5.16)

(’U,’) )
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where 8’ is the angle between é;o and the edge €’ attached to v; such that €' does

not lie in Q; and is not opposite to éo. On the other hand, it follows from. (5.7),
(5.8) and (5.12) that

s(2)=0, z€é;, foreach je{0,...,mt\ ("},

. s(2) =0, ze€Tijm.

Therefore, we have

%s . "
(vi) =0, forall je{0,...,u}\ {5},

0é} ;"
d%s
aéiyj”’..laéiyj/”
which, together with (5.14)—(5.16), imply (5.13).
For ¢ > 5 the proof is similar.. For example, in Case 2 the assumption.that.
s E S,(q) satisfies s(z) = 0 for all points z listed in (4.1), (4.7)-(4.12) implies, in view
of Lemma 5.2, that

(v;) =0,

s(z)=§—i(z)=§—2(z):0, z€e U ---Ue,
s(z)=0, =z€é,;, foreach 7e€{0,...,u}\ {7},

s(vi) = 322(vi) = s(vije) = 322 (vijr) =0,
1,7 .3

si) = = (i) =0, k€ (4,5}, Zt(vig)=0i =5,
3(2,(11].)) == s(zg,djq-s)) =0, foreach je{l,...,m}\ {7},
s(2) = - = s(l57) = 0.
Therefore,

S (2) = P (2)Ph()ia()

where [;(z) = 0, 7 = 1,2,3 are the equations of the straight lines containing e; j»,
é;jw and &; jm_1, respectively, and p(z) is a polynomial in II,_4. Then we have

plaign) =+ = p(=5*) = 0,
and, hence, p(z) = 0. Thus, we get
s(z)=0, ze€Tjm,
which, in view of (5.14)-(5.16), implies

9%s

E(Uz’)

=0.
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Therefore,
s(2) =0, z€é&;,

and, by induction, starting from T; j», we show that

SlT;,,-(z) =0, forall j=0,...,u,. B

Lemma 5.5 £ = U;;;IE(-Q) is ¢ total set with respect to S;(A).

H

Proof. Suppose that s € S;(A) vanishes at all points z € L@, Then s(z) = 0 for all
z € ci"), and by Lemma 5.4, we get s o = 0. We proceed by induction on :. Assume
that for some i € {2,...,m},

SlQi—l =0.

Then, by the definition of Si(q), we have S, € 51@. Since s(z) =0 for all z € EE.""), it
follows from Lemma 5.4 that

Sg, = 0.
Since Q,, = 2, the assertion follows. W

Since every total set of points whose cardinality coincides with the dimension
of the space is a Lagrange interpolation set, both Theorems 3.1 and 4.1 will be
established if we prove that

(5.17) card £9 = dim S;(A).
To this end we need the following lemma.

Lemma 5.6 The following inequality holds

(5.18) Zm:cardJiZVI——cr—ie,».
=2 =2

Proof. Since ) .-, 6; is exactly the number of nonsingular interior vertices v;, for
which 6; = 1, it suffices to prove that all other nonsingular interior vertices belong to

the set .
Uz,
=2

where
$Z={U5'j2j€Ji}, 1=2,...,m.

Indeed, then the total number of nonsingular interior vertices of A i.e., Vi — o, does

not exceed . " o
card (UJ,) + Zei < anrdJi + Zei’
=2 1=2 =2

1=2
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and (5.18) follows. Let v be a nonsingular interior vertex of A such that either v

belongs to the starting triangle T} or v = v; for some : > 2, with §; = 0. Consider the

set of all vertices lying on ST'(v) and assume that there are at least three of them that

do not belong to T; (the cases when there are only one or two vertices in ST'(v)\ Ty

can be treated in the same way). Let v/,v”,v" € ST'(v) be such that v' = vy, v = v

and v" = v;m, with ¢’ > i > "', and any other vertex v* € ST'(v) either belongs to

Ty or v* = v;» with 2 <1* < ¢, Thus, v, v" and v’ were added the latest among all.
the vertices lying on ST'(v), when the construction of the chain of subtriangulations

A; was being performed. It is clear that v # v’ since otherwise {0;_; would include

all vertices of ST'(v) except v itself which is not possible for a tame subtriangulation.

If now the edge ¢’ between v and v’ is nondegenerate at v, then v € Ji. Suppose that

¢’ is degenerate at v. Then we consider v”. If v” = v, then v = v; is semisingular of

type I w.r.t. ; and 6; = 1 in contrast to our assumption. Therefore v” # v. Since

Quu_y is tame, v, v’ and v” must share a triangle. (See Fig. 5.2, a).) If the edge ¢”

between v and v” is'nondegenerate at v, then v € J;» because v is semisingular of

type I w.r:it. Q;#. Suppose €” is degenerate at.v. Then:we consider v™. If.v" = v,

then v = v; would be semisingular of type II w.r.t. ; and 6; = 1. Therefore v" #.v..
Since Qm_; is tame, v" and v must share a triangle either with v’ or with-v". (See
Fig. 5.2, b).) In both cases the edge " between v and v’ is nondegenerate at v

for otherwise v would be singular. Then v is semisingular of type II w.r.t. Q;» and

v € Jym. Thus, in either case v € |JI_, Ji, which completes the proof of the lemma.

- .

a) b)

Fig. 5.2. Vertex v belongs to Ji» or Jm.

It is easy to see that

d,, ifi=1,

(@) _
(5.19) card £;7 = {dq_4u,- +29—-3—-6;—cardJ;, if 1=2,...,m.
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By the construction of {A;}72,

m = Vi+Vg -2,
Z?;z,u; = N-1.

Therefore, by (5.19), (2.2), Lemma 5.6 and (2.3),

»

card L@ = Z'card E,(Q) =d; + Z(dq_4/,a,- +2¢— 3 — 6; — card J;)
i=1 ) =2
= dg+dg-s(N—1)+(2¢=3)(V1 + Vg —3) = Y _(8; + card Jy)
' =2
= dg+dg2Er — (dg — d))Vi+ Vi = > (8 + card J;)
’ =2

< dptdgaBr — (dg —di)Vi + 0 = dim Sp(A).

This implies that:card £@- = dim S}(A) since the cardinality of a total set can never
be less than dimension, which shows (5.17) and completes the proof of Theorems 3.1
and 4.1.

Proof of Corollary 44 We first shéw that for all ¢ > 3,

(5.20) dimS9 =card £, i=1,...,m.

Indeed, by Lemma 5.4 EEQ) is a total set w.r.t. S,(Q), which implies
dim S < card £ .

On the other hand, 59 = (54(A)/S-1)y, (see (5.4)). Then by Theorem 4.1,

m

Y dimSH® = Y (dimSHA)/Qus — dim S}(A)/0)
i=1

=1
m

= dimSiA) =) card L7,

=1

which can only be true if (5.20) holds.

Let now A’ be an arbitrary tame subtriangulation of A. It is easy to see that the
chain of subsets ; C ), =1,...,m, as in Section 3, can be chosen in such a way
that

P=QChC- Cn =00 CQwys C--- C QU = Q,
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where m' + 2 is the number offverticés in A’. Then

7

Y dimS? = ) (dimSL(A)/Qy — dim S}H(A)/Q)
i=1 i=1
= dim S;(A) — dim $;(A)/Qm = dim S;(A)IQAI :
Therefore, in view of (5.20), (5.19) and (2.2),
dim S;(A)m .= Z card £§Q) =d, + Z(dq—4ﬂi +2¢g—3—6; —card J;)
=1 =2
= dg+dg2Bp — (dg —d))V] + V[~ Z(ai + card J;)
1=2

where F} and V] denote the number of interior edges and vertices.of A/, respectively: -
On the other hand, as in the-proof of Theorem 4.1, we have

ml

dim SH(A') = dy + dg—2 By — (dg — di)V/ + V{ = Y (6} + card Jy) ,
=2
where J! and 6/ are defined by (3.1) and (3.2), respectively, in regard to A’ instead
of A. Thus, it remains to show that

m’ m’

(5.21) Z(c’); + card J;) = Z(@: + card J)) + &(A").

=2 1=2

To this end we consider the following sets of vertices of A':

V = {v;: 2<i1<m and §; =1},
V' = {v;: 2<i:<m and 4. =1},
T = {vi;j:5€ L}, 1=2,...,m,

Z’ 1= {’U,’JZ]‘EJ,{}, i=2,...,m'. .
It is easy to check that V' C V and J/ C J;, 1 = 2,...,m'. Moreover, the sets
V\V, F\JT!,i=2,...,m,

are pairwise disjoint, and (V\V')U ng(Ji \ J/) coincides with the set of all semisin-
gular vertices w.r.t. A’ which are nonsingular. Therefore,

i ’ 7

Z(Qi + card J;) — Z(G: +card J)) = card V\ V' + Z card J; \ J}
1=2 =2 =2

= card ((V \ VU U(Jz \ J,')) =&(A"),

1=2
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and (5.21) is proved. W
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