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Non-Technical Summary

This paper discusses the limitations and applicability of the forecast error variance de-

composition (FEVD) in business cycle analysis. Upon closer inspection, a lacking connection

between FEVD and the usual definition of the business cycle is found, which in turn favours

the use of a historical variance decomposition (HVD) of variables for assessing the driving

forces of cyclical fluctuations. The business cycle definition implied by FEVD is shown to

be particularly problematic if the underlying vector autoregressive (VAR) process comprises

nonstationary variables, since FEVD would then imply a nonstationary cyclical component.

This, however, contradicts the widespread consensus among macroeconomists about the sta-

tionary nature of cycles regardless of whether the underlying series for the measurement of

the cycle is nonstationary.

In our analysis, the FEVD technique is scrutinized and arguments against using it in

the business cycle context are brought forward. Then, as an alternative to FEVD, the

HVD approach is presented and discussed. Empirical applications in the paper employ both

the Hodrick-Prescott (HP) filter and the Beveridge-Nelson-decomposition (BND) to assess

the reasonability of FEVD in the business cycle context and to compare it with the HVD.

The results show the spurious nature of the conclusions yielded by the former approach.

In particular, through confronting historical forecast errors of output at different forecast

horizons based on two different empirical models with its cyclical component computed with

the HP-filter and the BND, it is found that the FEVD analysis based on the particular

empirical models leads to spurious conclusions regarding the nature of business cycles.

All in all, the historical variance decomposition approach is shown to overcome the prob-

lems related to the FEVD, since it has the advantage of being directly compatible with

conventional business cycle definitions and hence, being indirectly able to solve the nonsta-

tionarity problem related to the FEVD. In addition to producing more intelligible results,

the HVD approach is shown to cover all the statistical properties of times series referred to

in a business cycle analysis.



Nicht-technische Zusammenfassung

Dieses Papier diskutiert die Grenzen und Anwendungsmöglichkeiten der Prognosefehler-

varianzzerlegung (FEVD) für Konjunkturanalysen. Bei genauerer Betrachtung wird der

mangelnde Zusammenhang zwischen der FEVD und den üblichen Definitionen von Kon-

junkturzyklen ersichtlich, sodass als Konsequenz die Anwendung der historischen Varianzzer-

legung (HVD) favorisiert wird. Die durch FEVD implizierte Definition von Konjunkturzyklen

ist besonders problematisch, falls der zugrundeliegende vektorautoregressive (VAR) Prozess

nicht-stationäre Variablen beinhaltet, da die FEVD in diesem Fall zu einer nicht-stationären

zyklischen Komponente führt. Das widerspricht jedoch dem unter Makroökonomen ver-

breiteten Konsens über die stationäre Natur von Zyklen, unabhängig davon ob die für die

Bemessung der Zyklen zugrunde liegende Zeitreihe nicht-stationär ist.

In unserer Analyse untersuchen wir die FEVD-Methode und bringen Argumente gegen

seine Anwendung im Zusammenhang mit Konjunkturzyklen an. Darüber hinaus wird die

HVD-Methode als eine Alternative zur FEVD dargestellt und erörtert. Um die Vernünftigkeit

der FEVD-Methode einschätzen und sie mit der HVD-Methode vergleichen zu können, wer-

den in empirischen Anwendungen sowohl der Hodrick-Prescott (HP) Filter als auch die

Beveridge-Nelson-Zerlegung (BND) eingesetzt. Die Resultate zeigen die Fragwürdigkeit

der von der FEVD-Methode hervorgebrachten Ergebnisse auf. Insbesondere durch Ver-

gleich historischer Prognosefehler, die für verschiedene Prognosehorizonte berechnet wer-

den und auf zwei unterschiedlichen empirischen Modellen basieren, wird ersichtlich, dass

die FEVD-Analyse zu Scheinergebnissen im Hinblick auf die Eigenschaften der Konjunk-

turzyklen kommt.

Zusammenfassend lässt sich zeigen, dass der HVD-Ansatz die Probleme, die durch den

FEVD-Ansatz entstehen, bewältigt, da er den Vorteil hat, direkt mit konventionellen Defini-

tionen von Konjunkturzyklen überein zustimmen und demzufolge indirekt dazu fähig ist, das

Nicht-Stationaritätsproblem, das sich durch die FEVD-Methode ergibt, zu lösen. Die HVD-

Methode führt nicht nur zu Ergebnissen, die eindeutig interpretierbar sind, sondern nimmt

auch Bezug auf alle statistischen Merkmale von Zeitreihen, die in einer Konjunkturanalyse

in Betracht kommen.
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1. Introduction

Forecast error variance decomposition (FEVD) is an econometric tool used by many

economists in the vector autoregression (VAR) context for assessing the driving forces of

business cycles. Given that many macroeconomic models can also be written in the VAR

form, FEVD can be applied in empirical as well as theoretical models. This study shows

that the connection between FEVD and the popular definitions of the cycle2 is not well

established. Therefore, it advocates employing a historical variance decomposition (HVD)

of variables for business cycle analysis. The latter decomposition is shown to provide a

remedy to the problems related to FEVD.

Several issues arise when economists want to investigate the sources of cyclical fluctua-

tions, the first of which is the identification of structural shocks and their dynamic effects,

both of which are not directly observable. The structural VAR (SVAR) literature offers a

multitude of possibilities for identifying - for example - supply, demand, technology, mon-

etary policy, etc. shocks and the dynamic response of macroeconomic variables to them.

Alternatively, the parameters of a theoretical model can be calibrated / estimated and the

recursive law of motion of its variables can be written in VAR form. In both types of models,

the shocks and their dynamic multipliers determine the properties of the cyclical fluctua-

tions. Yet the cycle itself is still not directly observable, which is the second issue to be dealt

with. The most common techniques used by applied economists for extracting the cyclical

component of the data include differencing, computing two-sided moving averages, filtering

out linear / quadratic time trends, and filtering in frequency domain.3 Finally, a method is

needed for determining the contribution of different structural shocks to the cycle. FEVD is

one of such methods, which is claimed to be non-suitable for business cycle analysis in this

paper.

The main argument of this paper claims that FEVD is related to a dubious business cy-

cle definition, which renders trend and cycle components of variables that are quite different

than the ones suggested by conventional business cycle definitions. The business cycle defin-

ition implied by FEVD is particularly problematic if the underlying VAR process comprises

2We henceforth use the terms “business cycle”, “cycle” and “cyclical fluctuation” interchangeably.
3See Baxter and King (1995) for a review of these techniques.
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nonstationary variables, since FEVD would then imply a nonstationary cyclical component.

There is consensus among macroeconomists, on the other hand, that cycles are stationary,

while many macroeconomic time series are nonstationary.4 Moreover, the typical usage of

FEVD implies a one-to-one relationship between forecast errors and cyclical components,

which is far from being even approximately true.

In order to present our point of view, we employ the filter proposed by Hodrick and

Prescott (1997; henceforth HP-filter) and the Beveridge-Nelson-decomposition (BND) pro-

posed by Beveridge and Nelson (1981) in the applications in this paper, which are widely

implemented approaches for measuring business cycles. Two empirical findings of this paper

strengthen the case against FEVD in the business cycle context. The first finding comes

from the confrontation of the historical forecast errors of output at different forecast hori-

zons with its cyclical component computed with the HP-filter and the BND based on the

models by Gali (1999) and King et al. (1991; henceforth KPSW). We find that historical

forecast errors at lower frequencies (i.e. longer forecast horizons) are as highly correlated

with business cycles as within the so-called business cycle horizon. Second, historical forecast

errors of output are found to be nonstationary according to unit root tests when the forecast

horizon exceeds 10 quarters in both Gali and KPSW models. This finding implies that a

FEVD analysis based on these popular models leads to spurious conclusions for a forecast

horizon longer than ten quarters.

Finally, even if the forecast errors were related one-to-one to business cycle fluctuations,

it should not be forgotten that the business cycle is typically defined to be a macroeconomic

phenomenon that occurs in a certain time span, say 6 to 32 quarters. FEVD does, however,

not deliver which macroeconomic shocks are the main driving force of the busines cycle fluc-

tuations over the entire business cycle horizon. Historical variance decomposition provides,

on the other hand, information for the entire business cycle horizon, whatever its length is

assumed to be according to the chosen business cycle measure.

Note that this paper does not discuss which business cycle definition is the most appro-

priate one to be used by macroeconomists, but emphasizes merely that FEVD, a commonly

followed econometric approach for business cycle analysis in time series models, is not con-

4See Baxter and King (1995) on widely accepted time-series properties of business cycles.
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sistent with widely used definitions of the cycle. HVD, which is based on the idea that

historical cycles of macroeconomic variables can be decomposed with respect to (w.r.t.)

structural shocks, is shown, on the other hand, to be compatible with different definitions of

the cycle.

The outline of the paper is as follows. The next section presents the FEVD technique

and the arguments against using it in the business cycle context. Section 3 illustrates the

HVD approach. Section 4 gives examples of the implementation of the HVD. Concluding

remarks are provided in Section 5.

2. Forecast Error Variance Decomposition

2.1. Stationary VAR

Forecast error variance decomposition is carried out typically based on the moving average

(MA) representation of a (stationary) V AR(p) process with p being the order of the VAR,

Xt = CDt +
∞

∑

i=0

Θiwt−i, (1)

where Xt is a K × 1 vector of endogenous variables, Θi is the ith K × K MA coefficient

matrix, wt is a K × 1 vector of orthogonal white noise innovations all with a unit variance,

C is an (K × M) coefficient matrix corresponding to the deterministic terms represented by

the (M × 1) matrix Dt.
5 One can write the h-step forecast error for the process as

Xt+h − Xt (h) =
h−1
∑

i=0

Θiwt+h−i, (2)

with Xt (h) being the optimal h-step forecast at period t for Xt+h. It is straightforward to

compute the total forecast error variance of a variable in Xt for the h-step forecast horizon

and the corresponding shares of individual innovations to this variance, see Lütkepohl (2005).

What is traditionally done in the literature is to set h such that the computation is made

for the business cycle horizon.6

5M is here the number of deterministic variables such as constant, time trend, dummies, etc.
6This means setting 6 ≤ h ≤ 32 if you work with quarterly data following the business cycle definition

used by many macroeconomists.
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In the structural VAR literature the covariance matrix of the structural innovations wt is

typically restricted to be an identity matrix without loss of generality. When decomposing

the forecast error variances, it is furthermore assumed that the structural innovations do

not exhibit any autocorrelation and correlation among their leads/lags. The total forecast

error variance of the variables in Xt are given, under the aforementioned restrictions and

assumptions by the diagonal elements of

E
[

(Xt+h − Xt (h)) (Xt+h − Xt (h))′
]

=
h−1
∑

i=0

ΘiΣwΘ′

i =
h−1
∑

i=0

ΘiΘ
′

i, (3)

where Σw is the covariance matrix of the structural innovations and is set to be the K-

dimensional identity matrix. The contribution of the kth structural shock to the forecast

error variance of the jth variable for a given forecast horizon is computed by

h−1
∑

i=0

(

e′jΘiek

)2
(4)

where ek is the kth column of the K-order identity matrix. Given (3) and (4) , it is straight-

forward to compute the share of a structural shock in the fluctuations of a variable.

2.2. Nonstationary VAR

Equation (1) represents a VAR with stationary variables. However, since the influential

work of Nelson and Plosser (1982), many macroeconomic variables are known/assumed to

be nonstationary due to a unit root. Therefore, this study also focuses on models with

nonstationary variables. Regardless of whether the process includes cointegrated variables,

every nonstationary VAR possesses an MA representation in first differences given by

∆Xt = µ +
∞

∑

i=0

Θiwt−i, (5)

where ∆ is the difference operator such that ∆Xt = Xt − Xt−1, and µ is a K × 1 constant

vector.7 Hence, it can be easily shown that the total forecast error variance of the variables

in Xt are given by the diagonal elements of the matrix
∑h−1

i=0
Θ∗

i Θ
∗′

i with Θ∗

i =
∑i

j=0
Θj for a

7Thus, the only deterministic term here is chosen to be a constant for the sake of presentation. This
implies a linear time trend for the process which is observed in many macroeconomic time series. Moreover,
Xt is assumed to consist of I (1) variables, which have only one unit root so that first-differencing renders
them stationary.
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forecast horizon of h. The contribution of the kth structural shock to the forecast error vari-

ance of the jth variable for a given forecast horizon is analogously given by
∑h−1

i=0

(

e′jΘ
∗

i ek

)2
.

Equation (5) can be rewritten as

Xt = X0 + µt + Θ∗

0wt + Θ∗

1wt−1 + · · · + Θ∗

t−1w1 (6)

with X0 being the vector containing the initial value of the process. Note that (6) gives an

exact representation of the realisation of Xt, t = 1, . . . , T with estimated Θ∗

i , i = 0, 1, . . . and

wi, i = 1, . . . , T , where T stands for the number of observations in the sample excluding the

initial values.

2.3. FEVD and Measurement of Cycles

This subsection elaborates the connection between forecast error variance decomposition

and typical definitions of the business cycle. We first briefly review two different approaches

to business cycle measurement that are widely used in the empirical literature and will be

employed in the empirical applications of this paper. Then, we present the case against using

FEVD in the business cycle context.

2.3.1. Two Popular Measures of Cycles

The HP-filter introduced by Hodrick and Prescott (1997) has been widely used in the

empirical literature when investigating the properties of cycles in the last two decades. As will

be shown in the following, it implies that macroeconomic processes have a non-linear and non-

deterministic trend. In order to see this, notice that Xt has three components according to

(6): a (stochastic) constant (X0) , a linear time trend (µt) and a further stochastic component
(

Θ∗

0wt + Θ∗

1wt−1 + · · · + Θ∗

t−1w1

)

. Since the HP-filter is a linear filter, it is applied to all of

these three components when computing the cyclical component of Xt. It removes the

constant and the linear time trend entirely from Xt and the stochastic component only

partly. Therefore, according to the HP-filter, structural innovations contribute not only to

the cycles of the variables in Xt, but to their long-run trends as well.

The trend-cycle decomposition proposed by Beveridge and Nelson (1981) underlies a

different philosophy than the HP-filter and is applicable only to nonstationary processes.
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The trend component of Xt is a random walk with drift according to the BND and reads

τ t = X0 + µt + Θ (1)
t

∑

i=1

wi (7)

with τ t denoting the trend component and Θ (1) = Θ0 + Θ1 + . . . the matrix of long-run

multipliers for the model in (5).8 Hence, the BND also implies that structural innovations

contribute to the long-run trend of Xt.

2.3.2. The Case against FEVD in the Business Cycle Context

The trend and cyclical components implied by forecast error variance decomposition are

quite different from the ones implied by the HP-filter and the BND. For a sample which

starts at period 1 when the initial values needed for the VAR estimation are excluded,

FEVD implies a cyclical term of the form

Θ∗

0wt + Θ∗

1wt−1 + · · · + Θ∗

h−1wt−h+1, t ≥ h (8)

and a trend term of the form

X0 + µt, t = h and X0 + µt + Θ∗

hwt−h + · · · + Θ∗

t−1w1, t > h. (9)

Notice that the sum of the trend and cyclical component from (8) and (9) gives the total

represented by (6).9 (8) and (9) imply that the properties of the cycle, and therefore of

the long-run component, differ w.r.t. h under FEVD.10 However, the stability of the VAR

in (5) implies that Θ∗

i and Θ∗

j are approximately equal for i and j big enough. Hence, the

expression in (9) for t > h can be written as

X0 + µt + Θ∗

hwt−h + · · · + Θ∗

t−1w1 ≈ X0 + µt + Θ∗ (wt−h + · · · + w1) (10)

since Θ∗ ≈ Θ∗

h ≈ Θ∗

h−1 ≈ · · · ≈ Θ∗

t−1 when h is large enough. In such a case, FEVD implies

that cyclical fluctuations occur around a long-run trend consisting of a linear time trend and

a multivariate random walk. After which value of h (10) holds almost perfectly is a question

8Beveridge and Nelson (1981) consider a univariate model, but the implementation in the multivariate
case is straightforward.

9For a stationary VAR model of the form (1) , the cyclical and trend components are analogously given
by Θ0wh + Θ1wt−1 + · · · + Θh−1wt−h+1, t ≥ h and CDt, t = h and CDt + Θhwt−h + · · · + Θt−1w1, t > h.

10See the discussion below on the relationship between business cycle horizon and FEVD.
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that we turn to in Section 2.4. Note that this definition of trend can be rather different than

the one following from HP-filtering or Beveridge-Nelson decomposition.

Figure 1 shows the trend and cyclical components of the output data used by Gali (1999)

computed with a trend based on FEVD for a forecast horizon of 12, the HP-filter and the

BND.11 Estimated trend and cyclical components of a variable are obviously very sensitive

to how they are measured, as the reported features of the cyclical components in Table 1

shows. Those differ quite a bit w.r.t. their volatility, amplitude, persistence and comovement

properties.

0 50 100 150

−4.5

−4

−3.5
Panel A: Trend component

0 50 100 150
−0.1

−0.05

0

0.05

0.1

0.15

0.2
Panel B: Cyclical component

 

 

FEVD−trend for h = 12 HP−filter BND

Figure 1: Cyclical and trend components of output according to FEVD-trend for h = 12,
HP-filter and Beveridge-Nelson-decomposition in Gali model

In this regard, another issue when using the FEVD in the business cycle context is the

ambiguity about why setting h to a value within the business cycle horizon should render

a business cycle analysis. The estimated cross-correlation coefficients between the historical

i-horizon forecast errors, computed based on both Gali (1999) and KPSW models, and the

cyclical component of output are displayed in Figure 2. A closer relationship between the

historical forecast errors at business cycle frequencies and the business cycle fluctuations

of output cannot be established; that is, the correlations are not particularly higher at the

so-called business cycle frequencies (i.e., at a forecast horizon of six to thirty-two quarters)

than at lower frequencies.

11Note that the cycles computed with the FEVD have a non-zero mean, while the HP-cycles and the BND
cycles do have a zero mean. We have normalized the trend following from the FEVD and the cycles around
it accordingly by subtracting the mean from the cyclical component and adding it to the corresponding trend
component.
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Table 1: Characteristics of cyclical components according to Gali model

Relative volatility Amplitude Persistence
FEVD-Cycles 1.00 0.26 0.90

HP-Cycles 0.35 0.10 0.85
BN-Cycles 0.21 0.07 0.63

Correlation
FEVD-Cycles HP-Cycles

HP-Cycles 0.71
BN-Cycles 0.05 0.31

Notes: Relative volatility is the standard deviation of one series divided by the standard de-

viation of the FEVD-cycles for a forecast horizon of 12. Amplitude stands for the difference

between the maximum and minimum values of the cycles shown in Figure 1. The persistence

measure is the estimated coefficient of the first lag of the corresponding cycle in an AR(1)

model.

0 20 40 60 80 100
−1

−0.5

0

0.5

1
Panel A: Gali model

Horizon
0 20 40 60 80 100

0.2

0.4

0.6

0.8

1
Panel B: KPSW model

Horizon

 

 

HP−filter BND

Figure 2: Cross-correlation between i-horizon historical forecast errors and cyclical compo-
nent of output according to Gali and KPSW models
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As a final remark in this context, abstracting from the problem that the connection be-

tween business cycles and forecast errors is rather ambigious, the FEVD technique does not

give an answer to the question of which structural shocks drive the business cycle fluctua-

tions over the entire business cycle horizon. The result obtained by KPSW, who identify

“balanced-growth”, “inflation” and “real-interest-rate” shocks, provides a good example. It

is reported in their study that the fraction of the forecast error variance of output attribut-

able to the real-interest-rate shock is 74 percent in 4 quarters, 55 percent in 8 quarters and

25 percent in 24 quarters. Moreover, the contribution of the technology shock to output

fluctuations is forecasted to be 5 percent in 4 quarters, 22 percent in 8 quarters and 62

percent in 24 quarters. KPSW conclude that technology and real-interest-rate shocks are

both important in the cyclical fluctuations. However, given that a typical definition of the

business cycle horizon is from 6 to 32 quarters, it is not possible to have an idea about

the weight of real-interest-rate and technology shocks in the fluctuations of output over the

entire business cycle horizon. Whether the share of real-interest-rate shocks is 55 percent,

22 percent, or something in between, for example, cannot be assessed. Similarly, it is not

clear whether technology shocks play a bigger role than real-interest-rate shocks over the

entire business cycle horizon.

2.4. Nonstationarity and FEVD

Since many macroeconomic time series are known to be nonstationary, this sub-section

deals with the consequences of applying the FEVD based on a VAR with nonstationary

variables. It is shown in the following that a statistical problem arises when the underlying

SVAR model, such as the one represented by equation (5), comprises nonstationary variables.

In that case, the cyclical component of the variables implied by FEVD, i.e. the forecast errors,

become nonstationary when the forecast horizon approaches infinity. Therefore, forecast

error variance decomposition leads merely to spurious conclusions after a certain forecast

horizon. We are interested in this paper whether this critical forecast horizon is already

reached within the domain of the so-called business cycle frequencies.

In order to illustrate our point of view, we rewrite the h-step forecast error for a nonsta-

9



tionary VAR given by (8) as

zh
t = θ∗ (L) wt, (11)

where zh
t stands for the h-step forecast error and θ∗ (L) = Θ∗

0 + Θ∗

1L + · · · + Θ∗

h−1L
h−1.

Obviously, as h approaches infinity, θ∗ (L) approaches Θ∗ (L). Notice that Θ∗ (L) governs the

motion of Xt, which is a nonstationary process by construction. Hence, it can be concluded

that zh
t approaches nonstationarity with increasing h. In order to get an intuition for this

result, note that the h-step forecast error can be approximated by

zh
t ≈ Θ∗

0wt + Θ∗

1wt−1 + · · · + Θ∗

kwt−k + Θ∗ (wt−k−1 + · · · + wt−h+1) (12)

with increasing h, see Equation (10) in the previous sub-section. zh
t approaches nonstation-

arity with increasing h due to two effects. First, the coefficient matrices converge, that is,

Θ∗ ≈ Θ∗

h ≈ Θ∗

h−1 ≈ · · · ≈ Θ∗

t−1 becomes a better approximation when h is larger. Second,

the term wh
t := wt−k−1+ · · ·+wt−h+1 increasingly yields a random walk character with higher

h. Note that wh
t can be summarised by wh

t = wh
t−1 + wt−k−1 − wt−h. Obviously, more wh

t+j

share a common component for j < h with increasing h.12 Hence, since the multiplication of

a constant matrix with a multivariate random walk series also renders a random walk series

and, moreover, sum of stationary and nonstationary series renders a nonstationary series,

forecast errors should also be approximately nonstationary for a large enough h.

In practice, it is important to decide what the critical forecast horizon k is, i.e. after

which forecast horizon the “cyclical term” Θ∗wh
t is highly persistent and therefore very close

to nonstationarity. We check the convergence properties of the dynamic multipliers of output

represented by Θ∗

i in the Gali model as an example. It can be seen in Figure 3 that after

roughly the 10th to 15th coefficient matrix the dynamic multipliers of output with respect to

technology and nontechnology shocks converge to their long-run values. Furthermore, wh
t for

h = 4, 12 for the technology shocks estimated by the same model are shown in Figure 4. The

increasing random walk character of the series with increasing h is immediately clear from

the figure. Augmented-Dickey-Fuller (ADF) test also confirms this intuition by rejecting

nonstationarity of w12
t , but not of w4

t .

12A numerical example may make this point more clear. Let t = 12 and h = 12. Moreover, let k = 0
without loss of generality for the result that we would like to show. Then, w12

t+j for j = 1, . . . 12 all contain

w12
12.
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Figure 3: Dynamic multipliers of output with respect to technology and nontechnology
shocks in the Gali model

0 50 100 150
−10

−5

0

5

10

Panel A: h = 5

0 50 100 150
−10

−5

0

5

10

Panel B: h = 12

Figure 4: Accumulated technology shocks according to the Gali model within a chosen
horizon

Also, the critical forecast horizon for output forecast errors based on Gali and KPSW

models were checked by directly looking at the unit root properties of the estimated histor-

ical forecast error series. Although the two models have different structures and different

definitions of the output variable, the historical forecast error series of output becomes non-

stationary after a forecast horizon of ten according to the ADF test in both models. It can

be accordingly concluded that it is questionable to carry out a FEVD analysis of output in

these models, with the given data set, for a forecast horizon of h > 10 since the reported

error variance shares is very likely to be spurious.

3. Historical Variance Decomposition

Modern (theoretical) business cycle models, for example dynamic stochastic general equi-

librium (DSGE) models, are designed such that unforeseeable shocks lead to cyclical fluc-

tuations through macroeconomic propagation mechanisms. Given that such shocks are at

the same time the source of forecast uncertainty, macroeconometrists employ a decompo-
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sition of the variance of forecast errors when they want to establish the driving forces of

business cycle fluctuations. Yet, the previous section has shown that the connection between

conventional business cycles and forecast errors is rather ambigious and, therefore, FEVD

is not a suitable tool for business cycle analysis. Furthermore, FEVD has been shown to

imply a nonstationary business cycle component of output, which contradicts with the idea

of recurrent cyclical fluctuations, since stationarity is a necessary property for the recurrence

of cycles.

In this section, we discuss a different type of variance decomposition that we call his-

torical variance decomposition (HVD). HVD can be employed in the SVAR context based

on conventional business cycle definitions. Thus, the first problem related to using the

FEVD in the business cycle context is resolved directly and the second problem indirectly,

since conventional business cycle definitions imply stationary cyclical fluctuations. HVD is

conducted when the cyclical component of a variable, say xt, can be decomposed into its

sub-components with respect to the structural shocks, wi i = 1, . . . N , where N is the number

of structural shocks in the VAR and K ≥ N :

xt = xt,w1 + · · · + xt,wN (13)

xt,wi being the realisation of xt had only the ith structural shock occured from the beginning

of the sample until period t.13

Note that (13) holds exactly in the case of a linear model, like an SVAR model, and when

the cyclical component is computed with a linear filter, like the HP-filter. In order to see

this, let x̃t be one of the variables in a nonstationary process of the form (6), which is given

by

x̃t = x̃t,w1 + · · · + x̃t,wN , (14)

where x̃t,wi is analogous to xt,wi and the related term following from X0 + µt is excluded. If

xt is defined as the cyclical component of x̃t computed with a certain linear filter, then xt,wi

is the cyclical component of x̃t,wi for i = 1, . . . N computed with the same filter. Therefore,

13In many cases, K = N . One example for where this is not the case is the bivariate model of Gali (1999)
with three variables and two structural shocks.
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the cyclical component of an HP-filtered variable which is the sum of multiple additive

components is, for example, equal to the sum of the cycles of its HP-filtered sub-components.

A natural path to follow for assessing the role of different structural shocks in cyclical

fluctuations is to compute estimates of their shares in the variance of xt. One possible

estimate stems from the approximation

var (xt) ≈ var (xt,w1) + · · · + var
(

xt,wN

)

, (15)

where var (x) stands for the variance of the variable x. var
(

xt,wi

)

/var (xt) provides then

an estimate of the share of the ith structural shock in the variance of xt. (15) holds only

approximately in practice, since the zero correlation among wt and wt−i condition for i 6= 0

is typically only assumed, but not imposed by SVAR identification schemes. Therefore,

var
(

xt,wi

)

i = 1, . . . N do usually not add up to one in practice.

An alternative to (15) could be the statistical identity

var (xt) = cov (xt, xt,w1) + · · · + cov
(

xt, xt,wN

)

, (16)

where cov (x, y) stands for the covariance between the variables x and y. In this case,

cov
(

xt, xt,wi

)

/var (xt) is the estimate of the share of the ith structural shock in the variance

of xt. Since (16) represents an identity and hence holds exactly, the estimated shares add

up to one. However, it should be noted that this estimation is ad hoc and does not have a

theoretical justification. What is done with a decomposition like (16) is merely distributing

the empirically observed, but unwanted nonzero covariances among wt and wt−i for i 6= 0

evenly and adding them to var
(

xt,wi

)

. An important remark in this context is that a

covariance must not necessarily be positive. In practice, a negative cov
(

xt, xt,wi

)

must be

relatively very small in absolute value and should then follow from a very low var
(

xt,wi

)

and some negative cov
(

xt,wi , xt,wj

)

for i 6= j. If, however, cov
(

xt, xt,wi

)

is so big such

that, for example, the estimated share cov
(

xt, xt,wi

)

/var (xt) bears a negative value smaller

than −0.05, this should be seen as the consequence of a misspecified model. It may be, for

example, that not enough lags have been included in the estimated VAR so that the residuals

show autocorrelation. Another possibility is that the sample data is subject to some extreme

events and includes some outliers, but those have not been accounted for with dummys or

some exogenous variables.

13



A historical variance decomposition of the form (15) or (16) is always possible when-

ever the cyclical term can be decomposed as in (13). Therefore, it can be shown that the

Beveridge-Nelson decomposition is also compatible with HVD. The cyclical component of

Xt is given by
∑t−1

i=0
Ψi+1wt−i with Ψj =

∑

∞

i=j Θi+1 and w1−i = 0 for i > 0, which is a linear

expression and can therefore be easily rewritten in the form of (13).

An important aspect of variance decomposition, be it FEVD or HVD, analysis is that

business cycles are typically characterised by properties like volatility, amplitude, persistence

and co-movement, and a variance decomposition analysis refers to all of these. In order to

see this on the example of HVD, note that var (xt,w1) ≈ cov (xt, xt,w1) are approximately

equal when the model is well specified, see the equations (15) and (16) and the discussion

above. Moreover, cov (xt, xt,w1) is given by

cov
(

xt, xt,wi

)

= ρ
(

xt, xt,wi

)
√

var (xt)
√

var (xt,w1), (17)

by definition, where ρ (x, y) stands for the correlation between x and y. The expression

in (17) refers to the comovement between a cyclical term and one of its sub-components

through the correlation coefficient as well as volatility, amplitude, persistence through the

standard deviation terms given by
√

var (x) for the variable x. Hence, the share of a shock

in the variance of xt depends on all these properties.

To summarise, historical variance decomposition resolves all the problems related to

forecast error variance decomposition discussed in the previous section. It is compatible

with a multitude of business cycle definitions. Since those automatically imply a stationary

cyclical component, even when the underlying series is nonstationary, a meaningful variance

decomposition analysis is yielded. Furthermore, the business cycle analysis refers to the

entire business cycle horizon, however long it may be defined by the business cycle measure

used, and not to only a certain time point within the business cycle horizon. Finally, generally

accepted characteristics of cycles are all referred to by such an approach.

4. Empirical Applications

Two empirical applications of the HVD approach are presented in this section. The first

empirical application follows from the bivariate model of Gali (1999), which comprises the
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labor productivity and the total hours worked. Gali motivates and employs an identification

scheme for estimating technology and nontechnology shocks mentioned before in this paper.

An important property of his VAR model is that output is also indirectly included in the

estimation, since that variable is just the sum of labor productivity and total hours worked

by definition. Hence, conducting any analysis of output dynamics like for labor productivity

and total hours worked is an accessible and easy task.

Gali (1999) is interested in whether technology or nontechnology shocks drive business

cycles. In order to assess it, he first establishes the high correlation between the cyclical

components of output and hours worked according to the HP-filter, and then shows that

nontechnology shocks lead to a strong positive comovement between the two variables ac-

cording to this SVAR model, but not technology shocks. Therefore, his conclusion is that

cyclical fluctuations are driven by nontechnology shocks. A HVD based on cycles measured

with the HP-filter implies the same conclusion by attributing a share of 0.82 and 0.86 to

nontechnology shocks in the variance of output cycle according to the formulas in (15) and

(16), respectively, see Table 2.

When the cycle is defined, however, according to the Beveridge-Nelson decomposition in

the Gali model, technology shocks turn out to be the driving force of output fluctuations with

a share of 0.67/0.69 according to Table 2. This result already implies that the conclusion

Gali (1999) arrives at in his study has a lot to do with the business cycle definition used by

him. Note that when his analysis is based on the BND, the cyclical components of output

and hours are still very highly correlated with a coefficient of 0.87. Yet the strong positive

comovement does not follow only from a strong comovement of nontechnology components

in this case, but the technology components are highly correlated as well. The former

comovement corresponds to a correlation coefficient of 0.96 and the latter to a coefficient

of 0.95. The reason behind the larger share of technology shocks in the BN-cycles is that

the technology BN-component of output has a variance, which is 2.81 times larger than the

variance of its nontechnology component.

KPSW estimate only structural shocks with permanent effects and their identification

scheme differs from Gali’s such that the model they work with embodies cointegrating rela-

tionships. There are three identified structural shocks, mentioned above already, and three
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Table 2: Shares of structural shocks in the variance of output fluctuations according to
historical variance decomposition in the Gali model

Technology Nontechnology
FEVD-Cycles 0.26 0.74

HP-Cycles 0.11 0.82
[0.14] [0.86]

Beveridge-Nelson-Cycles 0.67 0.29
[0.69] [0.31]

Notes: Two estimates of the shares are provided for HP-cycles and Beveridge-Nelson-Cycles.

The first reported share is computed based on (15), while the second estimate (in squared

brackets) is based on (16). FEVD estimates of shares are provided for a forecast horizon of 12.

transitory shocks in their model, which are not attributed an economic interpretation. FEVD

implies for this model that balanced-growth and real-interest-rate shocks have almost equally

the highest share in the variance of forecast errors with h = 12, see Table 3. This finding can,

however, not be confirmed by HVD based on both the HP-filter and the BND, according to

which the real-interest-rate shocks must have been alone the most important driving force

of output cycles. Finally, transitory shocks have a share of merely 0.15 according to the

FEVD with h = 12, while HVD with both business cycle definitions attributes them a share

of about 0.30.

An important issue is that the estimated shares with (15) and (16) do not differ much

for neither the Gali nor the KPSW model. The largest difference is observed for the es-

timated share of nontechnology shocks in the Gali model with 0.04. As discussed in the

previous section, differences bigger than 0.05 should rather be taken as an indication of

model misspecification and the empirical model must be corrected accordingly.

5. Concluding Remarks

A commonly investigated research topic of modern macroeconomics is the driving forces

of cyclical fluctuations. The most important challenge for macroeconomists is that cycles

and the shocks, which are the driving forces of cycles, are not directly observable. When the

driving forces of business cycles is investigated, three core questions need to be answered: i)
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Table 3: Shares of structural shocks in the variance of output fluctuations according to
historical variance decomposition in the KPSW model

Balanced-growth Inflation Real-interest-rate Transitory
FEVD-Cycles 0.44 0.03 0.39 0.15

HP-Cycles 0.11 0.04 0.57 0.28
[0.09] [0.06] [0.56] [0.29]

Beveridge-Nelson-Cycles 0.24 0.03 0.45 0.27
[0.21] [0.06] [0.44] [0.29]

Note: See Table 2.

How should the structural shocks and their dynamic effects be identified? ii) How should the

business cycle be defined? iii) How should the contribution of structural shocks to the cycle

be computed? The focus of this paper has been the third question criticising the forecast

error variance decomposition technique as a tool of business cycle analysis.

It has been shown that the FEVD is related to a business cycle definition, which is

quite different then the conventional business cycle definitions used in the macroeconomic

literature. Furthermore, it has been shown to produce spurious results when applied in

models with nonstationary variables. A historical variance decomposition approach has

been claimed to overcome the problems related to the FEVD, since it has the advantage of

being directly compatible with conventional business cycle definitions and hence, of being

indirectly able to solve the nonstationarity problem related to the FEVD. Moreover, the

HVD has been shown, like the FEVD, to cover all the statistical properties of time series

referred to in a business cycle analysis.

The HVD has been implemented based on both the HP-filter and the BND for illustrating

the amount of distortion that the FEVD techniqe may cause in business cycle analysis. Note

that the models by Gali (1999) and KPSW (1991) used in the implementations comprise

different variables and use different identification approaches. They have been taken as they

are and the estimatiton were carried out with the original data sets of the corresponding

studies. The results with the HVD have been confronted then with the orinigal results of

Gali (1999) and KPSW. Not so surprisingly, the results have shown that the business cycle
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definition underlying the HVD has a strong influence on the findings. Hence, whether the

business cycle definition implied by the FEVD is an important question.
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