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Abstract. This paper is concerned with the generalization of the continuous shearlet transform
to higher dimensions. Similar to the two-dimensional case, our approach is based on translations,
anisotropic dilations and specific shear matrices. We show that the associated integral transform
again originates from a square-integrable representation of a specific group, the full n-variate shear-
let group. Moreover, we verify that by applying the coorbit theory, canonical scales of smoothness
spaces and associated Banach frames can be derived. We also indicate how our transform can be
used to characterize singularities in signals.

1. Introduction

Modern technology allows for easy creation, transmission and storage of huge amounts of data.
Confronted with a flood of data, such as internet traffic, or audio and video applications, nowadays
the key problem is to extract the relevant information from these sets. To this end, usually the
first step is to decompose the signal with respect to suitable building blocks which are well–suited
for the specific application and allow a fast and efficient extraction. In this context, one particular
problem which is currently in the center of interest is the analysis of directional information. Due
to the bias to the coordinate axes, classical approaches such as, e.g., wavelet or Gabor transforms
are clearly not the best choices, and hence new building blocks have to be developed. In recent
studies, several approaches have been suggested such as ridgelets [2], curvelets [3], contourlets [7],
shearlets [15] and many others. For a general approach see also [14]. Among all these approaches,
the shearlet transform stands out because it is related to group theory, i.e., this transform can
be derived from a square-integrable representation π : S → U(L2(R

2)) of a certain group S, the
so-called shearlet group, see [6]. Therefore, in the context of the shearlet transform, all the powerful
tools of group representation theory can be exploited.

So far, the shearlet transform is well developed for problems in R
2. Given a shearlet ψ ∈ L2(R

2),
a signal f ∈ L2(R

2) can be analyzed by its voice transform, the shearlet transform

SHψf(a, s, t) = 〈f, π(a, s, t)ψ(·)〉 = 〈f, |a|− 3
4 ψ(A−1

a S−1
s (· − t))〉, (1)

where

Aa :=

(
a 0

0 sgn (a)
√

|a|

)

and Ss :=

(
1 s
0 1

)

(2)

denote the parabolic scaling matrix and the shear matrix. By now, the continuous shearlet transform
of two-dimensional functions is already well-established, however, for analyzing higher-dimensional
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data sets, there is clearly an urgent need for further generalizations. This is exactly the concern of
this paper.

To our best knowledge, it seems that there exist only few results in this direction: some important
progress has been achieved for the curvelet case in [1] and for surfacelets in [17]. However, for the
shearlet approach the question is completely open.

The first step towards a higher-dimensional shearlet transform is the identification of a suitable
shear matrix. Given a vector space V and a subspace W ⊂ V , a reasonable model reads as follows:
the shear should fix the space W and translate all vectors parallel to W . That is, for V = W ⊕W ′

and v = w+w′, the shear operation S can be described as S(v) = w+ (w′ +M(w′)) where M is a
linear mapping from W ′ to W . Then S corresponds to a block matrix of the form

S =

(
I M
0 I

)

. (3)

Then we are faced with the problem how to choose the block M . Since we want to end up with a
square integrable group representation, one has to be careful. Usually, the number of parameters
has to fit together with the space dimension, for otherwise the resulting group would be either to
large or to small. Since we have n degrees of freedom related with the translates and one degree
of freedom related with the dilation, n − 1 degrees of freedom for the shear component would be
optimal. Therefore one natural choice would be

Ss :=

(
1 sT

0n−1 In−1

)

. (4)

Indeed, in Section 2 we show that with this choice the associated multivariate shearlet transform
can be interpreted as a square integrable group representation of a (2n)-parameter group, the full
shearlet group. It is a remarkable fact that the choice in (4) is in some sense a canonical one, other
(n − 1)-parameter choices might lead to nice group structures, but the representation will usually
not be square integrable, see Remark 2.4 for details.

Once we have established a square integrable group representation, there is a very natural link to
another useful concept, namely the coorbit space theory introduced by Feichtinger and Gröchenig
in a series of papers [8, 9, 10, 11, 12]. By means of the coorbit space theory, it is possible to derive
in a very natural way scales of smoothness spaces associated with the group representation. In this
setting, the smoothness of functions is measured by the decay of the associated voice transform.
Moreover, by a tricky discretization of the representation, it is possible to obtain (Banach) frames
for these smoothness spaces. Fortunately, it turns out that for our multivariate continuous shearlet
transform, all the necessary conditions for the application of the coorbit space theory can be
established, so that we end up with new canonical smoothness spaces, the multivariate shearlet
coorbit spaces, together with their discretizations.

One of the most important advantages of the two-dimensional continuous shearlet transform is
the fact that it can be used to analyze singularities. Indeed, as outlined in [16], see also [4] for
curvelets, it turns out that the decay of the continuous shearlet transform exactly describes the
location and orientation of the singularities. By our approach these characterizations carry over to
higher-dimensions.

This paper is organized as follows. in Section 2, we introduce the multivariate continuous shearlet
transform and investigate its properties. We establish the full shearlet group and show that its
representation in L2(R

n) is indeed square integrable. Then, in Section 3, we discuss the relations
with coorbit space theory. We show that all the necessary building block for the application of this
theory can be provided. Consequently, the shearlet coorbit spaces and the associated families of
Banach frames can be established. Finally, in Section 4, we investigate how the n-variate shearlet
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transform can be used to detect singularities in signals. It turn out that, similar to the two–
dimensional case, the shape of the singularity is reflected by the decay of the shearlet transform.

2. Multivariate Continuous Shearlet Transform

In this section, we introduce the shearlet transform on L2(R
n). This requires the generalization

of the parabolic dilation matrix and of the shear matrix. Let In denote the (n, n)-identity matrix
and 0n, resp. 1n the vectors with n entries 0, resp. 1. For a ∈ R

∗ := R \ {0} and s ∈ R
n−1, we set

Aa :=

(

a 0T

n−1

0n−1 sgn (a)|a| 1
n In−1

)

and Ss :=

(
1 sT

0n−1 In−1

)

.

Starting with shear transforms of the form (3), we will see in Remark 2.4 that our choice of S
is somehow canonical if we want to relate our shearlet transform to a square integrable group
representation. In order to have directional selectivity, the dilation factors at the diagonal of Aa
should be chosen in an anisotropic way, i.e., if the first diagonal entry is a the other ones should
increase less than linearly in a as a → ∞. We will see that for our choice of Aa the shearlet
transform for appropriate s and t increases at singularities as a→ 0, see Remark 4.3. We will use
the relations

S−1
s =

(
1 −sT

0n−1 In−1

)

and SsAaSs′Aa′ = Ss+|a|1−1/ns′Aaa′ . (5)

Lemma 2.1. The set R
∗ × R

n−1 × R
n endowed with the operation

(a, s, t) ◦ (a′, s′, t′) = (aa′, s+ |a|1−1/n s′, t+ SsAat
′)

is a locally compact group S which we call full shearlet group. The left and right Haar measures on

S are given by

dµl(a, s, t) =
1

|a|n+1
da ds dt and dµr(a, s, t) =

1

|a| da ds dt.

Proof. By the left relation in (5) it follows that e := (1, 0n−1, 0n) is the neutral element in S and
that the inverse of (a, s, t) ∈ R

∗ × R
n−1 × R

n is given by

(a, s, t)−1 =
(
a−1,−|a|1/n−1 s,−A−1

a S−1
s t).

The multiplication is associative since
(
(a, s, t) ◦ (a′, s′, t′)

)
◦ (a

′′

, s
′′

, t
′′

) = (aa′, s+ |a|1−1/ns′, t+ SsAat
′) ◦ (a

′′

, s
′′

, t
′′

)

= (aa′a
′′

, s+ |a|1−1/ns′ + |aa′|1−1/ns
′′

, t+ SsAat
′ + Ss+|a|1−1/ns′Aaa′t

′′

)

and

(a, s, t) ◦
(

(a′, s′, t′) ◦ (a
′′

, s
′′

, t
′′

)
)

= (a, s, t) ◦ (a′a
′′

, s′ + |a′|1−1/ns
′′

, t′ + Ss′Aa′t
′′

)

= (aa′a
′′

, s+ |a|1−1/ns′ + |aa′|1−1/ns
′′

, t+ SsAat
′ + SsAaSs′Aa′t

′′

)

coincide by the right equality in (5).
Further, we have for a function F on S that

∫

S

F
(
(a′, s′, t′) ◦ (a, s, t)

)
dµl(a, s, t) =

∫

R

∫

Rn−1

∫

Rn

F (a′a, s′ + |a′|1−1/ns, t′ + Ss′Aa′t) dt ds
da

|a|n+1
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and by substituting t̃ := t′+Ss′Aa′t, i.e., dt̃ = |a′|2−1/n dt s̃ := s′+|a′|1−1/ns, i.e., ds̃ = |a′|(n−1)2/n ds
and ã := a′a that
∫

S

F
(
(a′, s′, t′) ◦ (a, s, t)

)
dµl(a, s, t) =

∫

Rn

∫

Rn−1

∫

R

F (ã, s̃, t̃)
1

|a′|2−1/n

|a′|n+1

|a′|(n−1)2/n

1

|a′|
dã

|ã|n+1
ds̃ dt̃

so that dµl is indeed the left Haar measure on S. Similarly we can verify that dµr is the right Haar
measure on S. �

In the following, we use only the left Haar measure and use the abbreviation dµ = dµl. For
f ∈ L2(R

n) we define

π(a, s, t)f(x) = fa,s,t(x) := |a| 1
2n

−1f(A−1
a S−1

s (x− t)). (6)

It is easy to check that π : S → U(L2(R
n)) is a mapping from S into the group U(L2(R

n)) of unitary
operators on L2(R

n). The Fourier transform of fa,s,t is given by

f̂a,s,t(ω) =

∫

Rn

fa,s,t(x)e
−2πi〈x,ω〉 dx

= |a|1− 1
2n e−2πi〈t,ω〉 f̂(AT

aS
T

s ω)

= |a|1− 1
2n e−2πi〈t,ω〉 f̂

(
aω1

sgn (a)|a| 1
n (ω1s+ ω̃)

)

(7)

where ω = (ω1, ω̃
T)T.

Recall that a unitary representation of a locally compact group G with the left Haar measure µ
on a Hilbert space H is a homomorphism π from G into the group of unitary operators U(H) on
H which is continuous with respect to the strong operator topology.

Lemma 2.2. The mapping π defined by (6) is a unitary representation of S.

Proof. Let ψ ∈ L2(Rn), x ∈ R
n, and (a, s, t), (a′, s′, t′) ∈ S. Using (5) we obtain

π(a, s, t)(π(a′, s′, t′)ψ)(x) = |a| 1
2n

−1π(a′, s′, t′)ψ(A−1
a S−1

s (x− t))

= |aa′| 1
2n

−1ψ(A−1
a′ S

−1
s′ (A−1

a S−1
s (x− t) − t′))

= |aa′| 1
2n

−1ψ(A−1
a′ S

−1
s′ A

−1
a S−1

s (x− (t+ SsAat
′)))

= |aa′| 1
2n

−1ψ(A−1
aa′S

−1

s+|a|1−
1
n s′

(x− (t+ SsAat
′)))

= π((a, s, t) ◦ (a′, s′, t′))ψ(x).

�

A nontrivial function ψ ∈ L2(R
n) is called admissible, if

∫

S

|〈ψ, π(a, s, t)ψ〉|2dµ(a, s, t) <∞.

If π is irreducible and there exits at least one admissible function ψ ∈ L2(R
n), then π is called

square integrable. The following result shows that the unitary representation π defined in (6) is
square integrable.

Theorem 2.3. A function ψ ∈ L2(R
n) is admissible if and only if it fulfills the admissibility

condition

Cψ :=

∫

Rn

|ψ̂(ω)|2
|ω1|n

dω <∞. (8)
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Then, for any f ∈ L2(Rn), the following equality holds true:
∫

S

|〈f, ψa,s,t〉|2 dµ(a, s, t) = Cψ ‖f‖2
L2(Rn) . (9)

In particular, the unitary representation π is irreducible and hence square integrable.

Proof. Employing the Plancherel theorem and (7), we obtain
∫

S

|〈f, ψa,s,t〉|2 dµ(a, s, t) =

∫

S

|f ∗ ψ∗
a,s,0(t)|2 dt ds

da

|a|n+1

=

∫

R

∫

Rn−1

∫

Rn

|f̂(ω)|2|ψ̂∗
a,s,0(ω)|2 dω ds da

|a|n+1

=

∫

R

∫

Rn−1

∫

Rn

|f̂(ω)|2|a|2− 1
n |ψ̂(AT

aS
T

s ω)|2 dω ds da

|a|n+1
(10)

=

∫

R

∫

Rn

∫

Rn−1

|f̂(ω)|2|a|1−n− 1
n |ψ̂

(
aω1

sgn (a)|a| 1
n (ω̃ + ω1s)

)

|2 ds dω da,

where ψ∗
a,s,0(x) = ψa,s,0(−x). Substituting ξ̃ := sgn (a)|a| 1

n (ω̃ + ω1s), i.e., (|a| 1
nω1)

n−1 ds = dξ̃, we
obtain

∫

S

|〈f, ψa,s,t〉|2 dµ(a, s, t) =

∫

R

∫

Rn

∫

Rn−1

|f̂(ω)|2 |a|−n |ω1|−(n−1) |ψ̂
(
aω1

ξ̃

)

|2 dξ̃ dω da.

Next, we substitute ξ1 := aω1, i.e., ω1 da = dξ1 which results in
∫

S

|〈f, ψa,s,t〉|2 dµ(a, s, t) =

∫

R

∫

Rn

∫

Rn−1

|f̂(ω)|2 |ω1|n
|ξ1|n|ω1|n

|ψ̂
(
ξ1
ξ̃

)

|2 dξ̃ dω dξ1 = Cψ ‖f‖2
L2(Rn).

Setting f := ψ, we see that ψ is admissible if and only if Cψ is finite.
Now we show how (9) implies the irreducibility of π. Towards a contradiction, assume that there

exists a closed, proper, nontrivial subspace W of L2(R
n) such that π(g)W ⊆W for all g ∈ S. Hence

there exist nontrivial functions ψ ∈W and f ∈W⊥ such that

〈f, ψa,s,t〉 = 0 for all (a, s, t) ∈ S.

Employing (9) we obtain

0 =

∫

S

|〈f, ψa,s,t〉|2
da

|a|n+1
ds dt = ‖f‖2

L2(Rn)

∫

Rn

|ψ̂(ω)|2
|ω1|n

dω

which is only possible if

0 =

∫

Rn

|ψ̂(ω)|2
|ω1|n

dω.

This is a contradiction, since ψ 6= 0. �

By the following remark, the choice of the shear matrix Ss is canonical to ensure that π is a
square integrable representation.

Remark 2.4. Assume that our shear matrix has the form (3) with M = (mij)
p,n−p
i,j=1 ∈ R

p,n−p. Let

M contain N different entries (variables). We assume that N ≥ n − 1 since we have one dilation
parameter and otherwise the group becomes too small. Then we obtain instead of (10)

∫

S

|〈f, ψa,s,t〉|2 dµ(a, s, t) =

∫

R

∫

Rn

∫

RN

|f̂(ω)|2|a|1−n− 1
n |ψ̂(Aa

(
ω̃1

ω̃2 +MTω̃1

)

)|2 ds dω da,(11)
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where ω̃1 := (ω1, . . . , ωp)
T and ω̃2 := (ωp+1, . . . , ωn)

T. Now we can use the following substitution
procedure:

ξp+1 := |a|1/n(ωp+1 +m11ω1 + . . .+mp1ωp), (12)

i.e., dξp+1 = |ω1|dm11 and with corresponding modifications if some of the mj1, j > 1 are the same
as m11. Then we replace m11 in the other rows of ω̃2 + MTω̃1 where it appears by (12). Next
we continue to substitute the second row if it contains an integration variable from M (6= m11).
Continuing this substitution process up to the final row we have at the end replaced the lower n−p
values in ψ̂ by n − q, q ≤ p variables ξ1 = ξj1, . . . , ξjn−q and some functions depending only on
a, ω, ξj1 , . . . , ξjn−q . Consequently, the integrand depends only on these variables. However, we have
to integrate over a, ω, ξj1 , . . . , ξjn−q and over the remaining N − (n− q) variables from M . But then
the integral in (11) becomes infinity unless N = n− q. Since n− 1 ≤ N this implies q = p = 1, i.e.,
our choice of Ss.

A function ψ ∈ L2(R
n) fulfilling the admissibility condition (8) is called a continuous shearlet

and the transform SHψ : L2(R
n) → L2(S),

SHψf(a, s, t) := 〈f, ψa,s,t〉 = (f ∗ ψ∗
a,s,0)(t), (13)

continuous shearlet transform.

Remark 2.5. An example of a continuous shearlet can be constructed as follows: Let ψ1 be a
continuous wavelet with ψ̂1 ∈ C∞(R) and supp ψ̂1 ⊆ [−2,−1

2 ] ∪ [12 , 2], and let ψ2 be such that

ψ̂2 ∈ C∞(Rn−1) and supp ψ̂2 ⊆ [−1, 1]n−1. Then the function ψ ∈ L2(Rn) defined by

ψ̂(ω) = ψ̂(ω1, ω̃) = ψ̂1(ω1) ψ̂2

(
1

ω1
ω̃

)

is a continuous shearlet. The support of ψ̂ is depiced for ω1 ≥ 0 in Fig. 1.

-
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Figure 1. Support of the shearlet ψ̂ in Remark 2.5 for ω1 ≥ 0.
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3. Multivariate Shearlet Coorbit Theory

In this section we want to establish a coorbit theory based on the square integrable representation
(6) of the shearlet group. We mainly follow the lines of [5]. For further information on coorbit
space theory, the reader is referred to [8, 9, 10, 11, 12].

3.1. Shearlet Coorbit Space. We consider weight functions w(a, s, t) = w(a, s) that are lo-
cally integrable with respect to a and s, i.e., w ∈ Lloc1 (Rn) and fulfill w ((a, s, t) ◦ (a′, s′, t′)) ≤
w(a, s, t)w(a′, s′, t′) and w(a, s, t) ≥ 1 for all (a, s, t), (a′, s′, t′) ∈ S. For 1 ≤ p <∞, let

Lp,w(S) := {F measurable on S : ‖F‖Lp,w(S) :=

(∫

S

|F (g)|p w(a, s, t)pdµ(a, s, t)

)1/p

<∞},

and let L∞,w be defined with the usual modifications. In order to construct the coorbit spaces
related to the shearlet group we have to ensure that there exists a function ψ ∈ L2(R

n) such that

SHψ(ψ) = 〈ψ, π(a, s, t)ψ〉 ∈ L1,w(S). (14)

To this end, we need a preliminary lemma on the support of ψ.

Lemma 3.1. Let a1 > a0 ≥ α > 0 and b = (b1, . . . , bn−1)
T be a vector with positive components.

Suppose that supp ψ̂ ⊆ ([−a1,−a0]∪ [a0, a1])×Qb, where Qb := [−b1, b1]×· · ·× [−bn−1, bn−1]. Then

ψ̂ψ̂a,s,0 6≡ 0 implies a ∈
[
− a1

a0
,−a0

a1

]
∪
[
a0
a1
, a1a0

]
and s ∈ Qc, where c := 1+(a1/a0)1/n

a0
b.

Proof. Let us first dicusss the case a > 0. By (7) we see that the following conditions are necessary

for ψ̂(ω)ψ̂a,s,0(ω) 6≡ 0:

i)
a0 ≤ ω1 ≤ a1 and a0

a ≤ ω1 ≤ a1
a or

−a1 ≤ ω1 ≤ −a0 and −a1
a ≤ ω1 ≤ −a0

a ,

ii) −b ≤ ω̃ ≤ b and − a−1/nb− ω1s ≤ ω̃ ≤ a−1/nb− ω1s

where ω̃ := (ω2, . . . , ωn−1)
T and ii) is meant componentwise. Condition i) implies that

a ∈
[a0

a1
,
a1

a0

]
. (15)

For si ≥ 0 and a0 ≤ ω1 ≤ a1 the second condition in ii) becomes

−a−1/nbi − sia1 ≤ ωi+1 ≤ a−1/nbi − sia0

and with (15) further

−
(
a0

a1

)−1/n

bi − sia1 ≤ ωi+1 ≤
(
a0

a1

)−1/n

bi − sia0.

Together with the first condition in ii) this results in si ≤ bi
a0

(
1+
(
a1
a0

)1/n)
. The same condition can

be deduced for si ≥ 0 and −a1 ≤ ω1 ≤ −a0.

For si < 0 and a0 ≤ ω1 ≤ a1 or −a1 ≤ ω1 ≤ −a0, we obtain that si ≥ − bi
a0

(
1 +

(
a1
a0

)1/n)
is

necessary for ψ̂(ω)ψ̂a,s,0(ω) 6≡ 0.
Finally, the case a < 0 can be treated similarly which results in a ∈

[
− a1

a0
,−a0

a1

]
. This completes

the proof. �

Now we can prove the required property (14) of SHψ(ψ).
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Theorem 3.2. Let ψ be a Schwartz function such that supp ψ̂ ⊆ ([−a1,−a0]∪ [a0, a1])×Qb. Then

we have that SHψ(ψ) ∈ L1,w(S), i.e.,

‖〈ψ, π(·)ψ〉‖L1,w (S) =

∫

S

|SHψ(ψ)(a, s, t)|w(a, s, t) dµ(a, s, t) <∞.

Proof. Straightforward computation gives

‖〈ψ, π(·)ψ〉‖L1,w (S) =

∫

R

∫

Rn−1

∫

Rn

|〈ψ,ψa,s,t〉|w(a, s) dtds
da

|a|n+1

=

∫

R

∫

Rn−1

∫

Rn

|ψ ∗ ψ∗
a,s,0(t)|w(a, s) dtds

da

|a|n+1

=

∫

R

∫

Rn−1

∫

Rn

|F−1F
(
ψ ∗ ψ∗

a,s,0

)
(t)| dtw(a, s) ds

da

|a|n+1

=

∫

R

∫

Rn−1

‖F
(
ψ ∗ ψ∗

a,s,0

)
‖F−1L1

w(a, s) ds
da

|a|n+1

=

∫

R

∫

Rn−1

‖ψ̂ ¯̂
ψa,s,0‖F−1L1

w(a, s) ds
da

|a|n+1
,

where ‖f‖F−1L1(Rn) :=
∫

Rn |F−1f(x)| dx for f ∈ L1(R
n). By Lemma 3.1 this can be rewritten as

‖〈ψ, π(·)ψ〉‖L1,w (S) =

(
∫ −a0/a1

−a1/a0

+

∫ a1/a0

a0/a1

)
∫

Qc

‖ψ̂ ψ̂∗
a,s,0‖F−1L1(Rn) w(a, s) ds

da

|a|n+1
,

which is obviously finite. �

For ψ satisfying (14) we can consider the space

H1,w := {f ∈ L2(R
n) : SHψ(f) = 〈f, π(·)ψ〉 ∈ L1,w(S)}, (16)

with norm ‖f‖H1,w := ‖SHψf‖L1,w(S) and its anti-dual H∼
1,w, the space of all continuous conjugate-

linear functionals on H1,w. The spaces H1,w and H∼
1,w are π-invariant Banach spaces with continuous

embeddings H1,w →֒ H →֒ H∼
1,w, and their definition is independent of the shearlet ψ. Then the

inner product on L2(R
n) × L2(R

n) extends to a sesquilinear form on H∼
1,w × H1,w, therefore for

ψ ∈ H1,w and f ∈ H∼
1,w the extended representation coefficients

SHψ(f)(a, s, t) := 〈f, π(a, s, t)ψ〉H∼

1,w×H1,w

are well-defined. Now, for 1 ≤ p ≤ ∞, we define the shearlet coorbit spaces

SCp,w := {f ∈ H∼
1,w : SHψ(f) ∈ Lp,w(S)} (17)

with norms ‖f‖SCp,w := ‖SHψf‖Lp,w(S). It holds that SC1,w = H1,w and SC1,1 = L2(R
n).

3.2. Shearlet Banach Frames. The Feichtinger-Gröchenig theory provides us with a machinery
to construct atomic decompositions and Banach frames for our shearlet coorbit spaces SCp,w. In
a first step, we have to determine, for a compact neighborhood U of e ∈ S with non-void interior,
so-called U–dense sets. A (countable) family X = ((a, s, t)λ)λ∈Λ in S is said to be U -dense if
∪λ∈Λ(a, s, t)λU = S, and separated if for some compact neighborhood Q of e we have (ai, si, ti)Q ∩
(aj , sj, tj)Q = ∅, i 6= j, and relatively separated if X is a finite union of separated sets.

Lemma 3.3. Let U be a neighborhood of the identity in S, and let α > 1 and β, γ > 0 be defined

such that

[α
1
n
−1, α

1
n ) × [−β

2 ,
β
2 )n−1 × [−γ

2 ,
γ
2 )n ⊆ U. (18)
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Then the sequence

{(ǫαj , βαj(1− 1
n

)k, S
βαj(1− 1

n )k
Aαjγm) : j ∈ Z, k ∈ Z

n−1,m ∈ Z
n, ǫ ∈ {−1, 1}} (19)

is U -dense and relatively separated.

Proof. Set

U0 := [α
1
n
−1, α

1
n ) × [−β

2 ,
β
2 )n−1 × [−γ

2 ,
γ
2 )n.

It is sufficient to prove that the sequence (19) is U0-dense.
For this, fix any (x, y, z) ∈ S. In the following we assume that x ∈ R

+ in which case we have to
set ǫ = 1. If x < 0, the same arguments apply while choosing ǫ = −1. We have that

(αj , βαj(1−
1
n

)k, S
βαj(1− 1

n )k
Aαjγm) ◦ U0 = {(αju, αj(1− 1

n
)(βk + v), S

βαj(1− 1
n )k

Aαj (γm+ w)) :

(u, v,w) ∈ U0}.
Then [logα x + ( 1

n − 1), logα x + 1
n) contains a unique integer j, and there exists a unique u ∈

[α
1
n
−1, α

1
n ) such that logα x = logα u+ j. Further, there exist unique k ∈ Z

n−1 and v ∈ [−β
2 ,

β
2 )n−1

so that βk + v = αj(
1
n
−1)y. Finally, we have that

S
βαj(1− 1

n )k
Aαj (γm+ w) =

(
αj (γm1 + w1) + β〈k, γm̃+ w̃〉)

α
j
n (γm̃+ w̃)

)

.

There exist unique m̃ ∈ Z
n−1 and w̃ ∈ [−γ

2 ,
γ
2 )n−1 such that γm̃+ w̃ = α− j

n z̃ and unique m1 ∈ Z

and w1 ∈ [−γ
2 ,

γ
2 ) such that γm1 + w1 = α−jz1 − βα− j

n 〈k, z̃〉. We have shown that there exist

unique (u, v,w) ∈ U0 and j ∈ Z, k ∈ Z
n−1, m ∈ Z

n such that

(x, y, z) = (αju, αj(1−
1
n

)(βk + v), S
βαj(1− 1

n )k
Aαj (γm+w)).

Finally, the uniqueness of the decomposition proves immediately that the chosen sequence is
relatively separated. �

Next we define the U–oscillation as

oscU (a, s, t) := sup
u∈U

|SHψ(ψ)(u ◦ (a, s, t)) − SHψ(ψ)(a, s, t)|. (20)

Then, the following decomposition theorem, which was proved in a general setting in [8, 9, 10,
11, 12], says that discretizing the representation by means of an U -dense set produces an atomic
decomposition for SCp,w.
Theorem 3.4. Assume that the irreducible, unitary representation π is w-integrable and let an

appropriately normalized ψ ∈ L2(R
n) which fulfills

M〈ψ, π(a, s, t)〉 := sup
u∈(a,s,t)U

|〈ψ, π(u)ψ〉| ∈ L1,w(S) (21)

be given. Choose a neighborhood U of e so small that

‖ oscU ‖L1,w(S) < 1. (22)

Then for any U -dense and relatively separated set X = ((a, s, t)λ)λ∈Λ the space SCp,w has the

following atomic decomposition: If f ∈ SCp,w, then

f =
∑

λ∈Λ

cλ(f)π((a, s, t)λ)ψ (23)
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where the sequence of coefficients depends linearly on f and satisfies

‖(cλ(f))λ∈Λ‖ℓp,w ≤ C‖f‖SCp,w (24)

with a constant C depending only on ψ and with ℓp,w being defined by

ℓp,w := {c = (cλ)λ∈Λ : ‖c‖ℓp,w := ‖cw‖ℓp <∞},
where w = (w((a, s, t)λ))λ∈Λ. Conversely, if (cλ(f))λ∈Λ ∈ ℓp,w, then f =

∑

λ∈Λ cλπ((a, s, t)λ)ψ is

in SCp,w and

‖f‖SCp,w ≤ C ′‖(cλ(f))λ∈Λ‖ℓp,w . (25)

Given such an atomic decomposition, the problem arises under which conditions a function f is
completely determined by its moments 〈f, π((a, s, t)λ)ψ〉 and how f can be reconstructed from these
moments. This is answered by the following theorem which establishes the existence of Banach
frames.

Theorem 3.5. Impose the same assumptions as in Theorem 3.4. Choose a neighborhood U of e
such that

‖ oscU ‖L1,w(S) < 1/‖SHψ(ψ)‖L1,w(S). (26)

Then, for every U -dense and relatively separated family X = ((a, s, t)λ)λ∈Λ in G the set {π((a, s, t)λ)ψ :
λ ∈ Λ} is a Banach frame for SHp,w. This means that

i) f ∈ SCp,w if and only if (〈f, π((a, s, t)λ)ψ〉H∼

1,w×H1,w)λ∈Λ ∈ ℓp,w;

ii) there exist two constants 0 < D ≤ D′ <∞ such that

D ‖f‖SCp,w ≤ ‖(〈f, π((a, s, t)λ)ψ〉H∼

1,w×H1,w)λ∈Λ‖ℓp,w ≤ D′ ‖f‖SCp,w ; (27)

iii) there exists a bounded, linear reconstruction operator S from ℓp,w to SCp,w such that

S
(

(〈f, ψ((a, s, t)λ)ψ〉H∼

1,w×H1,w)λ∈Λ

)

= f.

It remains to check how the conditions (21), (22) and (26) can be ensured. To this end, we need
the following lemma which was proved in a general setting in [12].

Lemma 3.6. Let SHψ(ψ) ∈ L1,w(S) and oscU ∈ L1,w(S) for one compact neighborhood U of e.
Then we have that ψ fulfills (21). If, in addition, SHψ(ψ) is continuous, then

lim
U→{e}

‖ oscU ‖L1,w(S) = 0. (28)

To apply the whole machinery of Theorems 3.4 and 3.5 to our shearlet group setting it remains
to prove that ‖ oscU ‖L1,w(S) becomes arbitrarily small for a sufficiently small neighborhood U of e.

Theorem 3.7. Let ψ be a function contained in the Schwartz space S with supp ψ̂ ⊆ ([−a1,−a0]∪
[a0, a1]) ×Qb. Then, for every ε > 0, there exists a sufficiently small neighborhood U of e so that

‖ oscU ‖L1,w(S) ≤ ε. (29)

Proof. By Theorem 3.2 we have that SHψ(ψ) ∈ L1,w(S). Moreover, it is easy to check that SHψ(ψ)
is continuous on S. Thus, by Lemma 3.6, it remains to show that oscU ∈ L1,w(S) for some compact
neighborhood of e. By definition of oscU and Parseval’s identity we have that

oscU (a, s, t) = sup
(α,β,γ)∈U

∣
∣〈ψ̂, ψ̂a,s,t〉 − 〈ψ̂, ψ̂(α,β,γ)(a,s,t)〉

∣
∣

= sup
(α,β,γ)∈U

∣
∣
∣|a|1− 1

2nF
(

ψ̂(AaS
T

s ·) ¯̂
ψ
)

(t) − |aα|1− 1
2nF

(

ψ̂(AaαS
T

β+α1−1/ns ·)
¯̂
ψ
)

(γ + SβAαt)
∣
∣
∣ ,
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where we can assume that α > 0. By Lemma 3.1, we see that for (α, β) in a sufficiently small

neighborhood of (1, 0n−1), the function ψ̂(AaαS
T

β+α1−1/ns
·) ¯̂
ψ becomes zero except for values a con-

tained in two finite intervals away from zero and values s in a finite interval. Thus, it remains to
show that

∫

Rn oscU (a, s, t) dt ≤ C(a, s) with a finite constant C(a, s). We split the integral into
three parts ∫

Rn

oscU (a, s, t) dt = |a|1− 1
2n (I1 + I2 + I3),

where

I1 :=

∫

Rn

sup
(α,β,γ)∈U

∣
∣|1 − α1− 1

2n |F
(

ψ̂(AaS
T

s ·) ¯̂
ψ
)

(t) dt

I2 :=

∫

Rn

sup
(α,β,γ)∈U

α1− 1
2n

∣
∣F
(

ψ̂(AaS
T

s ·) ¯̂
ψ
)

(t) −F
(

ψ̂(AaS
T

s ·) ¯̂
ψ
)

(γ + SβAαt)
∣
∣ dt

I3 :=

∫

Rn

sup
(α,β,γ)∈U

α1− 1
2n

∣
∣F
(

ψ̂(AaS
T

s ·) ¯̂
ψ
)

(γ + SβAαt) −F
(

ψ̂(AaαS
T

β+α1−1/ns
·) ¯̂
ψ
)

(γ + SβAαt)
∣
∣ dt.

1. Concerning I1, we see that for every ε > 0 there exists α near 1 such that |1−α1− 1
2n | ≤ ε. Since

ψ̂ ∈ S, we have that ψ̂(AaS
T

s ·) ¯̂
ψ ∈ S so that F

(

ψ̂(AaS
T

s ·) ¯̂
ψ
)

∈ S for any (a, s). Consequently,

I1 ≤ εC(a, s) with a finite constant C(a, s).

2. Concerning I2, we consider

Ga,s(t) = G(t) = F
(

ψ̂(AaS
T

s ·) ¯̂
ψ
)

(t) ∈ S.
By Taylor expansion we obtain

|G(γ + SβAαt) −G(t)| = |∇G (t+ θ(γ + SβAαt− t)) (γ + SβAαt− t)|
≤ ‖∇G (t+ θ(SβAαt− t+ γ)) ‖2 ‖SβAαt− t+ γ‖2

≤ ‖∇G (t+ θ(SβAαt− t+ γ)) ‖2 (‖SβAα − I‖ ‖t‖2 + ‖γ‖2) ,

where θ ∈ [0, 1). For any ε > 0, there exists a sufficiently small neighborhood U of e such that
‖SβAα − I‖ < ε and ‖γ‖2 ≤ ε for all (α, β, γ) ∈ U . On the other hand, we have for t = (t1, . . . , tn)
that

Gi(t) :=
∂

∂ti
G(t) =

∂

∂ti
F
(

ψ̂(AaS
T

s ·) ¯̂
ψ
)

(t)

= F
(

−2πiωiψ̂(AaS
T

s ·) ¯̂
ψ
)

(t) = F
(

ψ̂(AaS
T

s ·)∂iψ̂
)

(t).

Since ψ ∈ S , we obtain that ∂
∂ti
G ∈ S. Thus, since ‖G‖2 ≤ |G|1, we conclude that

I2 ≤ ε

∫

Rn

sup
(α,β,γ)∈U

α1− 1
2n

(
n∑

i=1

|Gi (t+ θ(SβAαt− t+ γ)) |
)

dt.

Now Gi ∈ S, i = 1, . . . , n implies for all m > 0 and sufficiently small γ that

|Gi (t+ θ(SβAαt− t+ γ)) | ≤ Ci(a, s) (1 + ‖t+ θ(SβAαt− t+ γ)‖2
2)

−m

≤ C̃i(a, s) (1 + ‖t+ θ(SβAαt− t)‖2
2)

−m.

To show that I2 ≤ εC(a, s), we have to prove that

sup
(α,β,0n)∈U

(1 + ‖t+ θ(SβAαt− t)‖2
2)

−1 ≤ C̃(a, s) (1 + ‖t‖2
2)

−1.



12 STEPHAN DAHLKE, GABRIELE STEIDL, AND GERD TESCHKE

With t = (t1, t̃
T)T we see that

‖t+ θ(SβAαt− t)‖2
2 = (pt1 + q〈β, t̃〉)2 + r2‖t̃‖2

2,

where p := 1 − θ(1 − α), q := θ
√
α and r := 1 − θ(1 −√

α). Hence it remains to show that

(1 + (pt1 + q〈β, t̃〉)2 + r2‖t̃‖2
2)

−1 ≤ C(1 + t21 + ‖t̃‖2
2)

−1

for all (α, β, 0n) ∈ U . Let U be chosen such that ‖β‖2 ≤ β0 with some fixed sufficiently small β0.

If
∣
∣
∣
pt1
q‖t̃‖2

∣
∣
∣ ≤ β0, i.e., p2t21/(q

2β2
0) ≤ ‖t̃‖2

2, then

1

1 + (pt1 + q〈β, t̃〉)2 + r2‖t̃‖2
2

≤ 1

1 + r2‖t̃‖2
2

≤ 1

min{1, r2p2/(2q2β2
0), r2/2}

1

1 + t21 + ‖t̃‖2
2

.

If
∣
∣
∣
pt1
q‖t̃‖2

∣
∣
∣ > β0 and t1, 〈β, t̃〉 have the same sign, we see that

1

1 + (pt1 + q〈β, t̃〉)2 + r2‖t̃‖2
2

≤ 1

1 + (|pt1| − q|〈β, t̃〉|)2 + r2‖t̃‖2
2

.

Further, since |〈β, t̃〉| ≤ ‖β‖2‖t̃‖2 ≤ β0‖t̃‖2 and since by assumption |pt1| − qβ0‖t̃‖2 > 0 we get

1

1 + (pt1 + q〈β, t̃〉)2 + r2‖t̃‖2
2

≤ 1

1 + (|pt1| − qβ0‖t̃‖2)2 + r2‖t̃‖2
2

.

With y := |pt1| − qβ0‖t̃‖2 we obtain |t1| = (y + qβ0‖t̃‖2)/p so that we have to show

1

1 + y2 + r2‖t̃‖2
2

≤ C

1 + (y + qβ0‖t̃‖2)2/p2 + ‖t̃‖2
2

.

Now 2yqβ0‖t̃‖2 ≤ y2 + q2β2
0‖t̃‖2

2 so that

1 + (y + qβ0‖t̃‖2)
2/p2 + ‖t̃‖2

2 ≤ 1 + 2y2/p2 + (2q2β2
0/p

2 + 1)‖t̃‖2
2

≤ max{1, 2/p2, (1 + 2q2β2
0/p

2r2)} (1 + y2 + r2‖t̃‖2
2).

The case
∣
∣
∣
pt1
q‖t̃‖2

∣
∣
∣ > β0 and t1, 〈β, t̃〉 having different signs can be treated in a similar way and we

are done.

3. Concerning I3, we have that

I3 =

∫

Rn

sup
(α,β,γ)∈U

α1− 1
2n

∣
∣

∫

Rn

(

ψ̂(AaS
T

s ω) − ψ̂(AaαS
T

β+α1−1/ns
ω)
)

¯̂
ψ(ω) e−2πi〈ω,γ+SβAαt〉 dω

∣
∣ dt.

Using the Short Time Fourier Transform defined by

Gψf(x, ω) =

∫

Rn

f(t)ψ̄(t− x)e−2πi〈ω,t〉 dt,

this can be rewritten as

I3 =

∫

Rn

sup
(α,β,γ)∈U

α1− 1
2n

∣
∣Gψ̂(AaST

s ·)−ψ̂(AaαST

β+α1−1/ns
·)ψ̂(0, γ + SβAαt)

∣
∣ dt

and since Gψf(x, ω) = e−2πi〈ω,x〉Gψ̂ f̂(ω,−x) further as

I3 =

∫

Rn

sup
(α,β,γ)∈U

α1− 1
2n

∣
∣Gψ(A−1

a S−1
s ·)−ψ(A−1

aαS
−1

β+α1−1/ns
·)ψ(γ + SβAαt, 0)

∣
∣ dt.

By [13, p. 232], we have for ψ ∈ S and |f(x)| ≤ C(1 + ‖x‖2)
−σ, σ > n that

|Gψf(x, ω)| ≤ C‖f‖L∞,mσ
‖ψ‖L∞,mσ

(1 + ‖x‖2)
−σ,



THE CONTINUOUS SHEARLET TRANSFORM IN ARBITRARY SPACE DIMENSIONS 13

where mσ(x) = (1 + ‖x‖2)
σ and ‖ψ‖L∞,mσ

= ess sup
x∈Rn

|ψ(x)|(1 + ‖x‖2)
σ. Thus, since ψ ∈ S,

I3 ≤ C ‖ψ‖L∞,mσ
sup

(α,β,0n)∈U
‖ψ(A−1

a S−1
s ·) − ψ(A−1

aαS
−1
β+α1−1/ns

·)‖L∞,mσ

×
∫

Rn

sup
(α,β,γ)∈U

(1 + ‖γ + SβAαt‖2)
−σ dt ≤ C(a, s).

This completes the proof. �

4. Analysis of Singularities

In this section, we deal with the decay of the shearlet transform at hyperplane singularities. An
(n −m)-dimensional hyperplane in R

n, 1 ≤ m ≤ n − 1, not containing the x1-axis can be written
w.l.o.g. as






x1
...
xm






︸ ︷︷ ︸

xA

+ P






xm+1
...
xn






︸ ︷︷ ︸

xE

=






0
...
0




 , P :=






pT

1
...
pT

m




 ∈ R

m,n−m.

Then we obtain for

νm := δ(xA + PxE)

with the Delta distribution δ that

ν̂m(ω) =

∫

Rn

δ(xA + PxE)e−2πi(〈xA ,ωA〉+〈xE ,ωE〉) dx

=

∫

Rn−m

e−2πi(−〈PxE ,ωA〉+〈xE ,ωE〉) dxE

= δ(ωE − PTωA). (30)

The following theorem describes the decay of the shearlet transform at hyperplane singularities.
We use the notation SHψf(a, s, t) ∼ |a|r as a → 0, if there exist constants 0 < c ≤ C < ∞ such
that

c|a|r ≤ SHψf(a, s, t) ≤ C|a|r as a→ 0.

Theorem 4.1. Let ψ ∈ L2(R
n) be a shearlet satisfying ψ̂ ∈ C∞(Rn). Assume further that ψ̂(ω) =

ψ̂1(ω1)ψ̂2(ω̃/ω1), where supp ψ̂1 ∈ [−a1,−a0]∪ [a0, a1] for some a1 > a0 ≥ α > 0 and supp ψ̂2 ∈ Qb.
If

(sm, . . . , sn−1) = (−1, s1, . . . , sm−1)P and (t1, . . . , tm) = −(tm+1, . . . , tn)P
T,

then

SHψνm(a, s, t) ∼ |a| 1−2m
2n as a→ 0. (31)

Otherwise, the shearlet transform SHψνm decays rapidly as a→ 0.

The support condition on ψ̂1 and ψ̂2 can be relaxed toward a rapid decay of the functions.
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Proof. An application of Plancherel’s theorem for tempered distribution together with (30) and (7)
yields

SHψνm(a, s, t) := 〈νm, ψa,s,t〉
= 〈ν̂m, ψ̂a,s,t〉

=

∫

Rn

δ(ωE − PTωA)|a|1− 1
2n e2πi〈t,ω〉

¯̂
ψ
(

aω1, sgn(a)|a| 1
n (ω1s+ ω̃)

)

dω

= |a|1− 1
2n

∫

Rm

e2πi〈tA+PtE ,ωA〉 ¯̂
ψ

(

aω1, sgn(a)|a| 1
n (ω1s+

(
ω̃A

PTωA

)

)

)

dωA

with ω̃A = (ω2, . . . , ωm)T. By definition of ψ̂ this can be rewritten as

SHψνm(a, s, t) = |a|1− 1
2n

∫

Rm

e2πi〈tA+PtE ,ωA〉 ¯̂
ψ1(aω1)

¯̂
ψ2

(

|a| 1
n
−1(s+

1

ω1

(
ω̃A

PTωA

)

)

)

dωA.

Substituting ξ̃A = (ξ2, . . . , ξm)T := ω̃A/ω1, i.e., dω̃A = |ω1|m−1 dξ̃A, we get

SHψνm(a, s, t) = |a|1− 1
2n

∫

R

∫

Rm−1

e2πiω1〈tA+PtE ,(1,ξ̃
T
A)T〉 ¯̂

ψ1(aω1)|ω1|m−1

× ¯̂
ψ2

(

|a| 1
n
−1(s+

(
ξ̃A

PT(1, ξ̃T

A)T

)

)

)

dξ̃Adω1

and further by substituting ξ1 := aω1

SHψνm(a, s, t) = |a|1−m− 1
2n

∫

Rm−1

∫

R

e2πi
ξ1
a
〈tA+PtE ,(1,ξ̃

T
A )T〉|ξ1|m−1 ¯̂

ψ1(ξ1) dξ1

× ¯̂
ψ2

(

|a| 1
n
−1(s+

(
ξ̃A

PT(1, ξ̃T

A)T

)

)

)

dξ̃A.

Finally, by substituting ω̃A := |a| 1
n
−1(ξ̃A+sa), where sa := (s1, . . . , sm−1)

T and se := (sm, . . . , sn−1)
T,

we obtain

SHψνm(a, s, t) = |a| 1−2m
2n

∫

Rm−1

∫

R

e2πi
ξ1
a
〈tA+PtE ,(1,|a|

1−1/nω̃T
A−sTa )〉|ξ1|m−1 ¯̂

ψ1(ξ1) dξ1

× ¯̂
ψ2





w̃A

|a| 1
n
−1
(
se − PT

(
−1
sa

)
)

+ PT

(
0
ω̃A

)



 dω̃A.

If the vector

se − PT

(
−1
sa

)

6= 0n−m (32)

then at least one component of its product with |a|1/n−1 becomes arbitrary large as a→ 0. On the

other hand, by the support property of ψ̂2, we conclude that ψ̂2(ω̃A, ·) becomes zero if we ω̃A is not
in Q(b1,...,bm−1) ⊂ Rm−1. But for all ω̃A ∈ Q(b1,...,bm−1) at least one component of

|a| 1
n
−1
(
se − PT

(
1
sa

)
)

+ PT

(
0
ω̃A

)
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is not within the support of ψ̂2 for a sufficiently small so that ψ̂2 becomes zero again. Assume now
that we have equality in (32). Then

SHψνm(a, s, t) = |a| 1−2m
2n

∫

Rm−1

∫

R

e2πi
ξ1
a
〈tA+PtE ,(1,|a|

1−1/nω̃T
A−sTa )〉|ξ1|m−1 ¯̂

ψ1(ξ1) dξ1

× ¯̂
ψ2





w̃A

PT

(
0
ω̃A

)



 dω̃A

= C |a| 1−2m
2n

∫

Rm−1

ψ̃
(m−1)
1

(

〈tA + PtE, (1, |a|1−1/nω̃T

A − sT

a )〉/a
)

× ¯̂
ψ2





w̃A

PT

(
0
ω̃A

)



 dω̃A

= C |a| 1−2m
2n

∫

Rm−1

ψ̃
(m−1)
1

(

〈tA + PtE ,

(
|a|1/n−1

ω̃T

A − |a|1/n−1sa

)

〉 |a|−1/nsgn (a)

)

× ¯̂
ψ2





w̃A

PT

(
0
ω̃A

)



 dω̃A,

where ψ̃1 has the Fourier transform
ˆ̃
ψ1(ξ1) :=

¯̂
ψ1(ξ1) for ξ1 ≥ 0 and

ˆ̃
ψ1(ξ1) := − ¯̂

ψ1(ξ1) for ξ1 < 0.

Since by our assumptions the support of ψ̂1 is bounded away from the origin, we see that
ˆ̃
ψ1 is

again in C∞(R). If tA +PtE 6= 0m, then, since ψ̂1 ∈ C∞ the first function decays rapidly as a→ 0

for all w̃A in the bounded domain, where ψ̂2 doesn’t become zero. Consequently, the value of the
shearlet transform decays rapidly. If tA + PtE = 0m, then

SHψνm(a, s, t) = C |a| 1−2m
2n ψ̃

(m−1)
1 (0)

∫

Rm−1

¯̂
ψ2





w̃A

PT

(
0
ω̃A

)



 dω̃A ∼ |a| 1−2m
2n .

This finishes the proof. �

Finally, we obtain for point singularities the following decay properties of the shearlet transform.

Lemma 4.2. If t = 0, we have

SHψδ(a, s, t) ∼ |a| 1
2n

−1 as a→ 0.

In all other cases, SHψδ(a, s, t) decays rapidly as a→ 0.

Proof. We obtain that

SHψδ(a, s, t) =

∫

Rn

δ(x)ψa,s,t(x)dx = ψa,s,t(0).

Now, for a shearlet ψ ∈ L2(R
n) satisfying ψ̂ ∈ C∞(Rn), there is a constant Ck such that for any

x ∈ R
n,

|ψa,s,t(x)| ≤ Ck|detAa|−
1
2 (1 + ‖A−1

a S−1
s (x− t)‖2)−k

= Ck|a|
1
2n

−1(1 + ‖A−1
a S−1

s (x− t)‖2)−k ∀k ∈ N,
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so that the assertion follows immediately. �

Remark 4.3. Other choices of the dilation matrix are possible, e.g.,

Aa :=

(

a 0T

n−1

0n−1 sgn (a)
√

|a| In−1

)

.

Then we have to replace (31) by |a|n−2m−1
4 which increases for n < 2m+ 1 as a→ 0. Therefore, we

prefer our choice.
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