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ABSTRACT. A semidiscrete Milstein scheme for stochastic partial differential equa-
tions of Zakai type on a bounded domain of Rd is derived. It is shown that the order
of convergence of this scheme is 1 for convergence in mean square sense. For almost
sure convergence the order of convergence is proved to be 1 � � for any � > 0.

1. INTRODUCTION

Let D be a bounded domain in Rd , d 2 N, with piecewise smooth boundary @D.
Consider a Zakai equation (cf. [16]) in D of the form

(1.1) dut .x/ D L�ut .x/ dt C ut .x/
�
g.x/; dwt

�
; t � 0; x 2 D;

with zero Dirichlet boundary conditions on @D, and initial condition utD0 D v. L�

is a second order elliptic differential operator of the form

(1.2) L�u D
1

2

dX
i;jD1

Di

�
Dj .aij u/

�
�

dX
iD1

Di.fiu/; u 2 C 2
c .D/;

where Di denotes the partial derivative in coordinate direction i 2 f1; : : : ; dg. f
is a differentiable vector field on D, and the d � d–matrix valued function a D

.aij ; i; j D 1; : : : ; d/ on D is assumed to be twice differentiable, symmetric, and
positive definite. (For a more complete listing of our assumptions we refer the reader
to Section 2.) Moreover, w D .wt ; t � 0/ is a standard ˇ–dimensional Brownian
motion, and g is a mapping from D into Rˇ. Finally, . �; � / stands for the Euclidean
inner product in Rˇ.

It is well-known (e.g., [12], [13], [10], [2], [5] and the references given there) that
under appropriate conditions on the data, equation (1.1) has a unique strong solution.

In the present paper we address the problem of deriving a discretization scheme
with respect to the time parameter t � 0, which in analogy with the well-known
Milstein scheme for ordinary SDE’s (e.g., [11], [9] and references quoted there) con-
verges faster than the usual Euler–Maruyama scheme as the time step size decreases
to zero. The almost sure convergence of the latter for parabolic equations with addi-
tive noise has been treated in [3], and for the Zakai equation (1.1) it has been given
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in [4]. In these papers it is shown that the order of almost sure convergence for the
Euler-Maruyama scheme is 1=2 � � for any � > 0. (Moreover, in [4] a Galerkin
approximation in the space variable in terms of a certain eigenfunction expansion is
given.) The Milstein scheme for the SPDE (1.1) derived in Section 2 will exhibit
for almost sure convergence an order 1 � � for any � > 0. We find it interesting to
observe that in order to achieve this order of convergence it is not enough to add the
analogue of the expression which is well-known from the case of ordinary SDE’s, but
an additional term has to be built in. (For details cf. section 2.)

Concerning the discretization of the space variable, appropriate Galerkin approxi-
mations, their combination with the Milstein scheme presented here, and the general-
ization to the case of Lévy noise are currently under investigation.

The paper is organized as follows. In Section 2, we setup our framework, derive
the Milstein scheme, and state the main results. The proofs of these results are done
in Sections 3.

Acknowledgement. It is a pleasure to thank Andrea Barth, Vadim Kostrykin, and Mar-
tin Schmidt for helpful discussions. Two of us (A. L. and J. P.) acknowledge grate-
fully the very warm hospitality extended to them during their stay at the Department
of Mathematics, Wayne State University, Detroit, Michigan, in 2008.

2. FRAMEWORK, MILSTEIN SCHEME, AND MAIN RESULTS

First we reformulate the SPDE (1.1) as an Itô equation with values in a Hilbert
space (e.g., [2, 5]). To this end, let H denote the Hilbert space L2.D/, and denote
by H m

0
the Sobolev space of order m 2 N on D with zero boundary values. (I.e.,

H m
0

is the completion of C1c .D/ with respect to the Sobolev norm of order m.)
We denote V D H 1

0
, and V 0 is the dual of V . As usual, we use Riesz’ theorem

to identify H with its dual, and thereby obtain the dense, continuous embeddings
V � H � V 0. Moreover, in the sequel we shall follow the common abuse of language
to call elements in these spaces “functions”. Moreover, we denote K D Rˇ.

Following [4], we write the operator L� (cf. Equation (1.2)) in divergence form

(2.1a) L� D AC B;

where for u 2 C 2
c .D/

Au D
1

2

dX
i;jD1

Di.aij Dj u/;(2.1b)

Bu D

dX
iD1

Di.biu/;(2.1c)

bi D
1

2

dX
j

Dj aij � fi :(2.1d)

Similarly as in [4] we make the following
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Assumptions 2.1. The coefficients of L� and the initial condition v satisfy the fol-
lowing conditions:

(a) aij , fi , gk , i , j D 1; : : : ; d , k D 1; : : : ; ˇ of L� belong to C 3
b
.D/,

(b) the diffusion matrix a is strictly positive definite, i.e., there exists ı > 0 so that
for all x 2 D, � 2 Rd ,

dX
i;jD1

aij .x/ �i�j � ık�k
2

(c) v is positive and belongs to C 2
b
.D/.

We shall make use of the following lemma — whose statement is also known as
Kato’s conjecture — which has been proved in [1].

Lemma 2.2. Let A1=2 WD .�A/1=2 and A�1=2 WD A�1
1=2

, then D.A1=2/ D H 1
0

and
the norm kA1=2 � kH is equivalent to k � kH 1 , i.e.

kA1=2 �kH � Ck�kH 1 and k�kH 1 � CkA1=2 �kH

for all � 2 H 1.

For u 2 H , we define a linear operator G.u/ from K into H by

(2.2)
�
G.u/y

�
.x/ D

�
g.x/;y

�
u.x/; y 2 K; x 2 D:

Then we can interpret the Zakai equation (1.1) as the following H–valued Itô SDE:

(2.3) dut D .Aut C But / dt CG.ut / dwt ;

subject to the initial condition u0 D v. Assumption 2.1(b) implies that the operator A

is dissipative, see [8]. Then by the Lumer–Phillips-Theorem, e.g. [6], A generates a
strongly continuous contraction semigroup on H which we denote by S D .St ; t �

0/. We may rewrite this initial value problem in the form of the following integral
equation:

(2.4) ut D Stv C

Z t

0

St�sBus ds C

Z t

0

St�sG.us/ dws:

The integral equation (2.4) is the starting point for our derivation of the Milstein
scheme for (1.1).

We shall always consider a finite time horizon: t 2 Œ0;T � with T < C1. Let
T D .Tm; m 2 N/ be a sequence of partitions Tm, m 2 N, of the interval Œ0;T �
whose mesh �m tends to zero as m tends to C1. We write Tm as ftm

0
; tm

1
; : : : ; tm

nm
g

with nm 2 N, 0 D tm
0
< tm

1
< � � � < tm

nm
D T , and

�m D max
i
.tm

iC1 � tm
i /;

the maximum being taken over i 2 f0; : : : ; nm � 1g. In the sequel we assume that
�m converges to zero at least polynomially in 1=m, i.e., we suppose that there exists
ı > 0 so that �m D O.m�ı/. For m 2 N, we define the map �m W Œ0;T � !

ftm
i ; i D 0; : : : ; nmg by �m.s/ D ti if ti � s < tiC1.
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As in [4], the integral equation (2.4) gives us directly the Euler–Maruyama scheme
for approximate solutions um

(EM) um
t D Stv C

Z t

0

St��m.s/Bum
�m.s/

ds C

Z t

0

St��m.s/G
�
um
�m.s/

�
dws:

If one restricts to times t 2 Tm, this equation is readily converted into a recursive
scheme (cf. [4]) which can be simulated on a computer, provided that one has made
an appropriate discretization of the semigroup S , viz. of the differential operators in
the space variables, too. It is proved in [4] that the approximate solutions um converge
almost surely to u in such a way that

(2.5) sup
0�t�T

kut � um
t kH D O.�1=2��

m /; P–a.s.;

for any � > 0.
With Equation (2.4) and the semigroup property of S we get for r , t 2 Œ0;T �,

r < t ,

(2.6) ut D St�r ur C

Z t

r

St�sBus ds C

Z t

r

St�sG.us/ dws:

Inserting this equation back into (2.4), and putting r D �m.s/ we find

ut D Stv C

Z t

0

St�sB
�
u�m.s/ C

Z s

�m.s/

Ss�r Bur dr

C

Z s

�m.s/

Ss�r G.ur / dwr

�
ds

C

Z t

0

St�sG
�
u�m.s/ C

Z s

�m.s/

Ss�r Bur dr

C

Z s

�m.s/

Ss�r G.ur / dwr

�
dws:

(2.7)

Formula (2.7) suggests the following Milstein scheme for an approximate solution
um:

um
t D Stv C

Z t

0

St��m.s/Bum
�m.s/

ds C

Z t

0

St��m.s/G
�
um
�m.s/

�
dws

C

Z t

0

St��m.s/B
�Z s

�m.s/

G
�
um
�m.s/

�
dwr

�
ds

C

Z t

0

St��m.s/G
�Z s

�m.s/

G
�
um
�m.s/

�
dwr

�
dws:

(M)

Observe that in comparison to the Euler–Maruyama scheme we have the last two
terms in addition. Superficially, the first of these may appear as being of order �3=2

m ,
but — roughly speaking — the combination of the semigroup with the first order dif-
ferential operator B introduces an integrable singularity of the type .t � �m.s//

�1=2,
yielding a contribution of the order �m of this term. (Of course, this rough argument
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gets its precise meaning in the statement and the proof of Theorems 2.3, 2.4, and 2.6
below.)

Note that all random variables involved with Equation (2.8) can easily be simulated
on a computer. The double Itô integral can be simulated for each component as known
for standard Milstein schemes (e.g., [9]): If B is a one-dimensional Brownian motion,
we have Z tm

iC1

tm
i

Z s

tm
i

dBr dBs D
1

2

�
.Btm

iC1
� Bm

ti
/2 � .tm

iC1 � tm
i /
�
:

A simple simulation method for the mixed (“dwr ds”) integral can be found in [9]:
The components of this integral are normally distributed with mean zero, variance
1=3 .tm

iC1
� tm

i /
3, and covariance with the given Brownian motion 1=2 .tm

iC1
� tm

i /
2.

Let U1, U2 be independent centered normally distributed random variables with vari-
ance tm

iC1
� tm

i . Then samples of Z tiC1

ti

Z s

ti

dBr ds

can be generated via
1

2
.tiC1 � ti/

�
U1 C

1
p

3
U2

�
:

If we restrict the time variable t to the grid Tm and set �tj D tjC1 � tj and
�wi

tj
D wi

tjC1
� wi

tj
, we get the following iterative scheme

um
tjC1
D StjC1�tj um

tj
C StjC1�tjBum

tj
�tj C StjC1�tjG

�
um

tj

�
�wtj

C StjC1�tjBG
�
um

tj

�
�.tj ; tjC1/

C StjC1�tj

�
um

tj

ˇX
iD1

g2
i

1

2

�
.�wi

tj
/2 ��tj

��
;

(2.8)

where we have set �.a; b/ D
R b

a

R s
a dwr ds.

For a mapping � from Œ0;T � into H we set

k�kH ;T D sup
0�t�T

k�tkH ;

and for an H–valued stochastic process ˆ, and p � 1, we define the norm

kˆkp;H ;T D
�
E
�

sup
0�t�T

kˆtk
p
H

��1=p
:

Now we can state our main results for the approximation .um; m 2 N/ defined by
the Milstein scheme (M):

Theorem 2.3 (Mean Square Convergence). There is a constant C so that for all
m 2M large enough,

(2.9) ku � um
k2;H ;T � C �m:
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Theorem 2.4 (Almost Sure Convergence). For every � > 0 there is a constant C� so
that for all m 2 N large enough,

(2.10) ku � um
kH ;T � C� �

1��
m ; P–a.s.

Finally we consider the situation where our choices of K D Rˇ and w are gener-
alized to K being a separable Hilbert space, and w being a Q–Wiener process in K

in the sense of [2,5]. Here Q is a trace class operator from K into K, and we assume
furthermore that the following condition is satisfied:

Assumption 2.5. The coefficients of L� and the initial condition v satisfy Assump-
tion 2.1. Furthermore the operators G and Q satisfy the following conditions:

(a) G is a linear mapping from H into the Hilbert–Schmidt operators from K into
H that satisfies for � 2 H : kG.�/Q1=2kLHS.K ;H / � Ck�kH ,

(b) kAG.�/Q1=2kLHS.K ;H / � Ck�kH 2 for � 2 D.A/,
(c) kA1=2G.�/Q1=2kLHS.K ;H / � Ck�kH 1 for � 2 D.A1=2/.

Theorem 2.6 (Infinite Dimensional Noise). Under Assumption 2.5 the statements of
Theorem 2.3 and 2.4 remain true for a Q–Wiener process w.

The proofs of these theorems are carried out in the next section.

3. PROOFS

The essential machinery for the proofs of all three theorems is contained in the
proof of Theorem 2.4. Therefore we begin with its proof.

3.1. Proof of Theorem 2.4. In this section we show almost sure convergence of the
Milstein scheme by proving Lp convergence and applying a Borel–Cantelli argument.
We will divide the proof into several lemmas. First one shows by direct calculations
the following properties of the operators of Equation (2.3):

Lemma 3.1. For A, B, and G defined as in Section 2 it holds that
(a) kA�kH � Ck�kH 2 for all � 2 H 2,
(b) kB�kH � Ck�kH 1 for all � 2 H 1,
(c) kB�kH 1 � Ck�kH 2 for all � 2 H 2,
(d) kG.�/kLHS.K ;H / � Ck�kH for all � 2 H ,
(e) kG.�/kLHS.K ;H 1/ � Ck�kH 1 for all � 2 H 1,
(f) kA G.�/kLHS.K ;H / � Ck�kH 2 for all � 2 H 2.

While S generates a contraction semigroup on H , in general it does not generate a
semigroup of that type on H 1 and H 2. The following lemma states some properties
of S that are direct consequences of Lemma 3.1 and Theorem 2.6.13 in [15].

Lemma 3.2. The following hold true:
(a) kSt�kH 1 � Ck�kH 1 for � 2 H 1,
(b) kSt�kH 2 � Ck�kH 2 for � 2 H 2,
(c) k.St � 1/G.�/kLHS.K ;H / � C t˛=2k�kH˛ for � 2 H˛ and ˛ D 1; 2.
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In particular, S generates a strongly continuous semigroup on the two mentioned
Sobolev spaces.

Finally, before we can start to prove the error estimates, we have to look at the
solution of Equation (2.3). By Example 6.31 in [5] there exists a unique solution
in H 2 and by Lemma 3 in [4] kukp

p;H 1;T
is bounded. Similarly one can show that

kuk
p

p;H 2;T
is also bounded because the solution of Equation (2.3) is smoother than

the one in [4], i.e., it is in H 2. The regularity of the solution is given in the following
lemma, where we set for a mapping ˆ from Œ0;T � into H

kˆkp;H ;r;R D
�
E
�

sup
r�t�R

kˆtk
p
H

��1=p
:

Lemma 3.3. If u is solution of Equation (2.3), then

ku � urk
p
p;H ;r;R

� C kuk
p
p;H ;T

.R � r/p=2; 0 � r � R � T; p � 2:

Proof. Let

�t D

Z t

0

St�s Bus ds

and

 t D

Z t

0

St�s G.us/ dws;

then we can estimate with Lemma 3.1, Theorem 2.6.13 in [14], the theorem in [15],
and Lemma 2.2

ku � urk
p
p;H ;r;R

� 4p�1
�
k.S � Sr /vk

p
p;H ;r;R

C k.S��r � 1/.�r C  r /k
p
p;H ;r;R

C k� � �rk
p
p;H ;r;R

C k �  rk
p
p;H ;r;R

�
� C

�
E.kA1=2vk

p
H
/C kuk

p
p;H ;T

�
.R � r/p=2

� C kuk
p
p;H ;T

.R � r/p=2: �

The error estimates of ku � umkp;H ;T are done in several steps. First we observe
that the difference of the solution and the approximate solution can be split into the
deterministic and the stochastic part of the mild solution

u � um
D �m

C �m;

where the deterministic part is split again into three parts

�m
D �m

1 C �
m
2 C �

m
3



8 A. LANG, P.-L. CHOW, AND J. POTTHOFF

with

�m
1 .t/ D

Z t

0

�
St�s B Ss��m.s/u�m.s/ � St��m.s/Bum

�m.s/

�
ds;

�m
2 .t/ D

Z t

0

�
St�s B

Z s

�m.s/

Ss�r Bur dr
�

ds;

�m
3 .t/ D

Z t

0

�
St�s B

Z s

�m.s/

Ss�r G.ur / dwr

� St��m.s/B

Z s

�m.s/

G
�
um
�m.s/

�
dwr

�
ds;

and similarly, the stochastic integral is decomposed as

�m
D �m

1 C �
m
2 C �

m
3

with

�m
1 .t/ D

Z t

0

�
St�s G

�
Ss��m.s/u�m.s/

�
� St��m.s/G

�
um
�m.s/

��
dws;

�m
2 .t/ D

Z t

0

�
St�s G

�Z s

�m.s/

Ss�r Bur dr
��

dws;

�m
3 .t/ D

Z t

0

�
St�s G

�Z s

�m.s/

Ss�r G.ur / dwr

�
� St��m.s/G

�Z s

�m.s/

G
�
um
�m.s/

�
dwr

��
dws:

We will only give explicit estimates for �m
3

which exhibit all the techniques needed
for the estimates of the other five terms.

Lemma 3.4. The term �m
3

satisfies

k�m
3 k

p
p;H ;T

� C1�
p
m C C2

Z T

0

ku � um
k

p
p;H ;s

ds:

Proof. For an H -valued random field ˆ indexed by T � T we set

jˆjp;H ;T D E
�

sup
0�t�T

�Z t

0

kˆ.t; s/kH ds
�p�1=p

:
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We split the integral into four parts and get with Hölder’s inequality

k�m
3 .t/k

p
p;H ;T

� 4p�1
�ˇ̌

St�s .1 � Ss��m.s//B

Z s

�m.s/

Ss�r G.ur / dwr

ˇ̌p
p;H ;T

C
ˇ̌
St��m.s/B

Z s

�m.s/

.Ss�r � 1/G.ur / dwr

ˇ̌p
p;H ;T

C
ˇ̌
St��m.s/B

Z s

�m.s/

G.ur � u�m.s// dwr

ˇ̌p
p;H ;T

C
ˇ̌
St��m.s/B

Z s

�m.s/

G
�
u�m.s/ � um

�m.s/

�
dwr

ˇ̌p
p;H ;T

�
:

Next we use the commutativity of the semigroup and apply Theorem 2.6.13 in [14]
and Lemma 3.1 to the first term. We remark that for all terms we can use Lemma 2.2
and Theorem 2.6.13 in [14] to show that for � 2 H

kSs B�kH D kSs A1=2 A�1=2 B�kH � C s�1=2
k�kH :

Hence we obtain the bound

k�m
3 .t/k

p
p;H ;T

� C
�
�p=2

m

ˇ̌
.t � s/�1=2 B

Z s

�m.s/

Ss�r G.ur / dwr

ˇ̌p
p;H ;T

C
ˇ̌
.t � s/�1=2

Z s

�m.s/

.Ss�r � 1/G.ur / dwr

ˇ̌p
p;H ;T

C
ˇ̌
.t � s/�1=2

Z s

�m.s/

G
�
ur � u�m.s/

�
dwr

ˇ̌p
p;H ;T

C j.t � s/�1=2

Z s

�m.s/

G
�
u�m.s/ � um

�m.s/

�
dwr

ˇ̌p
p;H ;T

�
:

Hölder’s inequality for p > 2, Fubini’s theorem, and the Burkholder–Davis–Gundy
inequality for Q-Wiener processes [7] lead to

k�m
3 .t/k

p
p;H ;T

� C

Z T

0

�
�p=2

m E
�Z s

�m.s/

kG.ur /k
2
LHS.K ;H 1/

dr
�p=2

C E
�Z s

�m.s/

k.Ss�r � 1/G.ur /k
2
LHS.K ;H / dr

�p=2
C E

�Z s

�m.s/

kG.ur � u�m.s//k
2
LHS.K ;H / dr

�p=2
C E

�Z s

�m.s/

kG
�
u�m.s/ � um

�m.s/

�
k

2
LHS.K ;H / dr/p=2

�
ds;

since by the results in [1] the norm kA1=2 � kH is equivalent to the H 1–norm. Finally
we use Lemma 3.1, apply Lemma 3.2 to the second term, Lemma 3.3 to the third one,
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and to the last term Hölder’s inequality one more time. So we get

k�m
3 .t/k

p
p;H ;T

� C
�
kuk

p

p;H 1;T
�p

m C kuk
p

p;H 1;T
�p

m C kuk
p
p;H ;T

�p
m

C�p=2
m

Z T

0

ku � um
k

p
p;H ;s

ds
�

D C1�
p
m C C2

Z T

0

ku � um
k

p
p;H ;s

ds

and the lemma is proved. �

Now we can proceed to the

Proof of Theorem 2.4. Similar estimates as in Lemma 3.4 for the other five terms give
for p > 2

ku � um
k

p
p;H ;T

� 6p�1
�
k�m

1 k
p
p;H ;T

C k�m
2 k

p
p;H ;T

C k�m
3 k

p
p;H ;T

C k�m
1 k

p
p;H ;T

C k�m
2 k

p
p;H ;T

C k�m
3 k

p
p;H ;T

�
� C1 kuk

p

p;H 2;T
�p

m C C2

Z T

0

ku � um
k

p
p;H ;s

ds:

An application of Gronwall’s inequality yields

(3.1) ku � um
k

p
p;H ;T

� C �p
m:

Finally let � > 0, then Chebyshev’s inequality implies

P .ku � um
kH ;T � �

1��
m / � ��.1��/pm ku � um

k
p
p;H ;T

� C �p�
m :

Since �m D O.m�ı/, the corresponding series is convergent for any p > .�ı/�1

and therefore by the Borel–Cantelli lemma we get that

ku � um
kH ;T � C� �

1��
m ; P–a.s.;

and the proof is concluded. �

3.2. Proof of Theorem 2.3. Mean square convergence of the Milstein scheme fol-
lows immediately as a special case from the proof of Theorem 2.4 in the previous
subsection. Therefore we will just show how to derive the result from the proof of
almost sure convergence which actually is a proof of Lp convergence for all p > 2.
In that proof, Equation 3.1 and Hölder’s inequality yield for p > 2

ku � um
k2;H ;T � ku � um

kp;H ;T � C�m;

which proves Theorem 2.3.
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3.3. Proof of Theorem 2.6. The proof of Theorem 2.6 is similar to the proof of
Theorem 2.4, and will not be done explicitly. The only differences that occur are
terms of the form

kG.ˆ/Q1=2
kLHS.K ;H /

with ˆ 2 H , where the operator A may appear as well. But due to Assumption 2.5,
these terms can be handled in the same way as in Theorem 2.4.
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