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 2 Ultimate sampling dilemma 

Abstract 

Computer simulations and two experiments are reported to delineate the ultimate 

sampling dilemma, which constitutes a serious obstacle to inductive inferences in a 

probabilistic world. Participants were asked to take the role of a manager who is to make 

purchasing decisions based on positive versus negative feedback about three providers in two 

different product domains. When information sampling (from a computerized data base) was 

over, they had to make inferences about actual differences in the data base from which the 

sample was drawn (e.g., about the actual superiority of different providers, or about the most 

likely origins of negatively valenced products). The ultimate sampling dilemma consists in a 

forced choice between two search strategies that both have their advantages and their 

drawbacks: natural sampling and deliberate sampling of information relevant to the inference 

task. Both strategies leave the sample unbiased for specific inferences but create errors or 

biases for other inferences.  
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The Ultimate Sampling Dilemma in Experience-Based Decision Making 

 Many everyday decision problems rely on direct environmental-learning experience. 

Teachers’ grading decisions are informed by observations of students' performance in 

different disciplines. Personnel selection relies on applicants’ reactions to various tasks and 

interview topics. Or, consumer choices reflect the information acquired about brands or 

providers in different product domains. There appears to be a simple and straightforward way 

of optimizing such experience-based decisions: If only the learning process relies on a 

sufficiently large sample of observations, it must be possible to discern the optimal decision 

through optimal data selection (Oaksford & Chater, 2003).  

The learning task seems to have a clear-cut structure. For a consumer to make an 

optimal choice between alternative providers, it is only necessary to compare the quality 

feedback that is available for different providers in specific product domains. Granting that 

the feedback is reliable and accurately reflects the contingency between providers and product 

quality, figuring out the best provider, with the highest rate of positive evaluations, should be 

straightforward. The consumer’s task should be easy to solve if only the differences between 

providers are strong enough and sufficient observations are available. 

The aim of the present investigation is to contest this seemingly plausible sketch of 

simple experience-based decision making. In fact, finding a generally correct solution to such 

clearly structured problems is fraught with huge difficulties. It is actually impossible, because 

every sample of observations about mundane decision problems entails the potential to be 

misleading under certain conditions. I refer to the “ultimate sampling dilemma” to highlight 

the fact that any reasonable sampling strategy, which serves to optimize one decision, 

produces a sampling bias with regard to other decisions informed by the same data.  

Illustration of the Ultimate Sampling Dilemma 

That judgments and decisions depend crucially on the samples of relevant information 

that happen to be available is not new. Sampling error and sampling bias are have long been 
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recognized as prominent topics in the methodology of the social sciences (Macrae, 1970), in 

epidemiology (Schlesselman, 1982), in econometrics (Manski, 1995), and in recent cognitive 

research in particular (Denrell, 2005; Fiedler, 2000; Fiedler & Juslin, 2006; Juslin, Winman & 

Hansson, in press). The so-called sampling approach has inspired a growing number of 

experiments demonstrating that although judgments and decisions are often remarkably 

sensitive to the data given in a stimulus sample, they may nevertheless be inaccurate and 

severely flawed due to biases inherent in the stimulus samples provided by the environment. 

The present research builds on the sampling approach. However, it goes beyond previous 

studies by showing that sampling errors and biases are even more fundamental than suggested 

before. They not only result from "nasty environments" (Hogarth, 2001) that obscure the real 

world or do not allow decision makers to access relevant data. Rather, the ultimate sampling 

dilemma emerges even in completely "benevolent environments" that render all information 

available and do not mislead or constrain decision makers in their information search process.  

To illustrate this task setting, take the perspective of a manager, or entrepreneur, 

supposed to represent an "expert consumer", as it were, who is accuracy-motivated and got 

access to relevant data bases. The manager's task is to purchase electronic equipment of two 

kinds, computer technology and telephone devices. There are three providers offering 

hardware in both product domains. Let us assume all previous customers’ positive (+) or 

negative (–) experience with all computers (C) and telephones (T) from all three providers, P1, 

P2, P3, are available in a large database, from which the manager can draw a sample of any 

size. On each trial, information search can be, but need not be, constrained in any dimension. 

Thus, the decision maker may ask for an observation about a particular provider P1, or leave 

the selection of the next observation of any provider up to a random process. Or he/she may 

ask for an observation from product domain C and leave providers and evaluative outcome 

open.  Or he/she may ask for an example of a negative observation (–) about provider P1, or 

about a positive aspect (+) of Provider P3 observed in domain (T). Or, last not least, he/she 
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may leave all three aspects unspecified and just ask for the next randomly drawn observation 

from the entire database.  

Let us assume that the true environmental distribution in the database of positive and 

negative entries referring to the three providers in the two product domains is the one given in 

the upper chart of Figure 1 (Ecology A) – let us call it the “skewed world”. This database 

contains twice as many positive as negative entries for all three providers and for both product 

domains. With regard to domains, the ratio of C to T entries is also 2:1 and, with regard to 

providers, the ratio of entries on P1, P2, and P3, respectively, is 4:2:1. Although the 

distribution is skewed in all three dimensions, all contingencies are zero; the 2:1 ratio of + to 

– entries remains constant across all providers and product domains. Would a manager who 

can gather as many data as desired, using any strategy, figure out these true parameters of the 

environment? Or would the manager come up with a biased picture of the world?  

Natural sampling. The answer depends crucially on whether the decision maker restricts 

information search consistently to a strategy that has been called natural sampling (Gigerenzer 

& Hoffrage, 1995). Natural sampling means to draw random events from the entire database, 

without ever restricting the baserates of providers, product domains, and evaluative outcomes. 

In other words, natural sampling means to refrain from all directed information search. If 

decision makers apply natural sampling all the time, the expected three-dimensional 

distribution in the sample will indeed conserve the properties of the universe (as in Figure 1). 

However, the price for such representative, unbiased, natural sampling is that information 

search cannot be tailored to the task at hand. When the baserate of observations about the 

provider of main interest, or the product domain of main interest, is very rare, focusing on that 

specific provider and product domain is not allowed, nor is it possible to concentrate 

selectively on positive (+) and negative (–) events if required in a certain problem context. 

Whenever the strategy deviates from natural sampling and concentrates on specific aspects 

more than others, to pursue a specific hypothesis or task goal, the resulting sample will not 
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conserve the properties of the universe. The information resulting from selective sampling can 

only be trusted for the restrictive purpose for which it was selected (e.g., a specific provider in 

a specific domain). Using such a purpose-constrained sample for other purposes will often 

lead to seriously distorted and inaccurate decisions.  

Selective sampling. To anticipate an important result, hardly any decision maker 

engages systematically in natural sampling, observing passively and giving away the chance 

to focus actively on specific providers, product domains, and outcomes. This divergence from 

natural sampling inevitably produces sampling biases. For example, consider what happens 

when the consumer faces the problem of diagnosing the origin of deficient products but 

deficient products are very rare. Very likely, information search will focus on the rare 

negative outcomes. Such a selective sampling scheme will change the valence baserate, 

turning 2/3 positive (and 1/3 negative) entries in the universe into, say, 1/3 positive (and 2/3 

negative) entries in the sample. Such oversampling of rare events will not distort the kind of 

diagnostic judgments that were the purpose of selective search. That is, judgments of the 

origins of negative outcomes, like judging of p(provider P1 / –) or p(domain C / –), will be 

unbiased, just as odds ratios such as p(P1 / –) / p(P2 / –) will be unbiased. However, as a 

consequence of valence-bound sampling, all sample-based judgments that use valence as the 

dependent variable, such as estimates of p(+ / P1) or p(+ / P1 in domain C) or p(–), will be 

biased. Depending on the proportion of trials on which search has been constrained by 

valence, the sample proportions of + and – outcomes reflect the decision maker’s own 

selective search focus. As a general rule, to the extent that any variable constrains the 

sampling of information, the subsequent estimation of that variable is no longer unbiased. To 

that extent, the distribution of this variable reflects the decision maker’s search strategy rather 

than the true environmental parameter.  

Why then do people not refrain from conditional information search? Why do they not 

exploit the advantage of natural sampling? An apparent answer is because disadvantages of 
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natural sampling may outweigh its advantages. First of all, natural sampling can be very 

expensive. If one is interested in a rare cell of a natural design (e.g., in deficits (–) of provider 

P3 in domain T; cf. Figure 1), natural sampling would require one to collect a huge number of 

observations until a sufficient information for the focal cell is attained. This pragmatic 

problem is further exacerbated when more complex designs include, for instance, the 

Cartesian product of valence (maybe more than 2 levels) x providers (maybe more than 3), x 

product domains (maybe more than 2) x recency of information (old vs. recent feedback) x 

prize level (high, medium, low) x validity of information source x further variables. The 

number of design cells can easily increase to an insurmountable number. Information about 

the rarest cells would be hardly accessible through natural sampling. If the decision problem 

(e.g., analyzing deficits of P3 in product domain T) calls for data from particular cells, a 

selective sampling strategy may be necessary and adaptive, such as positive testing (Klayman 

& Ha, 1987; Oaksford & Chater, 1994), which means to actively search for those events that 

are in the focus of the task or hypothesis, however rare they are in the universe. 

Unequal sample size, or impoverished evidence from rare cells, is but one problem of 

natural sampling. Another, equally severe problem lies in human learning, which is of course 

dependent on a sufficiently large sample of learning trials. Even when observation time were 

unrestricted and inexpensive, very rare events are likely to evade learning and memory, due to 

inhibition from more frequent neighboring events. There is ample evidence that when the 

same trend is observed in two categories (e.g., the same positivity ratio for P1 and P3) but the 

number of observations is different (i.e., P1 and P3 differing by the ratio 4:1), then the trend 

(i.e., the preponderance of positive evaluation) will be more readily learned for the larger 

category P1 than for P3, due to less inhibition and more extensive learning experience for the 

former (see Fiedler, 1996; 2000; Fiedler & Walther, 2003). Thus, even when after a long 

period of natural sampling from rare event classes the resulting sample is sufficiently large, 

learning and memory may still be impaired.  
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At a more fundamental level, even the very possibility of truly natural, unconditional 

sampling may be questioned. In reality, unlike the ideal world of statistics text books, 

information search is inevitably conditional on the decision maker's position in time and 

space, and his or her psychological distance from the decision target (Fiedler, in press). A  

consumer will be hardly able to sample information about all products, providers, markets, 

and product attributes non-selectively. Rather, some products or markets will be closer and 

others will be more remote; advertising structures render products and brands differentially 

available; positive evaluations of products are clearly more available in the information 

ecology than negative evaluations; and consumers' sampling is mostly confined to the present 

time and to one's own country or regional market as opposed to the past and remote places. 

For these and many other reasons, literally unconstrained sampling is pragmatically 

impossible. What makes the situation even worse is that the consumer normally has no 

knowledge whatsoever about the sampling constraints imposed on newspapers, TV-

advertising, or the Internet. Thus, when encountering the positivity rates of providers or 

product domains in the media, or when assessing the relative proportion of deficient products 

associated with a particular provider, the consumer does not know if and to what extent the 

media have been sampling naturally, and by what factor the observed rates have been 

selectively over-sampled or under-sampled. Therefore, even when given a free choice, real 

decision makers can hardly realize the ideal of natural sampling.  

Conversely, one may ask why decision makers do not abandon natural sampling and 

rely on selective samples tailored to the decision problem at hand. For instance, if the problem 

context calls for consumer judgments of the proportion p(+ / P1 vs. P2, P3) of positive 

evaluations (+) of provider P1 in comparison to other providers, P2, P3, then one is on save 

ground when one samples an equal number of observations about all three providers in order 

to compare their positivity proportions. These proportions will be unbiased regardless of the 

provider baserates in the population. To repeat, sample-based judgments are unbiased as long 
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as the dependent variable of the judgment task (proportion of  + valence) has not been used 

for selective sampling. Biases and distortions will only result when judging a variable on 

which sampling was contingent (e.g., when attributing positive or negative product 

evaluations to P1 vs. P2, P3, based on a sample that greatly over-represents the baserate of P1. 

Having understood this simple rule, the consumer might avoid all biases and shortcomings 

just by tailoring the sampling process to the judgment problem at hand and by not misusing 

samples drawn for one purpose for another purpose.  

Simple and straightforward as this solution might appear, it is hardly feasible for several 

reasons. First, consumers (like organisms in general) normally do not know the constraints 

imposed by nature on the observations to which they are exposed in reality. When hearing 

someone tell a bad story about a specific car, or when reading a comparative article about 

cars, or when drawing on his or her own memory for car experiences, one hardly ever knows 

to what extent the underlying sampling process was constrained. Second, even if it were 

known exceptionally, the constraints may change with each and every new observation. And 

third, the maxim to utilize for every judgment only those samples that were drawn with the 

independent variable in mind, and to fully ignore samples that were drawn with the dependent 

variable in mind, implies an untenable model of knowledge representation. The consumer 

would have to hold simultaneously many different representations of the same relation 

between providers, product domains, and valence – one for each sampling strategy that has 

been used (or imposed externally) for the collection of data. Some introspection and some 

logical reflection tells us that knowledge is not organized this way by sampling strategies and 

that it would be impossible to administrate such a multiply split, uneconomical memory. In 

general, for each k-tuple of variables (e.g., the triple of valence, providers, and domains), 

knowledge would have to be separately stored for each sampling strategy that is conceivable. 

Therefore, tailoring the sampling process to the specific judgment purpose is only possible in 
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exceptional cases, in which decision makers do not rely on prior knowledge but have 

unrestricted control over the sampling process and access to the entire universe.  

Impact of Particular Sampling Schemes 

Thus, the ultimate sampling dilemma is like sailing between skylla and charybdis. 

Natural sampling is potentially unbiased but very expensive, insensitive to rare events, and in 

reality often not feasible. Selective sampling is more feasible, especially when focusing on 

rare events or pursuing specific hypotheses, but the resulting sampling biases will very likely 

carry over to judgments of variables that somehow contributed to information search. Facing 

this dilemma, one has to admit that real-world decisions are likely to rely on information that 

entails sampling biases. Let us now elaborate on the nature of these sampling biases and their 

consequences for the decision process. So what will a manager do when facing the task 

depicted above? Granting that he or she will not refrain from active information search, what 

alternative search strategies might be used?  

Output-bound sampling. One typical strategy is to make information search contingent 

on certain outcomes. An individual motivated by the goal to avoid regret and not to make 

mistakes could mainly look at negative outcomes, biasing the information sample toward 

negative outcomes. All sample-based estimates of valence (either unconditional or conditional 

on specific levels of the other variables) will then tend to be too negative. If there are indeed 

differences between providers, sampling of an equal proportion (or any other constant ratio) 

of positive and negative events will obscure these differences. Lacking a priori knowledge of 

the true outcome proportion, the decision maker never knows what proportion to sample. 

One might correct for the bias, in principle, if one has meta-cognitive insight into the 

sampling bias. However, as will soon be apparent, such meta-cognitive monitoring and 

control of sampling bias will be hardly successful. Decision makers will normally take the 

sample evidence at face value and base their judgments and decisions directly on the 

corresponding sample statistics (Juslin et al., in press; Kareev, Arnon & Horwitz-Zeliger, 
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2002). If the sample proportion of positive outcomes is downward biased due to selective 

attention to negative outcomes [say, if the sample proportion p*(+ / P1 & C) = 1/3 = .33, 

whereas the invisible proportion in the universe is p(+ / P1 & C) = 2/3 = .67], estimates will 

follow the visible sample proportion (Fiedler, Brinkmann, Betsch & Wild, 2000; Juslin, 

Winman, & Hansson, in press; Kareev & Fiedler, 2006), with little attempt to correct for bias.  

Thus, output-bound search by valence will lead to biases in judgments that use valence 

as a dependent variable, such as judgments of p(+ / P1 & C). However, while backward 

judgments using valence as an independent variable, like estimates of p(P1 & C / –) or p(P1 & 

C / +), should be unbiased, they may be distorted for different reasons. For instance, when 

judging, in the context of a liability affair, the likelihood with which different providers are 

responsible for deficits, the most prevalent provider P1 and the most prevalent domain C will 

bear the strongest association with negative events. Had the task focus been on diagnosing 

origins of positive outcomes, in contrast, P1 and C might have been most strongly associated 

with positive information. However, note that the latter judgment effect would reflect biases 

in associative memory rather than sampling biases proper.  

Input-bound sampling. As the valence of outcomes can be considered the logical 

dependent variable of the problem, an "experimental sampling strategy" consists in assessing 

valence as a function of providers and domains, sampling an equal number of observations 

from all 3 x 2 cells of the design. Although an experimental design is commonly considered 

optimal, it is not bias-free at all (Brunswik, 1955; Dhami, Hertwig & Hoffrage, 2004; 

Hoffrage & Hertwig, 2006). On one hand, when information search leaves valence open and 

constrains providers and domains to be orthogonal, then the resulting estimates of valence 

(conditional or unconditional) are indeed unbiased. On the other hand, however, when the 

need arises to estimate the likelihood that a certain provider or domain caused a negative 

outcome, then all differences between providers and domains have been blurred through the 

"experimental" scheme.  
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There are other insights prevented by experimental sampling. Consider, for example, the 

environment in the bottom chart of Figure 1, which represents a case of Simpson’s paradox. 

On one hand, pooling across product domains, it is true that the positivity rate is higher for P3 

than P2 than P1. On the other hand, when product domains are taken into account, it turns out 

that the positivity rate is markedly higher in domain C than T and that the seeming advantage 

of P3 is merely due to P3's mostly providing products from the superior domain, C. As the 

mediating impact of domains is partialled out, comparing providers separately within both 

domains, then P3 is no longer dominant. Such a spurious correlation, or mediational effects 

(Baron & Kenney, 1986) go undetected if the correlation between providers and domains is 

eliminated in an orthogonal design (Fiedler, 2000).  

Mixed strategies. In reality, information search is characterized by mixed strategies, 

anticipating the need to estimate different aspects of the same decision problems. Decision 

makers sometimes exhibit natural sampling, sometimes fix only the provider, only the product 

domain, or only the evaluative outcome, and on still other trials they consider specific cells of 

the design. Seemingly, such a mixture should result in a flexible representation of the decision 

problem from all vantage points. In fact, however, the resulting sample is so complexly 

contaminated with bias that it is practically impossible to reconstruct the original environment 

from the sample. This is especially so when sampling is not under the decision maker's own 

control but imposed by an information ecology that does not reveal its sampling constraints. 

The ultimate sampling dilemma can thus be formulated as follows. When all 

information pertaining to a decision problem is freely available and the decision maker is 

motivated to solve the problem rationally, he/she faces a dilemma between two sampling 

schemes, either to refrain from all active information search and to rely on natural sampling or 

to engage in deliberate information search, enjoying its advantages but obscuring the original 

environmental distribution. The former strategy will conserve the true data structure, but the 

costs and time required to collect any, let alone reliable information about rare events can be 
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immense, and memory will be biased toward more frequent event combinations. The latter 

strategy can be tailored to fit the focus of the task at hand, but the resulting information 

sample will distort other judgments for which the sample was not tailored. Any mixture of 

these two opposite extremes will result in an incalculable combination of both problems.  

Metacognitive Myopia 

Assuming complete rationality, to be sure, one might correct for any biases inherent in 

the sample. Estimates of any measure would have to be corrected downward or upward 

dependent on the degree to which it has been over-sampled or under-sampled, respectively, 

using Bayesian statistics. However, the computational work required for such a Bayesian 

correction would exceed human capacity for most real problems, and the necessary statistics 

(baserates, likelihood ratios, conditional dependencies) are hardly ever known. For instance, 

to re-compute the original proportion p(+ / P1) from an observed sample proportion p*(+ / P1) 

of positive evaluations of provider P1, one would have to know, for each individual 

observation, on what combination of factors (providers x domains x valence) it was restricted. 

Separately for each combination of sampling constraints, the degree of over- or under-

sampling would have to be calculated, and the correction algorithm would have to be a 

weighted average of all correction factors computed for each combination of sampling 

constraints. It goes without saying that such a monstrous task is unlikely to be mastered; it is 

virtually impossible to be solved because in reality we seldom know the sampling constraints 

including all conditional dependencies for every single observation.  

It may be for this reason that decision makers have evolved what might be called meta-

cognitive myopia (Fiedler, 2000; Fiedler, Freytag & Unkelbach, in press; Fiedler & Wänke, 

2004; Juslin, Winman & Olsson, 2000; Kareev et a., 2002; Winman & Juslin, 2006). Thus it 

appears as if even highly motivated judges do not care about the origin and the history of the 

sample data on which they base their judgments. They are often remarkably accurate relative 

to sample itself. But they are short-sighted, if not blind, regarding the way in which a stimulus 
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sample was generated. They take the sample statistics for granted, accurately but naively, as if 

were an unbiased snapshot of the underlying reality (cf. Fiedler et al., 2000; Juslin et al., in 

press; Kareev et al., 2002; Winman & Juslin, 2006).  

Plan of the Present Research 

In the remainder of this article, I elaborate on the interplay between inevitable sampling 

effects and meta-cognitive myopia. I first present a simulation study that illustrates the 

strength and scope of the biases resulting from different sampling strategies. Then, another 

section will be devoted to experimental evidence about the way human decision makers deal 

with the ultimate sampling dilemma. Both simulations and experiments will keep within the 

same task setting that was used in the introduction – buying computers and telephone 

equipment offered by three providers based on stored positive and negative feedback – within 

the ecology depicted in Figure 1. 

Biases Resulting from Different Sampling Strategies: A Simulation Study 

Methods and Design 

To provide a systematic analysis, a simulation study was conducted. Sampling biases 

were studied as a function of sampling strategies, with reference to two types of judgment 

tasks. One task calls for inferences of the conditional probabilities of positive outcome given 

different combinations of providers and domains, p(+/P1,C), p(+/P2,C), …, p(+/P3,T), 

allowing for relative evaluations of providers and domains. Let these inferences be called 

causal or forward inferences, because providers and domains can be conceived as causing 

evaluations. The second task calls for diagnostic or backward inferences, based on reverse 

conditional probabilities p(P1/–),  p(P2/–), …, p(C/+), … p(P3,T/–). Here, the resepctive 

sample statistics are used to diagnose the origin (in P1, P2, P3 x C,T) of + or – outcomes.  

In accordance with Figure 1 (upper chart), a data base included 480 positive instances 

(+) about provider P1 in domain C; 240 instances of +, P2, C; 120 instances of +, P3, C and so 

forth. Each simulated sample consisted of n = 100 instances, drawn randomly within the 



 15 Ultimate sampling dilemma 

constraints imposed by the different strategies. Two sets of indicators (for causal and 

diagnostic inferences) were calculated for each sample.  

The manipulation of sampling strategies was based on the following assumptions. 

Decision makers should be completely free, on each information-search trial, to engage in 

natural sampling or to restrict the information search in one, two, or in all three dimensions. 

Thus, the decision maker may just ask for the next piece of evidence, leaving open whether 

the valence is + or –, whether the provider is P1, P2, or P3, and whether the domain is C or T. 

On such a natural-sampling trial, the computer will randomly draw one item from the whole 

population, with each item in the universe having the same probability of being drawn. 

Alternatively, she might want to see an observation about P1, leaving open domain and 

valence, or ask for a + item from the C domain, or a – item about P3 in the T domain, or 

solicit any other combination of {+, – , open} x { P1, P2, P3,open} x {C, T, open}. The 

computer makes a random draw from the restricted subset of all items in the population (e.g., 

from all +, P1 items when + and P1 are asked for).  

The simulation involves different combinations of restrictions in all three dimensions. 

Altogether, the study uses a 7 (restrictions on providers) x 7(restrictions on domains) x 7 

(restrictions on valence) design. The seven restriction levels on providers are: 

(1) Unrestricted on all 100 trials (natural sampling) 

(2) 40 unrestricted, 30P1, 15P2, 15P3  

(3) 40 unrestricted, 20P1, 20P2, 20P3 

(4) 40 unrestricted, 15P1, 15P2, 30P3 

(5) 0 unrestricted, 50P1, 25P2, 25P3 

(6) 0 unrestricted, 33P1, 34P2, 33P3 

(7) 0 unrestricted, 25P1, 25P2, 50P3 

Thus, across the seven levels, the proportion of unrestricted, natural sampling decreases 

from 100 (level 1) to 40 (level 2-4) to 0 (level 5-7), and within these three blocks, the 
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enforced proportions of items drawn for the three providers change. Likewise, for the 

dichotomous domains and valence factors, respectively, the seven constraint levels are: 

(1) 100 unrestricted  

(2) 40 unrestricted, 45C, 15T for domains; 40, 45+, 15–, for valence 

(3) 40 unrestricted, 30C, 30T for domains; 40, 30+, 30– for valence  

(4) 40 unrestricted, 15C, 45T for domains; 40, 15+, 45– for valence 

(5) 0 unrestricted, 75C, 25T for domains; 0, 75+, 25– for valence 

(6) 0 unrestricted, 50C, 50T for domains; 0, 50+, 50– for valence 

(7) 0 unrestricted, 25C, 75T for domains; 0, 25+, 75– for valence 

Altogether, then, we simulated all 7 x 7 x 7 = 343 strategies, or combinations of 

constraint levels, running 100 replications per strategy and calculating two sets of indicators 

for each 100-item sample, corresponding to both types of judgment task: 

p(+ / provider, domain): forward inferences of the likelihood of positive valence given 

all combinations of 3 providers and domains; and  

p(provider, domain / –): backward inferences of the origins, in all combinations of 

providers and domains, of negative outcomes. 

Results and Discussion 

Recall that the population distribution is skewed in all three dimensions (cf. Figure 1): 

more P1 than P2, than P3 data, more C than T data, and more + than – data. However, all 

pairwise correlations are zero; the ratio of + to – is the same (2:1) for all levels of providers 

and domains, just as the ratio of C to T is constant (2:1) across providers and valence, and the 

provider proportions are invariant across domains and valence. Thus, in reality, the correct 

value of forward inferences, p(+ / providers, domain) is always 0.67 (see Table 1). Similarly, 

the correct backward inferences to the three providers, both from positive and negative 

valence, in both domains (see Table 2), are always 0.57, 0.29, 0.14 (reflecting the 4:2:1 ratio). 

The correct backward inference to domains C and T, given any provider or valence, is always 
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0.67 versus 0.33 (reflecting the 2:1 ratio). Deviations from these normative values in the top 

row of Tables 1 and 2 indicate sampling errors or biases.  

Natural sampling. Consider first the simulation results for a purely natural sampling 

strategy (i.e., unrestricted sampling in all three dimensions on all 100 trials). As tables 1 and 2 

reveal, the average sample estimates resulting from this strategy are quite accurate for all 

forward and backward judgment tasks. Unrestricted sampling from a population yields 

unbiased estimates – an elementary statistics lesson. However, the drawback of this seemingly 

ideal strategy lies in the paucity of information obtained about the more infrequent event 

combinations. The mean number of observations sampled for the four rarest event 

combinations is less than 4; for eight event classes the mean number is less than 7.  

Output-bound sampling. The next block in Tables 1 and 2 shows the impact of output-

bound sampling. To the extent that decision makers themselves determine the proportion of + 

versus – outcomes, not surprisingly, forward inferences of p(+/providers, domains) are biased 

toward the self-determined valence rates. For example, when search is unrestricted regarding 

providers and domains, but the rate of + outcomes (across all 100 trials) is set in advance to 

be high (i.e., 75+, 25–), medium (50,50), or low (25,75), the sample estimates of p(+ / 

providers, domains) reflect exactly these predetermined values (cf. Table 1).  

For another search strategy, decision makers might leave valence unrestricted on 40 

trials and restrict the valence of the outcome only on the remaining 60 trials (e.g., gathering 

75% negative outcomes when the aim is to diagnose origins of deficits). As evident from the 

next block in Table 1, the result of the mixture of natural and constrained output sampling 

resembles the completely restricted sampling, for obvious reasons. Mixing up 40% natural 

sampling (i.e., 67% +) with 60% trials that impose only 25% + (and 75% –) yields an overall 

positivity rate of only about 42% (Table 1), well below the original population value of 67%.  

Thus, output-bound sampling, even when only applied to a subset of trials, leads to 

systematic biases in forward inference tasks. As expected, to the extent that sampling is 
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restricted (e.g., partially predetermined) in one dimension, inferences concerning that 

dimension from the other dimensions are biased. Inferences in the other direction (i.e., from 

the restricted dimension to other dimensions) may be unbiased, provided the search strategy 

leaves the dimension to be inferred unrestricted. Thus, backward inferences from restricted 

valence to providers and domains closely resemble the correct rates (cf. Table 2).  

Input-bound sampling. By the same token, input-bound search (i.e., total or partial 

restrictions imposed on the proportions of providers or domains) leads to biases in backward 

inferences, just as output-bound search obscures forward inferences. For example, over-

sampling P3 cases and under-sampling P1 cases leads to inflated backward inferences of the 

likelihood that P3 rather than P1 was the origin of a negative (or else, a positive) outcome.  

Selective input-output sampling. Note that all sampling strategies considered here 

merely impose constraints on baserates, rather than selective attempts to induce expected or 

desired contingencies. It goes without saying that a strategy that looks for many + outcomes 

in domain C but mostly looks at – outcomes in domain T will result in an illusory contingency 

between domains and valence. Although such motivated, self-deceptive sampling may not be 

uncommon in reality, I exclude these blatant cases from consideration.  

Summary. Thus, simulations confirm that, by definition, natural sampling is principally 

unbiased but may not be feasible for different reasons, due to the paucity of infrequent event 

classes and the impossibility to focus selectively on the most interesting event classes. As this 

major disadvantage of natural sampling is avoided through active information search, the 

resulting samples are biased in those dimensions that have governed the information search 

process. Selective focusing on positive or negative outcomes (i.e., output-bound sampling), 

while informing unbiased backward estimates p(provider, domain / –), causes biases in 

forward evaluative judgments of p(+ / provider, domain). Selective focusing on particular 

providers and domains (i.e., input-bound sampling) yields unbiased forward judgments p(+ / 

provider, domain) but biased backward judgments of p(provider, domain / –). Mixed 
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strategies that result from input-bound sampling on some trials and output-bound sampling or 

multiply constrained sampling on other trials lead to biases in both forward and backward 

inferences (see bottom blocks in Tables 1 and 2). Such mixed samples render the 

reconstruction of the original population characteristics almost impossible.  

Experimental Investigation of the Ultimate Sampling Dilemma 

The simulation presented so far merely corroborates what can be seen from the algebraic 

notation alone, but it nevertheless helped to recognize the direction and strength of the biases 

and to understand some of its boundary conditions. Let us now go one step further and 

investigate the sampling dilemma experimentally, using human participants rather than 

computer algorithms. It can be expected that when presented with the same task as the 

simulation program, human decision makers will exhibit the same sampling problems. They 

might engage in purely natural sampling, never constraining their search on any dimension or 

focussing on specific problem aspects. Assuming such a strategy, the samples informing their 

decisions would be unbiased. However, such undirected search would be very uneconomic; 

extremely large samples would be needed to fill the most infrequent cells with a reasonable 

number of observations. Memory capacity would be overwhelmed and motivation would be 

exhausted. Therefore, rather than using natural sampling, decision makers can be expected to 

actively focus on task-relevant information. However, the price for such focussed search is 

that the resulting samples can only be trusted for some judgments but not for others. Only 

estimates of those variables that have not influenced the sampling process will be unbiased. 

Several previous studies have documented judgment biases that reflect hard-to-control 

sampling biases imposed by intransparent environments (Fiedler, Brinkmann & Betsch, 2000; 

Fiedler, Walther, Freytag & Plessner, 2002; Juslin et al., in press). However, prior studies did 

not tackle the impact of sampling biases in situations in which information search is 

completely transparent and fully under the judges' control. Particularly, no prior research has 

addressed the ultimate sampling dilemma, that is, the trade-off between natural sampling and 
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selective, focussed sampling strategies. How often will participants spontaneously engage in 

natural sampling under ideal conditions, and how often will they actively constrain their 

sample? If they constrain information search, will they do it consistently or change their 

strategy from trial to trial, producing complexly mixed samples that are multiply biased?  

Empirical answers were sought in two experiments. In Experiment 1, information search 

was fully controlled by the participants. Different search strategies were solicited, though, 

through manipulations of the task focus, or hypothesis to be tested. In Experiment 2, natural 

sampling was enforced. Both experiments together provide empirical evidence on how people 

try to handle the ultimate sampling dilemma.  

Predictions. The main predictions derive from the analysis of the ultimate sampling 

dilemma and from the simulation results. Regarding Experiment 1, it was expected that 

consistent natural sampling should be very rare. Instead, participants should tune their 

information search to the task focus, taking into account that (some of their) judgments reflect 

severe sampling biases. Moreover, due to meta-cognitive myopia (cf. Fiedler et al., 2000; 

Fiedler & Wänke, 2004), judges should readily rely on the same samples for forward and 

backward judgments, regardless of whether sampling had been contingent on the independent 

variables (provider, domain) or the dependent variable (valence) of the judgment problem. 

Consequently, output-bound sampling (i.e., obscuring the valence baserates) should result in 

biased forward judgments of p(+/providers, domains). Similarly, input-bound sampling (i.e., 

constraining information search to specific providers or domains) should produce biases in 

backward diagnoses of negative outcomes, that is, in ratings of p(provider, domains / –). 

Mixed-sampling constraints (i.e., obscuring the baserates of two or more variables) should 

produce biases in either direction. When natural sampling is enforced in Experiment 2, the 

typical biases resulting from selective sampling should be eliminated, but new problems 

should arise. Sampling errors and regression effects (Fiedler, 1996; Furby, 1973) should 

render judgments about the least frequent design combinations extremely inaccurate.  
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Experiment 1 

Participants were asked to take the role of a leading manager whose task is to purchase 

hardware equipment for an organization. The cover story said there are three providers, 

MediaCom, EMG, and Hi-Tech (in the following denoted P1, P2, P3, respectively), offering 

products in two domains, computers and telecommunication, and that former customers’ 

positive and negative experiences were stored in an exhaustive electronic data base. 

Participants were free to gather as many observations from the data base as they considered 

appropriate. The task focus was manipulated to induce forward inferences versus (diagnostic) 

backward inferences. Either forward comparative evaluations of the positivity of providers, 

p(+ / Providers, Domains), or backward diagnostic judgments of the origins of negative 

outcomes, p(Providers / –), were called for. Another manipulation, provider focus, pertained 

to a specific provider that had to be compared with the others. The focal provider was either 

P1 (most frequent provider, see Figure 1) or P3 (rarest provider).  

The first prediction, to repeat, was that natural sampling should be rare. Most 

participants should resort to selective sampling, producing some mix of input-bound and 

output-bound sampling. Second, a task focus on positive evaluation, p(+ / Providers, 

Domains), should induce predominantly input-bound sampling (by providers and domains) 

and, if output-bound search occurs, the focus should be on positive outcomes. In contrast, a 

task focus on diagnosing deficits, p(Providers, Domains / –) should encourage output-bound 

samples biased toward negative outcomes and, in case of input-bound sampling, enhanced 

interest in the focal provider. And third, depending on the degree of input-bound and output-

bound sampling – which can vary between task focus conditions and between individual 

judges – biases should carry over to backward and to forward judgments, respectively. More 

positive forward judgments are predicted when output-bound sampling concentrates on 

positive outcomes, encouraged by a task focus on p(+ / Providers, Domains), rather than 

negative outcomes, given a focus on p(Providers / –). The strength of these biases should 
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correlate across judges with the strength of sampling biases. Backward (diagnostic) judgments 

of the origins of negative outcomes, p(Providers / –), should tend to blame the most 

frequently encountered provider, P1, unless input-bound sampling focuses on another 

provider. Whether this occurs should depend, finally, on the provider-focus manipulation. A 

focus on P1 as the provider of main interest should increase the skew of the data base, 

strengthening the association between P1 and the other prevalent aspects in the sample. A 

focus on P1 should strengthen attribution of negative outcomes to P1 in backward diagnostic 

judgments. A P1 focus may also strengthen the learned association of P1 and positive 

outcomes in forward evaluations. These tendencies should be attenuated or reversed when the 

focus is on P3, so that the major role played by P1 is obscured in the sample.  

Method 

Participants and Design. Fifty-six male and female students of the University of 

Heidelberg participated either for course credit or for payment. They were randomly assigned 

to one of four groups representing all combinations of provider focus (on P1 vs. P3) and task 

focus (positive evaluation vs. diagnosing deficits). 

Materials and Procedure. Participants arrived alone or in groups of two to six. They 

were seated in front of separate computers that administered instructions, stimulus 

presentation, and dependent measures. Instructions consisted of the cover story – to play the 

role of a manager whose task is to find out the best provider for purchasing computers or 

telephone hardware, based on former customers’ positive and negative reactions concerning 

all three providers in both product domains. Then, in the specific part of the instructions, two 

aspects were manipulated, task focus and provider focus, between four experimental groups: 

In the positive evaluation, P1 focus condition, judges were asked to make forward 

evaluative inferences of the positivity of provider P1 in comparison to other providers.  

In the positive evaluation, P3 focus condition, judges were asked to make forward 

evaluative inferences of the positivity of provider P3 in comparison to other providers.  
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In the diagnosing deficits, P1 focus condition, judges had to make backward inferences 

about causes of negative outcomes originating in P1 compared to other providers.  

In the diagnosing deficits, P3 focus condition, judges had to make backward inferences 

about causes of negative outcomes originating in P3 compared to other providers.  

The translated instructions in the Appendix show that participants were explicitly 

instructed to make inferences about the evaluation of providers in the whole database, or 

inferences about the origins of deficits in the database, as distinguished from the sample. It 

was then explained at length that participants could sample as many observations as they 

liked, from the database in which the reactions of former customers had been stored. They 

were completely free in their search strategy. On every trial they could either call for an item 

drawn at random from the data base (fully unconstrained) or an item about provider Px drawn 

at random from all Px entries in any domain or valence category, or any positive reaction from 

the computer domain, about any provider, or any other combination constrained in 0, 1, 2, or 

all 3 dimensions. A 2 x 3 x 2 cube was presented graphically on the screen, with the rows 

labelled “Computers” and “Telecommunication”, the columns labelled “MediaCom, EMG, 

Hi-Tech” and the foreground and background slice labelled “positive” and “negative”. Below 

the cube, the response keys that could be used to constrain sampling in any subset of the three 

dimensions were marked in three rows (i.e., the Y and U key in the upper row to select 

domain C or T; the G, H, J keys in the middle row to select provider P1, P2, or P3, 

respectively; and the B and N keys to call for a + or – outcome). They could fix any value on 

any dimension, or leave a dimension open. The graphical display supported the instructions 

such that when a certain value on a dimension was fixed, the other values disappeared (e.g., 

when domain C was chosen, only the upper row of the cube remained; when P1 was chosen, 

the other columns were removed from the display etc.).  

After the participant had indicated his or her constraints, the computer randomly 

selected one out of all items in the database that met the constraints chosen. Altogether the 
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database was defined by the same population distribution as in the simulation above (Figure 

1). If the item drawn was positive, the computer selected a positive comment from a pool of 

240, such as “If one needs maintenance, somebody is immediately available.” If it was 

negative, the comment was selected from a pool of negative ones, like “If one needs 

maintenance, nobody is available.” This item was then presented for three seconds on the 

screen, inserted in the cube position that corresponded to the domain, the provider, and the 

valence. Participants knew that they could terminate information search at any time, by 

pressing the Escape key.  

Dependent measures. The main dependent measures were percentage inferences from 

the samples observations to the data base. Participants were reminded of the distinction 

between the sample they had drawn and the overall database, and they were then asked to 

infer the percentage of positive entries in the database concerning each provider: “What is 

your estimate of the proportion of positive information entries in the entire database (across 

product domains) for the provider MediaCom / EMG/ Hi-Tech, among over all information 

stored about this provider?" In addition to these forward inferences, they were then asked to 

make backward inferences of the proportion of deficits that were due to each provider: "Now 

consider exclusively negative information. Please estimate what percentage of all negative 

information in the entire database originates in the provider MediaCom / EMG / Hi-Tech." 

(The same backward inferences were also solicited for the origins of positive outcomes, with 

similar results, not reported here).  

Finally, at the end of the session, the three-dimensional cube appeared again on the 

screen, just as during stimulus presentation, and judges were asked to estimate (in cardinal 

frequencies) how many observations they had sampled from each cell of the 2 x 3 x 2 scheme. 

Although possibly by the preceding inferences, these sample estimates were included if only 

to ensure that judges were aware of the distinction between the sample and the population. 

Results and Discussion 
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Basic sample data. Consider first some basic descriptive data about the samples drawn 

in the present task situation. The average size of the self-determined samples across all 

conditions was 51.29. As Table 3 shows, sample size was somewhat larger when the focus 

was on the rare provider P3 rather than P1, reflecting the need to sample longer where 

environmental supply for the focal provider was low.  

As expected, natural sampling occurred very rarely. The proportion of trials on which 

the average participant engaged in unconstrained search was 0.11 across all conditions, 

ranging between 0.08 and 0.19 under specific instructions (cf. Table 3). No differences 

between conditions were significant (all Fs < 2). Only one participant engaged in natural 

sampling consistently, across all trials, another one on 98% of the trials. All other participants 

chose natural sampling on less than 50% of their trials.  

Instead, virtually everybody constrained information search in one or more dimensions 

on a large part of all trials. The average prevalence of trials constraining search to a specific 

domain was .66 across all conditions, .81 for (forward) positive evaluation as compared to .51 

for (backward) diagnosing deficits. The corresponding task-focus main effect was significant, 

F(1,52) = 13.75, p = .001. Similarly, the proportion of trials on which one specific provider 

was fixed was higher for a positive evaluation (.74), which is a forward task, than for the 

backward task, diagnosing deficits (.53), F(1,52) = 5.66, p = .05 (overall average = .63). 

Together, these two findings provide a successful manipulation check. Apparently, forward-

evaluation instructions induced more experimental strategies (i.e., search conditionalized on 

the independent variables, domains and providers) than backward-diagnosing instructions. 

Whereas the tendency to conditionalize search on providers and domains (i.e., input-

bound sampling) is reminiscent of experimental strategies, the strong output-bound sampling 

tendency to call for either + or – outcomes is more surprising. On average, the proportion of 

trials on which participants restricted the outcome (to + or –) was .718 across all conditions. 
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Curiously, output-bound search (cf. Table 3) was most elevated in the forward-evaluation / P1 

focus condition (.83), but the differences between experimental groups were not significant.  

Unfortunately, due to a mistake in the computer program, when sampling was 

contingent on a provider, the specific provider chosen was not registered. This precluded a 

systematic analysis of provider baserates in the sample beyond the correctly assessed fact that 

provider was rarely left unspecified (i.e., only in .40 of the trials).  

Sampling biases. Given that natural sampling occurred so rarely and that almost all 

samples were restricted in one or more dimensions, we can next examine whether the 

resulting samples were biased systematically, that is, whether the rates of specific domains, 

providers, and evaluations in the samples deviated from the original baserates in the 

population. Recall that the population distribution was skewed in all three dimensions (i.e., 

2:1 baserate ratios for domains and valence, and the 4:2:1 ratio for providers). This original 

skew was clearly reduced in the samples acquired, reflecting regression toward more equal 

baserates (Table 3). The proportion of observations drawn from the more frequent C domain 

was .577, due to input-bound sampling, as compared with an original baserate of .667. 

Likewise, the proportion of positive items decreased from .667 in the population to .495 in the 

sample, due to output-bound sampling.  

Estimates of sample frequencies. The data registration failure for the providers chosen 

precludes an analogous check for this dimension, but the subjective estimates of sample 

frequencies afford a substitute here. As evident from Table 4, estimates of the observed 

frequencies of the 12 event combinations were clearly regressive; that is, actually existing 

frequency differences were underestimated. However, it is also apparent that the average 

participant correctly found out the ordinal differences between domains, providers, and 

valence levels, and that the focus manipulations exerted the intended influence. Thus, when 

the focus was on P1 rather than P3, the higher prevalence of P1 data was more apparent.  And, 

the high prevalence of positivity was more evident when the task focus was on evaluating 
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positivity than on diagnosing deficits. All these differences proved significant in a domains x 

providers x task focus x provider focus ANOVA that is not reported here to save space. 

More importantly, the sample-frequency estimates allow for a first check on the major 

phenomena encountered in the simulation study, pertaining to biases in forward evaluations 

due to output-bound sampling and biases in backward diagnoses due to input-bound 

sampling. Because judges varied in the degree to which they solicited positive data, the 

consequences of output-bound sampling is evident in a significant correlation (r = .413, p < 

.01) between the individual proportion p*(+ / .) of positive items sampled, across all domains 

and providers, and the estimated positivity proportion (i.e., the sum of all six positive 

frequency estimates, divided by the sum of all twelve estimates). With regard to input-bound 

sampling, which could only be examined for domains, the proportions of items chosen from 

the C domain was similarly correlated (r = .404, p < .01) with the pooled estimated frequency 

proportion of C items in the sample.  

Judgment biases. Of most interest is the question whether biases in the samples actually 

led to errors and biases in the eventual population inferences. Let us first consider forward 

inferences of the positivity of the three providers, p(+/ P1, P2, P3), as assessed in three direct 

ratings. Recall that output-bound sampling of positive outcomes and, consequently, positively 

biased population inferences, were predicted when the task focus was on positive rather than 

negative information. Table 5 provides the pertinent means as a function of focus conditions. 

Apparently, both predictions are clearly borne out. Positivity rates in the samples were higher 

for positive evaluation (.64 and .63, for P1 and P3 focus, respectively) than for diagnosing 

deficits (.41 and .30). Accordingly, the average rated percentages of positive information in 

the data base (across all other conditions), was higher under the former (M = 48.56) than the 

latter task focus (M = 38.10; cf. Table 5).  

For an appropriate statistical test, an ANOVA was conducted with task focus and 

provider focus as between-participants factors and a contrast between ratings P1 and average 
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ratings of P2 and P3. The predicted judgment bias was apparent in a task focus main effect, 

F(1,52) = 9.33, p < .01, reflecting more positive inferences when the task focussed on positive 

evaluation rather than diagnosing deficits. Regardless of this self-generated bias in the 

stimulus input, the sample was taken as observed in making population inferences, turning the 

sampling bias into a judgment bias. The provider focus x task focus interaction was also 

significant, F(1,51) = 15.11, p < .001, as the task focus effect was mainly due to judges who 

focused on provider P1. Due to the highest density of information associated with P1, this 

provider was most strongly associated with the predominant valence. 

< ### Correlation across Ss with output-sampling bias >  

As expected, the impact of input-bound sampling biases is also manifested in backward 

attributions of negative outcomes to provider P1, as compared with the other two providers, P2 

and P3. From the means in Table 5 it is evident that negative outcomes were generally 

attributed to P1, who was most frequent in the database, except for the backward P3 focus 

condition, in which P3 was associated with a focus on negative observations. The deviant 

result for this group was manifested in a three-way provider-contrast x task type x provider 

focus interaction, F(1,52) = 7.81, p < .01, as well as a two-way task type x provider focus 

interaction, F(1,52) = 12.09, p < .01. Altogether, these findings corroborate the assumption of 

sampling biases carrying over to analogous judgment biases, due to meta-cognitive myopia, 

that is, judges’ failure to control and correct for self-generated sampling biases. 

Experiment 2 

In Experiment 1, when search strategies were completely free, participants rarely chose 

natural sampling. They rather constrained information search to specific domains, providers, 

and valence levels. As a consequence, the resulting samples exhibited distinct biases, and the 

final judgments were biased accordingly. One might conjecture that the major problem 

merely lies in the failure to apply natural sampling. However, the ultimate sampling dilemma 

entails good reasons to suspect that natural sampling may also lead to inaccuracy.  
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A second experiment was therefore conducted, which replicated Experiment 1 in all 

respects, except that natural sampling was enforced. All participants were exposed to an 

unconstrained random sample of observations drawn from the same population as in 

Experiment 1. The predictions were straightforward. On aggregate, across all judges, the 

resulting sample should provide an unbiased picture of the universe. However, at the level of 

individual judges, samples should be impoverished with respect to rarest events, leading to 

inaccurate and highly regressive judgments. Moreover, as the degree of regression (i.e., the 

underestimation of positivity rate) should increase with decreasing sample size, judgment 

biases should come in through the backdoor, through differential regression. The same high 

degree of positivity should be judged to be lower for infrequent than for frequent providers.  

Methods 

Participants and Design. Thirty-nine male and female students of the University of 

Heidelberg participated. They were randomly assigned to the same four instruction conditions 

(resulting from orthogonal crossing of task focus and provider focus) as in Experiment 1. 

Because natural sampling is fully random, neither task focus nor provider focus could affect 

the sampling stage. However, the two treatments might still influence selective memory and 

attention to task aspects and providers during the final judgment stage. 

Materials and Procedure. The same computer program (including all instructions and 

dependent measures) was used as in Experiment 1, except for changes in the information 

search instructions and procedures. Rather than being allowed to actively search for 

information, participants observed a series of observations randomly drawn from the data 

base, without any restrictions. Stimuli appeared at a constant rate of 3 s per observation. 

Information search was terminated as the participant pressed the ESC key.  

Results and Discussion 

Basic sample data. The average participant sampled 35.21 observations (SD = 20.90). 

As expected, natural sampling led to impoverished data for the less frequent combinations of 
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product domains x providers x valence levels. Although the distribution of observations 

sampled across these 12 cells (pooling over participants) closely resembled the population 

distribution (cf. Table 6), the average individual sample included less than 2 observations in 

five out of the 12 cells. Even with doubled sample size, statistical inferences from these 

infrequent data would be extremely unreliable. This is also evident from the large number of 

judges (out of 39) basing their estimates on observed frequencies smaller than, or equal to, 0, 

1, or 2 (cf. Table 6). Only when the lability of individual samples is eliminated by pooling 

over judges does natural sampling result in an accurate picture of the population.  

Sample estimates. The major asset of natural sampling is apparent, by and large, in 

subjective estimates of the frequencies of the 12 domains x providers x valence combinations 

(Table 6). Thus, at an ordinal level, the average judge correctly reported that more positive (M 

= 14.83) than negative observations (M = 11.16) had been sampled, that there were more data 

for domain C (M = 14.03) than for domain T (M = 11.95), and that the frequency of sampled 

data decreased from P1 to P2 to P3 (M = 14.46, 13.68, 10.85, respectively). However, in spite 

of the average judges' conserving these ordinal differences, and the absence of a crude bias, 

frequency estimates were highly regressive, yielding ratios much smaller than the actual ratios 

of 2:1 or even 4:1; cf. Table 6). When frequency estimates were transformed into proportions 

to render them comparable to population proportions, large frequencies were clearly 

underestimated whereas small frequencies were overestimated.  

Note, however, that unsystematic regression error can turn into systematic bias when the 

strength and direction of regression effects varies across events. This is apparent from an 

analysis of inaccuracy scores, that is, from the signed differences between subjective 

estimates and objective proportions (cf. Table 6; all transformed into proportions). These 

inaccuracy scores, which tend to be negative for the more frequent levels on the domains, 

providers, and valence factors but positive for infrequent levels (reflecting regression), were 

subjected to a repeated-measures ANOVA (including all 39 participants). Biases resulting 
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from differential regression were apparent in strong main effects on all three factors, 

reflecting selective underestimation (i.e., negative scores) for domain C, F(1,38) = 39.44, p < 

.001, for the most frequent provider P1, F(2, 76) = 53.76, p < .001, and for positive 

observations, F(1,38) = 18.35, p < .001. Similarly, the same basic regression tendency 

produced three two-way interactions. The tendency to underestimate positive and to 

overestimate negative observations increases from domain T to C, F(1,38) = 9.73, p < .01, 

from P3 to P2 to P1, F(2, 76) = 8.67, p < .001, and the inaccuracy difference between providers 

is more apparent for domain C than for T, F(2,76) = 19.42, p < .001. Thus, as different aspects 

were unequally affected by regression, the resulting subjective estimates were severely biased 

in all three dimensions as well as in their interactions. Such a differential pattern of over- and 

underestimation can be expected to be typical of natural sampling in skewed environments.   

Biased population inferences. Let us finally consider the crucial dependent measure, 

namely, the inferences about the population, as distinguished from the estimates of sample 

frequencies. It was expected that biased judgments should arise from extremely unequal cell 

frequencies, as the same trend (e.g., the same 2:1 ratio of positive to negative outcomes) 

should be more apparent for frequently observed than for rarely observed events. In particular, 

this implies that in forward evaluations of providers’ assets the prevalent positivity should be 

rated highest for the most frequent provider P1, intermediate for P2, and lowest for the least 

frequent provider P3. To capture this sort of bias, a weighted sum score was computed (cf. 

Table 7) by multiplying the positivity ratings of P1, P2, and P3 by coefficients +1, 0, and –1, 

respectively. The higher (i.e., the more positive) this score, the stronger the expected bias to 

overestimate P1 and to underestimate P3 in forward ratings of p(+/providers). For backward 

diagnostic inferences, an analogous weighted score of p(providers / –) reflects the tendency to 

attribute deficits to the frequent (P1) rather than infrequent (P3) source. It was further expected 

that infrequency effects might come to interact with the focus manipulations. Higher P1 than  

P3 judgments – both in terms of more positive forwards inferences and in terms of more 
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negative backward diagnoses – should be accentuated when an attention focus on P1 

reinforces the actually existing density differences. 

Consider first the forward inferences of p(+/providers). As expected, the composite 

scores tended to be positive (M = 14.05, t(21) = 2.87, p < .01) when the focus was on P1, but 

not when the provider focus was on P3, M = –2.82, t(16) = –.365). Thus, when the focus was 

consistent with the prevalence of providers, inferred positivity decreased from P1 to P2 to P3, 

although the actual positivity rate in the population was constant. With regard to backward 

inferences of p(providers/ –), the tendency to attribute negative information to frequent rather 

than infrequent providers reveals a similar bias to attribute deficits to the most prevalent 

provider, but only when the focus was on P1, M = 13.77, t(21) = 2.40, p < .05, rather than on 

P3, M = –9.88, t(16) = –1.33. (Ironically, though, + outcomes were also attributed to P1). 

When backward inferences were analyzed as a function of the two between-participants 

factors, task focus and provider focus (see Table 7), the bias score tended to be strongest 

when the provider focus was actually on P1 rather than on P3, yielding a significant provider 

focus main effect, F(1,35) = 6.61, p < .05. The forward-inference bias towards P1 was also 

most pronounced when the focus was on P1 rather than P3, although the provider focus main 

effect was not quite significant, F(1,35) = 3.04. All other effects were nil (F < 1).  

Altogether, the results of Experiment 2 reveal that although natural sampling produces 

(by definition) unbiased samples, the judgments run into new problems. Information about 

infrequent events is impoverished. Moreover, regression error can be very strong, and 

differential regression can produce a new class of biases that can distort the relative 

impression of frequent and infrequent sources.  

General Discussion 

On summary, the present inquiry into the ultimate sampling dilemma revealed what it 

had to reveal on a-priori grounds, namely, that there is hardly a real chance to evade this 

dilemma of the empirical world. To be sure, decision makers – or more generally, organisms 
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– may refrain from the possibility to actively search for information tailored to test specific 

hypotheses and passively resort to natural sampling. Ideally, this produces an unbiased 

sample, but one that is impoverished with regard to rare events. If decisions refer to such rare 

events (e.g., accidents, crimes etc.), then the information of interest may be missing or 

overshadowed by large amounts of unwanted or irrelevant information. Moreover, in reality, 

it is unclear whether natural sampling is possible at all. At any point in time or space, 

information about the different objects is not equally available. This restricts nature's ability to 

provide us with truly natural samples. Consider the Internet for a nice thought experiment. 

Whoever tried to search for specific objects in the Internet will agree how hard and actually 

impossible it is to solicit a natural, unrestricted sample that warrants “true” baserates. The 

resulting sample of Internet sites is always conditional on, and biased toward, the specific 

keywords used, the position of different sources in the hierarchy of search engines, the 

communicability of different contents, and the availability of Internet sites for particular 

topics. Literally, the Internet does not allow for natural sampling.  

A related question is whether absolute baserates exist at all – baserates that hold across 

time, space, cultures, markets, and decision contexts. To the extent that baserates change over 

time or between regions or cultures, the "true" population baserates are hard to determine. As 

a consequence, whether a supposedly natural sample really conserves the natural baserates 

cannot be controlled. 

Alternatively, rather than striving for natural sampling, organisms may follow the role 

model of a clever research designer and actively sample those events that are most relevant to 

the decision problem in front of them. The resulting samples, which are inevitably selective, 

can yield unbiased answers to the problems for which they were designed. But as new 

problems arise and the same sample is used to answer them, the responses can be seriously 

misled. Specifically, to the extent that decision makers have engaged in input-bound 

sampling, forward inferences are likely to be accurate but backward inferences are biased 
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toward those input levels that are over-represented in the sample. Conversely, to the extent 

that decision makers engage in output-bound sampling, their backward inferences are likely to 

be accurate, but forward inferences will be biased toward the outcome valence that is over-

represented in the sample. Finally, engaging in mixed sampling strategies will not ameliorate 

these problems but may even worsen the situation, causing biases in either direction. 

Given a sample that entails a complex mix of search strategies, Bayesian correction is 

not really viable. If each of, say, 100 observations about the same provider is conditional on a 

specific combination of search constraints, such as time, media, information source, set of 

providers considered, focus on valence, product domains, and so forth, and if most 

observations not even reveal their underlying constraints – how should the Bayesian 

correction of a biased sample be accomplished? For instance, how should even the best 

Bayesian statistician correct for a biased sample of resulting from an Internet search, if each 

entry in a list of entries has different constraints and, crucially, those constraints are not 

transparent at all?  

Computer simulations served to illustrate the ultimate sampling dilemma. Although the 

simulations did not demonstrate something that cannot be derived through analytical 

reflection alone, they served to illustrate the nature and the degree of the judgment biases 

arising from different search strategies. Two experiments provided an empirical test of the 

open empirical question of how human decision makers deal with the ultimate sampling 

dilemma. Experiment 1 corroborated our intuition that hardly anybody engages in a pure 

natural-sampling strategy when information search is fully unconstrained. Rather, people 

tended to sample information predominantly from those cells that were relevant to testing 

specific hypotheses. When the task focus was on the relative positivity of a specific provider, 

participants would gather mostly positive information about the provider under focus. 

Although focussing on a specific provider might have resulted in unbiased forward inferences 

of that provider’s positivity, a simultaneous (output-bound) focus on positive valence 
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rendered even forward judgments distorted. Conversely, when the focus was on the 

explanation of negative outcomes, output-bound sampling of negative events was facilitated. 

As a consequence, forward judgments were biased toward negative information. However, 

backward (diagnostic) inferences of the origins of negative outcomes were also biased to the 

extent that sampling was at the same time input-bound, concentrating on a provider of main 

interest. Thus, mixed and changing sampling strategies, rather than producing a balanced 

picture of reality, actually contaminated judgments in either direction. The judges’ uncritical 

reliance on the sample given reflected meta-cognitive myopia.  

Experiment 2, then, provided complementary findings for the same decision tasks when 

natural sampling was enforced. Although the resulting overall samples was indeed unbiased, 

information about infrequent event classes was insufficient. Sample-based judgments were 

nevertheless biased through differential regression. For instance, although positive outcomes 

were constantly frequent and negative outcomes constantly infrequent across all providers, 

this difference was more clearly recognized for the most frequent provider but often missed 

and underestimated for the rarest provider. Thus, the regressive tendency to underestimate 

real frequency differences, which characterizes all memory-based frequency estimates, was 

most apparent where samples were most impoverished, consistent with many previous 

demonstrations of differential regression in confirmation-bias studies (Fiedler, 1996; Fiedler 

et al., 2002; Fiedler & Walther, 2003; Zuckerman, Knee, Hodgins & Miyake, 1995). In any 

case, natural sampling did not provide a useful remedy at all, because unreliability and 

regression biases came in through the back door. 

What insights and implications can be gained from this inquiry into the ultimate 

sampling bias? Is the inherent message really so pessimistic? – I believe that in fact the 

message is not that pessimistic, and that quite a few optimistic aspects, both theoretically and 

practically, deserve to be pointed out. On one hand, it is important to note that the ultimate 

sampling dilemma is not a deficit of the human mind, but a genuine property of empirical 
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reality. Non-human, artifical-intelligence systems would suffer from similar problems when 

fed with the same complexly biased input. In its most radical form, the ultimate sampling 

dilemma reflects the fact that “true” or normatively correct answers to many probabilistic 

problems actually do not exist. They are indeterminate, because there is no single reality 

behind the sample. There is no objectively correct sampling scheme to estimate the “true” 

probability that somebody will die from a car accident, or that an academic career will be 

successful, or that the stock market will show a decline during the next five years. Whatever 

sampling scheme is applied will be conditionalized on a search strategy that focusses on 

specific sources, time frames, geographical frames, media, and on the categories that are 

arbitrarily used to define the respective reference set. Whether these sampling constraints are 

representative of the population cannot be determined because the latent reality is invisible.  

On the other hand, much can be learned from the more refined part of the message, 

concerning the moderators of the sampling dilemma. Input-bound strategies in general, and 

experimental strategies in particular, will normally provide appropriate samples for forward 

(causal) inferences. Likewise, output-bound samples inform accurate backward (diagnostic) 

inferences. However, crucially, any given sample with a specific generation history does not 

warrant an unbiased, omni-directional perspective applicable to all decision problems. 

Inferences will be biased to the extent that the sampling process was contingent on the 

dependent variable to be inferred. This restriction has to be kept in mind when decisions are 

made in science, economy, and politics. Beyond the common practice to describe samples in 

terms of size and general quality or representativeness, it is essential to indicate the inherent 

directionality and conditionality. For instance, even a very large carefully selected clinical 

sample of, say, depressive patients (matched with the same number of appropriate controls), 

however representative it is, must not be used uncritically for ethiological (causal) inferences 

about the influence of genetic factors, learning, stress, or attribution on depression.  
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The last and maybe most serious point, though, refers to the one aspect of the dilemma 

for which the human mind is to blame to a reasonable degree, namely, the meta-cognitive 

myopia that often prevents people of all intelligence levels from recognizing the pitfalls of 

sampling biases. The present experiments corroborate the basic finding from many other 

sampling approaches that decision makers – whether lay people of experts – take sample 

information for granted, uncritically and naively, even when it is obvious that samples are 

severely biased (Fiedler et al., 2000; Kareev et al, 2002). Maybe one of the most prominent 

goals of research on rationality and intellectual emancipation is to sensitize decision makers 

to major sampling biases in the environment (Denrell, 2005; Taylor, 1991) – due to media 

coverage (Combs & Slovic, 1979), restricted information access (Fiedler, in press; Fiedler & 

Walther, 2003), selective memory (Tesser, 1978), unequal communicability (Kashima, 2000), 

or restricted designs (Wells & Windschitl, 1999) – to educate people in what samples are 

good for and to engage in corrections of biased samples wherever this is possible. In those 

remaining cases where corrections of biased samples are not available, the most prominent 

goal is to understand that ignoring a sample may be better, and more rational, than accurately 

utilizing a sample tailored for the wrong purpose. 
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Appendix 

General instructions provided at the beginning of the experimental session: 

“Dear participant: 

Thanks for your willingness to participate in this study. 

In this study, all information is transparent. That is, the goal and purpose of the study is 

not kept secret. You will not be distracted from the actual purpose and no deception will be 

involved. And we do not tray for a moment to manipulate or direct your behavior. 

Your task entails a role play – you are supposed to take the role of an entrepreneur who 

has to make purchasing decisions – but this is quite a natural task familiar to everybody. 

Before you buy something, you compare different providers with regard to advantages and 

disadvantages and you thereby rely on experiences that others have made with the same 

products and providers. Analogously, you will get access to a data base containing all stored 

experience with the offered products. This data base constitutes the reality; it is physically 

available on the computer and provides the graduator for your achievement. Making accurate 

judgments means to make judgments that correspond to the “reality” of the data base.  

If you could assess and memorize all available data, then your decisions would have to 

be correct. That is, there would actually be one best decision.  

Like in real life, however, it is not possible to take the entirety of all information into 

account. Sufficient time is often lacking, and it would be much too expensive and fully 

unusual to base each and every decision on the entirety of all relevant information. Besides, 

we would run into a storage problem. Our memory would suffer from overload just like the 

hard-disk of our computer, let alone the problem of how to derive a decision from the 

insurmountable quantity of information. We would soon miss the trees before the forest.  

Rather than assessing and utilizing everything – which in the era of the Internet is 

impossible anyway – we almost always base our decisions on a  s a m p l e  of information. If 
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the sample is not too small and not distorted selectively, this is usually no problem. Then the 

sample affords a rather reliable picture of the reality.  

Your task also consists in drawing a sample from the data base, enabling to you make a 

correct decision. Promised: the actual differences in the data base are strong enough so that a 

commonly chosen sample size allows you to detect these differences – provided the sample is 

drawn in a way appropriate to the problem. This is exactly the key to success: collecting data 

that are useful for the problem at hand in that they reveal the actual relations that hold in the 

data base.  

… You have to equip your company with electronic devices … Two electronic domains 

have to be distinguished, computers and telecommunication. That is, you have to purchase 

both computer for work stations as well as telephones, picture telephones, and cell phones for 

conferences. You have to compare three providers, who all offer products in both domains. 

Thus, the data base for this problem discriminates between: 

3 providers (EMG, MediaCom, Hi-Tech) 

2 product domains (computers and telecommunications) 

2 possible outcomes (positive or negative)”  

 

After an extended explanation of the multiple ways of constraining information search, 

and how to handle the keyboard, instructions were manipulated between focus conditions: 

Task focus = positive evaluation – Provider focus = P1 (called MediaCom)  

"You are to find out whether in the total data-base the provider MediaCom received 

better evaluations than the other two providers, pooling across product domains. That is, is the 

relative proportion of positive observations among all observations for MediaCom higher than 

for the other 2 poviders?" 

Task focus = positive evaluation – Provider focus = P3 (called XXxxx)  

"MediaCom" replaced by "XXxxx", otherwise identical.  
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Task focus = diagnosing deficits – Provider focus = P1 (called MediaCom)  

"You are to find out whether in the total data-base negative observations most frequently 

originate in the provider MediaCom. Only think of the set of negative outcomes. Does the 

provider MediaCom appear more frequently in this reference set than the other two providers, 

regardless of the positive information?" 

Task focus = diagnosing deficits – Provider focus = P3 (called XXxxx)  

"MediaCom" replaced by "XXxxx", otherwise identical.  

 

The general instructions preceding the dependent measures read as follows:  

"Now, as indicated at the outset, you will be asked to draw inferences from what you 

have seen to the total data base. The judgments you are supposed to make below are always 

meant as judgments about the entire data base from which you have gathered observations."  

 

Finally, the sample estimates of the frequencies of all 12 event combinations were 

solicited: 

"And finally, now, a few more questions about the actually observed information. Now 

your task is not to make inferences concerning the entire database, but to estimate the  a b s o 

l u t e  frequencies of positive and negative observations you have seen for the different 

providers in both product domains. How many examples (not %) did you see for the 

following combinations …?" 
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Table 1: Simulation of forward (causal) inferences 

Domain 

C,T 

Provider 

P1, P2, P3 

Valence 

+,– 

 

p(+/C,P1) 

 

p(+/C,P2) 

 

p(+/C,P3) 

 

p(+/T,P1) 

 

p(+/T,P2) 

 

p(+/T,P3) 

Correct Population Values 0.67 0.67 0.67 0.67 0.67 0.67 

Natural sampling 

- - - 0.66 0.67 0.65 0.67 0.68 0.65 

Output-Bound Sampling 

- - 45,15 0.72 0.70 0.74 0.71 0.72 0.72 

- - 30,30 0.56 0.59 0.58 0.55 0.55 0.61 

- - 15,45 0.41 0.43 0.42 0.41 0.42 0.46 

- - 75,25 0.75 0.75 0.74 0.76 0.74 0.74 

- - 50,50 0.49 0.49 0.51 0.50 0.53 0.50 

- - 25,75 0.24 0.25 0.25 0.26 0.24 0.24 

Input-Bound Sampling 

- 50,25,25 - 0.67 0.67 0.67 0.67 0.67 0.67 

- 33,34,33 - 0.67 0.68 0.68 0.67 0.66 0.70 

- 25,25,55 - 0.66 0.66 0.67 0.69 0.67 0.67 

75,25 - - 0.66 0.68 0.67 0.66 0.68 0.66 

50,50 - - 0.66 0.65 0.66 0.67 0.65 0.66 

25,75 - - 0.67 0.67 0.67 0.67 0.67 0.67 

Joint Constraints 

50,50 33,34,33 50,50 0.50 0.39 0.50 0.57 0.56 0.46 

- 33,34,33 50,50 0.43 0.53 0.54 0.42 0.53 0.56 

50,50 - 50,50 0.62 0.62 0.60 0.38 0.37 0.39 

50,50 33,34,33 - 0.67 0.65 0.67 0.67 0.68 0.66 

25,75 25,25,50 25,75 0.00 0.22 0.00 0.33 0.19 0.34 

25,75 25,25,50 75,25 0.86 1.00 0.60 0.56 0.82 0.83 

- 50,25,25 75,25 0.74 0.76 0.76 0.75 0.75 0.76 

- 50,25,25 25,75 0.18 0.36 0.28 0.19 0.36 0.27 

- 25,25,50 75,25 0.71 0.61 0.83 0.74 0.58 0.85 

- 25,25,50 25,75 0.24 0.20 0.28 0.24 0.20 0.28 
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Table 2: Simulation of backward (diagnostic) inferences  

Domain 

C,T 

Provider 

P1, P2, P3 

Valence 

+,– 

 

p(C,P1/–) 

 

p(C,P2/–) 

  

p(C,P3/–) 

 

p(T,P1/–)  

 

p(T,P2/–)  

 

p(T,P3/–) 

Correct Population Values 0.39 0.19 0.10 0.18 0.09 0.05 

Natural sampling 

- - - 0.38 0.19 0.10 0.19 0.10 0.05 

Output-Bound Sampling 

- - 45,15 0.37 0.20 0.09 0.20 0.09 0.05 

- - 30,30 0.38 0.18 0.10 0.21 0.09 0.04 

- - 15,45 0.38 0.18 0.09 0.20 0.10 0.04 

- - 75,25 0.38 0.19 0.11 0.18 0.10 0.05 

- - 50,50 0.39 0.19 0.10 0.19 0.09 0.05 

- - 25,75 0.39 0.20 0.09 0.18 0.10 0.05 

Input-Bound Sampling 

- 50,25,25 - 0.38 0.19 0.10 0.19 0.10 0.05 

- 33,34,33 - 0.34 0.16 0.17 0.17 0.09 0.07 

- 25,25,55 - 0.23 0.23 0.22 0.11 0.11 0.11 

75,25 - - 0.30 0.13 0.07 0.28 0.14 0.08 

50,50 - - 0.14 0.07 0.04 0.42 0.22 0.11 

25,75 - - 0.38 0.19 0.10 0.19 0.10 0.05 

Joint Constraints 

50,50 33,34,33 50,50 0.12 0.22 0.20 0.18 0.14 0.14 

- 33,34,33 50,50 0.25 0.22 0.20 0.13 0.10 0.10 

50,50 - 50,50 0.22 0.11 0.05 0.35 0.18 0.09 

50,50 33,34,33 - 0.18 0.14 0.19 0.15 0.21 0.14 

25,75 25,25,50 25,75 0.05 0.09 0.16 0.19 0.17 0.33 

25,75 25,25,50 75,25 0.04 0.00 0.24 0.32 0.16 0.24 

- 50,25,25 75,25 0.35 0.16 0.16 0.17 0.08 0.08 

- 50,25,25 25,75 0.36 0.14 0.16 0.18 0.07 0.08 

- 25,25,50 75,25 0.19 0.26 0.22 0.09 0.14 0.10 

- 25,25,50 25,75 0.17 0.18 0.32 0.08 0.09 0.16 
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Table 3: Characteristics of spontaneously gathered samples 

Task Focus: 
Provider Focus: 

Forward 
P1 Focus 

 

Forward 
P3 Focus 

 

Backward 
P1 Focus 

 

Backward 
P31 Focus 

 

 
Overall 

 
Mean Sample Size 

(SD)  
 

 
52.00 

(33.76) 

 
62.71 

(41.65) 

 
33.86 

(27.24) 

 
56.57 

(38.75) 

 
51.29 

(36.43) 

 
Natural Sampling 

Proportion of Trials 
 

 
.06 

 
.10 

 
.19 

 
.08 

 
.11 

 
p(Domain unspecified) 
p(Domain specified) 

p(C called for) 
p(T called for) 

 
p(C in sample) 

 

 
.18 
.82 
.45 
.37 

 
.576 

 

 
.20 
.80 
.43 
.37 

 
.559 

 
.49 
.51 
.25 
.26 

 
.566 

 
.49 
.51 
.28 
.23 

 
.607 

 
.34 
.66 
.35 
.31 

 
.577 

 
p(Provider unspecified) 
p(Provider specified) 

 

 
.26 
.74 

 
.27 
.73 

 
.51 
.49 

 
.55 
.45 

 
.40 
.60 

 
p(Valence unspecified) 
p(Valence specified) 

p(+ called for) 
p(– called for) 

 
p(+ in sample)  

 

 
.17 
.83 
.51 
.32 

 
.64 

 
.44 
.56 
.33 
.23 

 
.63 

 
.28 
.72 
.24 
.48 

 
.41 

 
.24 
.76 
.15 
.61 

 
.30 

 
.28 
.72 
.31 
.41 

 
.495 
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Table 4. Mean Estimates of Joint Sample Frequencies By Conditions in Experiment 1 

  
Computers 

 

 
Telecommunication 

 P1 

 
P2 P3 P1 P2 P3 

 + 
 

–  + –  + –  + –  + –  + –  

 
Population 

 

 
.254 

 
.127 

 
.127 

 
.063 

 
.063 

 
.032 

 
.127 

 
.063 

 
.063 

 
.032 

 
.032 

 
.016  

 
Forward P1 Focus  

 

 
.127 

 
.097 

 
.077 

 
.070 

 
.087 

 
.072 

 
.097 

 
.062 

 
.094 

 
.067 

 
.091 

 
.058 

 
Forward P3 Focus  

 

 
.119 

 
.060 

 
.094 

 
.074 

 
.100 

 
.069 

 
.098 

 
.062 

 
.108 

 
.057 

 
.105 

 
.055 

 
Backward P1 Focus 

 

 
.059 

 
.173 

 
.068 

 
.119 

 
.061 

 
.074 

 
.060 

 
.112 

 
.063 

 
.098 

 
.056 

 
.058 

 
Backward P3 Focus 

 

 
.094 

 
.088 

 
.061 

 
.101 

 
.095 

 
.123 

 
.078 

 
.067 

 
.064 

 
.071 

 
.071 

 
.087 

 
Total 

 

 
.100 

 
.105 

 
.075 

 
.091 

 
.085 

 
.085 

 
.083 

 
.076 

 
.082 

 
.073 

 
.081 

 
.06 
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Table 5. Mean Population Inferences (in Percent) By Conditions in Experiment 1 

  
Forward Inferences 

p(+ / Providers) 
 

 
Backward Inferences 

p(Providers / –) 

 P1 

 
P2 P3 P1 P2 P3 

 
Objective 
Percentage 

  
66.67 

  
66.67  

 
66.67 

 
57.14  

 

 
28.57 

 

 
14.29 

 
 

Forward P1 Focus  
 

 
54.14 

 

 
37.71 

 

 
40.86 

 

 
40.43 

 

 
30.86 

 

 
35.14 

 
 

Forward P3 Focus  
 

 
53.71 

 
51.57 

 
53.36 

 

 
40.93 

 

 
36.29 

 
39.86 

 
Backward P1 Focus 

 

 
35.71 

 
40.64 

 
41.50 

 
44.71 

 
32.00 

 
26.71 

 
Backward P3 Focus 

 

 
39.64 

 
36.07 

 
35.00 

 
24.81 

 
33.88 

 
40.24 
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 Table 6. Mean Estimates of Joint Sample Frequencies By Conditions in Experiment 2 

  
Computers 

 

 
Telecommunication 

 P1 

 
P2 P3 P1 P2 P3 

 + 
 

–  + –  + –  + –  + –  + –  

 
Population 
proportion 

 

 
.254 

 
.127 

 
.127 

 
.063 

 
.063 

 
.032 

 
.127 

 
.063 

 
.063 

 
.032 

 
.032 

 
.016  

  
Sample proportion 

 

 
.280 
 

 
.107 

 
.121 

 
.065 

 
.066 

 
.035 

 
.132 

 
.057 

 
.062 

 
.028 

 
.034 

 
.014 

  
Estimated proportion 

 

 
.157 

 
.093 

 
.119 

 
.079 

 
.080 

 
.050 
 

 
.103 

 
.072 

 
.093 

 
.062 
 

 
.055 
  

 
.038 

 
 Estimation prop. – 
Popolation prop. 

 

 
-.10 

 
-.03 
  

 
-.01 

 
.02 

 
.02 

 
.02 

 
-.02 

 
.01 

 
.03 

 
.03 

 
.02 

 
.02 

 
Mean n sampled   

 

 
9.56 

 
3.82 

 
4.28 

 
2.31 
 

 
2.49 

 
1.13 

 
4.64 

 
1.95 

 
2.33 

 
1.03 

 
1.18 

 
0.49 

 
No Ss with n=0 

 

 
0 

 
2 

 
0 

 
6 

 
5 

 
11 

 
1 

 
7 

 
7 

 
14 

 
15 

 
24 

 
No Ss with n≤1 

 

 
0 

 
9 

 
2 

 
17 

 
17 

 
29 

 
3 

 
18 

 
20 

 
28 

 
26 

 
35 

 
No Ss with n≤2 

 

 
1 

 
19 

 
11 

 
24 

 
24 

 
35 

 
9 

 
31 

 
24 

 
36 

 
33 

 
39 



 52 Ultimate sampling dilemma 

Table 7. Mean Population Inferences (in Percent) By Conditions in Experiment 2 

  
Forward Inferences 

(+1)p(+ / P1) + 0p(+ / P2) + (-1)p(+P3) 

 

 
Backward Inferences 

(+1)p(P1/–) + 0p(P2/–) + (-1)pP3/–)  
 

 
Population 

 
0.00  

 

 
42.86  

 
 

Rating overall 
 

 
6.69 

 
3.46 

 
Forward P1 Focus  

 

 
18.25 

 

 
20.08 

 
 

Forward P3 Focus  
 

 
-1.67 

 

 
-1.67 

 
 

Backward P1 
Focus 

 

 
9.00 

 

 
6.20  

 

 
Backward P3 

Focus 
 

 
-4.13 

 
  

 
-19.13 

   
 

 

 



 53 Ultimate sampling dilemma 

Figure Captions 

Figure 1: Two distinct environments to demonstrate the ultimate sampling dilemma: 

The skewed ecology (A) and the spurious ecology (B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Provider 1 Provider 2 Provider 3

Telephone  -

Telephone  +

Computer  -

Computer  +

Ecology A 

Ecology B 

480 

240 
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120 
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30 
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Computer -
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Alexander Ludwig
Mathias Sommer

Aging and Asset Prices



SONDERFORSCHUNGSBereich 504 WORKING PAPER SERIES

Nr. Author Title
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On the Consequences of Demographic Change for
Rates of Returns to Capital, and the Distribution of
Wealth and Welfare

07-10 Daniel Schunk What Determines the Saving Behavior of German
Households? An Examination of Saving Motives
and Saving Decisions

07-09 Axel Börsch-Supan
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