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Abstract

The �rst objective of this paper is to apply the model of Barth (1999) to the

numerical generation of credit loss distributions of a portfolio consisting entirely of

interest rate swaps. The di�erent possibilities for modelling the response function,

which gives the impact of a interest rate change onto the credit default probability,

is the main subject of this investigation. The second objective is the discussion

of several measures for the risk-based capital, needed to back the portfolio. The

focus is on the suitablility of these measures to an analysis of worst case scenarios.

While two measures for the risk-based capital are based on percentiles, the third

measure is a coherent measure. These measures are applied to the analysis of the

data generated by the model in regard to the modelling of the response function.
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0 Introduction

Several crises in the worldwide �nancial markets during the last two years pointed out that

the risk management of portfolios of �nancial contracts which are subject to credit risk

is not working satisfactory in extreme market situations. One of the most crucial points

in the credit risk management of such situations is the modelling of the risks involved.

Though with CreditMetrics and CreditRisk+ (see J.P.Morgan (1997) and CreditSuisse

(1997)) two theoretical frameworks are presented which address these problems, the em-

phasis is not on the analysis of worst cases. Furthermore in these approaches primarily

the management of credit risks of portfolios of bonds is considered.

The situation is more di�cult if one deals not only with simple contracts as bonds but

also with instruments as derivatives which values depend highly on market variables. Not

only the \pure" credit risk of such contracts has to be regarded but also the behaviour of

the value of these contracts under changes of market variables. For example, a swap will

have a positive or a negative value in dependency on the changes of the interest rate. The

default of the counterparty in the swap contract might therefore lead to no loss or a severe

loss dependent on the actual value of the interest rate. The credit risk of such market-

driven contracts might get very high due to large changes in the market which could

weak the �nancial standing of some counterparties. If the considered contracts depend

on market variables the possible credit risk in unusual situations is often accounted with

\rules of thumb". But the application of those rules of thumb appear as dangerous in the

light of the distresses in the present markets.

Usually credit risk management models credit and market risk as independent stochastic

variables. The subdivision into these two \kinds" of risk is deeply embodied in the think-

ing about risk management. However this \independence assumption" is not working

satisfactory even in \normal" market situations (compare for example Du�ee (1996a)),

in extreme situations the failure of this assumption is unavoidable: Due to extraordinary

changes of market variables �nancial institutions might get into di�culties and the credit

risk of these institution will increase dramatically.

However the consideration of dependent credit and market risks is very di�cult: In ad-

dition to the modelling of the credit risk for each counterparty one has to model also the

correlation with the market variables. The resulting models are usually not analytically

tractable for realistic portfolios. But even numerically there are very large requirements

for computing power and time because the simulation of the default events in a large

portfolio involves a high number of credit and market variables. More elegant procedures
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for simulating defaults (see Du�e and Singleton (1998)) are not always applicable for the

analysis of the credit risk of market-driven instruments. And, at last, there is a lack of

reliable data about correlations between market and credit risks.

One of the most important issues of the risk management concerned by these remarks is

the determination of the risk-based capital. This capital should back the portfolio of an

institution so that this institution is safe up with a high probability in very unfavourable

situations. There are two critical problems with the determination of this capital: First,

the amount of capital is strongly dependent on the kind of model used (and therefore

dependent on the handling of the correlation between market and credit risk). Second,

it is di�cult to introduce and establish on the basis of the chosen model well founded

procedures for determining this risk-based capital, because the model only generates data

on default and losses. Especially if worst cases analysis is concerned, the lack of system-

atic procedures to measure the risk-based capital needed in such situations prevents the

utilization of the data generated by the model. Mostly a combination of the Value-at-Risk

approach and ad-hoc stress-testing procedures is used, but unfortunately these procedures

do not feature a systematic approach.

This paper has two objectives: The �rst objective is to apply the model derived in Barth

(1999) to circumvent some of these di�culties mentioned above concerning the correlation

between credit and market risks. This model is used in the paper to generated data of loss

distributions for di�ering portfolios and correlation speci�cations. What are the e�ects

of the correlation of the default probability of the counterparties to the changes of the

market variables in regard to the portfolio losses?

The \tools" which are necessary to measure these e�ects in terms of the risk-based cap-

ital are the second objective of this paper: Several di�erent measures are provided and

discussed. With these measures the risk-based capital needed to be safe (with a high prob-

ability) in worst cases is de�ned. These measures are used based on the data generated

by the applied model.

Three measures for the risk-based capital will be introduced: Like the Value-at-Risk

approach, two of these measures are based on percentiles, but use other mechanism of

time aggregation. Both of them account for worst worst case by concentrating on the

\maximal loss". The third measure is a coherent measure (cp. Artzner et al. (1998))

which is based on a kind of shortfall measure. Properties like the subadditivity are studied.

The behaviour of these measures for loss distribution with \fat tails" are compared.
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In the numerical investigation we consider a portfolio consisting only of interest rate

swaps. Interest rate swaps are regarded because, �rst, their exposure depend very much

on the development of the underlying interest rate and are therefore a good example

for market-driven instruments. Second, they are the most important traded derivative

contracts on interest rates. Third, the valuation of these swaps is straightforward and

analytically easy to access. At last we use only the interest rate as the underlying market

variables because of the accessibility of empirical data for the \response" of the interest

rate to default rates. But these investigations might be extended to other contracts as

currency swaps, bond options, caps and 
oors and other underlyings as currency rates or

stocks as well.

The paper is organized as follows: The model of Barth (1999) is described shortly in

section 1. In section 2, we discuss three measures of the risk-based capital suited for worst-

case scenarios. In section 3, these measures are applied to the numerical investigation of

a portfolio of swap contracts.

1 Short Description of the Model

In this section the model introduced in Barth (1999) is reviewed shortly. A �nancial

institution is considered which holds a large portfolio with many di�erent counterparties

a = 1; : : : ; N . The number N of the counterparties is �xed. None of the counterparties

a holds an excessive part of the portfolio (which is called therefore \homogenic"). Only

one market variable is considered, called r, which will later be the interest rate. A

model is developed where \individual" and \collective" compenents of the credit risk (i.e.

the default probability) are distinguished: The individual component is not known to

the regarded �nancial instution (and modeled as noise), but the collective component is

given by the initial rating and a response function Sa(r) which measures the impact of a

change in an observable market variable r onto the default probability. Each counterparty

might have a di�erent response function Sa(r), but this function is known to the �nancial

institution (as it is the rating). Speaking roughly, in this model the market risks r in
uence

the credit risks but the credit risks do not in
uence the market risks. We refer to this

kind of interaction as \response" instead of correlation.

This approach leads to the following formula for the portfolio loss dL(r(t); t) in the time

interval [t� dt; t) (with dt in�nitesimal). The loss dL(r(t); t) is due to default events of
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the counterparties a = 1; : : : ; N conditioned to a �xed realisation of the short rate process

r(t), with t 2 [0; T ]:

dL(r(t); t) =
1

B(0; t)

NX
a=1

V +
a (r(t); t)Sa(r(t); t)dt; (1)

where Va(r(t); t) is the netted value of the contracts with counterparty a = 1; : : : ; N .

B(t1; t2) is the money market account i.e. the value of one dollar at time t2 which is

put to this account at time t1 < t2. In this paper we only consider the total loss of the

exposure in the case of default. V +
a (r(t); t) describes the positive part of Va, i.e. the

exposure with respect to counterparty a in market situation r(t). Sa(r(t); t) is the default

intensity given a realisation r(t) of the short rate process. In the following we drop the

notation of the explicit time dependency of dL, Sa, and Va.

To give a clear idea of eq.(1): The exposures V +
a (r(t)) at time t are \weighted" with

the actual probability of default Sa(r(t))dt in the short time interval [t � dt; t). This

corresponds to the expected loss1 due to credit events in [t � dt; t), conditioned on a

market situation which is given by r. This formula eq.(1) is easy to handle by Monte-

Carlo simulation because only the process of the short rate r has to be simulated. No

explicit default processes has to be regarded. This approach is therefore especially suited

for an investigation of the impact of changes of the market variables on the credit risk of

a large portfolio: eq.(1) is a simpli�cation because only the changes in the market risks

have to be regarded as the \driving force" for changes in the credit risks via the response

function Sa. The credit risks of di�erent counterparties are correlated because they have

the same underlying stochastic variable r.

This approach is complementary to the approach of J.P.Morgan (1997) to incorporate

market risks into their framework of CreditMetrics: In CreditMetrics an expectation

value of the market risks is taken to yield the average exposure. Or an upper percentile

of the distribution of the market risks is taken to yield the maximum exposure. With

this the average or the maximum exposure (where the stochasticity of the market risks

is eliminated) is then treated as the exposure of a bond which is constant. Then the

credit risks due to default or migration are studied. This approach is vice-versa to the

approach described in this paper: Here the individual credit risks are eliminated and

then the impact of the changes of the market variables onto the systematic component

of the credit risk is studied. Only the stochasticity of the market risks remains here, in

CreditMetrics remains only the stochasticity of the credit risks.

1 In the case that N is large unfortunately the Law of Large Numbers can not be applied to eq.(1)

because the risks are added rather than subdivided.
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In Barth (1999) furthermore the modelling of Sa(r) is discussed: The exact analytic form

of this function is somewhat arbitrary. Based on the idea of Hull (1989) who is (up to

our knowledge) the only one who gives an explicit response function Sa(r) the following

functions are considered, see �gure 1:

Se
a(r(t)) = Se

a(r(0)) exp [ka (r(t)� r(0))] ; (2)

Sq
a(r(t)) = Sq

a(r(0))
�
1 + max

n
0; sgn (ka(r(t)� r(0))) (ka(r(t)� r(0)))2

o�
; (3)

Sl
a(r(t)) = Sl

a(r(0))max f1; 1 + ka (r(t)� r(0))g ; (4)

Sr
a(r(t)) = Sr

a(r(0))
q
maxf1; 1 + ka (r(t)� r(0))g: (5)

In Barth (1999) also empirical evidence is reviewed for calibrating the parameter ka of

these functions, see section 3.2.
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Figure 1: Correlation functions for ka = 16 and r(0) = 0:05 and Sa(r(0)) = 1: Exponential

eq.(2) (checks), quadratic eq.(3) (stars), linear eq.(4) (squares), and square-root eq.(5) (trian-

gles). The value of the response function S is plotted versus r.

In the following this model is applied to the analysis of the impact of market risk worst

case scenarios onto the credit risk. It is the goal to determine the risk-based capital which

has to be hold back by the �nancial institution to be safe to a high probability. But how

to measure this risk-based capital? If one deals with market risks only one usually applies
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the Value-at-Risk approach on a short time interval, say ten days. But due to the longer

time horizonts in credit risk management this might not be the best suited approach.

Furthermore, by regarding worst case scenarios the Value-at-Risk approach might lead to

underestimates of the risk-based capital.

2 Worst Case Measures

First we will derive some measures which result of percentile-based approaches like the

Value-at-Risk approach. After that we will discuss some other measures, which are not

based on this approach. We have to stress again that all these measures concern the impact

of the market variables (which are the only stochastic quantity here) on the expected credit

loss given this market situation, which is described by these market variables. The market

situation is stochastic, the credit risks are \eliminated" by the conditioned expectation

value.

2.1 Percentile-based Measures

In the following we discuss di�erent de�nitions of the risk-based capital which are based

on the consideration of percentiles. We will choose two of them for being suited for a

worst case analysis. After that we compare the properties of these two measures.

De�nition

As the fundamental quantity acts the discounted credit loss eq.(1). One possibility to

de�ne the risk-based capital is the Value-at-Risk (VaR), which is given as the upper

q-percentile2 of the distribution of the cumulative loss over a given time-horizont [0; T ]:

Prob

"Z T

0
dL(s) > V VaR

q [0; T ]

#
� 1� q: (6)

This Value-at-Risk V VaR
q [0; T ] is usually used for estimating market risks over short time-

horizonts (say ten days). But credit risks have to be considered over much longer time-

intervals, for example ten years. The risk-based capital could be \re�lled", so that an

aggregated credit loss like in eq.(6) is not more an useful measure for the immediate

2 In the case of not well-behaved Va it might be necessary to de�ne the percentiles Vq as Vq =

inffxjProb[loss > x] > 1� qg.
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�nancial distress after a severe loss has occured. One could de�ne a VaR on a shorter

time interval [t; t+�t] � [0; T ] with �t > 0 and

Prob

"Z t+�t

t
dL(s) > V VaR

q [t; t+�t]

#
� 1 � q: (7)

This �t might describe a \re�lling-period", but this would be a further unknown param-

eter which had to be chosen �rm-speci�cly.

By refering to the long time horizont T one could assume an instantaneous re�lling in an

in�nitesimal small time interval after the default event. This correspond to an in�nitesi-

mal3 small �t! dt:

Prob
h
dL(t) > V P

q [t]
i
� 1� q; (8)

where V P
q [t] is the q-percentile of the loss distribution at time t, which gives an upper

boundary for losses at time t (with probability q). To be safe over the whole time interval

[0; T ] up to probability q one has to chose the risk-based capital

V MP
q [0; T ] = max

t2[0;T ]
V P
q [t]: (9)

We refer to V MP
q [0; T ] as the \peak loss", cf. Du�ee (1996a). This peak loss can be

calculated for a realistic portfolio by Monte-Carlo simulation. It is not used very frequently

because more conservative capital requirements result than by applying measures like the

\average loss". But V MP
q might be a measure which is sensitive for rare events like a very

large loss. Therefore it is with sense to see V MP
q not only in the context of the risk-based

capital but also in the context of stress testing procedures.

One measure which is not examined or applied in the context of risk management in

�nancial markets up to now (cf. Albrecht (1997)) originates in the actuarial approach

Prob
h
dL(t) > V PM

q [0; T ] for one t 2 [0; T ]
i
� 1 � q

, Prob

"
max
t2[0;T ]

dL(t) > V PM
q [0; T ]

#
� 1� q: (10)

Given a safety level 1 � q the loss should at no time be greater than V PM
q for each real-

isation. In other words V PM
q is the (1 � q)-percentile of the distribution of the pathwise

maximum. Glancing over the formulas of this \ruintheoretic" approach eq.(10) and eq.(8)

with eq.(9), one would recognize that (roughly spoken) the order of the percentile and the

3 In the practical implementation on has to concider a discrete approximation, for instance �T = 1

month.
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maximum is reversed, though there are totally di�erent mathematical objects addressed.

This is the reason for the notation V PM
q and V MP

q , abbreviated PM and MP. These mea-

sures constitute a more systematic approach to worst case scenarios than ad-hoc stress

testing procedures.

Properties

Contrary to the measures used in common practice (cf. for example J.P.Morgan (1997)),

it not su�cient to regard the discounted credit loss only in yearly intervals for determining

V PM
q and V MP

q . Far more points in time have to be simulated and analyzed.

The main di�culty by handling V PM
q consists in the analytical inaccessibility of the dis-

tribution of the maximum in eq.(10). Only in the case of a Wiener process there is an

analytically result, cf. for example Karatzas and Shreve (1988). There are attempts to

apply the extreme value theory (cf. Embrechts et al. (1997)) on stochastical processes like

the Cox/Ingersoll/Ross process (Borkovec and Kl�uppelberg (1997)), but up to now the

results of these attempts are not applicable. In the case of the loss process of a realistic

portfolio it is necessary to perform a numerical approximation with a \su�cient" high

number of points in time, where \su�cient" has to be characterized in a quantitative way,

cf. Barth (1998).

We will give some qualitative remarks on the relationship of V PM
q and V MP

q :

� The percentile of the pathwise maximum V PM
q has to be larger than the maximum

of the percentils V MP
q : For V MP the q-percentile is determined by the values of the

loss process at the �xed time, at which these percentiles are maximal: The mass

1�q is concerned to a marginal distribution. In opposite, in the case of the pathwise

maximum the mass 1� q is concerned to the distribution of the maxima over all the

time interval. Speaking roughly: All the points in the maximum distribution are

maxima. This is not the case for the marginal distribution, even if this distribution

is regarded at the time at which the q-percentile is maximal.

� The same qualitative argument applies to proove4

V PM
q [0; T ] � max

n
V PM
q [0; t]; V PM

q [t; T ]
o

(11)

for every t 2 [0; T ].

4 The notation is not clear in this equation, because there has to be some conditioning of the starting

value in respect to V PM
q

[t; T ]. But this argument applies if the starting value is �xed at time 0 or t.
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� Because all the marginal distributions V P
q have to be given for the calculation of

V MP
q [0; T ], it is no problem to derive the same measure V MP

q [t1; t2] on a smaller time

interval [t1; t2] � [0; T ] by limiting the range over which the maximum in eq.(9) is

taken. This is not possible in the case of the pathwise maximum measure V PM
q .

Only the distribution of the maximum is regarded, there is no information on time.

A new Monte-Carlo simulation is needed.

� The last point cleari�es, that even by new simulations it is not possible to construct

for V PM
q a kind of \upper bound for the cumulative loss" on a given time interval

[t; t+�t]. In the case of V MP
q this is easily done by integrating over the given V P

q .

� A trivial connection between V PM
q and V MP

q : For in�nitesimal long \paths" these

measures are the same:

lim
�t!0

V PM
q [t; t+�t] = V P

q [t] = lim
�t!0

V MP
q [t; t+�t]: (12)

� Though the pathwise maximum is subadditiv (in fact it constituts a norm in the

space of all possible path realisations starting at 0), this feature can not be transfered

to V PM
q , because the percentiles do not support this property. Therefore the same

criticism as applied to the VaR-measure as not being coherent has to be applied to

V PM
q too, cf. Artzner et al. (1998) and Artzner et al. (1997).

� In the case of a constant default intensity there is \usually" a decomposition of a

measure for the credit loss into the product of some kind of \exposure" times default

probability. For both V PM
q and V MP

q this decomposition is only possible if there is

only one counterparty.

Because of the �rst of these remarks we expect that V PM
q is more sensitive to extreme

realisations of the loss process than V MP
q . Therefore V PM

q should be better suited for a

worst case analysis. This will lead to more conservative requirements for the risk-based

capital. This will be part of the following considerations. In the next chapter we want

to apply both measures V PM
q and V MP

q to a portfolio of swaps. These results will be

compared to the results of other measures which are presented �rst in the next section.

2.2 Other Measures

The measures presented in this section are not based on a percentile approach like the

measures derived in the last section. In principle there are two mechanism of aggregation
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over time if a cumulative approach is excluded (refering to the derivation of eq.(8)): First,

considering the marginal distribution of the discounted loss dL(t) at all times t in the �xed

time interval [0; T ] and applying some functional (for example the expectation value,

variance, kurtosis, or, as it was done in the last section, the percentile). Afterwards one

takes the maximum of this functional over all t 2 [0; T ] and de�nes this as the risk-based

capital. The other possibility is to consider the distribution of the pathwise maximum

and apply the same functionals to this distribution.

In the next chapter we will not use the measures based on the expectation value, the

variance, or the kurtosis because they are not sensitive to extreme events and not suited

for an analysis of worst cases5. We will illustrate this by giving in all simulation studies in

addition to the worst case measures additionally the maximum value of the expectation

value of the marginal distribution at all t 2 [0; T ], we refer to this measure by \EM":

V EM[0; T ] = max
t2[0;T ]

E [dL(t)] : (13)

This measure EM gives an answer to the question: What is the largest expected loss

which might occur at some t 2 [0; T ]? Because the expected loss is used frequently in risk

management, EM gives one \conventional" measure to contrast the worst case measures.

But we will discuss one other measure which is very sensitive to such events: The Tail

Conditional Expectation (\TCE") (cf. for example Embrechts et al. (1997)) resembles

the shortfall risk measure, but instead of the excess the whole loss dL(t) is considered.

As with MP and ME, we take the maximum over t 2 [0; T ]:

V TCE
q [0; T ] = max

t2[0;T ]
E
h
dL(t)jdL(t) > V P

q [t]dt
i
: (14)

The niveau q gives with V P
q [t] (the q-percentile of the marginal loss distribution) the upper

border for losses which are \normal". All losses greater than that niveau are de�ned as

exceedances. The conditional expectation only refers to exceedances and is therefore very

sensitive to \fat tails". Given a �xed t, the function q ! V TCE
q [t] � V P

q [t] is the mean

excess function which represents per de�nition the tail of dL(t). This measure also has

the advantage of being coherent, cf. Artzner et al. (1998). We will discuss the properties

of the TCE with respect to MP and PM numerically in the next chapter.

5 The kurtosis might give a hint if there are heavy tails, but gives no reliable measure.
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3 Numerics: Swap Portfolio

This numerical simulation study investigates the interplay of the response of the default

risk to interest rate moves and the worst case analysis. After giving a description of the

speci�cation and the simulation technique, We �rst treat the case without response to get

a reference for the study with response included, which follows afterwards.

Due to a lack in computing power6 these simulations should be viewed as studies which

give an impression of the methods used, the measures applied, and the role of the interac-

tion between market and credit risks. For obtaining results which are more accurate one

has to perform a larger number of realisations. This is necessary to calculate for example

99.98% percentiles, here only 95% percentiles are determined. In a practical application

one has also to consider larger portfolios and a larger number of di�erent contracts which

increases the demand for computing power further.

Speci�cation and Simulation Technique

We investigate a portfolio which consists only of interest rate swaps on the same underlying

interest rate r. The time period is T = 8 years, the starting time is de�ned as t = 0. We

limit ourself to four swaps with di�erent remaining maturities (3, 4, 6, 8 years). All these

swaps have semi-annual paying dates, which are the same paying-dates for all four swaps.

One of these swaps is settled at t=0, the others already exist at this time. We model this

fact by o�-par shifts of the swap rate at time 0. The principal of all these swaps is the

same (the absolute value does not matter).

This interest rate is modeled by the process proposed in Cox et al. (1985):

dr(t) = �(� � r(t))dt+ �
q
r(t)dW; (15)

with � = 0:268; � = 0:063; � = 0:082, and a starting value of r(0) = �. W is a standard

Wiener process. The model is closed by the speci�caton of the market price of risk � = 0.

These parameters are given by an estimation of Du�ee (1996a) for the U.S. three month

treasury bills in the period 1959 to 1992.

Further we assume that the value of the swap is not dependent on the rating of the

counterparty (and of the considered �nancial institution itself). Due to the fact that the

principals are not exchanged and that it is not clear which of the two parties will be

6 These simulations are performed with an IBM PC with Pentium 166 processor under Mathematica

3.0.
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exposed at which time (as seen at t = 0), this is current market practice. Sometimes

an upfront payment is demanded if the di�erence between the ratings is high. Further

there are theoretical and empirical investigations (cf. Du�e and Huang (1996), see also

Stephan (1992)) which determine the spread concerning the swap rate. This spread is

usually small (in the order of 1 basispoint for interest rate swaps7). We will neglect this

spread and possible upfront payments. Table 1 summarizes the speci�cation of the four

swaps.

Swap Par rate O�set Maturity Nom.

# 1 6.35% +0:5% 4 years 1

# 2 6.32% 0 6 years 1

# 3 6.29% �0:4% 8 years 1

# 4 6.36% +0:2% 3 years 1

Table 1: Speci�cation of the swaps used in the numerical investigation of the portfolio.

Table 2 lists the di�erent measures applied to single exposures of these swaps, seen from

the paying �xed side. 5223 simulation runs were performed (monthly discretized), the

simulation technique is treated below. Additionally the time at which the ME, MP

and TCE are evaluated (i.e. the time when the measure of the marginal distribution

is maximal) is given. The calculation of the di�erent measures are done for the same

set of realisations of paths of the short rate r. The intervals of con�dence given for the

two percentile measures are calculated by the method described in Barth (1998). These

con�dence intervals are independent of any distribution assumptions. But without any

distribution assumptions there are no con�dence intervals for ME and TCE available.

There is no Brownian Bridge correction applied (cf. Beaglehole et al. (1997)).

In �gure 2 the paths of the 95% percentile of the marginal distributions are displayed, cf.

Du�ee (1996a). Because of the o�set the swaps 1 and 4 have at all times an expected

value lower than 0, with this ME is 0. Swap 3 has a negative o�set which results in a small

expexted exposure ME, swap 2 has no o�set and ME 
uctuates round 0. As expected,

the MP provides lower values than PM. More interesting are the values for TCE: They

are \close" to PM, and TCE is for two swaps smaller, for the other two larger than PM.

The time at which the MP and the TCE are maximal is the last month before a paying

7 Du�e and Huang (1996) report a higher spread (up to 10 bp) for currency swaps because the nominal

value is exchanged.
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Swap ME t MP t conf. PM conf. TCE t

# 1 0.0 0 6.3 18 [5.9, 6.7] 8.6 [8.2 ,8.9] 8.9 18

# 2 0.1 6 9.8 18 [9.1, 10.2] 13.5 [13.1, 14.0] 14.0 24

# 3 0.3 6 12.8 24 [12.1, 13.2] 17.3 [16.9, 18.1] 16.2 24

# 4 0.0 0 5.3 18 [5.0, 5.7] 6.7 [6.4, 7.0] 7.3 18

Table 2: Measures of the expousures of the considered swaps, seen from the paying �xed side.

Values are given in % of the nominal value. MP, PM and TCE are related to a 95% percentile

niveau, the con�dence intervals are calculated at a 98% niveau. The time t of the maximum is

given in months.

date, which is not very surprisingly, because in this month the exposure is higher than in

the following month, where a payment has been made.

20 40 60 80

0.02

0.04

0.06

0.08
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Figure 2: \Paths" of the 95% percentile of the marginal distributions of the exposure of the

swaps, see table 1. The exposure (in % of the nominal value) is plotted versus time (in months).

The simulation technique is straightforward: A path of the short rate process r is simu-

lated. We use a monthly discretization8. Based on this realisation of r the values of the

8 For a proper treatment of the extremes of this process we use the Ito/Taylor-1.5-scheme as described

in Kloeden and Platen (1992) for discretizing. Later on we discuss the correction methods described in
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four di�erent swaps are calculated at all (monthly) times. For each counterparty a the

exposure V +
a and the actual default intensity Sa(r) is determined for the speci�cation ot

the response function Sa. Subsequently the path of the loss in eq.(1) is calculated and the

discounted maximum loss is stored, given in basispoints of the nominal value of all the

contracts (which is the sum over all nominal values of all positions without netting), i.e.

relatively to the size of the portfolio. After calculating a certain number of realisations

the measures EM, PM, MP and TCE are determined.

3.1 Without Response

The aim of this section is to investigate the measures EM, PM, MP, and TCE without

any response of the default intensities to the interest rate changes. These results will be

refered to in the next section (with response) as the reference case. Moreover this section

summarizes all results without such a response.

Setting

We consider a portfolio with 50 di�erent counterparties. The di�erent swap positions (each

party is allowed to take up to seven units of the nominal value of each swap), the initial

ratings and the response coe�cients are randomly distributed at the beginning of the

investigation, but after that they remain �xed. This mechanism leads to a \homogenic"

portfolio: There are no counterparties who concentrate a large part of the value. We

model the �nancial institution which holds the portfolio as an intermediary (which is not

necessary): The only constraint to the random selection of the portfolio is given by the

total balance of all the positions, so that the intermediary faces no market risk directly,

but only credit risk. Due to the in
uence of the market variables onto the credit risk,

there is an \indirect" dependency on the market variables. The study of this \indirect"

dependency is one of the objectives of this study.

There are six rating classes with the default-intensities listed in table 3 (averaged default

intensities in basispoints per year estimated on the time period 1920-1997 by Moody's and

used in Du�e and Singleton (1998)). These default intensities are used as initial values

for Sa at time 0. In this section we do not consider any response so that these default

intensities of the counterparties will remain at this initial level for the whole time period.

Beaglehole et al. (1997) and Barth (1998) for taking account of di�culties in determining an extremum

of a continuous time process by a discrete approximation.
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Rating Aaa Aa A Baa Ba B

Intensity (bp/y) 0 9 9 32 146 442

Table 3: Averaged default probabilities in basispoints per year estimated by Moody's for the

time period 1920-1997.

Dependency of the Realisations of the Short Rate Process

After generating the portfolio randomly, this portfolio is kept �xed. 1000 realisations

of the short rate process are simulated, the credit loss for this portfolio is tracked and

the measures ME, MP, PM, and TCE are calculated. This procedure is repeated three

times to obtain three di�erent sets of 1000 realisations of the same portfolio. The results

are given in table 4. This investigation illustrated the stability of the results and the

consistency with the estimated con�dence intervals.

Real. ME t MP t conf. PM conf. TCE t

# 1 0.16 18 0.38 23 [0.34, 0.43] 0.52 [0.49, 0.56] 0.50 24

# 2 0.15 18 0.37 24 [0.33, 0.40] 0.49 [0.45, 0.52] 0.48 24

# 3 0.15 24 0.36 24 [0.33, 0.39] 0.47 [0.46, 0.50] 0.47 24

Table 4: Losses for di�erent realisation of the same portfolio. MP, PM and TCE are related

to a 95% percentile niveau, the con�dence intervals are calculated at a 98% niveau. Values are

given in basispoints of the nominal value of the whole portfolio. The time t of the maximum is

given in months.

Why are these values so small? 0.38 basispoints does not seem to be much, but, �rst,

these values are related to the total gross nominal value of the portfolio which is the

sum over all nominal values of all the swaps (without any kind of netting). Second,

the nominal value is not exchanged when dealing with interest rate swaps, therefore the

credit risk is much smaller than if one is dealing with currency swaps or bonds themselves.

Third, all the considered measures are related to the loss in a very short time interval (in

this discretization one month) and not to the loss over all the time. This should not be

confused with the elimination of the time dependency by taking the pathwise maximum

or the maximum of the marginal distribution.

The values listed in the tabular above should be interpreted as follows: Given a �xed

portfolio, the considered �rm will lose in every unit �t of time due to credit defaults on

average not more than ME, at a 95% safety level not more than MP. The expected excess
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loss over a 95% percentile niveau in every time unit will not be larger than TCE, the

largest loss in each time unit on a 95% niveau will for each realisation of the short rate

process not be larger than PM.

One could interpret these measures as the amount of capital which might get lost at every

point of time (calculated according to the chosen measure). While this interpretation

addresses the risk-based capital, another interpretation addresses the spread of the swap

rate, which might be also determined by analyzing the expected credit losses: If the

considered �rm is a �nancial intermediary who o�sets each swap with one counterparty

with an opposite position with another party to face no market risk, this �rm should

choose the \bid ask" spread of the swap rate by considering that measure which ful�lls

his demand for safety, cf. chapter 4 and Levis and Suchar (1994).

Dependency of the Realisations of the Portfolios

Port. ME t MP t conf. PM conf. TCE t # Real

# 1 0.15 18 0.33 18 [0.31, 0.34] 0.39 [0.37, 0.42] 0.38 24 1026

# 2 0.09 24 0.23 24 [0.21, 0.26] 0.28 [0.26, 0.30] 0.28 24 1010

# 3 0.16 18 0.38 23 [0.34, 0.43] 0.52 [0.49, 0.56] 0.50 24 1000

# 4 0.08 18 0.21 18 [0.20, 0.23] 0.25 [0.24, 0.27] 0.26 18 1067

Table 5: Losses of di�erent randomly generated portfolios (without considering any response).

MP, PM, and TCE are related to a 95% percentile niveau, the con�dence intervals are calculated

at a 98% niveau. Values are given in basispoints of the nominal value of the whole portfolio.

The time t of the maximum is given in months.

For four di�erent portfolios of the same size, which are generated randomly by the same

algorithm, the measures ME, MP, PM and TCE are calculated after doing more than

1000 simulation runs. Table 5 lists the results. We restricted ourself to a portfolio with

only 50 counterparties. These results indicate that the size of the portfolio is not large

enough to expect that due to the number of counterparties the individual contributions

are averaged out. There exist large di�erences in the considered measures. We expect that

for a portfolio with more than say 1000 counterparties the normalized absolute di�erences

would vanish due to the Law of Large Numbers.
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Size E�ects, Marginal E�ects and Subadditivity

Hull (1989) reports that the losses of small portfolio should have heavier tails than the

losses of large portfolios due to diversi�cation. He states that this is the reason why the

capital to asset ratios are forced to be higher for small banks than for large banks. We

want to see if this happens too in the model described in this paper:

For measuring the tail of a \small" portfolio (50 counterparties) we take the weighted

average of the (relative) losses reported above for the portfolios 1, 2, and 3. As weights

the gross nominal values are used. This is done for all measures ME, MP, PM, and TCE.

We refer to these results with AME, AMP, APM, and ATCE. For a \large" portfolio we

consider the (relative) loss path of the sum of the portfolios 1, 2, and 3, which constituts

a portfolio with 150 counterparties. We calculate again the measures listed above for

this portfolio (MEA, MPA, PMA, and TCEA9). In table 6 the results are listed (without

response), losses are given in basispoints of the gross nominal value:

MEA AME MPA AMP PMA APM TCEA ATCE

no corr. 0.13 0.13 0.23 0.31 0.27 0.39 0.27 0.39

Table 6: Size e�ects of the portfolio measures. MP, PM and TCE are related to a 95% percentile

niveau, the con�dence intervals are calculated at a 98% niveau. Values are given in basispoints

of the nominal value of the whole portfolio. The time t of the maximum is given in months.

While the maximum of the expectation values ME is not in
uenced by the size of the

portfolio, the measures MP, PM, and TCE indicate that the tail of the (relative) losses

of the average of the small portfolios is heavier than the tail of the losses of the large

portfolio. This result might be forced by the subadditivity of the maximum operation.

But MPA (or PMA, TCEA) is even smaller than the smallest MP (or PM, TCE) for each

single portfolio 1, 2, or 3. With this result Hulls observation is veri�ed in the case without

any response. We do not refer to these size e�ects as the \subadditivity" because relative

losses are regarded.

Artzner et al. (1998) develop an axiomatic framework for \measures of risk" by proposing

several general properties. The most \critical" axiom is given by the subadditivity, which

is for example not ful�lled by the percentile-based Value-at-Risk approach. Measures

which ful�ll these axioms are called \coherent". Further they proove that the TCE is a

9 Speaking roughly, the averaging procedure \A"is interchanged with the calculation of the measures

ME, . . . . This is re
ected in the nomenclature \AME" and \MEA", . . . .
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coherent measure. By investigating the absolute losses (in units of the nominal value) we

check in special cases if the subadditivity is ful�lled by the measures ME, MP, PM, and

TCE.

This we do in the context of marginal e�ects (cf. Du�ee (1996a)): What is the change in

the measures ME, MP, PM, and TCE, if one more swap position is taken? We assume that

the new swap position is taken by a new counterparty. We compare this marginal e�ect

with the considered swap itself, for di�erent cases in credit rating of the new counterparty.

If the considered measure is subadditive, the marginal e�ect of adding one swap to the

portfolio should be smaller than the stand-alone credit loss of this swap itself. The

magnitudes of these e�ects will depend on the special structure of the given portfolio so

that only an exemplary approach is possible.

Based on the investigation of portfolio 4 (see tabular above) we study the marginal e�ect

of adding a new counterparty which holds a paying �xed position in swap 3 with one unit

of nominal value. We vary the rating of this counterparty (Aa, Baa, B). In table 7, we

label with \M(P)" the considered measure ME, MP, PM, or TCE applied to the portfolio

without the new counterparty, with \M(P+S)" to the portfolio with the new counterparty,

and with \M(S)" the measure applied to the credit loss of the new counterparty alone.

As expected, both the stand-alone value M(S) and the marginal e�ect M(P+S) � M(P)

are increased by a decrease in credit quality of the new counterparty. What is more

important: The marginal e�ect M(P+S) � M(P) is in all cases smaller than the the

stand-alone value M(S). With this the subadditivity property M(P+S) < M(P) + M(S)

is ful�lled in these special cases. This might not always be the case, especially for the

percentile-based measures MP and PM.

Brownian Bridge Correction

If a discretized stochastic process is considered instead of the \original" continuous time

process, one has to be aware of the fact, that the maxima of the discrete version might

di�er from the maxima of the continuous time process. Beaglehole et al. (1997) propose an

\interpolation" of the discrete points by a Brownian Bridge, which might be for these short

time intervals a good approximation to the true stochastic process. Then a maximum

could be chosen out of the (analytically known) distribution of the maximum of this

Brownian Bridge between these points. In Barth (1998) this procedure is applied to the

determination of the measures MP and PM in the cases of swaps. Here we apply this

method to a portfolio of swaps. We perform 1241 realisations of the short rate process
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E�ect Rat. ME MP conf. PM conf. TCE

M(P) - 2.789 6.929 [6.490, 7.331] 8.215 [7.891, 8.888] 8.334

M(P)+M(S) Aa 2.791 6.939 - 8.228 - 8.347

M(P+S) Aa 2.791 6.929 [6.490, 7.331] 8.215 [7.891, 8.888] 8.342

M(S) Aa 0.002 0.010 [0.008, 0.011] 0.013 [0.013, 0.014] 0.013

M(P+S)-M(P) Aa 0.002 0.000 - 0.000 - 0.008

M(P)+M(S) Baa 2.798 6.966 - 8.263 - 8.380

M(P+S) Baa 2.797 6.942 [6.490, 7.344] 8.215 [7.920, 8.884] 8.360

M(S) Baa 0.009 0.037 [0.031, 0.040] 0.048 [0.045, 0.051] 0.046

M(P+S)-M(P) Baa 0.008 0.013 - 0.000 - 0.026

M(P)+M(S) B 2.908 7.437 - 8.876 - 8.971

M(P+S) B 2.904 7.227 [6.812, 7.631] 8.523 [8.028, 9.155] 8.707

M(S) B 0.119 0.508 [0.429, 0.555] 0.661 [0.062, 0.070] 0.637

M(P+S)-M(P) B 0.113 0.298 - 0.308 - 0.373

Table 7: Marginal e�ects of adding a new swap position with a new counterparty rated Aa,

Baa, B. Listed are absolute losses in one-thousandth units of the nominal value. MP, PM and

TCE are related to a 95% percentile niveau, the con�dence intervals are calculated at a 98%

niveau. The time t of the maximum is given in month.

and calculate the measures ME, MP, PM, and TCE without any correction of the loss

process of the portfolio, after that with the Brownian Bridge correction based on a \global"

volatility estimation, and with a \local" volatility estimation, see for details Barth (1998).

Results are given in table 8: In opposite to the e�ect of the correction applied to a single

contract there is few in
uence of the Brownian Bridge correction method on the considered

measures. This will change partially when the response is taken into account.

Method ME t MP t conf. PM conf. TCE t

without 0.15 24 0.36 24 [0.33, 0.39] 0.47 [0.46, 0.50] 0.47 24

global 0.16 23 0.37 24 [0.35, 0.41] 0.47 [0.46, 0.51] 0.48 23

local 0.16 23 0.37 23 [0.35, 0.41] 0.47 [0.46, 0.51] 0.48 23

Table 8: Brownian Bridge correction (with \global" and \local" volatility estimates) compared

to the values without correction. Results are given in basispoints of the gross nominal value.

MP, PM and TCE are related to a 95% percentile niveau, the con�dence intervals are calculated

at a 98 % niveau. The time t of the maximum is given in month.
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3.2 With Response

The no-response case has set a reference for the measures ME, MP, PM, and TCE. Now

the role of the response between the default risk and the interest rate is explored. In the

following �rst three sections only the exponential response function eq.(2) is considered,

after that other response functions are studied. At last a portfolio with di�erent response

functions for di�erent counterparties is investigated as the \most realistic" case of the

study presented in this paper.

Dependency of the Strength of the Correlation: Exponential Correlation

The e�ects of the response strength k used in eq.(2) for the dependency of the (known)

default intensity Sa(r) on the interest rate r is one of the main subjects of this investi-

gation. We assume that the counterparties could be divided into four \response classes":

One class with a slight negative response (�1), one with a vanishing response (0), one

with a slight positive response (+1) and the last one with a strong positive response (+4).

We vary the absolute response strength with a scalar multiplicate k of this \response

vector" (�1; 0;+1;+4), where we choose k = 0; 2; 4; 6; 8. The case k = 0 corresponds

to no response between the interest rate and the default probability. For example, if

counterparty a responds with coe�cient �1, the response coe�cient ka in eq.(2) writes

ka = k(�1). In Barth (1999) empirical evidence (see D�ullmann et al. (1998), Du�ee

(1996b), and Longsta� and Schwartz (1995)) is reviewed for calibrating the parameter ka

of these functions. It results that the parameter ka should be chosen out of the interval

[�32; 32] which is done here.

As described in the last section, the portfolio is drawn randomly and then kept �xed. 1000

realisations of the short rate process r are performed. For each realisation the losses at

all the points in time are calculated for the di�erent response parameters k = 0; 2; 4; 6; 8.

To give a qualitative impression of the impact of the response stength k on the resulting

data, the discounted maximal loss (over the given time interval) of each realisation of r

is plotted in �gure 3. For each k, the data set gives the distribution of the maximal loss.

The measure PM is the upper percentile of this distribution10.

By analyzing �gure 3, several observations can be done:

10 The other measures ME, MP, and TCE are not based on this distribution but on the marginal distri-

butions, which are not given here.
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Figure 3: Maximum loss (in basispoints of the nominal value) versus the number of the re-

alisation under the exponential response function eq.(2). Each �gure is based on the same

realisations, but calculated with di�erent response strength k = 0; 2; 4; 6; 8.
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� It exists a \ground level" of the maximal loss: This ground level (� 0:2 : : : 0:3

basispoints of the nominal value) might correspond to the average loss, if only the

losses in ordinary market situations are regarded. This ground level seems to be

una�ected by the response strength.

� Without response the losses seem to be distributed without \fat tails": There are

some peaks, but these peaks did not exceed the threefold ground level. With re-

sponse the situation changes: The ground level remains the same, but the peaks are

much more distinct. The peaks grow with the response strength k.

� But not all the peaks which appear in the case of no response are getting very

large, only a few. Therefore the peaks in the case with response are not only an

\exponential rescaling" of the peaks in the case of no response. For example one

could compare the losses for two realisationen, listed in table 9 and pictured in

�gures 4 and 5: Though there is a higher loss for realisation #603 than #604 for

k = 0, the loss in #604 grows fastly in opposite to #603 for k > 0: In case of #603

there is a sudden drop of the interest rate at the beginning of the time-periode, which

causes the height of the losses. But the height of these losses is less in
uenced by

the response than the losses in case of #604, which is due to a rise of the interest

rate at the end of the time period.

� The graphs for the case of strong response resemble some graphs which appear in the

context of insurances, for instance �re insurance data: claime sizes plotted against

time (compare Embrechts et al. (1997)).

Abs. corr. str. k 0 2 4 6 8

Max. loss (bp/nom): #603 0.34 0.32 0.32 0.31 0.36

Max. loss (bp/nom): #604 0.27 0.41 0.89 2.38 7.09

Table 9: Comparison of the maximal losses of the same portfolio for two realisations with

varying response strength k. Results are given in basispoints of nominal value.

We did these simulations with three di�erent realisations of the random portfolio. For

each portfolio the qualitative observations remain the same, though the ground level shifts.

There are larger di�erences for the measures PM, MP, and TCE for these three portfolios,

results are listed in table 10. We refer to the portfolio which data are displayed in �gure

3 as portfolio 1 in table 10.
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Figure 4: Realisation #603: \Normal scenario": The loss (in basispoints of the gross nominal

value) is plotted versus time (number of months), given an exponential response function with

response strength k = 0 (checks), 2 (stars), 4 (squares), 6 (triangles), 8 (circles).

These large di�erences are not surprising because it is to be expected that measures which

are concerned by the tails of the marginal distributions or the maximum distribution are

more sensitive to changes in the portfolio than an average value, which is represented

in this investigation by the ground level. The most important result: The measure PM,

which is based on the distribution of the pathwise maximum, and the measure TCE,

which is based on exceedances over a threshold, are much more concerned by the heavy

tails than the measure MP, which is based on the maximum of the percentiles of the

marginal distributions. In other words: PM does not recognize the high peaks caused by

the introduction of the response, MP and TCE do. For this reason we conclude that the

measures MP and TCE are more suited as worst case measures than PM.

Size E�ects, Marginal E�ects and Subadditivity: Exponential Correlation

As it was done in the case without any response, we study now size and marginal e�ects

in the case with response: Again we calculate the weighted average of the (relative) losses

reported in table 10 for the portfolios 1, 2, and 3, based on the investigation with a
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Figure 5: Realisation #604: \Catastophe": The loss (in basispoints of the gross nominal value)

is plotted versus time (number of months), given an exponential response function with response

strength k = 0 (checks), 2 (stars), 4 (squares), 6 (triangles), 8 (circles).

strong response (k = 8) modelled by the exponential function eq.(2), As weights the

gross nominal values are used. As the loss of a \large" portfolio we consider again the

(relative) loss of the sum of the portfolios 1, 2, and 3, which constituts a portfolio with

150 counterparties. This is done for several di�erent response strengths k = 0; 2; 4; 6; 8,

results are listed in table 11. For details and nomenclature see the corresponding section

above (no response).

While the maximum of the expectation values ME di�ers only slightly, the measures MP,

PM, and TCE di�er to a larger extend when these measures are applied to the large

portfolio instead of taking the average over the sub-portfolios (as it was done in the case

without any response). But it is no longer true that MPA (or PMA, TCEA) is even

smaller than the smallest MP (or PM, TCE) for each single portfolio 1, 2, or 3: This is

due to the large di�erences in these measures between the single portfolios 1, 2, and 3.

For example will portfolio 3 be mainly responsible for the heavy tail measured by PM

and TCE for the large portfolio in the case k = 8. But diversi�cation e�ects are still very

strong even in this case, so that the statement of Hull (1989) can by supported in this

study too.
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k Portf. ME t MP t conf. PM conf. TCE t

0 #1 0.15 18 0.33 18 [0.31, 0.34] 0.39 [0.38, 0.42] 0.38 24

0 #2 0.09 24 0.23 24 [0.21, 0.26] 0.28 [0.26, 0.30] 0.29 24

0 #3 0.16 18 0.38 23 [0.34, 0.43] 0.52 [0.49, 0.56] 0.50 24

2 #1 0.15 18 0.33 18 [0.31, 0.35] 0.41 [0.40, 0.44] 0.41 30

2 #2 0.10 24 0.25 24 [0.23, 0.30] 0.37 [0.35, 0.42] 0.37 24

2 #3 0.17 24 0.48 22 [0.39, 0.55] 0.77 [0.70, 0.87] 0.70 24

4 #1 0.16 18 0.34 30 [0.31, 0.38] 0.54 [0.49, 0.63] 0.53 30

4 #2 0.11 24 0.32 36 [0.27, 0.40] 0.61 [0.56, 0.71] 0.56 30

4 #3 0.20 24 0.63 22 [0.49, 0.75] 1.35 [1.18, 1.68] 1.35 47

6 #1 0.17 24 0.38 54 [0.30, 0.45] 0.91 [0.77, 1.20] 1.06 48

6 #2 0.14 30 0.44 36 [0.34, 0.59] 1.14 [0.94, 1.48] 1.00 30

6 #3 0.32 46 0.85 47 [0.59, 1.15] 2.68 [2.24, 3.31] 3.96 46

8 #1 0.28 48 0.51 54 [0.39, 0.68] 1.79 [1.46, 2.81] 3.50 47

8 #2 0.20 30 0.65 40 [0.45, 0.82] 2.40 [1.77, 3.40] 2.22 66

8 #3 0.93 46 1.30 47 [0.84, 1.89] 5.32 [4.53, 7.11] 15.70 46

Table 10: Three di�erent portfolios, losses in dependency of the response strength k. In case

of: portfolio 1 1026 runs are done, portfolio 2 1010, portfolio 3 1000. Results are given in

basispoints of the gross nominal value. MP, PM and TCE are related to a 95% percentile

niveau, the con�dence intervals are calculated at a 98% niveau. The time t of the maximum is

given in months.

k MEA AME MPA AMP PMA APM TCEA ATCE

0 0.13 0.13 0.23 0.31 0.27 0.39 0.27 0.39

2 0.14 0.14 0.26 0.35 0.34 0.50 0.33 0.48

4 0.15 0.16 0.33 0.42 0.57 0.80 0.54 0.78

6 0.19 0.21 0.46 0.54 1.14 1.51 1.51 1.90

8 0.43 0.45 0.74 0.79 2.87 3.03 5.92 6.73

Table 11: Size e�ects for di�erent response strengths. Results are given in basispoints of the

gross nominal value. MP, PM and TCE are related to a 95% percentile niveau, the con�dence

intervals are calculated at a 98% niveau.

Similar to the investigation of the subadditivity in the case without any response, We

consider a new counterparty with varying credit rating (Aa, Baa, B), but with a �xed
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strong positive response (+4) of the default intensity to the interest rate, modelled by the

exponential function eq.(2), see table 12.

E�ect Rat. ME MP conf. PM conf. TCE

M(P) - 3.66 9.01 [7.21, 12.00] 22.57 [18.12, 34.39] 25.54

M(P)+M(S) Aa 3.68 9.07 - 22.84 - 25.87

M(P+S) Aa 3.67 9.07 [7.26, 12.10] 23.19 [18.40, 34.84] 25.74

M(S) Aa 0.02 0.06 [0.04, 0.07] 0.28 [0.20, 0.44] 0.32

M(P+S)-M(P) Aa 0.01 0.06 - 0.62 - 0.200

M(P)+M(S) Baa 3.73 9.22 - 23.55 - 26.69

M(P+S) Baa 3.71 9.22 [7.28, 12.30] 23.56 [18.84, 36.18] 26.23

M(S) Baa 0.07 0.21 [0.13, 0.26] 0.98 [0.71, 1.55] 1.15

M(P+S)-M(P) Baa 0.05 0.21 - 1.00 - 0.69

M(P)+M(S) B 4.63 11.88 - 36.11 - 41.49

M(P+S) B 4.33 11.86 [8.39, 14.30] 33.10 [27.58, 52.61] 35.07

M(S) B 0.97 2.87 [1.84, 3.64] 13.54 [9.80, 21.45] 15.95

M(P+S)-M(P) B 0.67 2.85 - 10.54 - 9.53

Table 12: Marginal e�ects of adding a swap position (swap 3) with a new counterparty with

rating Aa, Baa, B and a strong positive (+4) exponential response. Listed values are absolute

losses in one-thousandth units of the nominal value. MP, PM and TCE are related to a 95%

percentile niveau, the con�dence intervals are calculated at a 98% niveau.

There are two important results: First, the subadditivity is not valid in all cases: In the

case of the measure PM the marginal e�ect is larger than the measure of the new coun-

terparty alone. This implies that the capital requirement is lower if the new counterparty

is booked separately from the portfolio, which does not make sense from the viewpoint

of diversi�cation. Artzner et al. (1998) have given other examples for the non-validity

of the subadditivity of percentile-based risk measures. But they prooved that the TCE

measure is coherent, i.e. that the marginal e�ects are always lower than the stand-alone

e�ect. The results of this study do not contradict this statement. Second, the e�ect of one

contract with one counterparty with a low credit rating and a large response coe�cient

gives an important contribution to the heavyness of the tail: If the new counterparty is

rated \B", more than one-third of the TCE of the extended portfolio is determined by

this one contract.

27



Du�ee (1996a) stresses the fact that the marginal impact of one contract to the credit risk

of the portfolio is more important to consider than the credit risk of the contract itself,

i.e. the contract should be seen only in the context of the portfolio. But he concentrats

on percentile-based measures which are not coherent. Given a subadditive risk measure,

the credit risk of the contract alone is an upper bound to the marginal e�ect to the credit

risk of the portfolio by this contract. With this, the warning of Du�ee (1996a) is not

important when coherent measures of credit risk are regarded.

Brownian Bridge Correction: Exponential Correlation

As it was done in section 3.1 without any response, the Brownian Bridge correction method

is now applied in the case with exponential response function. It is important to inves-

tigate the e�ects of this correction method for the worst case measures in the case with

response between the interest rate and the default intensity, because due to the resulting

higher volatility the e�ects of this correction method might lead to di�erent results than

in the \harmless" case of no response, see above. Therefore we choose portfolio 3 (see

table 10) because this portfolio displays the most extreme behaviour of all the portfolios

regarded in this investigation. As could be seen in the last two sections, the di�erences

between the worst case measures are getting larger with the response strength. What role

will the Brownian Bridge correction play? We performed 1240 realisations with portfolio

3, results are displayed in table 13.

Several observation can be done:

� The e�ects of the Brownian Bridge correction to the measures MP and TCE are

getting larger with increasing response strength.

� There is nearly no e�ect of the correction to the percentile of the pathwise maximum

PM. This is in opposite to the application of the Brownian Bridge correction of single

swap exposures.

� Only for the strong response with k = 8 there is a large di�erence between the

correction with the \local" or \global" estimation of the volatility (see Barth (1998))

for the measures MP and TCE. In the other cases there are nearly no di�erences.

The last item is one of the reasons why we will not apply the Brownian Bridge correction

further: A more sophisticated method for estimating the volatility would be needed to give

a unique result. Another reason is that it would be necessary to determine the volatility
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k Method ME t MP t conf. PM conf. TCE t

0 without 0.15 24 0.36 24 [0.33, 0.39] 0.47 [0.46, 0.50] 0.47 24

0 global 0.16 23 0.37 24 [0.35, 0.41] 0.47 [0.46, 0.51] 0.48 23

0 local 0.16 23 0.37 23 [0.35, 0.41] 0.47 [0.46, 0.51] 0.48 23

2 without 0.16 30 0.44 30 [0.39, 0.48] 0.70 [0.66, 0.78] 0.67 36

2 global 0.18 29 0.46 29 [0.41, 0.51] 0.70 [0.66, 0.78] 0.68 35

2 local 0.18 29 0.46 29 [0.41, 0.51] 0.70 [0.66, 0.78] 0.69 35

4 without 0.19 36 0.60 42 [0.50, 0.70] 1.20 [1.07, 1.41] 1.20 40

4 global 0.21 29 0.64 41 [0.53, 0.76] 1.20 [1.07, 1.41] 1.30 41

4 local 0.21 29 0.64 41 [0.53, 0.76] 1.20 [1.07, 1.42] 1.30 41

6 without 0.28 36 0.86 42 [0.70, 1.08] 2.27 [2.02, 2.81] 2.69 39

6 global 0.31 41 0.95 41 [0.76, 1.19] 2.27 [2.02, 2.81] 2.92 39

6 local 0.38 43 0.96 41 [0.77, 1.20] 2.28 [2.02, 2.82] 2.92 39

8 without 0.51 39 1.27 42 [1.00, 1.66] 5.01 [4.04, 6.08] 7.05 39

8 global 0.59 41 1.46 41 [1.10, 1.93] 5.01 [4.04, 6.08] 7.71 39

8 local 1.26 43 2.20 43 [2.04, 2.35] 5.02 [4.11, 6.21] 7.72 38

Table 13: Brownian Bridge correction (with \global" and \local" volatility estimates) compared

to the values without correction for di�erent response strengths k. Results are given in basis-

points of the gross nominal value. MP, PM and TCE are related to a 95% percentile niveau,

the con�dence intervals are calculated at a 98% niveau. The time t of the maximum is given in

months.
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much more precise at the times in which the credit risk of the portfolio is very large. For

doing this more computing power is needed. Otherwise the results are not stable. And

because we are interested in the worst case we think it is better to have stable results

which are maybe a little bit to low than unstable large results, which are not reliable.

Other Correlation Functions

Up to now only an exponential function was examined as response function Sa. But the

response behaviour might not be described \correctly" by this function. In this section

we regard three other response functions: As listed in section 1, we consider the quadratic

eq.(3), linear eq.(4), and the square-root function eq.(5).

But in opposite to eq.(4) and �gure 1, We let the linear function go to 0 instead of the

\start level" Sl
a(r(0)) for large \favourable" interest rate moves ka(r(t) � r(0)) < 0 (as

seen from the counterparty), i.e. instead of eq.(4) we use

Sl
a(r(t)) = Sl

a(r(0))max f0; 1 + ka(r(t)� r(0))g : (16)

The reason for this is that the investigation of eq.(4) is received as a by-product of the

mixed-function investigation of the next section. Here it is studied whether a \reversed

symmetrical" response function as eq.(16) in regard to the start level (the absolute value

of the e�ect on Sa of a favourable interest rate move has the same size as the unfavourable

move of the same magnitude) leads to signi�cant di�erent results than without response.

As described above, we consider four di�erent response coe�cients ka. The responsive-

ness to interest rate changes of the default risk of each counterparty in the portfolio is

characterized by ka. In opposite to the previous approach we consider the four coe�cients

k times ( �4, �1, +1, +4) instead of k times ( �1, 0, +1, +4): Beside the investigation

of the dependency of the reponse function it is interesting to see whether the response

e�ects disappear in the case of a non-biased distribution of the response coe�cients. We

choose again k = 0; 2; 4; 6; 8. All the e�ects of these di�erent responses are calculated

on base of the same realisations of the short rate. After performing 1067 realisations the

values in table 14 result.

The linear and square root response function lead to nearly the same values for all mea-

sures compared to these measures in the case without response. The linear function

eq.(16) allows the counterparty to drop out of the credit risk calculation. In the following

section the linear response function eq.(16) is replaced by eq.(4), which leads to larger

values. This e�ect can also be seen at the results of the square-root response eq.(5),
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function ME t MP t conf. PM conf. TCE t

no corr. 0.09 18 0.21 18 [0.20, 0.23] 0.25 [0.24, 0.27] 0.26 18

root 0.09 18 0.24 18 [0.22, 0.25] 0.29 [0.27, 0.31] 0.30 18

linear 0.08 18 0.20 24 [0.17, 0.22] 0.26 [0.24, 0.31] 0.28 18

quadr. 0.10 18 0.28 24 [0.24, 0.33] 0.48 [0.41, 0.58] 0.52 24

expon. 0.11 24 0.28 24 [0.22, 0.37] 0.69 [0.56, 1.05] 0.78 24

Table 14: Di�erent response functions are applied to all counterparties of the same portfolio.

We only report results without response and for the strongest response k = 8. Results are given

in basispoints of the gross nominal value. MP, PM, and TCE are related to a 95% percentile

niveau, the con�dence intervals are calculated at a 98% niveau. The time t of the maximum is

given in months.

which are slightly higher than the linear results, though the square-root response has a

slower increase for unfavourable interest rate moves than the linear response. But the

square-root response functions is not allowed to drop under the start level.

In the case of the quadratic and exponential response MP changes only a little too, but

PM and TCE change much more. In other words, the quadratic and exponential response

function are responsible for heavier tails in the loss distribution, which is only recognized

by the PM and TCE measure.

The response e�ects are not vanishing in consequence of the \non-biased" distribution of

the response coe�cients: There is some \asymmetry" of credit risk: In \good" cases (for

the regarded counterparty) the credit risk will not disappear, but in \bad" cases it might

increase dramatically.

Mix of Correlation Functions

In this section the most realistic numerical investigation of this paper is described. The

counterparties are divided into several classes. Each of these classes is interpreted as one

\sector" (for example industry, bank, insurance company, . . . ). The response behaviour of

all the counterparties in one sector is qualitatively the same. But each sector has another

response function. In this approximation it is only necessary to determine the response

function for each sector instead of each counterparty. This is more realistic because there

are more data available for each sector than for each counterparty. Estimations as in

D�ullmann et al. (1998), Du�ee (1996b) and Longsta� and Schwartz (1995) could be

improved and applied. We distinguish six di�erent sectors by introducing six di�erent
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sorts of response functions: Quadratic as in eq.(3), linear as described in eq.(4), and

exponential as in eq.(2), each with positive and negative sign of the response coe�cient

ka.

The absolute value of the response coe�cient is not �xed within each sector: In each

sector there are members with di�erent credit quality as measured by the rating. Du�ee

(1996b) describes that the (absolute) responsiveness of the change in the yield spreads

grows as the credit rating gets lower. This behaviour is modelled here for the (relative)

responsiveness which is given by ka in eq.(2), eq.(4), and eq.(3): ka is dependent of the

rating of the counterparty and not (as in the last sections) drawn randomly. We used

again six rating classes, but we took another estimate of the default intensities. These

default intensities are used as initial values for Sa(r) at time 0. The chosen ka and the

default intensities are given in table 15.

Rating Aaa Aa A Baa Ba B

Intensity Sa (bp/y) 7 9 20 50 195 400

Resp. coe�. ka 6 6 12 18 24 24

Table 15: Averaged default intensities over ten years in basispoints per year estimated on the

time period 1970-1993 by Moody's reported in Fons (1994) and response coe�cients, dependent

on the rating.

We vary the mapping of the response functions to the di�erent sectors. This is done with

two purposes in mind: First, how important is the variation of the response function of

one sector with the other sectors �xed? Second, is there a \dominance" of the sector

with the strongest response dependency (i.e. the exponential response) over the other

sectors (which might be only correlated linearly or quadratically), especially in worst case

scenarios? If this should be the case, the credit risk management could concentrate on

the counterparties which belong to this sector and ignoring the others sectors to get an

impression of a worst case scenario.

After generating a �xed portfolio with each counterparty related with one sector, We

investigate ten di�erent mappings of reponse functions, as described in table 16. The �rst

mapping corresponds to no response at all. In the other cases the sign gives the sign of

the coe�cient k, the absolute value of k is determined by the tabular above. \lin", \qua",

and \exp" refer to the sort of reponse function.
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# sec. 1 sec. 2 sec. 3 sec. 4 sec. 5 sec. 6

0 - - - - - -

1 �lin �lin +lin +lin +lin +lin

2 �lin �lin +lin +lin +lin +qua

3 �qua �lin +lin +lin +lin +qua

4 �qua �lin +lin +qua +qua +qua

5 �qua �qua +qua +qua +qua +qua

6 �lin �lin +lin +lin +lin +exp

7 �qua �lin +lin +lin +qua +exp

8 �exp �qua +lin +qua +exp +exp

9 �exp �exp +exp +exp +exp +exp

Table 16: Mapping of the reponse functions to the di�erent sectors of the counterparties.

To diminish the probability of special portfolio e�ects we run this simulation with 100

counterparties. Due to limited computing power only 551 realisations are done. Table 17

gives the results.

# ME t MP t conf. PM conf. TCE t

0 0.11 18 0.24 18 [0.21, 0.26] 0.32 [0.30, 0.36] 0.30 24

1 0.14 18 0.40 22 [0.30, 0.47] 0.72 [0.60, 0.91] 0.61 36

2 0.14 18 0.40 22 [0.30, 0.47] 0.72 [0.60, 0.91] 0.61 36

3 0.14 18 0.40 22 [0.30, 0.47] 0.72 [0.60, 0.91] 0.61 36

4 0.15 36 0.42 22 [0.30, 0.53] 1.21 [0.86, 1.54] 1.10 60

5 0.15 36 0.43 22 [0.30, 0.54] 1.25 [0.90, 1.59] 1.10 60

6 0.14 18 0.39 22 [0.30, 0.47] 0.72 [0.60, 0.91] 0.60 36

7 0.14 18 0.39 22 [0.30, 0.49] 0.84 [0.67, 1.10] 0.71 36

8 0.16 60 0.43 22 [0.29, 0.56] 1.39 [0.94, 1.85] 1.87 64

9 0.32 64 0.48 22 [0.33, 0.65] 1.83 [1.19, 2.83] 5.18 64

Table 17: Portfolio losses for di�erent mappings of the response functions to the counterparties.

Results are given in basispoints of the gross nominal value. MP, PM and TCE are related to a

95% percentile niveau, the con�dence intervals are calculated at a 98 % niveau. The time t of

the maximum is given in months.
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Several observations can be done, though they may depend on the special structure of the

portfolio (we cannot do more than exemplary studies here, but the same method might

be applied more generally):

� The introduction of the response leads to a strongly increased credit risk, regardless

which measure is considered.

� Except in the case of mapping 9 the tail measures PM, MP and TCE are much

more sensitive to changes in the response behaviour than the ground level ME.

� Regarding mappings 8 and 9, the measure TCE is much more concerned with the

strong response than PM. Only in these two cases TCE exceeds PM.

� The variation of the response function of sector 6 (see mappings 1, 2, and 6) alone

does not change the credit risk. Sector 6 does not seem to be very sensitive to the

kind of the response.

� By regarding mappings 4, 5, 8, and 9 one might conclude that the counterparties in

sector 4 are responsible to a large amount of the behaviour of the loss distribution,

both for the ground level ME and the tails MP, PM and TCE. Somewhat surprising

is the strong rise of the ground level ME in the case 9 of only exponential response

functions. In the case of this special portfolio this observation might give a hint to

the credit risk management to pay attention to sector 4.

A further idea is to take the average of each measure over all the di�erent mappings. This

might take account of the uncertainty about the representation of the response function of

each sector. A possible practicable procedure could be: After sorting the counterparties

into di�erent sectors, one derives several possible response functions. The parameters

might be taken from an estimation for small movements in the interest rate, like given

in Du�ee (1996b). Then a simulation like the one described above is run. By taking

the (maybe weighted) average over the resulting measures one achieves a picture of the

response without relying on one special response function.

4 Extensions

The points listed here are ideas for extending the work:
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� As an extension to the percentile-based approach eq.(10) one could consider the

following situation: If the credit loss is netted with the gain through a (deterministic)

premium payment function Pa(t), an extension of the approach eq.(10) could be

given by:

Prob

"
1

B(0; t)

NX
a=1

h�
V +
a (t)+Pa(t)

�
Ia(t)�Pa(t)

i
>V0 for one t 2 [0; T ]

#
� 1� q: (17)

This is the situation of the classical risk theory, cf. for example B�uhlmann (1970).

We think of the situation of a �nancial intermediary, who receives a premium Pa for

each counterparty. This premiumpayment should be dependent on the credit rating

of the counterparty (and of the contracts with this counterparty). The intermediary

might balance his portfolio in the sense that he is not facing any market risk by

o�setting every position with di�erent counterparties. He earns the premium and is

only exposed to credit risk, cf. Levis and Suchar (1994). Introducing deterministic

premium functions as in eq.(17) might give a possibility to calculate a dependency

of these premia and the risk-based capital, but will not change the model essentially.

Given a �xed set of contracts which are traded by this intermediary: If this interme-

diary is able to vary over the positions with the di�erent counterparties, he wishes

to minimize the credit loss and maximize the gain through the premia payments

under the constraint that there is no o�set.

� It would be interesting to apply the techniques of the extreme value theory, for

instance the Peaks-Over-Threshold �tting with generalized Pareto distributions, cf.

Embrechts et al. (1997) to the data generated by this model.

5 Conclusion

Based on the model derived in Barth (1999), in chapter 2 several di�erent measures of a

worst case credit risk scenario were discussed. These measures were discussed qualitatively

and numerically: The �rst measure (MP) is given by the maximum of the percentiles of

the marginal loss distribution. The second measure (PM) is de�ned as an upper percentile

of the distribution of the pathwise maximum of the loss. The third measure (TCE) is

de�ned as the maximum of the conditioned expectation values of all the marginal loss

distributions, given that the loss exceeds an upper percentile. Due to the fact that by

determining numerically one measure the other measures are also given without much
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more expenses in computing power, a simultaneous use of all three will give well-founded

informations about possible worst case scenarios.

This is explored in chapter 3 where the technique and results of a simulation study of a

large portfolio of interest rate swaps is described. As implied by the model, an interaction

between the interest rate and the default intensity is incorporated. Di�erent functions

which model this response of the default intensity to interest rate changes are investigated:

The heavyness of the tails of the loss distribution is sensitive to the kind of response. It

seems to be very important to incorporate such a response for describing worst cases.

These \fat tails" could only be detected by the PM and the TCE measure. The MP

measure is not sensitive enough.

In the last section of chapter 3 the most realistic investigation of this paper is presented:

The counterparties are divided into several sectors. All the counterparties in one sector

have the same response function, but di�erent response strength due to their default

probability. The mapping of several response function to the sectors is varied. It is

demonstrated that this is a valuable tool to detect dangerous segments of the portfolio.

With proposals of possible extensions the paper concludes.
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