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Abstract

By means of simulations I investigate a two-speed dynamic on
strategies and preferences in the prisoners’ dilemma and in the chicken
game. Players learn strategies according to their preferences while
evolution leads to a change in preference composition. With complete
information cooperation in the prisoners’ dilemma is often achieved,
with ”recirpocal” preferences. In the chicken game a symmetric cor-
related strategy profile is played that is as efficient as the symmetric
equilibrium. Among preferences only pure ”hawkish” preferences and
”selfish” preferences survive. With incomplete information, the sym-
metric equilibrium of the material payoff game is played. All types of
preferences are present in the population in the medium run.
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1 Introduction

Suppose that pairwise interactions in a large population can be represented
by a certain game, payoffs in which have a direct influence on fitness of
individuals. Individuals are randomly matched to interact. Individuals can
be driven by idiosyncratic factors other than fitness, like sympathy towards
the opponent, altruism, biases towards a particular action, or spitefulness.
They change their actions to achieve higher subjective utility as represented
by these factors, while evolution changes the proportions of preferences in
the population according to the underlying fitness. This paper analyzes what
preferences and what actions survive in the medium to long run when the
underlying fitness game is either a prisoners’ dilemma or a chicken (hawk-
dove) game.

There are two distinct dynamic processes in the model. One is a learning
process on strategies based on the subjective preferences of players. The other
is an evolutionary process on preferences based on fitness. Arguably, learning
is faster than evolution. This idea is taken to extreme in the indirect evolution
approach, initiated in Güth and Yaari (1992), where learning is infinitely
faster than evolution, and the play is assumed to converge to an equilibrium
of the game with subjective preferences before evolution proceeds. The main
differences of the model in this paper from the indirect evolution approach
are the following. First, learning, though being faster, is not assumed to
converge before evolution operates. Second, evolution is modeled explicitly,
and not through the static evolutionary concepts of evolutionary or neutrally
stable strategy.

It has been shown that the results of indirect evolution are sensitive to
the set of admissible preferences (see Bester and Güth (1998), Bolle (2000)
and Possajennikov (2000)). Therefore I consider as large a set of admissible
preferences as possible. Ideally, all (von Neumann-Morgenstern) preferences
should be allowed. However, due to computational limitations only a finite
subset of all preferences can be considered. Also, in large games the set of
admissible preferences is too large, so I focus on symmetric 2 × 2 games,
prisoners’ dilemmas and chicken games being in this class of games. In these
games all important types of preferences are covered by the finite set of
preferences I consider.

I look at two informational models. In one model the individuals know
the preferences of the opponent in a match, so they can condition their
strategy on those preferences. In the other model the individuals do not
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observe the preferences of the opponent, therefore they have to use the same
strategy in every match. The second model also requires a special model
of imitation learning, since it is logical to assume that individuals cannot
observe preferences when imitating either.

There have been theoretical models of indirect evolution with all pref-
erences allowed. Ely and Yilankaya (2001) analyze such a model with a
continuous preference distribution, a setting that is not possible to simulate.
Dekel et al. (1998) and Possajennikov (2002) analyze stability of finite dis-
tribution of preferences by means of static stability concepts. It is shown
that with complete information only efficient symmetric strategy profiles can
be stable, but there is no stable strategy profiles in two-speed evolution of
strategies and preferences in prisoners’ dilemmas and in chicken games. In
this paper I simulate an explicit dynamic model to get additional insight
into the situation. Though there are no completely stable outcomes in these
games, some outcomes are more unstable than others, and simulations can
reveal which outcomes are least unstable. The results of the simulations par-
tially support the superior stability of efficient outcomes: in the prisoners’
dilemma mutual cooperation is observed most often, while in the chicken
game the observed correlated strategy profile is as efficient as the symmetric
equilibrium, and making the grid on the space of preferences finer leads to
higher efficiency.

With incomplete information it is shown that only Nash equilibria of
the underlying fitness game can be stable when learning have converged to
a Bayesian equilibrium. A corollary of this result is that only preferences
that can play this equilibrium survive in the long run. Since I model the
learning process explicitly I consider an imitation learning model that does
not require the unknown information about the preferences of the player that
gets imitated. Despite of this limitation, the play observed in the long run
is in a Nash equilibrium, but preferences change very little. In prisoners’
dilemma, for example, even the individuals who strictly prefer to cooperate
eventually imitate the population to play the dominant strategy ”defect”.

The next section introduces the model. Section 3 discusses the results of
the simulations, and Section 4 concludes.

3



2 The Model of Learning and Evolution

2.1 Games

A symmetric 2 × 2 material payoff game is given by G = (N, S, u) where
N = {1, 2} is the set of players, S = {C, D} is the set of strategies, the same
for both players, and u : S×S → R is the symmetric material payoff function,
u(si, sj) = u1(si, sj) = u2(sj, si) ∀si, sj ∈ S. The function u represents fitness
on which evolution works. The mixed strategy extension of the strategy set
is Σ = ∆S. A mixed strategy can be represented by the probability p of
playing strategy C. The material payoff function extends to the set of mixed
strategy profiles σ = (p1, p2) by u(σ) = p1p2u(C, C) + p1(1 − p2)u(C, D) +
(1−p1)p2u(D, C)+(1−p1)(1−p2)u(D, D). A strategy profile σ is symmetric
if p1 = p2. A symmetric strategy profile σ is efficient if u(σ) ≥ u(σ′) for any
symmetric σ′. A correlated strategy profile σc specifies the probability with
which each pair of pure strategies is played, i.e. σc ∈ ∆(S×S) while a usual
strategy profile belongs to ∆S ×∆S.

For a given strategy pj of player j the best response BRi(pj) of player i
is the set of strategies pi such that ∀qi ∈ Σ u(pi, pj) ≥ u(qi, pj). For a given
strategy profile σ = (p1, p2) the best response correspondence BR(σ) is the
product set BR1(p2) × BR2(p1). A strategy profile σ is a Nash equilibrium
if σ ∈ BR(σ). A Nash equilibrium σ is symmetric if strategy profile σ is
symmetric.

I consider two types of symmetric 2 × 2 games, both represented by the
same matrix

C D
C 1, 1 b, c
D c, b 0, 0

The games are characterized by the relative values of the payoffs:

• Prisoners’ dilemmas: b < 0, c > 1, b + c < 2;

• Chicken games: b > 0, c > 1, b + c > 2.

In prisoners’ dilemmas the unique Nash equilibrium is (D, D) = (0, 0)
with fitness (0, 0), while strategy profile (C, C) = (1, 1) with fitness 1 is the
unique symmetric efficient profile. In a chicken game the unique symmetric
equilibrium is

(
b

b+c−1
, b

b+c−1

)
, while the unique symmetric efficient profile is
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(
b+c

2(b+c−1)
, b+c

2(b+c−1)

)
. The symmetric equilibrium and the symmetric efficient

profile coincide if and only if b = c.

2.2 Preferences

Individuals have subjective preferences over strategy profiles of the game,
represented by a von Neumann-Morgenstern utility functions vi : S×S → R.
The utility functions do not necessarily coincide with the material payoff
function. The utility functions extend to mixed strategy profiles σ = (p1, p2)
in a straightforward way vi(σ) = p1p2vi(C, C) + p1(1 − p2)vi(C, D) + (1 −
p1)p2vi(D, C) + (1− p1)(1− p2)vi(D, D).

I identify preferences with the utility function representing them. I con-
sider as admissible all utility functions. Since a utility function is determined
by its values on the four pure strategy combinations, the set of admissible
preferences is equivalent to R4.

It is convenient to divide the set of admissible preferences into following
types:

1. (St1): vi(C, C) > vi(D, C), vi(C, D) > vi(D, D);

2. (CO): vi(C, C) ≥ vi(D, C), vi(C, D) ≤ vi(D, D), at least one inequality
is strict;

3. (NC): vi(C, C) ≤ vi(D, C), vi(C, D) ≥ vi(D, D), at least one inequality
is strict;

4. (St2): vi(C, C) < vi(D, C), vi(C, D) < vi(D, D);

5. (BB): vi(C, C) = vi(D, C), vi(C, D) = vi(D, D).

Preferences vi belong to type k if vi satisfies the inequalities for type k.
Players with type (St1) preferences perceive the game as having dominant
strategy C, while players of type (St2) think that D is dominant. Type
(CO) players (COordinators or COnformists) perceive that C is a best reply
to C and D is to D, while type (NC) (NonConformists) players prefer to
play C against D and D against C. Finally, there are preferences of type
(BB) (”Big Bores”) for which the strategies are equivalent. The players with
such preferences are indifferent between the strategies for any strategy of the
opponent.
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An interpretation of having different preferences can be seen on the ex-
ample of the prisoners’ dilemma. Agents with type (St2) preferences have
”selfish” preferences in the sense that they rightly perceive D as the domi-
nant strategy. Other agents might not like to let their opponents down and
therefore have a higher subjective utility from mutual cooperation than from
defecting against a cooperator (type (CO) preferences). Yet others can be
heroic unconditional cooperators who derive a higher utility even from being
defected upon, that is, they prefer to sacrifice themselves in favor of the other
player (type (St1) preferences).

Though the agents know their preferences, they do not need to know what
the material payoffs are. Learning leads to strategies that are better with
respect to the subjective preferences. Evolution chooses those preferences
that have higher fitness.

2.3 Evolution and Learning

There is a large (infinite) population of agents who are randomly matched
to play a given material payoff game. Agents do not distinguish the roles of
players (Player 1 or 2). Agents in the population are characterized by the
preferences they have and the strategy they play. They change strategy due
to learning, and the distribution of preferences in the population changes due
to evolution.

2.3.1 Evolution

Suppose that, out of potentially infinite space of preferences, only a finite
number {v1, . . . , vn} is present in the population. The state of the popula-
tion is described by the proportions µ1, . . . , µn, µi > 0,

∑n
i=1 µi = 1 of these

preferences. Agents with given preferences vi form an infinite subpopulation.
Though individuals in the subpopulation can use different strategies and so
have different fitness, evolution depends solely on the average expected fitness
of each subpopulation. Denote the average expected fitness in subpopulation
i from an encounter with a player with preferences vj by uij. Then the aver-
age expected fitness of subpopulation i over all matches is ui =

∑n
j=1 µjuij.

I assume that the proportions change according to the replicator dynamic:

µ̇i = ρeµi

(
ui −

∑
j

µjuj

)
. (1)
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Evolutionary justification of replicator dynamic can be found in Weibull
(1995, Ch.3). The proportion of players with preferences vi grow (resp. de-
cline) if the average expected fitness of these players is higher (resp. lower)
than the average average expected fitness in the whole population.

2.3.2 Learning

With respect to learning I consider two informational setups: complete in-
formation and incomplete information.

Complete Information When matched, agents can observe the prefer-
ences of the opponent and so condition their strategy on those preferences.
The appropriate description of the state of each subpopulation should include
the possibility that they use different strategies against opponents with dif-
ferent preferences. This can be done by a vector xi = (xi1, ..., xin), where xij

is the proportion of the subpopulation of players with preferences vi that play
strategy C against players with preferences vj (and the remaining proportion
1− xij play D).

The state of the whole population is given by the n vectors xi. Since
matching is random, it is as if a player with preferences vi, when matched
with a player with preferences vj, faces mixed strategy xji. The average
expected fitness of a player with preferences vi in a match with preferences vj

is uij = u(xij, xji) = xijxjiu(C, C)+xij(1−xji)u(C, D)+(1−xij)xjiu(D, C)+
(1− xij)(1− xji)u(D, D), so evolution is well defined now.

Since players can condition their strategy on the preferences of the op-
ponent, learning processes against opponents with different preferences are
independent of each other. I postulate the following learning process. Sup-
pose a player with preferences vi has just been matched with a player with
preferences vj, and received subjective utility v̄i. The player knows his utility
function and so can calculate his dissatisfaction γ−δv̄i with the current util-
ity. The probability of revising the strategy is proportional to the degree of
dissatisfaction. When the player revises the strategy he samples at random
another player with preferences vi that has just played against a player with
preferences vj and copies the strategy the sampled player used. In Weibull
(1995, Ch.4) it is shown that such learning behavior gives rise to the dynamic

ẋij = ρlµjxij(vi(C, xji)− vi(xij, xji)) (2)

7



which is also a replicator dynamic but now on strategies and using subjective
utility functions instead of on preferences and using material payoffs like in
evolution. The speed of the dynamic is affected by how often a player is
matched with a player with given preferences vj, which is reflected in the
equation by µj.

Learning is normally faster than evolution, therefore ρl ≥ ρe. The indirect
evolution approach is the limit case when ρl

ρe
→∞, i.e. learning is infinitely

faster than evolution. It also assumes that learning converges to equilibrium
while I do not make this assumption here.

Incomplete Information Assume now that when matched, agents do not
know the preferences of the opponent and so cannot condition their strategy
on this. Then they can only use the same strategy for every match. The state
of each subpopulation can be described by the scalar xi, which represents
the proportion of individuals in the subpopulation using strategy C, with
the remaining proportion 1− xi using strategy D.

The state of the population, apart from the proportions of preferences µi,
is given by the n scalars xi. The average expected fitness in subpopulation
i from an encounter with a player with preferences vj is uij = u(xi, xj) =
xixju(C, C)+xi(1−xj)u(C, D)+(1−xi)xju(D, C)+(1−xi)(1−xj)u(D, D),
which determines evolution.

Again, when learning, players revise their strategy according to dissat-
isfaction with current utility. However, since players cannot observe the
preferences of the opponent, it would be unnatural to assume that they can
observe preferences when imitating. Therefore they imitate ”the first man
on the street”, and they adopt new strategy according to the frequency of
strategies in the whole population x =

∑n
i=1 µixi. Along the lines of Weibull

(1995, Ch.4) the learning process is then given by

ẋi = ρlxi

[
γ

δ

(
x

xi

− 1

)
+

(
vi(C, x)− x

xi

vi(xi, x)

)]
. (3)

There are a few features that make this process different from the usual
replicator dynamic. First, the comparison of performance of a strategy is
against the whole population, not against the distribution in a subpopulation.
Second, there is a bias towards more popular strategy in the whole population
since players imitate a random strategy in the whole population. Note that
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players do not need to know the µ’s, and they do not attempt to learn them,
but they are implicitly taken into account by using x.

Again, normally learning is faster than evolution, ρl ≥ ρe.

2.4 Some Basic Observations

Complete Information In the complete information case the combined
dynamic is

µ̇i = ρeµi

(
ui −

n∑
j=1

µjuj

)
, i = 1, . . . , n; (4)

ẋij = ρlµjxij(vi(C, xji)− vi(xij, xji)), i, j = 1, . . . , n, (5)

where ui =
∑n

j=1 µju(xij, xji). There are, of course, many monomorphic
steady states, since the replicator dynamic cannot bring new preferences or
strategies into the population without perturbation. ”Monomorphic” here
means that either there is only one type of preferences present in the popu-
lation, or that all types use the same strategy, or both. Polymorphic steady
states are also possible, in which for any µi, µj > 0 it holds that ui = uj (
=
∑n

k=1 µkuk), and for any xij ∈ (0, 1) it holds that vi(C, xji) = vi(xij, xji) (
= vi(D, xji)). If xij, xji ∈ (0, 1), then in a steady state subpopulations i and
j play a Nash equilibrium of the subjective game.

To distinguish among various steady states, stability notions are used.
A state is Lyapunov stable if every neighborhood U of it contains another
neighborhood U ′ such that if the dynamic starts in the smaller neighborhood
U ′, it stays in the larger neighborhood U . A state is asymptotically stable
if it is Lyapunov stable and every U contains U∗ such that if the dynamic
starts in U∗ its limit is the steady state.

Possajennikov (2002), using techniques of Dekel et al. (1998), shows that
no population state is indirectly stable in prisoners’ dilemmas and chicken
games. Indirect stability concept stems from the usual indirect evolution
approach, when learning is infinitely faster than evolution. In the present
case, the relative speed of learning with respect to evolution is given by ρl

ρe
,

and this relative speed may influence stability. But even in the limit ρl

ρe
→∞,

a steady state that is not indirectly stable can be asymptotically stable in
the replicator dynamic, since despite a pull away from the steady state in
one direction, the dynamic may converge back to it from another direction.
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Incomplete Information Here the dynamic is

µ̇i = ρeµi

(
ui −

n∑
j=1

µjuj

)
, i = 1, . . . , n; (6)

ẋi = ρlxi

[
γ

δ

(
x

xi

− 1

)
+

(
vi(C, x)− x

xi

vi(xi, x)

)]
, i = 1, . . . , n; (7)

where ui =
∑n

j=1 µju(xi, xj) and x =
∑n

i=1 µixi. Since u(·, ·) is bilinear,∑
j µj

∑
k µku(xj, xk) =

∑
j µju(xj,

∑
k µkxk) = u(

∑
j µjxj, x) = u(x, x).

The first n equations of the system can be rewritten as µ̇i = ρeµi(u(xi, x)−
u(x, x)), i = 1, . . . , n. The second set of equations can be rewritten as
ẋi = ρl

[
γ
δ
(x− xi) + (xivi(C, x)− xvi(xi, x))

]
, i = 1, . . . , n.

As in the complete information case, there are many monomorphic steady
states. In polymorphic steady states, if µi, µj > 0, then u(xi, x) = u(xj, x) =
u(x, x). Then either xi = xj = x, or x is an interior symmetric Nash equi-
librium of the material payoff game. If xi = xj = x, the second n equations
reduce to ẋi = ρlxi(vi(C, x) − vi(xi, x)). Then an interior xi has to be a
Bayesian-Nash equilibrium for preferences vi. If x is an interior symmetric
Nash equilibrium of the material payoff game, then if it is possible to find µi’s,
xi’s such that

∑n
i=1 µixi = x and γ

δ
(x− xi)+(xivi(C, x)− xvi(xi, x)) = 0 for

any i, the system is in a steady state. In this case it is not necessary that
xi is a vi-best response to x. Thus, it is not necessary that in a steady state
the play is in Bayesian-Nash equilibrium, like in standard models of indirect
evolution.

3 Numerical Analysis

The results of Dekel et al. (1998) and Possajennikov (2002) indicate that in
games under consideration with complete information no state is completely
stable but some states are upset by very improbable perturbations only. With
incomplete information only Nash equilibria of the material payoff game can
be stable. I choose a numerical approach of computer simulations to get
additional insight into the situation.

3.1 Simulations

To perform simulations, additional assumptions are needed. The preference
space needs to be discretized, as well as the dynamics.
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I consider one utility function of types (St1), (St2) (since they all will
have learned to use their dominant strategy anyway), and (BB) (since they
all are indifferent among strategies and so will not learn) and six utility
functions of types (CO) and (NC) corresponding to different mixed strategy
equilibria they would play among themselves. All the utilities are normalized
so that vk(C, C) = 1 and vk(D, D) = 0 ∀k. The utility function of type (St1)
is given by vk(C, D) = 1, vk(D, C) = 0; that of type (St2) by vk(C, D) =
−1, vk(D, C) = 2; and that of type (BB) is given by vk(C, D) = 0, vk(D, C) =
1. Utility functions of type (CO) are given by vk(C, D) = −0.2k, vk(D, C) =
0.2k, k = 0, . . . , 5. The symmetric mixed equilibrium of a game between two
players with the same preferences k of type (CO) is thus (p, p) = (0.2k, 0.2k).
For type (NC) utility functions are given by vk(C, D) = 0.2k, vk(D, C) =
2− 0.2k, k = 0, . . . , 5. Again, the symmetric mixed equilibrium of the game
between players with each particular preferences k is (p, p) = (0.2k, 0.2k).

For evolution I take the discrete time version of the replicator dynamic

µt+1
i = µt

i

d + ui

d + u
, (8)

where ui is the average expected fitness in subpopulation i given the state of
the population, and u =

∑
j µjuj is the average average expected fitness in

the population.

Complete Information For the learning with complete information I take
the discrete time linear model of imitation by dissatisfaction. This dissatisfac-
tion and so the probability to change the strategy is measured by γ−δv(s, x),
where v(s, x) is the utility strategy s gets against relevant population profile
x. Suppose that the population size is fixed to N . The number nt

sij of players
in population i playing strategy s against population j is changing according

to nt+1
sij = nt

sij +
∑

s nt
sij(γ − δv(s, xt

ji))
nt

sij

N
− nt

sij(γ − δv(s, xt
ji)). Here the

number of players that change to s is given by the sum of the products of
the probabilities that players are dissatisfied with their current strategies and
they imitate s. The number of players that switch away from s is given by
the probability that they are dissatisfied with it. The induced dynamic on
population shares when N → ∞, taking into account the assumption that
the speed of learning depends on how often interaction takes place is

xt+1
ij = xt

ij

[
1 + µjδ(vi(C, xt

ji)− vi(x
t
ij, x

t
ji))
]
. (9)
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Incomplete Information Learning with incomplete information, as ar-
gued above, has to take into account also the impossibility of observing
preferences when imitating. The discrete time imitation by dissatisfaction
process described above leads to the dynamic

xt+1
i = xt

i

[
1 + γ

(
xt

xt
i

− 1

)
+ δ

(
vi(C, xt)− xt

xt
i

vi(x
t
i, x

t)

)]
. (10)

In both cases in the beginning a random selection of preference propor-
tions and strategy proportions takes place, so that in the initial state all
preferences and all strategies are represented. To represent different speed
of processes, I allow learning to take place for L periods (L = 100 in simula-
tions). Then one period of evolution passes, using the average payoff of play-
ers with each utility function over the 100 periods of learning. Then learning
continues from the learned place further, though with probability 0.05 a ran-
dom shock takes place, with the distribution similar to the truncated normal
one with the mean on the current strategy (offspring do not imitate perfectly
parent’s strategy). Furthermore, a mutation takes place with probability
0.025 (offspring do not inherit perfectly parent’s preferences). One utility
function is chosen at random, and its share is increased by a random number
from interval (0, 0.1), after which all proportions are adjusted so that they
add up to 1. The newly arrived mutants choose their strategy at random.
This model of mutations is the one behind the evolutionary stability analysis
of Dekel et al. (1998) and Possajennikov (2002).

The parameters has to be chosen in such a way that the dissatisfaction
probability is between zero and one and that the replicator dynamic in evo-
lution is well defined. Given the utility functions above, it suffices to have
γ = 0.5, δ = 0.25 to keep the learning dynamics in the simplex. Given the
material payoff games below, d = 2 is enough to keep evolution in the simplex.
Initial proportions of preferences and strategies used by different preferences
are chosen randomly, uniform on types of preferences and on strategies. For
each game, 100 simulations are run for 1000 evolutionary periods each.

3.2 Results

3.2.1 Prisoners’ Dilemma

Complete Information Simulations are done for the prisoners’ dilemma
with b = −1, c = 2. The game has the unique symmetric Nash equilibrium
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Period 1 Period 10 Period 100 Period 1000

(St1)
0.213

[0.009-0.575]

0.019
[0.000-0.104]

0.012
[0.000-0.606]

0.018
[0.000-0.968]

(St2)
0.187

[0.005-0.458]

0.489
[0.030-0.865]

0.060
[0.000-0.757]

0.111
[0.000-0.946]

(BB)
0.190

[0.010-0.432]

0.094
[0.006-0.410]

0.067
[0.000-0.856]

0.051
[0.000-0.792]

(CO)
0.201

[0.000-0.748]

0.261
[0.001-0.801]

0.829
[0.013-1.000]

0.765
[0.000-1.000]

(NC)
0.209

[0.007-0.490]

0.137
[0.010-0.536]

0.032
[0.000-0.934]

0.054
[0.000-0.995]

(C,C)
0.257

[0.110-0.398]

0.059
[0.001-0.408]

0.755
[0.003-1.000]

0.638
[0.000-1.000]

(C,D)
0.238

[0.187-0.274]

0.110
[0.032-0.276]

0.033
[0.000-0.250]

0.034
[0.000-0.248]

(D,C)
0.238

[0.187-0.274]

0.110
[0.032-0.276]

0.033
[0.000-0.250]

0.034
[0.000-0.248]

(D,D)
0.266

[0.165-0.418]

0.721
[0.283-0.935]

0.179
[0.000-0.991]

0.295
[0.000-0.992]

Fitness
0.495

[0.346-0.606]

0.169
[0.033-0.465]

0.788
[0.066-1.000]

0.672
[0.004-1.000]

Table 1: Prisoners’ Dilemma with complete information

(0, 0) with fitness 0, while the unique efficient (also among correlated pro-
files) symmetric strategy profile is (1, 1) with fitness 1. The results of the
simulations are in Table 1. Mean values as well as minimum and maximum
values over 100 simulations are reported.

Starting from uniformly distributed initial conditions in period 1, in pe-
riod 10 one observes the growth of the average proportions of types (St2)
and (CO), with type (St2) growing more. Among strategy profiles, (D, D)
is most often played and average fitness is rather low.

This bleak picture changes dramatically by period 100. In this period
the average proportion of type (St2) has dropped below 0.1 and the average
proportion of type (CO) has grown above 0.8. Among strategies, (C, C) is
now played more often, and the average fitness is well above 0.5, the random
initial fitness. How does this change happen? A sort of secret handshake
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Figure 1: Evolution of types of preferences

story (Robson, 1990) explains it. Players of type (CO) are reciprocators in
that thay play (D, D) against players of type (St2), but may play (C, C)
among themselves, which is also an equilibrium for them and by period 100
it is learned. Among types (CO) the most popular are the types for whom
the efficient equilibrium (C, C) has a larger basin of attraction, but on the
other hand, not too large, since otherwise such types can be exploited for
their inclination to cooperate.

So, everybody is happy, then? Not quite. At period 1000 the average
proportion of cooperators of type (CO) has dropped, as well as the aver-
age proportion of (C, C) plays. To see how this could happen, look at an
individual simulation.

In Figure 1 one can see that most often preferences of type (CO) are preva-
lent. Mutants from other types, however, sometimes invade them, though
not for long. Among strategy profiles, in Figure 2, (C, C) is most often on
the top, though (D, D) also has its peaks. Thus, at any given period it is
possible that mutants have just taken over from the coordinating types, and
mutual defection prevails. The secret handshake story, however, again comes
into play, and the coordinating types return to dominate.

It is possible that mutual defection survives for a long time. The simula-
tions indicate, however, that at any given moment it is more likely to observe
coordinating types cooperate and dominate. Thus the basic conclusion is that
secret handshake works.
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Figure 2: Evolution of strategies

In Dekel et al. (1998) preferences of the type that has D as weakly dom-
inant strategy but that somehow nevertheless plays the (weakly dominated)
equilibrium (C, C) are stable. This equilibrium, however, is not stable with
respect to learning, and in Possajennikov (2002) it is shown that there is no
stable preferences, or stable strategy profiles in prisoners’ dilemma with in-
finite number of admissible preferences. The simulations support this claim,
but they reveal more: at any given moment mutual cooperation is more
probable than mutual defection. In dynamic perpective, longer spells of co-
operation are interrupted by shorter spells of defection.

Incomplete Information Table 2 presents the results of simulations for
the same prisoners’ dilemma game, but with incomplete information.

As can be seen from the table, from uniformly random initial conditions
the play converged to the unique Nash equilibrium (D, D) of the material
payoff game. Already in period 10 strategy D is an overwhelming choice
though in some simulations C is played by a majority. Later, though, D
wins in all simulations. The proportions of types change little, mostly in the
beginning, when the play did not converge yet, and later due to mutations.
Though most of the types are dissatisfied with playing D, since it is the only
strategy played in the population, they do not have an opportunity to change
to C.

The conclusion is that though the proportions of types change little, the
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Period 1 Period 10 Period 100 Period 1000

(St1)
0.212

[0.003-0.507]

0.128
[0.003-0.416]

0.069
[0.002-0.149]

0.062
[0.009-0.133]

(St2)
0.209

[0.006-0.570]

0.293
[0.017-0.580]

0.355
[0.097-0.637]

0.387
[0.164-0.555]

(BB)
0.201

[0.009-0.447]

0.200
[0.009-0.444]

0.196
[0.008-0.460]

0.173
[0.030-0.368]

(CO)
0.198

[0.003-0.437]

0.200
[0.003-0.438]

0.219
[0.003-0.477]

0.254
[0.044-0.492]

(NC)
0.181

[0.010-0.574]

0.179
[0.010-0.572]

0.162
[0.013-0.441]

0.125
[0.026-0.358]

C
0.500

[0.243-0.770]

0.207
[0.000-0.962]

0.002
[0.000-0.033]

0.003
[0.000-0.205]

D
0.500

[0.230-0.757]

0.793
[0.038-1.000]

0.998
[0.967-1.000]

0.997
[0.795-1.000]

Fitness
0.500

[0.243-0.770]

0.207
[0.000-0.962]

0.002
[0.000-0.033]

0.003
[0.000-0.205]

Table 2: Prisoners’ Dilemma with incomplete information

play quickly and without exception converges to the dominant strategy D,
in contrast with the complete information case, where most often the play
was around C. The simulations of the incomplete information case validate
the result of Dekel et al. (1998): only Nash equilibria of the material payoff
game are played in the long run.

3.2.2 Chicken Game

Complete Information I perform simulations for the chicken game with
b = 0.8, c = 2.2. The symmetric Nash equilibrium of such a game is (0.4, 0.4)
with fitness 0.88, and the efficient symmetric strategy profile is (0.75, 0.75)
with fitness 1.125. The results of the simulations are presented in Table
3. Recall that the numbers in each cell of the table are mean values and
miminum-maximum intervals of values over 100 simulations.

Initial conditions are uniformly distributed. Consider now period 10. Al-
ready some growth of types (St2) and (NC) is observed. This trend can
clearly be seen in later periods, where the average proportions of both types
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Period 1 Period 10 Period 100 Period 1000

(St1)
0.195

[0.009-0.464]

0.149
[0.010-0.397]

0.010
[0.000-0.166]

0.011
[0.000-0.078]

(St2)
0.200

[0.011-0.659]

0.250
[0.022-0.545]

0.499
[0.133-0.618]

0.485
[0.085-0.618]

(BB)
0.201

[0.004-0.489]

0.165
[0.006-0.456]

0.008
[0.000-0.619]

0.003
[0.000-0.037]

(CO)
0.200

[0.014-0.614]

0.136
[0.014-0.458]

0.023
[0.001-0.190]

0.031
[0.000-0.384]

(NC)
0.204

[0.001-0.604]

0.300
[0.001-0.578]

0.460
[0.225-0.671]

0.470
[0.353-0.713]

(C,C)
0.266

[0.176-0.514]

0.171
[0.055-0.401]

0.020
[0.005-0.242]

0.013
[0.003-0.055]

(C,D)
0.239

[0.163-0.300]

0.281
[0.150-0.367]

0.292
[0.239-0.339]

0.283
[0.243-0.339]

(D,C)
0.239

[0.163-0.300]

0.281
[0.150-0.367]

0.292
[0.239-0.339]

0.283
[0.243-0.339]

(D,D)
0.255

[0.139-0.354]

0.267
[0.108-0.440]

0.397
[0.281-0.477]

0.421
[0.307-0.504]

Fitness
0.984

[0.870-1.157]

1.014
[0.765-1.218]

0.895
[0.781-1.050

0.862
[0.739-1.032]

Table 3: Chicken game with complete information

(St2) and (NC) almost reach 0.5. Of the remaining preferences types (St1)
and (BB) virtually disappear, while a higher average proportion of type (CO)
remains. A closer inspection of individual simulations reveals that this av-
erage proportion comes from some simulations where type (CO) with k = 5,
i.e. preferences that regard strategy D as weakly dominant, survived. These
preferences are on the border of types (CO) and (St2) and are in this case
better considered as belonging to type (St2). Among type (NC) most often
preferences with low k have the largest proportion. Such preferences are in-
different between strategies when the opponent plays a strategy close to D,
so such preferences play equilibrium (D, C) against other preferences of type
(NC). Due to their aggressiveness they have higher material payoff.

Given that types (St2) and (NC) survive most often, it is not surprising
the in the medium run (D, D) and the off-diagonal strategy profiles (C, D)
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and (D, C) are played most often. In a game between (St2) and (NC) off-
diagonal cells are played, as well as most probably in a game among different
preferences of type (NC). Among (St2) (D, D) is played. The result for
fitness falls short of the fitness achieved with the efficient symmetric strategy
profile. Even the maximal fitness over simulations does not reach efficiency.
The average fitness in period 1000 is even smaller than the equilibrium fitness
0.88, though not by much.

The conclusions one can draw from the results: most often types (St2)
and (NC) survived, and this result is quite robust to initial conditions and
perturbations; a certain correlated strategy profile is played with approxi-
mate weights 0.4 on (D, D) and 0.3 on (C, D), (D, C); players achieve fitness
close to the equilibrium fitness and short of fitness of the symmetric efficient
strategy profile. The results are in contrast with the results of Dekel et al.
(1998) and Possajennikov (2002) who show that no outcome is stable in the
chicken game, and, more generally, inefficient strategy profiles are not stable.
I show that though nothing is stable, the instability rests on a very unlikely
event, and most likely a mixture of ”hawkish” and ”selfish” agents will sur-
vive in the population. Aggressiveness pays in chicken games, at least for a
part of the population.

Incomplete Information Table 4 presents the results for the same game
with incomplete information.

The average proportions of types (St2) and (NC) grow a bit in the be-
ginning but then stabilize. There is very little change in the proportion of
types. This is not surprising since the distribution of strategies becomes
quickly as in the mixed equilibrium and therefore both strategies have the
same fitness. In most simulations the distribution of strategies converges to
the mixed symmetric equilibrium of the material payoff game. In some sim-
ulations, however, the strategy distribution stays long time on D. In all of
these simulations the initial proportion of type (St2) is large relative to (St1).
Players of type (St2) learn to play D, and then the ”popularity bias” leads
to the adoption of D by all other players, before mutations and trembles tip
the play over to the equilibrium strategy.

The conclusion is that an equilibrium of the material payoff game is
achieved (cf. Dekel et al.,1998). It is possible, however, that the play locks
in on a pure strategy for some time, because of the ”popularity bias”. The
proportions of types do not change because any strategy has the same fitness
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Period 1 Period 10 Period 100 Period 1000

(St1)
0.207

[0.007-0.637]

0.186
[0.007-0.504]

0.163
[0.008-0.318]

0.167
[0.020-0.259]

(St2)
0.206

[0.006-0.474]

0.220
[0.011-0.457]

0.231
[0.034-0.432]

0.224
[0.110-0.353]

(BB)
0.197

[0.001-0.476]

0.197
[0.001-0.477]

0.196
[0.001-0.470]

0.202
[0.042-0.392]

(CO)
0.194

[0.002-0.438]

0.191
[0.002-0.415]

0.190
[0.002-0.440]

0.188
[0.059-0.356]

(NC)
0.196

[0.004-0.448]

0.206
[0.004-0.456]

0.219
[0.004-0.483]

0.219
[0.013-0.395]

C
0.496

[0.212-0.764]

0.437
[0.000-0.887]

0.381
[0.000-0.467]

0.401
[0.366-0.460]

D
0.504

[0.236-0.788]

0.563
[0.113-1.000]

0.619
[0.533-1.000]

0.599
[0.540-0.634]

Fitness
0.975

[0.546-1.125]

0.849
[0.000-1.125]

0.840
[0.000-0.965]

0.881
[0.830-0.957]

Table 4: Chicken game with incomplete information

in the mixed equilibrium, and so all types have the same fitness, irrespective
of their actual strategy.

3.2.3 Robustness Check

To see how robust the results are with respect to a change in the parameters, I
perform also simulations with different values of them. In prisoners’ dilemma
with complete information with b = −2, thus more risky cooperation, the
results were less in favor of cooperative behavior: only in about half of the
simulations mutual cooperation with types (CO) is observed in period 1000.
Thus the likelihood of cooperation may depend on the incentives to defect (or
on punishment of being a sucker, as in this case). When material payoffs are
changed in the chicken game to c = 4.2, the results are similar to the ones
above: most often types (St2) and (NC) survive, and the played strategy
profile is a correlated one with weights on (C, D), (D, C) and (D, D). The
fitness in period 1000 is between the equilibrium fitness 0.84 and the efficient
fitness 1.5625, and closer to the former. This confirms that efficiency is not
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easy to achieve in chicken games. With incomplete information the change in
the material payoff parameters did not influence the results: in a prisoners’
dilemma with b = −1

2
, despite the lower punishment for cooperation against

a defector, mutual defection is established, while all types of preferences are
present; in a chicken game with c = 4.2 in most simulations the equilibrium
is played, and all types are present in period 1000.

The increase in the number of preferences of types (St1), (St2), and (BB)
changes the results neither in the prisoners’ dilemma nor in the chicken game.
The enlargement of the set of preferences of types (CO) and (NC) increases
the proportion of mutual coordination but mutual defection is also observed
in the prisoners’ dilemma with complete information. In the chicken game
with complete information the average fitness is higher and closer to the ef-
ficient fitness, due to better (mis)coordination on off-diagonal payoffs. The
distribution of types in the long run is similar, with large proportions of types
(St2) and (NC) but, surprisingly, there is a larger proportion of (St2) type
preferences. Thus it is possible that efficiency is (almost) achieved though
not with all present types playing the same strategy but with a certain corre-
lated profile that does not place (almost) any weight on (C, C). In games with
incomplete information the results do not change. Allowing players to use
(some) mixed strategies does not change the results much either. (Though
there is more cooperation in the prisoners’ dilemma with complete informa-
tion, and there is more variance in strategies in period 1000 in the chicken
game with incomplete information.)

The learning model for the incomplete information case takes into account
that players do not observe preferences of the person they are imitating. I
also run simulations with two alternative models: one when players do ob-
serve the preferences of the person they are imitating, and so they imitate
only strategies used by players with the same preferences as their own; the
other model is not imitating at all but picking a strategy randomly instead.
When players imitate within their own preferences only, the strategies played
in the long run are the equilibrium of the material payoff game, like in the
main learning model. Players with given preferences, however, learn their
’preferred’ strategy and so can survive only if such a strategy is a part of
the equilibrium. For example, in the prisoners’ dilemma only preferences
of types (St2) and (CO) survive because for them (D, D) is an equilibrium.
When players choose a strategy randomly, not always the Nash equilibrium
is reached: in the prisoners’ dilemma, though only preferences of type (St2)
survived, the average strategy is such that dissatisfaction is offset by random
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choice. Thus, changing the learning model does change the results. Never-
theless, I think that the learning model I employ in Section 2 is the most
natural one.

A change in the parameters d, γ, β does not produce any significant change
in the results. In simulations without perturbations in learning or/and with-
out mutations, there is more mutual cooperation in the prisoners’ dilemma
with complete information. The ”secret handshake” works initially; since
there is no mutations and/or perturbations in learning it could be upset
more seldom. In the chicken game the fitness is higher despite of larger pro-
portion of (St2) players. A closer look reveals that these results can be due
to the fact that without permanent perturbations convergence to an equi-
librium in which one of the players uses weakly dominant strategy is more
likely. Then a mixture of cooperation and defection is possible in a stationary
state in the prisoners’ dilemma, and it is not necessary that more hawkish
(NC) preferences get their preferable equilibrium. In games with incomplete
information the results are the same as with perturbations.

It seemed interesting for me to see how the speed of learning influence the
results. With 10 periods of learning (instead of 100), there is less cooperation
in the prisoners’ dilemma with complete information, and more surviving
(St2) type players. In other games the results do not change much, only
in the prisoners’ dilemma with incomplete information the proportions of
types change more. With equal speed of learning and evolution (L = 1)
there is very little change both in the proportions of preferences and in the
proportions of strategies in all games. On the other hand, with L = 200, the
results are the same as in the basic model, which indicates that L = 100 is
about right for learning to converge.

Finally, as the time horizon of the simulations is increased to T = 2000,
the proportions of the preferences and strategies are approximately the same
as in period 1000, which shows that the original time horizon is enough for
the model to reach some sort of ’stable’ distribution.

4 Conclusion

The results presented in this paper give mixed support for the previous anal-
ysis of models of indirect evolution for the complete information case, and
vindicate those results for the incomplete information case. Efficiency in the
complete information case is not always achieved in chicken games, while
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in prisoners’ dilemmas it is achieved only temporarily. Cooperation in pris-
oners’ dilemma can be sustained by reciprocity with the observability of
preferences. In chicken games, however, a higher efficiency is achieved by
specializing, with some proportion of the population being ”hawks”, and the
remaining proportion being ”selfish”, but this specialization does not lead to
fully efficient outcome.

In the incomplete information case, even with a learning model that does
not reflect the rationality assumptions usually put in the indirect evolution
approach, two-speed evolution of preferences and strategies leads to the Nash
equilibrium of the material payoff game. This equilibrium, however, is sup-
ported by preferences that are very diverse. This result is interesting, agents
with cooperative tendencies can survive, but they defect because everybody
else defects.

The most obvious extension of the model proposed in this paper is with
respect to the informational assumptions. The complete and incomplete
information cases represent two extremes of information the players possess.
It would be interesting to see what happens with intermediate values of
information, and with different information technologies.
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01-25 VolkerStocḱe An EmpiricalTestof theContingency Model for
theExplanationof Heuristic-BasedFraming-Effects
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