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Abstract

In the general symmetric model of Milgrom and Weber, equilibrium

bidding is analyzed with a stochastic number of bidders. The equilibrium

strategies generalize the known expressions in a coherent way. For the equi-

librium bid function of the �rst price auction, an interpretation involving

'marginal winning probabilities' is proposed. With a generalized version of

the linkage principle, the well-known revenue ranking theorems extend to a

stochastic number of bidders. As an application, we show that the seller's

generically optimal information policy regarding the number of competitors

is concealing the information.
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1. Introduction

Most of the results in auction theory have been obtained under the assumption
that the exact number of bidders is �xed and mutual (or common) knowledge
among the participants. Yet in most auctions, potential bidders do not know how
many competing bids will be submitted. In particular in sealed bid auctions, the
exact number of competing bids is hardly ever known.1

A weaker assumption is that the distribution only that governs the number of
competitors is common knowledge. Those potential buyers interested in tendering
a bid share implicit common knowledge regarding the competitive structure they
are part of, such as the number of �rms present in the relevant market, the scope
of each �rm's activities, cooperative arrangements and legal relationships between
the players, etc. Whenever not all potential bidders can pro�tably submit a costly
bid, participation in symmetric equilibrium must be randomized (Milgrom, 1981).
The equilibrium distribution over the number of submitted bids then provides
a reduced-form description of the underlying competitive structure and of the
associated priors. The structure of economic relations, for example, forms 'a
Poisson environment' if participation decisions are taken independently and if the
equilibrium participation probability of a single �rm is small while there is a large
number of potential buyers.2

McAfee and McMillan (1987a) and Matthews (1987) pioneered the analysis
of auctions with a stochastic number of bidders. The emphasis was put on risk-
averse bidders and their indirect expected utility in the equilibrium of a revelation
mechanism. Harstad, Kagel, and Levin (1990) and Piccione and Tan (1996) con-
sider explicit bid functions for risk neutral bidders facing an uncertain number
of (informed) competitors. While McAfee and McMillan, and Harstad et al. ex-
clusively studied models where the bidders have independent private information
on the object in sale, Matthews also explored the case of a�liated private in-
formation, and Piccione and Tan considered bidders with partially asymmetric
information on an unknown common value. This paper analyzes equilibrium bid-
ding for symmetrically informed, risk neutral bidders in the general symmetric
model of Milgrom and Weber (1982).

When the number of actual competitors is uncertain to a bidder, his win-

1Even when the number of participating traders is observable there may be substantial uncer-

tainty on the number of 'actual bidders' because some of the participants can be intermediaries;

e.g., see the Dutch auctions for French eggplants analyzed by La�ont et al. (1995, pp.967-70).
2McAfee and Vincent (1992, p.515) note that 'commonly, the negative binomial distribution

is used to model stochastic numbers of participants.'
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ning probability is a mixture distribution of the respective winning probabilities
against di�erent numbers of rivals. Certainly, this alone does not imply that the
equilibrium bidding functions must be simple weighted averages of the respective
strategies against a �xed number of competitors. Still, such a relation is known
to hold true with independent private information of the bidders, and it has been
suggested to hold generally (Harstad et al., 1990).3 However, the 'surprising' de-
scription as weighted averages does not extend to correlated private information.
A general explanation is signi�cantly simpler: in a symmetric equilibrium with
monotone strategies, a bidder must win against the average highest competing
type, where the average is taken with respect to the random size of the pool
of competitors. As the bidders care about winning on average, the associated
equilibrium bids then condition on the average highest competing type.

This intuition indeed captures the essence of all the e�ects implied by a com-
petitency of random size. In the same way as the equilibrium strategies generalize
the well-known bidding functions in a straightforward way, the linkage principle
extends to a more general version.4 As a consequence, the central revenue rankings
from Milgrom and Weber (1982) persist with a stochastic number of bidders. For
the equilibrium strategy of the �rst price auction, whose form was originally ob-
tained by Wilson (1977), we o�er an intuitive interpretation in terms of marginal
equilibrium winning probabilities.

An important problem of practical relevance is the choice of the information
policy by the auctioneer. It is known from Milgrom and Weber that revealing any
information on the object sold further increases expected revenue to the auction-
eer. However, this result is reverted with respect to information on the number
of competing biders. If the bid-taker knows the number of bids that will be sub-
mitted, and if the bidders share a�liated private information, Matthews (1987)
found that it is better for the seller always to conceal this number. Essentially,
what is revealed becomes negatively a�liated to the bidders' private information.5

3�Clearly, an equilibrium bid facing this 'numbers uncertainty' will be [a] weighted average
of the bids that would have been chosen for each number of rivals. What are the weights?�
(Harstad et al., 1990, p.35). For a review of the results, see Wilson (1992, p.236).

4For an exposition, see Milgrom and Weber (1982, p.1110), or Milgrom (1987).
5Intuitively, if a random vector is a�liated it is more likely that larger values in some coordi-

nates realize jointly together with smaller values in other coordinates. The concept of a�liation

was introduced into economics and formalized generally by Milgrom and Weber (1982). A

continuously distributed random vector is called a�liated if its density f is such that log f is

supermodular: f(v _ v0) f(v ^ v0) � f(v) f(v0) 8v0 6= v; _ (^) the coordinatewise maximum

(minimum) operation. Negative a�liation is de�ned by the reverse inequality.
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Allowing for reporting policies that exploit the fact that 'inverse' reports are in
turn positively a�liated with the bidders' private information, we show that there
is no information policy that generically improves upon the concealment policy in
terms of expected revenue.

The rest of this section reviews the related literature. Section 2 provides an
illustrating example. Sections 3 and 4 describe the model and some technical
results used subsequently. Sections 5 and 6, respectively, derive and interpret the
symmetric equilibrium strategies of the second and �rst price auctions. Section
7 considers the revenue rankings for a stochastic participancy and generalizes the
argument. Section 8 asks for the seller's optimal information policy regarding the
number of competitors.

Related Literature

Bidding games with a stochastic participancy6 have been studied only in spe-
cializations of Milgrom and Weber's general symmetric model; for brief reference,
we use the following abbreviations. If the bidders' privately received signals about
the resource's value are independently and identically distributed variates that
coincide with their valuations, this is the case of symmetric independent private

valuations (henceforth: SIPV case). The simplest model that assumes the objec-
t's idiosyncratic value to a bidder is a non-decreasing symmetric functional of all
the received signals is the SIAS case (symmetric, independent, aggregated signals);

already in such a model, equilibrium bidding avoids a winner's curse. The SAPV
case assumes identically distributed, but a�liated private valuations. Finally, in
the CISCV case, the bidders obtain conditionally independent, symmetrically dis-
tributed signals on an unknown common value.7

The original studies have concerned risk-averse bidders and an auctioneer that
is informed on the exact number of bidders. In the SIPV case and for bidders that
are constantly absolute risk averse, McAfee and McMillan (1987a) have shown
that by always concealing the number of bidders the seller will raise expected
revenue from the �rst price auction, compared to a revealing policy. Matthews
(1987) condenses the arguments and generalizes the results to di�erent degrees
of absolute risk aversion. In the SIPV case, the concealment (revealing) policy

6Auctions with a stochastic participancy due to symmetric, endogenous bidder entry have

been analyzed for the revenue impact of screening policies; for some reference see Section 8.1.

Here, only the continuation game following some unmodelled entry stage game is considered.
7In this 'mineral rights model', signals are informative under the assumption that their

conditional density exhibits the monotone likelihood ratio property; see Milgrom and Weber

(1982, p.1099) for details.
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is preferred by bidders with increasing (decreasing) absolute risk aversion.8 In
the SAPV case, the revealing policy is preferred by bidders with non-increasing
absolute risk aversion. Dyer, Kagel and Levin (1989) experimentally investigated
the revenue-enhancing potential of a concealment policy for the �rst price auction
in the SIPV case. With actual participancies of three and six bidders, respectively,
average winning bids were higher indeed under the concealment policy (though
by approximately 2% only).

For risk neutral bidders, McAfee and McMillan generalized the work of My-
erson (1981) to a bidding participancy whose size and composition is uncertain.
If only the size of the participancy is uncertain, any auction awarding the object
to the bidder with the highest bid from each potential set of participants imple-
ments the optimal revelation mechanism. Therefore in the SIPV case, revenue
equivalence across the usual auction forms persists as long as the bidders' (poste-
rior) beliefs on the composition of the participancy (derived from common priors)
are symmetric. Unless, the �rst price auction almost surely does not implement
the optimal auction any more. For the SIAS case, explicit equilibrium bid func-
tions have been obtained by Harstad et al. (1990) for the �rst and second price
auction. The bid functions are explained as certain weighted averages, and they
are concluded to be revenue equivalent. From the present analysis, these results
occur as corollaries. Finally, in the CISCV framework, Piccione and Tan (1996)
have analyzed a semi-symmetric, mixed equilibrium of the �rst price auction with
both uninformed and informed bidders, where the number of informed bidders is
uncertain but the total number of bidders is �xed and known.

2. A Simple Example

Consider the SIPV case, valuations being distributed with density f(�) on [0; �v];

and the total number N of bidders9 being distributed with probability weights p:
Assume each submitted bid is paid to the seller. Then if all his competitors bid
according to the (strictly increasing, continuous) function �, type v of bidder 1

8Building upon the bidders' corresponding ranking derived by Matthews for the '�xed-n case',

Smith and Levin (1996) show that with risk averse bidders, decreasing absolute risk aversion

can imply higher expected revenue from the second price than from the �rst price auction with

symmetric equilibrium entry of bidders.
9Throughout, random variables are denoted by capital, and their realizations by small letters.
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obtains

�(ajv) = v �G(��1(a))� a; where G(�) �

1X
n=1

p(n)F (�)
n�1

upon bidding a � 0: Thus, the symmetric equilibrium bids are �(v) =
R v

0
�dG(�):10

Let V̂ (n) = maxj=2;:::;nfVjg: Then with n � 1 competitors, bidder 1, in equilib-
rium, wins with probability FV̂ (n)(v). Consider the distribution function G; and

let V̂ be the random variable characterized by this distribution (up to the null
sets of the measure induced by the cdf G). As EN [FV̂ (N)

] = G; where FV̂ (n) is

the distribution function of V̂ (n); write V̂ = EN [V̂ (N)]: Using this short-hand
notation, a compact form of � is:

�(v) = EV̂ [V̂ � 1
fV̂ � vg]:

If only the winning bid is paid to the auctioneer, similar arguments show that the
symmetric equilibrium strategy b is:

b(v) = EV̂ [V̂ j V̂ � v].

Thus, expected revenue from the �rst price and the all pay auction is the same
also with a stochastic number of bidders. Obviously, the strategies are completely
parallel to their '�xed-n' analogues, because von-Neumann-Morgenstern utility is
a linear functional of the distribution of the prospect evaluated. The equilibrium
bid functions for a stochastic number of bidders must therefore be the same func-
tionals of the (expected) winning probability as their �xed-n counterparts. By
contrast, Harstad et al. (1990) have characterized b as:

b(v) = EN

h
EV̂ (N)

h
V̂ (N) j V̂ (N) � v

i
j V̂ � v

i
.

3. The Model

An asset is sold to a random-sized set of risk neutral bidders, each of whom submits
one (scalar) bid at the stage where the number of competitors is unknown. The

10Integrating the �rst order condition �0(v) = vG0(v) subject to �(0) = 0 yields the expression.

No bidder can improve by unilateral deviation because �a(�(v)jv) = 0 and �a(�(~v)jv) =

vG0(~v)=b0(~v)� 1 = v=~v � 1 has the sign of v � ~v:
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actual number of (total) participants is commonly perceived as a random variable
N with support I = f1g [ J; ; 6= J � f2; 3; :::g;11 and probability weights pN(�)
such that

P
n2I pN(n) = 1 and

P
n2I n pN (n) <1:

For each realization n 2 I of N; n potential participants each privately receive
a signal vi 2 [0; �v], �v 2 (0;1), 1 � i � n, on the value of the resource in sale.
The hidden characteristics of the resource are represented by a random vector S
mapping into <m, and a bidder's idiosyncratic valuation is determined by a joint
realization of S and the signals V(n).12 Speci�cally, if i is of type v and his n� 1

competitors are of type v
(n�1)

�i ; i's valuation is given by Un(vi;v
(n�1)

�i ; s); where the
common functional Un: <+ � <

n�1
+ � <m ! <+ has the following properties.

Assumption 1. 8n 2 J; Un is symmetric in its second block of n � 1 argu-

ments, non-decreasing, and strictly increasing in its �rst argument.

Assumption 2. (i) 8n 2 J; the joint distribution of �(n) � (V
(n);S) is sym-

metric and has �nite marginal expectations with respect to the coordinate variables

of V(n): (ii) 8n 2 J; F�(n) admits a density f�(n) that is a�liated, strictly a�liated

at least for one n 2 J:

Assumption 3. (�
(n); N) has a product distribution f(�(n);N)(�

(n+m); n) =

f�(n)(�
(n+m)

) pN(n) on [0; �v]n �<m � I (n 2 I).

Assumption 2(ii) is not needed technically; it only serves to emphasize a dif-
ference between the �xed-n and the stochastic-n case. Apart from Assumptions
2 and 3, we do not restrict the distributions fF�(n)gn2J in any way.

Let V̂ (n) = maxfV2; ::; Vng: Setting V̂ (1) � 0; so that FV̂ (1)
(�) � 1 a.e., V̂ (n)

is well-de�ned on I 3 n. By symmetry, V̂ (n) is the highest type of any bidder's
competitors when the number of these is n � 1; and V̂ (N) is then a two stage
random variable that represents the (random) highest type from among a random
number N � 1 of competitors.

The following suggestive notation is used. ~V
(n�1)

�1 denotes the vector of the

order statistics of V
(n�1)

�1 , the stochastically largest component of which is V̂ (n).

Let ~V
(n�2)

�1 � ~V
(n�1)

�1 nV̂ (n) be the (n�2)-vector ~V
(n�1)

�1 without its �rst coordinate

11Since for each participant being an active bidder is a self-evident event (he knows the event

whenever it obtains), it is mutually self-evident, hence common knowledge among all bidders

that the total number of them is at least one.
12The dimension of the vector of signals is indicated in small brackets. V

(n�1)
�i is understood

as the random vector consisting of the n� 1 components (Vj)j 6=i.
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variable, let ~�
(n�1)

�1 � (~V
(n�1)

�1 ;S) and ~�
(n�2)

�1 � (~V
(n�2)

�1 ;S). As �(n) is a�liated,

also (V1; ~�
(n�1)

�1 ) = (V1; V̂ (n); ~�
(n�2)

�1 ) is (Theorem 2 of Milgrom and Weber, 1982).

De�ne the real-valued random variable Wn = Un(V1;V
(n�1)

�1 ;S) and the func-
tion wn: [0; �v]

2 ! <+ by

wn(v; v̂) = E�(n)[Wn j V̂ = v̂; V1 = v].

The function wn(�; �) is non-decreasing because an a�liated random vector has
the 'conditional monotone regression endowment': its conditional expectation is
positively dependent on the realizations of each conditioning coordinate variable.
Milgrom and Weber (1982, Theorems 23(iii), 24, and 5) show that a�liation of
a random vector is in fact characterized by its conditional monotone regression
endowment with respect to all weak inequality conditions imposed on any selection
of its coordinate variables. As an illustration consider the SIAS case, where

wn(v; v̂) = EV(n) [Un(V1;V
(n�1)

�1 ) jV1 = v; V̂ (n) = v̂]

= E~V
(n�1)

�1

[Un(v; ~V
(n�1)

�1 ) j V̂ (n) = v̂]:

As ~V
(n�1)

�1 = (V̂ (n); ~V
(n�2)

�1 ) is (non-trivially) a�liated already if V(n) is a vec-
tor of independent variates,13 it follows with Theorem 5 of Milgrom and Weber
that D2wn(�; �) � 0: Hence, the fact that winning is informative on the value
of the object obtained must be incorporated in the equilibrium bids already in
the SIAS case, in order to avoid a winner's curse (E[wn(v; V̂ (n)) j V̂ (n) � v] �

E[wn(v; V̂ (n))]).

4. Uncertain Number of Bidders

The highest type from among a bidder's competitors when there are n actual
bidders is V̂ (n). Consider now a random variable V̂ such that V̂ (n) = V̂ jfN = ng;

i.e., V̂ is de�ned such that the joint density of (N; V̂ ) takes the form

f
(N;V̂ )jV1

(n; v̂jv) = fV̂ (n)jV1
(v̂jv) pN(n): (4.1)

13The density of ~V
(n�1)
�1 is f~V(n�1)

�1

(v) = (n � 1)!
Q

n�1
i=1 f1(vi) � 1fv1�:::�vn�1g(v); where the

indicator function obeys the a�liation inequality (Proposition 3.11 of Karlin and Rinott, 1980).
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Then for the marginal distribution function of V̂ jfV1 = vg:14

FV̂ jV1
(v̂jv) =

Z v̂

0

X
n2I

f (N;V̂ )jV1
(n; tjv) dt

=

X
n2I

FV̂ (n)jV1
(v̂jv) pN(n)

= EN [FV̂ (N)jV1
(v̂jv)]: (4.2)

In symmetric equilibrium of a standard auction, the distribution function of the
variate V̂ jfV1 = vg; evaluated at v; is then the expected winning probability of
a type-v bidder against a competitency of random size. Therefore, the random
variable V̂ characterized by the distribution (4.2) is the expected highest type

of 1's competitors. Whenever we will indicate this by the short-hand notation
V̂ = EN [V̂ (N)]; this is done with the understanding that the indicated relation
holds for the distribution functions of these random variables.

Example 1. Consider the SIPV case, and suppose the total number N0 of
potentially participating bidders is known to be Poisson distributed on f0; 1; 2; :::g
with parameter � > 0: Each participating bidder considers the random variable
N = N0jfN0 � 1g; described by the probability weights

pN(n) = pN0jfN0�1g(n) =
e��

1� e��
�n

n!
� 1fn�1g(n):

A straightforward calculation shows that V̂ in this case is given by:

FV̂ (v) =
e��

1� e��
1

F1(v)

�
e�F1(v) � 1

�
.

As V̂ is distributed according to a convex mixture of the distributions of
V̂ (n); it seems reasonable that (V̂ ; V1; ~�

(n�1)

�1 ) is a�liated 8n 2 J . Intuitively,
the a�liation property of a random vector should be preserved under probability
mixtures of its coordinate variables. In fact it is even intensi�ed.

Theorem 1. (V̂ ; V1; ~�
(n�1)

�1 ) is strictly a�liated (n 2 J):

14Summation and integration can be interchanged because the sum is absolutely converging;

since by assumption
P

n2I n pN (n) <1; necessarily
P

n2I fV̂ (n)jV1
(�j�) pN (n) <1.
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(Proofs not stated immediately are delegated to the Appendix.) Two useful
relations follow immediately from the de�nition of V̂ : By (4.1), the conditional
probability weights pN jV̂ ;V1(�jv̂; v) of N jfV̂ = v̂; V1 = vg are:

pN jV̂ ;V1(njv̂; v) =
fV̂ (n)jV1

(v̂jv) pN(n)

fV̂ jV1(v̂jv)
� 1fv̂;v>0g(v̂; v). (4.3)

Similary, the conditional probability mass function �pN jV̂ ;V1(�jv̂; v) of N jfV̂ �

v̂ jV1 = vg (with distribution function �PN jV̂ ;V1
(�jv̂; v)) is:

�pN jV̂ ;V1(njv̂; v) =
FV̂ (n)jV1

(v̂jv) pN(n)

FV̂ jV1
(v̂jv)

� 1fv̂;v>0g(v̂; v): (4.4)

Finally, de�ne the function ŵ(�; �): [0; �v]2 ! <+ as:

ŵ(v; v̂) = EN

h
E�(N)

h
WN j V̂ = v̂; V1 = v

ii
.

In contrast to wn(�; �); the conditional expectation in ŵ(�; �) refers to V̂ (instead
of to V̂ (n)); in addition, ŵ(�; �) averages f�(n); Ungn2I over the di�erent n 2 I.

Theorem 2. For the function ŵ(�; �):
(i) EN [wN(v; v̂) j V̂ = v̂; V1 = v] = ŵ(v; v̂):

(ii) D2ŵ(�; �) � 0; D1ŵ(�; �) > 0:

(iii) For arbitrary v; v̂ > 0; if fF�(n); Ungn2J is such that wn(v; v̂) � wn�1(v; v̂);

then ŵ(v; v̂) is uniformly non-decreasing as N increases stochastically :

5. The Second Price Auction

Consider bidder 1 being of type v > 0. Assume that all his rivals bid according
to the continuous and strictly increasing function b(�): [0; �v] ! <+; which is
di�erentiable a.e. Given 1 wins upon bidding a 2 <+ and there are n participants,
he pays the second highest bid b(V̂ (n))jfV̂ (n) � b�1(a); V1 = vg and obtains an
object of value W1;njfV̂ (n) � b�1(a); V1 = vg: Thus his expected payo� when he
only knows that n 2 I is:

�(ajv) = EN

h
E(�(N);V̂ (N))

hn
WN � b(V̂ (N))

o
� 1
fV̂ (N)� b�1(a)g

jV1 = v
ii

.

10



Consider the candidate strategy b(v) = ŵ(v; v) for a symmetric equilibrium
[bi(v) = b(v)]i2I : Theorem 2(ii) implies that b0(�) > 0:

Proposition 1. Suppose that all actual competitors of 1 bid according to the

strategy b: If 1 wins upon bidding a 2 <+, his expected pro�t is:

�(ajv) = EV̂

h�
ŵ(V1; V̂ )� ŵ(V̂ ; V̂ )

�
� 1
fV̂ � b�1(a)g

jV1 = v
i
: (5.1)

It follows by a straightforward modi�cation of Theorem 6 of Milgrom and
Weber (1982) that symmetric bidding according to b(�) forms an equilibrium.
Theorems 1 and 2 show that all the properties used in the derivation apply to
V̂ jfV1 = vg:

Theorem 3. The symmetric equilibrium [bi(v) = b(v)]i2I of the second price

auction is given by b(v) = ŵ(v; v):

(For a self-contained proof without the use of Proposition 1, see the Appendix.)
As indicated in the SIPV example above, the basic modi�cation of the equilibrium
strategies with a stochastic participancy is the substitution of the highest com-
peting type V̂ (n) by the expected highest competing type V̂ . With the bidders'
valuations arising from an isotonic statistics Un of all the received signals, this
results in a replacement of wn(�; �) by ŵ(�; �): Proposition 1 and Theorem 3 then
show that in the symmetric equilibrium of the second price auction each type bids
his expected valuation conditional on the average highest competing type V̂ being

just as high. Note that for b�1(a) = v, (5.1) is strictly positive by Theorems 1
and 2(ii), and Theorem 5 of Milgrom and Weber (1982).

A bidder in equilibrium thus avoids an average winner's curse, averaged over
the potential number of competitors. It is not clear intuitively whether an increase
in expected competition then intensi�es or a releases this average winner's curse,
i.e. whether a stochastic increase in N demands higher or lower discounts in the
equilibrium bids. Intuition only points to V̂ increasing stochastically as N does
so. This intuition is true also with a�liated types.

Proposition 2. 8v 2 (0; �v): (i) V̂ (n)jfV1 = vg is strictly stochastically

increasing in n 2 I; (ii) V̂ jfV1 = vg is (strictly) stochastically increasing as N

increases (strictly) stochastically.

Now Theorem 2(iii) shows that also the function ŵ(�; �) actually shifts upwards
as N increases stochastically, whenever the �xed-n bids wn(�; �) are non-decreasing
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in n: In conjunction with Proposition 2(ii), it follows that

EV̂ [ŵ(V̂ ; V̂ ) � 1
fV̂ �V1g

jV1 = v] =

Z v

0

[1� FV̂ jV1
(tjv)] dŵ(t; t)

is non-decreasing as N increases stochastically (v > 0). This proves:

Corollary 1. With �xed-n bids that are non-decreasing in n; expected equi-

librium payments from the second price auction do not decrease as the number of

bidders increases stochastically.

Reconsider the SIAS case with two bidders (n = 2): The symmetric equilib-
rium bids w2(v; v) =

R
<m

U2(v; v; s) fS(s)ds are independent of the distribution of
~V

(2)

�1 = V̂ (2); so the symmetric equilibrium is one in dominant strategies even.
When the linkages among the types are weakened such that the maximum of
the observed signals is a su�cient statistics for the expectation wn(v; V̂ (n)) gen-
erated by the distribution of �(n), an analogous property also obtains in the
a�liated case. This was observed for a �xed and known number of bidders by
Harstad and Levin (1985), who called the distribution of �(n) maximal attentive

i� max(v̂; �v) � v implies that wn(v; v̂) = wn(v; �v).
15

Theorem 4. If the bidders' beliefs are such that F�(n) is maximal attentive

(n 2 J), the symmetric equilibrium of the second price auction is an equilibrium

in dominant strategies also with a stochastic number of bidders.

6. The First Price Auction

Let a candidate strategy for a symmetric equilibrium in the �rst price sealed bid
auction be the strictly increasing function b(�): [0; �v]! <+. If all his competitors
use the strategy b(�), expected pro�t of a type-v bidder (v > 0) who bids a > 0 is:

�(ajv) = EN

h
E(�(N);V̂ (N))

h
fWN � ag � 1

fb(V̂ (N))� ag
jV1 = v

ii
= EN

h
EV̂ (N)

hn
wN(V1; V̂ (N))� a

o
� 1
fV̂ (N)� b�1(a)g

jV1 = v
ii

15For a simple example, let m = 1 and let VjfS = sg be a vector of independent variates.

For each N = n; assume the marginal distribution of S is uniform on [0; �v]; while V(n)
jfS = sg

is distributed uniformly on [0; s]n. Then Tn(v) =maxi=1;::n(vi) is a su�cient statistics for the

parameter s of the distribution of V(n)
jfS = sg: Thus, F�(n) is maximal attentive.
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= EN

"Z b�1(a)

0

[wN(v; �)� a] fV̂ (N)jV1
(� jv)d�

#
.

In a symmetric Harsanyi-Bayes-Nash equilibrium, �a(b(v)jv) = 0; whence:

EN

h
(wN(v; v)� b(v)) fV̂ (N)jV1

(vjv)
i
= b0(v) � EN [FV̂ (N)jV1

(vjv)]: (6.1)

In addition, in equilibrium the lowest type must bid such that his expected pro�t,
given he wins, is zero:

EN [wN(V1; V̂ ) jV1 = 0; V̂ = 0]� b(0) = 0;

which by Theorem 2(i) yields b(0) = ŵ(0; 0): The two necessary conditions de�ne
the candidate strategies for a symmetric equilibrium solutions to the initial value
problem [b0(v) = �(b(v); v); b(0) = ŵ(0; 0)], where the functional �(b; v) is implic-
itly given by the di�erential equation (6.1). Before looking for solution functions,
let us stay for a moment with condition (6.1).

Recall that FV̂ jV1
(vjv) is the equilibrium winning probability of bidder 1 when

of type v. If 1 wins, the �ctitous bidder having type V̂ is then the 'second-highest'
bidder only. For t � v; FV̂ jV1

(tjv) is then the probability that the second-highest
bidder is of a lower type than t, given that 1 is of type v (seen from 1's perspective).
For t � v consider the following hazard function �̂(�jv) of V̂ jfV1 = vg:

�̂(tjv) := lim
h&0

1

h
Pr[t� h < V̂ � t j V̂ � t; V1 = v] =

fV̂ jV1(tjv)

FV̂ jV1
(tjv)

:

For t � v; �̂(tjv) measures the 'instantaneous' likelihood that the second-highest
bidder just reaches type t; given it falls short of a marginally higher type, and
given the covariate V1 takes the value v. Thus, �̂(tjv) is the marginal probability
that the second-highest bidder is of type t, given 1 is of (higher) type v: Hence,
�̂(vjv) is just the marginal winning probability of type v in equilibrium.

De�nition 1. The marginal (expected) equilibrium winning probability of a

type-v bidder is the hazard function �̂(�jv): (0; v]! <+ evaluated at v: 16;17

16In a procurement setting, where the bidder's types index their costs, �̂(�jv) becomes the

'usual' hazard function of V̂ jfV1 = vg, with the cdf F
V̂ jV1

being replaced by the complementary

cdf 1� F
V̂ jV1

; and the marginal winning probability is de�ned (to be zero) for the lowest type.

By contrast, here lim
t&0

�̂(tjv) = lim
t&0

D1logFV̂ jV1
(tjv) = D1log lim

t&0
F
V̂ jV1

(tjv) = +1.

17As remarked by Sergiu Hart, in particular in the (strategically equivalent) Dutch auction
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Similarly, let �n(vjv) := fV̂ (n)jV1
(vjv)=FV̂ (n)jV1

(vjv) be the marginal winning
probability of type v against a �xed number of n � 1 competitors. Now using
(4.2), equation (6.1) determines �(b(�); �) as:

�(b(v); v) = EN [wN(v; v)�N(vjv)]� b(v)�̂(vjv). (6.2)

In view of De�nition 1, condition (6.2) then �xes the slope of type v's equilib-
rium bid at his expected valuation given he obtains the object [wN(v; v)] times his
marginal equilibrium winning probability [�N(vjv)] against a random number of
competitors, expected with respect to the number of these (EN [wN(v; v)�N(vjv)]),
net of his marginal expected payment given he wins [b(v)�̂(vjv)]. Roughly, the
slope of type v's equilibrium bidding schedule equals his marginal expected equilib-

rium pro�t given he wins.

The optimality condition for the equilibrium bidding scheme of the �rst price
auction is then that each type's marginal increase in conditional expected payment
given he wins equal his marginal expected pro�t given he wins. Solving for the
functions b(�) reveals that the equilibrium strategy of the �rst price auction, too,
exactly parallels the expression known from the �xed-n case.

Theorem 5. The symmetric equilibrium [bi(v) = b(v)]i2I of the �rst price

auction is given by:

b(v) =

Z v

0

ŵ(t; t) dL̂(tjv), with L̂(tjv) = exp

�
�

Z v

t

�̂(sjs)ds

�
.

With independent types, the integrating probability measure simpli�es to
L̂(tjv) = exp

�
�
R v

t
d
ds
[lnFV̂ (s)]ds

	
= FV̂ (t)=FV̂ (v). For the SIAS case, b is hence

a simple conditional expectation, which was contrasted above with a result from
Harstad et al. (1990). In fact, the expressions obtained are identical.

Corollary 2. In the SIAS case, the symmetric equilibrium strategy of the �rst

price auction is:

b(v) = EV̂

h
ŵ(V̂ ; V̂ ) j V̂ � v

i
: (6.3)

Proposition 3. The equilibrium strategy (6.3) is identical to:

b(v) = EN

h
EV̂ (N)

h
wN(V̂ (N); V̂ (N)) j V̂ (N) � v

i
j V̂ � v

i
.

mechanism with its perpetually decreasing price pointer, the hazard function is relevant literally.

In particular, a bidder's marginal winning probability then coincides with his instantaneous

winning probability.
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Building upon De�nition 1, the rest of this section further interprets the equi-
librium strategy. Recall that if ST (t) = 1 � FT (t) is the survivor function of
a (lifetime) random variable T > 0 that has a density fT with associated haz-
ard function �T = fT=ST , then because of �[lnST ]

0
= �T the survivor function

rewrites asST (t) = expf�
R t

0
�T (s)dsg: In our bidding context, the role of the

survivor function ST was played by the equilibrium winning probability FV̂ jV1
(�jv)

of a type-v bidder, and the original meaning of the 'hazard' function was reversed
(cf. De�nition 1). Thus, for t � v, consider the function

Ŝ(t) := exp

�Z t

0

�̂(sjs)ds

�
.

As [lnŜ(t)]0 = �̂(tjt); Ŝ(t) is the particular survivor function associated to the
hazard function �̂(tjt). By De�nition 1, Ŝ(t) is the cumulated marginal (expected)
equilibrium winning probability of type t. Now, for varying t, t � v;

Ŝ(t)=Ŝ(v) = L̂(tjv)

de�nes a distribution function on [0; v] (cf. Theorem 5). Intuitively, this is the
case because the cumulated marginal equilibrium winning probability of type v
exceeds the one of type t � v since Ŝ 0(�) > 0: To see explicitly what the probability
measure induced by the distribution L̂(�jv) describes, consider independent types.
Then,

8t � v: 1� L̂(tjv) = 1�
FV̂ (t)

FV̂ (v)
=

FV̂ (v)� FV̂ (t)

FV̂ (v)
= Pr[t � V̂ j V̂ � v]

is the conditional equilibrium losing probability of type t given that type v � t

wins the auction. Hence, FV̂ (t)=FV̂ (v) is the conditional winning probability of
type t given that v wins the auction (and in particular wins against type t). With
a�liated types, this probability is given by the ratio Ŝ(t)=Ŝ(v) � 1ft� vg(t; v):

De�nition 2. The conditional (expected) equilibrium winning probability of

type t given that type v � t wins the auction is measured by the distribution
function L̂(�jv): [0; �v]! [0; 1], evaluated at t.

Thus, the equilibrium strategy of the �rst price auction prescribes that bidder
1 submit the expected valuation ŵ(t; t) of a type-t competitor, weighted by the

15



conditional equilibrium winning probability of t given that actually 1 wins the
auction, and summed over all these types t that 1 wins against.

More precisely, the conditional expectation from Theorem 5 weights 1's com-
petitors' expected valuations ŵ(t; t) with their cumulated marginal winning prob-
abilities (given 1 wins). Intuitively, this is because in symmetric equilibrium each
bidder equates the slope of his expected payment scheme (given he wins) with
his marginal expected pro�t (given he wins). By contrast, the expected equi-
librium payment of a winning bidder in the second price auction weights the
competitors' expected valuations ŵ(t; t) with their simple equilibrium winning
probability (given 1 wins). To see the di�erence, note that since FV̂ jV1

(tjv) =

expf
R v

0
D1lnFV̂ jV1

(sjv) dsg = expf
R t

0
�̂(sjv)dsg,

FV̂ jV1
(tjv)

FV̂ jV1
(vjv)

= exp

�
�

Z v

t

�̂(sjv)ds

�
< exp

�
�

Z v

t

�̂(sjs)ds

�
= L̂(tjv) (6.4)

because D2�̂(�j�) > 0 (cf. Theorem 5). The following is immediate:

Corollary 3. The winnig bidder's expected equilibrium payment in the second

price auction strictly exceeds the one in the �rst price auction.

Proof. As the left-hand distribution function in (6.4) is stochastically domi-
nating the right-hand one on their common support [0; v];

EV̂

h
w(V̂ ; V̂ ) j V̂ � V1; V1 = v

i
=

Z v

0

ŵ(t; t) d exp

�
�

Z v

t

�̂(sjv)ds

�

>

Z v

0

ŵ(t; t) d exp

�
�

Z v

t

�̂(sjs)ds

�
= b(v): �

7. Expected Revenue

As indicated by Corollary 3, the �rst and the second price auction auction yield
di�erent expected equilibrium revenues. Building upon the ideas of Milgrom and
Weber (1982), this section extends results obtained along this line to auctions
with a stochastic number of bidders. First, it remains to consider when a bidder's
equilibrium expected payment from the �rst price auction is increasing as com-
petition increases stochastically. In addition to the condition on the �xed-n bids,
an additional assumption on the distribution of types is required.
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Proposition 4. Assume that type v's marginal expected equilibrium winning

probability �̂(vjv) increases as N increases stochastically (v > 0): If wn(�; �) is

non-decreasing in n 2 J; expected payments in the �rst price auction are uniformly

non-decreasing as N shifts up stochastically.

The assumption from Proposition 4 is the weakest su�cient condition for the
'reasonable' comparative statics in N . Note that marginal equilibrium winning
probabilities �̂n(vjv) that uniformly increase in n do not imply that the expected
marginal winning probability uniformly increases as N increases stochastically.

For independent types, if wn(�; �) is non-decreasing in n 2 J; it is guaranteed
that the �xed-n bids of the �rst price auction are non-decreasing in n because
�n+1(vjv) = �n+1(v) = n�1(v) > (n � 1)�1(v). Actually, Corollaries 1 and 2
imply that for independent types, each types's expected equilibrium payment
increases as N increases stochastically even without the additional assumption
from Proposition 4.

In fact, Corollaries 1 and 2 show that with independent types, the �rst and
the second price auction yield the same expected equilibrium payments from any
type v > 0. With a�liated types, Milgrom and Weber (1982) showed that the
revenue equivalence principle does not apply any more, but is substituted by the
linkage principle: any additional information that is available in equilibrium and
that is linked to (read: a�liated with) a bidder's private information devaluates
the latter, reducing the bidder's information rents. As a consequence, expected
equilibrium payments become steeper, increasing expected equilibrium revenue to
the seller. This linkage principle actually is two-faced. On the one hand, ex ante
expected revenue is augmented by additional exogenous information on � (see
below). On the other hand, interim expected payments increase in auctions that
in equilibrium more tightly link the bidders' private information to one another.
For extending the results to a stochastic number of bidders, we interpret the
interim aspect of the principle as suggested by Riley (1989).

Proposition 5. (Linkage Principle I). For 1's conditional beliefs on V̂ ;

(i) D2FV̂ jV1
(�jv) < 0; (ii) D2

FV̂ jV1
(�vjv)

FV̂ jV1
(v̂jv)

< 0 8v̂ > �v > 0; v > 0:

According to Proposition 5, the probability distribution of the (expected) high-
est competing type (strictly) shifts up stochastically as a bidder's type increases.
As the bidders' beliefs change with their types in this way, higher types must
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then bid more aggressively to reach a �xed expected equilibrium pro�t. Proposi-
tion 5(ii) shows that the conditional stochastic dominance relation in the bidders'
beliefs about the highest competing type is strong, in that even the distribution
Pr[V̂ � �v j V̂ � v̂; V1 = v] � 1fv̂ > �vg increases stochastically in a bidder's type.

For a paradigmatic application, consider the all pay (�rst price) and the �rst
price (winner-only pays) auction. For a �xed number of bidders, it is known
that the former yields higher expected proceeds from sale than the latter (Weber,
1985, p.163; Amann and Leininger, 1995; Krishna and Morgan, 1997). Substi-
tuting V̂ (n) by V̂ and wn by ŵ; and appealing to Proposition 1, the symmetric
equilibrium strategy � for the all pay auction becomes: 18

�(v) =

Z v

0

ŵ(t; t) fV̂ jV1(tjv) dt; (7.1)

provided that ŵ(v; �)fV̂ jV1(�jv) is non-decreasing in v (cf. Theorem 2 of Krishna
and Morgan for �xed n 2 J). Using a third, shorter, direct proof, we obtain:

Theorem 6. For a stochastic number of bidders, equilibrium expected revenue

from the all pay auction strictly exceeds the one from the �rst price auction.

Proof. Since from (7.1) and Theorem 5:

�(v)� b(v)FV̂ jV1
(vjv) =

Z v

0

ŵ(t; t)
h
fV̂ jV1(tjt)� FV̂ jV1

(vjv) �̂(tjt) L̂(tjv)
i
dt,

di�erentiation yields:

� 0(v)� b0(v)FV̂ jV1
(vjv)� b(v)

d

dv
FV̂ jV1

(vjv) =

= +

Z v

0

ŵ(t; t) �̂(tjt) fV̂ jV1(vjv) L̂(tjv) dt� b(v)
d

dv
FV̂ jV1

(vjv)

=

Z v

0

ŵ(t; t) �̂(tjt)

�
fV̂ jV1(vjv)�

d

dv
FV̂ jV1

(vjv)

�
L̂(tjv)dt,

where the bracketed term equals �D2FV̂ jV1
(vjv) and is strictly positive by Propo-

sition 5(i). 2

18By Proposition 1, �(ajv) = EN [E
V̂ (N)[wN (V1; V̂ (N)) � 1fV̂ (N)���1(a)g jV1 = v]] � a =

E
V̂
[ŵ(V1; V̂ ) � 1fV̂���1(a)g jV1 = v]� a:

18



Theorem 6 renders explicit why the all pay version of the �rst price auction
yields larger interim expected payments: since higher types believe that the (av-
erage) highest competing type is stochastically larger, in equilibrium they have to
bid more only to avoid paying their bids without winning the object.19

Although obtained already in Corollary 3, the linkage principle provides an
alternative, probably more intuitive way to obtain a similar result regarding the
second and the �rst price auction. The argument is then broadly similar to the
original one in Milgrom and Weber (1982, Theorem 15), although simpler. Intu-
itively, the second price auction yields higher expected equilibrium revenue than
the �rst price auction because in the equilibrium strategy of the latter any direct
in�uence of the bidder's own on the expected highest competing type is 'averaged
out'. Using Proposition 5(ii), the result is then obtained by completely di�erent
arguments. We thus state for a second time:

Theorem 7. With a stochastic number of bidders, expected equilibrium rev-

enue from the second price strictly exceeds the one from the �rst price auction.

Summarizing, the revenue rankings do not only extend, but even sharpen with
a stochastic number of bidders because the linkage among (V1; V̂ ) is much tighter
than among (V1; V̂ (n)) for each n such that n 2 J .20

Although the problem is predominant in sealed bid auctions, in open bid auc-
tions too the exact number of active bidders is di�cult to assess. Often, for ex-
ample, additional bids are submitted late in the auctioning process by telephone.
Consider the Japanese form of the English auction, as described by Milgrom and
Weber (1982, Section 5). Suppose that N has realized to be n 2 J; where n is
unknown to the bidders. The auction proceeds then in n stages k = 0; 1; :::; n� 1

that represent the number of bidders observed to have quit. Assume the price
clock automatically stops when stage n� 1 has been reached, and the remaining
bidder wins the auction at the associated standing price. A strategy in the kth
stage game maps the private information hold and the standing prices observed
hitherto into a bid bk: [0; �v] � <k

+ ! <+: The symmetric equilibrium of stage 0

19Krishna and Morgan (1997) argue similarly, but distinguish between a �second price� and

a �losing bid e�ect� to explain the various revenue rankings derived. Using Theorems 1 and 2

and Proposition 1, the rankings involving the second-price all-pay auction extend similarly to a

stochastic number of bidders, given all the associated assumptions are met when they refer to

the (distribution of the) expected highest competing type.
20We used Assumption 2(ii) to make this explicit, in replacing weak by strict inequalities in

Theorem 1. Without the Assumption, the tightening of the linkage principle is not visible.
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becomes:
b0(v) = EN

h
E~�(N)

h
WN j (V1; ~V

(N�1)

�1 ) = (v; ::; v)
ii

.

If one bidder each has been observed to quit at price pk in stage 1 � k � n � 1,
given the sequence fblgl<k; then the following, recursively de�ned stage game
strategies forms a symmetric equilibrium:

bk(v; p1; :::; pk) =

= E
(~�(N);N)

h
WN j (V1; ~V

(N�1)

�1 ) = (v,..,v);�
(N)

k�1(p1; ::; pk); ::;�
(N)

0 (p1); N > k
i

= EN

h
E~�(N)

h
WN j (V1; ~V

(N�1)

�1 ) = (v,..,v);�
(N)

k�1(p1; ::; pk); ::;�
(N)

0 (p1); N
i
jN > k

i
,

where �
(N)

k�1(p1; ::; pk) denotes the event
�
V(N�k:N�1) j bk�1(V(N�k:N�1); p1; ::; pk�1) = pk

	
;

with V(j:N�1) the jth coordinate variable of ~V
(N�1)

�1 ; see Theorem 10 of Milgrom
and Weber for n �xed and known.

Two e�ects contribute to the performance of this auction with respect to ex
ante expected revenue. First, the additional information available about the com-
petitors' signals V

(n�1)

�1 increases ex ante expected equilibrium payments relative
to the second price auction, for each n 2 J . Second, the likely number of competi-
tors is increasing from one stage bid to the next. As the order statistics ~V(N�1)

�1 are
stochastically increasing in the realizations of N (Proposition 2(i) for the �rst or-
der statistic), expected equilibrium payments become even larger. Building upon
Theorem 11 (Theorem 8, respectively) of Milgrom and Weber, we obtain:

Theorem 8. With an uncertain number of bidders, ex ante expected equilib-

rium revenue from the English auction (RE) exceeds the one from the second price

auction (R2) by more than when the number of bidders is �xed and known.

8. Information Policy

In many sealed-bid auctions, participating bidders have to provide some security
deposit before being permitted to submit bids. While this practice may be ad-
vantageous for various reasons, one consequence is that it allows the bid-taker to
be perfectly informed on the number of competing bidders. The seller could then
commit, in advance, to (always) reveal the number of competitors.

Whenever the bidders have independent private information, such a policy is
equivalent to concealing the information in terms of ex ante expected revenue.
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Consider the �rst price auction, and let b(�;n) be the �xed-n bidding strategy in
a symmetric equilibrium. If the bidders in all states of the world know the actual
size of the participancy, type v's expected equilibrium payment is:

EN

h
b(v;N)FV̂ (N)(v)

i
= EN

h
b(v;N) j V̂ � v

i
FV̂ (v) = b(v)FV̂ (v); (8.1)

by relation (4.4), Proposition 3, and Corollary 2. A similar reasoning obtains for

the second price auction.21

Proposition 6. Consider the second price auction in the SIAS case. The

revealing and the concealment policy attain the same expected revenue.

Proof. Always revealing the realizations of N yields an expected payment
from type v of:

EN

h
EV̂ (N)

h
wN(V̂ (N); V̂ (N)) � 1

fV̂ (N)�vg

ii
=

X
n2I

pN (n)

Z v

0

wn(�; �) fV̂ (n)(�)d�

=

Z v

0

X
n2I

pN jV̂ (nj�)wn(�; �) fV̂ (�)d�

=

Z v

0

ŵ(�; �) fV̂ (�)d�

= EV̂ [ŵ(V̂ ; V̂ ) � 1
fV̂�vg

]

using (4.3) and Theorem 2(i). 2

To see that with correlated private information the revealing policy does make
a di�erence, observe that Proposition 6 fails, sinceZ v

0

X
n2I

pN jV̂ ;V1(nj�; v)wn(�; �) fV̂ jV1(� jv)d� 6=

Z v

0

ŵ(�; �) fV̂ jV1(� jv)d�:

Now the linkage principle also applies to the revelation of exogenous information.
Milgrom and Weber (1982) show that a policy of publicly revealing any informa-
tion hold by the auctioneer that is a�liated with � increases ex ante expected

21Such a result is indicated by Harstad et al. (1990, p.39), who assume that the seller is unin-

formed of the exact number of participants, but asks for a vector of 'contingent' bids fb(;n)gn2I
from each bidder. With expected revenue being the sum of the 'contingent' bids, weighted by

the priors fpN(n)gn2I , a revealing policy yields the same revenue.
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revenue. By all of the above, these results equally apply to an uncertain number
of bidders. We state informally:

Proposition 7 (Linkage Principle II). A policy of always revealing any infor-

mation hold by the auctioneer that is positively a�liated with � increases ex ante

expected revenue.

Proof. Follows from Theorems 8, 12 and 16 of Milgrom and Weber (1982)
in conjunction with Theorems 1,2,3,5 and Propositions 1 and 5. For the all pay
auction, the reasoning is as in Theorem 16 of Milgrom and Weber. 2

According to this aspect of the linkage principle, revealing information that is
negatively a�liated to the bidders' private information should then decrease ex
ante expected revenue to the seller. In fact Matthews (1987) has shown for the
SAPV case that always publishing the number of competing bidders prior to the
bidding stage lowers expected revenue compared to concealing the information.
Interestingly, the result again uses the interim version of the linkage principle. It
relies on the observation that with a�liated types, (N; V1)jfV̂ � v̂g is negatively
a�liated (v̂ > 0). The intuition runs as follows.

The winner owns information on the likely number of participants that makes
this number stochastically smaller. Given the event fV̂ � v; V1 = vg; N decreases
(strictly) stochastically because (V̂ ; V̂ (N)) is (strictly) a�liated and V̂ (N)jfV1 =

vg is (strictly) stochastically isotonic in N (Proposition 2(i)). With �pN jV̂ (njv) the

probability of there being n bidders given type v wins, it follows thatD2
�PN jV̂ (�j�) <

0: Thus, with independent types, a winning bidder infers that competition has
been weaker as expected ex ante (EN [N j V̂ � v] < E[N ]). But with a�liated
types, the inference is altered by the additional fact that a winning bidder of
high type V1 = v believes that also V̂ is high as (V1; V̂ ) is (strictly) a�liated,
too. Hence, conditional on fV̂ � vg; N and V1 are negatively dependent variates.
Lemma 1 of Matthews (1987) shows that �pN jV̂ ;V1(�jv̂; �) in fact obeys the (weak)
negative a�liation inequality. An argument as in Proposition 5(i) shows that then
D3

�PN jV̂ ;V1
(�j�; �) � 0.

Assumption 4. For the auction considered, the �xed-n equilbrium bids b(�;n)

are non-decreasing in n 2 J : �b(�;n) = b(�;n)� b(�;n� 1) � 0 [b(�; 0) � 0]:

With this assumption, assume the seller commits to the revealing policy, and
consider a type-v bidder that bids as if he was of type u. As the conditional
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expected payment function (given he wins) takes the form of (8.1), then

d

dv
EN [b(u;N) j V̂ � u; V1 = v] =

X
n2I

�b(u;n)D3

h
1� �PN jV̂ ;V1

(nju; v)
i
� 0:

(8.2)
Since the partial derivative is the only relevant one in symmetric equilibrium,
expected equilibrium payments decrease compared to the concealment policy.

But now (�n � N; V1)jfV̂ � v̂g; where �n = supI + 1; is in turn positively
a�liated.22 By (8.2), a policy of always reporting the 'inverse realization' �n�n of
N should thus increase expected equilibrium payments, relative to a concealment
policy. The optimal information policy then seems to involve a revelation of
information, but of false one.23

To investigate this, suppose the seller commits publically to a report function
r: I ! I [ f0g to convey information on the realizations of N . Theorem 9
of Milgrom and Weber (1982) implies that we can restrict attention to strictly
monotone report functions, since any other function does not fully exploit the
impact of revealing a�liated information on expected revenue. As there are only
two strictly monotone functions mapping I onto itself, it is enough to consider
three reporting policies: the concealment policy �0 identi�ed by r(n) = 0 8n 2 I;

the fully revealing policy � where r(�) = id(�); and the inverse reporting policy ��

given by r(n) = �n�n: To retain generality, suppose the auctioneer can randomize
among these choices: each of the three policies �; ��; and �0 will be used (ex ante)
with probabilities �; ��; and 1 � � � ��; respectively (� + �� � 1): The seller then
commits to report according to the outcome of a random device that selects each
of the policies p 2 f�; ��; �0g according to the probabilities (�; ��) that she has �xed
ex ante.

Theorem 9. Assume the information policy (�; ��) 2 [0; 1]2 is chosen inde-

pendently of the constellation of exogenous parameters [I; fF�(n); PN(n); Ungn2I]:

For a measure one of distributions of N , the seller's optimal policy is to have the

concealment policy �0 be selected with probability 1.

22Thanks to Preston McAfee for the suggestion. Since �n�N is distributed with distribution

1� PN (�n� n) and probability weigths pN (�n� n); the a�liation inequality for �p
NjV̂ ;V1

(�jv̂; �) in

(n; v) and (m;u) reverses as
�
n

m

�
^
�
v

u

�
and

�
n

m

�
_
�
v

u

�
change places if �n� n replaces n:

23For the sake of the argument, temporarily abstract from the issue of potential ex post

veri�ability of the information revealed; sealed bids are kept secret also ex post, including their

number.
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Proof. Consider three revelation mechanisms Mp: [0; �v]supI ! [0; 1]supI �

<supI; p 2 f�0; �; ��g; whereM0 implements the symmetric equilibrium of the given
auction under policy �0; and where Mr implement the symmetric equilibrium
under policies r 2 f�; ��g; respectively. Given the seller has �xed (�; ��); and
given the bidders obtained their private information, the games induced by Mp;

p = �; ��; �0; are played with probabilities �; ��; 1 � � � ��; respectively. Suppose
bidder 1 is of type v and claims to be of type u (u; v > 0) while all his actual
opponents transmit their types truthfully. If under a policy r 2 f�; ��g the bids
condition on the reports r(n); 1's expected utility in mechanism Mr is:

Ur(ujv) = EN

h
E(�(N);V̂ (N))

h
(W1;N � b(u; r(N))) � 1

fV̂ (N)�ug
jV1 = v

ii
,

while in M0; b(u) replaces b(u; r(N)) to yield U0(ujv). Hence, using (4.4),

U0(ujv)� Ur(ujv) = EN

h
EV̂ (N)

h
[b(u; r(N))� b(u)] � 1

fV̂ (N)�ug
jV1 = v

ii
=

X
n2I

pN(n)[b(u; r(n))� b(u)]

Z u

0

fV̂ (n)jV1
(sjv)ds

=

X
n2I

�pN jV̂ ;V1(nju; v)[b(u; r(n))� b(u)]FV̂ jV1
(ujv)

= Hr(ujv)FV̂ jV1
(ujv);

where Hr(ujv) � EN [b(u; r(N))� b(u) j V̂ � u; V1 = v]: (8.3)

Thus,

D2 fU0(ujv)� Ur(ujv)g = Hr(ujv)D2FV̂ jV1
(ujv) + FV̂ jV1

(ujv)D2Hr(ujv); (8.4)

where D2FV̂ jV1
(�j�) � 0 and where (8.2) shows that:

r(n+ 1)
>

<
r(n) 8n 2 J ) D2Hr(ujv)

�

�
0:

Consider �rst the choice of �

��
given that ��=0

�=0
: As for policy �

��
; D2Hr(ujv)

�

�
0;

(8.4) is negative

positive
whenever Hr(ujv)

�

�
0: Comparing the truth-telling equilibria of M0

and Mr (
r=�

r=��
), let Up(vjv) = Up(v) (p = 0; r): Since Hr(ujv)

�

�
0 is equivalent to

U0(ujv)
�

�
Ur(ujv) for u; v > 0, from the envelope theorem:

U0(v)
�

�
Ur(v)) U 0

0(v)
�

�
U 0

r(v) 8v > 0:
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Together with U0(0) = 0 = Ur(0), the implication excludes U0(�)
>

<
Ur(�); so neces-

sarily Ur(�)
�

�
U0(�): Hence, choosing

�>0

��<1
is suboptimal for the seller if ��=0

�=0
:

With the seller's preferences being � � �0 � ��; �� = 1 is then optimal if the
policy is e�ective. But given �� is chosen with probability 1, the realizations of
N are updated perfectly from the reports and choosing �� = 1 yields the same
expected revenue as � = 1: As the same obtains for any �� < 1 such that � = 0;

consider � > 0 and � + �� < 1: Once a report n 2 I is delivered to the bidders, n
is then taken to be the true realization of N with probability

�(n) �
�pN(n)

�pN(n) + ��[1� pN(n)]
� 1fn6= �n

2
g(n) + 1fn= �n

2
g(n):

In the bidder's posterior world [ ~I = fn; �n�ng; ~pN(n) = �(n); ~pN(�n�n) = 1��(n)]

following a report of 'n', let ~b�(n)(�) be the associated equilibrium bid function,

where the index indicates the dependence of the functional form of ~b on the beliefs
�(n). From the argument following (8.3), it is enough to consider 1's conditional
expected payment given he wins. Before receiving any particular report, this is
then given as:

(1� � � ��) b(u) + (� + ��)
h
1� 1f �n

2
2Ig � pN

�
�n

2

�i
EN

h
~b�(N)(u) j V̂ � u; V1 = v

i
+(� + ��) � 1f �n

2
2Ig � pN

�
�n

2

�
� EN

h
b(u;N) j V̂ � u; V1 = v

i
: (8.5)

Assume that �n=2 =2 I; so that the third term in (8.5) vanishes. Then for �+�� = 1

to be optimal for all parameters, necessarily

d

dv
EN

h
~b�(N)(u) j V̂ � u; V1 = v

i
� 0: (8.6)

Suppose the functions ~b�(�)(�) are uniformly increasing as the distribution of N
shifts up stochastically (cf. Corollary 1 and Proposition 4). An analogous argu-
ment to (8.2) then implies that for (8.6) to hold, the function �(�): I ! [0; 1] be
decreasing on I; strictly at least for one n 2 J; for the selected (�; ��) 2 (0; 1)2.
8(�; ��); this necessary condition is equivalent to:

pN(n) � pN(n� 1) 8n 2 J ; 9n 2 J : pN(n) < pN(n� 1): (8.7)

Since (8.7) only holds for a measure zero of distributions of N; choosing �+�� > 0

is typically suboptimal, even if �n=2 =2 I. 2
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Of course, the restriction to policies that are chosen independently of the
exogenous parameters [I; fF�(n); PN(n); Ungn2I] is binding here. But since com-
mitting to a reporting policy implies that the policy choice be robust against
imperfect knowledge of the precise economic environment, we believe the restric-
tion is reasonable. In particular, although the distributions fF�(n) ; PN(n)gn2I can
be estimated to some degree, such estimates are hardly obtainable at the stage
where the seller's information policy is chosen.

An intuition for why there is then no 'smart' misinformation policy that generi-
cally improves upon the concealment policy is the following. Any candidate policy
exploiting the impact of the information revealed must leave some uncertainty on
the true state of the world in order to be e�ective. But then subsequent equi-
librium bids will not condition on the exact reports any more, but on the pos-
terior distribution of N induced by the reports. In particular, a bidder does not
�decide to trust a report 'n' if �(n) � 1=2 and thus bid b(�;n) with probability
�Pr[N j �(N) � 1=2] + ��Pr[N j �(N) < 1=2] and b(�; �n� n) with complementary
probability�, but he forms one bid for the remaining distribution on the number
of his competitors. Essentially, the bids thus 'close' against the particular infor-
mation revealed, and only an indirect linkage of the bidder's type to the informa-
tion revealed remains, which works over the distribution that the equilibrium bid
functions condition upon. Thus, at best, any systematic (distribution-free) dis-
information policy can increase expected revenue only for some particular priors
fpN(n)gn2I .

8.1. Endogenous Entry

If potential bidders incur information acquisition costs in obtaining private infor-
mation, free entry drives their ex ante expected pro�ts near to zero, up to some
residual rents left by the integer constraint on the number of entrants. Since the
seller's ex ante expected revenue then coincides with expected social surplus (net
of aggregate entrance costs), screening instruments are useful only to extract these
residual rents.24

If �xed-n bids are non-decreasing in n and not all supI bidders can enter
pro�tably, symmetric equilibria involve mixed entrance strategies. Analyses of

24Results along these lines have been obtained by French and McCormick (1984), Engelbrecht-

Wiggans (1987), McAfee and McMillan (1987b), Harstad (1990), McAfee and Vincent (1992),

Engelbrecht-Wiggans (1993), and Levin and Smith (1994). Burguet and Sákovi£ (1996) show

that 'large' reserve prices (that may even reduce socially optimal entry) increase expected rev-

enue when an object that is left unsold can be re�auctioned subsequently.
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the optimal use of screening instruments then require that expected equilibrium
payment not decrease if the number of entering bidders shifts upwards stochasti-
cally. For the �rst price auction, this does not follow from the �xed-n bids being
non-decreasing in n, but an additional assumption is required (cf. Proposition 4).

Another assumption, however, is not needed to analyze symmetric endogenous
bidder entry: to dispose with the problem of a stochastic (equilibrium) partici-
pancy in the bidding stage game, it has been assumed that after the entry decisions
are taken, the number of (equilibrium) entrants becomes common knowledge.25

9. Conclusion

The symmetric equilibrium bid functions for a stochastic number of competitors
generalize the known bidding strategies for the �xed-n case without complicating
surprises. For the equilibrium strategy of the �rst price auction, we o�ered an
interpretation that might simplify an intuitive handling of competitive bidding
situations where the winner's payment depends on his bid. Since the linkage
principle tightens with a stochastic competitency, the �xed-n rankings of di�er-
ent auctions extend to sharper versions. Generally, auction mechanisms that in
equilibrium more tightly link the bidders' private information decrease expected
information rents relative to mechanisms that leave the competitors' private in-
formation more loosely linked and hence more 'valuable'. McAfee and McMillan
(1987a) have generalized the �ndings of Myerson (1981) on the optimal auction
for independent types to a competitency of stochastic composition; again the
functional characteristics of the optimal revelation scheme carry over to a random
participancy. Taken together, the results suggest that the '�xed-n paradigm' does
not entail much loss of generality in the conclusions obtained for simple auctions
with risk neutral agents.

The analysis was fundamentally eased by the assumption that the number
of participating bidders is independent of their private information and of the
underlying common values. Despite of having been invoked throughout in the

25See Assumption 4 and notes 5 and 15 in Levin and Smith (1994, p.586f. and p.592),

Milgrom (1981, p.935), or Assumption 4 of Smith and Levin (1996). The assumption is extreme

and contrary to the idea of mixed strategy Nash equilibrium. To obtain his reduced-form pro�t

function, each potential participant had to know (a summary statistics of) all realizations of

the mixing devices used by all his potential competitors. Under such a hypothesis, asymmetric

but correlated entry is more plausible. Campbell (1997) argues in favor of asymmetric entry

equilibria and shows how coordinating their entry decisions improves bidders.
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literature, such an assumption may not be overly realistic. For example, in the
1,264 auctions for wildcat oil leases re�analyzed by McAfee and Vincent (1992,
Table I, p.516), mean participation rates are by overall tendency non-decreasing
in the tract value. The observation suggests that as N shifts up stochastically,
the marginal distribution of S rather increases stochastically.

However, potentially increasing participation rates with di�erent tract values
could also be explained by a change in the bidders' beliefs about the information
owned by their competitors; bidders may believe that the probability of more in-
completely informed and less 'serious' competitors increases disproportionately in
n 2 J: Since a violation of the independence assumption of N and S is hence ob-
servationally equivalent to the bidders having beliefs F

�(n) of di�erent functional
forms for varying n; there is an identi�cation problem that is hard to overcome em-
pirically. The problem becomes even worse since the valuation functions fUngn2J ;

too, can vary in any way over J:
To assess the e�ect of the assumption, it then seems necessary to study bidding

games where the number of bidders is simultaneously determined with their bids
in equilibrium. Now if (N;�(n)

) is positively a�liated on I 3 n, the linkage
principle is sharpened again since larger types' beliefs about the expected highest
competing type increase stochastically only because N does so. This should imply
revenue rankings of the kind encountered above already with independent types.
For a�liated types, the rankings must sharpen even further, because auctions
that more tightly link the bidders' types to V̂ induce the expected equilibrium
winning probability to shift down even more and thus force higher types to bid
even higher to reach a �xed level of expected information rent. It is not clear,
however, how the equilibrium bid functions will look like.
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10. Appendix: Proofs

Proof of Theorem 1.

We �rst show that (V̂ ; V1) is a�liated. As (V1; ~V
(n�1)

�1 ) is a�liated, also the

subselection (V̂ (n); V1) is, so the joint density of (V̂ (n); V1) obeys the a�liation
inequality 8n 2 I. Weighting by pn � pN(n) and adding the corresponding
inequalities for varying n; it follows that for u0 > u; v0 > v:X

n2I

p2n fV̂ (n);V1
(u0; v0) fV̂ (n);V1

(u; v) >
X
n2I

p2n fV̂ (n);V1
(u0; v) fV̂ (n);V1

(u; v0); (10.1)

the strict equality because at least one of the original inequalities is strict. As each
fV̂ (n);V1

(u1; v1) and fV̂ (m);V1
(u2; v2) obeys the a�liation equality (n 6= m; n;m 2

I), also their product does; in particular, for v0 > v > 0; u0i > ui (i = 1; 2):

fV̂ (n);V1
(u01; v

0
) fV̂ (m);V1

(u02; v
0
) fV̂ (n);V1

(u1; v) fV̂ (m);V1
(u2; v)

� fV̂ (n);V1
(u1; v

0
) fV̂ (m);V1

(u02; v) fV̂ (n);V1
(u01; v) fV̂ (m);V1

(u2; v
0
):

Integration with respect to u2 and u01 implies:

fV̂ (m);V1
(u02; v

0
) fV̂ (n);V1

(u1; v) � fV̂ (n);V1
(u1; v

0
) fV̂ (m);V1

(u02; v):

Set u1 = u; u2 = u0 and assume wlog that u0 > u: Weighting by pnpm and adding
the associated inequalities:X
n;m2I
n6=m

pnpmfV̂ (n);V1
(u; v) fV̂ (m);V1

(u0; v0) >
X
n;m2I
n6=m

pnpmfV̂ (n);V1
(u; v0) fV̂ (m);V1

(u0; v):

(10.2)
Adding (10.1) and (10.2), and usingX

n

p2n fV̂ (n);V1
(u0; v0) fV̂ (n);V1

(u; v) +
X
n6=m

pnpmfV̂ (n);V1
(u; v) fV̂ (m);V1

(u0; v0)

=

"X
n

pnfV̂ (n);V1
(u0; v0)

#"X
n

pnfV̂ (n);V1
(u; v)

#

(because each of the sums is absolutely converging), we obtain:

fV̂ ;V1(u
0; v0) fV̂ ;V1(u; v) > fV̂ ;V1(u

0; v) fV̂ ;V1(u; v
0
),
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as
P

n2I pnf(V̂ (n);V1)
(�; �) = f

(V̂ ;V1)
(�; �) by (4.2). Hence, (V̂ ; V1) is strictly a�li-

ated. It follows analogously that (V̂ ;�(n)
) is strictly a�liated (n 2 I): Therefore,

(V̂ ; V1; ~�
(n�1)

�1 ) is strictly a�liated as well. 2

Proof of Theorem 2.

(i) Observe that

EN

h
E
�(N)

h
WN j V̂ = v̂; V1 = v

ii
=

X
n2I

pN(n)

Z
<
n�1
+

Z
<m

Un(v; � ;�) f~�(n�1)

�1
jV̂ ;V1

(� ;�jv̂; v)d�d� (10.3)

=

X
n2I

Z
<
n�1
+

Z
<m

Un(v; � ;�) f(N;~�
(N�1)

�1 )jV̂ ;V1
(n; � ;�jv̂; v)d�d�

=

X
n2I

Z
<
n�1
+

Z
<m

Un(v; � ;�)
f
(N;~�

(N�1)

�1 ;V̂ (N))jV1
(n; � ;�jv) � 1f�1=v̂g(� )

fV̂ jV1(v̂jv)
d�d�

=

X
n2I

pN(n)

Z
<
n�2
+

Z
<m

Un(v; v̂; �
0
;�)

f~�(n�1)

�1 jV1
(v̂; � 0;�jv)

fV̂ jV1(v̂jv)
d�d� 0

=

X
n2I

pN jV̂ ;V1(njv̂; v)

Z
<
n�2
+

Z
<m

Un(v; v̂; �
0
;�)

f~�(n�1)

�1 jV1
(v̂; � ;�jv)

fV̂ (n)jV1
(v̂jv)

d�d� 0

= EN

h
wN(v; v̂) j V̂ = v̂; V1 = v

i
;

the second equality using Assumption 3, the third due to (4.1), the fourth due to
Assumption 3, and the �fth equality using (4.3).

(ii) For �xed n 2 I; consider the integral (10.3) inside the expectation with re-

spect toN; denoted by ŵn(v̂; v) = E�(n)

h
Wn j V̂ = v̂; V1 = v

i
: Since (V1; ~�

(n�1)

�1 ; V̂ )

is a�liated (Theorem 1), it follows with Theorem 5 of Milgrom and Weber (1982)
that

D1ŵn(�; �) > 0; D2ŵn(�; �) � 0 8n 2 I:

It follows that for i = 2:

0 �
X
n2I

Di ŵn(�; �) = DiEN [ŵN(�; �)] = Di ŵ(�; �);
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with strict inequality for i = 1:

(iii) Let N1; N2 such that 1� PN1
(�) � 1� PN2

(�): Then 8n 2 I:"X
m>n

pN1
(m)fV̂ (m)jV1

(v̂jv)

#"X
m�n

pN2
(m)fV̂ (m)jV1

(v̂jv)

#

�

"X
m>n

pN2
(m)fV̂ (m)jV1

(v̂jv)

#"X
m�n

pN1
(m)fV̂ (m)jV1

(v̂jv)

#
:

Multiplying with
hP

m�n pN1
(m)fV̂ (m)jV1

(v̂jv)
i
�

hP
m�n pN2

(m)fV̂ (m)jV1
(v̂jv)

i
,

"X
m�n

pN2
(m)fV̂ (m)jV1

(v̂jv)

#"X
m2I

pN1
(m)fV̂ (m)jV1

(v̂jv)

#

�

"X
m2I

pN2
(m)fV̂ (m)jV1

(v̂jv)

#"X
m�n

pN1
(m)fV̂ (m)jV1

(v̂jv)

#
;

so that, using (4.3),X
m�n

pN2jV̂ ;V1
(mjv̂; v) �

X
m�n

pN1jV̂ ;V1
(mjv̂; v):

Thus, if wn(v; v̂)� wn�1(v; v̂) � 0 (n 2 I; setting w0(�j�) = 0); it follows that:X
n2I

[wn(v; v̂)� wn�1(v; v̂)]
h
PN2jV̂ ;V1

(njv̂; v)� PN1jV̂ ;V1
(njv̂; v)

i
� 0;

which is equivalent to:X
n2I

wn(v; v̂)pN1jV̂ ;V1
(njv̂; v) �

X
n2I

wn(v; v̂)pN2jV̂ ;V1
(njv̂; v):

In view of part (i), this proves the third claim. 2

Proof of Proposition 1.

Since for the bivariate expectation

E
(~�(n);V̂ (n))

h
Wn � V̂ (n)

i
= EV̂ (n)

h
V̂ (n) � E~�(n) [Wn j V̂ (n)]

i
, (10.4)
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abbreviating b�1(a) = u; we have:

EN

h
E~�(N)

h
WN � 1fV̂ (N)�ug

jV1 = v
ii

= EN

h
EV̂ (N)

h
1
fV̂ (N)�ug

� E~�
(N�1)

�1

h
WN j V̂ (N); V1

i
jV1 = v

ii
=

X
n2I

pN (n)

Z u

0

wn(v; t) fV̂ (n)jV1
(tjv)dt

=

Z u

0

"X
n2I

pN jV̂ ;V1(njt; v)wn(v; t)

#
fV̂ jV1(tjv)dt

=

Z u

0

ŵ(v; t) fV̂ jV1(tjv)dt

= EV̂

h
ŵ(V1; V̂ ) � 1

fV̂ �ug
jV1 = v

i
,

where the third and fourth equality make use of (4.3) and Theorem 2(i), re-
spectively. This shows the part of the claim regarding the expected value of
the object obtained by the winning bidder. Substituting ZN for WN , where
Zn � Un(V̂ (n);V

(n�1)

�1 ;S), it follows analogously that the winner's expected pay-
ment is:

EV̂

h
ŵ(V̂ ; V̂ ) � 1

fV̂ � b�1(a)g
jV1 = v

i
:

Thus, the winning bidder's pro�t is composed as claimed. 2

Proof of Theorem 3.

For bidder 1's expected pro�t, if he bids a 2 <+ while his competitors conform
to an arbitrary strictly increasing (continuous) candidate strategy b(�):

�(ajv) =

= EN

h
E(�(N);V̂ (N))

hn
WN � b(V̂ (N))

o
� 1
fV̂ (N)� b�1(a)g

jV1 = v
ii

= EN

h
EV̂ (N)

h
E~�(N)

hn
WN � b(V̂ (N))

o
� 1
fV̂ (N)� b�1(a)g

j V̂ (N) ; V1

i
jV1 = v

ii
= EN

h
EV̂ (N)

hn
wN(V1; V̂ (N))� b(V̂ (N))

o
� 1
fV̂ (N)� b�1(a)g

jV1 = v
ii

= EN

"Z b�1(a)

0

[wN(v; t)� b(t)] fV̂ (N)jV1
(tjv)dt

#
, (10.5)
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the second equality because of (10.4). The necessary condition �a(b(v)jv) = 0 for
a symmetric Harsanyi-Bayes-Nash equilibrium is:X

n2I

pN(n) [wn(v; v)� b(v)] fV̂ (n)jV1
(vjv) = 0:

Rearranging, using (4.2) and (4.3), and appealing to Theorem 2(i):

b(v) =

P
n2I pN(n) fV̂ (n)jV1

(vjv)wn(v; v)P
n2I pN (n) fV̂ (n)jV1

(vjv)

=

X
n2I

pN jV̂ ;V1(njv; v)wn(v; v)

= ŵ(v; v):

To see that using b(�) is a best response of bidder 1 against [bj(�) = b(�)]16=j2I,

rewrite (10.5) as:

�(ajv) =

Z b�1(a)

0

X
n2I

pN(n) [wn(v; t)� b(t)] fV̂ (n)jV1
(tjv)dt

=

Z b�1(a)

0

"X
n2I

f
(N;V̂ )jV1

(n; tjv)wn(v; t)� fV̂ jV1(tjv) ŵ(t; t)

#
dt;(10.6)

using (4.1) in the �rst and (4.2) in the second term of the sum. Then for the
integrand �(v; t) from (10.6), using (4.3) and Theorem 2(i):

sgnf�(v; �)g = sgn

(X
n2I

f
(N;V̂ )jV1

(n; tjv)wn(v; t)� fV̂ jV1(tjv) ŵ(t; t)

)

= sgn

(X
n2I

pN jV̂ ;V1(njt; v)wn(v; t)� ŵ(t; t)

)

= sgn fŵ(v; t)� ŵ(t; t)g

= sgnfv � tg,

the last equation because of Theorem 2(ii). Hence (10.6) is maximized by a bid
a� such that v = b�1(a�); so type v's best response against his competitors using
the strategy b is uniquely determined as b(v) = ŵ(v; v): 2
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Proof of Proposition 2.

(i) We have to show that FV̂ (n)jV1
(�jv) is strictly decreasing in n 2 I (v > 0):

Since the claim holds trivially when V
(n) is a vector of independent variates

(FV̂ (n)jV1
(�j�) = F1(�)

n�1
), it remains to consider the strictly a�liated case. Ac-

cording to Theorem 23(ii) of Milgrom and Weber (1982), a random vector V(n+1)

is strictly a�liated if for any pair of concordantly non-decreasing functions g; h:
<n+1 ! <; sublattice S � <n+1:

E[g(V(n+1)
)h(V(n+1)

) jS] > E[g(V(n+1)
) jS] � E[h(V(n+1)

) jS]: (10.7)

For each n 2 I; let v̂(n) be the n-vector consisting of the value v̂ 2 (0; �v) in each
coordinate. Choose S = f(V2; ::; Vn�1) � v̂

(n�2) jV1 = vg; g(V(n+1)
) = 1fVn � v̂g;

h(V(n+1)
) = 1fVn+1 � v̂g; and note that 1S(v̂) is a�liated. Using that V(n+1) is a

vector of exchangeable variates, (10.7) yields:

Pr[(V2; ::; Vn+1) � v̂
(n) jV1 = v]

Pr[(V2; ::; Vn�1) � v̂(n�2) jV1 = v]
>

�
Pr[(V2; ::; Vn) � v̂

(n�1) jV1 = v]

Pr[(V2; ::; Vn�1) � v̂(n�2) jV1 = v]

�2

;

which is equivalent to:

F(V2;::;Vn+1)jV1(v
(n)jv)

F(V2;::;Vn)jV1(v
(n�1)jv)

>
F(V2;::;Vn)jV1(v

(n�1)jv)

F(V2;::;Vn�1)jV1(v
(n�2)jv)

:

Since FV̂ (n)jV1
(v̂jv) = F(V2;::;Vn)jV1(v̂

(n)jv); it follows that the function

'(n) =
FV̂ (n)jV1

(v̂jv)

FV̂ (n�1)jV1
(v̂jv)

is strictly monotonically increasing in n 2 I (where FV̂ (0)jV1
(�jv) � 1). Since '(n)

approaches unity as n approaches in�nity, '(n) < 1 8n <1: This is the claim.

(ii) Let N1; N2 be such that PN1
(�) < PN2

(�); let

�V̂ (n)jV1
(v̂jv) = FV̂ (n�1)jV1

(v̂jv)� FV̂ (n)jV1
(v̂jv);

where lim
n!1

�V̂ (n)jV1
(�jv) = 0; and let V̂i = ENi [V̂ (Ni)]; i = 1; 2: Then,

FV̂1jV1
(v̂jv) =

X
n2I

pN1
(n)FV̂ (n)jV1

(v̂jv)
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=

X
n2I

X
m�n

�V̂ (m)jV1
(v̂jv)pN1

(n)

=

X
m2I

�V̂ (m)jV1
(v̂jv)

X
n<m

pN1
(n)

<
X
m2I

�V̂ (m)jV1
(v̂jv)

X
n<m

pN1
(n)

= FV̂2jV1
(v̂jv);

because �V̂ (m)jV1
(v̂jv) > 0 8m <1 by part (i). 2

Proof of Theorem 4.

It follows from Theorem 2 that ŵ(v; v̂) = ŵ(v; �v) if max(v̂; �v) � v: Consider
type v of bidder 1 (v > 0) who can choose to bid b(v) = ŵ(v; v) or <+ 3 b 6= b(v):

Suppose that 1's most serious competitor employs a strictly increasing strategy
�(�) such that �(0) = ŵ(0; 0); so that the highest competing bid is �(V̂ (N)):

(All bids �(0) 6= ŵ(0; 0) are weakly dominated.) Note that for a constant c 2 <+;

�(V̂ (N)) = c implies that V̂ (n)
a:s:
= ��1(c) 8n 2 J , so that necessarily V̂

a:s:
= ��1(c).

In particular, using Theorem 2(ii), �(V̂ (N)) = ŵ(0; 0)) V̂
a:s:
= 0:

First consider the case ŵ(0; 0) < b < b(v); where the decisive event for 1's
choice is � := fV̂ (N) j b < �(V̂ (N)) < b(v)g (ignoring null events, as ties). Given
�; bidding b earns zero expected pro�t while b(v) yields:

�(b(v)jv;�) = EN

h
wN(V1; V̂ (N)) j�; V1 = v

i
� EN

h
EV̂ (N)

h
�(V̂ (N)) j�; V1 = v

ii
a:s: > EN

h
wN(V1; V̂ (N)) j�; V1 = v

i
� EN

h
EV̂ (N)

[b(v) jV1 = v]
i

� EN

h
wN(V1; V̂ (N)) j �(V̂ (N)) = ŵ(0; 0); V1 = v

i
� b(v)

a:s: = ŵ(v; 0)� b(v) = 0;

the �rst inequality using the de�nition of �; the second inequality due to Proposi-
tion 1; the second equality invoking Theorem 2(i) for V̂

a:s:
= 0; and the last equality

by maximal attentiveness (as b(v) > ŵ(0; 0); necessarily v > 0).
Now consider the choice of b > b(v); where b � v and the decisive event for 1

is �0 := fV̂ (N) j b > �(V̂ (N)) > b(v)g: Suppose that �(�) is such that �(v) > v:

Clearly for any of 1's competitors playing such a strategy is dominated by bids
such that � 0(�) � 1: However if bidding b(v) is best for bidder 1 given �

0 and
�(v) > v, it follows that a fortiori b(v) is best against any strategy � such that
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� 0(�) � 1 (because then the winning probability for bidder 1 increases while the
expected price he pays decreases). Conditional on �

0; bidding b then yields an
expected pro�t of:

�(bjv;�0) = EN

h
wN(V1; V̂ (N)) j�

0; V1 = v
i
� EN

h
EV̂ (N)

h
�(V̂ (N)) j�

0; V1 = v
ii

� ŵ(v; ��1(b))� EN

h
EV̂ (N)

h
�(V̂ (N)) j�

0; V1 = v
ii

a:s: < ŵ(v; v)� b(v) = 0;

the �rst inequality from the de�nition of �0 and Proposition 1 in conjunction with
Theorem 2(i) for V̂

a:s:
= ��1(b), and the second inequality by maximal attentiveness

for v � ��1(v) � ��1(b) and the de�nition of �0:
As �[�

0 exhausts the events where bidder 1 may have strictly positive pro�t
from bidding either b or b(v), bidding b(v) is optimal for any competing strategy
�(�). To see that [b(�); :::; b(�)] is an equilibrium it remains to note that b(�) has
the properties of �(�) used. 2

Proof of Theorem 5.
Reconsider the necessary condition (6.2), where �n(vjv); �̂(vjv); wn(v; v) are

continuous in v and j�b(b; v)j = �̂(vjv) < 1 8v > 0. Although j�b(b; v)j is
unbounded at v = 0; the initial value problem [b0(v) = �(b(v); v); b(0) = ŵ(0; 0)]

has a unique solution because �(b; v) is linear in b (e.g. Walter, 1972, p.23).
Rearranging, multiplying by expf

R v

0
�̂(sjs)dsg, and integrating subject to b(0) =

ŵ(0; 0), (6.2) yields:

b(v) = ŵ(0; 0) L̂(0jv) +

Z v

0

EN

h
wN(t; t) fV̂ (N)jV1

(tjt)
i L̂(tjv)

FV̂ jV1
(tjt)

dt;

where L̂(tjv) � expf�

Z v

t

�̂(sjs)dsg: (10.8)

L̂(�jv) is a proper distribution function on [0; v]; because L̂(vjv) = 1, D1L̂(�jv) > 0,
and L̂(0jv) = 0 since lim

s!0
�̂(sjs) = +1. Thus, the integration constant in (10.8)

vanishes. Using that dL̂(tjv) = �̂(tjt)L̂(tjv)dt;

b(v) =

Z v

0

EN

"
wN(t; t)

fV̂ (N)jV1
(tjt)

FV̂ jV1
(tjt)

#
L̂(tjv)dt
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=

Z v

0

X
n2I

pN(n) fV̂ (n)jV1
(tjt)

fV̂ jV1(tjt)
wn(t; t) dL̂(tjv)

=

Z v

0

X
n2I

pN jV̂ ;V1(njt; t)wn(t; t) dL̂(tjv)

=

Z v

0

ŵ(t; t) dL̂(tjv);

the last equality from Theorem 2(i). By Theorem 2(ii) and since the integrating
probability measure L̂(�jv) is strictly decreasing in v, b(�) is strictly increasing
indeed. It remains to show that sgnf�a(b(v0)jv)g = sgnfv � v0g: The argument
is parallel to Milgrom and Weber (1982, p.1108): �x v0; choose v 6= v0 (v0; v > 0);

and rewrite the necessary condition (6.1) for b(v0) as:

�a(b(v0)jv) = �FV̂ jV1
(v0jv) +

1

b0(v0)

X
n2I

pN (n) fV̂ (n)jV1
(v0jv) [wn(v; v0)� b(v0)]

=
FV̂ jV1

(v0jv)

b0(v0)

"X
n2I

pN jV̂ ;V1(njv0; v) �̂(v0jv) [wn(v; v0)� b(v0)]� b0(v0)

#
,

using (4.3) and the de�nition of �̂(�; �). As the factor in front of the bracket is
strictly positive,

sgnf�a(b(v0)jv)g = sgn
n
�̂(v0jv) [ŵ(v; v0)� b(v0)]� b0(v0)

o
= sgnfv � v0g;

the �rst equality by Theorem 2(i) and the second equality (for varying v) because
of Theorem 2(ii) and D2�̂(�j�) > 0: To see the last fact, integrate the a�liation
inequality fV̂ jV1(tjv) fV̂ jV1(sju) > fV̂ jV1(sjv) fV̂ jV1(tju) for v > u > 0 and t > s > 0

over fs j s < tg and rearrange terms. 2

Proof of Proposition 3.

For the equilibrium strategy from Corollary 2:

b(v) =

Z v

0

ŵ(t; t)
fV̂ (t)

FV̂ (v)
dt

(by Theorem 2(i)) =

Z v

0

EN

h
wN(t; t) j V̂ = t

i fV̂ (t)

FV̂ (v)
dt
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(by (4.3)) =

X
n2I

pN(n)

FV̂ (v)

Z v

0

wn(t; t) fV̂ (n)(t)dt

(by (4.4)) =

X
n2I

�pN jV̂ (njv)EV̂ (n)

h
wn(V̂ (n); V̂ (n)) j V̂ (n) � v

i
. 2

Proof of Proposition 4.

Recall from Corollary 3 that since D2�̂(�j�) > 0,

FV̂ jV1
(vjv) = exp

�Z v

0

�̂(sjv)ds

�
> exp

�Z v

0

�̂(sjs)ds

�

for any distribution of N and for any v > 0: Thus,

b(v)FV̂ jV1
(vjv) =

Z v

0

ŵ(t; t) �̂(tjt) L̂(tjv) dt � FV̂ jV1
(vjv)

>

Z v

0

ŵ(t; t) �̂(tjt) exp

�
�

Z v

t

�̂(sjs)ds

�
exp

�Z v

0

�̂(sjs)ds

�
dt

=

Z v

0

ŵ(t; t) d exp

�Z t

0

�̂(sjs)ds

�
:

Consider the last expression. By Theorem 2(iii), if wn(�; �) � wn�1(�; �) (n 2 J);

the integrand is uniformly increasing as N shifts up stochastically. If the expected
marginal winning probability is non-decreasing as N increases stochastically, also
the integrating function is. It follows that the �rst expression, which majorizes
the last one 8v > 0, cannot decrease as N shifts up stochastically: 2

Proof of Proposition 5.

(i) Strict a�liation of (V̂ ; V1) implies that 8v̂ > �v; v > v0 > 0:

fV̂ jV1(v̂jv) fV̂ jV1(�vjv
0
) > fV̂ jV1(�vjv) fV̂ jV1(v̂jv

0
)

whenever the conditional density exists around a neighborhood of v0 > 0: Inte-
grating over f�v j �v � v̂g and rearranging, we obtain:

d

dv̂
log

(
FV̂ jV1

(v̂jv)

FV̂ jV1
(v̂jv0)

)
> 0 (v > v0);
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which implies that

d

dv̂

(
FV̂ jV1

(v̂jv)

FV̂ jV1
(v̂jv0)

)
> 0 (v > v0):

As lim
v̂!1

F
V̂ jV1

(v̂jv)

F
V̂ jV1

(v̂jv0)
= 1; it follows that for v̂ <1:

FV̂ jV1
(v̂jv) < FV̂ jV1

(v̂jv0) (v > v0):

Passing to the limit as v0 approaches v yields the claim.

(ii) Recall from Theorem 5 that D2�̂(�j�) > 0. Rewriting the relation as

D2D1logFV̂ jV1
(�j�) = D1D2logFV̂ jV1

(�j�) > 0

implies that for v̂ > �v > 0; v > 0:

D2logFV̂ jV1
(v̂jv) > D2logFV̂ jV1

(�vjv):

Thus, 8v̂ > �v:

sgn

(
D2log

FV̂ jV1
(�vjv)

FV̂ jV1
(v̂jv)

)
= sgn

(
D2

FV̂ jV1
(�vjv)

FV̂ jV1
(v̂jv)

)
< 0: 2

Proof of Theorem 7.

Consider two revelation mechanisms implementing the symmetric equilibrium
[bM (�); ::; bM(�)] of the M -price auctions M = 1; 2; respectively. Suppose in each
mechanism bidder 1 reports u > 0 when being of type v > 0; while all of his com-
petitors announce truthfully. If 1's conditional expected payment in mechanism
M; given he wins, is PM(ujv); then P1(ujv) = b(u) with b(�) from Theorem 5, and
by Theorem 3 and Proposition 1:

P2(ujv) = EV̂ [ŵ(V̂ ; V̂ ) j V̂ � u; V1 = v]

=
ŵ(u; u)� ŵ(0; 0)

FV̂ jV1
(ujv)

�

Z u

0

d

dt
ŵ(t; t)

FV̂ jV1
(tjv)

FV̂ jV1
(ujv)

dt: (10.9)

By Proposition 5(i), the �rst term of (10.9) has a positive partial derivative with
respect to v; by Proposition 5(ii), the same applies to the second term of (10.9),

39



where d

dt
ŵ(t; t) > 0 from Theorem 2(ii). Hence, D2P2(ujv) > 0; and the envelope

theorem implies that

d

dv
fP2(vjv)� P1(vjv)g = D2P2(vjv) > 0:

As P2(0j0) = ŵ(0; 0) = P1(0j0), it follows that P2(vjv) > P1(vjv) 8v > 0: 2

Proof of Theorem 8.

Extending the function wn(�; �) to n � 2 arguments, let

wn(v
(n)

) := E
�(n)

h
Wn jV1 = v1; ~V

(n�1)

�1 = v
(n�1)

�1

i
,

and note that then

wn(v̂; v̂) = E�(n)

h
Wn jV1 = v̂; V̂ (n) = v̂

i
= E�(n)

h
wn(V1; V̂ (n); ~V

(n�2)

�1 ) jV1 = v̂; V̂ (n) = v̂
i

= E�(n)

h
wn(V̂ (n); V̂ (n); ~V

(n�2)

�1 ) jV1 = v̂; V̂ (n) = v̂
i

� E�(n)

h
wn(V̂ (n); V̂ (n); ~V

(n�2)

�1 ) jV1 = v; V̂ (n) = v̂; v � v̂
i
;(10.10)

the inequality from Theorem 5 of Milgrom and Weber (1982). Now let ~Vn =

EN [V̂ (N) jN � n]; and de�ne ~w(�; �): [0; �v]2 ! < in analogy to ŵ(�; �); but with
~Vn replacing V̂ and EN [�] substituted by EN [� jN � n]: Similarly,

~w( ~Vn; ~Vn; ~�n) = EN

h
E�(N)

h
wN(V1; V̂ (N); ~V

(N�2)

�1 ) jV1; ~Vn

i
jN � n

i
,

where ~�n represents the re�ned information ~V
(N�2)

�1 jfN � ng available in the

stage game equilibrium of the last stage. Then from Proposition 1; since ~Vn is
stochasticaly larger than V̂ 8n 2 I; because of relation (10.10); and by extending
Theorem 2(i) to ~w(�; �; ~�n):

R2 = E
(V1;V̂ )

h
ŵ(V̂ ; V̂ ) jV1 � V̂

i
� E(V1; ~Vn)

h
~w( ~Vn; ~Vn) jV1 � ~Vn

i
� E(V1; ~Vn)

h
E(V1; ~Vn)

h
~w( ~Vn; ~Vn; ~�n) jV1; ~Vn

i
jV1 � ~Vn

i
= E(V1; ~Vn)

h
~w( ~Vn; ~Vn; ~�n) jV1 � ~Vn

i
= RE;
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the last equality by adapting Proposition 1 to ~w(�; �; ~�n) with the distribution
fpN jfN�ng; ~Vn;~�n;V1(nj~v

(n�1); v1)gn2I: 2
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