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Abstract

We analyse the bidding for unit-price contracts, a very common

procurement auction. With a unit price contract, not the provision of

the good but the employment of several kinds of inputs is priced. The

seller charges a unit price for the employed quantity of each input. To

select one seller, a linear selection rule is used to rank submitted lists

of unit prices.

In this paper, we model heterogeneous technologies of craftsmen:

�rms di�er in their requirement of input-quantities.

An equilibrium of this model is found. The composition of sub-

mitted lists does not mirror the cost structure and the selection prob-

ability is not monotone in the type. Sometimes the �lamer� of two

craftsmen is selected, enhancing all but the very lame types to bid

very aggressively. Caused by this, unit-price bidding can be cheaper

(require a lower expected payment) than standard auctions like the

�rst price auction.
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1 Introduction

This paper analyses a common way public agencies select and pay the con-

structor of public buildings, highways and other infrastructure projects. This

procurement auction is called the Unit-Price-Contract Auction (UPC-

auction). UPC-auctions are also often used by �rms or private persons to

select and pay a craftsmen who o�ers some service. The volume of jobs allo-

cated via UPC-auctions amounts to many billion DM per year, since only in

public procurement of construction projects in Germany 100 billion DM per

year are paid1, most of it using UPC-auctions.

A unit-price contract (UPC) between a buyer and a seller prescribes the

payment to the seller. The buyer does not pay an all-inclusive fee for the

provision of the good as a whole. Instead, he compensates the employment of

several kinds of inputs, works or services. For each input, the seller charges

a unit-price for the employed quantity of this input. For example, consider

the excavation of material out of a mountain to build a tunnel. The material

consists of rock and soil, altogether 1000 m3. The UPC speci�es a unit-

price p1 for each unit of the work �excavation of rock� (measured in m3),

and another unit-price p2 for each m3 of the work �excavation of soil�. If

actually 600 m3 of rock and 400 m3 of soil are excavated, then the seller

pays 600m3 � p1+400m
3 � p2. Of course, actual quantities have to be publicly

observable after completion. Hence the payment makes use of so called �ex-

post observable information�.

In UPC-auctions several sellers compete for a UPC. Every seller submits

a sealed envelope, containing a list of unit prices, one unit-price for each

input. Hence the bid is multidimensional. To rank the submitted lists, the

buyer weights the inputs and selects the seller with the lowest weighted sum

of unit-prices, called the �sum� of the bid. Weights - called assessments - are

already announced in the invitation for tenders. They sometimes re�ect the

auctioneer's assessment of actual quantities, but might be chosen arbitrarily.

We focus on the provision of craftsmen's services and address the following

questions:

1.) How do experienced bidders bid and why do bidders fail who are

not used to UPC-auctions? Companies facing a UPC-auction for the �rst

time are often unsuccessful, as the example of American �rms bidding for

1In 1995, 110.5 billion DM were spent on public construction projects in Germany.

Source: Institut der Deutschen Wirtschaft, Zahlen zur Wirtschaftlichen Entwicklung der

Bundesrepublik Deutschland 1996, Table 71.
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the construction of the airport in Hong Kong shows: To explain their lack of

success, a Hong Kong competitor explains

�American companies just don't know how to operate in this kind of

environment in Asia. In a project like this, you have to bid low on certain

projects, take a loss, and make it up on pieces elsewhere.�2

This paper shows that rational sellers indeed follow this pattern. They

charge cost-unsu�cient unit-prices for some inputs and make it up on other

services with very high unit prices.

2.) Is the UPC-auction e�cient? We show that sometimes a seller wins

who bears higher total costs than his competitors.

3.) Are UPC-auctions �cheaper� than other allocation mechanisms? Do

we expect the payment in a UPC-auction to be lower than the payment in

other auctions like the english auction or the �rst price sealed bid auction?3

We show that the UPC-auction can be cheaper than many other auctions.

4.) Does a buyer earmarking the sum of the winning bid in his budget

underestimate the payment? He does!

We also raise the question of bribery, a relevant problem in procurement.

If the execution of the auction is delegated to an agent, how easy is it to

prevent preferential treatment of a bidder who bribes the agent?

The paper is organised as follows: Chapter 2 motivates the assumptions

and refers to the literature. In chapter 3 the model is presented. Chap-

ter 4 shows a property of rational bidding in this model, the one-sidedness.

Chapter 5 deals with equilibrium analysis. Properties of this equilibrium are

analysed in chapter 6. Chapter 7 concludes the paper. Proofs are relegated

to the appendix.

2 Modelling Approach and Literature

A sketch of the model presented in chapter 3 is as follows: Risk-neutral

craftsmen compete in a UPC-auction. The quantity of one of the two inputs

is deterministic. The actual quantity a craftsman employs of the other input

is his type. It is private information and distributed independently with the

same distribution for every craftsman. Craftsman's costs are a linear function

of actual quantities. Every craftsman submits a list of two unit-prices, one

2Quoted from the International Herald Tribune, Monday, October 30, 1995
3This question is motivated by the interest of the auctioneer, for example a government

asking for the construction of a highway or a private person requiring craftsmen's services.
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for each input. The craftsman with the lowest weighted sum of unit-prices

is selected. After completion of the job the actual quantities of the selected

bidder are observed. According to the UPC, this bidder is compensated for

the actual quantities with his submitted unit prices.

The Mechanism The model di�ers from most papers in the auction litera-

ture in two aspects4: First, some information about the utility of the bidders

is publicly observable ex-post, after the completion of the job. Second, bids

are multidimensional.

Actual costs are hard to verify. If actual costs were verifyable, the buyer

could extract all the rent. However, actual quantities of the inputs em-

ployed are often publicly observed after completion and used to determine

the payment. Publicly ex-post observable information enables auctions

where the payment is contingent not only on the bids but also on this in-

formation. This can raise the expected revenue of the auctioneer: Hansen

(1985) showed this for three special auctions in a SIPV-framework. Riley

(1988) found that making the payment contingent on the ex-post observable

oil-production (for example) instead of agreeing a �xed fee can raise auction-

eer's revenue in an o�shore oil auction where types are correlated estimations

of the oil-production. These papers on ex-post observable information only

consider auctions with one-dimensional bids.

The present paper considers an auction with two-dimensional bids.

With multidimensional bids, in equilibrium typically every �xed winning

probability can be attained by a continuum of bids. Che (1993) analyses

a procurement auction with multidimensional bids (without ex-post observ-

able information). The bid is two-dimensional, consisting of the price and the

quality of the good. In his model, the derivatives of both the iso-winner's-

payo� curve and the iso-winning-probability curve in the price-quality space

only depend on quality, not on price. Hence for a given type the max-

imisation problem: �maximise the winner's payo� under the constraint of

attaining a given winning probability� always yields the same optimal qual-

ity (characterised by the tangential point of both curves), regardless of the

winning probability. This reduces the strategic decision of the bidder to a

one-dimensional problem. In the model analysed in the present paper, a

similar reduction occurs.

The bidding behaviour in the UPC-auction with multidimensional bids

4For a survey on auction literature refer to McAfee, McMillan (1987).
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making use of ex-post observable information di�ers from one-dimensional

bidding with ex-post observable information as well as from other multidi-

mensional auctions. If the payment can be made contingent on ex-post ob-

servable information, bidder's incentive constraints in the auctioneer's mecha-

nism design problem not necessarily result in monotone winning probabilities.

In the above mentioned auctions with one-dimensional bids using ex-post

observable information, monotonicity of the winning probability w.r.t. the

type still holds. However, in the UPC-auction with multidimensional bids,

the type space splits up in two parts with di�erent kinds of payment dis-

crimination. As a result, the function mapping the types to the equilibrium-

probabilities of award is not monotone anymore.

Two other papers consider the UPC-auction. Stark 1974 conducts a de-

cision theoretic analysis of the UPC-auction, not considering strategic inter-

action. Samuelson 1986 is the model nearest to ours. He describes a more

general class of mechanisms under risk aversion and the same informational

assumptions. He allows for a more general scoring function, including the

UPC-auction (with a linear weighting rule) as a special case. He �nds equi-

libria for some very special scoring functions, all of them involving monotone

winning probabilities. However, Samuelson 1986 does not analyse the UPC-

auction.

Informational Assumptions To keep the problem simple and to abstract

from e�ects due to multidimensional types, I assume that the quantity of one

input is common knowledge and deterministic5. Only the other input is

subject to uncertainty. The outcome of the auction depends on the nature

of the quantities of this input.

The UPC-auction is commonly used in many di�erent situations. Some-

times the actual quantities do not depend on the characteristics of the seller

or the buyer. For example the amount of rock burried in a tunnel only

depends on God's choice when creating the mountain. If sellers have some

private �estimation� about the true quantity of rock, modelling it as common

value distributed is a realistic assumption6.

5However, making use of techniques used in this paper the model can be extended to

two stochastic inputs.
6In a common value distribution, the realised quantity of an input is unknown before

completion but it is the same ex post for all �rms. Hence it is a �true value�. Every �rm

receives an independent private signal which is correlated with the true value.
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Despite the suitability of common value models for many situations, these

models are di�cult to analyse. I con�ne myself to a simpler model instead.

In the present paper I assume that craftsmen are competing for a repair job.

The orderer arbitrarily asks a small number of craftsmen out of the large

set of all craftsmen in his town to submit unit prices for material and hours

for a speci�ed project. Craftsmen have di�erent technologies or skills and

therefore di�er in their requirement of one input, called �hours�: The type of

a craftsman is the number of working-hours or machine hours he requires to

complete a speci�c order. Ex-ante, all craftsmen have the same distribution

of their type. The realisation of a craftsman's type is independent from his

competitors and it is private information to him. Hence the quantities are

symmetric independent private values (SIPV).

To simplify notation, this paper focusses on the symmetric two-bidder

case. Since the proofs easily extend to a general number of bidders, the

equilibrium of the symmetric n-bidder case is also stated.

Moreover, I abstract from collusion, which is a main feature of the con-

struction industry. The industry conception is that collusion is common in

boom times, but it doesn't work in recession, i.e. when demand is low.

With respect to collusion in the presence of a cartel-enforcement problem,

the UPC-auction has the same properties as the standard �rst price auction.

Without transfers, maintaining collusion faces the same enforcement prob-

lem: loosers have an incentive to overbid the designated winner. Hence the

UPC-auction is less viable to collusion than a second price auction.7

Costs per unit of one input are assumed to be the same across all bidders.

This can be justi�ed by the fact that many inputs are bought from the same

suppliers at announced prices (at least for �small� bidders) and the market

for labour is gouverned by industry-wide agreements.

When facing a mechanism where the payment depends on the realised

inputs, especially labour, one would expect a craftsman to be tempted to

manipulate the quantities of these inputs. I do not model moral hazard of

this kind. In the model, the realised input-quantities are not choice variables

of the �rm8. This is to keep the model simple, but it is not innocuous.

In a common value-framework, abstracting from moral hazard seems to be

7For a comparison of �rst and second price auction see Robinson (1985).
8Moral hazard is analysed in the literature on the auctioning of incentive contracts,

see for example McAfee, McMillan (1986). However, their model abstracts from selection

problems by assuming ex-post observability of total costs. In our paper, the auctioneer

does not observe the total costs ex-post, only a cost parameter is observable.
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justi�able. There realised inputs (like volume of rock excavated) are assumed

to be completely determined by nature, and therefore not in�uenced by the

�rm.

3 The Model

3.1 The Framework

Each of two risk-neutral craftsmen requires 1 washing barrel (a normalisa-

tion) and h hours to repair a damaged washing machine. The type h is private

information and drawn from a continuously di�erentiable distribution F (h)

with density f(h), and with support
h
h; h

i
� [0;1). F (h) is independent of

the opponent's type. The type h (i.e. the number of hours required) of the

craftsman who carries out the repair is observed during the repair. I will use

bold letters to denote vectors, starting with the vector h =

�
1; h

�
.

Input unit costs are the same for both craftsmen. A washing barrel costs

a craftsman cW � 0 and an hour costs him cH � 0. Let c =

�
cW ; cH

�
.

The total cost of carrying out the job for type h is C (h) = c � h, which is

strictly monotone increasing in the type.9

3.2 The Auction Rules

The craftsman is selected and the order is paid using a �Unit-Price Contract

Auction� (UPC-auction). First, each craftsman learns his type. Then each

of the two craftsmen submits a bid, which is a vector or list of unit prices

p =

�
pW ; pH

�
, consisting of an unit price pW � 0 for every washing

barrel and an unit price pH � 0 for every hour. The UPC-auction uses

exogeneous weights s =

�
1; s

�
with s 2

h
h; h

i
to evaluate bids by the

formula S (p) = pW + pHs = p � s. I call s the �assessment� of hours

and S (p) the �sum� of bid p. The parameter s is common knowledge and

characterises the auction. The job is placed to the craftsman whose bid has

the lowest sum S (p). Ties are resolved at random. After completion of the

job, the realised quantities of inputs are observed and the craftsman i to

whom the job was placed is paid pi � hi.

Hence a type hi bidding pi gets a payo� of pi � hi � c � hi if he wins. Let

� (pi; hi) = pi � hi � c � hi and call it winner's payo�. Let

9Adding �xed costs would not a�ect the character of the results.
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� (pi; hi) = Prob fhj : S (pj (hj)) � S (pi)g � � (pi; hi)

be the expected payo� of type hi bidding pi when the opponent j uses

strategy pj(hj). � (pi; hi) is the product of the probability of winning and the

winner`s payo�. The multiplicative separability of the winning-probability

and the winner's payo� is a property of this model with independent private

quantities. It vanishes in a model with correlated quantities, which makes

those models much more di�cult.

De�ne Q (S (pi)) = Prob fh : S (pj (h)) � S (pi)g. Hence � (p; h) can be

written as

� (p; h) = Q (S (p)) � � (p; h)

4 One-Sided Bidding

Submitting One-Sided Bids - An Example In reality, one often ob-

serves a peculiar pattern in the composition of unit-price lists. The list of

a seller often contains some unit-prices which are lower than his own aver-

age costs for this input while some other unit prices are much higher than

his costs. Sometimes unit-prices in bids for construction projects even drop

to zero. Sometimes �rms don't charge for their work, only for the material

(�service included�). The present paper shows that equilibrium strategies in

the UPC-auction indeed involve this patterns.

To illustrate this, consider an example. A craftsman is bidding for the

repair of a washing machine. This requires two inputs, washing barrels and

hours. The orderer assesses that it will take 1 washing barrel and 4 hours to

repair the washing machine. He uses these numbers to weight unit-prices and

compute the sum of a bid. The bidder knows he will indeed require 1 washing

barrel, but with his equipement it will take 6 hours to get it done. He has

costs of 400DM per washing barrel and 80DM per hour. He might mirror his

costs in the bids, submitting prices per unit of 400DM per washing barrel

and 80DM per hour, resulting in a sum of 1 � 400DM +4 � 80DM = 720DM .

If he wins, he is paid 1 � 400DM + 6 � 80DM = 880DM . However, if he is

smart, he might as well submit a bid of 0DM for washing barrels and 180DM

per hour (a �material included� bid), resulting in the same sum of 720DM

and in the same odds of winning. However, in case of winning his payment
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now is 1 � 0DM + 6 � 180DM = 1080DM , which is much more than 880DM.

Note that the payment he gets for washing barrels does not cover the cost of

washing barrels. The craftsman takes a loss on washing barrels and makes

it up on hours. Of course, this does not completely characterise equilibrium

bidding. Additional to considerations about the composition of his bid, a

bidder also considers opponents' strategies in the determination of the level

of his bid, characterised by the sum.

One-Sided Bidding In this introducing example, we have seen a crafts-

man bidding in a very extreme way: he charges a price of zero for washing

barrels. The following lemma states that bidding �material-included� or

�service-included� (charging an unit-price of 0 for hours) is a general prop-

erty of rational bidding.

De�nition 1 A service-included bid is a bid where pH = 0. A material-

included bid has pW = 0. An one-sided bid is a bid p =

�
pW ; pH

�
where either pW = 0 or pH = 0, i.e. it is either a service-included or a

material-included bid. A disproportionate bid is a bid that is not parallel

to the cost-vector. A lame type is a type which requires h > s hours. A

quick type requires h < s hours.

Lemma 2 In a UPC-auction, let s be the assessment of hours. Assume that

bidder j uses strategy pj (:) : Then every best reply of bidder i 6= j involves

the following:

1.) Quick types (i.e. types h < s) make service-included bids.

2.) Lame types (i.e. types h > s) make material-included bids.

Proof. See the appendix.

Strategies involving this pattern (1.) and 2.)) are called one-sided

bidding functions.

If a lame type charges a material-included bid, it obtains a high payment.

A quick type gets a lower payment from the same bid, it will be better of

charging a service-included bid with the same sum.

The intuition of the proof is as follows: The problem of choosing two

unit-prices is equivalent to the choice of two other variables: the sum of

a bid and the composition pW
pW+spH

2 [0; 1] of a bid. Only the sum has

a strategic meaning: it determines the odds of winning. The composition
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only in�uences the ex-post payment. For a given sum, one can compute the

optimal (payment-maximising) composition. It turns out that the payment is

linear in the composition, hence the optimal composition of a bid for a given

sum is either 0 (material is not charged) or 1 (all the payment comes from

material). Which of these extremes is optimal does not depend on the sum

of the bid. Working backwards, this reduces every type's strategic problem

to the choice of only one variable, the sum.

Types h = s are indi�erent between all compositions, hence we can not

say anything a priori about their bidding behaviour. The composition of

best reply bids with h 6= s does not depend on the opponent's strategy.

Nevertheless we can not speak of dominant strategies: One of the unit-prices

is always positive. The optimal value of this price depends on the opponent's

strategy.

One-sidedness is not restricted to the presented setting. It holds true for

every cost function and every number of bidders. For auctions with a higher

number of inputs and a higher dimensionality of bids, one-sidedness gener-

alises: all but one of the unit-prices equal zero. Increasing the dimensionality

of uncertainty, i.e. introducing multidimensional type-spaces, doesn't a�ect

the result, either. I could even change the information assumptions by the

introduction of common or a�liated quantities. In general, the one-sidedness

property holds as long as both the sum and the payment are additively sep-

arable functions of multidimensional bids and the bidders are risk-neutral.

One-sidedness simpli�es the problem. However, as we will see, the auction

is not reduced to a standard one-dimensional auction, because in equilibrium

the winning-probability Q (S (p� (h))) is not monotone in h.

5 Equilibrium Analysis

The �Worst� Type The next step is to identify the type with the lowest

probability of getting the contract in equilibrium. In both standard and

UPC-auctions, there is only one type with this property. It is called worst

type and denoted by h0. In standard procurement auctions, the strategic

position of a bidder strictly monotone worsens in the type (i.e. the total

costs). Hence the worst type is always the highest type, i.e. the one with the

highest costs. However, in the UPC-auction a bidder has a higher degree of

freedom when choosing his bid. We have already shown that this causes the

composition of bids to be di�erent for lame and quick types if the payment
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makes use of ex-post observable cost information. Due to this asymmetric

one-sidedness, both parts of the type space face di�erent forces determining

the strategic position of a type, as will be shown below. Hence there is no

reason to expect the worst type to be the highest type. We now state that

instead the worst type is the type h0 = s, which is in the interior of the

type-space.

Lemma 3 Let p� (h) be a symmetric equilibrium bid function in pure strate-

gies. Then the unique worst type is h0 = s.

Proof. See the appendix.

Iso-Sum-Types Both parts of the type space di�er in the forces deter-

mining the strategic position of the bidder (i.e. the winning probability of

a type). In the following I give an intuition of the way these forces work,

starting with quick types.

Quick types (i.e. types h < s) are in a better strategic position than type

h0 = s:

For a craftsman bidding service-included (pH = 0), the payment always

equals the sum of his bid. The payment to type h0 also always equals the

sum of his bid, since he is indi�erent between bidding service-included and

any other composition. A quick type bids service-included. If a quick type

would like to achieve the same sum as h0, his bid would yield the same

payment as h0's bid. However, he has lower costs than h0. Hence he has an

strategic advantage compared to h0. This advantage increases, the quicker

the type is, i.e. the lower h is. Hence focusing on quick types, one should

expect an equilibrium to involve higher odds of winning for �quicker� quick

types than for �lamer� quick types. In other words: one should expect

the equilibrium winning probability to decrease strictly on [h; s]. This is

analogous to standard auctions.

However, contrary to standard auctions, lame types (i.e. h > s) are also

in a better strategic position than h0:

A lame type bids material-included. If he would like to achieve the same

sum as h0, he would yield a higher payment than h0. He also has higher

costs. However, the cost e�ect is of less extent than the payment e�ect. He

can apportion the costs of the washing barrel on more hours. This advantage

increases, the lamer the type is. Hence the equilibrium winning probability

should increase strictly on
h
s; h

i
.
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This intuition will become the equilibrium hypothesis: Q(h) is strictly

decreasing on [h; s] and strictly increasing on
h
s; h

i
. In standard auctions,

bids are strictly monotone, and hence the probability of winning is strictly

monotone. Therefore every type has a di�erent probability of winning in

equilibrium. In the present model, there are pairs consisting of one quick

type and one lame type, both having the same odds of winning. Hence to

compute the winning-probability of a type, one needs to know the set of all

types that achieve the same sum in equilibrium.

The following lemma characterises pairs consisting of one quick type and

one lame type whose bids have the same sum. For the moment, assume that

if there is more than one type attaining a distinct sum in equilibrium, for

all types attaining this sum the following holds: For quick types, the equi-

librium pW maximising the expected payo� Q
�
S
�
pW ; 0

��
(pW � c � h)

satis�es the �rst order condition of this expected payo� with respect to pW .

For lame types, pH satis�es the �rst order condition of the expected payo�

Q
�
S
�
0; pH

��
(pHh� c � h) with respect to pH . I will later show that the

equilibrium analysed in Proposition 5 satis�es this.

Lemma 4 Let p� (h) be a symmetric equilibrium bidding function of the

UPC-auction, where p�W (h) on [h; s] and p�H(h) on
�
s; h

i
satisfy the �rst

order conditions of the maximisation of the expected payo� w.r.t. pW or pH ,

respectively. Then for every sum S the set of all types whose bids have this

sum has at most two elements. Pairs (hW ; hH) of types with the same sum

consist of a quick type hW and a lame type hH, characterised by:

cW + cHhW

cW + cHhH
=

s

hH

Proof. See the appendix.

I call the condition cW+cHhW
cW+cHhH

=
s
hH

the �iso-sum condition�, because types

with the same sum must satisfy it. It enables us to deal with the same

winning probability for a pair caused by di�erent forces on both sides of

the type space. Note that this lemma doesn't predict the speci�c sum of a

type. The lemma also states that there can not be two quick types or two

lame types achieving the same sum. Note that an equilibrium with a non-

monotone winning-probability is not e�cient: sometimes the lamer bidder

wins.

The intuition of the proof is that for types with the same equilibrium

sum, the winning probability is the same. Using this, both types' �rst order

conditions result in the iso-sum condition.
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Because there may be quick types without corresponding iso-sum lame

type (and vice versa), I now de�ne iso-sum functions taking care of this.

Iso-Sum-Functions De�ne the function ' (hW ) mapping a quick type

hW 2 [h; s] to the lame type having the lowest sum not lower than the

sum of hW :

' (hW ) = sup

n
h 2

h
s; h

i
: S (p� (h)) � S (p� (hW ))

o
If a quick type hW is matched to a corresponding lame type hH 2

�
s; h

i
by

the iso-sum-condition (Lemma 4), the value of ' (hW ) is this corresponding

lame type, i.e. hH =
cW s

cW+cH(hW�s)
. However, the iso-sum condition may as

well yield a matching type not in the support of the type space. Denote by

�W that type which is matched to the highest lame type, hH = h. For quick

types h < �W (if they exist), ' (h) is the highest lame type at all.

Figure 3

Solving the iso-sum condition for hW and inserting h for hH , I obtain:

�W = s+
cW

cH

�
s

h
� 1

�
Now ' (h) takes the following form:

' (h) =

(
h for h 2 [h; s] and h � �W
cW s

cW+cH(h�s)
for h 2 [h; s] and �W < h

One can obtain a similar function

 (hH) = sup fh� [h; s] : S (p� (h)) � S (p� (hH))g

mapping a lame type on a corresponding quick type. For pairs (hW ; hH)

out of [h; s]�
h
s; h

i
who are matched by the iso-sum condition,  (hH) is the

inverse function of ' (hW ).

Denote by �H the lame type which achieves the same sum as the lowest

quick type h. Solving the condition for hH and inserting h for hW , I obtain

�H =
cW s

cW + cH (h� s)

Now  (h) takes the following form.
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 (h) =

8<: s+ cW
cH

�
s
h
� 1

�
for h 2

h
s; h

i
and h � �H

h for h 2
h
s; h

i
and �H < h

' (h) and  (h) are continuous and monotone decreasing functions. ' (h)

is di�erentiable on its range apart from the value �W .  (h) is di�erentiable

on its range apart from the value �H . Their derivatives are not continuous

at �W and �H , respectively.

Existence of a Symmetric Equilibrium

Proposition 5 (Existence) For di�erentiable distributions F (:), the fol-

lowing is a symmetric equilibrium of the UPC-auction with two bidders

p�W (h) =

8>><>>:
R s
h c � g

f(g)�f('(g))'0(g)

F ('(h))�F (h)
dg for h 2 [h; s)

c � s for h = s

0 for h 2
�
s; h

i

p�H (h) =

(
0 for h 2 [h; s]R h

s
c�g

g

f(g)�f( (g)) 0 (g)

F (h)�F ( (h))
dg for h 2

�
s; h

i :

Proof. See the appendix.

The worst type in this Bayes Nash equilibrium is h0 = s. For quick types,

i.e. on [h; s), the relevant unit price for washing barrels p�W (h) is a continuous

function and it is strictly montone increasing, just like the bid in a standard

auction. For lame types, i.e. on
�
s; h

i
, the relevant unit price for hours

p�H (h) is continuous and strictly monotone decreasing. Hence also the sum

S (p� (h)) is a piecewise monotone function of the type h. On [h; s], S (p� (h))

strictly increases, and on
h
s; h

i
it strictly decreases. Furthermore, the sum is

continuous on
h
h; h

i
and it is di�erentiable on

nh
h; h

i
n fs; �W ; �Hg

o
. Figure

2 sketches the unimodal shape of the sum as a function of the type.

Figure 1

The structure of this equilibrum bidding function resembles but is not in

complete analogy to the structure of the standard �rst price auction. In our

setting, the equilibrium bid of a �rst price standard auction is

p� (h) =

Z h

h
c � g

f(g)

1� F (h)
dg

14



As in the standard �rst price auction, the bid of type h in the UPC-auction

is an expected value where the expectation is taken over all types worse than

h, worse in the sense of having a lower winning probability. However, in the

UPC-auction both the interval of worse types and the terms integrated over

di�er from the standard �rst price auction.

In the following, I analyse bids and resulting payments of quick types and

lame types, and I compare it to the standard �rst price auction.

First, consider a quick type h 2 [h; s). He bids service-included, hence

p�W (h) is positive. p�W (h) can be decomposed and transformed to

p�W (h) =

Z s

h
c � g

f(g)

F ('(h))� F (h)
dg +

Z '(h)

s
c � g

s

g

f(g)

[F ('(h))� F (h)]
dg

The integration is on types [h; '(h)] : Hence it is on all types having a

lower winning probability than type h. When integrating over all quick types

being worse (i.e. �lamer�) than the considered quick type, the total costs of

these quick types are the integrand, as in a standard �rst price auction.

However, the integrand for the worse lame types is a little bit di�erent.

Their costs are corrected by a term s=g < 1, and this is less than their costs.

Therefore the equilibrium bid of a quick type is less than the expected value

of the costs of all worse types. This is in contrast to the standard �rst price

auction, where the bid is the expected value of the total costs of all worse

types. In addition, the worse types have even lower costs than in the standard

�rst price auction, because the most lame types are excluded. Since quick

types bid service-included and one washing barrel is required, the payment

is the price for washing barrels. Hence both e�ects result in a lower payment

to winning quick types than in the standard �rst price auction.

This can be explained by two e�ects: First, the immediate neighbours of

the worst type have to bid very aggressively (compared to their bidding in the

standard �rst price auction) to have a positive probability of winning.10 This

is taken into account by all other types to the left, resulting in more aggressive

biddding by everyone. The second e�ect is the fact that bidders face higher

competition: In standard auctions (with two bidders) a bidder only looses

against opponents of quicker type. However, in the UPC-auction, a bidder of

quick type in addition also looses against very lame types of the opponent.

10The same e�ect is also present in a standard �rst price auction if a reserve price is

introduced, moving the worst participating type to the interior of the type space, resulting

in more aggressive bidding by his immediate neighbours.
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Hence he faces more competition, resulting in more aggressive bidding. Both

e�ects go in the same direction, hence quick types bid considerably more

aggressive in the UPC-auction.

Now consider a lame type h 2
�
s; h

i
. His payment is hp�H (h). It can be

decomposed and transformed to:

hp�H (h) =

Z s

 (h)
c � g

h

s

f(g)

F (h)� F ( (h))
dg +

Z h

s
c � g

h

g

f(g)

F (h)� F ( (h))
dg

The intervals of worse types only contain types quicker than h (i.e. lower

cost types), as opposed to the standard �rst price auction, where the inte-

gration is only on types lamer than h. However, this adverse integration over

cost terms does not necessarily induce lower payment, because total-costs are

corrected by terms h
s
> 1 and h

g
> 1, respectively. For very lame types h,

types near to h, the correction terms are relatively high, resulting in a higher

payment than in the standard �rst price auction. This can be seen using the

Mean-Value Theorem:

In the UPC-auction, type s is paid its costs. This is lower than in the

�rst price auction, where type s makes positive pro�t. Consider type h = h.

Using the formula from Proposition 5, integration is over terms c � gh
g
. This

term is decreasing in g and has a value of c�h at its end-point h. Since
f(g)�f( (g)) 0(g)

F (h)�F ( (h))
is a density, the payment has a value higher than c�h , which

is the payment to type h in the standard �rst price auction. By continuity and

the Mean-Value Theorem, there is a type h 2
�
s; h

i
for whom both auctions

have the same payment. Because both payments are strictly monotone in h,

this type is unique. �Moderate� lame types obtain a lower payment than in

a standard auction, whereas very lame types obtain a higher payment.

This can be explained as follows: As for quick types, a lame type has ad-

ditional competition by lamer types. However, competition by quicker types

is lower than in a standard auction. For lame types, competition decreases

with the type. In e�ect, �moderate� lame types have higher competition

than in a standard auction, but very lame types have less competition and

therefore bid less aggressively.

To summarise: All quick types and some moderate lame types obtain

a lower payment than in the standard �rst price auction. This hints that

the UPC-auction might result in a lower expected payment than standard

auctions. I will return to this point later.

16



Apart from this equilibrium with a continuous sum, there is a multitude

of discontinuous equilibria, which do only di�er from the continuous one in

the bid of the worst type. Every such strategy-pro�le where the worst type

h0 is bidding a bid not lower than c � s in any arbitrary composition is an

equilibrium, as long as all other types bid according to Proposition 5.

Generalisation to N Symmetric Bidders Proposition 5 easily extends

to the case of n symmetric bidders. Denote the vector (h1; :::; hi�1; hi+1; :::; hn)

by h�i. The generalised winning probability then becomes

eQ (S(pi)) = Prob fh�i : S (pj(hj)) � S(pi)8j 6= ig .

Lemmata 2, 3 and 4 still hold. Using the generalised winning probabil-

ity, I obtain the following equilibrium bidding function applying the same

arguments as in Proposition 5:

p�W (h) =

8>><>>:
R s
h (c � g) (n� 1)

[f(g)�f('(g))'0(g)][F ('(g))�F (g)]n�2

[F ('(h))�F (h)]n�1 dg for h 2 [h; s)

c � s for h = s

0 for h 2
�
s; h

i

p�H (h) =

8<: 0 for h 2 [h; s]R h
s

c�g

g
(n� 1)

[f(g)�f( (g)) 0 (g)][F (g)�F ( (g))]n�2

[F (h)�F ( (h))]n�1 dg for h 2
�
s; h

i

6 Properties of the auction

E�ciency The equilibrium considered in Proposition 5 is not e�cient. To

see this, remember that total costs cW + cHh strictly monotone increase

in the type h. However, the sum and, thus, the winning probability are not

monotone functions of the type. Hence not always the bidder with the lowest

type and lowest costs wins. If, for example, both bidders are lame types, then

the one with the higher type wins, even though this is not e�cient, because

he has higher costs.

Payment Ranking If a procurement agency only cares about the expected

payment to the bidders, it should choose a mechanisms keeping the pay-

ment low. In this sense, does the UPC-auction perform better than stan-

dard auctions like the classical �rst price or second price auction (with one-

dimensional bids and no contingency on ex-post observable information)?
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The usual analytical methods to compare auctions (for example in Riley

(1988)) only apply to auctions where the equilibrium winning probability

is strictly monotone increasing in the type. Hence they don't apply to the

UPC-auction. Instead I analyse this question numerically.

Let EPU
(s) be the expected payment the orderer has to bear in the

equilibrium of the UPC-auction (U labels the UPC-auction). EPU
(s) is

Z s

h
p�W (h) 2f(h) (F ('(h))� F (h)) dh+

Z h

s
p�H(h)h2f(h) (F (h)� F ( (h))) dh

The functions p�W (h), p�H(h), '(h) and  (h) all depend on the auction

parameter s. I have no explicit expression for the value s� which minimizes

EPU
(s). However, if each bidder's type is drawn from the unit-interval [0; 1]

with density f(h) = 1, numerical examples (for di�erent cost parameters cW

and cH) show that s� lies in the interior of the interval
�

cW
cW+cH

; 1
�
and it

increases with the cost ratio cW
cH
. Hence the more in�uence hours have on

total costs of an average bidder, the smaller is the optimal s�, i.e. the smaller

is the weight of hours in the selection. The values of the expected payment

decrease with s from h to s�, and they increase to the right of s�.

space

Table I: expected payment of the optimal UPC-auction as compared to

standard auctions
Model cW cH s� EPU

(s�) EP F

1 1 5 .485 3.7601 4.3333

2 1 2 .6 2.1547 2.3333

3 1 1 .7 1.5997 1.6666

4 2 1 .796 2.6211 2.6666

5 5 1 .9 5.6432 5.6666
space

For the uniform distribution on [0; 1], 2 bidders, and for di�erent cost-

ratios cW
cH
; table I compares the expected payment of the UPC auction, para-

metrised by s�; to the expected payment of the standard �rst-price auction.

For all considered cost-parameters, the UPC-auction with s� produces a lower

expected payment than both the standard �rst price and the standard second

price auction11, both producing EP F . Hence the UPC-auction is better than

11Restricting the class of mechanisms to mechanisms not making use of ex-post

observable information and payment-ceilings, the framework becomes the standard

(procurement-) setting, where the standard �rst price and standard second price auc-
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standard auctions for all considered parameters.12 This is especially distinct

if the proportion of the stochastic input is high. And it is robust in s, since

it holds for all s 2
�

cW
cW+cH

; 1
�
.

The UPC-auction fares better than standard auctions. At �rst glance this

is surprising, since standard auctions are optimal in a wide class of mecha-

nisms. However, this class includes only mechanisms where both allocation

and payment are contingent only on bids. The UPC-auction is not a mem-

ber of this class, here the payment also is contingent on ex-post observable

information. The optimal auction problem in the class of mechanisms con-

taining also mechanisms like this has not been solved yet. However, it is not

surprising that there really are better mechanisms in this broader class13.

It also puzzles that a non-e�cient auction like the UPC-auction out-

performes the e�cient standard auctions. However, introducing a reserve

price into a standard �rst price auction raises its performance even though

it causes ine�cencies.14 Hence ine�ciencies do not necessarily hamper the

performance of an auction. However, the ine�ciencies in both auctions are of

di�erent kind: In the case of the reserve price, there still is (weak) monotonic-

ity: sometimes nobody wins, but if somebody wins, it is always the quickest

bidder. In the UPC-auction, even weak monotonicity fails. Sometimes the

job is allocated to the lamest bidder. This ine�ciency is due to ex-post ob-

servable information. The ex-post observability of types enables direct dis-

crimination between types in the payment function. This discrimination is

not monotone, instead in one subset of the type space (the set of lame types)

there is a di�erent kind of price discrimination than in its complement, the

set of quick types. The resulting non-monotone winning probability alters

competition. This causes some types to bid more aggressive, making up for

the ine�ciency (as long as s 2
�

cW
cW+cH

; 1
�
).

tion both are optimal and revenue equivalent (see Myerson (1981)). Hence both auctions

obtain the same expected payment and I can restrict attention to only one of them.
12I haven't yet found an example where the UPC-auction with s� fares worse than

standard auctions.
13For literature on ex-post observable information see chapter 2.
14If the reserve price in the standard �rst price procurement auction is lower than the

auctioneer's reservation costs and also lower than the highest type's costs, not all types

participate and hence sometimes nobody wins, even though conducting the job would

cause a Pareto improvement.
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Three Bidders If there are more than two competing bidders, the auction

ranking result of the two bidder case above still holds true, as table II shows.

However, the e�ect is less pronounced, because an increase in the number of

bidders already reduces information rents.

space

Table II
No. cW cH s� EPU

(s�) EP F

1 1 5 .515 3.2829 3.5

2 1 2 .62 1.9317 2

3 1 1 .715 1.4744 1.5

4 2 1 .81 2.4828 2.5

5 5 1 .902 5.4912 5.5
space

Comparison of Sums and Payment A buyer, earmarking the sum of the

winning bid in his budget, often faces a bill higher than this earmark. With

this interpretation of the sum of a bid, the next proposition can explain why

procurement agencies often lament about payments exceeding the estimated

price. The proposition directly follows from Lemma 2.

Proposition 6 For s < h, the payment by the orderer in the UPC-auction

never falls short of the sum of the winning bid and with positive probability

it exceeds the sum.

Proof. Quick types h � s have a sum S(p�(h)) = 1 � p�W (h)+ s � 0 (using the

one-sidedness). The payment equals p�W (h) + h � 0, which is the same as the

sum. However, lame types h > s attain a sum S(p�(h)) = 1 � 0 + s � p�H(h),

which is smaller than their payment 1 � 0 + h � p�H(h) since h > s.

Figure 2

Hence, in the UPC-auction, the price per unit of one input is lower than

costs, but the total payment is higher than the total costs. An orderer should

not regard the sum as an estimator of the payment, he should instead correct

it upwards when computing the expectation of the payment.

Bribery Bribery is a relevant problem in procurement. From time to time,

newspapers report about the detection of cases where employees in public

procurement departments or in private purchase departments are bribed by

a seller. The present model doesn't capture bribery. However, it is clear that
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UPC-auctions are more viable to manipulations than standard auctions, be-

cause UPC-auctions are parametrised auctions: The selection of the winning

seller depends on the choice of the parameter s, the assessment of hours. A

type's odds of winning (and also his winner's pro�ts) can be changed by a

change in the assessment, hence a seller has an incentive to in�uence the

choice of the assessment. Consider the case of a buyer's employee choosing

the assessment15. Typically, an employee has less incentive to choose the op-

timal assessment than the buyer. Hence for some types of sellers, bribing the

buyer's employee to choose a �nice� assessment might increase both seller's

and employee's utility in an apropriate model.

7 Concluding Remarks

This paper studies the UPC-auction, a frequently used procurement auction.

This mechanism di�ers from standard auctions in having two-dimensional

bids and a payment-function being contingent on a cost-parameter (rep-

resenting the type) publicly observable after the auction. This enables to

discriminate types in the payment function, favouring some high cost types

(lame types). An equilibrium of the UPC-auction in a SIPV cost setting

is found. The equilibrium involves one-sided bidding, splitting the type

space into two areas with di�erent compositions of bids: quick �rms charge

�service included� price structures (they do not charge service, only ma-

terial) and lame �rms choose �material included�-tari�s. Caused by the

payment-discrimination favouring lame types, the winning probability is not

a monotone function of the type. Instead, lame types have a better strategic

position than in standard auctions, enhancing competition for most of the

types, especially for quick types. This results in more aggressive bidding by

most of the types. Even though this is counteracted by the ine�ciency of

the allocation, the UPC-auction fares better than standard auctions (from

the point of view of a risk-neutral auctioneer), at least for all numerically

analysed parameter-constellations.

The model doesn't capture all aspects of procurement with this kind of

auctions.

First, we assume that craftsmen don't have in�uence on the speed of

their work. They are not allowed to work lame by purpose. This is a severe

15For example because of having better information about the distribution of sellers'

types.

21



restriction, because in reality, there often is room for undetectable excess em-

ployment of inputs, raising the payment. On the other hand, many situations

call for a model where the auctioneer in�uences the quantities.

Second, the present model is restricted to symmetric independent private

values. However, often the in�uence of the characteristics of the bidder on

the quantities is small. Instead, nature plays a crucial role in determining

realised quantities. This should be modelled using common value distri-

butions. With common value quantities, I expect UPC-auctions to perform

even better, compared to standard auctions, because there are no e�ciency

distortions.

A Appendix

A.1 Proof of Lemma 2

Assume that p�i (h) =
�
p�iW (h) ; p�iH (h)

�
is a best reply to the opponent's

strategy. Consider type L. Let S� = S (p�i (h)). By the optimality of p�i (h)

there can be no p =

�
pW ; pH

�
with � (p; h) > � (p�i (h) ; h). In particular,

there can be no p =

�
pW ; pH

�
achieving the same sum S� such that

� (p; h) > � (p�i (h) ; h). Consider the set T of all bids p achieving S�: Since

pW ; pH � 0 and S� = S (p) = pW + pHs for p 2T , we obtain that

T =

( 
t

S��t
s

!
: 0 � t � S�

)

For p 2 T , � (p; h) = Q (S�)
�
t+ S��t

s
h� C (h)

�
. The price of washing

barrels corresponding to the optimal bid p�i (h) must satisfy:

t� = arg max
t2[0;S�]

Q (S�)

�
t+

S� � t

s
h� C (h)

�

, t� = arg max
t2[0;S�]

�
t +

S� � t

s
h

�

, t� = arg max
t2[0;S�]

 
t

 
1�

h

s

!
+
S�

s
h

!
Since this maximand is a linear function in t, we obtain
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t� = S� 8h < s

t� = 0 8s < h

t� 2 [0; S�] 8h = s

Hence p�i (h) is service included for h < s, and it is material-included for

s < h, while p�i (h) can be either for h = s.

A.2 Proof of Lemma 3

First I show that in a symmetric equilibrium with pure strategies there can

not be a set of types with positive mass attaining the same sum and hence

having the same winning-probability.

Suppose that in equilibrium there were a set of types with positive mass

having the same winning-probability eQ. Denote this set by A. Because the

job is always awarded and there is positive probability that the types of all

bidders are element of A, eQ > 0. The bid of a type h with positive winning-

probability has to ensure a non-negative winner's payo� � (p� (h) ; h). Oth-

erwise he would have a negative expected payo� � (p�(h); h), contradicting

the optimality of p�(h), because there always exists a bid high enough to

ensure a non-negative expected payo�.

Because costs are strictly monotone increasing in the type, for a given

bid the winner's payo� is strictly monotone increasing in the type. Because

of one-sidedness there are only two di�erent bids attaining the same sum, an

service-included-bid and an material-included bid, neglecting type s. There-

fore not all elements of A have zero winner's payo�. Hence there are types

in A having a positive winner's payo�.

W.l.o.g. consider a quick type h 2 A. Since � (p� (h) ; h) is continuous

in pW , a marginal decrease in pW would only result in a marginal decrease

of � (p� (h) ; h). However, the winning-probability Q (S (p)) would discon-

tinuously increase by the mass of A. Hence with a slight decrease of pW the

expected payo� � (p; h) = � (p; h) � Q (S (p)) would increase, contradicting

the optimality of the original bid. The same holds for lame types. This proves

that there can not exist a set of types with positive mass having the same

winning-probability and hence attaining the same sum. Because the set of

types with the lowest sum has zero mass, types being element of this set loose

with probability 1. So there do exist types with zero winning-probability.
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Next I show that there can not be a lame type with zero winning-probability.

Suppose in equilibrium there would exist a lame type h0 > s with zero

winning-probability. Because the set (s; h0) has positive mass, there does ex-

ist a lame type h 2 (s; h0) with positive winning-probability Q (S (p� (h))) >

0. Remember that, in equilibrium, all types with positive probability of win-

ning have non-negative winner's payo�. Because both h and h0 are lame

types and h0 has zero winning-probability, p�H(h) < p�H(h0). Hence, using

one-sidedness:

0 � � (p� (h) ; h) = (p�H(h)� cH)h� cW

< (p�H(h0)� cH)h0 � cW = � (p� (h0) ; h0)

Because his probability of winning is zero, h0 has zero expected payo�.

He could improve his expected payo� by bidding p�(h) = (0; p�H(h)).

0 � � (p� (h) ; h) < � (p� (h) ; h0) < � (p� (h0) ; h0)

Then he still obtains a positive winner's payo� � (p� (h) ; h0), but now

yields a positive probability of winning and hence a positive expected payo�,

a contradiction to the optimality of p� (h0). Hence there can not be a lame

type with zero winning-probability.

The same arguments apply when showing that there can not be a quick

type with zero winning-probability. Type s is the only type who is neither

lame nor quick. From above we know that there must exist a type with zero

winning probability. Hence the worst type is h0 = s: It has zero winning-

probability.

A.3 Proof of Lemma 4

Consider a quick type hW and a lame type hH , both achieving the same sum

in equilibrium. Denote this sum by eS = S (p� (hW )) = S (p� (hH)). Since

S (p) = pW +pHs the quick type hW bids p�W (hW ) = eS, using one-sidedness.
The lame type hH bids p�H (hH) =

eS
s
. When choosing p, eS maximises both

type's expected payo�s, represented as a function of the sum and of the type:8<:
eS = arg max

S
fQ (S) � (S � cW � cHhW )geS = arg max

S

n
Q (S) �

�
S
s
hH � cW � cHhH

�o
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Consider a quick type hW and use the one-sidedness property. If the

bid (p�W (hW ) ; 0) maximises � (p; hW ) then S(p�W (hW ) ; 0) maximises the

expected payo� as a function of S and hW , because S(p�W (hW ) ; 0) is injective

in the �rst argument. If p�W (hW ) is determined by a unique solution to

the �rst order condition with respect to pW , then the payo�-maximising S

must satisfy the �rst order condition with respect to S, because S(pW ; ph) is

di�erentiable in pW . The same applies for lame types. Hence for a quick type

hW and a lame type hH both scoring eS, the following �rst order conditions

must be satis�ed:8><>:
dQ(S)

dS
j
S=eS � � eS � cW � cHhW

�
+Q

� eS� !
= 0

dQ(S)

dS
j
S=eS �

�eS
s
hH � cW � cHhH

�
+

hH
s
Q
� eS� !

= 0

,

8<:
dQ(S)

dS
j
S=eS � � eS � cW � cHhW

�
+Q

� eS� !
= 0

dQ(S)

dS
j
S=eS � � eS � cW

s
hH
� cHs

�
+Q

� eS� !
= 0

=)

8<:
dQ(S)

dS
j
S=eS � � eS � cW � cHhW

�
+Q

� eS� =

dQ(S)

dS
j
S=eS � � eS � cW

s
hH
� cHs

�
+Q

� eS�
, cW + cHhW = cW

s

hH
+ cHs

Since the right hand side is strictly monotone increasing in hW and the left

hand side is strictly monotone decreasing in hH , there is at most one quick

type hW suiting to a lame type hH , and v.v.. There is no other type having

the same sum as h = s. The higher hH is, the lower is the corresponding

hW . Hence solving for hW yields a strict monotone decreasing function of hH
(and vice versa).

Rewriting the iso-sum condition one can see that the cost relation of two

types with the same winning probability is s=hH .

cW + cHhW

cW + cHhH
=

s

hH

Two di�erent lame types can not have the same sum. This can be seen

from equating the �rst order conditions of two lame types h and g. The

only solution to the resulting equation is h = g. The same holds true for

service-included types.
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A.4 Proof of Proposition 5

The proof is done in several steps. First, I derive the winning probability

of every type, using the iso-sum-functions. Analysing the �rst order condi-

tion of the direct mechanism then yields di�erential equations determining

the equilibrium bidding function. At the end I check whether the resulting

bidding function satis�es the equilibrium hypothesis stated in the following.

The Equilibrium Hypothesis Consider the following equilibrium hy-

pothesis: Assume that, in equilibrium, S (p� (h)) is continuous and strictly

monotone increasing in h for h � s and continuous and strictly monotone

decreasing in h for s < h.16 This is consistent with the fact that the worst

type is h0 = s (Lemma 3). Assume that in equilibrium for quick types the

�rst order condition of the maximisation of the expected payo� w.r.t. pW
holds. For lame types, assume that the corresponding �rst order condition

w.r.t. pH holds in equilibrium.

The Winning Probability Under the equilibrium hypothesis the set

of all types with sums higher than a given sum S is an interval. The pairs

enclosing those intervals are given by the iso-sum functions '(h) and  (h).

The winning probability of a type h is

Q (S (p� (h))) =

8>><>>:
F (' (h))� F (h) for h 2 [h; s)

0 for h = s

F (h)� F ( (h)) for h 2
�
s; h

i
Bidder's Problem A bidder of type h maximises � (p; h) = Q (S (p))�

� (p; h) = Q (S (p)) (p� � h� c � h). From Lemma 2 we already now that his

bid has to be one-sided. Hence he maximises

� (p; h) =

8<: Q
�
S
�
pW ; 0

��
(pW � c � h) for h 2 [h; s)

Q
�
S
�
0; pH

��
(pHh� c � h) for h 2

h
s; h

i
Looking at the corresponding direct mechanism17, with the bidder an-

nouncing a type ĥ, he faces the problem:

16Note that I have not assumed continuity of S(b�(L)) at L = s.
17Using the direct mechanism as a representation of the indirect mechanism of announc-

ing a bid can be justi�ed by the following arguments: For a wood-type, the problem of

choosing an optimal bid (bW ; bL) is equivalent to the problem of announcing an optimal
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8>><>>:
max
ĥ2[h;s)

n
Q
�
S
�
p�W

�
ĥ
�
; 0

�� �
p�W

�
ĥ
�
� c � h

�o
for h 2 [h; s)

max
ĥ2[s;h]

n
Q
�
S
�
0; p�H

�
ĥ
� �� �

p�H

�
ĥ
�
h� c � h

�o
for h 2

h
s; h

i
Using the formula for the winning probability this becomes:8>><>>:

max
ĥ2[h;s)

nh
F
�
'
�
ĥ
��
� F

�
ĥ
�i �

p�W

�
ĥ
�
� c � h

�o
for h 2 [h; s)

max
ĥ2[s;h]

nh
F
�
ĥ
�
� F

�
 
�
ĥ
��i �

p�H

�
ĥ
�
h� c � h

�o
for h 2

h
s; h

i
The �rst order conditions are:8>>>>>><>>>>>>:

h
f('(ĥ))'0(ĥ)� f(ĥ)

i �
p�W (ĥ)� c � h

�
+

h
F ('(ĥ))� F (ĥ)

i
dp�
W (ĥ)

dh
= 0

for h 2 [h; s)h
f(ĥ)� f( (ĥ)) 0(ĥ)

i �
p�H(ĥ)h� c � h

�
+

h
F (ĥ)� F ( (ĥ))

i
dp�
H(ĥ)

dh
h = 0

for h 2
h
s; h

i
We will later con�rm that the �rst order conditions lead to a global max-

imum.

For p� (h) to be an equilibrium bidding function, truthtelling (that is

announcing ĥ = h), must be optimal, hence:8>>>>><>>>>>:
[f('(h))'0(h)� f(h)] (p�W (h)� c � h) + [F ('(h))� F (h)]

dp�
W
(h)

dh
= 0

for h 2 [h; s)

[f(h)� f( (h)) 0(h)] (p�H(h)h� c � h) + [F (h)� F ( (h))]
dp�
H
(h)

dh
h = 0

for h 2
h
s; h

i
This becomes a �rst order linear di�erential equation:8><>:

dp�
W

(h)

dh
= (p�W (h)� c � h)

[f(h)�f('(h))'0(h)]

[F ('(h))�F (h)]
for h 2 [h; s)

dp�
H
(h)

dh
= �

(p�H(h)h�c�h)

h

[f(h)�f( (h)) 0(h)]

[F (h)�F ( (h))]
for h 2

h
s; h

i
type L̂ 2 [L; s] and inserting it into an equilibrium b�() which is continuous on [L; s] as
well as on

�
s; L

�
and yields a continuous score. This equivalence is due to the fact that

the subset of equilibrium bids f(b�
W

(L); 0) j L � sg contains his optimal bid: Because of

the one-sidedness property, his optimal bid involves setting bL = 0. Bidding higher than

inf fb�
W

(L)g results in zero expected payo� due to the zero winning probability, and bid-

ding lower than sup fb�
W

(L) j L � sg yields less payo� than bidding sup fb�
W

(L) j L � sg.

Due to the one-sidedness property, he will never bid bL > 0. The same arguments apply

for labour-types.
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Boundary Conditions In the following I derive the boundary condi-

tions using Lemma 3.

First I show that the worst type h0 = s can not have a positive winner's

payo�: Suppose instead �(p�(s); s) > 0. Type s could improve his expected

payo� � (p; h) = Q (S (p)) � � (p; h) (which is zero due to zero probabil-

ity of winning) by bidding slightly lower: By continuity of the sum of the

equilibrium bidding function, there exists an " such that p�W (s)� " results in

�((0; p�W (s)�"); s) > 0 and stillQ((0; p�W (s)�")) > 0. This is a contradiction

to the optimality of p�W (s).

I show next that the sum must be continuous at s: Consider �rst the

case S(p�(s)) > lim
h!s+

S(p�(s)) (i.e. p�W (s) > lim
h!s+

p�H(s) � s). Every type

can obtain a non-negative winner's payo� by bidding high enough. Hence a

type with positive probability of winning does not have a negative winner's

payo� in equilibrium. Especially the winner's payo� of every element of

an arbitrary sequence h ! s+ is non-negative. At s the winner's payo�

is the same for bids (pHs; 0) and (0; pH). Because p�W (s) > lim
h!s+

p�H(s) � s,

a bid (p�W (s); 0) would lead to a positive winner's payo�, which yields a

contradiction. Because s is the worst type, the second case S(p�(s)) =

p�W (s) < lim
h!s+

sp�H(s) = lim
h!s+

S(p�(s)) is excluded as well.

Now the continuity of the sum, the non-negativity of the winner's payo�

for all types with positive winning probability and the non-positivity of the

winner's payo� of the worst type yields the boundary condition p�W (s) = c �s.

By continuity of the sum, the other boundary condition is lim
h!s+

p�H(s) =
c�s
s
.

Solution Solving the di�erential equations yield
s the following equilib-

rium bidding-function:

p�W (h) =

8>><>>:
R s
h c � g

f(g)�f('(g))'0(g)

F ('(h))�F (h)
dg for h 2 [h; s)

c � s for h = s

0 for h 2
�
s; h

i

p�H (h) =

(
0 for h 2 [h; s]R h

s
c�g

g

f(g)�f( (g)) 0 (g)

F (h)�F ( (h))
dg for h 2

�
s; h

i
Monotonicity To prove the monotonicity-assumption stated earlier

in the proof, I now show that the equilibrium bidding function is strictly
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monotone increasing on [h; s) and strictly monotone decreasing on
h
s; h

i
.

Consider a quick type. Adjust the equilibrium bidding function downwards

by replacing c � g = cW + cHg in the integrand by cW + cHh:

p�W (h) >

Z s

h
c � h

f(g)� f('(g))'0(g)

F ('(h))� F (h)
dg

Because f(g)�f('(g))'0(g)

F ('(h))�F (h)
is a density on [h; s) (this can be seen by a simple

check), p�W (h) > cW+cHh for all h < s. Hence the payment exceeds the costs

and the bidder gains a positive winner's payo�. Using this in the di�erential

equation we see that
dp�
W
(h)

dh
> 0. Applying the same arguments for p�H(h), one

obtains
dp�
H
(h)

dh
< 0. Because S(p) is monotone, this con�rms the assumptions

on S(p(h)).

Continuity The continuity-assumption in the equilibrium hypothesis

is satis�ed, because the bidding functions are integrals over bounded values

and hence are continuous on [h; s) and
h
s; h

i
Due to the boundary conditions, the sum S (p� (h)) is continuous at s.

Hence it is continuous on
h
h; h

i
.

Di�erentiability I now show that at the equilibrium bid for a quick

type the �rst order condition of the expected payo� w.r.t. pW must be

satis�ed. This was part of the equilibrium hypothesis. Since we already

know that in any equilibrium pH of a quick type must be zero, it su�ces

to show that the expected payo� w.r.t. pW is pseudoconcave and locally

di�erentiable. For lame types, the expected payo� w.r.t. pH has to be

pseudoconcave and locally di�erentiable.

First, consider quick types with a matching lame type having the same

sum. Those types are elements of A � [h; s) \ fh > �Wg.

I �rst show that p�W (h) is di�erentiable on A. Consider the di�erential

equation characterising p�W (h)

dp�W (h)

dh
= (p�W (h)� c � h)

[f(h)� f('(h))'0(h)]

[F ('(h))� F (h)]

We have just proven that p�W (h) is continuous on [h; s). F (h) is di�erentiable

by assumption and '0(h) is continuous on A. Using this, we see that
dp�
W
(h)

dh

is continuous on A and therefore p�W (h) is di�erentiable on A.
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Because p�W (h) is strictly monotone increasing on A, the inverse function

p��1
W (pW ) on B � fp�W (h)jh 2 Ag exists. Due to the di�erentiability of p�W (h),

its inverse is di�erentiable, too. Since F (h) and '(h) are both di�erentiable

on A, F
�
'
�
p��1
W (pW )

��
�F

�
p��1
W (pW )

�
is di�erentiable in pW on B as well.

Therefore also the expected payo�

�

�
p�
�
p��1
W (pW )

�
; hi
�
=

�
F
�
'
�
p��1
W (pW )

��
� F

�
p��1
W (pW )

��
(pW � c � hi)

is di�erentiable in pW on B.

It is left to check whether for quick types not being matched to a lame

type with the same sum the expected payo� is di�erentiable and pseudocon-

cave. Those types are element of ~A � [h; s)\fh < �Wg. At p
�

W (h) they have

the expected payo� of

�

�
p�
�
p��1
W (pW )

�
; hi
�
=

�
1� F

�
p��1
W (pW )

��
(pW � c � hi)

Using the same arguments we easily see that this is di�erentiable, too.

For the quick type �W being matched to the highest lame type h, the

expected payo� is not di�erentiable. I will show below, that by pseudocon-

cavity at �W the equilibrium bidding function is continuous at �W as well.

The same holds true for the lame type �H .

Using the same arguments, I can prove that for lame types the expected

payo� is di�erentiable in pH on
n
p�H(h)jh 2

n
(s; h]n�H

oo
.

Pseudoconcavity It is left to check whether the �rst order conditions

lead to global maxima. I do this by showing pseudoconcavity of �
�
p�(ĥ); h

�
:

Because of the one-sidedness property, for quick types I only have to check

whether announcing the true type ĥ = h yields a higher expected payo�

than announcing any other quick type ĥ � s. I do not have to consider

announcements ĥ > s. Similar for lame types. A type h announcing type ĥ

obtains the following expected payo�:

�

�
p�(ĥ); h

�
=

8<:
�
p�W

�
ĥ
�
1� cW � cHh

� �
F ('(ĥ))� F (ĥ)

�
for h; ĥ 2 [h; s]�

p�H

�
ĥ
�
h� cW � cHh

� �
F (ĥ)� F ( (ĥ))

�
for h; ĥ 2

�
s; h

i
Inserting the equilibrium bidding function, the right hand side becomes:
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=

8>>>>>>>><>>>>>>>>:

�R s
ĥ
c � g

f(g)�f('(g))'0(g)

F ('(ĥ))�F (ĥ)
dg � c � h

� �
F ('(ĥ))� F (ĥ)

� for h 2 [h; s] ;

ĥ 2 [h; s)�
cW + cH ĥ� c � h

�
0

for h 2 [h; s] ,

ĥ = s�R ĥ
s

c�g

g

f(g)�f( (g)) 0(g)

F (ĥ)�F ( (ĥ))
dgh� c � h

� �
F (ĥ)� F ( (ĥ))

�
for h; ĥ 2

�
s; h

i

=

8>>>>>>>><>>>>>>>>:

R s
ĥ
c � g (f(g)� f('(g))'0(g))dg

�c � h
�
F ('(ĥ))� F (ĥ)

� for h 2 [h; s] ; ĥ 2 [h; s)

0 for h 2 [h; s] , ĥ = sR ĥ
s

c�g

g
(f(g)� f( (g)) 0(g))dgh

�c � h
�
F (ĥ)� F ( (ĥ))

� for h; ĥ 2
�
s; h

i

Unfortunately, because of the discontinuity of '0(ĥ) and  0(ĥ), �
�
p�(ĥ); h

�
is not di�erentiable at ĥ = �W and at ĥ = �H . However, at these values it is

continuous. Using Leibniz' rule,
@�(p�(ĥ);h)

@ĥ
equals:8>>>>><>>>>>:

�
�
�
cW + cH ĥ

�
+ (cW + cHh)

� �
f(ĥ)� f('(ĥ))'0(ĥ)

� for h; ĥ 2 [h; s] ;

ĥ 6= �W�
cW+cH ĥ

ĥ
h� (cW + cHh)

� �
f(ĥ)� f( (ĥ)) 0(ĥ)

� for h; ĥ 2
�
s; h

i
;

ĥ 6= �H

Because
�
f(ĥ)� f('(ĥ))'0(ĥ)

�
and

�
f(ĥ)� f( (ĥ)) 0(ĥ)

�
are positive

for all ĥ, we obtain:

@�
�
p�(ĥ); h

�
@ĥ

=

8>><>>:
> 0 for ĥ < h

= 0 for ĥ = h

< 0 for h < ĥ

9>>=>>;
if ĥ 6= �W ; ĥ 6= �H
and sign(h� s) = sign(ĥ� s)

Together with the continuity of �
�
p�(ĥ); h

�
at ĥ = �W and at ĥ = �H ,

this prooves pseudoconcavity of �
�
p�(ĥ); h

�
in ĥ. Hence for the types �W

and �H announcing their true type is optimal. Since the same holds true

for all other types, the �rst order conditions characterise global maxima for

these types.
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