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Abstract

Based on the Rayleigh-Sommerfeld diffraction integral and the scalar Wave

Propagation Method (WPM), the Vector Wave Propagation Method (VWPM)

is introduced in the thesis. It provides a full vectorial and three-dimensional

treatment of electromagnetic fields over the full range of spatial frequen-

cies. A model for evanescent modes from [1] is utilized and eligible config-

urations of the complex propagation vector are identified to calculate total

internal reflection, evanescent coupling and to maintain the conservation

law. The unidirectional VWPM is extended to bidirectional propagation

of vectorial three-dimensional electromagnetic fields. Totally internal re-

flected waves and evanescent waves are derived from complex Fresnel

coefficients and the complex propagation vector. Due to the superposition

of locally deformed plane waves, the runtime of the WPM is higher than

the runtime of the BPM and therefore an efficient parallel algorithm is de-

sirable. A parallel algorithm with a time-complexity that scales linear with

the number of threads is presented. The parallel algorithm contains a mini-

mum sequence of non-parallel code which possesses a time complexity of

the one- or two-dimensional Fast Fourier Transformation. The VWPM and

the multithreaded VWPM utilize the vectorial version of the Plane Wave

Decomposition (PWD) in homogeneous medium without loss of accuracy

to further increase the simulation speed.

The analysis of sampling-induced deviations in the amplitude shows that

the sampling in the aperture needs to meet the Whitaker-Kotelnikov-Shannon

(WKS) sampling theorem to provide an accurate reproduction of the elec-

tromagnetic vector field. Furthermore, the accuracy of the amplitude de-

pends on the sampling in the axis of propagation. A criterion for the samp-

ling in the axis of propagation, considering the simulated wavelength, is

proposed to minimize the deviation in the amplitude to the results from
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theory. The analysis of the zero order diffraction efficiency in a discretized

oblique interface shows the relationship of the amplitude deviations to the

discretization in the axis of propagation. The normalized sampling rate is

introduced. It provides a sampling criterion to achieve a minimum devi-

ation of the simulated amplitude to the results from theory. A plurality of

simulations of an oblique layer with different sampling rates are performed

to evaluate the theory. The stability of the algorithm and the maintenance

of the conservation law is analyzed by investigating the power flux. The re-

sults from the VWPM are compared to the results from theory for different

polarizations, propagation angles and representative interface configura-

tions. In agreement to the observations in several cited publications, the

generation and treatment of evanescent modes is identified being critical

for the stability of the algorithm and the maintenance of the conservation

law. Several techniques of stabilization are presented and it is shown that

the model of evanescent waves provides an elegant way to ensure stability

and extend the VWPM to evanescent modes.

The VWPM is utilized to investigate the effect of micrometer gratings on

the local absorption in thin film solar cells and to find a solution for an

enhanced absorption over a wide range of wavelengths and spatial fre-

quencies. In a simulation model, the angle of incidence of the electro-

magnetic vector wave, the period and the duty cycle of one- and two-

dimensional micrometer gratings are varied to identify an optimized ge-

ometry and analyze its influence on the local absorption. The use of one-

or two-dimensional gratings is part of various other research activities as

published in [80, 81, 82, 83].
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Zusammenfassung

Auf Basis des Rayleigh-Sommerfeld Beugungsintegrals und der skalaren

Wave Propagation Method (WPM) präsentiert diese Arbeit die Vector Wave

Propagation Method (VWPM). Die VWPM ist ein propagatives Simula-

tionsverfahren zur Berechnung dreidimensionaler Vektorfelder ohne parax-

iale Einschränkung und über den gesamten spatialen Frequenzbereich.

Evaneszente Fourier-Moden sind nach der Theorie in [1] modelliert. Die

Erweiterung der unidirektionalen zur bidirektionalen VWPM berechnet re-

flektierte dreidimensionale Vektorfelder über die komplexen Propagations-

vektoren und die komplexen Fresnel-Koeffizienten. Spezielle Konfigura-

tionen der komplexen Propagationsvektoren werden für die Berechnung

von Totalreflexion, evaneszenter Kopplung (optischer Tunneleffekt) und

zur Energieerhaltung eingesetzt (reduzierter Propagator). Die Laufzeit

der VWPM ist aufgrund der Überlagerung lokal deformierter Planwellen

höher als die der Beam Propagation Method (BPM). Der präsentierte par-

allele Algorithmus skaliert linear mit der Anzahl der Prozesse (Threads).

Der nicht-parallelen Anteil Programmcode ist minimal und hat die Zeitkom-

plexität der ein- oder zweidimensionalen Fast-Fourier-Transformation. Für

die Ausbreitung im homogenen Medium wird zur weiteren Reduktion der

Simulationsdauer die Plane Wave Decomposition ohne Verlust an Rechen-

genauigkeit eingesetzt.

Die Analyse der Rechengenauigkeit und deren Abhängigkeit zu den Ab-

tastraten in der Apertur und entlang der Propagationsachse zeigt, dass zur

exakten Reproduktion des elektromagnetischen Feldes in der Apertur das

Whitaker-Kotelnikov-Shannon (WKS) Abtasttheorems zu berücksichtigen

ist. Im Zusammenhang mit der Abtastung entlang der Propagationsachse

wird die normierte Abtastrate mit Abtastbedingung eingeführt, um den Am-

plitudenfehler bei diskretisierten schrägen Grenzflächen zu minimieren.
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Die Analyse der nullten Beugungsordnung des Phasenelements diskre-

tisierter schräger Grenzfläche zeigt die Beziehung der Rechengenauigkeit

zur Abtastrate. Eine Reihe von Simulationen veranschaulichen die Theo-

rie und liefern die Überprüfung am Beispiel. Der Energiefluss durch Gren-

zflächen ist Grundlage für die Beurteilung der Stabilität des Algorithmus

und der Energieerhaltung. Die Simulationsergebnisse für unterschiedliche

Polarisationen und Ausbreitungswinkel in repräsentativen Systemkonfigu-

rationen werden mit den Ergebnissen der Theorie verglichen. Die vor-

liegende Arbeit zeigt in Übereinstimmung mit der Literatur, dass die Be-

handlung der evaneszenten (quergedämpften) Fourier-Moden problema-

tisch für die Stabilität des Algorithmus und die Energieerhaltungseigen-

schaften ist. Die Arbeit präsentiert unterschiedliche Ansätze zur Stabil-

isierung und verifiziert diese qualitativ. Die Verwendung des reduzierten

Propagators erlaubt die Berechnung evaneszenter Fourier-Moden und sta-

bilisiert den Algorithmus.

Die Anwendbarkeit der VWPM wird in einem praktischen Optimierungs-

problem nachgewiesen. Ziel ist die Maximierung der lokalen Absorption

in Dünnschicht-Solarzellen über einen maximales Winkelspektrum durch

Verwendung von optimierten resonanten Phasengittern. Anhand eines

Simulationsmodells wird durch Parametervariationen eine optimierte Geo-

metrie ermittelt. Darüberhinaus ist die Verwendung von ein- oder zweidi-

mensionalen resonanten Phasengittern Bestandteil weiterer Forschungsak-

tivitäten [80, 81, 82, 83].
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Computational optics

Nowadays, the simulation and analysis of case studies is part of every op-

erational task to proof a principle, optimize a design, develop and verify an

innovative approach, estimate the quality of a new idea and plan the next

steps in a project. Simulation is essential in every research and devel-

opment discipline, especially if the intrinsic effects and interdependencies

are not obvious. So, simulation plays also a key role in optical engineering.

The field of optics provides a huge pool of principles of operation which

more and more contribute to innovative products in a wide range of ap-

plications. The operability of the solutions and their entire development

process threreby mainly depends on the engineering tools, their accuracy,

efficiency and flexibility. The enhancement of simulators significantly con-

tributes to the project cycle and hence allows a quicker and more efficient

analysis and design of systems with steadily increasing complexity. In the

semiconductor industry, the field of micro- and nano-optics became more

and more important in the last decade and is a steadily growing area of

research. Due to the shrinking feature sizes of the semiconductor tech-

nology and the increasing demand for micro- and nano-optical devices,

the modeling of electromagnetic effects becomes more and more impor-

tant. Hence, the knowledge about electromagnetism and the interaction of

electromagnetic waves with a medium or a geometry is essential for the

research and development of innovative on-chip optical components.

The trend in the semiconductor industry to integrate more and more func-

tionality, shrink the feature sizes of the technology and speed up the de-

signs ends up in the dilemma that electric solutions cannot provide the
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expected performance. The high integration rates cause significant design

problems due to thermal hot spots and power consumption. Hence, the

design process needs to consider these factors. Special techniques like

clock-gating or switching of operation modes on thermal sensor feedback

is utilized to reduce heating and power consumption. The tremendous

density of transistors in combination with the demand for higher frequen-

cies and performance yields to a theoretic heat density higher than on the

sun surface. This further increases the demand for alternative solutions.

The investigation of new technologies and innovative solutions is therefore

a key factor to stay competitive and introduce leading edge technologies

to the market. A good example for the change from electrical to optical

technology is the evolution of interconnect networks. The evolution in wide

area networks (WAN) in the seventies, system area networks (SAN) in the

eighties, board interconnects in the nineties will most likely continue with

optical chip interconnects in the next generations of computer systems.

The expertise of optical and electrical engineering seems to be suitable to

proof Moore’s Law again. The high demand for system speed, bandwidth

and low power consumption demands new technologies and the tremen-

dous pressure of the market will speed up their use in innovative products.

In the next decades, when optical interconnects become available directly

on a microprocessor chip, the manipulation of light on the chip is the next

logical step in the evolution of semiconductor chips. An exact timeframe

can be hardly predicted since the integrated use of electric, optical and

electro-optical components on a chip is comparable to the step from bipo-

lar to CMOS. The cost effort for such a change is very high because the

required modifications affect the entire design and manufacturing process.

The limitations of the existing solutions and the promising benefits of op-

tics will bring electrical and optical engineering closer together. Therefore,
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the interdisciplinary skill of development engineers and researchers is es-

sential and a vital competitive advantage.

In optical engineering, the successful development of innovative ideas

more and more depends on the understanding of the fundamental elec-

tromagnetic principles and the existence of flexible, fast and efficient sim-

ulators which are compatible with or provide interfaces to the tools which

are used in the semiconductor industry. Hence, the development of effi-

cient simulators and design methodologies is of major importance. Opti-

cal engineering may furthermore play a key role in serving the increasing

demand on energy and in a larger scope the independence from fossil

fuels. The optical engineering, as a catalyzer for other technologies, pro-

vides the chance for economic growth and technologic evolution for var-

ious technologies. In this context, optics is a facet of Green IT because

for example the development of efficient photovoltaic solutions preserves

the environment and reduces the pollution of the environment. The com-

bined engagement of politics, economics and technology might be able to

pursue the solutions of one of the most important problems of our and the

next generations and optical engineering is one of the tools to succeed.

Motivation

The optical theory provides closed numeric solutions for some simplified

and idealized problems, but a closed numeric solution for complex prob-

lems from the daily practice are not available. Hence, numeric simulation

methods need to be developed. The field of optical simulation provides

a wide variety of methods, the modeling of light as a ray or a wave, the
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vectorial capabilities of electromagnetic fields, its polarization and so on.

The Fourier-based electromagnetic (EM) simulators are in the scope of

the thesis. They are distinguished by the propagation scheme which is ap-

plied. The split step propagation scheme (i.e. an approximation of the

Rayleigh-Sommerfeld diffraction integral), which is utilized in the Beam

Propagation Methods (BPM) [13] is distinguished from the wave propaga-

tion scheme (i.e. the exact solution of the Rayleigh-Sommerfeld diffraction

integral) which is utilized in the Wave Propagation Method (WPM) [31].

As the Beam Propagation Method (BPM) is limited to small propagation

angles and small index variations, a plurality of different optimizations ex-

ist which reduce the error for wide-angle propagation. Due to the inherent

approximation in the split step propagation scheme, none of these opti-

mizations really overcome the paraxial limitation. Hence, the results from

a simulation of lenses with a high numeric aperture (NA), from gratings and

beam splitters, Mach-Zehnder Interferometers or even a simple refraction

through a prism is not exact as shown in the thesis. With the space- and

frequency-dependent solution of the Rayleigh-Sommerfeld diffraction in-

tegral, as applied in the WPM, these angle- and index-restrictions do not

exist. The scalar WPM in [31] is accurate for propagation angles up to

85 degrees. It calculates scalar electromagnetic fields and does not uti-

lize a model for evanescent waves. The thesis shows that an accurate

solution of the diffraction integral in its vectorial form is not possible with

the split step propagation scheme due to the strict separation of spatial

and frequency domain which introduces severe problems to the vectorial

transformation at interfaces. A serial and parallel algorithm of a vectorial

Wave Propagation Method is introduced, which calculates the bidirectional

propagation of modes over the entire range of spatial frequencies, without

loss of accuracy.
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Structure of the thesis

Chapter 1 provides a classification of the main optical simulation methods

and briefly describes their principle of operation and the field of application.

It shows the gap in existing electromagnetic wave simulators, which is filled

by the VWPM. Chapter 2 presents the nomenclature and the fundamentals

of the electromagnetic theory which is used in the thesis.

The Vector Wave Propagation Method (VWPM) is introduced in chapter 3

and the extension to bidirectional wave propagation is performed in chap-

ter 5, introducing the bidirectional VWPM. The application of the vectorial

transformations to the split step propagation scheme in the BPM is investi-

gated in chapter 4 and the multithreaded, bidirectional VWPM is presented

in Appendix C.

The sampling requirements and the relations to the accuracy of the VWPM

are analyzed in chapter 6. The energy conservation of the VWPM is ex-

amined in chapter 7. In chapter 8, the VWPM is applied to an optimization

problem in order to enhance the local absorption in thin layers (i.e. thin film

solar cells) over a maximum range of spatial frequencies by using one- or

two-dimensional micrometer gratings. Chapter 9 gives a summary of the

presented topics.

In Appendix A, some of the basic transformations from chapter 2 are

shown and Appendix B provides some detailed algebraic transformations

from chapter 3 and 5.
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Chapter 1

Simulation methods

Maxwells’ equations provide the most profound and comprehensive theo-

retic analysis of electromagnetism but an exact solution is only available

for a very small subset of problems. The problems for which such a closed

solution exists are primarily of academic interest and of low importance for

the product development. Hence, numeric methods are required.

In a numeric optical simulation of electromagnetic (EM) waves, Maxwells’

equations are rigorously solved or approximated to compute the distribu-

tion of EM fields to, for example, determine interdependencies of an elec-

tromagnetic wave with a geometric structure. In order to find an answer to

a technical problem, analyze an innovative approach or get insight into in-

trinsic properties of a system, a large diversity of algorithms, modifications,

extensions, simplifications and optimizations exist. This chapter gives a

brief introduction to the most popular numeric simulation methods in op-

tics and puts emphasis on some of the existing modifications if a significant

7
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relation to this thesis exists. Figure 1.1 shows a classification of simulation

methods in inhomogeneous medium. Dependent on the application and if

diffraction can be neglected or not, a simulation method models an elec-

tromagnetic field as a wave or ray. In this thesis, electromagnetic fields

are always waves, which are distinguished by their vectorial or scalar ca-

pabilities. A scalar treatment of EM waves imposes severe limitations to

the simulator since it cannot consider all types of polarization, Fresnels’

equations for TE and TM modes and all other effects which belong to the

vectorial character of two- or three-dimensional EM waves. Simulators are

furthermore classified by their capability of simulating unidirectional or bidi-

rectional propagation. This criterion is unique to simulators which define

an axis of propagation and derive the propagation of the EM wave along

this axis in a iterative algorithm. If the simulator evolves the propagating

EM wave from a time-dependent analysis, the corresponding method is

classified by its space r and time t dependent computation. In opposi-

tion, all methods which are based on an analysis of spatial frequency k or

temporal frequency ω define a second group of simulators.

The Beam Propagation Method (BPM), Rigorous Coupled Wave Analysis

(RCWA), and the Wave Propagation Method (WPM) are methods of the

(k, ω)-domain while the FDTD utilizes a space- and time-dependent con-

sideration of the electromagnetic theory and is therefore a method in the

(r, t)-domain. The Beam Propagation Method (BPM) is part of the vectorial

branch since several vectorial extensions of the conventional, scalar, algo-

rithm exist. The RCWA and FDTD simulate EM vector waves while scalar

and vectorial simulators are available for the BPM. The WPM is utilized for

the simulation of scalar EM waves up to now and this thesis makes the

wave propagation scheme usable for the uni- and bidirectional simulation

of vector waves over the entire range of spatial frequencies.
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Even if vectorial version of the BPM are known in literature, it is shown

in chapter 4 that a vectorial BPM cannot provide an exact solution of the

time- and frequency-dependent diffraction integral due to the separation of

spatial and frequency domain in the split step propagation algorithm. The

wave propagation scheme applies an accurate solution of the vectorial or

scalar diffraction integral and thereby overcomes the limitations as shown

in [31] for scalar propagation up to 85 degrees. With the Vector Wave

Propagation Method (VWPM), the wave propagation scheme is extended

to full vectorial propagation, considering the propagation of vectorial EM

waves along a predefined axis of propagation without approximation.

Figure 1.1: Classification of simulation methods in inhomogeneous

medium.
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1.1 RCWA and FDTD

The Rigorous Coupled Wave Analysis (RCWA) and the Finite Difference

Time Domain (FDTD) are rigorous methods to compute the distribution

of electromagnetic fields in a system, described by a distribution of the

(complex) refractive index. While the RCWA provides a two- or three-

dimensional rigorous solution of the diffraction problem through periodic

grating structures, the FDTD rigorously solves Maxwells’ equations in the

time domain in an orthogonal discrete two- or three-dimensional grid as

exemplary shown in figure 1.2.

Ex

Ez

Ey

Hx

Hy

Hz

(i+1,j,k)

(i+1,j+1,k)

(i+1,j+1,k+1)

(i+1,j,k+1)

(i,j,k+1)

(i,j,k)

(i,j+1,k+1)

(i+1/2,j+1/2,k+1/2)

Figure 1.2: The Yee lattice as utilized in the FDTD method.

Each point on the grid represents a location in space with a set of asso-

ciated parameters of the medium. The electric field E [V/m] and mag-

netic field H [A/m] is derived from the boundary conditions and the elec-
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tromagnetic theory at each point. In the Finite Element Approach non-

orthogonal or non-uniform grids are utilized which are adapted to the space-

derivatives in the system. Locations with high gradients are modeled by

a fine mesh while small gradients or homogeneous areas allow a coarse

mesh, if low deviations in the EM field can be expected. The three methods

are compared in [33].

In some algorithms, an Eigenvalue problem of the form Mm×n ·un = bun is

solved (i.e. RCWA), where b is an eigenvalue of the m × n-matrix Mm×n,

corresponding to the n-dimensional eigenvector un. The solution is ob-

tained from the Eigenmodes of the system by solving the characteristic

equation det((M − bI) · u) = 0. The solution of a high order m × n-matrix

M in a vector or scalar equation is required to derive the stationary state

of the EM-field. Especially in a three-dimensional simulation, the solu-

tion of the Eigenvalue problem requires a significant amount memory be-

cause the entire system, represented by the high order matrix M and the

n-dimensional Eigenvectors un, has to be stored and processed at once

to derive the steady state. In the three-dimensional case, the computa-

tion time grows in the order of O(n6), with n is the number of modes, and

special hardware acceleration techniques are desirable.

In the FDTD, finite difference equations in the time domain rigorously solve

Maxwells’ equations and iterate until a steady state has been reached.

The electric and magnetic field is calculated at equidistant discrete posi-

tions on an orthogonal grid from the time deviations which are described by

discrete difference equations. The solution from finite differences is quite

time consuming because the steady state of the EM field at a time t has

to be determined by iterating the finite difference equations. The strength

of rigorous methods is the high accuracy for near-field calculations (i.e.
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dimensions in the sub-wavelength range) and the three-dimensional pro-

pagation of EM fields. A profound introduction to rigorous methods can be

found in [3, 5].

1.1.1 Finite difference time domain method

The basic algorithm of the finite difference time domain (FDTD) method

has been developed by Yee [6] in 1966. It is an iterative simulation method

in the time domain which uses linear center-difference representations of

the continuous partial differential equation on a two or three-dimensional

grid as shown in figure 1.2. The algorithm applies the finite difference

algorithm of the partial time and space derivative to each point on the

grid which is influenced by electromagnetic disturbances. In the two-

dimensional case and for a TE-polarized electromagnetic field in free space,

Maxwells’ equations become

∂Ex
∂t

= − 1

ε0

∂Hy

∂z
∂Hy

∂t
= − 1

µ0

∂Ex
∂z

The updates for the electric and magnetic fields are separated in space

and time by half a step and derived from the surrounding locations by their

interaction according to Maxwells’ curl equations and the partial deriva-

tives of space and time. The simulation time is mainly determined by the

convergence of the algorithm to compute the EM field at all locations on

the grid for a given time t. The two-dimensional central difference approx-
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imation of the spatial and temporal derivatives becomes

E
t+1/2
x (k)− Et−1/2

x (z)

δt
= − 1

ε0

H t
y(z + 1/2)−H t

y(z − 1/2)

δz

H t+1
y (z + 1/2)−H t

y(z + 1/2)

δt
= − 1

µ0

E
t+1/2
x (z + 1)− Et+1/2

x (z)

δz

The electromagnetic wave is assumed to propagate in an infinite medium

and thus the definition of an aperture introduces system boundaries in

the henceforth space-limited problem. An electromagnetic wave which

reaches such a system boundary gets reflected back into the medium

which cause problems in simulations expecting an infinite scene. The

open-region FDTD implements the perfectly matched layers (PML) al-

gorithm to avoid reflections. This technique was originally developed by

Berenger in 1994 [7] and extended by Gedney in 1996 [8]. It uses a set

of non-physical equations with high attenuation for canceling electroma-

gnetic contributors at the system boundary. In case of an absorbing term,

the PML needs to be composed by several layers that gradually introduce

absorption. Another approach is the cancellation in so called absorbing

boundary conditions (ABC) which have been developed by Tavlove and

Hagness in 2005 [3]. ABC introduces a term with opposite sign to com-

pletely cancel the field entering the layer. The most commonly used tech-

niques for open-region FDTD modeling are the Mur ABC (1981) [9], the

Liao ABC (1984) [10] and various PML formulations.

One of the strengths of FDTD is the simulation of a wide range of frequen-

cies in a single run. This is useful when resonance frequencies are not

exactly known. The method allows an arbitrary distribution of material all

over the system without restrictions on periodicity or any other implication

on the refractive index. For example, the effects of apertures and shielding

can be directly investigated. The FDTD requires a system to be discretized
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by a sufficiently fine grid in order to apply the partial derivatives with appro-

priate accuracy. Moreover, the grid has to resolve the smallest geometric

feature and the smallest wavelength. These requirements causes signifi-

cant computation times for large scenes and thereby limit the applicability

to small inputs. In case of far-field observations, a post-processing is re-

quired which has been introduced by Tavlove and Hagness in 2005 [3].

The Yee algorithm has been adapted to various electro-magnetic compati-

bility (EMC) applications, extended to second order accuracy, modified for

applicability to larger systems, merged with hybrid grid approaches to just

name some of the enhancements.

1.1.2 Rigorous coupled wave analysis

The Rigorous Coupled Wave Analysis (RCWA) was developed by Burkhardt [11]

in 1966. In its most basic and two-dimensional form, it assumes a plane

wave input, simple periodic structures in the lateral direction and a uni-

form refractive index in the axis of propagation. These, mostly rectangular,

periodic gratings allow the RCWA an easy separation of space variables

and a treatment with the Fourier analysis. The RCWA treats the periodic

part of the solution by Fourier expansions of modes (i.e. space harmonics

or spatial frequencies). With the Fourier expansion, the partial differen-

tial equations transforms to one or more ordinary differential equations by

separating a predefined axis of propagation - in most cases the z-axis of a

Cartesian coordinate system - from the three-dimensional wave equation.

The numeric solution requires a discretization which raises the question of

aliasing to the henceforth space-limited problem. The computation time of

the RCWA is determined by the Eigenvalue decomposition which is per-
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formed to solve the characteristic equation. In order to enhance the con-

vergence with higher mode numbers, a more efficient algorithm has been

presented by Kraaij in 2006 [12].

The RCWA algorithm is a conceptually straight forward solution of a char-

acteristic equation, considering boundary conditions which yield the solu-

tion and the field in the system under investigation. The method is applica-

ble to periodic geometries and optical diffraction problems. Its strength is

the accuracy for near-field analysis and the computation of vectorial field

distributions in two and three-dimensions. The RCWA requires a suffi-

ciently high number of samples in the Fourier transformation of the system

to consider high order spatial frequencies in the refractive index distribu-

tion. An adequate number of modes (i.e. Eigenvalues) are required to

simulate the desired number of spatial frequencies of the EM field. The

computation time is based on a modal analysis, with n is the number of

modes. The propagation of the EM field is derived from equations consid-

ering complex exponentials and reflection and transmission coefficients in

two or three dimensions. The solution is then obtained from the boundary

conditions (i.e. the incident light and the system definition).

Due to the matrix representation of the entire problem, a high number of

modes consumes a lot of memory and the simulation time in the three-

dimensional case grows in the order of O(n6). Hence, the number of

modes is a limiting factor and optimizations of the algorithm for a hardware-

assisted acceleration on single instruction multiple data (SIMD) and/or

multiple instruction multiple data (MIMD) architectures are of high interest

for the practical use of the three-dimensional RCWA.
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1.2 BPM and WPM

The Beam Propagation method (BPM) [13] and the Wave Propagation

Method (WPM) [31] are members of the Fast Fourier Methods due to

their good performance in practical computation and the use of the Fast

Fourier Transformation. The underlying physics is based on the intuitive

view of an EM wave as a complex exponential, which is obtained from

the solution of the scalar or vector wave equation. The complex expo-

nential evolves from transformations of Maxwells’ equations, using the

constitutive equations (also called medium equations or material equa-

tions) followed by a separation of a space variable in the tree-dimensional

Helmholtz equation which defines the axis of propagation - in most cases

the z-axis - as shown in chapter 2. The partial differential equation (PDE)

∇2u(x, y, z) + k2u(x, y, z) = 0 is thereby reduced to an ordinary differential

equation (ODE) ∂2u(x, y; z)/∂x2 + ∂2u(x, y; z)/∂y2 − 2ik ∂u(x, y; z)/∂z = 0

for an axis of propagation z.

In the BPM and WPM, a formerly continous system is split into a cer-

tain number of layers along this axis of propagation, determined by the

discretization in the axis of propagation. Each layer is expected to be

homogeneous along the axis of propagation and is accepted to be inho-

mogeneous in the other, lateral, directions of the two- or three-dimensional

space. Since it is not always possible to gain a homogeneous index distri-

bution in the axis of propagation as shown in figure 1.3, locations with an

inhomogeneous refractive index in the axis of propagation are supposed

to be replaced by a suitable average refractive index. The average index is

suitable, when an optical path length (OPL) through the continous system
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Figure 1.3: Two-dimensional discretization of a scene in electromagnetic

wave simulators with z is the predefined axis of propagation.

z 

x 

E0 Enz

is replaced by a uniform refractive index nu such that∫
nudz ≈

∫
n(r)dz

and then nu ≈
∫
n(r)dz/

∫
1dz. Another intuitive uniform refractive in-

dex along the axis of propagation is obtained from the normalized sum

of weighted volumes

nu ≈
1

4V

N−1∑
i=0

(vini) (1.1)

withN is the number of different refractive indices in a voxel4V = 4x4y4z
and with vi [m3] which is the partial volume for this index in 4V .

A two-dimensional simulation in a Cartesian coordinate system calculates

the EM field in a one-dimensional layer per iteration, perpendicular to the
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axis of propagation, including the distribution of the refractive index. In

a three-dimensional simulation, each layer is defined by a plane surface,

comprising a two-dimensional index distribution. The simulation starts with

the first layer and ends after all layers have been processed. The algorithm

is iterative and the result of a layer is the input for the calculation of the next

layer. The propagation along the separated space variable is based on the

Rayleigh Sommerfeld integral (eq. 2.60) and diffraction effects (i.e. illumi-

nation of the geometric shadow) are calculated. The original algorithms

of the BPM and WPM are unidirectional and scalar, considering only the

forward propagating fields and neglecting all reflected fields.

1.2.1 Beam Propagation Method

One of the most popular methods utilizing the split step propagation scheme

is the Beam Propagation Method (BPM) which was introduced by Feith

and Fleck [13] in 1978. With a complexity of O(n) in the two-dimensional

and O(n2) in the three-dimensional case, the BPM is a fast method using

the forward and inverse Fourier transformation in each iteration. n is the

number of modes.

The propagation in the BPM is calculated according to the split-step propa-

gation scheme. It is called split-step propagation because the propagation

through one layer is split into a first step in the frequency domain after the

Fourier transformation (ũ = F(u)) of a space-dependent scalar electric

field u(x) and a second step in the spatial domain after an inverse Fourier

transformation (F−1(ũ)) of the spectrum ũ(ν). It is exactly this split-step

propagation that is the reason for the remarkable speed but at the same
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time it provides also the reason for the limitation of the BPM to paraxial

propagation and small index variations. It makes the method unusable to

calculate the exact solution of the scalar or vectorial Rayleigh-Sommerfeld

diffraction integral and effects which rely on the vectorial treatment of EM

waves.

The BPM was primarily designed for the simulation of waveguides or other

systems that allow the paraxial approximation without significant loss of

accuracy. In addition to the paraxial limitation, the BPM is limited to small

index variations as shown in chapter 3. With the paraxial limitation, the

stability is ensured if evanescent waves are damped or clipped [45, 29].

The limitations make the BPM unusable for an exact simulation of high or-

der modes which propagate through lenses with a high numeric aperture

(NA) or any other systems which are traversed by high order spatial fre-

quencies or which possess an evanescent character. Therefore, various

optimizations for the calculation of wide-angles were published.

A wide-angle BPM was introduced by Hadley in [14] to enable the BPM

for non-paraxial propagation. Changbao presented a three-dimensional

wide-angle BPM in [15] for optical waveguide structures. A semi vectorial

wide-angle BPM was presented by Lee in [16]. The BPM was extended

to very-wide angles in [17] but the error that arises from the separation

of the propagation operator is more or less persistent in all those exten-

sions. Most wide-angle extensions utilize the higher order Pade equation
√

1 +X = Nm(X)/Dn(X), with N is a m-th order polynomial and D is a n-

th order polynomial to approximate the square root
√

1− (k2
x + k2

y)/n
2/k2

0

in the complex exponential propagator. Several vector extensions of the

BPM had been presented by Yamauchi [18], Liu [19] and Perez [20]. Ya-

mauchi introduced a modified semi vectorial beam propagation method
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retaining the longitudinal field component, Liu published the analysis of

polarized modes of rib waveguides with a semi vectorial BPM and Perez

presented a fully-vectorial three-dimensional extension of the BPM. A third

class of extensions is based on the finite element (FE) approach as pub-

lished by Tsui [21], Stern [22], Pinheiro [23] and Obayya [24]. The FE-

based extensions of the BPM are optimized for scalar, semi vectorial and

full-vectorial fields as well as numerically efficient methods in the order

of citation. The fourth and last class of extensions in this brief overview

of BPM-based methods is the multi grid approach that is used to reduce

computational effort at regions in a system that allow a reduced degree

of accuracy. Sewell has introduced a multi grid method for electromagne-

tic computation in [25]. Additional extensions of the BPM to bidirectional

propagation [26, 27] and evanescent waves [28] are known. All enhance-

ments are based on approximations which more or less reproduce the

complex exponential phasor and its square root in the argument. Not

any overcomes both limitations, the paraxial limitation and the limitation

to small index variations as shown in [53]. Therefore, an exact solution

of the diffraction integral is required, which overcomes the limitation of the

split step propagation scheme. In the scalar case, this is achieved with the

Wave Propagation Method (WPM).

1.2.2 Wave Propagation Method

The scalar wave propagation method (WPM) was introduced by Brenner

and Singer in 1993 [31]. It utilizes a space and frequency dependent solu-

tion of the scalar diffraction integral, called the wave propagation scheme

this thesis, in comparison to the split step propagation scheme. Due to
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the equitable consideration of the space- and frequency-dependency in

the diffraction integral, the WPM is not limited to paraxial propagation or

a small index variation. The inverse Fourier transformation then can not

be used to derive the spatial field distribution from the spectrum. This

causes an increase in the time complexity, which is in O(n2) for the two-

dimensional WPM and in O(n4) for the three-dimensional case, with n is

the number of modes. The original WPM in [31] calculates the unidirec-

tional propagation of scalar electromagnetic fields and does not model

evanescent modes. The WPM provides exact results for propagation an-

gles up to 85 degrees and hence the Fresnel coefficients can no longer be

neglected and a vectorial approach is therefore perfectly reasonable. The

scalar WPM scheme is used in a commercial software package [34] to cal-

culate aspheric lenses or arbitrary phase elements that do not allow a sim-

ple analytic treatment. Even if the WPM provides significant advantages,

no known extensions or enhancements are documented in the literature

up to now.

1.3 Ray tracing

If diffraction effects can be neglected, ray optics or Gaussian optics are

used to calculate the propagation of electromagnetic fields. These meth-

ods are used in ray tracing to monitor the trace of light. According to Fer-

mat’s principle or the shortest time, the path taken by light between two

points is the direct path.

The strength of ray tracing is the calculation of large and very complex

scenes (i.e. object or zoom lens systems for cameras of telescopes)
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with high propagation distances and large geometries compared to the

applied wavelength. In this scope, the diffraction effects are negligible

and the treatment of light as a ray is absolutely sufficient. In order to

reduce the computational effort, the three-dimensional scene is often re-

duced to a simplified, two-dimensional model, called meridional ray trac-

ing [1]. The meridian is defined by a plane surface (x − p) · n = 0 in

the three-dimensional space, with p is a point in the plane and n is the

surface normal. All rays propagate in the predefined surface and thereby

the three-dimensional problem is reduced to the two-dimensional vector

algebra, which consumes less resources and is much faster.

Snell’s law and the Fresnel’s coefficients can be derived from Fermat’s

principle and several ray tracers are extended to consider amplitudes and

their transformations at interfaces. The electromagnetic theory and the

electromagnetic effects like they appear in near field scenarios is out of

the scope of the method.



Chapter 2

Fundamentals

Maxwells’ equations describe the fundamental theory of electromagnetism,

couple electric and magnetic field and formulate the basic physical laws

governing the electric field E and the magnetic field strength H. As one of

the central observations of the electromagnetic (EM) theory, the relation-

ship of electric and magnetic field shows that a time-varying electric field

produces a time-varying magnetic field. This dependency is precisely the

root cause for the existence of EM waves.

An EM wave consists of an electric field vector E [V/m] and the mag-

netic vector H [A/m] (also called magnetic field strength, magnetic field

intensity, auxiliary magnetic field or magnetizing field). Besides E and H

the other two quantities in Maxwells’ equations are the electric displace-

ment D [C/m2] and the magnetic flux density (magnetic induction, mag-

netic field) B [V s/m2 = N/A/m = T (Tesla)].

23
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These four quantities are the basis for the fundamental electromagnetic

theory which are condensed in the four Maxwell equations in its differential

form

∇ ·D = ρv (2.1)

∇ ·B = 0 (2.2)

∇× E = −∂B
∂t

(2.3)

∇× B

µµ0

= Jc +
∂

∂t
D (2.4)

where Jc [A/m2] is the electric current density and ρv [C/m3] denotes the

charge density. The equations 2.3 and 2.4 show the coupling between

electric and magnetic fields. The constitutive relations or material equa-

tions

B = µµ0H (2.5)

D = εε0E (2.6)

couple the electric and magnetic field. In case of a linear, homogeneous

and isotropic medium, the permittivity ε [F/m] and the permeability of the

medium µ [H/m] are constant. ε0 [As/V/m] and µ0 [V s/A/m] are the elec-

tric and magnetic field constants in the vacuum. A medium is called linear

when its properties does not depend on the amplitude, it is called homo-

geneous when its properties are not a function of space and a medium is

called isotropic when the properties are the same for all directions. This

thesis focuses on systems which are formed by linear and isotropic media.
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2.1 The scalar and vector wave equation

The vector wave equation for a linear, homogeneous and isotropic medium

is derived from Maxwells’ equations by taking the curl (∇) of both sides of

equation 2.3 and using the first equation of the constitutive relations 2.5

∇×∇× E = − ∂

∂t
(∇×B) =

∂

∂t
(∇× −µµ0H) (2.7)

Using the vector identities

4v = ∇2v = ∇ · (∇ · v)

∇×∇× v = grad(∇ · v)−∇2v

grad(u) =


∂/∂x

∂/∂y

∂/∂z

u, ∇× v =


∂/∂x

∂/∂y

∂/∂z

×

vx

vy

vz

 (2.8)

and the second constitutive equation 2.6, the expression transforms to

∇2E− µµ0εε0
∂2E

∂t2
= µµ0

∂Jc
∂t

+ grad(∇ · E) (2.9)

for a homogeneous medium (i.e. ε = const). The space independence of

the electric permittivity ε allows a reformulation of equation 2.1 to

∇ · E =
ρv
εε0

(2.10)

The second constitutive equation 2.6 provides a way to substitute the

nested curl operators and the equation is transformed to

∇2E− µµ0εε0
∂2E

∂t2
= µµ0

∂Jc
∂t

+ grad(
ρv
εε0

) (2.11)

In a conducting medium, the electric current density J is σE and then the

first time derivative of J transforms to −µµ0σ ∂E/∂t with σ [A/V/m] is the
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specific conductivity of the medium. This is the vector wave equation for

linear homogeneous and isotropic medium, characterized by ε and µ. In

a non-conducting and source-free medium, Jc and ρv are zero and equa-

tion 2.11 transforms to

∇2E− µµ0εε0
∂2E

∂t2
= 0 (2.12)

which is the homogeneous vector wave equation in a source-free medium.

Using the equation for a continuous motion F (x, t) = x − vt in equa-

tion 2.12, the Laplacian of a function F is ∂2F/∂t2 = 1/v2∂2F/∂x2 and

the quantity µµ0εε0 relates to the velocity v [m/s] of the EM wave in the

medium by

v =
1

√
µµ0εε0

(2.13)

See Appendix A for more information on the speed of light and the relation

to the electric and magnetic susceptibility.

Equation 2.12 then transforms to

∇2E− 1

v2

∂2E

∂t2
= 0 (2.14)

and with E = E0 exp(i(k · r− ωt)) the Helmholtz equation

(∇2 + k2) · E = 0 (2.15)

is obtained, with k = |k| = ω/c. Due to the linearity of the operators, the

equation is equivalent to three scalar wave equations - one for every vector

component of the field vector E. The vectorial amplitude is of the form

E0 = Ex,0 · ex + Ey,0 · ey + Ez,0 · ez (2.16)

where ex, ey and ez are the vectors of unity in a three-dimensional Carte-

sian coordinate system. The Laplacian is

4 = ∇2 = ∇ · ∇ =
d2

dx2
+

d2

dy2
+

d2

dz2
(2.17)
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and then the the three scalar wave equations for the vector components

Ex, Ey and Ez are

∂Ex
∂x2

+
∂Ex
∂y2

+
∂Ex
∂z2

=
1

v2

∂2Ex
∂t2

∂Ey
∂x2

+
∂Ey
∂y2

+
∂Ey
∂z2

=
1

v2

∂2Ey
∂t2

∂Ez
∂x2

+
∂Ez
∂y2

+
∂Ez
∂z2

=
1

v2

∂2Ez
∂t2

(2.18)

If ε(r) and µ(r) are space-dependent, the expression

0 = ∇×
(

1

µ0µ(r)
(∇× E)

)
+
∂

∂t

(
Jc +

∂

∂t
D

)
(2.19)

is obtained by applying equation 2.5 to equation 2.3, dividing by 1/µ(r)/µ0,

taking the curl on both sides the expression. Using the relations

∇× (uv) = u(∇× v) + (grad u)× v (i)

∇× (∇× v) = grad(∇ · v)−∇2v (ii) (2.20)

and assuming a non-conducting medium with Jc = σE = 0 and σ [A/V/m]

is the specific conductivity, the expression transforms to

4E− ε(r)µ(r)

c2
0

∂2

∂t2
E + (∇(lnµ(r)))× (∇× E) +∇(E · ∇(ln ε(r))) = 0

(2.21)

with u = 1/µ0/µ(r) and v = ∇×E in equation 2.20.i and v = E in 2.20.ii.

Considering the space-dependency of ε0ε(r), and assuming a charge-free

volume, equation 2.6 transforms according to ∇(uv) = u∇v + v · grad u
and

0 = ρv = ∇(ε0ε(r)E) = ε0ε(r)(∇ · E) + E · grad(ε0ε(r)) (2.22)

is obtained. A replacement of grad(∇ · E) then yields the inhomogeneous

wave equation

4E− ε(r)µ(r)

c2
0

∂2E

∂t2
= −

[
∇µ(r)

µ(r)
× (∇× E) +∇·

(
∇ε(r)
ε(r)

· E
)]

(2.23)
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with c0 is the speed of light in vacuum and n(r) =
√
ε(r), assuming µ(r) =

1. In [1], the term 1/x is replaced by grad(ln(x)) to obtain a vector. In

a non-magnetizing medium, µ(r) = 1 and the gradient is then zero. The

deviation to the wave equation in a homogeneous medium reduces then to

−∇(E∇(ε0/ε(r))/ε0/ε(r)). Again,∇(ε0/ε(r))/ε0/ε(r) is replaced by∇(ln(ε0ε(r))).

In case of an exponential dependency of the permittivity to the position

ε(r) = exp(a ·r), the resulting field shows a linear shift of the partial deriva-

tives of E and the deviation to the homogeneous wave equation is then

∇ ·
(
∇ε(r)
ε(r)

· E
)

= ∇ · (E · ∇(ln ε(r)))

= ∇ · (E · ∇(ln(eaxx+ayy+azz)))

= ∇ · (E · ∇(axx+ ayy + azz))

= ∇ · (E · a) (2.24)

This illustrates that the term ∇(E∇(ε0/ε(r))/ε0/ε(r)) for inhomogeneous

medium is negligible for small changes in the refractive index.

2.1.1 Homogeneous wave equation

The solution of each equation in 2.18 yields the scalar wave equation in its

simplest form

Ex(r, t) = Ex,0 · ei(k·r−ωt)

Ey(r, t) = Ey,0 · ei(k·r−ωt)

Ez(r, t) = Ez,0 · ei(k·r−ωt) (2.25)
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with the time t [s], the circular frequency ω [rad/s] , the propagation vector

k =


kx

ky

kz

 [1/m] (2.26)

and the space vector

r =


x

y

z

 [m] (2.27)

A homogeneous scalar wave equation is subsequently of the form

E(r, t) = Ê0 · ei(k·r−ωt) (2.28)

with the complex scalar amplitude Ê0. The vectorial reformulation of equa-

tion 2.18 then gives the homogeneous vector wave equation

E(r) = Ê0 · ei(k·r−ωt) (2.29)

with the complex vectorial amplitude

Ê0(r, t) =


Êx,0

Êy,0

Êz,0

 [V/m] (2.30)

The physical quantities (i.e. electric and magnetic field strength) of the

scalar and vector wave equations are obtained by taking the real part of

the complex wave equations.
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2.1.2 Propagation constant

The propagation constant k = nk0 = 2πn/λ [rad/m] = [1/m] is the length

of the propagation vector k = ks which is related to the wave velocity v by

v =
c√
ε

=
c

n
=
ω

k
(2.31)

with s = k/k and k = |k|.

2.1.3 Polarization

The complex vector amplitude Ê in equation 2.30 can be transformed to

Ê(r, t) =


Ex

Ey

Ez

 = Ê1e1 + Ê2e2e
iφp [V/m] (2.32)

with the real-valued vectors of unity e1, e1 and with e1 · e2 = 0. The vectors

e1 and e2 are furthermore perpendicular to the propagation vector, but not

necessarily align with the unity vectors for TE- and TM- polarization as

shown in figure 2.1. The phase difference φp between the two complex

values Ê1 and Ê2 determine the polarization of the electromagnetic vector

wave according to table 2.1.

The polarization vector of unit length u and the propagation vector of unit

length s can then be expressed in terms of the Euler angles in a Cartesian

coordinate system according to

u =
E

|E|
=


cosψ cos θ cosφ− sinψ sinφ

cosψ cos θ cosφ+ sinψ sinφ

− cosψ sin θ

 (2.33)
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Figure 2.1: Geometry of the polarization angle.
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Table 2.1: Phase differences φp and the related types of polarization.

phase [rad] type of polarization

φp = 0 linear

0 < φp < π/2 elliptic

φp = π/2 circular

π/2 < φp < π elliptic

φp = π linear
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and

s =
k

|k|
=


cos ρ sin θ

sin ρ sin θ

cos θ

 (2.34)

with θ is the angle of incidence, φ is the yaw angle and ψ is the rotation of

E around the vector s.

2.1.4 Transversality

The constitutive equation 2.6 in a homogeneous medium in the absence

of charges states that the divergence of the electric displacement is ∇ ·
D = div(D) = div(ε0εE) = ε0ε div(E) = 0. This yields the transversality

condition for the electric field iε0εk · E = 0 and the z-component of the

electric field vector Ê is then

Êz = −Êxkx + Êyky
kz

(2.35)

In case of a space dependent ε(r), the divergence of the electric displace-

ment div(D) transforms to ∇ · D = grad(ε0ε(r)) · E + ε0ε(r)(∇ · E) and

then

Êz = −Êx(kx − i/ε ∂ε/∂x) + Êy(ky − i/ε ∂ε/∂y)

kz
(2.36)

with ∂ε/∂x and ∂ε/∂y are the spatial derivatives of ε(r). Appendix A presents

a discrete approximation (i.e. the linear symmetric average) of the spatial

derivatives ∂ε/∂x and ∂ε/∂y as utilized in the program code of the VWPM.
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2.2 Irradiance

The irradiance I [W/m2], also called intensity, is the power per area unit

of an an EM-wave. The irradiance is the quantity which is measured by

optical detectors and is proportional to the squared amplitude of the elec-

tric field vector and inverse proportional to the impedance of the vacuum

1/(µ0c0) = Z0 =
√
µ0/ε0 = 376.82[Ω]

I(r) = | 〈S〉T |

=

∣∣∣∣∣12Re
(
E(r)×

√
ε̂(r)ε0
µ̂(r)µ0

(s× E∗(r))

)∣∣∣∣∣
=

∣∣∣∣∣ ε02µ0

Re

((√
ε̂(r)

µ̂(r)
(E(r) · E∗(r))

)
s

)∣∣∣∣∣
=

1

2

|Re(n̂(r))|
µ0c

|E(r)|2

=
|n(r)|
2Z0

E2(r) (2.37)

with µ̂(r) = 1, E(r) is the absolute of E(r) and E∗(r) is the conjugate com-

plex of E(r). Re() returns the real part of a complex quantity. The factor

1/2 (i.e. (1/
√

2)2) originates from the time average computation (i.e. 〈.〉T )

which is required to get the effective irradiance of the oscillating electric

field. n(r) is the space dependent real part of the complex refractive index

n̂(r) = n(r) + iκ(r) at location r.
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2.3 Poynting vector

The absolute of the Poynting vector S is the irradiance. For complex fields,

it is derived from the time average vector product of E and H∗

〈S〉T =
1

2
Re {E×H∗} (2.38)

where H∗ is the conjugate complex of H. S combines the information

of the direction s = k/|k| in the propagation vector with the power of an

electromagnetic (EM) wave per area in Watts per square meter, which is

contained in the irradiance I = |〈S〉T | [W/m2]. So, the direction of S is

equal to the direction of the propagation vector and its length is equal to

the intensity of the field

S

I
=

k

k
= s (2.39)

For plane waves, H can be derived from E according to

H =

√
εε0
µµ0

· (s× E) =
n

µZ0

· (s× E) (2.40)

Since an EM wave is an oscillating field, the time average 〈.〉T = 1/T
∫
T

(.)dt

is again necessary to compute the effective value of E and H. Substituting

the magnetic vector H, the Poynting vector can then be fully expressed by

the electric field and the refractive index of the medium. In average time,

the irradiance of an EM-wave is then

〈S〉T =
1

2
Re

{
E×

(√
εε0
µµ0

(s× E)

)∗}
(2.41)
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2.4 Power flux

Starting with the Poynting vector S, the energy flux of an EM-wave which

is carried in a vertical direction through an interface can be obtained. The

power flux P [W ] or energy flux per time ∂W/∂t [J/s]

P =
∂W

∂t
=

∫
S dA (2.42)

through a surface with the normal dA = ndA and an area dA [m2] is a

conserved quantity across interfaces according to the conservation law in

equation 2.78.

2.5 Absorption in homogeneous media

The absorbing medium is characterized by its complex dielectric permittiv-

ity ε̂ = εr + iεi which is coupled to the complex refractive index n̂ = n + iκ

according to ε̂ = n̂2 (with µ̂ = 1) and then

εr = n2 − κ2

εi = 2nκ (2.43)

The refractive index computes from the dielectric permittivity according to

n = ±

√√
ε2r + ε2i + εr

2

κ = ±

√√
ε2r + ε2i − εr

2
(2.44)
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An interesting observation is the ambiguity (i.e. ±) of the refractive index

n, when derived from the dielectric permittivity. In this thesis, the positive

solution of the square root is taken whenever n or κ are used. Deriving

the wavenumber k from the complex refractive index according to k = (n+

iκ)k0 = n̂k0 and using the relationship I ≈ E2, the absorption coefficient

α = 2κk0 is obtained as shown in appendix A. The imaginary part of n̂

is therefore responsible for the exponential attenuation of EM-waves in an

absorbing medium.

2.6 Absorption in inhomogeneous media

An elegant derivation of the local absorption from the spatial distribution

of the electric field E(r) and the refractive index n(r) is introduced in [30].

There, the time derivative of the energy density (∂we + ∂wm)/∂t, with the

electric we and magnetic wm energy, is utilized to compute the local ab-

sorption of energy. It is derived from the divergence of the Poynting vector

div(S) = ∇ · S according to the Poynting theorem

µµ0 (∇ · S) = ∇ · (E× (µµ0H
∗))

= µµ0H
∗ · (∇× E)− E · (∇× (µµ0H

∗)) (2.45)

Using Maxwells’ equations in the differential form

∇× E = −µ0µ
∂H

∂t

∇×H = Jc + εε0
∂E

∂t
(2.46)
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in the time average of the Poynting vector 〈S〉T = 1/2Re(E × H∗), the

expression transforms to

µµ0 (∇ · S) = −µµ0

4
(H∗

∂H

∂t
)− 1

4
(E(Jc + εε0

∂E

∂t
)∗ + E∗ · (Jc + εε0

∂E

∂t
))

(2.47)

Using F ∂F/∂t = 1/2 · ∂F2/∂t, which is valid for all vector fields with a

complex exponential phasor, and considering the complex nature of the

electric permittivity ε̂ = εr + iεi and assuming a monochromatic field which

is proportional to exp(iωt), the expression is then

∇ · S +
µµ0

4

∂

∂t
|H|2 +

εrε0
4

∂

∂t
|E|2 = −1

2
Re(E · J∗c) +

εiε0
2
ω|E|2

(2.48)

where Re() denotes the real part of a complex quantity. This expression

contains the time derivative of the electric and magnetic energy density

(∂we + ∂wm)

∂t
=

µµ0

4

∂

∂t
|H|2 +

εrε0
4

∂

∂t
|E|2

= −∇ · S− 1

2
Re(E · J∗c) +

εiε0
2
ω|E|2 (2.49)

which describes the change of the electromagnetic energy per area unit

and time [J/m2/s = W/m2] The electric current density Jc can be ne-

glected for high frequencies and then the equation for the stationary state

(i.e. (∂we + ∂wm)/∂t = 0) transforms to

∇ · S =
εiε0
2
ω|E|2 (2.50)

Taking the positive value from equation 2.44, the imaginary part of the

electric permittivity can be transformed and the stationary energy per area

is then

∇ · S = nκε0ω|E|2 (2.51)
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Finally, the area-dependent vector equation can be transformed to a volume-

specific number according to the Gaussian law

∫ ∫
SdA =

∫ ∫ ∫
n(r)κ(r)ε0ω|E(r)|2d3r (2.52)

An infinitesimal unit of volume dV absorbs the energy n(r)κ(r)ε0ω|E(r)|2.
The integral over the volume V then yields the total energy in V .

2.7 Discrete Fourier transformation

The discrete Fourier transformation plays a central role in the Fast Fourier

simulators and in Fourier optics. While the Fourier analysis in electrical

engineering operates on time-dependent signals, the spectrum of a spa-

tial field distribution or of a spatial distribution of the refractive index is

computed in Fourier optics. The input is a spatial distribution E(r) in an

aperture A = XY , with side lengths X in the x-axis and Y in the y-axis.

The number of samples nx and ny in the two-dimensional aperture defines

the minimum distance for a periodic appearance of light and the input sig-

nal is assumed to be continued periodically to ±∞. The forward Fourier

transformation F computes the spectrum Ẽ(k) and k = 2πν is called the

spatial frequency.

In a discrete system, the two-dimensional index of the location (l,m) and of

the spatial frequency (p, q) is related to the space vector r = (x y)T and the

two-dimensional transversal propagation vector k⊥ = (kx ky)
T according



2.7. DISCRETE FOURIER TRANSFORMATION 39

to

x(l) = lX/nx , y(m) = mY/ny

kx(p) = p2π/X , ky(q) = q2π/Y (2.53)

with the superscript T indicates the transposed of a vector.

2.7.1 Forward Fourier transformation

In the discrete case, a two-dimensional spectrum Ẽ(p, q) of a discrete two-

dimensional field distribution E(l,m) with (p, l) ∈ Nx and (q,m) ∈ Ny and

Nx = {0, 1, .., nx − 1} and Ny = {0, 1, .., ny − 1} is

Ẽ(p, q) =
nx−1∑
l=0

ny−1∑
m=0

E(l,m) e
−i2π lp+mq

nxny (2.54)

2.7.2 Inverse Fourier transformation

The Fourier coefficients Ẽ(p, q) in the spectrum of an EM-field provide the

complex amplitudes of corresponding plane waves exp(+i2π(pl + qm)/nx/ny)

which are needed to spatial field E at a position (l,m). The sum of all plane

waves yields the inverse discrete Fourier transformation according to

E(l,m) =
1

nxny

nx−1∑
p=0

ny−1∑
q=0

Ẽ(p, q) e
+i2π lp+mq

nxny (2.55)

With equation 2.54, the spectrum of an EM field in an aperture A =

nxδxnyδy = XY is computed and by using equation 2.55 the spatial field
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distribution is retrieved from a spectrum. The relationship of the two rep-

resentations of E in the spatial domain and in the spectral domain is de-

scribed by the correspondence operator

E ◦−• Ẽ (2.56)

2.8 Spatial sampling and propagation angle

In a discretized two-dimensional aperture, the two-dimensional index (p, q)

corresponds to a transversal propagation vector according to(
kx

ky

)
=

(
pδkx

qδky

)
(2.57)

with frequency increments δkx = 2π/X and δky = 2π/Y . From the length

of the transversal propagation vector δk⊥ =
√
δk2

x + δk2
y, the angular incre-

ment in the two-dimensional case is

δθ = sin−1(
δk⊥
k

) (2.58)

with k = 2πn/λ, which is the length of the propagation vector. As a result

of the sampling in the aperture, the number of discrete angles of incidence

and transmission in the spectrum and on the discretized circle of unity is

determined.

Example

A propagating TM-mode, with θe = π/9 and a sampling of nx = 128 in an

aperture X = 8 discretizes the unit circle into 128 frequency increments of
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δkx = 2π/X = 0.125 [rad] which is equal to an angle increment of 7.181

degrees, obtained from

δθ = sin−1(
δk⊥
k

)

= sin−1

√( λ

X

)2

+

(
λ

Y

)2
 (2.59)

With this increment, the angle of incidence θe = π/9 is ideally reproduced

from the index pe = 2.785 and the angle of transmission θt from the index

pt = 1.375 according to Snell’s law in equation 2.66. Since only whole

numbers are possible in the discrete calculation, the spectrum consists

of a multitude of coefficients which develop the correct angle of incidence

from a superposition of modes with a different spatial frequency k⊥ and

amplitude Ẽ(k⊥) according to the inverse Fourier transformation.

2.9 Plane Wave Decomposition

Taking the electric field at a position z, E(k⊥; z), the field distribution at a

distance z + δz is derived from the spectrum of the field Ẽ(k⊥; z) with the

plane wave decomposition

E(r⊥; z + δz) =
1

2π

∫ ∫
Ẽ(k⊥; z) eiφz eik⊥·r⊥

d2k⊥
(2π)2

=
1

2π

∫ ∫
Ẽ(k⊥; z) H̃(k⊥; δz) eik⊥·r⊥

d2k⊥
(2π)2

= F−1
{
Ẽ(k⊥; z) H̃(k⊥; δz)

}
(2.60)

H̃(k⊥; δz) is the spatial frequency transfer function of propagation [4] which

describes the propagation of an electric field E from z over a distance δz
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to z + δz. There, the phase of a spectral component (kx, ky) is shifted by

φz = δzkz(kx, ky)

= δz
√
k2 − (k2

x + k2
y)

= δz
√
n2k2

0 − k2
⊥ (2.61)

with k0 = 2π/λ0. In the discrete case, the propagation through a homo-

geneous medium (i.e. n = const) over a distance δz from a starting point z

of an EM-wave is then

E(mδx, nδy; (z + 1)δz) =
1

nxny

nx−1∑
p=0

ny−1∑
q=0

Ẽ(pδkx, qδky; δz) e+iφz(pδkx,qδky) e
+i2π lp+mq

nxny

= F−1
{
Ẽ(z) e+iφz(pδkx,qδky)

}
(2.62)

equal to the vectorial diffraction integral [52].

2.9.1 Convolution theorem

In the convolution theorem, transformations in the spectral domain are ex-

pressed in the spatial domain. It provides a correspondence for equa-

tion 2.60 in the spatial and spectral domain

E(r⊥; z) ∗H(r⊥; δz) ◦−• Ẽ(k⊥; z) H̃(k⊥; δz) (2.63)

with the convolution integral

E(r⊥; z) ∗H(r⊥; δz) =

∫
X

∫
Y

E(r⊥; z) ·H(r⊥ − r′⊥; δz)d2r′⊥ (2.64)

Weyl has shown in [38] that H(r⊥; δz) is the spherical wave of the form

E(r, t) =
E0

r
· ei(kr−ωt) (2.65)
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Figure 2.2: A convolution in the spatial domain is dual to a multiplication of

the two Fourier transformed (convolution theorem).
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with k = |k| and r = |r| in agreement with Huygen’s principle. The central

statement of the convolution theorem is that a multiplication in the spec-

tral domain corresponds to a convolution in the spatial domain. With this

observation, the computationally expensive convolution can be substituted

by a simple multiplication and a forward and inverse Fourier transformation

as shown in figure 2.2. This theorem is dual and hence a convolution of

a spectrum can be replaced by a multiplication in the spatial domain as

shown in [39].

2.10 Reflection and transmission

At a boundary with a refractive index n̂e = ne + iκe before and a refractive

index n̂t = nt+iκt behind the interface, the electromagnetic wave changes

its speed from ve = c/ne to vt = c/nt with the real and imaginary part of

the refractive index to be derived from the electric permittivity according

to equation 2.44. The frequency ω remains constant across the interface,

because the relationship Ee+Er = Et requires (ke ·r−ωet) = (kr ·r−ωrt) =
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Figure 2.3: EM wave at a boundary. (a) ne < nt. (b) ne > nt. The variation

in the light’s speed causes a change in kz.
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(kt · r − ωtt) to be met for all times t and all locations r. Hence, the wave

vector k changes across the interface and the speed of light is ve = ω/ke

and vt = ω/kt.

Since the transversal subvector k⊥ of k is constant across the boundary

due to the law of continuity, the z-component kz =
√

(nk0)2 − k2
⊥ changes

as shown in figure 2.3. From this observation, Snell’s law

ne sin θe = nt sin θt (2.66)

and in combination with the conservation law, the Fresnel coefficients of
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transmission

tTE =
2ne cos θe

ne cos θe + nt cos θt
=
Et
Ee

tTM =
2ne cos θe

nt cos θe + ne cos θt
=
Et
Ee

(2.67)

and reflection

rTE =
ne cos θe − nt cos θt
ne cos θe + nt cos θt

=
Er
Ee

rTM =
nt cos θe − ne cos θt
nt cos θe + ne cos θt

=
Er
Ee

(2.68)

are obtained. Appendix A provides more details on Fresnels’ coefficients

for evanescent waves. There, the z-component of the propagation vector

is then a purely imaginary quantity.

2.11 Evanescent waves

The angle of incidence θe varies between 0 [rad] and π/2 [rad]. In case of

external refraction, the angle of transmission θt is always smaller or equal

(i.e. vertical incidence) than the angle of incidence θe. The maximum

angle of refraction is then sin θmaxt = ne/nt, obtained from equation 2.66

with θe = π/2. For internal refraction, the angle of transmission is always

greater than or equal to the angle of incidence. The critical angle of inci-

dence sin θc = nt/ne is then obtained from equation 2.66, using θt = π/2.

For nt < ne and θe > θc, equation 2.66 yields sin θt = ne/nt sin θe > 1.

Consequently, a complex angle of transmission is then needed to proof

Snells law. This brings in a complex z-component of the propagation vec-

tor by using sin2 θt = n2
e/n

2
t sin2 θe in k2

z,t = n2
tk

2
0 cos2 θt = n2

tk
2
0(1− sin2 θt). A
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reordering of the index of refraction then yields

kz,t = ik0

√
sinθe −

n2
t

n2
e

= i
√
k2
⊥ − n2

tk
2
0 (2.69)

if sin θt > 1 or k2
⊥ > n2

tk
2
0 (i.e. the evanescent case). Since k⊥ is sup-

posed to remain continuous across interfaces, the transformation kz at an

interface determines the change in the angle of incidence as described by

Snell’s law (eq. 2.66). In case of internal reflection in plot (b) of figure 2.3,

the critical angle of total internal reflection (TIR) θc

sin θc =
nt
ne

(2.70)

corresponds to the spectral boundary for evanescent waves at an inter-

face as shown in Appendix A. Evanescent waves are obtained for θe > θc

and the z-component of the propagation vector is then purely imaginary as

shown in equation 2.69 and 2.71. An evanescent wave is not transversal

since components of the electric field vector are parallel to the propagation

vector as shown in [1]. In case of k⊥ = nk0, the propagation vector is par-

allel to the interface and kz,t is zero. The transmitted wave then propagates

along the interface, the surface normal is perpendicular to the propagation

vector and the energy flux through the interface is zero.

2.11.1 Complex propagation constant

The z-component of the complex k̂ is categorized into

k̂z =
√

(nk0)2 − k2
⊥ + i0 ⇔ k⊥ < nk0 (i)

k̂z = 0 + i0 ⇔ k⊥ = ntk0 (ii)

k̂z = 0 + i
√
k2
⊥ − (nk0)2 ⇔ k⊥ > nk0 (iii) (2.71)
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Figure 2.4: Evanescent coupling, optical tunneling, frustrated total internal

reflection (FTIR) at two adjacent interfaces. The electromagnetic wave

propagates from bottom up.

k
�

z

0

n0

n1

n0

+k
ev

-k
ev

evanescent  

wave 

n0>n1 

the propagation case i, the evanescent boundary ii and the evanescent

case iii. The evanescent boundary k⊥ = ntk0 is indicated by the dashed

lines in figure 2.4 to the left and right of the center-frequency k⊥ = 0. The

evanescent boundary does not describe an evanescent but a propagating

wave.

2.11.2 Evanescent decay

In the evanescent case (i.e. k⊥ > n2
tk

2
0), the z-component of the pro-

pagation vector of an evanescent wave is a purely imaginary quantity

k̂z = i
√
k2
⊥ − (nk0)2 = +iγz. Inserting the complex phase argument into

equation 2.12 then causes a laterally propagating and a longitudinally
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damped evanescent wave since i2 = −1), commonly known as an evanes-

cent wave or laterally damped wave

Eev(r) = Et · eik·r

= Et · ei(kxx+kyy+iγzz)

= Et · eik⊥·r⊥ · e−γzz (2.72)

Evanescent waves are supposed to decay even in the absence of absorp-

tion, caused by the complex solution of cos θt. The amplitude Et of the

evanescent wave is then

Et =


Ex

Ey

Ez

 =


i cos θtt̂TM(Ee · eTM)

t̂TE(Ee · eTE)

sin θtt̂TM(Ee · eTM)

 (2.73)

as shown in [1] and [55]. eTE = (s× n) is the vector of unity perpendicular

to the plane of incidence with n is the surface normal of the boundary.

The expression is obtained from the insertion of the complex cosines into

the vectorial components of the transmitted vector amplitude as shown in

Appendix A.

2.11.3 Energy flux of evanescent waves

For all θe > θc, the propagation vector is parallel to the interface and the

scalar product with the surface normal is zero. Therefore, the energy flux

S · dA of evanescent waves is zero and the conservation law 1 + R = T
is preserved. Second, evanescent waves carry no energy because the

complex solution of the propagation constant yields an imaginary cosines

and a phase shift of π/2 betweenEx andHy as well asEy andHx as shown
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in appendix A. The energy flux in time average 〈Sz〉T = 1/T
∫ T

0
Szdt, with

Sz = ExHy +EyHx is the z-component of the Poynting vector, is then zero.

Another argumentation for the zero energy flux of evanescent waves is

given in [2]. There, the evanescent wave is described to ”circulate back

and forth across the interface, resulting on the average in a zero net flow

through the boundary into the second medium”.

2.11.4 Optical tunneling

In case of two boundaries in close proximity and the first boundary pro-

viding internal, the second boundary external reflection as shown in fig-

ure 2.4, the evanescent wave couples across the short distance before it

decays completely. This effect is called frustrated total internal reflection

(FTIR) or optical tunneling and is used for ring resonators and add-drop

filters. This coupling can be explained by the complex medium coefficients

n̂ = n+ iκ and that the propagation constant is not truly parallel in case of

evanescent waves in lossy or gaining medium as shown in [36].

2.11.5 Fresnel coefficients in the evanescent case

In the evanescent case, the reflected wave is derived from Fresnels’ coef-

ficients of reflection

r̂TE =
kz,e − iγz,t
kz,e + iγz,t

r̂TM =
kz,en

2
t − iγz,tn2

e

kz,en2
t + iγz,tn2

e

(2.74)
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by inserting the complex k̂z,t = +iγz,t into equation 2.68. The Fresnel

reflection coefficients are then complex quantities of the form c/c∗ with a

magnitude of |c/c∗| = 1 for all θe > θc. In case of total internal reflection and

complex Fresnel coefficients of reflection, the reflected wave experiences

a phase shift, the so called Goos Hähnchen Shift. In the evanescent case,

the Fresnel transmission coefficients are again derived from the conserva-

tion law tTE = 1 + rTE and tTM = ne/nt(1 + rTM) according to

t̂TE = 1 +
kz,e − iγz,t
kz,e + iγz,t

=
kz,e + iγz,t + kz,e − iγz,t

kz,e + iγz,t
=

2kz,e
kz,e + iγz,t

t̂TM =
ne
nt

(
1 +

kz,en
2
t − iγz,tn2

e

kz,en2
t + iγz,tn2

e

)
=

ne
nt

(
2kz,en

2
t

kz,en2
t + iγz,tn2

e

)
=

2kz,enent
kz,en2

t + iγz,tn2
e

(2.75)

For the evanescent boundary (i.e. kbot = nk0), the transmission coeffi-

cients are t̂TE = 2 and t̂TM = 2ne/nt. The expressions are also obtained by

inserting the complex z-components of the propagation vector into equa-

tion 2.67 which corresponds to the results in [55]. In case of a absorbing

or gaining medium on either or both sides of the boundary, the equations

are simply extended to the complex quantities n̂e = ne + iκe, n̂t = nt + iκt,

k̂z,e = kz,e + iγz,e and k̂z,t = kz,t + iγz,t. Then the propagation vector is not

perfectly parallel to the interface as shown in [36]. In this case, no discrete

critical angle exist, because Fresnels’ coefficients of reflection experience

a gradual turn from purely real to complex values. For lossless or gain-

less medium, this change is a discrete point and the coefficients abruptly

become complex quantities once the critical angle is exceeded.
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2.12 Reflectance and transmittance

For real-valued kz,e = Re(k̂z,e) and kz,t = Re(k̂z,e), the transmitted and

reflected irradiance of a wave is coupled by the transmittance

TTE = |tTE|2
nt cos θt
ne cos θe

= |tTE|2
kz,t
kz,e

TTM = |tTM |2
nt cos θt
ne cos θe

= |tTM |2
kz,t
kz,e

(2.76)

and the reflectance

RTE = |rTE|2

RTM = |rTM |2 (2.77)

and the law of conservation states

1 +R = T (2.78)

for the irradiance of the TE and TM component of an electromagnetic field.

The absorptance A is then the loss in a volume by means of absorption.

It is determined by

A = 1−R− T (2.79)

In case of total internal reflection and evanescent waves, Fresnels’ coeffi-

cients of reflection are of the form c/c∗, with c is a complex quantity. Then,

the squared magnitude cc∗ is unity, the reflectance is unity and the trans-

mittance is zero. This agrees to the observation that evanescent waves do

not carry energy across the interface.
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Chapter 3

Vector Wave Propagation
Method

Split step propagation methods like the beam propagation method (BPM)

have been primarily developed for simulating light propagation in wave-

guides. By applying the distributed propagation operator, which is derived

from the slowly varying complex exponential envelope approximation of

the Helmholtz equation, propagation methods are typically restricted to

forward propagation, small index variations and the paraxial regime.

In the original BPM scheme by Feit and Fleck [13], the propagation op-

erator is split into a homogeneous medium propagation in the averaged

refractive index and a thin element transmission through the index varia-

tion. With the application of propagation methods to more general optical

components, such as gradient index media, aspheric lenses and gratings,

there is much interest in removing these restrictions.

53
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The scalar wave propagation method (WPM) has been introduced by Brenner

and Singer in 1993 [31] in order to overcome the restrictions to parax-

ial propagation and small index variations in the BPM. Instead of splitting

the propagation operator, the WPM decomposes a field distribution into

its plane wave components and performs a non-paraxial plane-wave pro-

pagation in an inhomogeneous medium for each plane wave component.

The field is then calculated as a sum over all plane wave components

according to the Rayleigh-Sommerfeld integral. Since this sum cannot be

performed by an inverse FFT, the calculation time of the WPM grows with

O(N2) in the two-dimensional case, whereas the BPM calculation time of

the split step propagation scheme is proportional to O(N), taking N as the

number of spatial samples.

In [31], the accuracy of the scalar WPM was validated for propagation an-

gles up to 85 degrees and also for large index steps. The original scalar

WPM extended the range of spatial frequencies significantly and hence

vectorial effects cannot be longer neglected. A vectorial WPM is desirable.

In the Vector Wave Propagation Method (VWPM), the wave propagation

scheme is utilized to compute the propagation of three-dimensional vec-

tor fields by considering the polarization dependent Fresnel transmission

coefficients. The accuracy of this approach is validated by transmission

through a prism and by comparison with the focal distribution from vec-

torial Debye theory. Furthermore, the field distribution in a binary phase

Ronchi in the range of a few wavelengths is compared to the results from

RCWA.
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3.1 Split step propagation scheme

An analysis of the original beam propagation method (BPM), as an exam-

ple for the split step propagation scheme, serves to illustrate the differ-

ences introduced in the WPM. It provides some of the reasons to extend

the scalar WPM to three-dimensional vector-fields and introduces an opti-

mization of the WPM and VWPM for efficient light propagation in a homo-

geneous media.

The BPM uses a separation of the refractive index n = n̄ + δn. The se-

paration of n provides the ability to calculate the propagation in the homo-

geneous averaged refractive index n̄ for all spatial frequencies in a single

step of calculation by multiplication with the diffraction operator D̃. The

diffraction operator has to be applied in the Fourier space to consider the

spatial frequencies kx = 2πνx and ky = 2πνy of the plane wave decom-

position (PWD) [35]. The separation of the refractive index introduces two

sources of error to the calculation of kz√
n2k2

0 − k⊥ =

√
(n̄+ δn)2 k2

0 − k2
⊥

=
√
n̄2k2

0 − k2
⊥ + 2n̄ δn k2

0 + δn k2
0

=
√
n̄2k2

0 − k2
⊥ ·

√
1 +

2n̄ δn k2
0 + δn2 k2

0

n̄2k2
0 − k2

⊥

=
√
n̄2k2

0 − k2
⊥ ·
(

1 +
n̄ δn k2

0

n̄2k2
0 − k⊥

+O
(
δn2
))

≈(1)

√
n̄2k2

0 − k2
⊥ +

n̄ δn k2
0√

n̄2k2
0 − k2

⊥

≈(2)

√
n̄2k2

0 − k2
⊥ +

n̄ δn k2
0

n̄k0

=
√
n̄2k2

0 − k2
⊥ + k0δn = kz (3.1)
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A first error ≈(1) arises from the approximation of the square root by the

linear part of its binomial expansion to separate the entire term into two

fractions that depend on n and δn. This error is in O(δn2) and is responsi-

ble for the angle indiscriminate propagation through the index variation δn.

A second error ≈(2) is caused by the paraxial approximation (k2
z >> k2

x+k2
y)

that is necessary to reduce the term and make it usable in the split step

scheme. The diffraction operator D̃ and phase shift operator S are

D̃(k⊥) = D̃(kx, ky) = ei
√

(nk0)2−(k2x+k2y)δz (3.2)

and

S(r⊥) = S(x, y) = eiδn(x,y)k0δz (3.3)

The approximation of the phase shift is then applied to Rayleigh’s diffrac-

tion integral (eq. 2.60). The separation of the constant and variable term

in the complex exponential function yields equation (3.4). It applies the

phase change along the axis of propagation for a distance δz with the

diffraction operator D̃ and the phase shift which is caused by the change

in the refractive index in the phase shift operator S.

u (r⊥; z + δz) = F−1

F (u (r⊥; z)) ei δz
√
n̄2k20−k⊥︸ ︷︷ ︸
D̃

 ei δz δn(r⊥;z)k0︸ ︷︷ ︸
S

(3.4)

The computation power of computer systems was low in former days and

the calculation of a square root took a significant amount of CPU-time.

Therefore, the Fresnel approximation√
n̄2k2

0 − k2
⊥ + k0δn ≈Fresnel n̄k0 −

k2
⊥

2n̄k0

+ k0δn (3.5)

was applied to reduce the computation time. Nowadays this is no longer

necessary and the left side of equation 3.5 is used.
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3.2 Definition of the input system

Let a system be defined by its distribution of the refractive index n̂(x, y; z(j)) =

n̂j(x, y) = nj + iκj ∈ C (eq. 3.6). The index j denotes the layer under in-

vestigation and nz is the number of iterations of the simulation along the

z-axis, the axis of propagation. Each layer j has an incident layer j − 1.

The refractive index at a location (x, y) in the j-th layer is then

n̂(x, y; z(j)) = n(x, y; z(j)) + iκ(x, y; z(j)) (3.6)

or simply

n̂j(r⊥) = nj(r⊥) + iκj(r⊥) (3.7)

The aperture is defined by the XY -plane and has the physical dimen-

sions X = nxδx and Y = nyδy. The numbers of samples are defined by

nx = X/δx, ny = Y/δy and nz = Z/δz. An incident wave is supposed to

propagate through the system N ∈ Cnx×ny×nz , with C is a complex number.

3.3 Scalar Wave Propagation Method

The scalar wave propagation method also uses the the Fourier transfor-

mation F(.) of the incident scalar field u0(r) is

ũ0(k⊥) =

∫ ∫
u0(r⊥)e−ik⊥r⊥d2r⊥ (3.8)
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where the three-dimensional and the lateral positions and spatial frequen-

cies are given by

r =


x

y

z

 , r⊥ =

(
x

y

)
, k =


kx

ky

kz

 , k⊥ =

(
kx

ky

)
(3.9)

The spatial frequencies are related to the propagation vector by k = 2πν

and the lateral subvector k⊥ = 2πν⊥. The spectrum of the field distribution

in the j-th xy-layer of N , at Z = jδz, is then

ũj(k⊥) =

∫ ∫
uj(r⊥) · e−ik⊥r⊥d2r⊥ (3.10)

ũj is the plane wave decomposition of uj. The term plane wave decom-

position (PWD) provides the key idea of the wave propagation method

because it emphasizes the decomposition of a field E(r) into its plane

waves components by the Fourier transformation. Each mode (i.e. Fourier

coefficient) contains the amplitude of a related plane wave wj(k⊥, r⊥) =

ũj(k⊥) exp(ik⊥ ·r⊥) to reproduce the original pattern by superposition. The

propagation over a distance δz along the axis of propagation z of each

plane wave component is then performed by transmission through an in-

homogeneous (i.e. a position and frequency-dependent) phase element

Pj(k⊥, r⊥) = eiδz
√
n2
j (r⊥)k20−k2

⊥ (3.11)

with k0 = 2πν0 = 2π/λ0 and λ0 is the vacuum wavelength. Since the phase

shift also depends on the local distribution of the refractive index nj(r⊥)

, a simple inverse Fourier transformation is not possible to calculate the

propagated field. A summation (integration) of all deformed plane waves

wj−1Pj over the entire spectrum and aperture is necessary to obtain the

electric field at a distance jδz from the field distribution at (j − 1)δz. Un-

like the BPM, the transmission through the locally varying refractive index
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nj(r⊥) depends on the angle of propagation (i.e. the spatial frequency) of

each plane wave component. The propagated field in layer j at a distance

jδz is

uj(r⊥) =
1

A

∫ ∫
wj−1(k⊥, r⊥)Pj(k⊥, r⊥)

d2k⊥
(2π)2

(3.12)

withA = XY . This is the central equation of the wave propagation scheme.

Note that in a homogeneous medium, equation 3.12 is equal to the PWD.

3.4 Vector Wave Propagation Method

The vector wave propagation method (VWPM) assumes that a vector field

Ee has traversed an incident layer. At the interface between the incident

(i.e. subscript ’e’) and transmitted (i.e. subscript ’t’) layer, the change in

the refractive index introduces a boundary that requires a separation of the

field into its TE- and TM- components. The vectorial field just before the

interface is decomposed into its Fourier components

Ẽe(k⊥) =


Ẽx,e(k⊥)

Ẽy,e(k⊥)

Ẽz,e(k⊥)

 =

∫ ∫
Ee(r⊥)eik⊥·r⊥d2r⊥ (3.13)

Each component k⊥ represents a plane wave, which is called a mode,

We(k⊥, r⊥) = Ẽe(k⊥)exp(+i(k⊥ · r⊥ + kz,ez)) (3.14)

with kz,e =
√

(ne(r⊥)k0)2 − k2
⊥. As indicated by the plus in the exponent, it

is important to take the positive solution from the square root and apply a

positive propagation vector k in order to compute the field as described by

the Fresnel and not the Lenserf theory [36].
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3.4.1 Lateral field dependence

In the absence of charges, div(D) = 0 and the x-, y- and z-components of

We(r⊥,k⊥) are depending on each other according to the medium equa-

tion. The z-component is then related to the lateral components by solving

0 = grad(ε(r⊥)) ·We(k⊥, r⊥) + ε(r⊥)div(We(k⊥, r⊥)) (3.15)

for each plane wave component. Using div(We(k⊥, r⊥)) = ik ·We(k⊥, r⊥),

the z-component of the E-field is then

Ẽz,e =
(iεx,e/ε− kx)Ẽx + (iεy,e/ε− ky)Ẽy

kz,e

= −
k′x,eẼx + k′y,eẼy

kz,e
(3.16)

where εx,e = ∂εe/∂x and εy,e = ∂εe/∂y are the x- and y-components of

the gradient of ε in the incident layer. The z-component of the gradient is

zero since it is assumed that ε(r⊥) in each layer varies only in the lateral

and not in the longitudinal z-direction. With equation 3.16, it is sufficient in

equation 3.13 to consider only the x- and y-components of the transform.

Two and three-dimensional vectors are distinguished by E(2) and E.

3.4.2 Transfer at the interface

The transfer at the interface between the incident and transmitted layer

requires a separation of the field into its TE- and TM-field components.

Each component is then weighted by the Fresnel transmission coefficients

and the results are combined using the transmitted vectors of unity for
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TE- and TM-polarization. The vectorial plane wave amplitude behind the

interface can be expressed by

Ẽt(k⊥) = tTE ẼTE,t eTE + tTM ẼTM,t eTM,t (3.17)

where the TE- and TM-field components are given by

ẼTE,t(k⊥) = Ẽt · eTE (3.18)

ẼTM,t(k⊥) = Ẽe · eTM,e (3.19)

and the unity vectors of TE- and TM-polarization before and behind the

interface are given by

eTE = eTE,t = eTE,e =
(ez × ke)

|ez × ke|
=

1

k⊥


−ky
kx

0

 (3.20)

and

eTM,e =
(eTE × ke)

|eTE × ke|
=

1

ne(r⊥)k0k⊥


kxkz,e

kykz,e

−k2
⊥

 (3.21)

The vector of unity for the TM-polarization behind the interface is given by

eTM,t =
(eTE × kt)

|eTE × kt|
=

1

nt(r⊥)k0k⊥


kxkz,t

kykz,t

−k2
⊥

 (3.22)

The propagation vectors ke and kt follow from the continuity of the lat-

eral components kx,e = kx,t, ky,e = ky,t and kz,e =
√

(nek0)2 − k2
⊥, kz,t =√

(ntk0)2 − k2
⊥. Note, that eTM,e as well as eTM,t depend on the lateral

position, since the index of refraction as well as the z-component of the

k-vectors are position dependent. Combining the equations 3.17to 3.22,

the transfer at the interface can be expressed by a matrix operation

Ẽ
(2)
t (k⊥, r⊥) = M(k⊥, r⊥) · Ẽ(2)

e (k⊥) (3.23)
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Ẽ
(2)
t is a lateral subvector of the electric field spectrum Ẽt behind the

boundary. From a reordering of the equation, the transfer matrix of trans-

mission

M(k⊥, r⊥) =
1

k2
⊥

(
k2
ytTE + k2

xt̂TM(1− iε̂x,e) kxky(t̂TM(1− iε̂y,e)− tTE)

kxky(t̂TM(1− iε̂x,e)− tTE) k2
xtTE + k2

y t̂TM(1− iε̂y,e)

)
(3.24)

is obtained with

ε̂x,e =
k2
⊥

n4
ek

2
0

εx,e
kx

, ε̂y,e =
k2
⊥

n4
ek

2
0

εy,e
ky

(3.25)

and

t̂TM =
nekz,t
ntkz,e

tTM (3.26)

The Fresnel coefficients for transmission are

tTE =
2kz,e

kz,e + kz,t

tTM =
2nentkz,e

n2
jkz,e + n2

ekz,t
(3.27)

Using equation 3.26, the modified transmission coefficient for TM polariza-

tion can be simplified to

t̂TM =
2n2

ekz,t
n2
jkz,e + n2

ekz,t
(3.28)

3.4.3 Propagation step

With equation 3.23, the two-dimensional field contribution behind the in-

terface is known. To complete the propagation through one layer, a propa-

gation of the wave through the inhomogeneous medium with thickness δz
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is applied. Considering the interface at the beginning of each layer and at

z = 0, a component of the electric field which propagated a distance δz is

then

W
(2)
t (k⊥, r⊥) = Ẽ

(2)
t e+i(k⊥·r⊥+kz,tδz) = Ẽ

(2)
t Pe+i(k⊥·r⊥) (3.29)

The propagated z-component is then calculated according to equation 3.16,

from the space derivatives εt,x and εt,y of ε in the layer behind the interface.

The resulting field distribution at the end of the layer behind the interface in

the aperture A = XY is obtained by a summation of all field components

Et(r⊥) =
1

A

∫ ∫
Wt(k⊥, r⊥)

d2k⊥
(2π)2

(3.30)

3.5 Algorithm of the VWPM

A system N is split into nz layers and sampled at nx and ny locations.

The spatial frequencies kx = 2πpδνx = 2πp/(nxδx) and ky = 2πqδνy =

2πq/(nyδy) are determined by the sampling (δx, δy) in the aperture. Each

layer is orthogonal to the axis of propagation.

A vector field is propagating through the systemN layer by layer according

to the VWPM equations that have been introduced in the previous section.

Each layer j has a layer of incidence j−1 and a layer of propagation j. For

the first iteration j = 0, the incident layer is modeled by a homogeneous

medium (i.e. nextern(x, y) = const) or by a copy of layer zero.

The incident wave is considered to be positioned directly before of the

boundary between layer j − 1 and j. The first step of the j-th iteration in
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the z-axis is the plane wave decomposition of the field

E
(2)
j−1(x, y) =

(
Ex,j−1

Ey,j−1

)
=⇒FFT

(
Ẽx,j−1

Ẽy,j−1

)
= Ẽ

(2)
j−1(kx, ky) (3.31)

The second step applies the transformation matrix Mj for each spatial

frequency k⊥ = (kx, ky) = (pδkx, qδky) and all locations r⊥ = (x, y) =

(mδx, nδy) in the aperture. The transmitted plane wave components for

electric field vector are derived from the spectrum according to(
EXj(p, q,m, n)

EYj(p, q,m, n)

)
:= Mj · Ẽ(2)

j−1 (3.32)

The spatial derivatives εj−1,x, εj−1,y and εj,x, εj,y are derived from the sym-

metric average

εj,x(m,n) =
n2
j((m+ 1)δx, nδy)− n2

j((m− 1)δx, nδy)

2δx

εj,y(m,n) =
n2
j(mδx, (n+ 1)δy)− n2

j(mδx, (n− 1)δy)

2δy
(3.33)

The propagated electric field W̃j through the position- and frequency-

dependent phase element is again described by equation 3.29. The prop-

agated magnetic field vector of a spatial frequency is then derived from the

x- and y-component of the electric field according to
HXj(p, q,m, n)

HYj(p, q,m, n)

HZj(p, q,m, n)

 := Tj ·

(
WXj(p, q,m, n)

WYj(p, q,m, n)

)
(3.34)

The z-component WZj is obtained from equation 3.16 in layer j and the

three-dimensional electrical field vector E(mδx, nδy) and magnetic vector

H(mδx, nδy) in the transmitted layer j is subsequently obtained by the
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summation over each frequency

Ej(x, y) :=
1

nxny

∑
p

∑
q


WXj

WYj

WZj

 (3.35)

Hj(x, y) :=
1

nxny

∑
p

∑
q


HXj

HYj

HZj

 (3.36)

3.5.1 VWPM in homogeneous media

In a homogeneous medium, the refractive index is constant and the propa-

gation operator P is therefore space-independent. For propagation through

a homogeneous layer, the VWPM is therefore equal to the vectorial version

of the PWD

Et(r⊥) = F−1
{
M · F {Ee(r⊥)} e+ikz(k⊥)δz

}
(3.37)

In the absence of interfaces (i.e. ne = nt ∀r⊥), the matrix M reduces to

the 2x2 unity matrix. In case of vertical incidence, the 2x2 unity matrix

is multiplied with the Fresnel coefficients for the TE- or TM-case (i.e. no

polarization exists at k⊥ = 0).
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3.6 Magnetic vector and Poynting vector

The electric vector E and magnetic vector H of a transversal electroma-

gnetic wave are related by transversality

H̃ =

√
εε0
µµ0

(
k

k
× Ẽ

)
(3.38)

By using equation 3.16, equation 3.38 is applied to the transversal com-

ponents of the E-field in order to derive the magnetic vector in the layer

behind the interface from a matrix multiplication according to

H̃t = T · Ẽ(2)
t (3.39)

with Ẽ
(2)
t as the x- and y-components of the three-dimensional spectrum

Ẽt in the transmitted layer. T is derived from equation 3.38 as

T(k⊥, r⊥) =
1

ktkz,t

√
εtε0
µtµ0


−k′x,tky −(kyk

′
y,t + k2

z,t)

kxk
′
x,t + k2

z,t kxk
′
y,t

−kykz,t kxkz,t

 (3.40)

The Poynting vector S is then derived from the magnetic field vector Ht(r⊥) =

1/(2π)2
∫∫

H̃t(k⊥, r⊥)ei2π k⊥·r⊥d2k⊥/(2π)2 according to

〈S(r)〉T =
1

2
Re (E(r)×H∗(r)) (3.41)

with H∗ is the complex conjugate of H. The power flux per area unit

∂P/∂A [W/m2] through the boundaries is then the z-component of the

Poynting vector

∂P (k⊥, r⊥)

∂A
= 〈S〉T · n = 〈Sz〉T

=
1

2
Re
{
ExH

∗
y − EyH∗x

}
=

1

2
Re

{
Ex

[
1

µk0Z0

(kzEx − kxEz)
]∗
− Ey

[
1

µk0Z0

(kyEz − kxEy)
]∗}

(3.42)
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The total energy flux through a location r⊥ is then obtained from the inte-

gration (summation) over the entire spectrum k⊥ according to

∂P (r⊥)

∂A
=

1

2Z0

∫ ∫
kzEE

∗ d
2k⊥

(2π)2
(3.43)

with µ = 1 + i0. In the discrete case

Pj(l,m) =
δxδy

2Z0

∑
p

∑
q

 kz,j

WXj

WYj

WZj

 ·

WXj

WYj

WZj


∗  (3.44)

with δx = X/nx and δy = Y/ny. The multiplication with δxδy makes the cal-

culation independent from the number of samples and the entire energy

flux through the aperture is then obtained from an integration of equa-

tion 3.43 or a summation of equation 3.44 over the locations r⊥.

3.7 2D simulation of refraction at a prism

A two-dimensional simulation of a Gaussian beam which propagates through

a prism provides an easy and visual way to verify the VWPM. The results

are compared to the results from theory and from a vectorial version of

the BPM to show the accuracy of the VBPM. The refractive index of the

prism is nP = 2.5 and the surrounding refractive index n = 1. The back

boundary of the prism has a slope of 20 degrees. The aperture has a

width of X = 200 µm and the Gaussian beam propagates a distance of

Z = 130 µm. The number of samples in the aperture is Nx = 512 and in

the axis of propagation Nz = 333. The thickness of the prism D is 72.8 µm

and the propagation distance after the prism at x = 0 is p = 73.6 µm. d

is then 20 µm. The incident Gaussian beam is TE-polarized with a peak
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Figure 3.1: 2D simulation of a prism. Left: Schematic description and

design parameters. Right: Propagating Gaussian beam, simulated with

the VWPM.

amplitude of 1 V/m. The wavelength is 4 µm and the waist diameter is

40 µm. The beam passes the front boundary at vertical incidence in the

center of the aperture. The left subplot of figure 3.1 shows the geometry

of the prism and the design parameters of the scene. The right plot shows

the amplitude |E| of the propagating Gaussian beam. Snell’s law and the

Fresnel coefficients are applied to the two boundaries in the configuration

in order to calculate the exact location (59.1 µm) and amplitude (0.936 V/m)

of the Gaussian beam in the output aperture.

Figure 3.2 compares the amplitudes at z = 130 µm, calculated with the
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Figure 3.2: Left: Propagated Gaussian beam with the VBPM. Right:

Propagated Gaussian beam with the VWPM. The dashed lines show the

exact result from theory.

VBPM (left) and VWPM (right). The dashed lines represent the exact re-

sults for amplitude (horizontal line) and position (vertical line). Obviously,

the VBPM deviates in the position of the peak. The peak has its maximum

at x = 45.21 µm with an amplitude of 0.947 V/m. The amplitude, simulated

by the VWPM is shown in the right subplot of figure 3.2. The peak position

shows a good match to Snell’s theory at x = 59.375 µm and the amplitude

at z = 130 is 0.928 V/m. The deviation of the position to the exact result in

this case is in the range of the sampling. The root cause for the deviation

in the amplitude is caused by an increased beam divergence which orig-

inates from the larger propagation distance at high refraction angles. No

absorption has been considered in the entire scene.
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Figure 3.3: Amplitudes Ex (left), Ey (middle) and Ez (right) of the vector

field at focal distance (Vectorial Debye theory).

3.8 3D Simulation of a perfect asphere

To show the benefits of non-paraxial propagation, a three-dimensional as-

phere with a high numeric aperture is simulated. The asphere is designed

according to a theory of perfect aspheres [37] with an NA of 0.8 and a

working distance of 43µm. The asphere is sampled in a 643 grid with

dx = dy = dz = 0.6875µm. The asphere has a refractive index of 2 and the

surrounding volume has a refractive index of vacuum.

The exact field distribution at in the focus can be derived from vectorial

Debye theory [37]. Figure 3.3 shows the distribution of the Ex, Ey and

Ez-components of the vector field from vectorial Debye theory. The com-

parison of figure 3.3 with the results from the VWPM in figure 3.4 shows

that the basic features are reproduced. The simulated focal spot is very

close to the design focus position. The amplitudes show a slight deviation.

Figure 3.5 shows a xz-plot of the TE-electric field distribution. The as-

phere in this case had a radius of 22 µm, a numeric aperture of 0.8 and

a refractive index of n = 1.5. The surrounding refractive index was 1 and

sampling is Nx = Ny = Nz = 64. The figure shows a diffraction limited, un-
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Figure 3.4: Amplitudes Ex (left), Ey (middle) and Ez (right) of the vector

field at focal distance (VWPM).

aberrated spot, as is to be expected from a perfect focusing lens. Also the

focus location agrees perfectly with ray tracing. As reference, the VBPM

was also tried. It showed a longitudinal shift of the focus and a significant

spherical aberration.

3.9 3D Simulation of a 2D grating

A third scenario is a high frequency grating, defined by periods px, py and

widths wx, wy in the x- and y-axis. The widths determine the duty-cycle of

the grating. The height of the grating is h. The refractive index of the grat-

ing is ng = 1.5 and the surrounding refractive index is n = 1 (i.e. vacuum).

The sampling is dx = dy = dz = 0.125µm. The parameters of the gratings

are px = py = 8λ, wx = wy = 4λ and h = 1λ for the simulation that is shown

in figure 3.6 and px = py = 4λ, wx = wy = 2λ and h = 1λ for the simulation

in figure 3.7. The incident plane wave has a wavelength of λ = 1 µm and

TM polarization for both examples. The angle of incidence is 15 degrees

in figure 3.6 and 0 degrees in figure 3.7. The propagated wave shows

a well-defined distribution of the field amplitude that is determined by the



72 CHAPTER 3. VECTOR WAVE PROPAGATION METHOD

Figure 3.5: Simulation of a perfect asphere with the VWPM. The figure

shows the amplitude of the Ey-component of a TE-polarized plane wave

which propagates from left to right through a perfect asphere.

grating dimensions.

The vector components of the electric field, calculated by the VWPM are

compared to the results of the two-dimensional RCWA. For the RCWA, 6

modes have been used, whereas the VWPM effectively uses 256 modes.

Both figures show remarkable agreement. The differences are significant

only for the incident region before the grating, which is clear since the

VWPM does not yet consider reflections.
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Figure 3.6: Amplitude of the Ex-component of the vector field in the xz-

plane simulated with the RCWA (right) and the VWPM (left) for oblique

incidence.

3.10 Evanescent modes

According to [1], an evanescent wave is not transversal because parts of

the electric field vectors are parallel to the propagation vector. In [2], an

evanescent wave is introduced as a wave which does not carry energy

because the field oscillates back and forth across the interface, resulting

in a zero net energy flux. Obviously, evanescent waves are different and do

not possess some of the central assumptions for electromagnetic waves,

transversality and the transportation of energy.
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Figure 3.7: Amplitude of the Ex (upper row) and Ez-component (lower row)

of the TM-polarized vector field in the xz-plane simulated with the RCWA

(right) and the VWPM (left) for perpendicular incidence.

For internal reflection (i.e. ne > nt), a critical angular θc is obtained from

Snell’s law according to equation 2.70. For all θe > θc, an evanescent wave

is then generated which propagates along the interface and decays expo-

nentially and perpendicular to the interface as introduced in chapter 2. The

evanescent boundary k⊥ = ne(r⊥)k0 shifts to k⊥ = nt(r⊥)k0 as depicted in

figure 2.4. Then, a propagating mode becomes an evanescent mode and

vice versa under certain conditions. For internal reflection (i.e. ne > nt)

and θe > θc, a propagating mode in the medium with the higher real part

of the refractive index becomes an evanescent mode in the medium with

the lower real part of the refractive index and the evanescent boundary
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Table 3.1: Evanescent and propagating modes at interfaces.

Case inc. mode trans. mode Comment

1 prop. prop. normal propagation

2 prop. evan. total internal reflection

3 evan. prop. evanescent coupling (i.e. tunneling)

4 evan. evan. transfer of evanescent modes

moves toward the origin of the spatial frequency axis. For external reflec-

tion (i.e. nt > ne) and frequencies above the evanescent boundary before

the interface and below the evanescent boundary behind the interface, an

evanescent mode in the low-index medium becomes a propagating mode

in the high-index medium. The different configurations for evanescent and

propagating modes are enumerated in table 3.1.

Case 1 describes propagating waves on both sides of an interface for ex-

ternal and internal refraction. Total internal reflection (TIR) and the gener-

ation of an evanescent wave occurs in case 2 and frustrated total internal

reflection (FTIR) and the effect of evanescent coupling in case 3. Case 4,

the propagation of evanescent waves is only considered in homogeneous

medium and no transfer of evanescent-to-evanescent modes is considered

in the VWPM.

3.10.1 Internal reflection and transmission

In case 2 and ne > nt, an evanescent wave is generated by total internal

reflection. The amplitude of the evanescent wave behind the interface is
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then obtained from equation 2.73 according to

Ẽt(k⊥, r⊥) =


t̂TM k̂z,t/kt(Ẽe · eTM)

t̂TE(Ẽe · eTE)

t̂TMnek⊥/nt/kt (Ẽe · eTM)



=


it̂TMγz,t/kt/k⊥(kxkz,eEx + kykz,eEy − k2

⊥Ez)

t̂TE(kxEy − kyEx)
t̂TMne/nt/kt(kxkz,eEx + kykz,eEy − k2

⊥Ez)

(3.45)

with t̂TE and t̂TM (eq. 2.75) are the complex Fresnel coefficients of trans-

mission, utilizing the purely imaginary z-component of the propagation

vector of the evanescent wave. kt is the length of the propagation con-

stant behind the interface and k⊥ = nek0 sin θe = ntk0 sin θt, which yields

the sines of θt. Evanescent waves are not transversal because Ex is purely

imaginary and therefore parallel to the propagation vector as shown in [1].

Hence, the z-component of the electric field can not be derived from equa-

tion 3.16.

Even in the absence of absorption (i.e. κ = 0), an evanescent mode is ex-

pected to decay exponentially and perpendicular to the interface according

to equation 2.72. The locally deformed plane wave Wt is obtained from

the frequency and space dependent phase element using the complex

propagation vector according to

Wt(k⊥, r⊥) = Ẽte
ik⊥·r⊥P(k⊥, r⊥)

= Ẽte
ik⊥·r⊥e−γz,tδz (3.46)

where γz,t =
√
k2
⊥ − n2

tk
2
0 is the imaginary part of k̂z,t. The evanescent

wave is then obtained from the integration over the spatial frequencies

according to equation 3.30.
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For k⊥ = ntk0, θe is equal to θc and the z-component of the propagation

vector is zero. Then, the propagation vector of the transmitted field kt

is parallel to the interface and the electric field the propagates along the

boundary and the phase-element is unity (i.e. S = exp(0)). In case of an

absorbing medium, the VWPM assumes a complete decay of the wave due

to an infinite propagation distance δz/ cos θt = δzkt/k̂z,t → ∞ for k̂z,t → 0.

A unit phase element S = exp(0) = 1 is applied to equation 3.46 in the

absence of absorption and then the transmitted field propagates parallel

to the interface as shown in figure 3.8 on page 80.

At the evanescent boundary k⊥ = nk0 and for kz,e 6= 0 and k̂z,t = 0, the

Fresnel transmission coefficients are tTE = 2 and tTM = 2ne/nt. In the

TE-case, an increase in the amplitude by a factor of 2 is obtained, which

is independent from the refractive index. The Fresnel transmission coeffi-

cients are zero for k̂z,e = 0 and kz,t 6= 0. The denominator of tTE and tTM

is zero for k̂z,e = k̂z,t = 0 but this corresponds to ne = nt and the Fres-

nel transmission coefficients are then defined to tTE = 1 and tTM = 1 in

the VWPM. In an medium with n̂t = nt + iκt and κt > 0, the propagating

mode kz,t = 0 is completely absorbed since the VWPM assumes an infinite

propagation distance exp(−γz,tδz nk0/kz) → ∞ for kz = 0. The simulated

field distributions agree with the expected results from theory as shown in

figure 3.8.

3.10.2 External reflection and transmission

In case 3 and external reflection ne < nt, a propagating mode is obtained

from an evanescent mode and the transmitted electric field vector behind
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the interface is again obtained from equation 2.73 according to

Ẽ
(2)
t (k⊥, r⊥) =

(
t̂TM k̂z,t/ktẼe,x

t̂TEẼe,y

)
(3.47)

where Ẽe,x contains the TM- and Ẽe,y the TE-polarization of the incident

evanescent wave before the boundary as defined in equation 3.45. Since

the evanescent wave propagates along interface and gets not refracted,

the orientation of the TE- and TM-components remains constant and the

Fresnel coefficients of transmission are applied to the x-component for the

TM-case and to the y-component of the evanescent wave for the TE-case.

The propagation of the transmitted field is the obtained from equation 3.29

and the z-component is finally obtained from transversality according to

equation 3.16.

3.10.3 Propagation of evanescent modes

In case 4 and for nj−1(r⊥) = nj(r⊥), the complex propagation vector

is applied to the space- and frequency-dependent phase element P =

exp(−γz,tδz) is applied to equation 3.29. If nj−1(r⊥) = nj(r⊥),∀r⊥ the

plane wave decomposition (PWD) is utilized and the propagated evanes-

cent wave is obtained from Et(r⊥) = F−1 {F {Ee(r⊥)}P}.

3.10.4 Algorithm for evanescent modes

For case 1 in table 3.1, the algorithm in section 3.5 is applied. The algo-

rithm is modified for case 2 and 3 by replacing the transfer at the interface
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Table 3.2: Complex phasor P(k, r) for propagation in the VWPM.

Case k̂z,j−1 k̂z,j nj−1 > nj nj−1 = nj nj−1 < nj

1 kz,j−1 kz,j P = eikz,jδz PWD P = eikz,jδz

2 kz,j−1 iγz,j P = e−γzδz − P = 0

3 iγz,j−1 kz,j P = 0 − P = eikz,jδz

4 iγz,j−1 iγz,j P = 0 PWD P = 0

with equation 2.73 and the space and frequency dependent phase element

evolves from the complex propagation constant as shown in table 3.2. All

modes which belong to case 4 are only considered in the absence of in-

terfaces along the axis or propagation and then the plane wave decompo-

sition (PWD) is applied. Evanescent waves (i.e. θe > θc) do not transfer

power across an interface as shown in chapter 2 and therefore all evanes-

cent modes are negligible in the calculation of the energy flux.

3.11 Simulation of evanescent waves

Let a TE-polarized plane wave of unit amplitude and at with 1. θe = θc =

65.38 degrees and 2. greater than 65.38 degrees propagate through a

medium with n̂e = 1.1+i0 and n̂t = 1+i0. The aperture is X = Z = 16 [µm]

and nx = nz = 256. For the first case, the transmitted wave propagates

along the interface as shown in figure 3.8. In the second case, the trans-

mitted electric field is evanescent and therefore decays exponentially in

the axis of propagation as shown in figure 3.9.
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Figure 3.8: Simulation of a propagating wave with θe = θc in a lossless

medium with the VWPM.

Figure 3.9: Simulation of an evanescent wave with θe > θc with the VWPM.



Chapter 4

Vectorial split step propagation

The treatment of electromagnetic (EM) vector waves in the VWPM according

to the wave propagation scheme (eq. 3.12) raises the question, if a vec-

torial treatment is also possible with the split step propagation scheme

(eq. 3.4). This chapter provides the analysis of the vectorial calculation

of electromagnetic field propagation with the Beam Propagation Method

(BPM). It shows that an unapproximated solution of the vectorial diffrac-

tion integral is not possible and that the benefit of a vectorial split step

propagation method is low due to the paraxial limitation.

The theory of the BPM has been introduced in chapter 3 and the same

nomenclature is now used to derive its vectorial version. A vectorial split

step propagation scheme then evolves from the following sequence. In the

j-th step of calculation, the frequency dependent phase shift is applied to

the spectrum of the electric field from layer j, Ẽj(k⊥), which is the transmit-

ted spectrum in layer j−1, Ẽj−1(k⊥), transformed according to the transfer

81
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of vector waves at interfaces as shown in chapter 3. In agreement with the

split step propagation algorithm, the mean average refractive index be-

fore the boundary n̄j−1 and behind the boundary n̄j is applied to Snell’s

law and Fresnels’ equations to obtain the transfer matrix of transmission.

The purely frequency dependent phase adjustment is then performed by

the scalar complex diffraction operator D̃(k⊥) (eq. 3.2). The z-component

Ez is then derived from the diffracted spectrum according to equation 3.16)

and the inverse Fourier transformation of the henceforth three-dimensional

transmitted and diffracted spectrum yields the propagated field through a

homogeneous layer in the spatial domain. The phase adjustment in the

inhomogeneous medium is then performed by using the purely space-

dependent phase adjustment operator S(r⊥) (eq. 3.3) to consider the in-

homogeneities in layer j. The propagated wave in layer j is then obtained

which provides the input for iteration j + 1.

In the vectorial split step propagation, the transfer at the interface, using a

transfer matrix, is the central extension compared to the scalar equivalent.

It is important to consider that the transfer at the interface is performed in

the spatial frequency domain, utilizing the mean average refractive indices.

4.1 Vectorial Beam Propagation Method

For the vectorial version of the BPM, the algorithm is extended by one ad-

ditional step - the transfer of the vectorial wave at the interface. In agree-

ment with split step propagation and in order to be able to calculate and

apply Fresnels’ equations, the transfer at the interface needs to be per-

formed in the spatial frequency domain. The two-dimensional sub-vector
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of the vectorial spectrum Ẽ
(2)
e is multiplied with the transfer matrix M̂(k⊥),

which is derived from equation 3.17, using the mean average refractive

indices n̄e and n̄t. The propagated vector field Et(r) is then derived from

E
(2)
e (r) according to the Vectorial Beam Propagation Method (VBPM) in

equation 4.6.

4.1.1 Transfer matrix of transmission

For two homogeneous layers with the refractive indices n̄e and n̄t, the

transfer of the TM-component at the interface is independent from the spa-

tial derivatives εx and εy because grad(ε) = 0. The replacement of Ẽz in

equation 3.17 then yields

ETM,e =
1

k⊥k̄e

(
Ẽx

(
kxk̄z,e +

k2
⊥

k̄z,e
kx

)
+ Ẽy

(
kyk̄z,e +

k2
⊥

k̄z,e
ky

))
=

k̄e
k⊥k̄z,e

(
Ẽxkx + Ẽyky

)
The TE-component in equation 3.17 remains unchanged and inserting the

modified expression for Ẽz into the TM-component (eq. 3.21 and eq. 3.22),

the transmitted electric field vector is then

Ẽt(k⊥, r⊥) =
Ẽx
k2
⊥

−ky t̄TE

−ky
kx

0

+
k̄ekx
k̄tk̄z,e

t̄TM


kxk̄z,t

kyk̄z,t

−k2
⊥


+

Ẽy
k2
⊥

kxt̄TE

−ky
kx

0

+
k̄eky
k̄tk̄z,e

t̄TM


kxk̄z,t

kyk̄z,t

−k2
⊥




This expression depends only on the transversal components Ẽx and Ẽy

of the electrical field vector. The reordering by the transversal components
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Ẽx and Ẽy gives the space-independent transfer matrix of transmission in

homogeneous medium M̄ for the transmission into the layer behind the

interface

M̄(k⊥) =
1

k2
⊥

(
k2
y t̄TE + bk2

xt̄TM kxky(bt̄TM − t̄TE)

kxky(bt̄TM − t̄TE) k2
xt̄TE + bk2

y t̄TM

)
(4.1)

with b = t̄′TM/t̄TM yields the modified transmission coefficient

t̄′TM =
n̄ek̄z,t
n̄tk̄z,e

t̄TM

and M̄ then transforms to

M̄(k⊥) =
1

k2
⊥

(
k2
y t̄TE + k2

xt̄
′
TM kxky(t̄

′
TM − t̄TE)

kxky(t̄
′
TM − t̄TE) k2

xt̄TE + k2
y t̄
′
TM

)
(4.2)

The bar indicates that the average refractive index is taken, causing the

space-independence for the propagation with the diffraction operator (eq. 3.2)

as proposed by the split step propagation scheme. With a similar calcu-

lation, the transfer matrix of reflection R̄ for a bidirectional Vector Beam

Propagation Method (VBPM)

R̄(k⊥) =
1

k2
⊥

(
k2
y r̄TE + k2

xrTM kxky(r̄TM + r̄TE)

kxky(r̄TM − r̄TE) k2
y r̄TM + k2

xr̄TE

)
(4.3)

is obtained.

4.1.2 Diffraction in homogeneous medium

To complete the calculation in the spatial frequency domain, the propaga-

tion through the homogeneous medium with thickness δz is calculated by
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using the diffraction operator D

Wt(k) = e+i(k̄z,tδz+k⊥·r⊥)Ẽt(k⊥)

= D̃(k⊥)Ẽt(k⊥)e+ik⊥·r⊥ (4.4)

with k̄z,t(k⊥) =
√

(n̄tk0)2 − k⊥ · k∗⊥, which is independent from the position

r⊥ and only depends on the spatial frequency k⊥ and k⊥ ·k∗⊥ is the squared

absolute of k⊥. The field distribution after a propagation through the homo-

geneous medium at the end of the layer behind the interface is then ob-

tained from the integration of all plane waves over the two-dimensional

spectrum k⊥

Et(r⊥) =
1

A

∫ ∫
Wt

d2k⊥
(2π)2

= F−1
{
Ẽt(k⊥)e+k̄z,tδz

}
(4.5)

which is equal to the inverse Fourier transformation. A = XY is the aper-

ture of the system.

4.1.3 Phase adjustment in inhomogeneous medium

The propagation though the layer behind the boundary is then finished by

performing the phase adjustment from the application of the purely space

dependent phase shift operator S (eq. 4.6). This phase adjustment can

be neglected in case of a homogeneous layer behind the interface since

0 = nt(r⊥)− n̄t and then S = 1 for all locations r⊥ in the aperture.

In case of a propagation through a homogeneous layer, the plane wave de-

composition (PWD) which has been introduced in section 2.9, is obtained



86 CHAPTER 4. VECTORIAL SPLIT STEP PROPAGATION

Figure 4.1: Simulation of the 8λ-4λ-1λ-grating from chapter 3 with the vec-

torial BPM.

and the central equation of the Vector Beam Propagation Method (VBPM)

Et = S F−1
{
D̃
(
M̄ · F

{
E(2)
e

})}
(4.6)

reduces to the vectorial Plane Wave Decomposition (PWD)

Et = F−1
{
D̃
(
M̄ · F

{
E(2)
e

})}
(4.7)

4.2 3D simulation of a 2D grating

The simulation of the two-dimensional grating from chapter 3 is now per-

formed with the Vector Beam Propagation Method and the result is shown

in figure 4.1. The comparison to the results from RCWA on page 73 shows
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that the distribution of the electric field is slightly different and that the scale

deviates.

Even if the distribution of the electric field shows a correlation to the re-

sults from the RCWA and the VWPM, the Beam Propagation Method still

possesses an inherent error for the propagation of high order modes as

shown in the simulation of a prism in chapter 3 and in [53] for the simu-

lation of waveguides with a tilt up to 20 degrees. The Fresnel coefficients

cannot be correctly applied in the spatial frequency domain by using the

mean average of the refractive index in the spectral domain as also shown

in figure 3.2.

Since Fresnels’ coefficients start to vary for large propagation angles and

therefore the calculation of vectorial effects with the paraxial split step pro-

pagation scheme does not provide a significant benefit.
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Chapter 5

Bidirectional Vector Wave
Propagation Method

Unidirectional propagation methods calculate the propagation of waves in

just one direction. In case of multilayer systems, multiple reflections occur

and the results deviate to the exact results from theory because not all for-

ward propagating waves are considered. Each layer generates fractions

of the incident field which are traveling back and forth, generating them-

selves fractions of fields and so forth. This chapter provides an analysis

of the forward and backward propagating fields in a resonator to estimate

the error in the simulation with a uni-directional propagation method. The

observations on the convergence of the electric field in a single resonator

are applied to coupled resonators in order to approximate the number of

iterations which are necessary for the convergence of the electromagnetic

(EM) field in a bidirectional simulation.
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Figure 5.1: Angles, refractive index, layer thickness (left) and the number-

ing of the iterations (right) in a Fabry-Perot resonator.
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In a single Fabry-Perot resonator with n1 is the refractive index before the

resonant layer, n2 is the refractive index in the resonator and n3 is the

refractive index behind the resonant layer as shown in figure 5.1, the frac-

tions of back and forward propagating fields contribute to the field distri-

bution before (i.e. sum of all reflected waves) and behind (i.e. sum of

all transmitted waves) the resonator. An electromagnetic wave with an

angle of incidence θ1 traverses the resonator at an angle of θ2 and then

leaves the resonator at an angle θ3 according to Snell’s law (eq. 2.66). The

layer has a thickness d2 and the index (u, v) of the Fresnels’ coefficients

of transmission tu,v and reflection ru,v indicate the incident layer (u) and

the transmitted layer (v) with the refractive index nu and nv. The reflection

coefficients are symmetric by means of ru,v = −rv,u and the propagation

through n2 with a thickness d2 at an angle of θ2 introduces a phase shift of

φ2 = k2d2/ cos θ2 with k2 = n2k0.

The following analysis calculates the remainder for an infinite number of re-

flections in a resonator to a consideration of p forward propagating beams

(i.e. 2p iterations) and then derives a criterion for p at an allowed devia-
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tion a in the electric field. In this context, the term iteration describes all

beams which propagate in one direction through one or more resonators

as shown in the right subplot of 5.1. The second iteration describes the

first reflected beam through all resonators and so on. After 2p iterations,

the number of beams in each layers is equal and the scalar amplitude in

the resonant layer n2 directly before the interface to layer n3 is composed

from the sum of p forward propagating beams according to

A2(p) = t1,2e
iφ2 + t1,2r2,3r21e

i3φ2 + · · ·+ t1,2(r2,3r2,1)p−1ei2(p−1)φ2

= t1,2e
iφ2

p−1∑
m=0

(r2,3r2,1)mei2mφ2 (5.1)

If the resonator is back-illuminated, additional forward propagating beams

need to be considered according to

A−2 (p) = t3,2r2,1e
i2φ2 + t3,2r2,1r2,3r21e

i4φ2 + · · ·+ t3,2r2,1(r2,3r2,1)p−1ei3pφ2

= t3,2r2,1e
i2φ2

p−1∑
m=0

(r2,3r2,1)mei3mφ2 (5.2)

The index 2 in A2(p) and A−2 (p) indicates the resonant layer. Fresnels’

coefficients are given in terms of θ1, θ2 and θ3 as well as n1, n2 and n3

(eq. 3.27). These expressions are transformed and in the general case the

field in the j-th resonator which consists of p forward propagating waves is

then

Aj(p) = tj−1,j

[(
1− (rj,j+1rj,j−1)pei2φjp

1− rj,j+1rj,j−1ei2φj

)]
A−j (p) = tj+1,jrj,j−1

[(
1− (rj,j+1rj,j−1)pei3φjp

1− rj,j+1rj,j−1ei3φj

)]
(5.3)

obtained from the series
∑p

m=0 q
m = (1 − q)p/(1 − q) as shown in [1]. In

the limit p → ∞, the amplitude of the electric field at the end of the j-th
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resonator, directly at the interface to the adjacent layer j + 1, is

lim
p→∞

Aj(p) =
tj−1,j

1− rj,j+1rj,j−1ei2φj
= A∞j

lim
p→∞

A−j (p) =
tj+1,jrj,j−1

1− rj,j+1rj,j−1ei3φj
= A−∞j (5.4)

obtained from the series
∑∞

m=0 q
m = 1/(1 − q). The field distribution di-

rectly before the back boundary of a resonator after 2p iterations (i.e. 2p

iterations are needed to consider p forward propagating waves), which is

illuminated by a forward propagating field Ej−1 at the front and a backward

propagating field E−j+1 at the back boundary is then

Ej(p) = Aj(p)Ej−1 + A−j (p)E−j+1e
iφj+1 (5.5)

E−j+1 is assumed to originate from a position directly before the interface

to layer j + 2 to accommodate with the assumptions in the VWPM. The

transmittance of a resonator is then

Tj = A∞j A
∞∗
j

=
t2j−1,j

(1− rj,j+1rj+1,j)2 + 4rj,j+1rj,j−1 sin2 φj

=
t2j−1,j

1 + Fj sin2 φj/2
(5.6)

with A∞∗j is the conjugate complex of A∞j and F is the finesse of a res-

onator. Obviously, the product of the inner reflection coefficients rj,j+1rj,j−1

is of major importance for each resonator because it determines the num-

ber of traversals of the EM wave through the resonator before it stabilizes.

The number of iterations inside a resonator to obtain a stabilized EM field

is then described by the finesse F . The finesse of the j-th resonator is

Fj = 4rj,j+1rj,j−1/(1 − rj,j+1rj,j−1)2 as shown in [1]. It is a characterizing

metric for a resonator, regardless of the direction of the incident wave and

obtained from transformations of the squared amplitude in equation 5.6,
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Figure 5.2: Finesse F of a Fabry-Perot resonator over an index change

n2/n1 = n2/n3 from 1 to 8.
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which is proportional to the intensity. Figure 5.2 shows the finesse for a

TE (Fte) and TM (Ftm) polarized wave with θ1 = 30π/180 in an exemplary

range of contrast nj/nj−1 and nj/nj+1 of 1 to 8. The finesse and thereby

the number of forward propagating beams increase with a higher index

change and the closer the absolute of the product rj,j+1rj,j−1 approaches

unity. F is singular (i.e. F =∞) for |rj,j+1rj,j−1| = 1, but this case is not rel-

evant since it is not possible to obtain θj > θcr (eq. 2.70) for θj−1 < 90π/180.

In figure 5.10 on page 115, T = t2,3A2(p)E0, with E0 = 1 is plotted over the

number of p forward (i.e. Ttte, Tttm) and backward (i.e. Rrte, Rrtm) propa-

gating beams for the TE and TM case. R describes the reflected amplitude

directly before the resonator which is obtained from a sum of p reflected

beams according to equation 5.3 and as introduced in [1]. The resonator
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in figure 5.10 is assumed symmetric with n1 = n3 = 1 and the contrast

n2/n1 = n2/n3 is 1.1, 2 and 3. The figure shows that a higher finesse yields

a slower convergence of the electric field and the field in a resonator with a

low contrast stabilizes faster and after a smaller number of iterations. The

stabilization inside the resonator is independent from the magnitude of the

input amplitude as shown in figure 5.11 on page 116. This is perfectly rea-

sonable, since the input amplitude can be factored out from equation 5.1

and 5.2 and the number of steps to the stabilization of the electromagne-

tic field then only depends on the product rj,j+1rj,j−1, which is a function

of the angle of incidence θj and the refractive index before (nj−1), in (nj)

and behind (nj+1) the resonator. In a simulation of a single resonator with

the unidirectional VWPM just the first term (i.e. p = 1) is considered and

hence the error in a simulation considering a forward propagating plane

wave (fig. 5.1) is A∞2 − A2(1). The deviation decreases with an increasing

number of iterations and in case of a resonator which is illuminated from

both sides, the deviation in the j-th resonator after 2p iterations is

δAj(p) = A∞j + A−∞j − (Aj(p) + A−j (p))

= tj−1,j
(rj,j+1rj,j−1)pei2φjp

1− rj,j+1rj,j−1ei2φj
+ tj+1,jrj,j−1

(rj,j+1rj,j−1)pei3φjp

1− rj,j+1rj,j−1ei3φj

(5.7)

In case of a series of N coupled resonators, every beam inside a res-

onator contributes to the input field of the neighboring resonators. Hence,

the number of beams increases exponentially with the number of iterations

until the amplitudes stabilize. The stabilization of the amplitude in each

resonator requires a constant number of iterations after the input ampli-

tude has been stabilized as shown in the previous section. The important

question for the stabilization of the electromagnetic field in a series of res-

onators is therefore the settlement of the input amplitudes from adjacent

resonators which can only be achieved by a stabilization of the amplitude
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in the neighboring resonators. This shows the strong recursive nature of

coupled resonators. Each wave in each layer depends on the waves in

every other layer. The number of beams b(p) after the 2p-th iteration in an

N -layer resonator, considering p forward propagating beams, is

b(p) = N +

(
N∑
i=1

i

)2p

= N +

(
N(N − 1)

2

)2p

(5.8)

and the number of beams after 2p iterations in each of the N resonators

is equal to b(p)/N . All amplitudes in the resonators decay simultane-

ously and stabilize after a variable number of iterations, dependent on the

product of the inner reflection coefficients as shown in figure 5.12. The

plots show the product of the inner Fresnel coefficients of reflection to the

power of the number of forward propagating beams, |(rj,j+1rj,j−1)|p, for

the TE- and TM-case in resonators with different finesse. The lower the

contrast, the lower the inner product and the lower the finesse and the

faster the stabilization of the electric field. The resonator with the high-

est finesse will therefore generate the highest number of beams. Since

all resonators contain an equal number of beams after 2p iterations, the

accuracy is determined by the resonator with the highest finesse. Let

the accuracy a of the results be defined by a fraction of E0 which con-

tributes to the field inside a resonator through reflection. The calcula-

tion is supposed to terminate if the field Ej(p) falls below a certain ac-

curacy aj = |Ej(p + 1)/Ej(p)| = |rj,j+1rj,j−1|. Since |(rj,j+1rj,j−1)|p is a

strictly monotonically decreasing function for |rj,j+1rj−1,j| < 1, the delta

Ej(p + 1) − Ej(p)) inside the resonator can only decrease and never in-

crease because all resonators contain the same number of beams after

2p iterations. The change in the amplitudes in a resonator will therefore

never be greater than a, once this limit has been reached. This observa-
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tion yields the criterion for a minimum number of iterations in a bidirectional

propagation method. From

|rj,j−1rj,j+1|p < aj (5.9)

the number of forward propagating beams is determined by

p >

⌈
ln a

lnR

⌉
(5.10)

with R = maxj∈{1...N−1}(|rj,j−1rj,j+1|) is the maximum product of the internal

reflection coefficients of amplitude and d.e is the rounding up to the next

finite integer. This expression can be transformed to

p > dlogR ae (5.11)

with p is the number of forward propagating beams and a = maxj(aj).

The number of iterations is then at least 2p. The number of iterations

in a lossless resonant structure which are required to obtain a maximum

deviation of 0.1, 1, 2.5 and 10 percent in the amplitude of the EM field can

be obtained from figure 5.3.

5.1 Bidirectional VWPM

The bidirectional VWPM considers forward and backward propagating waves.

In each forward iteration over nz layers of a system N with a length Z,

nz = Z/δz reflected vector waves are generated at every interface. In

a second iteration in the opposite direction, the reflected waves are col-

lected at every interface, accumulated to the back-propagating waves and

the next nz reflected waves are generated. A simulation of p forward-

propagating waves then requires 2p iterations and traverses 2pnz layers.
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Figure 5.3: Number of iterations p over the product of the inner Fresnel

coefficients R for a ∈ {0.001, 0.01, 0.025, 0.1}.
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In case of resonant structures, the algorithm terminates after 2p itera-

tions, with p is determined from equation 5.11, from an accepted devi-

ation a and from the maximum product of all inner Fresnel coefficients

R = maxj(Rj) = maxj(rj,j−1rj,j+1) with j ∈ {1, . . . , nz}.

Again, the VWPM assumes that at each interface, a vector field Ee has

already traversed the incident layer (i.e. subscript ”e”). An interface is

formed by a change in the refractive index between the incident layer and

the transmitted layer (i.e. subscript ”t”) which requires a separation of the

field into its TE- and TM- components (eq. 3.17).

In the first step of the bidirectional VWPM, the vectorial field just before the

interface is decomposed into its Fourier components

Ẽ(2)
e (k⊥) =

(
Ẽx,e(k⊥)

Ẽy,e(k⊥)

)
= F

{(
Ex,e(r⊥)

Ey,e(r⊥)

)}
= E(2)

e (r⊥) (5.12)
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5.1.1 Transfer matrix of transmission

At an interface (i.e. ne 6= nt), the EM field requires to be separated into

its TE- and TM-field components (eq. 3.17). The transmitted wave E
(2)+
t is

calculated from the transfer matrix of transmission M (eq. 3.24)

Ẽ
(2)+
t = M · Ẽ(2)

e (5.13)

The two-dimensional plane wave component W̃(2)+
t which is supposed to

propagate through the transmitted layer is then composed from the forward

propagating spectrum Ẽ
(2)+
t and a backward propagating spectrum Ẽ

(2)−
t

according to

W̃
(2)+
t (k⊥, r⊥) = (Ẽ

(2)+
t + Ẽ

(2)−
t )e+ik⊥·r⊥ (5.14)

Ẽ
(2)−
t is obtained from equation 5.22 which will be obtained from a future

step of calculation in the opposite direction. Ẽ
(2)−
t is initialized to zero for

the first iteration. The incident and transmitted layers change their role

when the direction of propagation changes.

5.1.2 Bidirectional propagation

With equation 5.14, the two-dimensional field behind the interface is known.

To complete the propagation through the layer behind the interface, a pro-

pagation of each wave W̃
(2)+
t through the inhomogeneous medium with a

thickness δz = Z/nz is applied, using the space- and frequency-dependent

phase element P(r⊥,k⊥) (eq. 3.11) to obtain the propagated spectrum

at the end of the layer behind the interface. With equation 3.16 the z-

component is then calculated from the space derivatives εt,x = ∂εt/∂x and
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εt,y = ∂εy/∂y of ε(r⊥) in the propagation layer and the resulting three-

dimensional field distribution Et(r) is finally obtained from the summation

of all field components

E+
t (r⊥) =

1

A

∫ ∫
W̃+

t P
d2k⊥
(2π)2

(5.15)

with A = XY .

5.1.3 Transfer matrix of reflection

The transfer at interface from equation 5.13 yields the forward propagating

field E+
t but the interface also generates a reflected spectrum Ẽ−e which is

obtained from the TE- and TM-components according to

Ẽ−e (k⊥, r⊥) = rTEẼTE,eeTE,e + rTM ẼTM,eeTM,e (5.16)

with

ẼTE,e(k⊥, r⊥) = Ẽe(k⊥) · eTE,e(k⊥)

ẼTM,e(k⊥, r⊥) = Ẽe(k⊥) · eTM,e(k⊥) (5.17)

Fresnels’ coefficients of reflection for the TE-component rTE and the TM-

component rTM are

rTE(k⊥, r⊥) =
kz,e − kz,t
kz,e + kz,t

rTM(k⊥, r⊥) =
n2
tkz,e − n2

ekz,t
n2
tkz,e + n2

ekz,t
(5.18)

derived from the surface normal n and the propagation vector k as shown

in appendix B.
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The vectors of unity for the TE-component eTE and for the TM-component

eTM are defined according to equation 3.20 and 3.21. For reflections, eTM
does not change at the interface because the refractive index and there-

fore kz does not change. In the scalar components of the TE- and TM-

component, the z-component Ez,e is substituted by equation 3.16. Insert-

ing the scalar TE- and TM-components into equation 5.16 and reordering

the expression by the transversal vector components of Ẽ, equation 5.16

is then transformed to a matrix multiplication

Ẽ−e (k⊥, r⊥) = R · Ẽ(2)
e (k⊥) (5.19)

with R is the transfer matrix of reflection

R(k⊥, r⊥) =
1

k2
⊥


rTEk

2
y + rTMk

2
x(1− iε̂x) (rTM(1− ε̂y)− rTE)kxky

(rTM(1− ε̂x)− rTE)kxky rTEk
2
x + rTMk

2
y(1− iεy)

−rTMkx(1− iε̂x)k2
⊥/kz,e −rTMky(1− iε̂y)k2

⊥/kz,e


(5.20)

with ε̂x = εxk
2
⊥/ε/k

2
e/kx and ε̂y = εyk

2
⊥/ε/k

2
e/ky. Appendix B shows the

detailed calculation. The z-component of Ẽ−e is directly obtained from Ẽ
(2)
⊥,e

with the 3x2-matrix R, according to equation 3.16. Since the reflected

spectrum is processed with equation 5.14, no propagation is necessary

and the field distribution is then obtained by the superposition of all plane

wave components in the reflected spectrum

W−
e (k⊥, r⊥) = E−e e

+i(k⊥·r⊥) (5.21)

The spatial distribution of the reflected field is then

E−e (r⊥) =
1

A

∫ ∫
W−

e

d2k⊥
(2π)2

(5.22)

with A = XY .
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5.2 Bidirectional algorithm

A system N is split into nz layers and sampled at nx and ny locations. The

spatial frequencies kx(p) = 2πpδνx = 2πp/(nxδx) and ky(q) = 2πqδνy =

2πq/(nyδy), with p ∈ {−nx/2 . . . nx/2} and q ∈ {−ny/2 . . . ny/2} are deter-

mined by the sampling (δx, δy) in the aperture A = XY .

A vector field is propagating through the systemN layer by layer according

to the bidirectional VWPM equations that have been introduced in the pre-

vious section. Each layer j has a layer of incidence j − 1 and a layer of

propagation j. For the first iteration j = 0, the incident layer is modeled by

a homogeneous medium (i.e. nextern(x, y) = const) or by a copy of layer

zero.

The reflected waves E−(r⊥) at all interfaces are initialized to zero.

In the j-th iteration, the incident wave is positioned in layer j − 1 and in

direct contact to the boundary with layer j. The first step of the j-th iteration

is the decomposition of the spatial field into its plane waves (i.e. the Fourier

transformation) of the propagating E
(2)
j−1 and reflected E

(2)−
j field

E
(2)
j−1(x, y) =

(
Ex,j−1

Ey,j−1

)
=⇒FFT

(
Ẽx,j−1

Ẽy,j−1

)
= Ẽ

(2)
j−1(kx, ky) (5.23)

and

E
(2)−
j (x, y) =

(
E−x,j

E−y,j

)
=⇒FFT

(
EX−j

EY −j

)
= Ẽ

(2)−
j−1 (kx, ky) (5.24)

with m ∈ {−nx/2 . . . nx/2} and n ∈ {−ny/2 . . . ny/2}. The second step

applies the transformation matrix of reflection Rj and transmission Mj for
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each spatial frequency k⊥ = (kx, ky) = (pδkx, qδky) and all locations r⊥ =

(x, y) = (mδx, nδy) in the aperture. The reflected plane wave amplitudes

are derived from the spectrum according to(
EX−j−1(p, q,m, n)

EY −j−1(p, q,m, n)

)
:= Rj · Ẽ(2)

j−1 (5.25)

and the plane wave in the aperture without propagation is the obtained

from the lateral expansion of the complex exponential according to(
WX−j−1(p, q,m, n)

WY −j−1(p, q,m, n)

)
:=

(
EX−j−1

EY −j−1

)
e+ik⊥·r⊥ (5.26)

The transmitted components are derived from(
EX+

j (p, q,m, n)

EY +
j (p, q,m, n)

)
:= Mj · Ẽ(2)

j−1 (5.27)

The reflected two-dimensional spectrum EX−j and EY −j in layer j (!) is

then accumulated to the transmitted spectrum EX+
j and EY +

j . EX−j and

the two-dimensional plane wave components are then(
WX+

j (p, q,m, n)

WY +
j (p, q,m, n)

)
:=

((
EX+

j

EY +
j

)
+

(
EX−j

EY −j

))
e+ik⊥·r⊥ (5.28)

With WX+
j and WY +

j , the spectrum behind the interface is known and the

propagation of a distance δz along the z-axis is then obtained according

to equation 5.15 from a multiplication with the position and frequency-

dependent phase element(
EX+

j (p, q,m, n)

EY +
j (p, q,m, n)

)
:=

(
WX+

j

WY +
j

)
P (5.29)

The propagated magnetic field vector of a spatial frequency is derived from
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the x- and y-component of the electric field according to
HXj(p, q,m, n)

HYj(p, q,m, n)

HZj(p, q,m, n)

 := Tj ·

(
EX+

j

EY +
j

)
(5.30)

and the z-component EZ+
j in layer j is then obtained from equation 3.16.

The summation over all deformed plane waves of the three-dimensional

electric Ej and magnetic Hj field in layer j then yields the distribution of

the electromagnetic field

Ej(x, y) :=
1

nxny

∑
p

∑
q


EX+

j

EY +
j

EZ+
j

 (5.31)

and

Hj(x, y) :=
1

nxny

∑
p

∑
q


HX+

j

HY +
j

HZ+
j

 (5.32)

The summation of all reflected electric field components from equation 5.26

then yields the reflected field in layer j − 1

E−j−1(x, y) :=
1

nxny

∑
p

∑
q


WX−j−1

WY −j−1

WZ−j−1

 (5.33)

The reflected field distribution is stored and then retrieved in a processing

step in the opposite direction. With this algorithm the (j − 1)-th reflected

contributes to the processing of the j-th layer in the opposite direction. In

the program code, the index j − 1 is replaced with j − d with d ∈ {−1, 1},
which indicates the direction of propagation. The algorithm iterates with

an increasing sequence of layers for d = 1 and with a decreasing order
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of layers for d = −1. d is negated (i.e. d = −d) if j = 1 or j = nz.

The algorithm terminates if all reflected fields are zero or smaller than

a configurable threshold, or if a certain number of reflection have been

simulated (eq. 5.11).

5.3 3D-Simulation of a 2D-grating

The results of the simulation of a 2D-grating in chapter 3 on page 71 shows

that the unidirectional method does not calculate reflected fields. With

the bidirectional VWPM, the reflected field is calculated according to the

presented algorithm. In the following simulation, the configuration of the

grating is identical to the scenario in chapter 3. In a first simulation with

the bidirectional VWPM, the electric field distribution in a two-dimensional

grating with a pitch px = py = 4λ, a width wx = wy = 2λ and a height

h = λ, as it was introduced in chapter 3, is investigated. The incident

plane vector wave is again TM-polarized, has a unit amplitude and propa-

gates with vertical incidence (i.e. θ = 0). The refractive index of the grating

is n̂g = 1.5 + i0 and the index of the surrounding medium is n̂s = 1 + i0. A

comparison of the results from a simulation with the bidirectional VWPM in

figure 5.4 to the results from the RCWA in figure 3.7 on page 74 shows a

significant difference in the reflected field before the grating. The sampling

which is used in the simulation with the VWPM does not exactly meet the

case θe = θc (i.e. k⊥ = nk0) and hence also not P = exp(0) = 1. In case of

a discretization which perfectly meets the evanescent boundary, the wave

propagates along the interface as shown in figure 3.9 on page 80. A super-

position with the reflected wave then yields the depicted field distribution

from the RCWA. The deviation in the reflected field does not occur in the
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Figure 5.4: x-component in the yz-plane (left) and z-component in the xz-

plane (right) of the electric field from the bidirectional simulation of a 2D

grating.

simulation of a second grating in figure 5.5. In this case, the sampling

which is used in the RCWA and the VWPM do both not exactly meet the

critical angle of incidence

k⊥ = sin θc =
nt
ne

(5.34)

with ne > nt (i.e. internal reflection). Then, the reflected field does not

contain the backward propagating wave at the evanescent boundary.

In a second scenario, a GaAs-grating with a period of 5λ, a height h =

0.3 [µm] ≈ λ/3 and a refractive index of 3.647 + i0.025 is positioned at

Z = 2.5 [µm] in a medium with 3.647 + i0 before the grating and 1 + i0

behind the grating. A TM-polarized plane wave propagates a distance of

Z = 5 [µm] in an aperture X = Y = 5 [µm]. The scene is sampled with

nx = ny = nz = 256 and the simulation then calculates 216 modes in a

three-dimensional simulation. The electric field distribution of the x and z-

component is compared to the results from an RCWA with 4 modes. The

patterns show a good coincidence as shown in figure 5.5. The deviation
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of the maximum and minimum amplitude is 0.0074 and −0.0713 for the x-

component of the electric field vector and ±0.0043 for the z-component.

Figure 5.5: Bidirectional simulation of a 1D GaAs-grating with the VWPM

(left) and the RCWA (right).
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Figure 5.6: Amplitude of a reflected TE-polarized Gaussian beam at 45 at

z = 0, simulated with the bidirectional VWPM.
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incident beam

5.4 2D simulation of a dielectric boundary

Let a single boundary be defined by a refractive index of n̂e = 1 + i0 before

and n̂t = 1.5 + i0 behind the interface. A TE-polarized Gaussian beam

with a unit amplitude, an angle of incidence of 45 degrees and a waist

of σx = 8 [µm] propagates 5 [µm] and is then reflected at the boundary.

According to Fresnels’ reflection coefficient for a TE-polarized electric field,

the amplitude of the reflected wave is equal to |E−y | = |rTEEy| [V/m] and

due to the unit amplitude, the coefficient of reflection equals to the reflected



108CHAPTER 5. BIDIRECTIONAL VECTOR WAVE PROPAGATION METHOD

amplitude |E−y | = |rTE| = 0.303 [V/m]. With an angle of incidence of 45

degrees and a shift of Xe = −8 [µm] in the aperture, the peak of the

Gaussian beam at Z = 0 [µm] is expected to be mirrored at X = 0 [µm]

and the reflected peak is then positioned at Xr = 8 [µm]. The simulation

with the bidirectional VWPM, using nx = 512, nz = 256, X = 32 and Z = 16

shows that the results agree with the theory as shown in figure 5.6. The

horizontal and vertical dashed lines indicate the exact amplitude and the

exact location of the gaussian peak from theory.

bidir-VWPM (1 reflection) Mslayer10*

(*) a software at the Department of Optoelectronics, 

University of Heidelberg

ZZ

XX

Ey of a TE-polarized gaussian beam

Figure 5.7: E-Field in a resonator simulated with the VWPM (left) and

MSlayer10 (right).
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5.5 2D simulation of a resonator

The simulation of a resonator with a thickness of 10 [µm] and a refractive

index of 1.5 + i0, with 10 [µm] of vacuum before and behind the resonator

shows that the electric field distribution is shown in figure 5.7. The re-

sult of the simulation with the bidirectional VWPM correlates well to the

results from a simulation with MSlayer10, a software which utilizes matrix

multiplications according to the multilayer theory. The incident wave is TE-

polarized, has a wavelength of 1 [µm], an amplitude of E0 = 1 [V/m] and

the angle of incidence θi is 20 degrees. The propagation angle inside the

resonator is then θt = 13.18 (eq. 2.66) and the product of the inner Fresnel

reflection coefficients for the TE-case is R = −0.047. In order to obtain

a deviation of 1 per-mill (i.e. 0.001) to the exact results from theory, the

number of iterations is then p =
⌈
ln|−0.047|0.001

⌉
= 3, obtained from equa-

tion 5.11. Table 5.1 shows the change of the maximum amplitude and the

deviation of the amplitude if one, two, three and ten reflected waves are

considered. The deviation of the amplitude is below the desired accuracy

after three iterations and the changes of the amplitude are below E0 ·10−5 if

ten and more reflected waves are considered. A comparison to the results

from the multilayer theory in the right subplot of figure 5.7 shows that the

deviation is −0.06 for the maximum and 0.08 for the minimum amplitude.
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Table 5.1: Maximum amplitude and deviation of the amplitude for one, two,

three and ten reflected waves in the resonator in figure 5.7.

Num. of reflected waves max(|E|(r)) |δ(max(|E|(r)))|
0 0.93964 −
1 1.05030 0.11066

2 1.05050 0.0002

3 1.05058 0.00008

10 1.05058 < 10−5

5.6 2D simulation of an oblique interfaces

Ideally, the results of a simulation should be invariant to a rotation of the

scene but with the predefinition of the z-axis as the axis of propagation,

some interesting effects are obtained in a simulation with the bidirectional

VWPM. Let a Gaussian beam with a wavelength of 1 [µm] and a waist of

5 [µm] propagate through a homogeneous layer with a thickness of 30 [µm]

and a refractive index of nl = 1.5 + i0. The TE-polarized Gaussian beam

propagates a distance of Z = 30 [µm] in an aperture X = 30 [µm]. The

angle of incidence of the Gaussian beam to the homogeneous layer is 30

degrees.

In a simulation of a vertical layer in the left subplot of figure 5.8, the bidi-

rectional simulation shows two parallel reflected beams which originate

from the first and second interface. If the scene and the incident beam are
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Figure 5.8: 2D simulation of a slanted homogeneous layer with the bidi-

rectional VWPM at 0 degrees (left), 15 degrees (middle) and 30 degrees

(right).

15°0° 30°

Ey

|Ey|

clockwise rotated by 15 degrees, the real part of Ey and the amplitude in

the middle subplots of figure 5.8 still show two parallel reflected beams.

After another clockwise rotation about 15 degrees in a clockwise direction,

the reflected beams in the resonator are reversed as depicted in the right

subplot of figure 5.8. This result is caused by the definition of ez being the

surface normal in the algorithm of the VWPM. With this definition, the an-

gle of incidence at the second boundary has a reversed sign. This causes

a reversed angle of reflection for the beam and gives the reason for the

results in the right subplots of figure 5.8.
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5.7 Transfer of evanescent modes

In case of internal reflection (i.e. ne > nt), the reflected electric field

for propagating spatial frequencies (i.e. k⊥ ≤ n2
ek

2
0) before and evanes-

cent spatial frequencies (i.e. k⊥ > n2
tk

2
0) behind the interface is obtained

from a multiplication with the complex-valued transfer matrix of reflection

R̂ according to

Ẽ−j−1(k⊥, r⊥) = R̂j · Ẽ(2)
j−1(k⊥) (5.35)

By inserting the complex z-component of the propagation vector in the

Fresnel reflection coefficients (eq. 2.74), the complex transfer matrix of

reflection

R̂j(k⊥, r⊥) =
1

k2
⊥


r̂TEk

2
y + r̂TMk

2
x(1− iε̂x) (r̂TM(1− ε̂y)− r̂TE)kxky

(r̂TM(1− ε̂x)− r̂TE)kxky r̂TEk
2
x + r̂TMk

2
y(1− iεy)

−r̂TMkx(1− iε̂x)k2
⊥/k̂z,e −r̂TMky(1− iε̂y)k2

⊥/k̂z,e


(5.36)

is obtained from equation 5.16 with r̂TE and r̂TM as defined in equa-

tion 2.74. The reflected field E− at location r⊥ directly before the interface

is then derived from the integration of the non-propagated (i.e. δz = 0)

complex exponential plane wave components in the aperture A = XY

W−
e (k⊥, r⊥) = E−j−1e

ik⊥·r⊥ (5.37)

over all transversal spatial frequencies

E−e (r⊥) =
1

A

∫ ∫
W−

j−1(k⊥, r⊥)
d2k⊥
(2π)2

(5.38)

All reflected and transmitted electric fields are calculated directly before

the interface. No reflected wave is calculated for all evanescent spatial
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frequencies before the boundary (i.e. k⊥ > n2
j−1k

2
0). The evanescent field

behind the interface is derived from the evanescent wave model in chap-

ter 3.

5.8 Algorithm for evanescent modes

The transversal components of the electric field Ex and Ey are Fourier

transformed according to equation 5.23. In case of a real-valued z-component

of the propagation vector before the interface k̂z,e = kz,e+i0 and a complex

z-component of the propagation vector behind the interface k̂z,t = 0 + iγz,t

(i.e. case 2 in table 3.2), the complex transfer matrix of reflection R̂j

(eq. 5.36) is applied in equation 5.25. The z-component of the reflected

field is then derived from the transversality condition (eq. 2.36) and the

total internally reflected wave then extends the propagating wave in the

opposite direction according to equation 5.28 in the following iteration. A

complex-valued z-component of the propagation vector before the inter-

face (i.e. case 3 and 4 in table 3.2) belongs to an evanescent mode and

then no reflected field is calculated at the interface. In case 3, the algorithm

for evanescent modes in chapter 3 is applied.
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5.9 3D-Simulation of a 2D-grating with evanes-

cent modes

With the evanescent wave model, the bidirectional simulation of the phase

Ronchi with a pitch of 4λ in chapter 3 shows changes in the z-component of

the electric field distribution at the edges of the grating. The changes in the

x-component are not significant as shown in figure 5.9, but the magnitude

of the z-component shows better agreement with the results from RCWA,

shown in figure 3.7.

EzEx
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e
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e
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e
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Figure 5.9: 3D simulation of a 4λ-2λ-1λ-phase Ronchi without (top)

evanescent waves and with (bottom) evanescent waves (bidirectional

VWPM).
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Figure 5.10: Reflected (R) and Transmitted (T ) amplitude before and be-

hind a resonator for a TE (Rrte, Ttte) and TM (Rrtm, Tttm) polarized wave

with unit amplitude.

1
2

3
4

5
6

7
8

0
.0
8

0
.1
6

0
.2
4

0
.3
2

0
.4

R
ef

le
ct

a
n

ce
 o

ve
r 

it
er

a
ti

o
n

s

it
er

a
ti

o
n

s

Reflectance

0
.3

9
5

9
4

6

0
.0

0
0

5
3

5
0

3

R
rt

e
,

,
,i
n

e
1
.1

n
tt

R
rt

e
,

,
,i
n

e
2

n
tt

R
rt

e
,

,
,i
n

e
3

n
tt

8
1

i

1
2

3
4

5
6

7
8

0
.0
6

0
.1
2

0
.1
8

0
.2
4

0
.3

R
ef

le
ct

a
n

ce
 o

ve
r 

it
er

a
ti

o
n

s

it
er

a
ti

o
n

s

Reflectance

0
.2

5
0

1
2

6

0
.0

0
0

1
5

9
2

3
8

R
rt

m
,

,
,i
n

e
1
.1

n
tt

R
rt

m
,

,
,i
n

e
2

n
tt

R
rt

m
,

,
,i
n

e
3

n
tt

8
1

i

1
2

3
4

5
6

7
8

0
.4

0
.5
2

0
.6
4

0
.7
6

0
.8
81

T
ra

n
sm

it
ta

n
ce

 o
ve

r 
it

er
a

ti
o

n
s

it
er

a
ti

o
n

s

Transmittance

0
.9

9
9

4
5

9

0
.4

9
1

0
0

7

T
tt

e
,

,
,i
n

e
1
.1

n
tt

T
tt

e
,

,
,i
n

e
2

n
tt

T
tt

e
,

,
,i
n

e
3

n
tt

8
1

i

1
2

3
4

5
6

7
8

0
.6

0
.6
8

0
.7
6

0
.8
4

0
.9
21

T
ra

n
sm

it
ta

n
ce

 o
ve

r 
it

er
a

ti
o

n
s

it
er

a
ti

o
n
s

Transmittance

0
.9

9
9
8
4

0
.6

3
6
3
1
8

T
tt

m
,

,
,i
n

e
1
.1

n
tt

T
tt

m
,

,
,i
n

e
2

n
tt

T
tt

m
,

,
,i
n

e
3

n
tt

8
1

i



116

Figure 5.11: Reflected (R) and Transmitted (T ) amplitude before and be-

hind a resonator for a TE (Rrte, Ttte) and TM (Rrtm, Tttm) polarized wave

with E0 = 1, E0 = 10 and E0 = 100.
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Figure 5.12: Product of the inner reflection coefficients (R = rj,j+1rj,j−1)

to the power of the number of forward propagating fields p for the TE (Rp
te)

and TM (Rp
tm) case with E0 = 1.
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Chapter 6

Sampling

The reduction of the partial differential equation to a ordinary differential

equation from the separation of a space variable allows the piecewise

solution of the two- or three-dimensional Helmholtz equation (eq. 2.15).

The separated variable is then the propagation axis of the electromagnetic

field. This allows the use of the Fourier transformation to obtain one- or

two-dimensional spectrum of an electromagnetic field and to derive its pro-

pagation along the separated space variable from a solution of the scalar

or vectorial diffraction integral (eq. 2.60).

In order to ideally reproduce a spatial distribution of a complex electroma-

gnetic (EM) field from its spectrum, the sampling in the aperture has to

meet the Whittaker-Kotelnikow-Shannon (WKS) sampling theorem, also

called the Shannon theorem.

119
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6.1 Sampling in the aperture

According to the sampling theorem, the sufficient condition for exact re-

constructibility of a signal from samples at a uniform sampling rate νs [1/m]

(in samples per meter) is

νs > 2B (6.1)

with B is the bandwidth of a signal. The space D between two samples is

then

D =
1

νs
(6.2)

and the discrete electric field is obtained from E(mD), with m ∈ Z (inte-

gers).

If the highest frequency in the original signal is known, the sampling theo-

rem gives the lower bound of the sampling frequency νs for which perfect

reconstruction can be assured (eq. 6.1). This lower bound to the sampling

frequency, νN = 2B, is called the Nyquist rate.

If instead the sampling frequency is known, the theorem gives an upper

bound for frequency components, B < νs/2, of the signal to allow a per-

fect reconstruction. This upper bound of the bandwidth is the Nyquist fre-

quency.

Both cases imply that the signal to be sampled is band-limited. For a

band-limited signal, any spectral component which has a frequency above

the bandlimit is zero. If the sampling frequency is known, it needs to be

assured that the sampled signal is band-limited such that frequency com-
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ponents at or above half of the sampling frequency are zero or can be

neglected. A band-limitation is usually accomplished with a low-pass filter.

Let a TE-polarized Gaussian beam propagate a distance Z = 50 [µm]

through vacuum. The aperture is X = Y = 32 [µm] and the sampling is

nx = ny = 64 and nz = 128. The wavelength is λ = 1 [µm] and the waist

of the beam is σx = σy = 3 [µm]. With this sampling rate and aperture

size, the Nyquist frequency νN is then nx/2/X = ny/2/Y = 106 [1/m]. The

bandwidth B of the signal then needs to be limited to B < νN to ensure a

proper reconstruction of the signal without aliasing effects in the spectrum.

This maximum allowable frequency is obtained from sin(θx) = νx · λ/n
which is 1 in vacuum (i.e. n = 1) and hence spans the full range of spatial

frequencies. In this case, the sampling meets the WKS-sampling theorem

and therefore the spectrum of the field at Z = 40 [µm] is not affected by

an overlap of the baseband with higher order bands due to the periodic

repetition of the spectrum, caused by the sampling (i.e. aliasing). Aliasing

in the spectrum appears as a distortion (i.e. noise) in the spatial domain as

depicted in the right subplot of figure 6.1. With a sampling of nx = ny = 32,

the Nyquist frequency is νN = 0.5 · 106 [1/m] and the maximum angle of

propagation is then limited to θmax = 30 degrees or π/6. This exceeds the

bandwidth of the signal as shown in the left subplot of figure 6.1 and some

of the spectral components of the neighboring spectrum crosstalk into the

base band.

A higher sampling rate in the aperture avoids aliasing and

crosstalk into the base-band of the signal. The signal needs to

be band-limited to the Nyquist frequency if a higher sampling is

not possible. The maximum angle of propagation is then limited.
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Figure 6.1: Gaussian beam in homogeneous medium. Left: undersam-

pled. Right: sampling meets the WKS sampling theorem. The aliasing in

the spectrum becomes visible in the spatial domain for Gaussian beams.

32x32 64x64

aliasing no aliasing

The Nyquist boundary for the transversal components of the propagation

vector (kx, ky) in a two-dimensional simulation is

kN,x = 2πνN,x = π/δx = πnx/X

kN,y = 2πνN,y = π/δy = πny/Y (6.3)

which corresponds to a angle of propagation of ±90 degrees in a medium

with a refractive index of n = kN,x/k0 = kN,y/k0 (i.e. kx = ky = nk0). In a
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discrete simulation, the angle of propagation θ for a given index i is then

p(θ) =
nX

λ
sin θ

q(θ) =
nY

λ
sin θ (6.4)

with p and q determines the spatial frequency kx = 2πp/X and ky = 2πq/Y .

The index p and q then corresponds to an angle of propagation

θ(p) = sin−1(p
λ

nX
)

θ(q) = sin−1(q
λ

nY
) (6.5)

with n is the real part of the refractive index of the medium. In the discrete

algorithm, the Nyquist index

pN =
nx
2
⇔ νx = 1/δx = 2/λ⇔ δx = λ/2

qN =
ny
2
⇔ νy = 1/δy = 2/λ⇔ δy = λ/2 (6.6)

then describes the first index which is affected by aliasing. The boundary

nx/2 for aliasing is thereby expressed by the constant λ/δx = 2. This

agrees with the WKS theorem which states that at least more than two

samples per period are required to reproduce a signal with a frequency

1/λ. The index in the discrete simulation needs to be lower than this limit

to avoid aliasing and the corresponding maximum angle of propagation θN
at a given wavelength λ and refractive index n is then given by

θN,p = sin−1(pN
λ

nX
) = sin−1(

λ

2nδx
)

θN,q = sin−1(qN
λ

nY
) = sin−1(

λ

2nδy
) (6.7)
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6.2 Sampling in the axis of propagation

The discretization in the axis of propagation (i.e. the z-axis) determines

the phase adjustment which is applied to the propagating wave by the

space- and frequency-dependent phase element P (eq. 3.11). In the BPM,

WPM and VWPM, the number of samples in the z-axis is not an input to

the Fourier transformation and therefore the WKS theorem needs not to

be met. But nz determines the number of points for which the resulting

electromagnetic distribution is plotted. If the sampling δz is equal to the

wavelength, a plane wave at θ = 0 would appear as a constant. Hence,

a fraction of the wavelength which is not an integer seems to be suitable.

The number of samples nz therefore should always determine δz to be a

non-integer fraction of the minimum wavelength. nz therefore depends on

the wavelength of the incident wave and the maximum refractive index in

the system N .

The choice of δz furthermore determines the accuracy of the reproduction

of the system N which was defined in section 3.2 on page 57. For a ver-

tical boundary which is completely located in a single layer, the selection

of δz has no effect on the discretization of the system, but in case of an

oblique boundary the choice of δz = Z/nz determines the shape of the dis-

cretized interface and the deviation to the continuous system. The effects

on the simulated electromagnetic field are now investigated.
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Figure 6.2: Sawtooth, generated by the discretization in the axis of propa-

gation.

n0 n1 n0 

6.2.1 Thin element analysis

Figure 6.2 shows that a sequence of prisms is generated from the dis-

cretization of oblique interfaces. The size of the prisms is determined by

the sampling interval δz. The phase shift of an electromagnetic wave which

passes the discretized interface is different to the phase shift at the contin-

uous interface. In particular, the phase shift varies with the discretization

of the interface and thereby with the sampling interval δz.

An electromagnetic wave which passes a continuous interface at perpen-

dicular incidence is supposed to get not refracted according to Snell’s law.

The zero order spatial frequency (i.e. k⊥ = 0) is therefore expected to be

maintained and all non-zero frequencies ideally remain zero.
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Figure 6.3: A thin element model of a discretized oblique interface to inves-

tigate the effect of the z-sampling on the zero-order diffraction efficiency.

n0 

n1 

n0 

n1 

n1 

n1 

x 

z 
H

P

In order to analyze the effects of discretization in a continuous theory, the

scenario in figure 6.2 is translated to a similar configuration, containing

a vertical boundary which is modulated by a sawtooth function as shown

in figure 6.3. The modified configuration is supposed to envelope the dis-

cretized interface in figure 6.2 and then the thin element analysis considers

a larger phase modulation. The sawtooth function h(x), with x is a location

in the aperture, is then a function of the period P and the maximum height

H

h(x) =
H

P
x (6.8)

with H = 2δz, which is determined by the sampling interval δz. The phase
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difference of a wave which propagates along the z-axis is then

δφh(x) =
2π

λ
h(x)δn

= k0h(x)(n1 − n0)

= k0h(x)(n1 − 1) (6.9)

with n0 = 1 is the refractive index of vacuum. This yields the complex

phasor of an electromagnetic wave with unit amplitude.

u(x, h) = eiδφh(x) (6.10)

At vertical incidence, the spectrum of a plane wave consists of a single

mode, the zero-frequency (i.e. k⊥ = 0), which is supposed to be main-

tained across the interface according to Snell’s law. The zero order diffrac-

tion efficiency c0 thereby gives a criterion for the deviation of the results

from a simulation of a discretized system to the exact results from the con-

tinuous theory.

The m-th diffraction order efficiency (DOE) cm for the thin element in fig-

ure 6.3

cm(h) =

∣∣∣∣∣
∫ P/2

−P/2
u(x, h)ei

2π
P
mxdx

∣∣∣∣∣
2

(6.11)

is obtained from an integration of the m-th order spatial frequency m/P

over one period P (i.e. from −P/2 to P/2). It describes the diffractive char-

acteristic of the thin element model which is characterized by the phase

function in equation 6.10. The zero DOE is obtained for m = 0.

Figure 6.4 shows the zero order diffraction efficiency for a plane wave of

unit amplitude and a wavelength of λ = 1 [nm] which propagates through

the thin element in figure 6.3. The number of samples nz is 2000 and Z is
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Figure 6.4: Zero order diffraction efficiency over the sampling interval δz

in multiples of the wavelength. Small propagation distances (left) versus

large propagation distances (right).
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1

0.405285

C0( )h

0.50 h

100 [µm]. The propagation distance δz is then 1/20λ [µm]. The height h of

the sawtooth varies from 0 to δz = 1/20λ = 0.05λ in the left subplot. The

right subplot shows the deviation of the zero order diffraction efficiency for

a sampling up to δz = 0.5λ. There, c0(h) shows a significant drop and

the results of the simulation therefore show a significant deviation to the

exact results from theory. The diffractive behavior of the discretized inter-

face increases and fractions of the wave behind the interface propagate

in higher order modes due to the conservation law. For sampling rates δz

which are large fractions of the wavelength, a large deviation in the zero

DOE is obtained (i.e. δz = h = H/2 is in multiples of the wavelength). This

yields a large deviation in the amplitude of the simulated electromagnetic

wave. The simulation results possess a high accuracy for sampling rates

δz which are small fractions of the wavelengths as shown in the left sub-

plot of figure 6.4. The deviation of the amplitude is below one percent at

a sampling interval δz ≤ 0.05λ. With a sampling δz < 0.5λ (i.e. more than

two samples per wavelength), a deviation of up to 60 percent is obtained.
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6.2.2 Normalized sampling rate

Besides the choice of δz, the wavelength λ also contributes to the phase

function u (eq. 6.10). The zero order diffraction efficiency c0(h) is investi-

gated at the wavelengths 0.5, 0.75, 1, 2 and 3 [µm] as shown in figure 6.5

and a high and fast drop (i.e. low accuracy) is obtained for large ratios

δz/λ in the right subplot and a slow drop (i.e. high accuracy) is obtained

for small ratios δz/λ as shown in the left subplot. Obviously, the deviation

of the zero order DOE increases with a growing ratio δzλ = δz/λ. This is

reasonable, because the wavenumber is inverse proportional to the wave-

length and therefore a smaller wavelength causes a higher wavenumber

which requires a higher sampling rate νz. Hence, at a constant sampling

interval δz, a smaller wavelength causes a faster drop of the zero order

diffraction efficiency and subsequently a higher deviation in the amplitude.

The normalized sampling rate is then defined as

νλ =
1

δzλ
=

λ0

nmaxδz
= λmax

nz
Z

(6.12)

with λ0 is the vacuum wavelength and nmax is the maximum real part of

the complex refractive index n̂ = nmax + iκ. It gives a quantity to identify

an appropriate choice of δz to determine the accuracy of the VWPM.

6.2.3 Application of the normalized sampling rate

A simulation of a slanted layer is now performed to evaluate the normal-

ized sampling interval δzλ and evaluate the accuracy of the results from

simulations with the VWPM and a variation in the sampling interval δz.
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Figure 6.5: Zero DOE over the propagation distance in multiples of the

wavelength λ for wavelengths 0.5, 0.75, 1, 2 and 3 micrometer.
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Let a TE-polarized Gaussian beam with unit amplitude propagate from left

to right and pass two parallel oblique interfaces at an angle of 20 degrees

as shown in figure 6.6. The Gaussian beam possess a negligible spread

as shown in the middle (i.e. the real part of Êy) and right (i.e. the ampli-

tude of Êy) subplot. The amplitude after the first and second interface are

obtained from Snell’s law and the Fresnel coefficients. According to Snell’s

law, the angle of transmission is

θt = sin−1(
ni
nt

sin(θi)) (6.13)

after the first interface and the angle of transmission behind the second

boundary is then

θ′t = sin−1(
n1

n0

sin(sin−1(
n0

n1

sin(θi)))) = θi (6.14)

Using n0 = 1 and n1 = 2, the expression yields θt = 9.8 degrees. The Fres-

nel coefficients after the first and second boundary are determined from

equation 2.67. The incident beam is a TE-polarized π-Gaussian beam,

shifted by (x0 y0)T in the aperture

Eπ = E0e
− 1
π

(
(x−x0)

2

σ2x
+

(y−y0)
2

σ2y
)
ei2πν⊥·r⊥ (6.15)
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Figure 6.6: TE-polarized Gaussian beam traverses a slanted layer (20 de-

grees) in vacuum (left). (middle) real part of the Ey, (right) amplitude.

with an amplitude of E0 = 1 [V/m], a wavelength of 1 [µm] and a rota-

tion symmetric, circular waist of σx = σy = 10 [µm]. The thickness of

the homogeneous oblique layer is negligible, because the refractive index

n0 = n2 = 1 and n1 = 2 is purely real and the layer is lossless. The di-

mensions of the scene are X = Y = Z = 30 [µm] and the sampling is

nx = ny = nz = 512. Due to the unit amplitude, the electric field is identi-

cal to the Fresnel coefficient after the first and the product of the Fresnel

coefficients after the second interface. Furthermore, due to λ = 1 [µm],

the normalized sampling interval δzλ is equal to the sampling in the axis

of propagation δz. According to equations 6.13 and 2.67, the exact ampli-
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Table 6.1: Results of the simulation in figure 6.7. Amplitudes from the

VWPM and from theory considering the normalized sampling interval

δzλ [−].

λ [µm] Z [µm] nz [−] δzλ [−] Etheory
1 [V/m] Evwpm

2 [V/m] δE[%]

1 30 512 0.058 0.646/0.875 0.655/0.880 0.5

1 30 256 0.117 0.646/0.875 0.651/0.872 0.7

1 30 128 0.234 0.646/0.875 0.647/0.854 2.4

1 30 64 0.468 0.646/0.875 0.597/0.809 7.5

tude after the first boundary is 0.646 [V/m] and after the second boundary

0.875 [V/m]. The results from the simulation with the VWPM are shown in

figure 6.7. The simulation is performed for three different sampling rates,

nz ∈ {128, 256, 512}. The sampling in the aperture nx = ny remains con-

stant. The plots utilize a special palette to emphasize the small rate of

divergence of the Gaussian beam. The upper two subplots show the the

results for a sampling rate of nx = 512 and nz = 512. The lower left two

plots utilizes a sampling nz = 256 and the lower right of nz = 128. Table 6.1

summarizes the results which are shown in figure 6.7. Table 6.1 summa-

rizes the amplitude deviations for the simulation in figure 6.7. In agreement

to the analysis of the zero order diffraction efficiency, the error in the am-

plitude increases with an increasing normalized sampling interval. With a

sampling of 5.8 percent of the wavelength (i.e. δzλ = 0.058), the deviation

of the simulated amplitude to the results from theory is 0.5 percent. An

error of 2.5 percent is obtained from a sampling of δzλ = 0.234 (i.e. 5

samples per wavelength).

1Amplitude after the first/second interface of the slanted layer derived from theory
2Amplitude after the first/second interface of the slanted layer with the VWPM
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Figure 6.7: Simulation of a slanted boundary of 20 degrees with the

VWPM. The number of samples determine the number of pixels (nx × nz)
of the plots (upper two plots: 512x512, lower left two plots: 512x256, lower

right two plots: 512x128). A special palette is used to emphasize the low

divergence of the Gaussian beam.
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Chapter 7

Conservation of energy

The conservation law states that a measurable property of an isolated

physical system does not change as the system evolves. For electroma-

gnetic waves, this measurable property is the power flux. In this chapter,

the analysis of the power flux is utilized to investigate the power conserva-

tion and the stability of the VWPM.

According to the conservation law (eq. 2.78), the power flux through an

area element dA = nδA with n is the surface normal (i.e. the energy flux

per time) is P = W/t = S · dA [W ] and has to be constant in a homo-

geneous loss- or gainless medium (i.e. εi = κ = 0). In case of reflection

and transmission at interfaces, the sum of transmitted P+ and reflected

P− power flux has to be equal to the incident power flux Pe.

All subsequent equations and calculations assume µ̂ = 1 + i0.

135
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7.1 Power flux

The Poynting vector is derived from the real part of the vector product of

the electrical field vector E and the complex conjugate of the magnetic

vector H as shown in eq. 3.41. For plane waves, the magnetic vector

can be replaced according to equation 2.40. Then, the Poynting vector

completely depends on the electric field according to

〈S〉T =
1

2
Re (E×H∗)

=
1

2
Re



Ex

Ey

Ez

×
 1

Z0k0


kyEz − k̂zEy
−(kxEz − k̂zEx)
kxEy − kyEx



∗ (7.1)

Then, the average power flux per area ∂P/∂A through an interface is

∂P̃ (r⊥,k⊥)

∂A
= 〈S〉T · n = 〈S〉T · ez =

kz
2Z0k0

(EE∗) [W/m2] (7.2)

with n = ez is the surface normal at a location r⊥ and k̂=(kx ky k̂z)
T . Using

equation 3.16 in equation 7.2, the power flux becomes independent from

Ez as shown in appendix B.

7.2 Homogeneous loss- or gainless medium

7.2.1 TE-polarized wave

Let the plane of incidence be parallel to the xz-plane. With n = ez, the

z-component of a TE-polarized electric field vector is zero and the time
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Figure 7.1: Real part of the electric field and power flux of a TE-polarized

plane wave propagating through vacuum. The power flux is clipped at the

eleventh position.
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average power flux per area ∂PTE/∂A is

∂P̃TE(r⊥,k⊥)

∂A
=

kz
2Z0k0

(EE∗)

=
kz

2Z0k0

(
EyE

∗
y

)
[W/m2] (7.3)

derived from equation 7.2 with (s × ez) ⊥ xz-plane and k̂z = kz + i0 and s

as defined in eq. 2.34.
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Let a TE-polarized plane wave with unit amplitude, perpendicular inci-

dence and a wavelength λ = 1 [µm] propagate a distance Z = 32 [µm]

through a discretized homogeneous medium in a twodimensional Carte-

sian xz-coordinate system with ky = 0, y = 0, ny = 1 and through an area

element δA = δx. With a refractive index n̂ = n + iκ = 1 + i0, an aperture

X = 8 [µm] and a sampling δx = δz = X/128 = Z/512 = 0.625 [µm], the

time average power flux in the twodimensional case ∂P̃TE/∂y through the

area element δx is then 6.250 · 10−8/2/Z0 [W/m], as shown in figure 7.1.

This result perfectly agrees with the results from equation 7.3 in the one-

dimensional case.

∂PTE
∂y

=

∫ δx

0

∂PTE(x, 0)

∂A
dx

=
nk0

2Z0k0

δx =
δx

2Z0

=
6.25 · 10−8

2Z0

[W/m]

7.2.2 TM-polarized wave

Let the plane of incidence be parallel to the xz-plane. The y-component of

a TM-polarized wave is then zero due to the transversality of electroma-

gnetic waves. The time average power flux per area ∂P̃TM/∂A is then

∂P̃TM(r⊥,k⊥)

∂A
=

kz
2Z0k0

(EE∗)

=
kz

2Z0k0

(ExE
∗
x + EzE

∗
z )

=
kz

2Z0k0

(
1 +

k2
x

k2
z

)
(ExE

∗
x) [W/m2] (7.4)
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with (s × ez) ⊥ xz-plane and s as defined in eq. 2.34. θ is the angle of

incidence and

kz = nk0

√
1− sin2(θ)

Ez = −Exkx/kz (7.5)

Let a TM-polarized plane wave with unit amplitude, an angle of incidence

θ = 20 degrees, the plane of incidence parallel to the xz-plane, propagate

through homogeneous medium with n̂ = n + iκ = 1 + i0. The time aver-

age power flux per meter ∂PTM(r⊥, π/9)/∂y through an area element δx is

0.5873 · 10−8/2/Z0 [W/m], derived from equation 7.4. This agrees with the

results from a simulation with the VWPM as shown in figure 7.2.

TM-polarized plane wave at 20 degrees
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Figure 7.2: Real parts of the electric field vector and the power flux of

a TM-polarized plane wave. The power flux is clipped after the eleventh

position.
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7.2.3 Power flux

The time average power flux per area of two propagating waves, the first

wave is TE- and the second is TM-polarized, both planes of incidence par-

allel to the xz-plane, is obtained from a summation of equation 7.3 and 7.4

∂P̃TE
∂A

+
∂P̃TM
∂A

=
1

2Z0k0

[
(EyE

∗
y)kz + (ExE

∗
x + EzE

∗
z ) kz

]
=

kz
2Z0k0

(EE∗)

=
∂P̃ (r⊥,k⊥)

∂A
[W/m2] (7.6)

with (s× ez) ⊥ xz-plane. A detailed calculation is shown in appendix B.

7.2.4 Total power flux

In case of a wave which is composed from a plurality of modes, the power

flux per area cannot be simply obtained from an integration over the spec-

trum k⊥. Due to intereferences the field might vanish completely (destruc-

tive interference) and the total power flux per area is therefore obtained

from

∂P (r⊥)

∂A
=

1

2
Re

{(∫
Ẽeik·r

d2k⊥
(2π)2

)
×
(∫

H̃eik·r
d2k⊥
(2π)2

)∗}
· n (7.7)

and the total power flux through the aperture A is then derived from the

integration of ∂P (r⊥)/∂A over the aperture A

P =

∫
A

∂P (r⊥)

∂A
d2r⊥ [W ] (7.8)

The relative or normalized energy flux is then 0 ≤ P/Pe ≤ 1.
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Figure 7.3: Power flux of a Gaussian beam with φp = 0 and ψ = 45 at

θ = 20 degrees, propagating through vacuum.
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7.2.5 Power flux of a Gaussian beam

Let an linear polarized Gaussian beam with unit amplitude, a waist σx =

6 [µm], a rotation angle ψ = 45 degrees (eq. 2.33) and an angle of inci-

dence θ = 20 propagate a distance Z = 6 [µm] through a homogeneous

lossless medium with n̂ = n+iκ = 1+i0 and an apertureX = Y = 24 [µm].

The sampling in the aperture is nx = ny = 128 and in the axis of propaga-

tion nz = 32. The real parts of the electric vector field Ex, Ey and Ez are

depicted in figure 7.3. The z-component Ez originates from the oblique in-
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cidence, θ = 20 degrees. The amplitude |E| =
√
EE∗ is constant as shown

in the right subplot due to the absence of absorption (i.e. κ = 0). Fig-

ure 7.3 shows that the power flux of the Gaussian beam remains constant

in a simulation with the VWPM in agreement to the theory.

7.3 Inhomogeneous medium

In an inhomogeneous medium, an interface is introduced by a change of

the refractive index. A wave which passes the interface is transformed by

reflection and transmission. The power flux is then split into a transmit-

ted P+ and a reflected power flux P− according to the conservation law

(eq. 2.78).

7.3.1 Longitudinal index variations

In this thesis, index variations along the axis of propagation (i.e. the z-

axis) are called longitudinal index variations. At such longitudinal index

variations between two homogeneous layers, the electric field E is trans-

formed according to equation 3.24, considering the angle of incidence θe,

transmission θt and the refractive index before n̂e = ne + iκe and behind

n̂t = nt + iκt the boundary.
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7.3.2 TE-polarized waves

With equation 7.3, the power flux per area of a TE-polarized plane wave

behind the interface, propagating in the xz-plane with unit amplitude and

vertical incidence is
∂P+

TE(r⊥,k⊥ = 0)

∂A
=

nt
2Z0

|tTE|2(EyE
∗
y)

=
nt

2Z0

kz,e
kz,t
TTE(EyE

∗
y)

=
ne

2Z0

TTE(EyE
∗
y) [W/m2] (7.9)

with (s × ez) ⊥ xz-plane, kz,e = nek0 and kz,t = ntk0. TTE = kz,t/kz,e|tTE|2

is the transmittance for the TE-polarized wave. At vertical incidence (i.e.

kx = ky = 0), where the transfer matrix of transmission possesses a

singularity, the transformation of E⊥ is a simple multiplication with tTE. For

oblique incidence, the transformation of E⊥ is given by the transfer matrix

of transmission M (eq. 3.24). The power flux per area of a TE-polarized

wave with oblique incidence per area is then

∂P̃+
TE(r⊥,k⊥)

∂A
=

kz,t
2Z0k0

|E+
⊥|

2 =
kz,t

2Z0k0

|M · E⊥|2 [W/m2] (7.10)

with k2
⊥ = k2

x + k2
y. For a TE-polarized wave at oblique incidence and with

the plane of incidence parallel to the xz-plane, the power flux per area is

∂P̃+
TE(r⊥,k⊥)

∂A
=

kz,t
2Z0k0

|tTE|2(EyE
∗
y) [W/m2] (7.11)

with (s × ez) ⊥ xz-plane and k⊥ = kx and k2
t = k2

x + k2
z,t. For vertical inci-

dence the expression then simplifies to equation 7.9 and the power flux per

area before the interface ∂P̃TE/∂A is directly obtained from equation 7.3.

Let a TE-polarized plane wave of unit amplitude and perpendicular inci-

dence pass a boundary with n̂e = ne+iκe = 1+i0 and n̂t = nt+iκt = 2+i0.
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Figure 7.4: Power flux of a TE-polarized plane wave of unit amplitude and

perpendicular incidence passing an interface with n̂e = 1 and n̂t = 2.

Z

Z

Z

X

X

X

R
e
fr

a
c
ti
v
e
 i
n

d
e

x
E

y
E

n
e
rg

y
 f

lu
x

TE-polarized plane wave at perpendicular incidence

For a plane of incidence parallel to the xz-plane and in a discrete two-

dimensional simulation, the power flux per meter ∂PTE/∂y [W/m] behind

the interface through an area element δx is

∂P+
TE

∂y
=

∫ δx

0

∂P+
TE(x, 0)

∂A
dx =

δx

2Z0

|tTE|2(EyE
∗
y)nt

=
δx

2Z0

neTTE(EyE
∗
y) [W/m] (7.12)

with (s × ez) ⊥ xz-plane. Assuming δz = δx = X/nx = 8/128 = Z/nz =

32/512 = 0.0625 [µm/sample], the power flux per meter is then 6.25 ·
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10−8/2/Z0 [W/m] before and 5.556 · 10−8/2/Z0 [W/m] behind the interface.

For vertical incidence, the results for the TE- and TM-component are equal

because tTE = tTM and kz,e = nek0. These results from theory perfectly

agree with the results from a simulation with the VWPM as shown in fig-

ure 7.4. The reflected power flux ∂P−/∂A per area is then derived from

the conservation law

∂P̃−

∂A
=

∂P̃

∂A
− ∂P̃+

∂A
[W/m2] (7.13)

as shown in appendix B or it can be obtained from equation 7.3 for a

TE-polarized wave and from equation 7.4 for a TM-polarized wave by con-

sideration of the transfer matrix of reflection (eq. 5.20).

For oblique incidence, the power flux per area of the reflected TE-polarized

wave before the boundary is obtained from the replacement of E⊥ with

E−⊥ = R ·E⊥ (eq. 7.3). At vertical incidence, the transfer matrix of reflection

contains again a singularity and the reflected field is then obtained from a

multiplication with the Fresnel reflection coefficients for the TE- or TM-

component. The power flux per area of the reflected wave is then

∂P−TE(r⊥,k⊥ = 0)

∂A
=

ne
2Z0

|rTE|2(EyE
∗
y)

=
ne

2Z0

RTE(EyE
∗
y)

=
ne

2Z0

(1− TTE)(EyE
∗
y)

=
∂P̃

∂A
− ∂P̃+

∂A
[W/m2] (7.14)

with (s × ez) ⊥ xz-plane and RTE = |rTE|2 is the reflectivity for the TE-

component. This agrees with the conservation law.
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7.3.3 TM-polarized waves

In case of TM-polarized waves passing an interface at vertical incidence,

the power flux per area is

∂P+
TM(r⊥,k⊥ = 0)

∂A
=

kt
2Z0k0

|tTM |2(EE∗)

=
nt

2Z0

ke
kt
TTM(EE∗)

=
ne

2Z0

TTM(EE∗) [W/m2] (7.15)

with (s× ez) ⊥ xz-plane, ke = nek0 and kt = ntk0 and TTM = kz,t/kz,e|tTM |2

is the transmittance of the TM-polarized wave. At vertical incidence, the

power flux per area of a TE- and a TM-polarized wave with equal amplitude

is identical (eq. 7.9).

At oblique incidence, E transforms according to equation 3.24 at the in-

terface and the transversality in equation 2.36. E in equation 7.4 is then

replaced by E+ to obtain the power flux per area of the TM-polarized wave

behind the boundary

∂P̃+
TM(r⊥,k⊥ 6= 0)

∂A
=

kz,t
2Z0k0

|E+|2 [W/m2] (7.16)

For TM-polarized waves in a twodimensional simulation, propagating in

the xz-plane, the power flux per area behind the interface is then

∂P̃+
TM(r⊥,k⊥ 6= 0)

∂A
=

kz,t
2Z0k0

(
1 +

k2
x

k2
z,t

)
|tTM |2(ExE

∗
x) [W/m2]

(7.17)

with (s×ez)⊥ xz-plane, k2
z,t = (ntk0)2−k2

x and k⊥ = kx (i.e. 2D-simulation).

Let a TM-polarized plane wave propagate in a twodimensional discretized

system and pass an interface at an angle of incidence θe = π/9 and with
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Figure 7.5: Power flux of a TM-polarized plane wave of unit amplitude,

passing an interface with n̂e = 1 and n̂t = 2 at 20 degrees.
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a plane of incidence parallel to the xz-plane. The power flux per me-

ter ∂PTM/∂y through an area element δx before the interface is 0.5873 ·
10−8/2/Z0 [W/m], directly obtained from equation 7.4 in section 7.2. The

transmitted power flux per meter ∂P+
TM/∂y is 0.5301 · 10−8/2/Z0 [W/m]

according to equation 7.17. This agrees with the results from the VWPM

(0.532 · 10−8/2/Z0 [W/m]) as depicted in figure 7.5. The deviation of 4 per

mill is caused by the amplitude deviation which evolves from the discretiza-

tion as shown in chapter 6.

The reflected power flux per area of the TM-polarized wave is then derived
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Table 7.1: Incident, transmitted and reflected power flux of a TE- and TM-

polarized plane waves at a boundary with n̂e = 1 and n̂t = 2.

E-field Theory VWPM δzλ

TE, plane, vertical

inc. 6.255 · 10−8 6.255 · 10−8 0.0625

tra. 5.556 · 10−8 5.556 · 10−8 0.0625

ref. 0.699 · 10−8 0.699 · 10−8 0.0625

TM, plane, oblique

inc. 5.873 · 10−8 5.873 · 10−8 0.0625

tra. 5.301 · 10−8 5.302 · 10−8 0.0625

ref. 0.572 · 10−8 0.571 · 10−8 0.0625

from equation 7.4 by considering the transformation of the electric field at

the interface. E is therefore replaced with E−, using the transfer matrix of

reflection (eq. 5.20) and transversality (eq 2.36). For a plane of incidence

which is parallel to the xz-plane and for vertical incidence, the reflected

power flux per area ∂P−TM/∂A in a twodimensional simulation is then

∂P−TM(r⊥,k⊥ = 0)

∂A
=

ke
2Z0k0

|rTM |2(ExE
∗
x)

=
ne

2Z0

RTM(ExE
∗
x)

=
ne

2Z0

(1− TTM)(ExE
∗
x)

=
∂PTM
∂A

− ∂P+
TM

∂A
[W/m2] (7.18)

with (s × ez) ⊥ xz-plane, k2
e = |ke|2 = (nek0)2 = k2

z,e + k2
x and k⊥ = kx.

This agrees to the conservation law. The results of the simulations with a

longitudinal index change are summarized in table 7.1.
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7.3.4 Total power flux

Again, the total power flux per area behind the interface cannot be simply

obtained from an integration of ∂P̃+(r⊥,k⊥)/∂A = kz,t/2/Z0/k0(E+E+∗)

over the spectrum k⊥. Interferences need to be considered and the total

power flux at a location r⊥ is then

∂P (r⊥)

∂A

+

=
1

2
Re

{(∫
Ẽ+eik·r

d2k⊥
(2π)2

)
×
(∫

H̃+eik·r
d2k⊥
(2π)2

)∗}
·n(7.19)

The power flux behind the interface through the entire aperture A is ob-

tained from an integration over r⊥

P+ =

∫
A

∂P+(r⊥)

∂A
d2r⊥ [W ] (7.20)

The reflected power flux is then

P− =

∫
A

∂P−(r⊥)

∂A
d2r⊥ = 1− P+ [W ] (7.21)

according to the conservation law. The power flux of the TE-polarized

Gaussian beam at vertical incidence on page 143 then drops by 1 −W+.

Considering equation 7.17 in equation 7.21, the power flux of the TE-

polarized Gaussian beam drops by 11.112 percent (i.e. 1− 0.888).

The power flux per area of a propagation linear polarized Gaussian beam

with φp = 0 and ψ = 45 degrees, a waist of σx = σy = 2 [µm] and a

wavelength of 1 [µm] at vertical incidence is calculated with the VWPM.

The propagation distance is Z = 4 [µm] through the aperture X = Y =

8 [µm] with nx = ny = 128 and nz = 64 as shown in figure 7.6. The

simulation result yields a normalized energy flux P+/Pe = 0.888 behind the

interface as shown in 7.6. This agrees with the theory and exact results are

obtained with the VWPM for a propagation through homogeneous media

and for longitudinal index variations.
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Figure 7.6: Real part of the electric field which passes a boundary with

n̂e = 1 and n̂t = 2. The normalized power flux P+ behind the interface is

0.888 [−] behind the interface.
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7.3.5 Lateral index variation

In this thesis, a lateral index variation describes a change in the refrac-

tive index in the aperture. In contrast to longitudinal index changes, lat-

eral changes in the refractive index are part of to the input of the Fourier

transformation. Lateral index changes cause variations in the Fresnel co-

efficients in the aperture and thereby cause local deformations in the elec-

tric field. The following investigation of the dependency of lateral index

variations to the power flux is based on two characteristic configurations
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Figure 7.7: Characteristic configurations for lateral index variations.
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which are shown in figure 7.7. All transfers from lateral index changes to

homogeneous layers can be reduced to these two base-cells. The wave is

assumed to propagate from left to right, entering a lateral index change in

the left subplot and leaving a lateral index variation in the right subplot of

figure 7.7. Since the power flux through homogeneous medium has been

investigated in the last sections, the analysis of the propagation through

the right base-cell of figure 7.7 is sufficient to show the effect of lateral

inhomogeneities on a propagating electric field.

Let a TE-polarized Gaussian beam of vertical incidence, unit amplitude,

a wavelength of 2 [µm] and a waist of 10 [µm] propagate a distance Z =

30 [µm] through an aperture X = Y = 15 µm in a three-dimensional sys-

tem as shown in figure 7.8. The sampling is nz = 512 and nx = ny = 256.

The Gaussian beam propagates from left to right, enters the lateral in-

dex variation at Z = 0 [µm] with n0 = n2 = 1, n1 = 2 and leaves the

lateral index change at Z = 25 [µm]. It then propagates Z = 5 [µm]
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through a homogeneous medium. The normalized sampling interval δzλ
is nmaxZ/(nzλ0) = 2 · 30/(512 · 2) = 0.0586 and then the deviation in the

amplitude is below one percent as shown in chapter 6. Since the wave

is TE-polarized, the electric field has no z- and y-component. The spatial

Nyquist frequency is kN,x = π/δx = 5.362 · 107 [1/m], which corresponds to

an angle of propagation greater than 90 (eq. 6.5). This is a sufficient samp-

ling to avoid aliasing. The result of the simulation with the VWPM in the left

subplot of figure 7.8 show that the total power flux tends to oscillate while

the wave propagates through the lateral index change. It stabilizes imme-

diately after the wave has left the lateral index change and entered the

homogeneous medium. Obviously, a lateral index change causes shifts in

the power flux which do not occur at longitudinal index changes as shown

in the previous sections.
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Figure 7.8: A TE-polarized Gaussian beam at perpendicular incidence

propagates through a lateral index variation (VWPM).
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7.3.6 Generation of evanescent modes in the WPM and

BPM from local discontinuities

In the VWPM, the electromagnetic vectorial field in a layer j − 1 is first

Fourier transformed to obtain the spectrum. If the wave enters a lateral in-

dex change as depicted in the left subplot of figure 7.7, discontinuities (i.e.

steps) in the electric field are obtained from the space- and frequency-

dependent transformation at the interface. The gradients in the electric

field thereby depend on the change of the real parts of the refractive in-

dex n1 and n2. With a high contrast in the refractive index, the space-

and frequency-dependent transfer at the interface potentially results in

a discontinuity in the electric field. In the propagation step, the phase

is adjusted according to the space dependent optical path length (OPL)

n(r⊥)k0 cos θδz and the electric field at the end of layer j is obtained. The

resulting electric field distribution at the end of layer j is then input to the

next step of calculation to obtain the electric field at the end of layer j + 1.

Thereby, the transfer at the interface and phase adjustment are potential

reasons for the generation of discontinuities in the electric field. Since the

electric field is Fourier transformed in each step of calculation, evanes-

cent or high order modes are generated from peaks or steps according

to Gibb’s phenomenon. Gibb’s phenomenon implies that an infinite num-

ber of modes are necessary to ideally reproduce a step function from a

superposition of plane waves (i.e. by the inverse Fourier transformation)

and an oscillating overshoot appears at the discontinuity. In a bandlimited

spectrum, a perfect reconstruction of the discontinuity is impossible and

the oscillating peaks at the edges of step functions grow with the number

of considered modes. Dependant on the sampling, the oscillations appear

in the spectrum as evanescent modes.
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In the split step propagation scheme which is utilized in the BPM, the

diffraction operator (eq. 3.2) is applied in homogeneous medium. The

spectrum is transformed without considering lateral variations in the refrac-

tive index and therefore the inverse Fourier transformation is not affected

by local deformations. In inhomogeneous layers, the phase shift operator

(eq. 3.3) is applied in the spatial domain, considering the local refractive

index n(r) and vertical propagation. Due to the locally varying phase ad-

justment, a discontinuity in the electric field of two times the amplitude

(i.e. |S| = 1 and for arg(S) = ±π/2) can occur. The discontinuous signal is

then input to the Fourier transformation in the next iteration and evanescent

modes appear in the spectrum. The treatment of the evanescent modes is

critical for the stability and the energy conservation of the BPM as shown

in [29] and [45]. In [58], evanescent waves are completely excluded from

the algorithm of the BPM to achieve stability. This exclusion of evanescent

modes is supported by the limitation of the BPM to paraxial propagation.

In [26], the growth of evanescent modes is described, if they are treated

as propagating modes in rational approximants of the propagator. It is also

reported that the Pade approximants, which are used in wide-angle BPM

algorithms in [43] and [45], cannot model the evanescent modes with suf-

ficient accuracy. Instability and the violation of the conservation law are

observed. Therefore, modified Pade approximants are proposed, which

automatically filter the evanescent modes. Rational approximants that can

model or at least suppress the evanescent modes have been also devel-

oped in [59]. The replacement of the complex exponential propagator with

Pade approximants is suggested, which are zero in the limes k⊥ →∞ and

thereby provide an automated suppression of evanescent modes. Inaccu-

racies and instability problems are moreover reported in [28], when fields

have significant evanescent character. Therefore, a complex representa-

tion of the propagation operator by choosing either a complex reference
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wave number or a complex representation of the Pade approximation is

proposed to model evanescent modes. A stable evolution of propagating

and evanescent waves was achieved, reducing the inaccuracy and insta-

bility problems. In [29] it is reported that evanescent modes which are

excited at lateral interfaces, as for example when a slowly varying wave-

guide is approximated by a piecewise uniform waveguide, cause instability

in the BPM. There, a stabilization was achieved from a damping of evanes-

cent waves by using a layer with high absorption at the system boundaries,

which is also assumed in the original paper by Feith and Fleck in [13].

7.3.7 Power flux in a waveguide

A waveguide with a step index profile provides lateral index changes over

a sequence of iterations. Let a plane wave propagate a distance Z =

30 [µm] from left to right through an aperture X = 15 [µm] with a sampling

nx = 256, entering a waveguide at Z = 0 [µm] with n̂cladding = 1 + i0 and

n̂core = 2 + i0 and leaving the waveguide at Z = 30 [µm]. With a sampling

nz = 512 the normalized sampling interval δzλ is 0.058 and the deviation

in the amplitude can be expected to be below one percent as shown in

chapter 6. The sampling in the aperture allows an angle of propagation

up to 90 degrees without aliasing. The electric field distributions of a TE-

polarized plane wave with a wavelength of 1 [µm], a unit amplitude and

vertical incidence at six z-positions is shown in figure 7.9. In the simu-

lation, the VWPM utilizes a purely complex treatment of the entire range

of spatial frequencies as introduced in appendix B. The transfer matrix

of transmission (eq. 3.24) and reflection (eq. 5.20) then evolves from the

complex Fresnel coefficients (eq. 3.27), the complex refractive index and
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Figure 7.9: Amplitude of a TE-polarized plane wave at six locations in the

z-axis propagating through a lossless waveguide with a step index profile

and treating evanescent modes as propagating modes (appendix B).

the complex propagation vector as described in appendix B to calculate

evanescent modes. Thereby, the evanescent modes are calculated by the

transfer matrix of transmission and reflection - in the literature this is called

’treated like propagating modes’. At Z = 0, the electric field is located

in the first layer which is inside the waveguide. At Z = δz, high oder os-

cillations arise from the Fourier transformation of the discontinuity in the

electric field at Z = 0 and in the following steps of calculation, the electric

field Ey steadily increase as shown in figure 7.9, which shows the real part



7.3. INHOMOGENEOUS MEDIUM 157

of the electric field at the positions 10δz, 100δz up to 511δz. The power flux

increases and the conservation law is violated.

In a second two-dimensional simulation in the same Cartesian xz-coordinate

system, a Gaussian beam with a wavelength of 1 [µm] and a waist of

10 [µm] propagates through a waveguide with a diameter of 10 [µm] at per-

pendicular incidence. The aperture is X = 40 [µm] and the propagation

distance is Z = 40 [µm]. The system is discretized with nx = nz = 512

and the refractive index of the step-index waveguide is n̂core = 1.5 + i0 and

n̂cladding = 1 + i0 (i.e. vacuum). Here, the VWPM treats the evanescent

modes like propagating modes (appendix B). Due to the 1/e drop of the

Gaussian beam, smaller inhomogeneities in the electric field occur at the

boundary of the waveguide but the conservation law is again violated by

a growing normalized energy flux as shown in figure 7.10. Apparently, the

propagating modes are completely overacted by growing high order modes

and the electric field distribution at z = Z shows a purely evanescent char-

acter. It appears that, in agreement with the observations from the BPM,

an electric field with significant evanescent character causes instabilities

if the entire range of spatial frequencies is treated as propagating modes,

using a purely complex calculation with complex Fresnel coefficients and

a complex propagation vector in the calculus of chapter 3 and chapter 5.

The occurrence of high order oscillations at locations with local discontinu-

ities of the electric field is part of the Fourier theory and reasoned by Gibb’s

phenomenon. They arise from the consideration of space-dependent in-

formation which introduce local deformations of the electromagnetic field

as described in the last section. This effect cannot be removed but it can

be reduced and controlled by different techniques.



158 CHAPTER 7. CONSERVATION OF ENERGY

Z

X

Normalized energy flux over propagation dist.

Z

0,0 5,0 10,0 15,0 20,0 25,0 30,0 35,0 40,0

N
o
rm

a
liz

e
d
 E

n
e
rg

y
 F

lu
x
 [
%

/1
0
0
]

0,00

50,00

100,00

150,00

200,00

250,00

300,00

350,00

400,00

Figure 7.10: Simulation of a TE-polarized Gaussian beam which propa-

gates through a STEP-profile waveguide with n̂core = 1.5 and n̂cladding = 1

and treating evanescent modes as propagating modes (appendix B).
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7.4 Stabilization of the VWPM

According to the observations in the literature and in the last sections, the

growth of the power flux evolves from the treatment of evanescent modes

like propagating modes. A stabilization of the simulation appears to be

possible by suppressing, reducing or controlling the evanescent modes as

described for the BPM in various publications. A stabilization can then be

achieved by

a) low pass filtering the system

b) energy-balanced clipping

c) clipping

d) transfer of evanescent modes

While a) operates on the system, the electric field is the subject matter

of the stabilization in b), c) and d). In a), a low-pass filtering of the index

distribution is performed in order to reduce the gradients in the electric field

∂E

∂x
=

E(x+ δx, y)− E(x− δx, y)

2δx
∂E

∂y
=

E(x, y + δy)− E(x, y − δy)

2δy
(7.22)

from a reduction of the gradient in the index distribution n(r⊥). The Fresnel

coefficients are thereby smoothened and the electric field is more contin-

uous. This reduces the generation of high order modes and its superposi-

tion with propagating modes.
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In b), a controlled suppression of modes by considering the conservation

law (eq. 7.24) ensures a constant power flux across each boundary in a

system which does not possess lateral and longitudinal index variations in

a single step of calculation. Starting from the center frequency k⊥ = 0,

the power flux is derived from an integration over the spatial frequencies.

High order spatial frequencies which exceed the energy balance are then

suppressed. In a lossy medium, a sufficient damping ensures the stability

of the calculation and makes a clipping of modes dispensable. The con-

trolled clipping of modes is thereby self-adapting to the absorption in the

medium.

In c), a clipping of modes at the evanescent boundary of the medium or

in vacuum is proposed. A third clipping technique suppresses all high

order modes from a reduction of the sampling rate in the aperture. This

sampling-induced clipping suppresses evanescent and high order modes

by limiting the maximum angle of propagation. The entire energy of the

signal is then contained in propagating modes. Obviously, this method

is susceptible to aliasing if the sampling rate is below the Nyquist rate.

An anti-aliasing filter is then required, which might limit the propagation of

modes to even smaller angles of propagation.

In d), the transfer of evanescent modes with the VWPM, which was intro-

duced in chapter 3 and 5, is applied. It is ensured that all eligible evanes-

cent modes in table 3.2 are modeled according to the theory in [1]. All

evanescent-to-evanescent transfers at boundaries are neglected.
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7.4.1 Low pass filtering

In a low-pass filtered system, the refractive index n(r⊥) at location r⊥ =

(x y)T of a system N (see section 3.2 on page 57) is obtained from its

surrounding locations according to

n(x, y) =
1

N

∑
i,j∈{−q,..,q}

ai,jn(x− i, y − j) (7.23)

with q defines the order of the filter matrix A2q+1×2q+1, ai,j are the elements

of the filter matrix and N is the sum of all filter coefficients. The left plot in

figure 7.11 shows the filter coefficients of a local mean average low-pass

filter and the right plot shows the filter coefficients of a Gaussian filter. Both

filters are rotation symmetric and therefore provide an equalized filtering in

the x- and y-direction.

1 1 1

1 1 1

1 1 1

1 2 1

2 4 2

1 2 1

local mean average Gaussian filter

Figure 7.11: Filter matrix A3×3 of a local mean average filter (left) and a

Gaussian filter (right).
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Figure 7.12: Step-profile waveguide (left) versus GRIN-profile waveguide

(right). The contrast ncore : ncladding is 1.5.

STEP-profile waveguide GRIN-profile waveguideSTEP-profile waveguide GRIN-profile waveguide

Step-profile and GRIN-profile waveguide

Let a TE-polarized plane wave of unit amplitude, vertical incidence and a

wavelength of 1 [µm] propagate through the step-index waveguide in the

left subplot of figure 7.12, which has been simulated in section 7.3.7 on

page 157. Again, the simulation treats the evanescent modes like prop-

agating modes (appendix B). The real part of Ey in the first layer of the

waveguide is compared in figure 7.13. The system is not filtered in subplot

1a and it is filtered with a 3x3 local mean average filter matrix in subplot

1b. In a second scenario, the waveguide is traversed by a Gaussian beam

with a waist of 10 [µm]. In subplot 2a of figure 7.13 the system is again

not filtered. The system is filtered with a 3x3 local mean average matrix

in subplot 2b. The comparison of the results show that the low-pass fil-

tering does not significantly reduce the high order oscillations at the edge

of the waveguide. It makes no difference, if the waveguide is traversed by

a Gaussian beam or a plane wave. All four scenarios possess a more or

less strong increase in the power flux, similar to the results in figure 7.9
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Figure 7.13: Electric field in the x-axis at iz = 2. Simulation of the step-

profile waveguide, treating evanescent modes like propagating modes (ap-

pendix B).
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and 7.10.

Next, let the plane wave (top) and the Gaussian beam (bottom) propagate

through a GRIN waveguide as shown in the right subplot of figure 7.12.

The results of the simulation in figure 7.14 show that a linear average fil-

tering does again not significantly reduce the overshoot at the edge of the

waveguide. Again, energy flux grows and the conservation of energy is

violated (not shown here, but the results are similar to figure 7.9 and 7.10.
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Figure 7.14: Electric field in the x-axis at iz = 2 (starting from iz = 1).

Simulation of the GRIN-profile waveguide, treating evanescent modes as

propagating modes (appendix B).
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Low contrast waveguide

A simulation of a low-contrast step index waveguide with an index-ratio of

ncore : nclad = 1.1 appears to be stable in all four cases 1a. to 2b. for the

same propagation distance Z = 40 [µm] as shown in the left subplot of

figure 7.15.

The power flux for a propagation distance Z = 140 [µm] is shown in the

right subplot of figure 7.15. With a sampling nz = 2048, the normalized
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sampling interval δzλ = 0.078125 and the accuracy in the amplitude is

maintained. With the enlarged propagation distance, the energy flux re-

mains constant up to a distance of 120 [µm]. Then, the power starts to

grow significantly and the conservation law is violated. It appears that the

simulation becomes instable after a sufficiently high number of propaga-

tion steps due to an accumulation of a small amplification in the evanes-

cent modes. The root cause for the violation of the conservation law can

not be removed by a reduction of the gradients in the electric field from a

linear average filtering of the system.
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Figure 7.15: TE-Gaussian beam propagating through a linear filtered step-

profile waveguide with ncore : nclad = 1.1 and a length of 40[µm] (left) and

160[µm] (right), treating evanescent modes like propagating modes (ap-

pendix B).
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Figure 7.16: Power flux through a linear average filtered step-profile wave-

guide with a contrast ncore : nclad 1.1 (a.), 1.5 (b.), 2 (c.) and 3 (d.) using a

clipping at the evanescent boundary and treating evanescent modes like

propagating modes (appendix B).
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7.4.2 Clipping at the evanescent boundary

A clipping of spatial frequencies for a propagation above the critical an-

gle θc avoids the calculation of evanescent modes. By removing all modes

above the space-dependent evanescent boundary k2
⊥ = n2(r)k2

0, all propa-

gating modes are considered in the calculation. With the space-dependent

clipping of modes at the evanescent boundary in the medium, the power

flux through the low-contrast waveguide in figure 7.15 is stabilized but a

dependency on the lateral index variation is introduced as shown in fig-
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ure 7.16. There, the simulation results for a variation in the contrast of

the refractive index ncore : ncladding are shown. An increase in the contrast

yields a larger drop in the power flux and the violation of the conserva-

tion law depends on the lateral index variation in the system. The energy,

which is contained in the evanescent modes, increases with the discon-

tinuity in the electric field (i.e. Gibb’s phenomenon). A higher contrast

introduces a higher step in the electric field and thereby the evanescent

character of the propagating electromagnetic field increases. The spatial

frequencies above the space-dependent evanescent boundary then com-

prise a larger fraction of energy which is taken away from the propagating

modes according to Parseval’s theorem
∫
E2d2r⊥ ◦−• 1/A

∫
Ẽ2d2k⊥/(2π)2.

A removal of evanescent modes stabilizes the energy flux and a drop in

the power flux is obtained at high contrasts in the refractive index. It is

thereby shown, that the treatment of evanescent modes is responsible for

the instability in the power conservation and the violation of the conser-

vation law. It is also shown, that the clipping of evanescent modes at the

space-dependent boundary yields a loss of power and thereby violates the

conservation law. The loss of energy depends on the contrast in the lateral

index change. In agreement to the observations in the BPM, the suppres-

sion of evanescent modes avoids the instability in the power flux. Since

the instability is also observed in the scalar WPM, the vectorial transfer at

the interface can not be responsible.

7.4.3 Energy-balanced clipping

Dependent on the contrast of the refractive index, the clipping of modes

at the evanescent boundary violates the conservation law as shown in the
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Figure 7.17: Electric field of a plane wave which propagates through a

waveguide with ncore : ncladding = 1.5, using the energy-balanced clipping

and treating evanescent modes like propagating modes (appendix B).

Z

X

last section. Therefore, an adaptive energy-balanced clipping of modes

appears reasonable to avoid a violation of the conservation law. The power

flux is observed while starting the accumulation of modes (eq. 3.29) from

the center frequency k⊥ = 0 towards the evanescent modes. All modes

which exceed the energy balance (eq. 7.24) are then clipped. At every

interface, the method assumes a lateral or longitudinal index variation but

never both, a longitudinal and a lateral index variation. Thereby, a space-

dependent investigation of the conservation law is not necessary and a

global energy balance for the transfer from the incident to the transmitted



7.4. STABILIZATION OF THE VWPM 169

layer is possible. Furthermore, the controlled clipping of modes does not

consider the the multiplication with the space- and frequency-dependent

phase element P(k⊥, r⊥) and thus the method is applicable to absorbing

and non-absorbing media.

The power flux through the STEP-index waveguide in the left subplot of

figure 7.12 is stabilized by using the energy balanced clipping as shown

in figure 7.18. The corresponding electric field is shown in figure 7.17.

It shows irregularities since the spectrum is dynamically the low pass fil-

tered. Hence, the calculation perfectly agrees with the conservation law

but depending on the contrast ncore : ncladding in the lateral index varia-

tion more or less modes are removed and the electric field then shows

inhomogeneities. The result in figure 7.18 shows that the power flux in

the high-contrast waveguide is perfectly constant in agreement to the con-

servation law but the electric field shows irregularities. Energy-balanced

clipping thereby provides a perfectly constant power flux under all circum-

stances by definition, but depending on the power flux, more or less spatial

frequencies are removed and the resulting distribution of the electric field

is discontinuous.
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Figure 7.18: Power flux of the electric field in figure 7.17.
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Figure 7.19: Power flux through a low-contrast waveguide ncore : ncladding =

1.1 (left) and a waveguide with ncore : ncladding = 1.5 (right) using clipping at

the evanescent boundary in vacuum and treating evanescent modes like

propagating modes (appendix B).
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7.4.4 Clipping at the evanescent boundary in vacuum

The clipping at the evanescent boundary in section 7.4.2 utilizes a a space-

dependent suppression of evanescent modes. Now, the high order modes

are clipped at the evanescent boundary in vacuum k2
⊥ = k2

0. All modes

with a higher spatial frequency are not considered in equation 3.29 and

thereby propagating modes are suppressed for n > 1. The power flux

for the simulation of the waveguide with a low contrast (left) meets the

conservation law as shown in figure 7.19. Compared to the results from

the energy-balanced clipping, the electric field is continuous for small and

medium contrasts as shown in figure 7.20. An increasing drop in the power

flux of the electromagnetic wave, which depends on the contrast in the

lateral index change, is observed in the right subplot of figure 7.19. The

clipping at the evanescent boundary in vacuum provides a usable accuracy

in the power flux at low contrasts in the lateral index change.
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Figure 7.20: TE-polarized plane wave, propagating through a low-contrast

ncore : ncladding = 1.1 (top) and a contrast ncore : ncladding = 1.5 (bottom)

waveguide, using a clipping at the evanescent boundary in vacuum and

treating evanescent waves as propagating waves.
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Figure 7.21: A TE-polarized plane wave which propagates through the

STEP-index waveguide in figure 7.12 using a sampling-induced clipping

and and treating evanescent modes like propagating modes (appendix B).
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7.4.5 Sampling-induced clipping

The last and most simple clipping is the sampling-induced clipping. It uti-

lizes the simple fact that lower sampling rates reduce the maximum fre-

quency in the spectrum of the field. It is thereby possible to suppress

evanescent modes and limit the spectrum to propagating modes if the

maximum frequency in the spectrum is lower than the boundary for evanes-

cent modes k⊥ ≤ nk0, ∀n(r⊥) ∈ N .
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With the sampling-induced clipping, the power flux of the TE-polarized

plane wave which propagates through the STEP-index waveguide in fig-

ure 7.12 is perfectly constant as shown in figure 7.22. No high order or

evanescent modes exist and hence the electric field experiences a hard

phase shift at the boundary of the waveguide as depicted in figure 7.21.

The method is susceptible for aliasing and induces a paraxial limitation

since only a propagation of low order modes is allowed.

Therefore, the sampling-induced clipping is merely of academic interest.

It shows that the appearance and treatment of evanescent and high order

modes is responsible for the violation of the conservation law in agreement

to the results in various publications as described on page 153.
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Figure 7.22: TE-polarized Gaussian beam, propagating through the

STEP-index waveguide in figure 7.12 using sampling-induced clipping and

treating evanescent modes as propagating modes (appendix B).
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7.4.6 Transfer of evanescent modes

Chapter 3 and 5 introduce the transfer of evanescent modes at interfaces,

using the vectorial model of evanescent from [1] which is derived from

the complex z-component of the propagation vector. The VWPM identifies

eligible configurations for kz,e and kz,t as described in table 3.1. All evanes-

cent modes experience an exponential decay exp(−γevδz), perpendicular

to the interface. They do not contribute to the power flux as described in

chapter 2 and in Appendix A. Evanescent modes are therefore not con-

sidered in the calculation of the power flux since they do not carry energy

across the interface. But they contribute to the total field distribution and

thereby to the input of the Fourier transformation.

Let a TE-polarized Gaussian beam with a wavelength of 1.5 [µm] and a

waist of 10 [µm] propagate through the lossless STEP-index waveguide

in figure 7.12. The refractive index of the waveguide is ncore = 1.5 + i0

and ncladding = 1 + i0 and the diameter is 10 [µm]. The aperture of the

scene is X = 40 [µm], the length of the waveguide is Z = 160 [µm] and

the scene is sampled with nx = 256 and nz = 2048. With the transfer of

evanescent modes in the VWPM, the power flux is constant in agreement

with the conservation as shown in figure 7.23.

A comparison to the simulation of the same scene in the right subplot of fig-

ure 7.15 shows that the rigorous calculation of evanescent waves by treat-

ing evanescent modes like propagating modes (appendix B) violates the

conservation law and yields to an instability in the electromagnetic wave.

A stabilization is obtained with the transfer of evanescent modes in the

VWPM from chapter 3 which suppresses the evanescent-to-evanescent
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transfer of modes as shown in table 3.1. Hence, it can be assumed that the

evanescent-to-evanescent transfer at interfaces yields to instabilities. With

the removal of the evanescent-to-evanescent transfer, the VWPM meets

the conservation law.
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Figure 7.23: Power flux of a TE-polarized Gaussian beam which prop-

agates through the STEP-waveguide in figure 7.12 using the transfer of

evanescent modes in the VWPM from chapter 3.
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Figure 7.24: Real part (top) and amplitude (bottom) of a TE-polarized

Gaussian beam which propagates through the STEP-index waveguide in

figure 7.12 using the transfer of evanescent modes of the VWPM from

chapter 3.
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Figure 7.25: Normalized power flux of a TE-polarized plane wave which

propagates through a homogeneous absorbing medium with n̂ = 1 +

i0.0025.
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7.5 Homogeneous lossy- or gaining medium

In a lossy medium, the absorption of electromagnetic energy needs to be

considered. The power balance is then expanded by the absorbed energy

Pt = Pe − Pr − Pa (7.24)

with P is the incident power, Pr is the reflected power, Pt is the transmitted

power and Pa is the absorbed power according to equation 2.52.

In a lossy medium with εi 6= 0 and κ 6= 0, the power flux decreases with

the absorption length 1/α = 1/(2κk0). A positive sign of κ causes a drop

in the amplitude by absorption as shown in Appendix A. The drop in the

amplitude is inverse proportional to the cosines of the angle of propagation

|Et|
|Ee|

= e−κk0δz/cosθ = e−κk0ktδz/kz,t (7.25)
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with κ is the imaginary part of n̂, kt = ntk0 and kz,t =
√
k2
t − k2

⊥. For a

TE-polarized plane wave of unit amplitude which propagates a distance

Z = 32 [µm] through a medium 1 + i0.0025, the irradiance and power flux

drops by a factor 1/e ≈ 37% after an absorption length 1/α = 31.82 [µm]

as shown in the simulation with the VWPM in figure 7.25.



Chapter 8

Grating enhanced local
absorption

Absorption is the loss of electromagnetic energy in a medium and local

absorption considers its space-dependent variation determined by index

distribution n(r)) and the distribution of the electromagnetic (EM) field.

The local absorption can be obtained from the divergence of the Poynting

vector and Maxwell’s equations as shown in equation 2.52. With equa-

tion 2.43, εi(r) = 2n(r)κ(r), the space-dependent absorption of energy in

a volume V is obtained from an expression which is independent from the

ambiguity in equation 2.52, caused by the two signs in n = ±
√
ε. Then,

the expression in [30] is obtained and the local absorption Pa [W ] is

Pa(V ) =
ω

2

∫ ∫ ∫
V

ε0εi(r)EE
∗d3r (8.1)

with ω = ck [1/s] is the frequency of an electromagnetic wave with a wave-

179
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length λ = 2π/k. For all practical purposes, a replacement of E by the

product E0E1, with E1 is the normalized and dimensionless field strength,

yields an alternative dimensionless formulation of the local absorption in a

volume V

Pa(V ) = E0
ω

2

∫ ∫ ∫
V

ε0εi(r)E1(r)E1(r)∗d3r (8.2)

withE0 = |E0| [V/m] is the amplitude of the incident EM wave. The incident

power Pe(V ) [W ] of an electric field which passes an area element δA with

an area |δA| = A [m2] is

Pe =
1

2

√
εε0
µµ0

E0E
∗
0A

=
1

2

ne
cµµ0

E0E
∗
0A (8.3)

with
√
εε0µµ0 = n/c and the squared amplitude in a nonmagnetic (i.e. µ =

1) medium is then related to the power according to

E0E
∗
0 = 2

cµ0

ne

Pe
A

= 2
Z0

ne

Pe
A

[V/m] (8.4)

with Z0 = c0µ0 =
√
µ0/ε0 = 1/c0/ε0 = 376.82 [Ω] is the impedance of the

vacuum and A = XY .

The substitution of E0E
∗
0 in equation 8.2 yields a dependency between

transmitted Pt and incident Pe power flux

Pt(V ) =
Pe(V )

A

∫ ∫ ∫
V

4k0κt(r)
nt(r)

ne(r)
E1(r)E∗1(r)d3r (8.5)

with n̂e = ne + iκe is the refractive index before and n̂t = nt + iκt is the

refractive index behind the interface. The power ratio is then

Pt
Pe

=
1

A

∫ ∫ ∫
V

2
αt(r)

ne(r)
E1(r)E∗1(r)d3r (8.6)
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with αt = 2κtk0 [1/m] is the inverse of the absorption length of the medium.

Obviously, the local absorption has a direct relationship to the absorption

length 1/α [m] for which a drop in the irradiance to 1/e is obtained.

Using the nomenclature of the discrete algorithm for the VWPM from chap-

ter 3, equation 8.6 then translates to the sum
Pj
Pj−1

=
δz

nxny

∑
l

∑
m

2
αj(l,m)

nj−1(l,m)
E1(lδx,mδy)E∗1(lδx,mδy) (8.7)

with δz is the sampling width in the z-direction, nx, ny is the pixel count (i.e.

sampling) in the aperture, E1 is the normalized amplitude of the electric

field, j − 1 is the index of the layer before and j is the index of the layer

behind the interface.

8.1 Detection of light

In a silicon detector or solar cell, a depleted region is formed by combining

semiconductors with different P- and N-dopants (i.e. PN-junction). A dif-

fusion volume is thereby formed at the contact surface which extends into

the semiconductors. This volume provides a lightsensitive region. Once

a photon raises the energy state of an electron in the depleted region,

the charge is potentially elevated from the valence band into the conduc-

tion band. The generated electron-hole pair contributes to the photo cur-

rent. This is the photo-electric effect which was discovered by the German

physicist Heinrich Hertz in 1886 and then interpreted with the quantum

theory by the German Nobel laureate Albert Einstein in 1905.

The P- and N-dopants in the two semiconductors generate a diffusion volt-
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age which prevents some electrons from an immediate recombination. A

charge that does not recombine with a hole - the absence of a charge in a

P-doped material or a free energetic state in the valence band - can be col-

lected at the contacts of a photo detector or a solar cell. Once the charge

is collected at the contacts, it is part of the external photo current. The

more charges reach the contacts the merrier the external photo current

and the merrier the efficiency of the device.

The quantum efficiency [A/W ] is defined as the number of elevated charges

in Coulomb [C] per second and per watts of incident light, generated by ab-

sorption in the depleted volume. The difference between internal quantum

efficiency and external quantum efficiency is simply the loss of current due

to recombination. The term elevated charge describes the change of the

energy level [eV ] of an electron which elevates the charge from the valence

band into the conduction band. The energy of the electron is then suffi-

cient to overcome the bandgap (i.e. energy gap) in semiconductors which

separates the two energy bands. The energy level of the electron elevates

above the Fermi-level and the charge occupies a free energetic state in

the conduction band. An electron with an energetic state at the Fermi level

possesses an equal probability to stay in the valence and the conduction

band. An elevated electron increases the internal photo current because

it becomes a free floating charge which is not bound to an atom. The en-

ergy state of a charge which recombines, falls back to the valence band

and becomes a bound electron. The charge then no longer contributes

to the external photo current and to the external quantum efficiency. The

recombination causes the emission of a photon which is the basic princi-

ple of a laser. If an amplified and stimulated emission of a high number of

photons is possible, the material is called a lasing medium which can be

utilized in a laser.
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According to equation 8.1, a maximum absorption can be achieved by

a large imaginary part of the refractive index, from a high electric field

strength and from a large propagation distance through an absorbing medium.

Hence, a geometric structure which provides a high concentration of elec-

tromagnetic irradiance and a fast population of the frequency space (i.e.

generation of high order modes) provides a maximum local absorption in

a certain medium.

8.2 Solar cells

The optimization of solar cells and the development of innovative high ab-

sorbing materials is a field of research that becomes more important due

to the predictable decrease of fossil energy resources and the ever grow-

ing demand for energy. The extensive research created a variety of dif-

ferent solar cells which are classified by certain criteria. The most popu-

lar criterion is the material thickness which separates the types of mod-

ules into conventional and thin-film solar cells. A second criterion is the

material which is used in the absorbing layer. The most popular mate-

rials are crystalline semiconductors like Cadmium Telluride (CdS, CdTe,

ZnTe heterojunction), Gallium Arsenide (GaAs), Copper Indium Diselin-

ide (CuInSe2) and Silicon (Si). The structure of these materials can be

mono-crystalline, polycrystalline or amorph. The use of organic or poly-

mer materials is suggested in [61] to build flexible, plastic solar cells. So

called CIS or CIGS (Chalkopyrite) solar cells are composed from Copper-

Indium-Galllium-Diselenid or Copper-Indium-Disulfid to assemble thin film

solar cells.
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Most modules are made of mono-crystalline silicon (c-Si) or poly-/multi-

crystalline silicon (mc-Si). The efficiency of c-Si cells is about 15% to

20% and the power density is in the range of 20 to 50 Watts per kg of

material. The manufacturing of such cells necessitates a lot of energy

which raises the price and the time for the amortization of cost. The cost-

performance ratio and the energy consumption for the manufacturing of

multi-crystalline modules is better. An efficiency up to 18,6% is presented

in [60]. Crystalling (c-Si) and multi-crystalline (mc-Si) silicon is used in

conventional solar cells with an absorbing layer of a thickness of 200 to

400 micrometers [70]. In case of thin-film solar cells, amorphous silicon

is assembled with an efficiency of 5% to 9% and a power density of 2000

Watts per kg of material. Due to the use of layers at a thickness in the

range of tens of micrometers (i.e. at least 30 micrometers for crystalline

silicon is reported in [65]), no shortage in the material up to the range of

terawatts exists. The absorption coefficient (α = 2κk0) is ideally in the

range of 104 [1/cm] to 105 [1/cm] in the wavelength region of 350 [nm] to

1000 [nm].

Another type of solar cells are the III-V semiconductor cells (i.e. GaAs).

Such solar modules are very temperature insensitive and robust against

ultra-violett (UV) radiance. The power efficiency is about 50 Watts per kg

of material and the recent world record for III-V semiconductor cells with

41.1% efficiency was presented in [62] with a cost intensive multi-junction

device. Such multi-junction devices utilize combinations of Gallium or In-

dium phosphide (InP/GaP) and Gallium Arsenide (GaAs), GaAs and Ger-

manium or just Germanium to maximize the total depletion volume and

provide a high absorption rate over a wide range of wavelengths. The

manufacturing of such thin-film solar cells is expensive and therefore the

major application area is in space flight.
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A cheaper type of thin-film solar cells are the CdTe-cells, where II-VI semi-

conductors are utilized to commercially assemble solar modules by chem-

ical bath deposition. Efficiencies up to 16% have been presented in [63]

and up to 10% are available in commercial modules.

In CIGS(S) (copper, indium, gallium, sulfur, selenium) or CIS cells, I-III-VI

semiconductors with a direct bandgap are assembled in thin film modules.

The cells belong to the group of Chalkopyrites and provide an efficiency

up to 20% as presented in [64]. Modules with an efficiency of 10 to 12%

are commercially available.

The use of organic materials in solar cells is limited by their low efficiency

of around 6% and the quite short lifetime of the cells of about 5000 hours.

Organic thin film solar cells are flexible and can therefore be mounted on

curvature shapes or even clothings. The research of new materials with a

better lifetime and increased efficiency is promising and preliminary for a

commercial success.

In conventional silicon-based solar cells, the absorbing substrate has a

thickness of 200 to 400 micrometers and causes about 50% of the cost of

solar modules. The reduced weight and cost as well as the efficient use

of resources provides the major reason for the research of thin-film solar

cells. The absorption of light in thin films provides an interesting appli-

cation for an optimization by using diffractive geometries. In this chapter,

the VWPM is utilized to determine the dimensions of diffractive gratings to

obtain an enhanced absorption over a maximum range of wavelengths.
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8.3 Micro-structured geometries

Micro structured geometries provide a promising way to enhance the per-

formance of detectors and solar cells as shown in countless publications.

The functional principle is based on the reduction of the reflectance and

the fast population of the frequency space by diffraction to maximize the

local absorption from a concentration and trapping of light. This improve-

ment in the performance can be achieved by two mechanisms - the diffrac-

tive and the physical optics approach as explained in [77]. In the diffrac-

tive approach, the frequency space is filled by oblique propagating trans-

mission orders. The physical optics approach utilizes rigorous simulation

methods like the rigorous coupled wave analysis (RCWA) or the finite dif-

ference time domain (FDTD) method to calculate absorption in subwave-

length structures.

In [66, 67, 68, 69, 70, 71], the physical optics approach is investigated. [66]

investigates the enhancements of surface texturing with submicron diffrac-

tive gratings which are optimized with the RCWA. It is shown that nano-

structures reduce the reflections at the air to silicon interface and efficiently

couple light into diffraction orders which remain near the interface. The use

of crystalline silicon grating structures is investigated in [67] and their cal-

culations predict close to 100% energy coupling into oblique propagating

diffraction orders for a certain wavelength. In agreement with the calcula-

tions and experimental results in [78], the use of two-dimensional gratings

is promising to achieve a maximum coupling for TE- and TM-polarized

electromagnetic fields.

A photonic light trap is assembled in [68] from a high contrast in the re-
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fractive index to ease the coupling into the cell and prevent the loss by a

small angle of total internal reflection. A λ/4 grating is applied to modulate

the frequency space and redirect at least a fraction of the incident light into

modes of higher order.

In [69], the use of photonic crystals in thin-film silicon solar cells is pro-

posed to enhance the absorption. The results show a dependency of the

coupling efficiency of the nanometer grating to the wavelength and the

angle of incidence. The dependency is reasoned by the relation of the

subvector k⊥ to the angle of incidence and the wavelength according to

equation 2.34.

The diffractive approach is analyzed in [72, 73, 74, 76, 77]. One of the very

first investigations for the use of micro-grating structures in solar cells was

presented in [73]. A Gallium Arsenide grating solar homojunction cell with

an efficiency of 25.5% was introduced, based on a P-cell. At that time, the

introduced dot-grating structure could not be analyzed in an exhaustive nu-

meric style and therefore the researchers had to rely on measured results.

Their measurements showed that a device with a ratio of 18 for the ratio

of diffusion length over grating separation provides an efficiency close to

100% for a certain wavelength. The lithographic performance limited the

diameter of the dot-grating to 1 micrometer and the smallest grating spac-

ing of a cell with 1% junction coverage was 10 micrometer in 1985. It has

been determined that the diffusion length needs to be increased by at least

one order of magnitude to make use of the potential of grating geometries.

In [74], the use of periodic light-coupler gratings of aluminum-doped zinc

oxide (ZnO) was investigated with a finite integration technique (FIT) and

through experimental study. An increased height of the grating showed a

better diffraction efficiency and an enhanced absorption.
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8.4 Optimization of local absorption with the

VWPM

The control of the local absorption is of high interest for a multitude of ap-

plications like optical detectors, thin film solar cells, electro-optical modu-

lators or in the lithography [80, 81, 82, 83]. Compared to the global con-

sideration of absorption in equation 2.78 which utilizes the difference be-

tween incident and transmitted power flux, the local absorption calculates

a space dependent loss of power from equation 8.5, by considering the

spatial distribution of the electromagnetic field E(r) and index distribution

n̂(r).

In the following parameter optimization, a two-dimensional phase Ronchi

is utilized to enhance the local absorption in an absorbing layer by a pop-

ulation of the frequency space which yields an increase in the optical path

length (OPL). First the absorbing characteristic of a layer in the absence

of a grating is analyzed to obtain a reference. Then, the period (i.e. pitch)

of the grating is determined from a parameter variation of the duty cycle

w/p, shown in figure 8.1. The simulation is performed for a TE- and a TM-

polarized electromagnetic wave and for various angles of incidence. Two

periods px and py with promising absorption rates for the TM- and TE-case

are selected from the results. Then, the absorption for two-dimensional

gratings and the dependency to the angle of incidence is investigated in

a variation of the grating widths wx and wy. The widths are then selected

from the results and the absorption for a variation in the angle of inci-

dence is compared to the absorption rates in the system without a grating.

Due to the increased complexity of the VWPM from O(n2) to O(n4) in all

three-dimensional simulations, the multithreaded version of the VWPM in
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Figure 8.1: Distribution of the real n (left) and imaginary κ (right) part of

the refractive index for a 4λ grating with an adjacent 1.5λ absorbing layer.
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appendix C is utilized.

8.4.1 Input system

The one- or two-dimensional phase Ronchi which was introduced in chap-

ter 3 is slightly modified. The absorbing layer behind the one- or two

dimensional phase Ronchi is enclosed by a thin non-absorbing homo-

geneous layer, for example Silicon (di)Oxide, to obtain a waveguiding struc-

ture. The non-absorbing cover-layers at the front- and backside of the

absorbing layer therefore possesses a lower refractive index than the ab-

sorbing medium to obtain (total) internal reflection.

The one-dimensional grating is defined by the pitch px and the width wx

in the x-axis and two-dimensional gratings are defined by a second pair of
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parameters, py and wy, defining the grating in the y-direction. For all con-

figurations with wx = 0 and wy 6= 0 or wy = 0 and wx 6= 0 one-dimensional

gratings in the y-axis or x-axis are obtained. The two homogeneous non-

absorbing layers before and behind the absorbing layer possess a thick-

ness of 0.5λ and a refractive index nclad = 1.5 + i0. Thereby an interface

with (total) internal reflection is formed. All layers are assumed to possess

a wavelength-independent constant refractive index. The absorbing layer

has a refractive index ncore = 2 + i0.01. The micrometer-grating and the

two homogeneous layers at the front and back-boundary are made of the

same non-absorbing material nclad. The grating has a height h = λ and

the absorbing layer has a thickness of d = 2λ as shown in figure 8.1.

The size of the two-dimensional system is X = Z = 8 [µm] and of the

three-dimensional system X = Y = Z = 8 [µm]. The sampling in the

two-dimensional scene is nx = nz = 64 and the three-dimensional system

is sampled with nx = ny = nz = 64. With a wavelength of 1 [µm], the

normalized sampling interval δzλ is 0.125 [−]. This sampling would cause

significant amplitude-deviations in case of oblique interfaces as shown in

chapter 6, but the grating contains only vertical interfaces and hence the

longitudinal sampling does not influence the accuracy of the amplitude as

already shown in the comparison of the grating simulations with the VWPM

to the results from RCWA in chapter 3.

8.4.2 Number of reflections

According to equation 5.11, 2p = 4 iterations (i.e. p is the number of for-

ward propagating beams) need to be calculated to obtain an accuracy of
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Table 8.1: Number of iterations to obtain an accuracy of a = 0.01 of the

input amplitude in the system in figure 8.1.

Num. of reflected waves (2p) n1 n2 n3 R = |r21r23| p = dlogR ae
4 1 1.5 2 0.02 d1.183e
4 1.5 2 1.5 0.029 d1.295e

one percent in the amplitude. Table 8.1 shows the product of the inner

reflection coefficients R = |r21r23| and the number of required iterations

for the two interfaces to limit the maximum deviation maxj∈{1..nz−1}(Ej(p +

1)/Ej(p)) (chapter 5) to one percent of the input amplitude. In the calcula-

tion of the Fresnel coefficients, the angle of incidence is set zero to obtain

a maximum transmission into the absorbing layer.

The deviation in the amplitude falls below 0.01 after four iterations as ver-

ified in a simulation of a TE-polarized plane wave at vertical incidence

which is not depicted in the thesis. The amplitudes and the amplitude de-

viations for the consideration of zero to five and ten iterations are shown

in table 8.2. The deviation reaches the desired limit of one percent of the

input amplitude if four or more iterations (i.e. p = 2 forward propagating

beams) are considered.

8.4.3 Absorption rates without a grating

In the absence of a grating, the local absorption shows resonances due

to the resonant structure of the layers. The reflectance increases with an
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Table 8.2: The maximum amplitude Emax = maxr(|E|(r)) and its deviation

δEmax = |Emax(p + 1) − Emax(p)| for p to consider one to five and ten

iterations. The results are obtained from a simulation of the grating in

figure 8.1.

Iterations p Emax δEmax

1 1 1.65305 −
2 1 1.66662 0.01357

3 2 1.68387 0.01724

4 2 1.68679 0.00291

5 3 1.68618 0.00061

10 5 1.68605 < 10−4

increasing angle of incidence and less electromagnetic radiation enters

the absorbing layer. Depending on the finesse of the resonant structure,

a certain amount of light travels forth an back inside the absorbing layer

as described in chapter 5. The phase relation between forward and back-

ward propagating wave determines if constructive (even multiples of the

half wavelength) or destructive (odd multiples of the half wavelength) inter-

ference occurs and therefore the resulting absorption rates tend to oscil-

late as shown in figure 8.2. A maximum absorption is obtained for vertical

incidence and the absorption drops by a factor of two at 60 degrees. At 80

degrees no considerable absorption is calculated. The graphs show that

the TE-polarized wave drops a little faster than the TM-polarized wave. An

equal maximum absorption of 20.73 % for the TE- and TM-case is is ob-

tained at vertical incidence. In this case, the plane of incidence reduces

to the surface normal, no polarization exist and the Fresnel transmission

coefficients are equal for TE- and TM-polarized electromagnetic waves.
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Figure 8.2: Absorption rate over the angle of incidence in the absorbing

layer with d = 2λ, ncore = 2 + i0.01 and without a grating. (Left:) TM-

polarized plane wave with unit amplitude. (Right:) TE-polarized plane

wave with unit amplitude.
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8.4.4 One-dimensional gratings

First, a promising pitch px is determined from a parameter variation of px
and wx in a two-dimensional simulation of one-dimensional gratings. The

pitch px varies from 0 to 8λ and the width wx varies from 0 to px. For

all cases wx ≥ px, the absorbing layer is completely covered by a non-

absorbing layer with a thickness equal to the height of the grating. The

incident wave is TE-polarized in a first and TM-polarized in a second pa-

rameter variation. The angle of incidence varies between 0 and 80 de-

grees in steps of 20 degrees. In case of a TE-polarized wave, the grating

aligns with the y-component of the electric field and in the TM-case, the

x-component of the electric field is positioned perpendicular to the one-

dimensional grating. No grating is obtained for wx = 0.
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Figure 8.3 shows the absorption for a parameter variation wx (y-axis) over

px (x-axis). In case of a TE-polarized plane wave at vertical incidence,

a peak absorption rate of 50 percent is obtained. The peak-absorption

decreases with an increasing angle of incidence. At 60 degrees, the maxi-

mum absorption is 18 percent and an absorption rate of 1.7 percent is ob-

tained for θ = 80 degrees. The maximum absorption rate in the TM-case is

higher than for the TE-case over the entire spectrum of spatial frequencies

since the electric field vector for TM is oriented perpendicular to the grating

and therefore gets diffracted. The electric field vector of the TE-polarized

wave oscillates along the grating and thereby is not affected by diffraction.

Figure 8.4 shows the absorption rates for the range of with a high absorp-

tion, px from 0λ to 3λ and wx from 0λ to 3λ, and a variation in the angle of

incidence from θ = 0 to θ = 80 degrees. With a TM-polarized plane wave

of unit amplitude, a maximum absorption of 53 percent is obtained by using

vertical incidence for a grating pitch px = 0.8λ and wx = 0.4λ. Here, a high

average absorption rate over a wide range of θ is preferred to a maximum

absorption at vertical incidence since most solar modules are fix-mounted

and do not provide the capability to adjust the panel to maintain vertical

incidence. Therefore, from the parameter variation in figure 8.4, a pitch

of 2λ for the TE-case and a pitch p = λ for the TM-case is selected. The

widths for a two-dimensional grating are now determined from a variation

of wx and wy in a sequence of three-dimensional simulations.
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Figure 8.3: Accumulated absorption in the absorbing layer for a variation of

pitch wx (y-axis) over width px (x-axis) and for selected angles of incidence

θ.
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TE TM

20°

0°

40°

60°

80°

Figure 8.4: Accumulated absorption in the absorbing layer for a variation

of pitch wx (y-axis) over width px (x-axis). Left column: TE-polarized plane

wave. Right column: TM-polarized plane wave.
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8.4.5 Twodimensional gratings

The results from the optimization of one-dimensional gratings in section 8.4.4

show that the absorption in the layer vary with the polarization and the an-

gle of incidence. Gratings with high absorption for a TE-polarized EM field

not necessarily possess high absorption rates for a TM-polarized EM field.

Hence, the use of two-dimensional gratings, which are optimized in one

dimension for absorbing TE-polarized waves and in the second dimension

for absorbing TM-polarized waves are promising to further enhance the

absorption.

The investigation of the results in figure 8.4 shows that a high average

absorption for the TE-polarized wave is obtained from a pitch py = 2λ and

for the TM-polarized wave from a pitch px = λ. In order to determine an

optimal duty cycle w/p for the two pitches, let wy vary from 0 to py = 2λ

and wx from 0 to px = λ in steps of 0.1λ. The angle of incidence varies

again from 0 to 80 degrees in steps of 20 degrees. The incident wave is

TE-polarized in a first and TM-polarized in a second parameter variation.

Figure 8.5 shows the accumulated local absorption rates for the TE-case

(left) and TM-case (right) and for an increase in the angle of incidence

from top to bottom. At small angles of incidence, the absorption rates

show maximum values for the TE- and TM-polarized waves. At higher an-

gles of incidence, the absorption decreases as already observed in sec-

tion 8.4.4. A high average absorption rate for a maximum range of angles

of incidence can be obtained for a widths wx = wy = 0.5λ. The resulting

two-dimensional grid with the duty cycles dx = 0.5 and dy = 0.25 is shown

in figure 8.6.
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TE TM

�=0°

�=20°

�=40°

�=60°

�=80°

Figure 8.5: Parameter variation wx (x-axis) over wy (y-axis) at different

angles of incidence.
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Figure 8.6: Optimized two-dimensional grating with py = 2λ, px = λ and

wx = wy = 0.5λ.
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8.4.6 Angle of incidence versus wavelength

Due to the dependency of the local absorption to the angle of incidence,

the efficiency of the grating also varies with the wavelength. This depen-

dency between angle of incidence θ and the wavelength λ is also de-

scribed in [78]. Thereby, a variation of the angle of incidence has the

same effect on the transversal component of the propagation vector k⊥ as

a variation in the wavelength since the grating has no sense for the root

cause for k⊥. Hence, same results are obtained from a variation in the

angle of incidence and from a variation of the wavelength. An angle of in-
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cidence θm at a wavelength λm then corresponds to an angle of incidence

θn at a wavelength λn according to

sin θm
λm

=
sin θn
λn

(8.8)

obtained from k⊥ = 2π/λ sin(θ).

8.4.7 Optimized two-dimensional grating

The angle of incidence θ and the wavelength λ of the incident electroma-

gnetic wave are related metrics and therefore a grating which provides a

high absorption rate over a wide range of spatial frequencies also yields

a high absorption over a corresponding range of wavelengths (eq. 8.8) -

presumed that the absorption factor α = 2κk0 does not vary with the wave-

length. Here, all properties of the material which depend on the wave-

length are neglected since the effect of diffractive gratings on an EM wave

is independent from the material in the absorbing layer.

Figure 8.7 shows the absorption rates for the optimized two-dimensional

grating in figure 8.6 for a variation of the angle of incidence from 0 to 90

degrees. The upper plots show the absorption rates without grating and

the lower plots depict the grating enhanced absorption. In the absence

of a grating, the resonant character of the structure is clearly visible. The

absorption in the grating enhanced system increases by roughly 50 in aver-

age with and a second peak in the absorption rate at θ ≈ 27 degrees. The

curve of the grating-enhanced system envelopes the conventional system

at nearly all angles of incidence. The absorption at high angles of inci-

dence and for TM-polarized modes falls slightly below the absorption of
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the system without a grating but the absorption at such high angles is

below three percent and thereby does not significantly contribute to the

overall system performance.

Absorption over index of parameter variation

Index of parameter variation [-]

0 20 40 60 80

A
b
s
o
rp

tio
n
 [
%

]

0,00

0,05

0,10

0,15

0,20

0,25

0,30

Absorption over index of parameter variation

Index of parameter variation [-]

0 20 40 60 80

A
b
s
o
rp

tio
n
 [
%

]

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

angle of incidence angle of incidence

A
b

s
o

rp
ti
o
n

 [
%

/1
0

0
]

A
b

s
o

rp
ti
o
n

 [
%

/1
0

0
]

Absorption over index of parameter variation

Index of parameter variation [-]

0 20 40 60 80

A
b
s
o
rp

tio
n
 [
%

]

0,00

0,05

0,10

0,15

0,20

angle of incidence

A
b

s
o

rp
ti
o
n

 [
%

/1
0

0
]

Absorption over index of parameter variation

Index of parameter variation [-]

0 20 40 60 80

A
b
s
o
rp

tio
n
 [
%

]

0,00

0,05

0,10

0,15

0,20

A
b

s
o

rp
ti
o
n

 [
%

/1
0

0
]

angle of incidence

TE TM

px= 2.0 �

py= 1.0 �

wx= 1.5 �

wy= 0.5 �

No grating No grating

px= 2.0  

py= 1.0 �

wx= 1.5 �

wy= 0.5 �

Figure 8.7: Absorption rates over angle of incidence without a grating (top)

versus the optimized two-dimensional grating (bottom).

8.5 Conclusion

This chapter shows that the use of two-dimensional micrometer gratings

improves the absorption rates in thin absorbing layers. The results of var-
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ious parameter variations show that enhancement of the absorption with

one-dimensional gratings is sensitive to the polarization and the angle of

incidence. As a consequence, it is not possible to obtain a maximum ab-

sorption rate for TE- and TM-polarized waves with one-dimensional grat-

ings. Hence, the use of two-dimensional gratings is proposed in agree-

ment with various publications. A parameter set for an enhanced absorp-

tion over nearly the entire spectrum is determined with the VWPM. The

two-dimensional grating enhances the absorption by roughly 50 percent

over nearly the entire spectral range for TE- and TM-polarized electroma-

gnetic fields.

Outlook

With its sensitivity to angle and wavelength as well as polarization, one- or

two-dimensional gratings can be furthermore used for wavelength division

multiplexing (WDM), add-drop filters, optical detectors or electro-optical

modulators as suggested in [80, 81, 82]. In case of WDM or add-drop

filters, a grating with a peak absorption at a certain wavelength would be

preferred. When used in electro-optical modulators, the dynamics in the

material and the influence of a change in the refractive index on the diffrac-

tion efficiency of the grating from an applied voltage (i.e. Kerr-Effect, Pock-

els effect) needs to be considered. A configuration with a high sensitivity

in the absorption rates to the applied voltage or to the angle of incidence

would then be selected to achieve a maximum effect from the control of the

diffraction efficiency of the grating. The reflectivity, transmittivity and ab-

sorption can then be controlled. This appears to be a promising approach

for optical chip-to-chip communication [82].



Chapter 9

Summary and closing

Fast Fourier methods are efficient to simulate the propagation of electro-

magnetic fields along a predefined axis of propagation as shown in chap-

ter 1, based on the theoretic fundamentals in chapter 2. The split step

propagation scheme, which is utilized in the Beam Propagation Method,

cannot overcome the inherent error which arises from the separation of

the propagation into two operators, the diffraction operator (eq. 3.2) and

the phase adjustment operator (eq. 3.3) as shown in Chapter 3. Hence,

all split step propagation methods are more or less limited to paraxial pro-

pagation and small index variations and their applicability is therefore lim-

ited. The scalar wave propagation method (WPM) [31] utilizes the exact

solution of the scalar diffraction integral and therefore yields accurate re-

sults for propagation angles of electromagnetic fields up to ±85 degrees.

The WPM is limited to scalar electromagnetic fields and does not model

evanescent waves. Since the vectorial effects become significant at high

propagation angles, a vectorial version of the WPM is desirable.

203
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The Vector Wave Propagation Method (VWPM) is presented in this thesis.

It utilizes a vectorial formulation of the Rayleigh-Sommerfeld diffraction in-

tegral to derive the propagation of three-dimensional vector fields from the

transformation of its lateral components and from transversality. This re-

duces the computational effort and ensures transversality. The transfer

of evanescent waves in chapter 3 utilizes the model of evanescent waves

from [1]. In the VWPM, eligible configurations for the incident and transmit-

ted propagation vector are identified and evanescent-to-evanescent pro-

pagation is only considered in the absence of longitudinal changes along

the axis of propagtion. The magnetic vector, the irradiance, the power flux

and the local absorption are derived from the electromagnetic vector fields.

With the VWPM, exact results are obtained for the entire range of spatial

frequencies as shown in various simulations and by comparing the results

to the electromagnetic theory. The simulated field distributions in diffrac-

tion gratings show a remarkable agreement with the results from a three-

dimensional RCWA and the vectorial Debye theory. With the extension to

evanescent frequencies, the VWPM simulates total internal reflection and

evanescent waves at interfaces as shown in figure 3.9. Thereby, the ap-

plicability of the VWPM is extended to the full range of spatial frequencies

without approximation.

Chapter 4 shows that a vectorial version of the split step propagation

scheme is not reasonably possible due to the separation of the propa-

gator into two operators. The Fresnel coefficients must be applied in the

spatial frequency domain and hence by considering the averaged refrac-

tive index. Then, artificial reflections and transmissions occur, which can

be only eliminated by considering spatial and spectral information and re-

move the strict separation of the propagator into two operators. Since the

split step propagation scheme is limited to paraxial propagation, where



205

the vectorial effects are more or less negligible, an extension of the BPM

to vector fields is of limited benefit.

The VWPM is extended to bidirectional propagation of three-dimensional

electromagnetic vector fields in chapter 5. The bidirectional algorithm iter-

ates forward and backward and calculates the propagation of transmitted

and reflected electromagnetic vector fields along the axis of propagation.

The field distributions in one or two-dimensional gratings show remarkable

agreement with the results from RCWA, the multilayer theory and Snell’s

law as presented in various bidirectional simulations. The position of a

reflected Gaussian beam at a single interface perfectly agrees with the re-

sults from theory while the BPM shows a significant deviation which arises

from the paraxial limitation as shown in chapter 3. In case of multiple re-

flections, the analysis of Fabry-Perot resonators provides a criterion for a

minimum number of iterations which are necessary to obtain a desired de-

gree of accuracy. In homogeneous medium, the VWPM perfectly agrees

with the vectorial version of the plane wave decomposition (PWD). There-

fore, the unidirectional and bidirectional VWPM utilizes the vectorial PWD

in homogeneous medium to reduce the simulation time. A parallel algo-

rithm is presented in appendix C to further enhance the simulation speed

in inhomogeneous medium. The center equations of the parallel VWPM

scale linear with the number of threads and the sequential code sequences

possess a time-complexity of a one- or two-dimensional Fast Fourier trans-

formation. This yields a significant reduction in simulation time as shown

in appendix C.

In chapter 6, the Whittaker Kotelnikov Shannon (WKS) sampling theorem

is discussed and the effect of aliasing in the spectrum is shown in a sim-

ulation of an undersampled propagating Gaussian beam through vacuum.
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The diffraction order efficiency (DOE) is utilized to investigate the influ-

ence of the discretization of oblique interfaces in the axis of propagation

on the accuracy of the simulation. It is shown, that the amplitude deviates,

depending on the wavelength in the medium and the discretization of the

system in the axis of propagation δz. The normalized sampling interval δzλ
is introduced and it is shown that the amplitude deviation is below one per-

cent by selecting a sampling interval δz which is in the range of one tenth

of the wavelength (i.e. δzλ ≤ 0.1). Figure 5.3 shows a series of graphs to

get the number of iterations from a desired accuracy in the amplitude and

a given configuration of the refractive index.

Chapter 7 provides a detailed discussion of the energy conservation in

lossless and the absorption in lossy medium. The simulated power flux

perfectly agrees with the results from theory for homogeneous layers and

longitudinal index variations. In layers with lateral changes in the refractive

index (i.e. inhomogeneous layers), evanescent modes are generated in

the spectrum of the electric field which arise from local discontinuities the

electric field in agreement with Gibb’s phenomenon. It is shown that these

evanescent modes cause an increase in the power flux which violates the

conservation law. This observation agrees to various publications on the

treatment of evanescent modes in the BPM. As shown in chapter 7, the

electric field in a waveguide is dominated by growing evanescent modes,

if the entire spectrum is treated like propagating modes, using a purely

complex calculation as introduced in Appendix B.

Several methods of stabilization, which are partially known in the BPM, are

presented: First, a low-pass filtering of the system is utilized, which can not

stabilize the simulation under all circumstances. Due to the reduction of

discontinuities in the refractive index, the generation of high order modes is
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reduced. This is shown in simulations of step-index and GRIN waveguides.

The violation of the conservation law is not completely suppressed and

a stabilization of the power flux can therefore be only obtained for small

lateral variations in the refractive index and for small propagation distances

in agreement with the results in [29, 45].

Second, a clipping of evanescent modes at the space-dependent evanes-

cent boundary k⊥ = n(r)k0 is suggested to maintain the conservation law.

The method improves the stability of the power flux, but the energy which

is contained in the evanescent modes depends on the distribution of the

refractive index n(r). Dependent on the contrast of lateral index changes,

more or less energy is removed from a propagating electromagnetic field

by clipping at the space-dependent evanescent boundary. Since the power

of the electric field is distributed over the entire spectrum according to Par-

seval’s theorem, it is shown that the clipping of evanescent modes yields

to a loss of energy and thus a violation of the conservation law. A high in-

dex change causes a high drop in the power flux in lossless medium. This

dependency to the index distribution can be removed with a clipping of

modes at the evanescent boundary in vacuum k⊥ = k0. The conservation

law is then maintained for a wide range of contrast in the lateral variations

of the refractive index but a drop in the energy flux in lossless media is still

observed.

Third, the conservation law is maintained under all circumstances from an

energy-balanced clipping of modes. A constant power flux in lossless me-

dia is obtained in agreement with the theory under all circumstances but

the distribution of the electric field shows discontinuities due to the con-

trolled clipping of modes since the maximum angle of propagation changes

from layer to layer. Due to the varying angle of propagation and the inho-
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mogeneities in the electric field, the dynamic clipping is primarily of aca-

demic interest.

Forth, the evanescent transfer in the VWPM from chapter 3 is utilized to

maintain the conservation law. A stabilization of the power flux in loss-

less media is obtained from an identification of eligible configurations of

the propagation vectors as presented in chapter 3. The conservation law

is maintained from a suppression of evanescent-to-evanescent propaga-

tion at longitudinal interfaces. A stabilization of BPM-simulations from a

modified treatment of evanescent modes, compared to the treatment of

propagating modes, is also presented in the literature as described (refer

to chapter 7). The clipping at the evanescent boundary in vacuum and the

evanescent transfer in the VWPM provides the best results for maintaining

of the conservation law.

An optimization problem of practical interest is investigated with the VWPM

in chapter 8. The local absorption in a thin absorbing layer is derived from

the distribution of the electric field and from the distribution of the refrac-

tive index to optimize the efficiency of thin film solar cells by using one- and

two-dimensional diffraction gratings. In the first section, the discrete calcu-

lation of the local absorption is introduced. Then, the principle for the de-

tection of light in semiconductors is discussed and a brief overview on solar

cells is given. Referring to various publications, the use of diffractive struc-

tures for an enhancement in the absorption is then described. The VWPM

is subsequently utilized to determine the parameters of a two-dimensional

micrometer grating which yields an enhanced average absorption rate over

a wide spectral range. The results are compared to the absorption rates

without a grating and it is shown that the enhancement of the absorption

efficiency is in the range of 50 percent over nearly the entire spectrum by
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using an optimized twodimensional micrometer grating. The optimization

and control of the local absorption in thin films furthermore is desirable in

a wide range of other applications like wavelength division multiplexers,

add-drop filters, photo detectors and electro-optical modulators as shown

in [80, 81, 82].

9.1 Closing

The VWPM is suggested for the simulation of fully three-dimensional micro-

optical systems such as lenses, lens arrays, prisms, plastic structures, ab-

sorption filters etc. With rigorous solvers like the FDTD, the whole three-

dimensional E- and H-field has to be store in computer memory. For a

system which is 1024x1024x4000 pixels in size this means 4 Gigasam-

ples for each field component. With the Yee-scheme, three time slices

and three real field components for x, y and are needed. This requires

3x3x8 Bytes per sample for double precision, resulting in 288 GBytes of

memory, not counting the perfectly matched layers (PML). By cashing out

to hard disk, a speed factor of approximately 100 would be lost. Thus a

wave optical simulation with FDTD is practically not possible for this sys-

tem size. With the proposed VWPM, it would be possible, because the

system is calculated slice by slice. Also, the processing time is still rea-

sonable, compared to RCWA, since the time only grows with the forth order

of the samples while the time for the RCWA grows with the sixth order of

the modes. The threedimensional simulation of an electromagnetic vector

field which is composed from ten modes is then a hundred times faster

with the VWPM than with the RCWA.
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Appendix A

Fundamentals

A.1 Speed of light

The product µ0ε0µε, with [ε0] = As/(V m) and [µ0] = V s/(Am), relates to

the velocity v [m/s] of the EM wave

v2 =
1

µ0ε0µε

The speed of light in vacuum c[m/s] is then

c =
1

√
µ0ε0

ε0 = 1/36 ·π · 10−19 and µ0 = 4π · 10−7. The speed of light in a medium with

a refractive index n is

v2 =
( c
n

)2
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A.2 Transversality

With equation 2.29, the identical result is obtained for the magnetic field H

and the vectors wave equations are then

E = Ê0e
i(k·r−ωt)

H = Ĥ0e
i(k·r−ωt)

With these expressions, the rotation on the left side of the third (eq. 2.3)

and fourth (eq. 2.4) Maxwell equation transforms to

(∇× E)x =
∂Ez
∂y
− ∂Ey

∂z
= (k× E)x

(∇× E)y = −(
∂Ez
∂x
− ∂Ex

∂z
) = (k× E)y

(∇× E)z =
∂Ey
∂x
− ∂Ex

∂y
= (k× E)z

and

(∇×H)x =
∂Hz

∂y
− ∂Hy

∂z
= (k×H)x

(∇×H)y =
∂Hz

∂x
− ∂Hx

∂z
= (k×H)y

(∇×H)z =
∂Hy

∂x
− ∂Hx

∂y
= (k×H)z

Assuming a time independent ε and µ and Jc = 0 the equations transform

to

k× E = −µ0µωH

k×H = −ε0εωE

With a division by |bfk| = nk0, the expression transforms to

s× E = −µ0µvH

s×H = −ε0εvE
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using v = ω/k and with c/n = 1/
√
ε0εµ0µ yield

E = −
√
µ

ε
s×H

H = −
√
ε

µ
s× E

and with a scalar multiplication with s

E · s = H · s = 0

the transversality of the field is shown. The components E, H and k span

an orthogonal Cartesian coordinate system.

A.3 Discrete spatial derivatives

The space derivatives εx and εy, with ε = n2 are derived from the symmetric

average

εx(mδx, nδy) =
n2((m+ 1)δx, nδy)− n2((m− 1)δx, nδy)

2δx

εy(mδx, nδy) =
n2(mδx, (n+ 1)δy)− n2(mδx, (n− 1)δy)

2δy
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A.4 Absorption coefficient

The absorption coefficient α = 2κk0, with k0 = 2π/λ is the propagation

constant in vacuum, is derived from the irradiance I ≈ EE∗ and the com-

plex refractive index n̂ = n+ iκ according to

|E(δz)|2 = Ê0Ê
∗
0e
i2n̂k0δz

= Ê0Ê
∗
0e
i2(n+iκ)k0δz

= Ê0Ê
∗
0e
i(2nk0+i2κk0)δz

= Ê0Ê
∗
0e
−2κk0δzei2nk0δz

= Ê0Ê
∗
0e
−αδzei2kδz

A.5 Evanescent modes

A discrete mode (kx, ky) = (pδkx, qδky), with p ∈ {0, .., nx − 1} and q ∈
{0, .., ny − 1} is called evanescent if

0 > (nk0)2 − (k2
x + k2

y) = k2 − k2
⊥

⇔ k2
⊥ > (nk0)2

⇔ ((pδkx)
2 + (qδky)

2) > (nk0)2

⇔ 4π2(p2/X2 + q2/Y 2) > 4π2(n/λ)2

⇔ p2/X2 + q2/Y 2 > (n/λ)2

⇔X=Y p
2 + q2 > (n/λX)2

The evanescent radius of a square aperture is then Xn/λ, with n is the

real part of the complex refractive index n̂ = n+ iκ.
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A.6 Snell’s law

Snell’s law can be derived from the continuity of the tangential component

k⊥ of the incident (subscript ’e’) and transmitted (subscript ’t’) propagation

vector k according to

k⊥,e = k⊥,t

⇔ ke sin θi = kt sin θt

⇔ nek0 · sin θi = ntk0 · sin θt
⇔ ne · sin θi = nt · sin θt

A.7 Total internal reflection

In case of ni < nt the critical angle of total internal reflection (TIR) θc is

derived from Snell’s law according to

ni sin θi = nt sin θt

⇔ ni sin θi = nt

⇔ sin θc =
nt
ni

with θt = π/2.
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This assumption yields the evanescent modes

0 > (ntk0)2 − (k2
x + k2

y) = k2 − k2
⊥

⇔ 0 > 1− (k2
x + k2

y)/(ntk0)2

⇔ (k2
x + k2

y)/(ntk0)2 > 1

⇔ ((sin θt cosφ)2 + (sin θt sinφ)2) > 1

⇔ sin2 θt(cos2 φ+ sin2 φ) > 1

⇔ sin2 θt > 1

⇔ sin θt > 1

with θt = sin−1(ne/nt sin θe) is the angle of transmission and φ is the yaw

angle of the electromagnetic wave.

A.8 Fresnel coefficients for evanescent waves

The amplitude of a wave is derived from the conservation law (1 − r) = t

according to

kz,tt = kz,e(1− r)

⇔ kz,tt = kz,e − rkz,e
⇔ kz,tt = kz,e − (t− 1)kz,e

⇔ kz,tt = kz,e − tkz,e + kz,e

⇔ kz,tt+ kz,et = kz,e + kz,e

⇔ t(kz,t + kz,e) = 2kz,e

⇔ t =
2kz,e

(kz,t + kz,e)
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with k̂z,e =
√

(nk0)2 − k2
⊥+ i0 and k̂z,t = 0 + i

√
k2
⊥ − (nk0)2 (i.e. an evanes-

cent wave). The amplitude of the reflected wave is then

r =
k̂z,e − k̂z,t
k̂z,e + k̂z,t

derived from the substitution r = t− 1.

A.9 Energy flux in evanescent waves

The z-component of the propagation vector of an evanescent wave is

purely imaginary

cos θt = i
√

1− k2
⊥/(ntk0)2

because k2
⊥/(ntk0)2 > 1 for evanescent modes. In the two-dimensional

xz-case this transforms to

cos θt =
√

1− k2
x/k

2
t

=
√

1− sin2 θt

=
√

1− n2
e/n

2
t sin2 θi

=
√

1− sin2 θi/ sin2 θc

according to Snell’s law with θc is the critical angular of total internal reflec-

tion.

Hence, for all angles θi greater than θc an evanescent mode is obtained

due to the negative argument in the square root. Then, the z-component

of the propagation vector kz,t = ntk0 cos θt = ntk0

√
1− sin2 θi/ sin2 θc is a



232 APPENDIX A. FUNDAMENTALS

purely complex quantity which yields a purely complex cosines cos θt =

i
√

1− k2
⊥/(ntk0)2. The purely complex cosines is now applied to a three-

dimensional vector wave, propagating in the z-direction, which is com-

posed from forward (+) and backward (-) propagating TE- and a TM-components

of the E-field

E(r) = ETM(r) + ETE(r)

= (ex cos θt − ez sin θt)E
+
0,TMe

ik+·r +

(ex cos θt + ez sin θt)E
−
0,TMe

ik−·r +

ey(E
+
0,TEe

ik+·r + E−0,TEe
ik−·r)

and H-field

H̃(r) =
√
ε/µey(E

+
0,TEe

ik+·r + E−0,TEe
ik−·r) +√

ε/µ[(ex cos θt − ez sin θt)E
−
0,TMe

ik−·r −

(ex cos θt − ez sin θt)E
+
0,TMe

ik+·r]

The energy flux across the interface is calculated according to
∫
SdA with

dA is nδA and δA = δxδy is the area element. n is the surface normal and

S is the Poynting vector. Since the wave propagates along the z-axis, the

flux at location r⊥ is

P (r⊥) = Sz(r⊥)δxδy = (Ex(r⊥)Hy(r⊥)∗ − Ey(r⊥)Hx(r⊥)∗)δxδy

with Sz is the z-component of the Poynting vector, which is gained from

the scalar multiplication of S with n = ez. The energy flux for evanescent

waves is zero in average due to purely imaginary cosines terms and the

phase shift of ±π/2 between Ex = cos θt(E
+
0,TMe

ik+·r + E−0,TMe
ik−·r) and

H∗y = E+
0,TEe

ik+·r +E−0,TEe
ik−·r as well as Ey = E+

0,TEe
ik+·r +E−0,TEe

ik−·r and

H∗x =
√
ε/µ cos θt(E

−
0,TMe

ik−·r − E+
0,TMe

ik+·r).
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Vector wave propagation method

B.1 Complex Fresnel coefficients of transmis-

sion

With the conservation law t = 1 + r, the Fresnel amplitude coefficients

can be derived and then transformed to an expression which shows the

dependency to the surface normal n and the propagation vector k

tTE(k⊥, r⊥) =
2ne cos θe

ne cos θe + nt cos θt

=
2nek0 cos θe

nek0 cos θe + ntk0 cos θt

=
2n · ke

n · ke + n · kt
=

2kz,e
kz,e + kz,t

233
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with ne is the refractive index before and nt is the refractive index behind a

longitudinal interface along the axis of propagation. θe is the angle of inci-

dence and θt the angle of transmission. For lossy or gaining medium, the

refractive index n̂t = nt + iκt is complex and by consideration of a complex

k̂z = kz + iγz, a complex transmission coefficient for the TE-component of

the field is obtained

t̂TE(k⊥, r⊥) =
2k̂z,e

k̂z,e + k̂z,t

with k2
z,t = n2k2

0 − (k2
x + k2

y). In case of a positive sign in the square root

of kz,t, Fresnel transmission is obtained. A negative sign yields Lenserf

transmission as discussed in [36].

The real-valued Fresnel coefficient of transmission for the TM-component

is

tTM(k⊥, r⊥) =
2ne cos θe

ne cos θt + nt cos θe

=
2nentn · ke

n2
tn · ke + n2

en · kt

=
2nentkz,e

n2
ekz,t + n2

tkz,e

and then transforms to the complex Fresnel coefficient

t̂TM =
2n̂en̂tk̂z,e

n̂2
tkz,e + n̂2

ek̂z,t

in case of a lossy or gaining medium and including the range of k for

evanescent waves. The complex treatment of the Fresnel coefficients

yields an interesting detail. In case of a lossy or gaining medium (i.e.

κ 6= 0), the refractive index always introduces a phase shift because κ/n 6=
0. This is the reasoning for the so called Goos-Hänchen Shift.
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B.2 Transfer matrix of transmission

Using the complex quantities in the transformations in chapter 3 and 5, the

propagation for the entire range of spatial frequencies can be calculated.

Then, evanescent modes are treated like propagating modes. Inserting

the unity vectors of the TE- and TM-component in equation 3.20 to 3.22

and using the complex refractive index and the complex propagation

vector, equation 3.19 is expressed by

ẼTE,e = Ẽ(k⊥) · eTE

=


Ẽx

Ẽy

Ẽz

 · 1

k⊥


−ky
kx

0


=

1

k⊥

(
Ẽykx − Ẽxky

)
ẼTM,e = Ẽ(k⊥) · eTM,e

=


Ẽx

Ẽy

Ẽz

 · 1

kek⊥


kxk̂z,e

kxk̂z,e

−k2
⊥


=

1

k⊥ke

(
Ẽxkxk̂z,e + Ẽykyk̂z,e − Ẽzk2

⊥

)
Eliminating the z-component with the transversality condition then gives

ETM,e =
1

k⊥kek̂z,e

(
Ẽx
(
kxk

2
z,e + k′xk

2
⊥
)

+ Ẽy
(
kyk

2
z,e + k′xk

2
⊥
))

and by inserting the terms into equation 3.17 the expression transforms to
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Ẽt(k⊥, r⊥) =
Ẽx
k2
⊥

 t̂TM

kektk̂z,e
(kxk̂

2
z,e + k′xk

2
⊥)


kxk̂z,t

kyk̂z,t

−k2
⊥

− t̂TEky

−ky
kx

0


+

Ẽy
k2
⊥

 t̂TM

k̂ektk̂z,e
(kyk̂

2
z,e + k′yk

2
⊥)


kxk̂z,t

kyk̂z,t

−k2
⊥

+ t̂TEkx


−ky
kx

0




This expression depends on the transversal components of the electrical

field vector. Inserting expressions for k′x and k′y (eq. 3.16) and reordering

by the transversal components Ẽx and Ẽy, the complex 3x3 transfer matrix

of transmission M is

M̂(3)(k⊥, r⊥) =
1

k2
⊥


k2
y t̂TE + k2

xt̂
′
TM(1− iε̂x,e) kxky(t̂

′
TM(1− iε̂y,e)− t̂TE)

kxky(t̂
′
TM(1− iε̂x,e)− t̂TE) k2

xt̂TE + k2
y t̂
′
TM(1− iε̂y,e)

−t̂′TMkx(1− iε̂e,x)k2
⊥/k̂z,t −t̂′TMky(1− iε̂e,y)k2

⊥/k̂z,t


with

ε̂x,t = ft
εx,t
kx

, ε̂y,t = ft
εy,t
ky

ft =

(
k⊥
ntkt

)2

, kt = ntk0

and

t̂′TM =
n̂ek̂z,t

n̂tk̂z,e
t̂TM

The VWPM utilizes the 2x2 sub-matrix and derives the z-component after

the propagation step. With the definition of t̂TM , equation 3.26 simplifies

to

t̂TM =
2n̂2

ek̂z,t

n̂2
t k̂z,e + n̂2

ek̂z,t
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In case of vertical incidence (i.e. k⊥ = 0), the transfer matrix is singular

and the transfer is obtained from the diagonal matrix

M̂(0, r⊥) =

(
t̂(r⊥) 0

0 t̂(r⊥)

)

with t̂(r⊥) = t̂TE(r⊥,k⊥ = 0) = t̂TM(r⊥,k⊥ = 0) is the space-dependent

complex Fresnel transmission coefficient for vertical incidence.

B.3 Magnetic vector

For plane waves, the magnetic vector H is derived from the electric vector

E from equation 2.40 on page 34 according to

H = q (s× E)

= q/k


kyEz − kzEy
−(kxEz − kzEx)
kxEy − kyEx


with q =

√
ε0ε/µ0/µ = n/µ/Z0 and k = nk0. A substitution of Ez with the

expression in equation 3.16 yields

H = q/k


ky/kz(Exk

′
x + Eyk

′
y)− kzEy

−(kx/kz(Exk
′
x + Eyk

′
y)− kzEx)

kxEy − kyEx



= q/k/kz


−kyk′x −(kyk

′
y + k2

z)

(kxk
′
x + k2

z) kxk
′
y

−kykz kxkz

 · E(2)

which is equal to the matrix T in equation 3.40.
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B.4 Energy Flux

On complex fields E and H, the time average of the Poynting vector 〈S〉T
is derived according to

〈S〉T =
1

2
Re {E×H∗} [J/s/m2 = W/m2]

and the energy flux through an aperture A in is then

P =

∫
A

〈S〉T d
2A [W ]

With the definition of 〈S〉T and d2A = nd2r⊥ = ezd
2r⊥, with ez is the surface

normal and with µ̂ = µ+ i0 and k̂z = kz + i0, the energy flux of plane waves

per area is then

∂P

∂A
= 〈S〉T · ez
= 〈0Sx + 0Sy + 1Sz〉T
=

1

2
Re
{
ExH

∗
y − EyH∗x

}
=

1

2µZ0kzk0

Re
{
Ex
[
E∗x(k

2
x + k2

z) + E∗y(kxky)
]

+ Ey
[
E∗x(kxky) + E∗y(k

2
y + k2

z)
]}

=
1

2µZ0kzk0

Re
{
k2
z(ExE

∗
x + EyE

∗
y) + k2

x(ExE
∗
x) + 2kxky(ExE

∗
y) + k2

y(EyE
∗
y)
}

=
1

2µZ0kzk0

Re
{
k2
z(ExE

∗
x + EyE

∗
y) + (kxEx + kyE

∗
y)

2
}

=
1

2µZ0kzk0

Re
{
k2
z(ExE

∗
x + EyE

∗
y) + k2

z(EzE
∗
z )
}

=
1

2µZ0k0

kzEE
∗

=
1

2µZ0k0

kz|E|2 [W/m2]

with Z0 = 376.82 [Ω] is the impedance of the vacuum.
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B.5 Fresnel coefficients of reflection

The complex Fresnel coefficients or reflection for the TE-component r̂TE
and the TM-component r̂TM are derived from the surface normal n and the

propagation vector k according to

r̂TE(k⊥, r⊥) =
n · ke − n · kt
n · ke + n · kt

r̂TM(k⊥, r⊥) =
n̂2
tn · ke − n̂2

en · kt
n̂2
tn · ke + n̂2

en · kt

With the surface normal n and n · k = kz = |n||k| cos θ, |n| = 1 and |k| =

nk0, the well known formulation from equation 2.68 can be obtained from

a division by k0. Another formulation which depends on the the complex

z-component of the propagation vector k̂z = nk0 cos θ is

r̂TE(k⊥, r⊥) =
k̂z,e − k̂z,t
k̂z,e + k̂z,t

r̂TM(k⊥, r⊥) =
n̂2
t k̂z,e − n̂2

ek̂z,t

n̂2
t k̂z,e + n̂2

ek̂z,t

with n̂t = nt + iκt and a complex k̂z,t =
√

(ntk0)2 − (k2
x + k2

y) which is

also defined for negative arguments in the square root. Again, in case

of a gaining or absorbing medium, a positive sign for k̂z,t yields the laws

of Fresnel transmission and reflection and with a negative sign Lenserf

transmission and reflection is obtained. In the latter case all observations

on gain and decay of waves are reverted as shown in [36].
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B.6 Transfer matrix of reflection

The transfer matrix of reflection is calculated from equation 5.16 on page 99.

The subscript e indicates the incident layer and the subscript t indicates the

transmitted layer. The vectors of unity for the TE-and TM-component are

taken from 3.20 and 3.21 on page 61 and the z-component of the electric

field is substituted by equation 3.16. The scalar TE- and TM-components

are then equal to the transmitted, which are introduced above. Eliminating

the z-component in the scalar TM-component gives

ETM,e =
1

k⊥kek̂z,e

(
Ẽx

(
kxk̂

2
z,e + k′xk

2
⊥

)
+ Ẽy

(
kyk̂

2
z,e + k′xk

2
⊥

))

and inserting the terms into equation 5.16 yields

Ẽ−e =
r̂TE
k2
⊥

(
Ẽykx − Ẽxky

)
−ky
kx

0

+
r̂TM
k2
ek

2
⊥

(
Ẽxkxk̂z,e + Ẽykyk̂z,e + k2

⊥
Ẽxk

′
x + Ẽyk

′
y

k̂z,e

)
kxk̂z,e

kyk̂z,e

−k2
⊥



Reordering the expression by the x- and y-component of Ẽe yields the

complex transfer matrix of reflection R̂

Ẽ−e = R̂ · Ẽ(2)
e

=
1

k2
⊥


r̂TEk

2
y + r̂TMk

2
x(1− iε̂x) (r̂TM(1− ε̂y)− r̂TE)kxky

(r̂TM(1− ε̂x)− r̂TE)kxky r̂TEk
2
x + r̂TMk

2
y(1− iε̂y)

−r̂TMkx(1− iε̂x)k2
⊥/k̂z,e −r̂TMky(1− iε̂y)k2

⊥/k̂z,e

 · Ẽ(2)
e
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with E(2) is the transversal subvector of E and ε̂x = εxk
2
⊥/ε/k

2
e/kx, ε̂y =

εyk
2
⊥/ε/k

2
e/ky, k′x = kx−iεx/ε, k′y = ky−iεy/ε and εx = ∂ε/∂x, εy = ∂ε/∂y are

the space derivatives of ε(r⊥) (i.e. the x- and y-component of grad(ε)). This

is the transfer matrix of reflection as shown in equation 5.20 on page 100.
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B.7 Energy flux of a TE-polarized wave in homo-

geneous medium

Let a TE-polarized wave be assigned to the y-component Ey of the electric

field due to the definition of the coordinate system. Then, ky = 0 and the

energy flux per area is

∂PTE(r⊥,k⊥)

∂A
=

1

2
Re

{
E×

(
1

µ̂Z0k0

(k× E)

)∗}
· n

=
1

2
Re



Ex

Ey

Ez

×
 1

µ̂k0Z0



kx

ky

k̂z

×

Ex

Ey

Ez




∗ · n

=
1

2Z0k0

Re




0

Ey

0

×
 1

µ̂


−k̂zEy

0

kxEy



∗ · n

=
1

2k0Z0

(EyE
∗
y)Re

{
k̂∗z
µ̂∗

}

with n = (0 0 1)T , k̂z = kz + iγz, a complex µ̂ and by setting Ex = Ez = 0.

For perpendicular incidence k̂z = n̂k0 and then

∂PTE(r⊥, 0)

∂A
=

1

2Z0

(EyE
∗
y)Re

{
n̂∗

µ̂∗

}
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B.8 Energy flux of a TM-polarized wave in homo-

geneous medium

Let a TM-polarized wave be assigned to the Ex- and Ez-component of E

due to the definition of the coordinate system. Then, ky = 0 and the energy

flux is

∂PTM(r⊥,k⊥)

∂A
=

1

2
Re

{
E×

(
1

µ̂Z0k0

(k× E)

)∗}
· n

=
1

2Z0k0

Re



Ex

Ey

Ez

×
 1

µ̂


kyEz − k̂zEy
−(kxEz − k̂zEx)
kxEy − kyEx



∗ · n

=
1

2Z0k0

Re



Ex

0

Ez

×
 1

µ̂


kyEz

k̂zEx − kxEz
−kyEx



∗ · n

=
1

2Z0k0

Re

{
Ex

(
(k̂zEx − kxEz)

µ̂

)∗}

=
1

2Z0k0

Re

{
Ex

(
1

µ̂

(
k̂zEx +

k2
xEx

k̂z

))∗}
=

1

2Z0k0

Re

{
Ex

(
k2
x + (k̂∗z)

2
) E∗x

µ̂∗k̂∗z

}

=
k0

2Z0

ExE
∗
xRe

{
(n̂∗)2

µ̂∗k̂z
∗

}

with n = (0 0 1)T , k̂z = kz + iγz, a complex µ̂ and by setting Ey = 0. For

perpendicular incidence, k̂z = n̂k0 and then

∂PTM(r⊥, 0)

∂A
=

1

2Z0

(ExE
∗
x)Re

{
n̂∗

µ̂∗

}
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Hence, for equal amplitudes, the energy flux of a TE- and TM-polarized

wave is equal at perpendicular propagation.
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Figure B.1: Fresnel coefficient of reflection (top) and transmission (bottom)

for internal reflection with ne = 1 + i0 and nt = 1.1 + i0.
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Figure B.2: Absolute of the Fresnel coefficient of reflection (top) and trans-

mission (bottom) for internal reflection with ne = 1 + i0 and nt = 2 + i0.
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Figure B.3: Fresnel coefficients, mode index ix, angle of incidence τ and

transmitted complex z-component of the propagation vector k̂z,t for iy = 0

(i.e. 2D-case) for X = 8 [µm], nx = 32, λ = 1 [µm], ne = 1 and nt = 1.1.
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Appendix C

Multithreaded bidirectional
VWPM

The WPM performs an integration of locally deformed plane waves over

each location r⊥ and the entire range of spatial frequencies k⊥. There-

fore, the time-complexity of the WPM and the VWPM is higher than the

time-complexity of the BPM. The VWPM and the WPM is in O(n2) in the

two-dimensional and in O(n4) in the three-dimensional case, with n is the

number of samples.

C.1 Multithreaded wave propagation

The wave propagation scheme provides an intuitive and efficient way to

distribute the calculation. The parallel algorithm utilizes the concept of

249
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spatial parallelism which is introduced in the next section.

C.1.1 Spatial and spectral parallelism

A parallel algorithm identifies a set of parameters and associated mem-

ory which is suitable to be distributed over T processes. The parame-

ters are selected such that a minimum of identical information needs to

be calculated by each thread. The number of synchronization points (i.e.

communication) should be small in order take the most benefit from the

parallelization and avoid locking situations and communication overhead.

The complexity of the code sequences for each thread should be balanced

in order to ensure the fastest progress and avoid starving.

C.1.2 Spectral parallelism

In the spectral parallelism a set of transversal spatial frequencies k⊥ is

distributed over T threads or distributed processes according to

k
(t,x)
⊥ ∈

{
k⊥(t

nx
T
, 0), .., k⊥((t+ 1)

nx
T
− 1, ny − 1)

}
k

(t,y)
⊥ ∈

{
k⊥(0, t

ny
T

), .., k⊥(nx − 1, (t+ 1)
ny
T
− 1)

}
k

(t,xy)
⊥ ∈

{
k⊥(t

nx
Tx
, t
ny
Ty

), .., k⊥((t+ 1)
nx
Tx
− 1, (t+ 1)

ny
Ty
− 1)

}
with TxTy = T and 0 ≤ t < T and nx, ny are the number of samples in the

x and y axis. The first and second distribution of the spectral parallelism is

one-dimensional, the third describes a two-dimensional parallelism. The
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spectral parallelism is of interest in a parallel version of the BPM. The WPM

and VWPM prefer the concept of spatial parallelism since each position in

the aperture considers the entire spectrum.

C.1.3 Spatial parallelism

In the spatial parallelism, a set of transversal locations r⊥ is distributed

over T threads or distributed processes according to

r
(t,x)
⊥ ∈

{
r⊥(t

nx
T
, 0), .., r⊥((t+ 1)

nx
T
− 1, ny − 1)

}
r

(t,y)
⊥ ∈

{
r⊥(0, t

ny
T

), .., r⊥(nx − 1, (t+ 1)
ny
T
− 1)

}
r

(t,xy)
⊥ ∈

{
r⊥(t

nx
Tx
, t
ny
Ty

), .., r⊥((t+ 1)
nx
Tx
− 1, (t+ 1)

ny
Ty
− 1)

}
with TxTy = T and 0 ≤ t < T and nx, ny are the number of samples in the

x and y axis. The first and second distribution of the spectral parallelism is

one-dimensional, the third describes a two-dimensional distribution which

can be used to apply a useful clustering of the system to maximize homo-

geneous areas which are then computed with the faster PWD (eq. 3.10).

C.2 Algorithm

In the parallel algorithm of the VWPM, a main thread performs the Fourier

transformation and distributes the system N (chapter 3) to the worker

threads prior to the processing of a layer. In case of a propagation through

homogeneous medium in the incident and transmitted layer, the main thread
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gathers the phase adjusted Fourier coefficients and then performs the in-

verse Fourier transformation according to equation 3.5.1. In inhomoge-

neous medium, the system is distributed according to the spatial paral-

lelism and each thread performs the algorithm of the VWPM in chapter 3

and 5.

The system N is identical to the system in chapter 3 and 5. Each layer

j has a layer of incidence j − 1 and a layer of propagation j. In case

of bidirectional propagation, all reflected waves E−(r) at all interfaces are

initialized to zero.

The incident wave is considered in front of and in direct contact with the

boundary between layer j − 1 and j. The first step performs the Fourier

transformation of the propagating E
(2)
j−1 and reflected E

(2)−
j electric field

according to

E
(2)
j−1(x, y) =

(
Ex,j−1

Ey,j−1

)
=⇒FFT

(
Ẽx,j−1

Ẽy,j−1

)
= Ẽ

(2)
j−1(kx, ky)

and

E
(2)−
j (x, y) =

(
Ex,j

Ey,j

)
=⇒FFT

(
EX−j (kx, ky)

EY −j (kx, ky)

)
= Ẽ

(2)−
j (kx, ky)

with x = mδx, y = nδy and kx = pδkx, ky = qδky. The layers j − 1 and j of

the system N are then accessed in shared memory by the worker threads

and in a second step the space- and frequency-dependent transforma-

tion matrix of reflection R(t) and transmission M(t) is calculated by each

thread for the assigned locations r
(t)
⊥ = (x, y)(t) = (mδx, nδy)(t) and for

the entire range of spatial frequencies k⊥ = (kx, ky) = (pδkx, qδky). The

reflected amplitudes in layer j − 1 and the transmitted amplitudes in layer
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j are then derived by each child thread from the spectrum according to(
WX−j−1(p, q, (m,n)(t))

WY −j−1(p, q, (m,n)(t))

)
:=

(
R(t) · Ẽ(2)

j−1

)
e+ik⊥·r⊥

and (
EX+

j (p, q, (m,n)(t))

EY +
j (p, q, (m,n)(t))

)
:= M(t) · Ẽ(2)

j−1

The spatial derivatives εj,x and εj,y in R(t) and M(t) are derived from equa-

tion 3.33.

After the transfer at the interface with M(t), the reflected two-dimensional

spectrum in layer j, EX−j and EY −j is accumulated to the transmitted spec-

trum EX+
j and EY +

j and the two-dimensional plane wave components are

then (
WX+

j (p, q, (m,n)(t))

WY +
j (p, q, (m,n)(t))

)
=

((
EX+

j

EY +
j

)
+

(
EX−j

EY −j

))
e+ik⊥·r⊥P(t)

with the thread-specific (i.e. space-dependent) phase element

P(t) := P(kx, ky, (x, y)(t))

:= eiδzkz,j

:= eiδz
√

(nj(x,y)k0)2−((kx)2+(ky)2)

With WX+
j and WY +

j , the electric field of a mode k⊥ at a distance δz

behind the interface at a location r⊥ in the aperture is known. The z-

component WZ+
j in layer j and for each spatial frequency is then obtained

by each thread for the assigned locations from equation 3.16.

The propagated magnetic field vector of a spatial frequency is then derived
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from the x- and y-component of the electric field according to
HXj(p, q, (m,n)(t))

HYj(p, q, (m,n)(t))

HZj(p, q, (m,n)(t))

 := T(t) ·

(
WX

+(t)
j

WY
+(t)
j

)

The spatial three-dimensional electrical Ej and magnetic Hj field in layer

j is then obtained by each thread from a summation over all frequencies

Ej((x, y)(t)) :=
1

nxny

∑
p

∑
q


WX

+(t)
j

WY
+(t)
j

WZ
+(t)
j



Hj((x, y)(t)) :=
1

nxny

∑
p

∑
q


HX

+(t)
j

HY
+(t)
j

HZ
+(t)
j


The reflected electric field in layer j − 1 is obtained from a parallel calcula-

tion of equation 5.33 and a summation of all space-dependent fields

E−j−1((x, y)(t)) :=
1

nxny

∑
p

∑
q


WX

−(t)
j−1

WY
−(t)
j−1

WZ
−(t)
j−1


The propagated Ej((x, y)(t)) and reflected wave E−j−1((x, y)(t)) is then passed

to the main thread. The algorithm then proceeds with the next layer j + 1.

Again, the (j − 1)-th reflected field contributes to the processing of the j-

th layer in the opposite direction. In the program code, the index j − 1 is

replaced with j − d with d ∈ {−1, 1} indicates the direction of propagation.

The algorithm iterates with an increasing order of layers for d = 1 and with

a decreasing order of layers for d = −1. d is negated (i.e. d = −d) if j = 1

or j = nz − 1.
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Figure C.1: Time-complexity of the multithreaded two-dimensional VWPM

with eight threads (left) versus singlethreaded VWPM (right) for up to 1024

samples.
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C.3 Time-Complexity

By using T worker threads, the complexity for the multithreaded VWPM is

still in O(n2) in the two-dimensional and in O(n4) in the three-dimensional

case but the computation time for the calculation of the electric fields at

each location in the aperture r⊥ divides by the number of child threads T

and thereby scales linear with the number of threads.

The Fourier transformation at the beginning of each iteration is the only

synchronization point with a sequential program code. The comparison of

the time-complexity in iterations, based on the number of samples n, for

the multithreaded and singlethreaded algorithm is shown in figure C.1.

In figure C.2, the comparison to the VBPM from chapter 4 shows that the

split step propagation scheme is still faster. This is reasonable because

the logarithmic complexity of the Fast Fourier Transformation cannot be

reached with a linear clustering of nxny samples.
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Figure C.2: Time-complexity of the multithreaded two-dimensional VWPM

and eight threads (left) versus singlethreaded VBPM (right) for the simula-

tion of one iteration and up to 32 samples.
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C.3.1 Selected scenarios

Figure C.3 compares the runtimes for the bidirectional three-dimensional

simulation of the two-dimensional grating which is shown figure 3.6 in

chapter 5 for two different algorithms. The runtimes in seconds over the

number of threads for the multithreaded bidirectional VWPM which uses

the PWD in homogeneous medium in the left subplot are compared to

the results which are obtained from a multithreaded bidirectional VWPM

in the right subplot. The combined use of the VWPM and the PWD yields

a faster simulation since the two-dimensional grating scene contains large

homogeneous areas.

In case of the oblique interfaces from chapter 5, less homogeneous area

exist and the combined use of VWPM and PWD does not show such a

significant improvement. A two-dimensional simulation in the x- and z-axis

for one up to eight threads is compared in figure C.4. The runtime of the

simulations with the PWD in homogeneous medium in the left subplot is
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Figure C.3: Comparison of runtimes for a multithreaded simulation of a

two-dimensional grating with 642 modes, utilizing the multithreaded VWPM

with PWD in homogeneous medium (left) and the multithreaded VWPM

(right).
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compared to the runtime of the multithreaded unidirectional VWPM without

the PWD in the right subplot. The runtimes are almost identical due to the

absence of large homogeneous areas.

C.4 Multithreaded split step propagation

The parallel algorithm of the wave propagation scheme distributes each

layer over a number of T threads according to the spatial parallelism. In

case of the split step propagation scheme, this approach is only appli-

cable to the phase adjust operator S, because S operates in the spatial

domain. The concept of spatial parallelism is not applicable to the spa-

tial frequency domain and the use of the diffraction operator D, because

D operates in the spatial frequency domain and on the average refractive

index n̄. Hence, no space-dependent information exists. The concept of
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Figure C.4: Comparison of runtimes for a multithreaded unidirectional sim-

ulation of a slanted boundary with 512 modes, utilizing the PWS (left) and

the VWPM (right) in homogeneous layers.
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spectral parallelism is therefore recommended to distribute the calculation

of the diffracted spectrum in a homogeneous medium as performed in the

parallel version of the PWD (eq. 2.62), which is utilized in the simulations

of the previous section. The phase adjustment in the second step of the

split step scheme is performed in the spatial domain and the calculation is

therefore distributed over a number of threads by using the spatial paral-

lelism.

The twofold application of spatial and spectral parallelism generates two

synchronization points in the algorithm - the forward Fourier transformation

(F) prior to the application of D and the inverse Fourier transformation

(F−1) prior to the application of S. This reduces the benefit of the parallel

approach for a low number of samples. The equation for the multithreaded

BPM is then

E (~r⊥; z + dz) = S(r
(t)
⊥ , dz)F

−1
{
D̃(ν

(t)
⊥ , dz)F {E (r⊥; z)}

}
using spatial (r(t)

⊥ ) and spectral (ν(t)
⊥ ) parallelism.
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