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Chapter 1

General Introduction

This thesis consists of four self-contained papers linked by one common topic: the interac-

tion of human capital, fertility and the macroeconomic environment. We start by looking

at an economy characterized by dismal social and economic conditions: low life expectancy,

high mortality, little investment into human capital, low income, and high fertility. In the

first two chapters, we examine the development path from a Malthusian trap to a Solowian

economy and make an attempt to provide possible explanations which forces could have

potentially shaped this process. To focus only on the link between human capital, fertility

and survival probabilities, we deliberately ignore the issue of physical capital accumula-

tion which will be brought back in chapters 4 and 5. Then we move on to an economy

with fundamentally different conditions. We look at the problems of an aging but devel-

oped economy. The challenges faced by these economies are radically different from those

described above. Now, the problem is not that short lives and frequent diseases make in-

vestment into human capital economically unviable but rather that long living and healthy

centenarians exert financial pressure on our social security systems. The disincentive to

invest into human capital stems now from high taxation rather than from a short planning

horizon. Capital dilution due to high fertility rates is no longer the problem but we worry

that currently low fertility rates may endanger the fiscal sustainability of the pay-as-you-go

pension systems and lead to distributional conflicts between old and young. No matter

at which situation we look, it is evident that the answer is likely to be dominated by the

interaction of these variables.

1



2 CHAPTER 1. GENERAL INTRODUCTION

The following sections contain a short non-technical summary of each chapter. Proofs and

technical details are provided directly at the end of each chapter. Due to the fact that

a part of the literature is common to all chapters, references are provided in one single

chapter at the end of the thesis.

1.1 From Malthus to Modern Growth: Child Labor,

Schooling and Human Capital

Chapter 2 develops a dynamic general equilibrium model of fertility, human capital accumu-

lation, child labor and uncertain child survival focusing on the qualitative and quantitative

effect of declining child mortality on household decisions and economic development. Due

to uncertainty about child survival, parents have a precautionary demand for children.

Rising survival probability leads to falling fertility, eventually to investment into schooling

and the demise of child labor. Child labor can be an obstacle to development since it low-

ers the incentives of parents to educate children. Furthermore, we argue that the decline

of precautionary child demand as a consequence of falling mortality is not sufficient to

generate a demographic transition. Falling mortality can only explain a relatively small

part of the fertility decline. A sizable reduction in fertility can only be achieved by human

capital investment and the induced quantity-quality trade off.

The modeling environment follows the literature by allowing families to choose their con-

sumption level, number and quality of their children. Children’s quality is measured by

the level of their human capital which is the result of time investment into a human capital

formation technology. At the same time, parents choose the level of child labor: children

can thus contribute to their families’ income. They can simultaneously work and go to

school, as long as their total time budget is not exhausted. For the parents’ utility func-

tion we assume that it is increasing in their own consumption, the number and quality

of their surviving children but decreasing in the level of children’s labor supply. Thus,

parents face a trade-off between higher consumption and the disutility from child labor.

Further, by having working children, they sacrifice some potential utility gain from en-

dowing them with human capital. Since the survival of children is uncertain, parens have

a precautionary demand for children. This means that in times of high child mortality,



1.2. WHY SCHOOLING BECAME OPTIMAL 3

parents will have high fertility. High fertility implies that child labor can be a large source

of family income whereas child education is relatively expensive. Especially, if the human

capital technology to be productive requires some minimum level of investment per child,

investing in children’s human capital can be virtually infeasible. They simply cannot afford

to endow each child with that minimum educational requirement. In times of low death

probabilities, the optimal number of children is lower, potential income from child labor

is also lower and parents can afford a higher level of education per child. If this level is

above the minimum threshold, parents start investing into child education and decrease

child labor supply. This serves as an accelerator of the development process, fueling further

acquisition of human capital by future cohorts. This in turn will lead to lower mortality

for the next generation and the dynamic process will lead the economy towards a steady-

state with low child mortality, low fertility and high educational investment. The chapter’s

contribution to the literature is twofold. Firstly, it is the first paper to bring together the

quantity-quality decision of children and child labor in an analytically tractable framework

with uncertainty. Secondly, the paper provides quantitative evidence on the contribution

of falling mortality, rising schooling and the role of child labor to the demographic tran-

sition. Using historical macro-data as benchmarks, we calibrate the model and show that

the decrease of precautionary demand for children as a consequence of falling mortality is

able to explain a small drop in fertility but it is unlikely to be the main driving force of

the demographic transition.

1.2 Human Capital and the Demographic Transition:

Why Schooling Became Optimal

As opposed to the previous chapter, here we focus on the implications of rising adult life

expectancy and its role for human capital investment and fertility. Moreover, we propose an

explanation how a schooling system could emerge without the intervention of a government.

We show that if parents invest their own time into children’s human capital, rising adult

life expectancy always increases fertility. If children are educated in schools and parents

pay tuition fees, fertility will fall. Furthermore, parents deciding to send their children to

a school have – for any life expectancy – fewer children and invest more in their human
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capital. Without a schooling system, rising life expectancy therefore initially increases

fertility. As life expectancy rises during the development process, a schooling system will

be endogenously adopted and the relationship between fertility and longevity reversed. We

argue therefore that it is important to account for the change in the nature of the costs of

child education: from time costs to monetary costs.

We use a simple life cycle model in which adults differ with respect to their productivity on

the labor market and decide about consumption, investment into adult and child human

capital and the number of children. They also have the choice to invest some of their own

time into the human capital of their children. Alternatively, they can send their offspring

to a school and pay tuition fees. Agents’ utility function closely follows the setup from

the previous chapter. Parents like consumption over their life-cycle and a quality-quantity

composite of children.

Using this setup we show that if parents increase children’s human capital by using their

own time, fertility will unambiguously increase. The economic explanation is that as adult

life expectancy increases, this additional lifetime can be used to work and thus consume

more or have more children. By concavity of utility in consumption and children, the agent

will distribute the additional lifetime on both. The reaction of agents deciding to send

their offspring to a school is, however, ambiguous. If parental human capital is sufficiently

productive and the agents’ utility in the quality-quantity composite is sufficiently concave,

fertility decreases. This comes from the fact that the price of education is now fixed and

does not increase with parental investment into adult human capital. In other words, if

parents spend their own time to enhance children’s human capital, rising life expectancy

increases the price of quality and quantity. With investment into child human capital via

a school, increasing adult human capital increases only the opportunity costs of quantity

but leaves the price of education unchanged. Thus, if parental human capital is sufficiently

productive and the marginal valuation of an additional child is rather low, the rising relative

price of quantity will bias the parental decision toward more investment into quality and

decrease the number of offspring. Furthermore, we show that not only the reaction of

agents with respect to change in their life expectancy differs across educational systems:

parents choosing the school system will – for any life expectancy – decrease fertility and

increase investment into both types of human capital.
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The decision which system to adopt depends on the ability level of each parent. Initially

agents have low life expectancy and only high ability parents will afford education via a

formal schooling system. As the economy develops and life expectancy rises, also less able

agents will be able to purchase schooling. Thus, more parents will opt for the formal sys-

tem. For initially low life expectancy fertility increases due to the fact that the economy

is dominated by families investing own time into children’s education. Later, as the share

of agents participating in the schooling system reaches a threshold value, the relationship

between fertility and life expectancy changes on the aggregate level. Thus, the key contri-

bution of this paper is to provide a novel explanation for the fertility transition and the

endogenous appearance of a mass schooling system in an otherwise rather standard model.

The explanation is based on a change in the nature of investment in child quality from

time costs to monetary costs. We thus propose a theory why a formal schooling system

emerged endogenously without a state intervention on a large scale. We do not, however,

make the next step and model why the society – via government and parliament – decided

set up a free public schooling system financed by taxes. The extension by such a political

economy element is left for future research.

1.3 Mortality, Fertility, Education and Capital Accu-

mulation in a Simple OLG Economy

In the final two chapters of this thesis we move on to a developed economy. We reintroduce

physical capital into the economy but assume now that fertility is exogenous. In chapter 4

we develop a simple two-period OLG model with exogenous fertility and mortality in the

spirit of Diamond (1965) to analytically show that aging leads to increased educational

efforts through a general equilibrium effect. The mechanism is that scarcity of raw labor

increases the return of human capital relative to physical capital. While a reduction in the

birth rate is shown to unambiguously increase educational efforts, increases in the adult

survival rate have ambiguous effects. Falling birth rates also increase capital per worker but

the effects of rising survival rates are again ambiguous. Therefore we argue that our model

is a useful laboratory to highlight potentially offsetting effects in models with endogenous

education and overlapping generations.
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The model setup is fairly standard. We assume that agents live for two periods and they

survive to old-age with an exogenous survival probability. In the first period (“young”)

agents can save, invest time into human capital accumulation and consume. Time invest-

ment in the first period increases the stock of human capital. In the second period (“old”)

agents work an exogenous proportion of their available time and are retired for the rest.

During retirement they receive a lump-sum pension. We model a PAYG pension system

in which agents contribute a share of their wage income to the pension fund. Then, by

the assumption of a balanced budget and taking the population structure as given, we

compute pension payments and can express the level of pensions as a share of current net

wages. Using such a setup, we are able to conduct policy experiments by varying either

the contribution or the replacement rate and let the other adjust. Finally, we embed the

households in a general equilibrium setup and study the effect of changing survival rates

and birth rates on wages and interest rates.

The key contribution of this paper is that we use a rich setup and are able to show

that in general, changes in survival rates have ambiguous effects on the capital stock and

education. Further, our setup enables us to analytically show where this ambiguity comes

from and therefore we can conclude that it is key to consider the interactions between

annuity markets, the pension system and productivity of education.

This chapter is joint work with Alexander Ludwig and has been published as “Mortality,

Fertility, Education and Capital Accumulation in a Simple OLG Economy”, Journal of

Population Economics, 23(2): 703-735, 2010.

1.4 Demographic Change, Human Capital and Wel-

fare

The final chapter of this thesis evaluates the role of human capital adjustments for the

economic consequences of demographic change on wages, returns to capital and welfare.

As opposed to the previous chapter, here we are interested how large the quantitative

effects of such an adjustment are. We find that endogenous human capital formation

is a quantitatively important adjustment mechanism which substantially mitigates the
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macroeconomic impact of population aging. On the aggregate level, the predicted decrease

of the rate of return to physical capital is only one third of the predicted decrease in a

standard model with a fixed human capital profile. In terms of welfare, while young agents

with little assets gain up to 0.8% in consumption from increasing wages in both models,

welfare losses from decreasing returns of older and asset rich households are substantial.

But importantly, these losses are about 50 - 70% higher in the model without endogenous

human capital formation. Ignoring this adjustment channel thus leads to quantitatively

important biases of the welfare assessment of demographic change. We also document that

sticking to the status quo social security system and letting contribution rates increase will

largely offset any positive welfare effects for future generations. Our contribution to the

literature is thus the quantification of the additional adjustment possibility of investing

into human capital.

To quantify these effects, we employ a calibrated large scale overlapping generations (OLG)

model with endogenous human capital formation using a Ben-Porath (1967) technology.

We assume that agents life up to a maximum age of 90 years and survive to the next period

(age) with an exogenous probability. Agents retire at the age of 65. During retirement they

receive retirement benefits from the pension system which is financed by contribution of the

working cohorts. We allow agents in each period to work, invest time into human capital or

consume leisure. Investment into human capital increases, whereas depreciation decreases

the stock of human capital next period. With our calibration we are able to reproduce

the hump-shaped pattern of labor supply and decreasing investment into human capital

as individuals proceed through their life-cycle. The role of the government in our model

is limited: it manages a simple social security system with balanced budget. Taking the

demographic structure and this government policy as given, we can determine equilibrium

pension payments. By adjusting either contribution or replacement rates we can simulate

alternative pension reform scenarios.

The underlying economic mechanism is that an aging society will accumulate more phys-

ical capital and thereby decrease the rate of return of savings. Thus, on the one hand

the incentive so save decreases and on the other hand, the opportunity costs of borrowing

when young decrease. Hence, young agents have a strong incentive to invest more time

into human capital accumulation, borrow while spending time on the acquisition of hu-
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man capital and repaying later. As summarized in the first paragraph, we find that the

additional possibility to invest into human capital helps to limit welfare losses in an ageing

society.

In our policy lab, we conduct two social security experiments. In our first scenario, we

assume that contribution rates are freezed at current rates and let therefore the replacement

rates decrease such that the budget of a pension system is balanced. In the polar scenario,

we simulate a generous pension system and keep the replacement rate constant at current

levels. In an aging society, this requires rising contribution rates thereby decreasing net

wages of workers. We find that the distortionary effects of the rising contribution rates will

largely offset potential gains from higher human capital accumulation. Thus, not reforming

the social security system will involve welfare losses of future generations. Nevertheless,

without a welfare criterion or knowledge about social preferences we do not make any

statement about the optimality of pension policy.

This chapter is joint work with Alexander Ludwig and Thomas Schelkle. An earlier version

in which we model additionally different skill types and the effect of human capital invest-

ment on the permanent growth rate in the spirit of Lucas (1988) is available as Ludwig,

Schelkle, and Vogel (2007).



Chapter 2

From Malthus to Modern Growth:

Child Labor, Schooling and Human

Capital

2.1 Introduction

Key stylized facts characterizing the evolution of humanity from an era close to subsistence

levels to today’s high-tech economies are – among other facts – increasing technological

progress combined with rising educational attainment and the demise of child labor on the

one hand and falling mortality and fertility causing a demographic transition on the other

hand. These events have occurred in today’s developed countries from the onset of the

industrial revolution to present times and are currently under way in developing countries.

These stylized facts can therefore be observed both across time and across countries (see

section 2.2). The motivation for this research is to build a model explaining these facts in

a general equilibrium setup. Although there is a large body of literature on each of the

mentioned items in isolation, work on the combination and interaction of these phenomena

is scarce.

To replicate the historically observed sequence of these stylized facts, this paper develops

a dynamic general equilibrium model of endogenous fertility, human capital investment

decisions, child labor and uncertain child survival. The driving force of the model dynamics

9
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is the changing child survival rate. Parents maximize utility from own consumption, child

leisure and a quantity-quality composite of children. In addition to adult labor supply,

parents can choose to send children to work and thus generate additional income. Quality

is measured in terms of the child’s human capital whereas the quantity refers to the number

of surviving children. The macroeconomic piece of the model consists of a production

function with human capital and a fixed amount of land as inputs. Technological progress

is initially driven by rising population and later additionally by human capital investment.

Employing this framework, the paper makes two contributions to the literature. First,

it is the first paper bringing the quantity-quality decision of children on the one hand

and child labor on the other hand in an analytically tractable framework with uncertainty,

inspired by the seminal contribution of Kalemli-Ozcan (2003), together. Second, it provides

quantitative evidence on the contribution of falling mortality, rising schooling and the role

of child labor to the demographic transition. Using a calibrated version of the model it is

shown that the decrease of precautionary demand for children as a consequence of falling

mortality is able to explain a small drop in fertility but it is unlikely to be the main driving

force of the demographic transition. The reversal of the relationship between income,

mortality and population growth is ultimately triggered by the quantity-quality trade off

which forces parents to curb fertility in order to endow children with schooling. We find that

child labor is a potential obstacle to development in a sense that the more children can earn

on the labor market, the higher is fertility and the lower is schooling. Moreover, the model

is able to generate the historically observed sequencing and qualitative behavior of fertility,

population growth, child labor and schooling. Initially, sending children to school is not

optimal but children work and fertility is declining whereas population growth is rising.

Later – with falling mortality – fertility and child labor decrease and schooling becomes

optimal. This fuels technological progress which further rises survival rates, decreases

fertility and child labor. Eventually, parents choose not to send their children to work but

invest only into their education.

Recently, the link between child labor and human capital accumulation has shifted into

the focus of growth and development economics. Basu and Van (1998) present a model in

which parents are not selfishly exploiting their children but let their children work because

additional income close to subsistence levels is the welfare maximizing household solution.
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They also discuss the possibility of multiple equilibria. Hazan and Berdugo (2002) develop

a model with child labor and schooling decision. Their central result is that technological

progress increases the wage differential between children and adults leading to reduced

child labor and more education. Baland and Robinson (2000) investigate the role of capital

market imperfections and the role of bequests for child labor. They find that child labor

is inefficient if parents can use children’s income as a substitute for negative bequests

or are credit constrained. Dessy (2000) argues that child labor may be the obstacle to

development: if the economy is sufficiently close to a critical value of per capita human

capital, the presence of child labor may pull the economy into a poverty trap which can be

avoided by introducing compulsory schooling. Strulik (2004a) presents a model with child

mortality and child labor and Strulik (2004b) additionally includes child health affecting

child survival. Depending on the child survival rate, the economy can be stuck in a high-

fertility and low growth regime with child labor or in a low fertility and perpetual growth

environment. The demographic transition is generated by a quantity-quality mechanism

pioneered by Becker and Lewis (1973) and Becker (1960).

The choice of human capital investment under uncertain survival has been considered in

Kalemli-Ozcan (2003) and in a general equilibrium setup in Kalemli-Ozcan (2002). Par-

ents have a “precautionary” demand for children. As a consequence of this, high mortality

rates and thus high uncertainty about the survival of offspring will induce parents to have

more children but endow them with little education. Lowering the risk will decrease pre-

cautionary demand and accelerate investment into schooling. In the same spirit, Tamura

(2006) presents numerical evidence showing that this family of models can be used to gen-

erate realistic results for important macro- and microeconomic variables (life expectancy,

fertility, population, mortality, etc.). Using a perpetual youth model Kalemli-Ozcan, Ry-

der, and Weil (2000) show that a reduction in the mortality rate at any age significantly

increases investment into human capital. Empirical studies confirm these findings. In an

econometric analysis using Swedish fertility data, Eckstein, Mira, and Wolpin (1999) find

that both increases in real wages and reductions in infant and child mortality significantly

contributed to the fertility decline. Most important was, however, the decline in mortality.

Similar findings are confirmed for India by Ram and Schultz (1979) who argue that falling

mortality was an important incentive to invest into education.
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There is an enormous amount of literature offering a wide range of alternative explana-

tions for the demographic transition and the rise of human capital investment. The seminal

paper by Galor and Weil (2000) generates the transition from a Malthusian development

stage to a growing economy by endogenously raising the rate of technological progress and

thereby human capital investment. Hansen and Prescott (2002) examine a model with an

agricultural sector with a fixed factor (land) and a modern technology with constant re-

turns. Assuming exogenous technological progress in both sectors, the modern sector will

eventually be more productive and pull the economy out of the Malthusian trap. Galor

and Weil (1996) derive the fertility decline from a narrowing wage gap between men and

women. By increasing the value of female labor, the costs of child rearing increase and thus

the transition from a high fertility to a low fertility regime is achieved. In the model of

Cervellati and Sunde (2005) the driving force of development is the rising life expectancy.

Assuming that education incurs a fixed (time) cost, rising life expectancy makes education

more attractive and thus agents will engage into education as their planning horizon ex-

pands. Jones (2001) is proposing a mechanism in which the introduction of property rights

plays the key role in explaining growth and the demographic transition over long periods.

Other explanations for the demographic transition are rooted in evolutionary economics

with people having a preference for child quality eventually dominating (Galor and Moav

(2002)) or changes in marriage institutions with an increasing share of women with higher

human capital (Gould, Moav, and Simhon (2008)).

Stylized facts motivating this research are presented in section 2.2. Section 2.3 introduces

the model environment and outlines the household’s maximization problem. Section 2.4

describes the macroeconomic setup. Section 2.5 closes the model by establishing the links

between household decisions and aggregate behavior on the one hand and the dynamic

behavior of the model on the other hand. In the same section we also present the results

from a calibration exercise. Section 2.6 concludes.

2.2 Stylized Facts

This section presents stylized facts motivating this research in some more detail. Note

that all facts hold true for the modern world with poor and rich countries (i.e. for the
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cross section) and in a time series perspective using historical data for today’s developed

countries.

Figure 2.1 plots the percentage of working children against GDP per capita. The data refers

to the period 1960-2002, revealing that child labor is still a widely spread phenomenon in

today’s world. In countries like Mali, Bhutan and Burundi almost 50% of the children

aged 10-14 participate in the labor market and are thus an important source of family

income. In the 1960s and 1970s, the share of working children was even higher. In Mali,

Nepal and Burkina Faso more than half of all children had to work in order to contribute

to family income. Using income per capita as a benchmark, these numbers are comparable

to historical statistics. According to Lebergott (1964) at the end of the 19th century

between 13 and 18 percent of all children aged 10-15 in the US were actively participating

in the labor market, working even in industries like mining or manufacturing and a ten

year old boy employed in agriculture had the earning capacity of about one quarter of

an adult. The second empirical regularity observed in the data is the strong negative

Figure 2.1: GDP per Capita and Child Labor
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correlation of child or infant mortality and income per capita.1 Figure 2.2 shows that as

income approaches very low (subsistence) levels, child mortality rises dramatically. Income

1There is a strong positive correlation (ρ >0.8, based on data from The World Bank (2004)) between
adult and infant mortality suggesting that high child mortality is also a good proxy for health conditions
over the entire life span.
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Figure 2.2: GDP per Capita and Child Mortality
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beyond this threshold has a relatively minor influence. As a glance on on the graph reveals,

there has been no large gain in child survival probabilities for some low income countries

despite the huge gains in medical knowledge worldwide which suggests that income seems

to be the most important factor determining child mortality. Historical statistics from

Sweden (Wolpin (1997)) and England (Cutler, Deaton, and Lleras-Muney (2006)) confirm

this result. Infant mortality was high and the chance to survive age 15 were as low as 60-

70%. Survival probabilities conditional on having survived childhood were much higher.

Due to high mortality rates earlier in life, life expectancy at birth around 1850 in England

was 40 years, conditional on being 10 years old 55 years and close to 70 years at the age

of 45. Thus, the dramatic increase in life expectancy came first from eliminating the risks

early in life. Huge improvements in life expectancy later in life were achieved only in more

recent times.

The trade off between quality and quantity is another regularity present in the data and

shown in figure 2.3. There is a clear negative correlation between the enrolment rate at

any schooling level and the total number of births per woman. Again, the same conclusion

can be obtained from a time series perspective. French enrolment rates of children (aged

5-14) to primary school increased from 30% in 1830 to almost 90% in 1900. In England,

the fraction of children with primary education was about 20% in 1860 and reached 80%

in 1900. At the same time the number of birth per woman declined dramatically (Flora,
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Kraus, and Pfenning (1983)). The “corollary” of the higher survival rates and rising

schooling is that the pattern of population growth has changed too. Initially, rising survival

rates increased population growth but for rising income this relationship turned negative.

As can be seen in figure 2.4, population growth for the Less Developed Countries is hump-

shaped, peaked at 2.7% around 1965 and has been declining since then. The same hump-

shaped pattern can be verified for today’s developed countries with the peak roughly 100

years earlier.

Figure 2.3: Fertility and Enrollment Rate
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2.3 The Model

Consider an OLG economy where agents live for two periods and survival to the second

period is uncertain. In the first period they are children and can work, receive some educa-

tion (which enhances their adult human capital) or do both at the same time. Uncertainty

concerning their survival is unraveled at the end of the first period (childhood). The earn-

ings from their labor supply accrues to the parents. If they survive they become adults,

they consume their total income and make a one-time fertility decision about the desired

number of children, children’s labor supply and educational attainment. Adults do not

leave any bequests. Time is discrete and is extending into the infinite future. The econ-
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Figure 2.4: Population Growth in LDCs and Western Europe
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omy produces a single consumption good using two factors of production: human capital

and land.

2.3.1 Household Behavior

In this setup households choose consumption ct, the number of newborns nt, child labor

supply `t and schooling investment st they give to each child. Preferences are defined over

adult consumption ct, the future earnings of the surviving children qtntht+1wt+1 where qt

is the probability to survive to adulthood, nt is the number of children, ht+1 is the human

capital of each child and wt+1 is the wage per unit of human capital. Parents also derive

utility from child leisure (1 − `t) where `t is child labor supply. For simplicity we assume

that nt is continuous, or, we deal with an average individual in the economy. The utility

function of generation t can be thus written as

Ut = γ1 log (ct) + γ2{E[ln (qtntht+1wt+1)]}+ γ3 ln (1− `t) (2.1)

where expectations are taken with respect to the child survival rate qt. This modeling

strategy is commonly used in the literature. Having children and their human capital in

the utility function can be interpreted either as pure parental altruism or as an implicit



2.3. THE MODEL 17

old-age pension system if children are likely to support their parents.2 In this model,

the survival probability refers to the chances to survive to the age until children start

making own economic decisions. Due to this simple setup it is not possible to distinguish

between infant, early and late childhood mortality. Assuming that children’s survival rate is

binomially distributed and using the method of Kalemli-Ozcan (2003), the above expected

utility maximization can be approximated3 by

Ut = γ1 ln(ct) + γ2

[
ln(qtntht+1wt+1)− 1− qt

2ntqt

]
+ γ3 ln(1− `t). (2.2)

The difference to a standard maximization problem without uncertain child survival is

the remainder term in the parentheses. Low survival probability generates large disutility

which can be minimized by having more children. The economic consequence of this

additional term is that it generates a “precautionary” demand for offspring.4 An intuitive

justification why precautionary demand may be important is that replacement of children

is not possible any more once mothers leave their fertile years. This problem is not present

in modern economies but is certainly of importance in a high mortality environment. Note

that this additional term vanishes if the survival probability approaches unity. Naturally,

with qt = 1 there is no more risk and we are back in the certainty case.

Human capital is produced according to

ht+1 = (s
¯

+ st)
ξ (2.3)

where s
¯

and ξ are parameters and st is schooling investment into the children’s human

capital.5 Investment in schooling has – from the households’ point of view – only pri-

2The modeling alternative in which agents derive utility from the utility of their children (i.e. the
dynastic approach by Becker and Barro (1988) or Barro and Becker (1989)) requires the debatable as-
sumption that the agents know what their children will do. For models where the old-age security motive
is made explicit see e.g. Boldrin and Jones (2002) and Ehrlich and Lui (1991).

3This is basically a third order approximation of the log-function evaluated at the mean of the distri-
bution. See appendix 2.A for a derivation of the approximation.

4See also Sah (1991) for an application of a similar idea to parental welfare.
5There is no interaction between working and school. Some authors (e.g. Strulik (2004a)) assume

that if children work, the efficiency of schooling is diminished and the accumulation process of human
capital is less efficient. Although there is empirical evidence that labor has a negative effect on school
achievement (Psacharopoulos (1997)), we ignore this issue here since it alters only the quantitative but
not the qualitative aspects of the model.
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vate benefits and households do not take possible externalities of schooling into account.

Without investment into schooling, the stock of human capital is a constant scaling factor.

Adults supply labor inelastically and use a portion of their remaining time – here standard-

ized to unity – on rearing children and (if optimal) educating them. There are no tuition

fees: the cost of education are only parent’s opportunity costs.6 Each child consumes a

fixed share v ∈ (0, 1) of the parents’ time which is independent of the number of children.

This fixed cost per child is assumed to capture forgone wages, nutrition, clothing or other

relevant expenditures. On the other hand, children can be sent to work and earn a fraction

θ < 1 of an adult’s wage. The budget constraint is then

ct = wtht[1− (v + st)nt] + θwtht`tnt. (2.4)

Additional constraints are the (natural) “birth limit” restriction nt ≤ 1/v7, non-negative

consumption, non-negative schooling investment, and non-negative child labor supply. Ad-

ditionally, we make the following assumptions:

Assumption 2.1. v > θ.

Assumption 2.2. vξ − s
¯

> 0

Assumption 2.3. v − s
¯
− θ > 0

Assumption 2.1 is needed to ensure that children are always a monetary cost to parents.

Assumption 2.2 guarantees that parents will invest into schooling in an environment with-

out mortality risk. Finally, assumption 2.3 guarantees that there is always an interior

solution.

6The introduction of tuition fees does not affect the qualitative results as long as they are proportional
to income. For a model with schooling costs depending on parents’ human capital see de la Croix and
Doepke (2003).

7An alternative interpretation is that 1/v is a social norm for the maximum number of children.
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2.3.2 Solution to the Household’s Problem

Solving the household’s decision problem gives the following first order conditions for the

schooling decision, child labor supply and the number of offspring

∆(st, λ) ≡ γ2ξ

s
¯

+ st

− λwthtnt, (2.5a)

= 0 if st > 0

< 0 if st = 0

∆(`t, λ) ≡ γ3

1− `t

− λwthtntθ, (2.5b)

= 0 if `t ∈ (0, 1)

> 0 if `t = 0

∆(nt, λ) ≡ λwtht(v + st − θ`t)− γ2

[
1

nt

+
(1− qt)

2n2
t qt

]
(2.5c)

= 0 if nt ∈ (0,
1

v
)

< 0 if nt =
1

v
,

where λ is the multiplier attached to the budget constraint and ∆(xt, λ) is the derivative

of the Lagrangian with respect to xt and equals zero for any interior solution. Conditions

(2.5a) and (2.5b) require that the marginal utility of schooling or child labor supply is

larger or equal than the marginal utility of (forgone) consumption. The third equation

(2.5c) requires that the marginal utility of children (quantity) is larger or equal to the lost

income in terms of consumption.

Because of the various constraints these conditions need not be satisfied always with equal-

ity. In fact, some of the binding constraints and the associated corner solutions will be

defining features of different stages of development. The inequality signs below the FOC’s

for the interior solutions provide the intuition for the corner solutions. Obviously, schooling

and labor supply have always a unique solution (either interior or corner solution). The

equation for the optimal number of children is nonlinear in nt. Nevertheless, it can be

shown that there is either a corner or a unique interior solution with a strictly positive

number of children.8 The intuition behind these results is that marginal utility is bounded

8In fact , this is a quadratic equation and in appendix 2.A it is shown that it has always a positive and
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for corner solutions in (2.5a) and (2.5b) but unbounded from below for the number of

newborns. Thus, parents will avoid zero children at any cost but corner solutions with

zero schooling or zero child labor are possible. We will discuss the solution to the model

in detail further below.

Since each adult has nt children but only a share qt survives to the next period, the

population growth rate is given by

gN = Lt+1/Lt − 1 = ntqt − 1, (2.6)

where Lt is the size of the adult population at period t.

Equations (2.5a), (2.5b) and (2.5c) can be solved analytically to obtain closed form solu-

tions. We do this for schooling and labor supply but show the optimal number of children

only as an implicit function of the survival rate.9 Assume that the survival rate is low and

parents do not invest into human capital but have working children. Then parents only

choose child labor supply and the number of children:

`t =
γ1

γ1 + γ3

− (1− ntv)γ3

ntθ(γ1 + γ3)
(2.7a)

nt

[
nt(v − θ)γ1 + γ3

1− nt(v − θ)
− γ2

]
= γ2

1− qt

2qt

(2.7b)

After some time, the survival rate may have increased sufficiently to induce parents to

invest into schooling. The optimal choice of schooling, child labor and number of children

is given by:

st =
ξγ2

nt(γ1 + ξγ2 + γ3)
− (v − θ)ξγ2 + s

¯
(γ1 + γ3)

(γ1 + ξγ2 + γ3)
(2.8a)

`t =
γ1 + ξγ2

(γ1 + ξγ2 + γ3)
− (1− nt(v − s

¯
))γ3

ntθ(γ1 + ξγ2 + γ3)
(2.8b)

nt

[
nt(v − s

¯
− θ)γ1 + ξγ2 + γ3

1− nt(v − s
¯
− θ)

− γ2

]
= γ2

1− qt

2qt

(2.8c)

If for some survival rate child labor is endogenously abandoned, parents decide about

a negative root.
9Since nt is a quadratic equation it is possible to obtain a closed form solution. However, the result is

rather cumbersome and is of no use for the remainder of the paper.
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optimal schooling and children according to:

st =
ξγ2

nt(γ1 + ξγ2)
− vξγ2 + s

¯
γ1

(γ1 + ξγ2)
(2.9a)

nt

[
nt(v − s

¯
)γ1 + ξγ2

1− nt(v − s
¯
)

− γ2

]
= γ2

1− qt

2qt

(2.9b)

Assume that qt and preferences are such that neither schooling nor child labor supply are

positive at the optimal solution. Then parents face only a fertility-consumption trade off.

The number of children is then implicitly defined by

nt

[
vγ1nt

1− ntv
− γ2

]
= γ2

1− qt

2qt

(2.10)

In principle there is also one “pathological” solution to the household problem. Assume

that s
¯

= 0 and that parents’ valuation of child leisure γ3 is very low. For a low survival rate

it is possible that the number of children equals the maximum fertility limit 1/v with child

labor and schooling being both positive. Put differently, due to high uncertainty parents

wish to have as many children as possible but then children finance parents’ consumption

and their own schooling by working. We exclude this case by a restriction on the model’s

parameters (assumption 2.3).

The solution to the households’ maximization problem reveals that the nature of household

solution does not change qualitatively during the different stages of development. Schooling

decreases with the number of children (quantity-quality trade off) and child labor is higher

if the number of children is higher. Which regime prevails thus depends on the parameter

constellation. By the choice of the parameters (mainly θ, s
¯

and γ3) one can obtain all

possible solutions ranging from no child labor and no schooling to an interior solution with

simultaneous working and schooling or a realistic solution for low mortality environments

without child labor but schooling investment.

The optimal reaction of the household to exogenous changes in the survival rate are sum-

marized in the following propositions.

Proposition 2.1. If the survival rate is increasing the number of newborns nt is decreasing.

Proof. See appendix 2.A.
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Proposition 2.2. If the survival rate is increasing schooling is increasing (if positive) and

child labor is decreasing (if positive).

Proof. See appendix 2.A.

Proposition 2.3. There exists always a survival rate q̃l low enough such that optimal

schooling is zero if ∂ht+1/∂st < ∞. If preferences and relative child productivity θ are such

that child labor is optimal for qt < q̃l, then the threshold value q̃l is an increasing function

of θ.

Proof. See appendix 2.A.

Propositions 2.1 and 2.2 are the results of the interaction of lower precautionary child

demand and a quantity-quality trade off. If child survival risk is falling, the number

of children will decrease – even without schooling. This is the consequence of falling

uncertainty and thus falling precautionary demand for children. With a decreasing number

of children, parents move out from the corner solution and will endow each offspring with

education. Proposition 2.3 states that if the chance of children to survive to adulthood

is low enough, parents will rather invest into quantity and will not endow their offspring

with human capital. Moreover, the higher relative child labor productivity, the more likely

is that parents will have many children and schooling will be delayed. The intuition is

that if the child survival rate is at very low levels, parents would like to have a very high

number of offspring to make sure that at least some of them survive. Since they also have

a quantity-quality trade off, they will opt for zero schooling. On the other hand the more

children can earn, the less costly they are. Thus, high child productivity increases the

opportunity costs of schooling which explains why the number of children at the threshold

q̃t is higher (∂ñt/∂θ > 0) and schooling will be delayed (∂q̃t/∂θ > 0).

The behavior of the population growth rate gN is a nonlinear and non-monotonic function

of the survival rate which is summarized below:

Proposition 2.4. Population growth is hump-shaped and has exactly one local maximum

if there is no solution to the household problem with `t > 0 and st > 0 simultaneously (i.e.

no interior solution). If there exists an interior solution, then the population growth rate
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has the above property only if the population growth rate with child labor and schooling (i.e.

interior solution) satisfies

∂gN

∂q

∣∣∣∣
nt=ñt

≥ 0, (2.11)

or if the regime without child labor but schooling satisfies

∂gN

∂q

∣∣∣∣
nt=ñt

≤ 0, (2.12)

where ñt = γ3

γ3(v−s
¯

)+θ(γ1+ξγ2)
is the number of children where child labor is endogenously

abandoned. If one of the two conditions is violated, then the population growth rate has

two local maxima.

Proof. See appendix 2.A.

For low qt, rising survival probability dominates the drop in the number of children and

population growth increases. Intuitively, for large survival risk small changes in the survival

probability will not change the optimal solution for nt much. For vanishing survival risk

we have the opposite effect. If the incentive to educate children is strong enough, parents

will decrease precautionary demand for children and additionally invest more time into

each child. Therefore, population growth will decrease at high levels of qt. The possible

“complications” are caused by the fact that at ñt the slope of ∂nt/∂qt becomes less steep

(the number of children is still falling but at a lower pace). This is counterbalanced by

rising survival probabilities which increases the population growth rate. Which effect will

dominate in the end depends on the parameters of the model.

Lemma 2.1. If relative child productivity increases, the number of newborns increases.

Proof. See appendix 2.A.

Lemma 2.2. If relative child productivity increases child labor increases and schooling

decreases.

Proof. See appendix 2.A.
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The economic interpretation is quite intuitive. If children become relatively more produc-

tive on the labor market, the opportunity cost of child leisure goes up and thus child labor

supply should rise. At the same time, the cost of children decreases. This is why the num-

ber of offspring rises. Schooling decreases because parents are engaged in a quantity-quality

trade off.

2.3.3 The Steady State Solution

Assume that the economy grew out from poverty, the child survival rate approaches unity

and child labor is abandoned. Then, we are back in a standard Becker-type model with

a quantity-quality decision of the parents where only preferences (and some parameters

from the human capital production function) determine the solution. Optimal education

and number of children are then

nss =
(1− ξ)γ2

(v − s
¯
)(γ1 + γ2)

(2.13a)

sss =
(1− nssv)ξγ2

nss(γ1 + ξγ2)
− s

¯
γ1

γ1 + ξγ2

(2.13b)

=
vξ − s

¯
1− ξ

The results confirm the intuition behind the model. Higher fixed costs of children v, higher

education productivity ξ increases education, higher fixed costs of education s
¯
, decrease

education. Obviously, the opposite is true for the number of children.10

2.4 The Macroeconomy

There is one sector producing a homogenous good used for consumption. The production

technology uses human capital and an exogenously given amount of land. Output is then

10Note that with certain survival, mortality does not play a role for the optimal number of children and
therefore population growth will monotonically increase with qt. In such a setup, the number of children
will be constant trough time and only a quantity-quality trade off is able to generate a demographic
transition.
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produced according to

Yt = AtH
α
t T 1−α (2.14)

where Ht is human capital, T is the fixed amount of land and At is the level of TFP which

grows over time. The fixed amount of land captures the Malthusian nature of the model.

In absence of growth in Ht or At, a growing population will obviously drive down income

per capita. Aggregate human capital is the sum of inelastic adult labor supply and the

endogenously determined labor supply of children. I assume that children’s and adults’

labor are perfect substitutes. Aggregate human capital is then

Ht = ht(Lt + Ltθ`tnt) (2.15)

where Lt is the number of adults at time t and θ`tnt is the effective labor supply of children.

Substituting into equation (2.14) and rearranging we have

Yt = Ath
α
t (LtL̃t)

αT 1−α (2.16)

where L̃t ≡ 1 + θ`tnt. Thus, LtL̃t is total labor supply in the economy. Following the

literature (Galor and Weil (2000), Kögel and Prskawetz (2001)), the return to land is zero

and income equals average labor productivity with

yt = Yt/(LtL̃t) = Ath
α
t (LtL̃t)

α−1T 1−α. (2.17)

Here, yt is also the income of a family unit consisting of one adult and the children con-

tributing ntθ`t to total labor supply.11 In a developed economy without child labor, family

and per capita income are identical (L̃t = 1). The growth rate of efficiency wages is

gy
t = gA

t + αgh
t − (1− α)(gL

t + gL̃
t ). (2.18)

Note that in steady state without child labor and stationary population the solution col-

lapses to gy = gA as in any growth model. During the transition, growth of human capital,

changes in child labor supply and population dynamics affect the growth rate of wages.

11Income per capita would be smaller than yt since θ and `t are both smaller than unity.
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Equivalently, we can express the dynamics of income per family as

yt+1 = yt(1 + gA
t )(s

¯
+ st)

ξα(ntqt)
α−1

(
1 + θnt+1`t+1

1 + θnt`t

)α−1

(2.19)

where we have substituted ht+1, population growth and L̃t+1 out.

2.5 General Equilibrium

This section puts the household solution and the macroeconomic production side together.

To close the model we develop the relationships and feedback effects between income,

population, technological progress and survival rates. The last subsection presents the

simulation results from a calibration exercise using realistic parameter values and data.

2.5.1 Technological Progress

The level of technology At is evolving according to

At = At−1(1 + gA
t−1) (2.20)

where gA
t−1 is the growth rate of technology. Technological progress is determined by the

size of the adult population Lt and the schooling investment st with12

gA
t = g(Lt, st) gA

t,L > 0 gA
t,s > 0 gA

t (Lt, 0) > 0. (2.21)

Technological progress depends here on the size of the population which introduces a

strong scale effect. Although there is no clear empirical evidence for this specification in

modern economies (Jones (1995)), the assumption seems to be true for a large part of

human history (Kremer (1993), Galor and Weil (2000), Diamond (1998)).13 Alternative

specifications imposing some exogenous minimum gA
t if there is no schooling investment

and population is below a threshold level lead to similar results. Note that this specification

12One could also assume that gA depends on the level of human capital which is the same as to assume
that it depends on education since human capital is a function of education.

13On the other hand see Crafts and Mills (2007) for the opposite evidence.
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allows for a transitory effect of a larger population on technological progress in a sense that

a growing population leads to an acceleration of gA. In the case of a stationary population

technological progress can further accelerate if investment into human capital is positive.

2.5.2 Survival Law

We assume that idiosyncratic survival risk washes out and the survival rate evolves deter-

ministically on the aggregate level . The survival rate of children qt ∈ (0, 1] is a function

of income per capita yt−1 and is given by

qt = q(yt−1) (2.22)

with positive first and negative second derivatives and lim
yt→∞

qt → 1. Income per capita

enters the survival law in a Malthusian fashion. Falling income per capita decreases the

survival probability of children which decreases population (growth) in the next period.

By including yt−1 instead of yt excludes contemporaneous feedback effects of the number

of children on the survival law.14

2.5.3 The Dynamical System

The solution to the household problem is the foundation of the dynamic simulation. Given

an initial child survival rate q0 we can solve the household problem. Then, given an

initial adult population L0 and initial technological level A0 we can feed in the households’

decisions into the macroeconomic framework to calculate wages, population, technological

progress and survival rates for the next period. Given these values, the entire system can be

simulated. Before presenting the simulation results, we first derive some analytical results

describing the dynamic behavior of the system. Using equation (2.19) and expressing all

14This simplifying assumption is needed because otherwise child labor, income and hence survival rates
are jointly determined in general equilibrium. Although this is certainly the more realistic assumption, we
abstract from this complication since it does not add any additional insights.
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endogenous variables in terms of yt and yt−1 we have

yt+1 = yt[1 + gA
t (Lt, st(yt−1))][s

¯
+ st(yt−1)]

ξα × (2.23)

[nt(yt−1)qt(yt−1)]
α−1

[
1 + θnt+1(yt)`t+1(yt)

1 + θnt(yt−1)`t(yt−1)

]α−1

Lt+1 = Ltnt(yt−1)qt(yt−1)

where st = st(nt(qt(yt−1))), nt(qt(yt−1)) and `t(nt(qt(yt−1))). This is a two dimensional

(L, y) second order non-linear difference equation which is analytically not tractable. The

“non-tractability” comes from the fact that the population growth rate is not a monotone

function of yt−1. It can be seen that ∂yt+1/∂yt > 0, ∂gA
t /∂yt−1 > 0 and ∂`t/∂yt−1 < 0. This

is all increasing next period’s income. The fact that ∂nt/∂yt−1 < 0 but ∂ qt/∂ yt−1 > 0

makes a statement about the qualitative behavior of the system impossible. Assume that

the population growth rate is rising as a consequence of rising survival rates which lowers

income. This is counterbalanced by technological progress, rising human capital and falling

child labor which pushes available resources per worker up. Thus, if the three factors con-

tributing to rising productivity outweigh the diluting effect of population growth, income

will grow, otherwise fall.

Figure 2.5(a) shows three possible functional forms for the relationship between today’s

and tomorrow’s income per capita.15 As can be seen, the strictly concave function has

only one solution allowing only for a low income equilibrium (y1
s). Thus, in absence of

shifts in technology, income will always converge back to this stable solution. In the case

of a strictly convex function, there are two solutions. If the economy starts out below the

threshold y2
g , income will converge to zero without technological progress. Otherwise, the

economy will transit into a regime with endogenous growth. The S-shaped function allows

also for two solutions: one stable Malthusian equilibrium (y2
s) and a growing economy

(yt > y1
g). Changes in the size of the population and the induced change in the pace

of technological progress causes a shift of the curves. As shown in figure 2.5(b) a rising

population shifts the curves outward. Note that due to the dependence of q on income

and gA on the population size, the economy can be in a situation with temporarily falling

15There is a fourth solution which is slightly less interesting. If yt+1 is strictly convex in yt−1 (and the
slope is larger than unity at the origin) income is growing without bound for all initial values of income,
population, and technological progress.
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Figure 2.5: Solutions to the Difference Equation
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(b) gA(Lt) varying
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income, falling survival rates but accelerating technological progress. In this case there is a

“horse-race” between the diluting effect of population size on income on the one hand and

positive effect on technological progress on the other hand. In the figure, we simultaneously

move along the y-schedule to the left and shift the curve outwards due to higher technical

progress. The net effect may go in either direction. Such a situation can happen if a

country has an initial income per capita (and thus qt) such that population is growing

but the country is not large enough to generate a sufficiently high level of technological

progress. Income and survival rates fall reducing gL further and thus slowing down the

growth rate of gA. If technological progress does not catch up with population growth, the

economy falls back to the Malthusian equilibrium. However, even if income temporarily

falls back to the Malthusian level, the economy will not necessarily stay there forever.

Proposition 2.5. If technological progress depends positively on the population size, the

economy stays in the Malthusian equilibrium if

−∂2gA(Lt, 0)/∂L2
t

∂gA(Lt, 0)/∂Lt

Lt = 1,

which is nothing else than requiring the elasticity of the marginal product of population with

respect to population size to be unity.

Proof. See appendix 2.A
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The previous proposition states that the growth rate of TFP should not accelerate “to

fast”, or the rate of increase has to decrease fast enough to just counterbalance popula-

tion growth.16 Then, income per capita will stay constant and so will the survival rate.

Note that if we impose an exogenous growth rate ḡA for TFP or alternatively we put an

upper bound on gA
t (Lt, 0) = ḡA for all Lt > L̄ then there is a threshold value for ḡA or

for the population size L̄ which will determine whether the economy will grow or stay

underdeveloped.

The fact whether child labor or schooling are optimal changes only the slope of the curves

at the regime switching point. If schooling becomes optimal the slope increases, a regime

change to zero child labor flattens the slope at all income levels. Shocks to income per

capita (and implicitly survival rate) or relative child productivity have thus the potential

to lift the economy out of a development trap.

However, if mortality rates are sufficiently high, a ban of child labor (by setting θ = 0) is

not a guarantee for a kickoff of the development process. As suggested in proposition 2.3

the value of qt beyond which parents invest into education decreases with θ but if qt < q̃t

then education will be nevertheless zero.17 Thinking in dynamic terms, eradicating child

labor has a positive effect on average wages, survival rates and therefore the number of

future newborns will drop which induces parents to send children to school earlier. Thus,

abolishing child labor may not have immediate benefits for growth but will pay off only in

the future.

2.5.4 A Calibration Exercise

This subsection contains a calibrated version of the model and discusses the dynamic

development of the economy. Obviously, this highly stylized model will not be able to

capture the complexity of the real world. Due to the simple structure we can only focus on

a limited number of calibration targets. Therefore, the primary target of this section is to

demonstrate that this type of model is able to track observed historical developments and

provide some quantitative guidance. For an easier comparison with real data the model’s

16Note that for this to hold as Lt goes to infinity, the marginal product of Lt has to go to zero.
17See Patrinos and Psacharopoulos (1997) on this issue who also argue that due to income effects, not

working does not automatically imply that children are attending school.
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predictions are transformed into annualized growth rates according to gx
r = (1+ gx

m)1/J −1

where gx
r,m are the growth rates for real (r) and model time (m) for variable x and J is

a proxy for the length of a period and chosen to be 20. Although this choice is common

in the literature (Lagerlöf (2006), Boldrin and Jones (2002)) one has to keep in mind that

this has a a large effect on the growth rates when transformed from the generational time

dimension to yearly growth rates.

In order to simulate the entire system we need to fix parametric forms for the equations

determining the evolution of the survival rate and technological progress. We choose

qt+1 = 1− ϕ1

yϕ2
t

(2.24)

gA
t = ω1L

λ1
t + ω2s

λ2
t . (2.25)

These functional forms satisfy the conditions outlined above and the parameters were

calibrated to provide realistic time paths for the endogenous variables. The exact functional

form is not important for the qualitative behavior of the system.

The calibration targets on the household level were the number of children (fertility) and

income share generated by working children. Total fertility rate in the 19th century fluc-

tuated around 5 in European countries (Galor (2005)) and according to Patrinos and

Psacharopoulos (1997) working children in Peru contributed around 14% to family income.

Historical numbers are less reliable but are in the same order of magnitude. Assuming that

woman’s wages are around 50% of men (Galor (2005), p. 233), children contribute in our

model about 14% to family income at the beginning of the development process. The

human capital production function was calibrated by choosing s
¯

such that there is a corner

solution and ξ was taken from Browning, Hansen, and Heckman (1999). The weights in

the utility function were calibrated such that there is a regime with child labor but no

schooling, an intermediate regime with working and learning children and finally a situa-

tion without child labor. Further, we choose the parameters of the household model such

that population is stationary in steady state.

On the macroeconomic level we want to generate the typical inverted U-shape for pop-

ulation growth, initially low growth of wages but accelerating growth rate of TFP (and

equivalently of wages) as soon as schooling becomes optimal and asymptotic convergence
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of child mortality to zero. For growth of wages we use the numbers from Hansen and

Prescott (2002) as a calibration target. The share of human capital in the production

function is also taken from the same source. The remaining parameters of equation (2.25)

and (2.24) have no empirical counterparts18 but were calibrated such that the model is

able to generate an economic and demographic transition within a sensible time period of

about 20 generations. As can be seen in the graphs, the largest part of the decrease in mor-

tality risk and the demographic transition is achieved within this time window. Also the

adjustment of schooling, wage growth and number of children from initial to near steady

state levels is completed within a reasonable period. All parameters and initial conditions

are summarized in table 2.1.

Table 2.1: Summary of Parameters and Initial Conditions

Households v 0.33 γ1 0.30
s
¯

0.20 γ2 0.60
ξ 0.80 γ3 0.10
θ 0.09

Survival Rate ϕ1 0.24
ϕ2 0.90

TFP Growth ω1 0.06 ω2 1.80
λ1 0.20 λ2 1.50

Production Function α 0.60

Initial Conditions A0 1 T 40
L0 10 q0(y0) 0.5

As a first step, in figure 2.6 we look at the household solutions generated by the baseline

calibration from table 2.1. The number of children is high but decreasing due to falling

mortality.19 Due to rising survival rates, parents decrease their precautionary demand

for children. At this stage of development this is the only reason why fertility is falling.

18We only know from several studies (Cutler, Deaton, and Lleras-Muney (2006), Kalemli-Ozcan (2003))
that there is a concave relationship between income and survival probabilities which dictates ϕ2 < 1.

19In this graph the number of children is shown as per family which is twice the number from the model
solution where each individual is allowed to have children.
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Obviously, this is not the main source of the demographic transition.20 Education is

initially not zero and child labor supply is positive. Later, the survival rate approaches the

critical threshold above which educational investment becomes positive. From this point

in time onwards parents face also an additional quantity-quality trade off. The falling

precautionary demand is now augmented by the quantity-quality trade off. Thus, the

optimal number of offsprings starts to drop dramatically. Simultaneously, child labor is

decreasing and later endogenously abandoned. The entire adjustment process from high

fertility, high child labor and no schooling environment to a situation without child labor,

low fertility and schooling investment is completed in less than 15 generations. The panel

in the south-east of the graph shows the share of income spent on consumption. During

the development process, parents not only decrease fertility but increase spending on the

quality of children but are also able to increase own consumption.

Figure 2.6: General Equilibrium Simulation - Household
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20This result is also confirmed by Doepke (2005) who finds that a reduction in survival risk reduces total
fertility but eventually concludes that the dramatic fall in the net reproduction rate (number of surviving
daughters) must have been caused by other factors than declining child or infant morality.
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Figure 2.7 shows the time paths of several macroeconomic variables. Initially, the popula-

tion growth rate is around 1% but starts rising as mortality (panel to the right) falls, reaches

the maximum level at 1.7% and drops then monotonically to the steady state value of no

population growth (by construction). The reason for the accelerating population growth

is the insufficient drop in the number of children. As can be seen in the household solution

the number of children is falling as the survival rate increases. However, this drop is not

enough to counterbalance falling mortality. Thus, the total effect is that population growth

is rising. The demographic transition starts to unfold only as parents start to invest into

schooling. This can also be seen from the panel displaying the evolution of wage and TFP

growth. Initially, the growth rate of TFP is just enough to counterbalance the growth of

population and hence income per capita is growing only slowly.21 This is also reflected in

only small increases of the survival rate. However, as the survival rate passes the critical

threshold value agents start to educate children which boosts growth of TFP and wages.

This feeds back into falling mortality and falling population growth. Eventually, child

mortality is almost eliminated and the model converges to its steady state solution with a

constant household decisions and constant growth rates. In this calibration, the contribu-

tion of the scale effect (Lt) and of schooling to technological progress is approximately the

same.

Figure 2.6 shows that the number of newborns decreases only slightly if schooling is zero.

The falling fertility is only due to falling survival risk. However, it is rather obvious that this

effect is not strong enough to bring fertility down to levels low enough generating a genuine

demographic transition. Observe that in figure 2.7 for low values of q the population is

growing even with falling fertility. This result is not driven by the choice of parameters but

it is rather a general feature of the model. Figure 2.8 shows the elasticity of the number of

birth with respect to the survival rate for different parameter constellations.22 We generate

three different scenarios ranging from a situation where child labor and schooling do no not

overlap (labeled “no interior solution”) to the situation in which children attend school and

work at the same time (labeled “interior solution”) and a parameter constellation without

child labor but positive schooling over the entire range of q (labeled “no child labor”).

To generate this solutions we have to adjust some parameters of the model but leave the

21Initially TFP growth is only fueled by rising population since educational investment is zero.
22Note that these graphs have the survival rate q on the horizontal axis.
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Figure 2.7: General Equilibrium Simulation - Macro
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initial conditions unchanged. We set θ = 0 in order to obtain the solution without child

labor. The graph without an interior solution is created by setting s
¯

= 0.24 and θ = 0.068

and re-calibrating γ1, γ2, and γ3 such that fertility for q = 1 is identical in all graphs. This

corresponds to a situation in which child labor is abandoned early, followed by a situation

without child labor (but still no schooling) and positive schooling investment only later.

It can be seen that without schooling, the elasticity is rather small (and always well below

unity) without the potential to generate a demographic transition. The necessary condition

is the introduction of a quantity-quality trade off via the investment into schooling. This

result is rather insensitive to the parameter choice.
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Figure 2.8: Elasticity of Children w.r.t. Mortality
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2.6 Conclusion

This paper analyzes the dynamic co-movement of fertility, schooling and child labor as-

suming that child survival is uncertain. In early stages of development the economy is

characterized by low income, high mortality, high fertility and child labor. Due to rising

technological progress, however, income starts to grow and so will the survival probabil-

ity of children. Therefore parents will start to decrease their precautionary demand for

children. Because the pure effect of falling mortality is not sufficient to generate a large

quantitative change in the number of children, the population growth rate is still accel-

erating and thus the growth rate of resources per capita is rather low. At some point,

however, parents will start to invest into schooling accelerating the development process.

This change will induce a sizable drop in fertility which is the trigger of a demographic

transition. Eventually population growth starts to decline and the economy converges to

a balanced growth equilibrium. Along the development process child labor will be aban-

doned as parents decide to shift more resources to child quality and the need for many

offsprings (caused by high mortality) vanishes.

We show that child labor has an adverse effect on development in a sense that even if

parents value child leisure, child labor will delay investment into schooling. If the survival
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chances of children are sufficiently low a ban of child labor, however, does not necessarily

induce parents to invest into schooling. On the other hand, the model’s prediction is that

the effect of falling mortality alone is not sufficient to induce a large behavioral change.

Thus, the demographic transition can only be explained by the rise of education and thus

a quantity-quality trade off.

On the macroeconomic side we analyze the conditions for stagnation and endogenous

growth. Without a link between population size and technological progress (or an upper

bound on technological progress) the economy can be stuck in a Malthusian equilibrium

with low income, high fertility, child labor and no human capital investment or transit

into an endogenous growth regime which characterizes modern economies. The outcome

depends on the parameters of the model and therefore multiple equilibria are possible. If

technological progress depends on the size of the population the economy is likely to escape

from the domain of attraction of the Malthusian “trap” except a knife-edge condition is

satisfied.
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2.A Appendix: Proofs

Proof of proposition 2.1. Rewriting the first order conditions from the text and rearranging

them gives

F (nt, qt) = nt

[
nt(v − s

¯
− θ)γ1 + ξγ2 + γ3

1− nt(v − s
¯
− θ)

− γ2

]
− γ2

1− qt

2qt

`t > 0, st > 0 (2.26a)

F (nt, qt) = nt

[
nt(v − θ)γ1 + γ3

1− nt(v − θ)
− γ2

]
− γ2

1− qt

2qt

`t > 0, st = 0 (2.26b)

F (nt, qt) = nt

[
nt(v − s

¯
)γ1 + ξγ2

1− nt(v − s
¯
)

− γ2

]
− γ2

1− qt

2qt

`t = 0, st > 0 (2.26c)

F (nt, qt) = nt

[
vγ1nt

1− ntv
− γ2

]
− γ2

1− qt

2qt

`t = 0, st = 0 (2.26d)

Each of these equations implicitly defines nt = nt(qt). Note that the left part (the left

hand side in the FOC) is only a function of nt and the the right part (the right hand side

in the FOC) is only a function of qt. Thus, the effect of changing survival probabilities on

the optimal number of children is given by

∂nt

∂qt

= − ∂F (·)/∂qt

∂F (·)/∂nt

(2.27)

Further, the behavior of the RSH for limiting cases of qt is given by

lim
qt→1

RHS = 0 (2.28a)

lim
qt→0

RHS = ∞ (2.28b)

The LHS deserves more discussion. First observe that it holds that

lim
nt→0

LHS = 0 (2.29a)

lim
nt→1/v

LHS





= ∞ if `t = 0, st = 0

< ∞ else
(2.29b)

This implies that for all cases limnt→1/v LHS < ∞ (i.e. the birth limit is binding) there is

a lower bound q̃t which satisfies F (nt, qt) = 0. For all qt < q̃t the solution is nt = 1/v.
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To determine the sign of ∂nt/∂qt we need to evaluate the derivatives of RHS and LHS. The

RHS of all cases is identical. Taking the derivative with respect to qt gives

∂F (nt, qt)

∂qt

= γ2
1

2q2
t

> 0 ∀ qt ∈ (0, 1). (2.30)

The derivative of the LHS depends on the scenarios and is given by the following equations

∂F (nt, qt)

∂nt

=
ntṽγ1(2− ntṽ) + ξγ2 + γ3

(1− ntṽ)2
− γ2 `t > 0, st > 0 (2.31a)

ṽ ≡ v − s
¯
− θ

∂F (nt, qt)

∂nt

=
ntṽγ1(2− ntṽ) + γ3

(1− ntṽ)2
− γ2 `t > 0, st = 0 (2.31b)

ṽ ≡ v − θ

∂F (nt, qt)

∂nt

=
ntṽγ1(2− ntṽ) + ξγ2

(1− ntṽ)2
− γ2 `t = 0, st > 0 (2.31c)

ṽ ≡ v − s
¯

∂F (nt, qt)

∂nt

=
ntvγ1(2− ntv)

(1− ntv)2
− γ2 `t = 0, st = 0 (2.31d)

We have now to evaluate each of the cases in the range of all possible solutions for nt. For

the case of interior solutions we have

∂F (nt, qt)

∂nt

∣∣∣∣
nt=0

= γ3 − γ2(1− ξ) (2.32a)

∂F (nt, qt)

∂nt

∣∣∣∣
nt=

1
v

=

(
1− (

α+θ
v

)2
)

γ1 + γ3

(
α+θ

v

)2 + γ2

(
ξ(

α+θ
v

)2 − 1

)
(2.32b)

For the case without schooling but child labor

∂F (nt, qt)

∂nt

∣∣∣∣
nt=0

= γ3 − γ2 (2.32c)

∂F (nt, qt)

∂nt

∣∣∣∣
nt=

1
v

=

(
1− (

θ
v

)2
)

γ1 + γ3

(
θ
v

)2 − γ2 (2.32d)
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For the case without child labor but schooling

∂F (nt, qt)

∂nt

∣∣∣∣
nt=0

= γ2(ξ − 1) (2.32e)

∂F (nt, qt)

∂nt

∣∣∣∣
nt=

1
v

=

(
1− (

α
v

)2
)

γ1

(
α
v

)2 + γ2

(
ξ(
α
v

)2 − 1

)
(2.32f)

However, if the model’s parameters are such that there is a steady state with qt = 1 and

schooling but no child labor, then the parameter restriction ξ > α
v

has to hold. Using this

it is clear that the second parenthesis is positive. And for the case with zero schooling but

also no child labor

∂F (nt, qt)

∂nt

∣∣∣∣
nt=0

= −γ2 (2.32g)

∂F (nt, qt)

∂nt

∣∣∣∣
nt=

1
v

= ∞ (2.32h)

Further, it can be shown under the parameter restrictions (essentially assumptions 2.1 and

2.3) the following holds

∂F (nt, qt)

∂nt

∣∣∣∣
nt=

1
v

>
∂F (nt, qt)

∂nt

∣∣∣∣
nt=0

(2.33)

∂2F (nt, qt)

∂n2
t

=
2(v − s

¯
− θ)(γ1 + ξγ2 + γ3)

(−1 + n(v − s
¯
− θ))3

< 0 (2.34)

This ensures monotonicity of the derivatives. If assumptions 2.1 or 2.3 are violated then

∂F/∂n may turn positive leading to two possible positive solutions.

Proof of proposition 2.2. Use equations (2.8a) and (2.9a), take the derivative with respect

to qt and use the result ∂nt/∂qt < 0 from proposition 2.1. Then the claim

∂st

∂qt

=
ξγ2

γ1 + ξγ2 + γ3

−∂nt/∂qt

n2
t

> 0, (2.35)

is established where for the solution without child labor the parameter γ3 is set to zero.

To prove that child labor is decreasing if the survival probability increases use equations
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(2.8b) and (2.7a) and take the derivative with respect to qt. The result is

∂`t

∂qt

= − γ3

γ1 + γ3 + ξγ2

−∂nt/∂qt

n2
t

< 0 (2.36)

where we again use the result ∂nt/∂qt < 0 from proposition 2.1. In case of a solution

without schooling we have to set ξγ2 = 0 which does not change the sign.

Proof of proposition 2.3. From equations (2.8a) or (2.9a) we see that schooling is a negative

function of the number of children. Thus, there is threshold value ñt such that schooling

is zero. Using proposition 2.1 we can conclude that there is a survival rate low enough

such that nt ≥ ñt and thus ensuring st ≤ 0. The second part can be proven by using that

∂ñt/∂θ > 0. The claim ∂q̃t/∂θ > 0 follows then from the fact that the cross derivative

of the left hand side of (2.8c) or (2.7b) with respect to {nt, θ} ∀nt ∈ (0, 1/v] is negative

and the derivative of the right hand side is decreasing in qt. Thus, with rising θ and

consequently rising nt for st = 0 to hold, we need a higher survival rate.

Proof of proposition 2.4. Rewriting equations (2.8c), (2.7b), (2.9b) and (2.10) as

F (nt, qt) ≡ nt

(
ntṽγ1 + ξγ2 + γ3

1− ntṽ
− γ2

)
− γ2

1− qt

2qt

= 0 (2.37)

where ṽ, ξγ2 and γ3 depend on the optimal regime (see equations in the text). Denoting

the population growth factor as Lt+1/Lt ≡ gN and using Lt+1/Lt = ntqt gives nt = gN/q.

Inserting this into the above equation and rearranging gives

F (gN , qt) ≡ 2g2
N ṽγ1 + (gN ṽ − q)(1 + 2gN − q)γ2 + 2gNq(γ3 + ξγ2) (2.38)

The change in population growth as a function of the survival rate is then

∂gN

∂q
= − ∂F/∂q

∂F/∂gN

=
−γ2 + (2q − gN(ṽ + 2))γ2 + gN2(γ3 + ξγ2)

−γ2ṽ(1 + 2gN − q) + 2(γ2q − 2gN ṽγ1)− 2q(γ3 + ξγ2)
. (2.39)

At q = 0 and gN = 0 this gives 1/ṽ which is always positive.23 However, if q = 1 we have

gN = (1−ξ)γ2

(v−s
¯
)(γ1+γ2)

from the steady state solution with positive schooling and no child labor.

23This does not imply that the population growth rate is positive. It only means that it is increasing.
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Using this gives

∂gN

∂q
=

(gN(2 + ṽ)− 1)γ2 − 2gNξγ2

4gN ṽγ1 − 2(1− 2ṽgN)γ2 + 2ξγ2

(2.40)

Assuming that schooling has high returns, i.e. ξ is approaching unity, the derivative is

unambiguously negative. However, for all ξ the condition ensuring declining population

growth at high survival rates is

(1− ξ)γ2

ṽ(γ1 + γ2)
(2(1− ξ) + ṽ) < 1. (2.41)

where we have used gN as specified as above.

The proof for the non-monotonic behavior of the shape (i.e. second derivative) involves

two steps. First, observe that the population growth rate is a strictly concave function

of the survival rate (and therefore for all regimes). Assume now that we have parameter

values and a qt such that we have an interior solution with positive schooling and child

labor. Thus, if ∂gN/∂q < 0 evaluated at ñt
24 holds, then then gN at this point must be

below the local maximum. Further note that we can rewrite

∂gN

∂qt

=
∂nt

∂qt

qt + nt (2.42)

which implies that

∂gN

∂qt

∣∣∣∣
`,s>0

<
∂gN

∂qt

∣∣∣∣
`=0,s>0

. (2.43)

Second, it follows that if ∂gN/∂q < 0 evaluated at ñt is negative for the solution without

child labor but positive schooling (i.e. after the regime switch), then this derivative must

be smaller (i.e. more negative). Due to strict concavity, gN drops monotonically to the

steady state value. If the derivative is positive, then there will be a second local maximum

because the population growth rate will rise to a second local maximum.

On the other hand, if ∂gN/∂q > 0 holds for the interior solution then the population growth

rate will continue to rise after the endogenous regime switch (see derivative above) and

24Recall that ñt is the point where the household endogenously switches from the interior regime to the
regime without child labor but schooling.
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eventually start to decline after a local maximum converging monotonically to the steady

state value.

Proof of lemma 2.1. Use equations (2.8c) and (2.7b), redefine ṽ ≡ v− α and ϕ ≡ ξγ2 + γ3

if schooling and labor are interior and ṽ ≡ v and ϕ ≡ γ3 if only child labor is optimal.

Then, the first order condition for children can be written as

F (nt, θ) = nt

[
nt(ṽ − θ)γ1 + ϕ

1− nt(ṽ − θ)
− γ2

]
− γ22

1− qt

qt

(2.44)

The result can be established by showing that

∂nt

∂θ
= − ∂F/∂θ

∂F/∂nt

> 0. (2.45)

Proof of lemma 2.2. Use equations (2.8b) and (2.7a), redefine ṽ ≡ v − s
¯

and ϕ ≡ ξγ2 if

schooling and labor supply are interior. Otherwise ṽ ≡ v and ϕ ≡ 0. Taking then the

derivative with respect to θ is

∂`t

∂θ
= − γ3

γ1 + ϕ + γ3

(
−∂nt

∂θ
θ − (1− ntṽ)nt

(ntθ)2

)
> 0, (2.46)

where we use the fact that ∂nt/∂θ > 0 from proposition 2.1. To show the relationship

between schooling and relative productivity use equation (2.8a) and take the derivative

with respect to θ. The result is

∂st

∂θ
=

ξγ2

γ1 + ξγ2 + γ3

(
1− ∂nt/∂θ

n2
t

)
≷ 0 (2.47)

where ∂nt/∂θ > 0 from proposition 2.1. The result that ∂st

∂θ
< 0 cannot be established

analytically since it depends on the equilibrium value of nt. However, in the numerical

simulations it turns out that the equilibrium solution is always such that the claim above

always holds.
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Proof that nt has always a positive and a negative root. Using equation (2.5c) and replac-

ing λ with γ1/ct gives

γ1

ct

wtht(v + st − θ`t) = γ2

[
1

nt

+
(1− qt)

2n2
t qt

]
. (2.48)

Rearrange this equation to obtain

−γ1

γ2

wtht(v + st − θ`t)

ct

n2
t + nt +

1− qt

2qt

= 0. (2.49)

Solving this quadratic equation for nt proves the claim.

Proof of proposition 2.5. Start with equation (2.18), assume that schooling is zero (which

implies gh = 0) and use the fact that child labor supply is constant (gL̃ = 0). Due to the

Malthusian steady state assumption we have gy = 0 implying gA(Lt−1(1+gL), 0) = (1−α)gL

where we have used Lt = Lt−1(1 + gL). Taking the derivative with respect to population

growth gives

∂gA

∂Lt

Lt−1 = 1− α.

With positive population growth this can only hold for all Lt if gA is strictly concave in

the population size and

∂2gA

∂Lt

Lt +
∂gA

∂Lt

= 0

holds. Rearranging this equation proves the claim.

Approximation of Expected Utility Maximization. The 3rd order Taylor series approxima-

tion of the utility function U(ntqt) = log ntqt around the mean n̄t is

U(ntqt) = log n̄t + (n̄t − ntqt)
1

n̄t

− (n̄t − ntqt)
2

2!

1

n̄2
t

+
(n̄t − ntqt)

3

3!

2

n̄3
t

. (2.50)

Taking expectations gives then the result in the paper. The first term is evaluated at the

mean, the second term vanishes due to E[n̄t − ntqt] = 0, the third term is just E[(n̄t −
ntqt)

2] = V ar(ntqt) = ntqt(1−qt) and the last term is also zero because of the symmetry of
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the binomial distribution. Since we use a utility function which is unbounded from below

and a distribution with mass on zero, we would have to include an arbitrary small constant

into the utility function. However, this would not affect any of the results.
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Chapter 3

Human Capital and the Demographic

Transition: Why Schooling Became

Optimal

3.1 Introduction and Motivation

The history of humanity was – until recently – characterized by dismal economic conditions:

low income, low life expectancy, low investment into human capital and high fertility.

Briefly summarized, “the life of man [used to be], solitary, poore, nasty, brutish, and

short” (Hobbes (1651), p. 78). In modern Western economies we observe the opposite:

high income, high life expectancy, highly educated individuals and low fertility. In this

paper we develop a model which is able to rationalize the monotonic increase in human

capital investment, the hump-shaped relationship between fertility and life expectancy and

the endogenous appearance of a public schooling system. We argue that it is important to

account for the change in the nature of the costs of child education: from time costs in an

underdeveloped economy to monetary costs in a developed economy.

The driving force of the model is rising adult life expectancy. We use a simple life-cycle

setup in which adults differ with respect to their productivity on the labor market and

decide about consumption, investment into adult and child human capital and the number

of children. They also chose whether they educate their children at home or whether they

47
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endow them with human capital by sending them to a school and paying tuition fees. If

parents increase children’s human capital using their own time, rising adult life expectancy

will unambiguously increase fertility. On the contrary, if children are educated in the public

schooling system, agents’ reaction to rising life expectancy is ambiguous. We show that

if adult human capital is sufficiently productive and parents’ preferences for children are

sufficiently concave, fertility falls as parents’ life expectancy rises. Furthermore, parents

deciding to send their children to a school have – for any life expectancy – fewer children

and invest more in their human capital.

The decision which educational system to choose depends on parents’ life expectancy and

ability level. Given tuition fees, more productive agents choose the public schooling system

whereas less productive agents decide to spend own time on children’s human capital. As

life expectancy – and thus lifetime income – increases, also less productive agents will

opt for the schooling system. Thus, rising adult life expectancy induces a composition

effect (public vs. private schooling) and a behavioral effect (effect of life expectancy can

increase or decrease fertility if children are educated in schools). For initially low life

expectancy, the share of agents participating in the public schooling system is low. Higher

life expectancy thereby pushes economy-wide fertility up. With rising life expectancy

during the development process, public schooling becomes efficient for more and more

people generating a drop in aggregate fertility and an increase in human capital investment.

Thus, the key contribution of this paper is to provide a novel explanation for the fertility

transition and the endogenous appearance of a mass schooling system in an otherwise

rather standard model. The explanation is based on a change in the nature of investment

in child quality from time costs to monetary costs. We thus propose a theory why a

public schooling system emerged endogenously without a state intervention on a large scale.

What we do not explain is why eventually schooling become free, i.e. why the society –

via government and parliament – decided to first heavily subsidize primary schooling and

then set up a schooling system financed by taxes. This would require to develop a theory

in which political decisions (tax system, educational institutions, etc.) are determined

endogenously within the model. We leave this extension for further research.

This paper is not the first to provide a possible explanation for the dramatic economic

and demographic change occurring in the second half of the 19th century. Possible causes



3.1. INTRODUCTION AND MOTIVATION 49

for declining fertility are declining child mortality rates (Kalemli-Ozcan (2002), Kalemli-

Ozcan (2003), Tamura (2006)), natural selection favoring parents with a higher preference

for child quality than quantity (Galor and Moav (2002)) and the narrowing of the gender

wage gap making children more expensive (Galor and Weil (1996)). Further explanations

are changing marriage institutions with a rising proportion of better educated women

(Gould, Moav, and Simhon (2008)), structural change and an increasing share of people

investing into human capital (Doepke (2004)) or the introduction of compulsory schooling

(Sugimoto and Nakagawa (2010)). In Cervellati and Sunde (2005), Cervellati and Sunde

(2007), and Soares (2005) rising adult life expectancy serves as the key explanatory variable

for the observed economic development.1 Particularly, higher life expectancy induces agents

to invest more into human capital and decrease fertility. The driving mechanisms are

the increasing opportunity costs of fertility as adult’s human capital investment rises.

Empirical evidence for the differential impact of life expectancy on population growth

is provided by Cervellati and Sunde (2009). They show that before the demographic

transition, improvements in life expectancy primarily increased fertility. Using historical

time series, Clark (2005b) agues that fertility is not monotonically related to income or life

expectancy. This hypothesis is supported by Lehr (2009) based on data from contemporary

developing countries.

More recently, the literature started to deal with the question why schooling systems came

into existence. Galor and Moav (2006) explain the rise of a general schooling system

(and thus of mass education) with a regulatory intervention by a ruling capitalist class.

If skills and capital are complementary in production, diminishing marginal returns to

capital accumulation can be counteracted by increasing workers’ human capital. They

argue, that capitalists lobbied for the introduction of compulsory schooling out of a profit

maximizing rationale. In Boucekkine, de la Croix, and Peeters (2007) the appearance

of a public schooling system emerges from profit maximizing behavior of municipalities.

As population density increased, more and more schools were constructed decreasing the

distance (transportation costs) of each agent to the next school which increased school

1There is an enormous amount of papers not explicitly targeting to explain the demographic transition
but provide explanations for various other aspects of the development process. Prominent papers are
Galor and Weil (2000), Hansen and Prescott (2002), Jones (2001), Kremer (1993), Strulik (2004a), Kögel
and Prskawetz (2001), Ehrlich and Lui (1991), Ngai (2004), Lagerlöf (2003), Fernández-Villaverde (2001),
Tamura (2002). An excellent overview is provided by Galor (2005).
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attendance rates.2

Section 3.2 provides stylized facts and section 3.3 contains a detailed description of the

model and the solution to the individual choice problem. The dynamic behavior of the

economy with a discussion of the development path and an illustrative simulation exercise

can be found in section 3.4. Section 3.5 concludes the paper. All proofs are relegated to

the appendix.

3.2 Life Expectancy, Schooling and Fertility

After a stagnation of living standards over centuries, the 19th century was the starting

point of an unprecedented change in almost all aspects of economic and social life.3 GDP

per capita and population entered steep growth paths (Fig. 3.1d). Simultaneously we

can observe that a lengthening of life become a trend rather than an occasionally lucky

event. Although increases in life expectancy at birth were initially driven by falling child

mortality, survival probabilities for adults also increased substantially (Fig. 3.1a). These

improvements in living conditions of daily life were initially reflected in higher fertility.

Crude birth rates and net reproduction rates reached their historical peaks around 1820

and started to fall soon thereafter.4

At the same time, acquisition of formal human capital started to gain momentum for the

first time in history. The earliest statistics indicate that in 1850 around 10% of the children

of age 5-14 attended primary school. Secondary school (10-19 years) did not enter official

statistics before 1900 when the demographic transition was already well under way. Human

capital measured by the ability to sign marriage contracts was, however, considerably

higher. In the early 19th century, around 30% of all brides and 60% of grooms signed

their marriage contracts with their names instead of using an “X” (Fig. 3.1c).5 Note that

2For instance, Acemoglu and Robinson (2000), Bertocchi and Spagat (2004) and Grossman and Kim
(2003) argue that providing eduction to the masses decreases the potential for social conflict and civic
disorder. According to these papers, the introduction of a free (and compulsory) education system was
not necessarily an altruistic act but served rather the interests of the ruling class.

3In this paper we use data for England and Wales but the same pattern can be also observed in other
countries around the same time with good data; one prominent and often studied example being Sweden.

4There is no data available on total fertility rates before 1850. However, the few data points available
show that TFR peaked around 1870 at 5 children per woman and started to decrease afterwards.

5Whether literacy was a useful skill before and during the industrial revolution is hotly debated in the
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the timing of the fertility reversal is closer to the introduction of primary schooling than

to rising secondary school enrollment rates. It is also remarkable that primary schooling

enrollment rates started to increase before the introduction of a compulsory schooling.

The Elementary Education Act 1870 (also known as Forster’s Education Act) provided

only partial funding for schools in underdeveloped regions but fees were still charged. The

Elementary Education Act of 1880 made schooling compulsory for children aged 5-10 (but

was never aggressively enforced) and only the Free Education Act of 1891 made basic

education virtually free by heavily subsidizing primary schooling.

Initially, education was thus not free but financed by parents. Data for 1834 Manchester

show that up to 80% of children’s education was paid for only by parents (West (1970),

p. 84). On the aggregate level approximately 1% of Net National Income in 1833 was

spent on day-schools (West (1970), p. 87). The development of fees relative to wages is

shown in figure 3.1b demonstrating that the rise of tuition fees kept pace with the general

wage increase and even outpaced it shortly before the Free Education Act was enacted.

This suggests that education became relatively more expensive with a, ceteris paribus,

detrimental effect on educational investment. Nevertheless, we observe that some parents

decided to send their children to costly schools. These families were most likely not member

of the rich bourgeois (they could afford e.g. private tutors anyway) but rather from the

lower or middle class indicating that they recognized the value of education, were able and

willing to pay for it.

3.3 The Model

In this section we describe the setup and solution to the model. The first subsection

deals with the timing and notational conventions, followed by the description of aggregate

production, production of human capital and the pricing of public schooling. Then we move

on to the households’ preferences and constraints and solve the individual maximization

problem. Finally, we solve for the general equilibrium and discuss the dynamic behavior

literature. After the seminal paper by Galor and Weil (2000) human capital has been accepted as the key
ingredient of any unified growth theory. Mokyr (2004), however, claims that literacy was restricted to a
small share of the population (government officials, military personnel or members of the aristocracy) and
is unlikely to serve as a good explanatory variable.
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Figure 3.1: Stylized Facts
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Data sources: Crude Birth Rate: Chesnais (1992). Tuition Fees: Mitch (1986). School Enrolment Rates:
Flora, Kraus, and Pfenning (1983). Population and GDP per Capita: Maddison (2003). Literacy:

Schofield (1973). Life Expectancy: Wrigley and Schofield (1981) and Human Mortality Database (2008).
Wages: Clark (2005a). The data refer to England and Wales. Enrollment data refer to the percentage of

the age group (corresponding to the Net Enrollment Ratio).
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of the economy.

3.3.1 Timing and Conventions

Consider an overlapping generations economy in which adults live for T + aB years. T

is the life expectancy of an adult agent who enters adulthood at age aB which may be

regarded as the “economic” birth.6 As a child, the agent may receive some education from

her parents but is otherwise passive and does not make any own decisions. The agent can

decide about consumption, number and education of children, and investment into adult

human capital. Children are born right after parents enter adulthood at aB. Parents can

decide to educate children at home (“private system”) or they can decide to send their

children to school and pay tuition fees (“public system”).7 Time investment into adult

human capital increases productivity on the labor market and agents differ with respect

to their labor productivity.

The economy is populated by a discrete number of overlapping generations and each gen-

eration (cohort) is indexed by τ . The new household born at time t has a life expectancy

of Tt + aB where the length of childhood aB is time invariant whereas life expectancy will

change during the development process. Life expectancy is identical across agents and

determined by exogenous forces outside of the households’ control. Population size is the

number of agents (including children) at any time t. Investment into adult human capital,

child human capital and the number of children are continuous variables.8 Reproduction

is asexual, one agent can be interpreted as a family making joint decisions. The notation

in the paper is as follows: the subscripts τ and t denote cohort and calendar time, an

individual’s ability (type) is denoted by µ, a prime indicates a partial derivative, and the

6Some papers, e.g. de la Croix and Licandro (2009) refer to this as puberty. In the context of this
paper this could also be understood as marriage, see Voigtländer and Voth (2009) on the link of marriage
and fertility.

7We use the terminology private and public to distinguish between education at home and education
in some institution not requiring parents’ time but money to “buy” the time of a teacher. Thus, private
and public does not refer to the modern notion of private and public schools. See de la Croix and Doepke
(2004) who model such a framework and examine the long-run effects in the educational system on growth
and inequality.

8See Doepke (2005) for a model with discrete and sequential fertility decision. Although in presence
of uncertainty the indivisibility assumption has an effect on the fertility behavior, he states that the
“quantitative predictions of the models are remarkably similar”.
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superscripts j ∈ {pr, pu} refer to the private and respectively public schooling system.

Variables with a bar (e.g. x̄) denote averages and a tilde (e.g. x̃) indicates some threshold

value for a variable. When no misunderstanding is expected, we omit indexes.

3.3.2 Aggregate Production

Human capital is the only productive factor in this economy and there is only one sector

producing a homogeneous consumption good. We use a simple vintage model in which

technological vintages are characterized by cohort specific productivity levels and each

generation can operate only its cohort specific technology (each newborn generation au-

tomatically uses the new vintage).9 Thus, agents earn over their entire working life the

output (wage) of that vintage. This allows us to concentrate only on the labor market

equilibrium at one point in time for one generation and avoids making assumptions about

the substitutability of agents over different ages and vintages of human capital. Aggregate

production for a generation τ is given by the linear technology

Yτ = AτHτ , (3.1)

where Aτ denotes cohort specific productivity and Hτ is the aggregate stock of effective

labor supply, respectively. Effective labor supply is defined as Hτ = PτLτ where Pτ is the

number of workers, and Lτ is average effective labor supply per worker. To exhaust total

production, wages per unit of human capital and per capita income are

ωτ = Aτ , (3.2)

wτ = ωτLτ . (3.3)

Hence, wages per unit of human capital increase in the general level of productivity and

income per capita increases with higher individual effective labor supply. As will become

clear later, nothing hinges on the absolute level of income per capita or wages. In order

to focus on the main predictions of the model, we abstain therefore from including a

9See Cervellati and Sunde (2005) for similar assumptions. Chari and Hopenhayn (1991) develop a model
showing that new technologies are not immediately adopted. In an empirical study Weinberg (2004) shows
that older workers are more likely to operate old machines and new entrants into the labor market (young
workers) will operate the most recent vintage.
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Malthusian element by introducing a concave production function with a fixed factor.

3.3.3 Human Capital of Adults

Upon becoming adults, agents may decide to spend h units of time on the acquisition of

adult human capital. Agents’ heterogeneity translates into different productivity on the

labor market where we assume that ability µ is distributed uniformly on the [0, 1] interval

and shifts individual productivity linearly. Then, adults’ human capital is given by

f(h) = µ
hθ

θ
, (3.4)

with θ < 1.10 The implicit assumption here is that human capital is embodied in people and

therefore it has to be built up from zero by every new generation. Technological progress

caused by human capital therefore shows up only in the level of aggregate productivity Aτ .

3.3.4 The Price of Education

We do not model a detailed education sector, the main reason being the lack of consensus

in the literature how a realistic modeling environment might look like. It is, for instance,

conceivable that private schools are selfish profit maximizing organizations hiring teachers

on the market and selling educational services but it is also equally plausible that schools

are managed by non-profit organizations or run by a government attempting to recover

only their costs (i.e. operating on a zero-profit basis). To begin with, we assume that

each agent working in the education sector can produce one unit of educational services by

using its human capital and one unit of time. This corresponds to the assumption made

for education at home: each parent has to spend one unit of time and its human capital to

produce one unit of “time input” into production of human capital of children. Further,

we assume that the efficiency of this unit of time spent educating children increases with

the average level of human capital f̄(h) in the economy. Using these assumptions, we have

epu(µ) = m(f̄(h))`pu(µ) where epu and `pu are education services produced and time spent

10The uniform distribution is not crucial for the main argument of the paper. Further, the choice of this
production function implies that it is never optimal for agents to choose h = 0. This can be relaxed at the
cost of having corner solutions which would endogenously vanish once life expectancy is high enough.
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teaching of an agent of ability µ. m(·) is an increasing function mapping average human

capital into a positive externality.11 Agents are indifferent between working in schools

or in the production sector and we assume that that they are randomly drawn from the

population. Then, a teacher is just a representative (average) agent. Since competition on

the labor market requires wages per unit of human capital ω to be identical, the price of

schooling is

p = ω
f̄(h)

m(f̄(h))
. (3.5)

The price of education is increasing with the wage level and the average educational at-

tainment of the adult population but decreasing with the externality created by a better

educated population. Since this element will turn out to be crucial for the development

path, we will come back to this issue in section 3.4.2.

3.3.5 Household Preferences and Constraints

The agent’s utility function follows rather standard assumptions. An agent likes con-

sumption over the life-cycle and values educated children. Conditional on the decision

j ∈ {pr, pu} how to educate the offspring the agent from cohort τ maximizes the utility

function

U j =

∫ T

0

e−ρada log c(a)j + βu(njz(ej)) (3.6)

where log c is the period utility obtained from consumption at age a, ρ is discounting future

utility and u(nz(e)) is the intrinsic value of the quality-quantity composite weighted by β.

The utility function u takes the number n of children times their quality which is captured

by their human capital z(e). This is a common assumption in the literature and can be

understood as pure parental altruism or an implicit old-age pension system.12 Human

11A similar assumption concerning externalities is common in endogenous growth models with knowledge
externalities, see e.g. Romer (1986). The main conclusion would not change if we required that teachers
posses some minimum skill level (see also de la Croix and Doepke (2003) for a setup where teachers are
average agents).

12The alternative formulation in which agents derive utility from the utility of their children (i.e. the
dynastic approach in the spirit of Becker and Barro (1988) or Barro and Becker (1989)) requires that
agents know (or form expectations) what their children will do. This would render the model intractable
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capital of children increases with investment e. The input into the production function is

either parental time or teachers’ time bought on the market for the price p per unit of time

(tuition fees). Children survive with probability one until adulthood.13 The timing of the

agents’ decisions is kept as simple as possible: agents first complete their schooling and

fertility and start working afterwards. Working on the labor market is an absorbing state

and there is no retirement.

Since this paper does not focus on life-cycle dynamics or precise life-cycle profiles but

rather on the trade-off between human capital investment (child and adult) and fertility,

we assume that the discount rate and the interest rate are both zero.14 This simplifying

assumption obviously eliminates the traditional life-cycle elements for consumption, saving

and labor supply. However, the “qualitative” structure of the problem is not altered:

rising life expectancy has exactly the same effect as in a more realistic setup. Using the

assumptions from above, the problem can now be written as

{j, cj, hj, nj, ej} = arg max T log cj + βu(njz(ej)) (3.7)

subject to the constraints

Tcj ≤ ωf(hj)(T − φnj − hj)− pejnj, if j = pu. (3.8)

in the public system where the educations costs are monetary costs. In the private system

and would probably not change the main message. For models where the old-age security motive is made
explicit see e.g. Boldrin and Jones (2002) and Ehrlich and Lui (1991).

13We ignore uncertainty about child survival. See e.g. Kalemli-Ozcan (2003) and Strulik (2004a) on
the theoretical and Eckstein, Mira, and Wolpin (1999) or Ram and Schultz (1979) empirical relationship
between child survival and investment into human capital.

14Since marginal utility from consumption and the quantity-quality composite are independent, pro-
ceeding with ρ = r 6= 0 would not change the results (only the slope of the consumption profile would
change), see the identical assumptions in e.g. de la Croix and Licandro (2009), Soares (2005) or Cervellati
and Sunde (2005).
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the constraint is15

Tcj ≤ ωf(hj)(T − (ej + φ)nj − hj), if j = pr. (3.9)

In both constraints fixed time costs per child are identical and denoted by φ. The problem

is in general analytically not tractable. Therefore we make the following assumptions about

functional forms

Assumption 3.1.

u(n, e) =
(nz(e))1−σ

1− σ
(3.10)

z(e) =
eγ

γ
(3.11)

with γ < 1, σ > 0.16

3.3.6 Individual Maximization Problem

The strategy is to solve the individual maximization problem – given wages and the price

of schooling – conditional on the choice of the schooling system. This should highlight

the conditional dynamics of fertility, investment into child, and adult human capital as life

expectancy increases. Then we will analyze the effect of rising life expectancy on the choice

of the parents’ utility maximizing educational system. Using this two-stage procedure we

can isolate the effect of rising life expectancy on the composition of the economy, i.e.

private vs. public schooling and then the change in individual behavior conditional on

this choices. Finally, we will put the individuals into a general equilibrium framework to

allow for feedback effects and examine the dynamics of the aggregate economy. That is,

15In this setup we ignore the important issue of child labor. See e.g. Basu and Van (1998), Hazan
and Berdugo (2002) or Baland and Robinson (2000) for models incorporating a child labor decision into
growth models. However, note that we can rewrite the budget constraint by assuming that children can
earn nϕωf(h) where ϕ represents the relative wage of child labor. Then, p = pg−ωf(h) and φ = φg(1−ϕ)
where φg and pg are gross and p and φ are net costs of schooling.

16We use the log-function for sub-utility from consumption to keep fertility independent from the level
of ω – for a given T – as the economy is growing. A non-neutral effect of wages on fertility can be brought
back into the model by choosing a utility function which does not balance income and substitution effects.
See Jones, Schoonbroodt, and Tertilt (2008) for an excelling literature overview how in theoretical models
income is related to fertility.
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we examine the simultaneous interaction of the behavioral and compositional change.

Household Solution in the Private Education System

In this subsection we solve the household’s problem assuming that agents educate their

children at home. At this stage, we do not ask which schooling system is optimal for parents

but examine their behavior given that they decided to stay in the private system. This

is essentially an environment without public schooling where all investment into human

capital is done at home by the parents. Thus, children consume a share of their parents’

time which is not available for productive work.

Using λ to denote the multiplier attached to the resource constraint, the first order condi-

tions17 of the problem (skipping the index j = pr) are

βu′z − λωf(h)(e + φ) = 0 (3.12)

βu′z′ − λωf(h) = 0 (3.13)

f ′(h)(T − (e + φ)n− h)− f(h) = 0 (3.14)

where a prime denotes partial derivatives. Note that the optimality condition for adult

human capital h is independent of the marginal utility of consumption λ. Thus, without any

further restrictions, adult human capital will just maximize lifetime income. Furthermore,

combining the FOC’s for fertility and child schooling capital we obtain

z

z′
= φ + e (3.15)

implying that optimal investment into children’s human capital is independent of adult life

expectancy, parents’ human capital (and skill level) or wages. It is a constant determined

by the relative time cost of children φ, and the properties of the human capital production

function z(e). Solving the entire household problem with private education leads to the

following proposition:

Proposition 3.1. Assume that children are educated in the private system. If adult life ex-

17To economize on notation we will not spell out the solution using the specified functional forms but
rather use the general notation. For the proofs in the appendix we will, of course, switch to the specific
functional forms whenever necessary.
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pectancy increases, adult schooling and fertility will increase. Investment into child human

capital is constant.

Proof. See appendix 3.A.

The intuition behind this result is rather simple. Adult schooling is rising since the time

over which the benefits of educational investment can be reaped is increasing.18 The result

is based on the trade-off between the opportunity costs of schooling today and future

benefits. Child human capital is constant since the assumption made on u implies that the

agent maximizes quasi-linear utility. Under this assumption marginal utility from child

schooling and marginal costs are proportional in n. However, the price of one additional

unit of fertility or child schooling is linearly increasing in f(h) whereas returns to child

schooling are concave. Thus, investment into child human capital does not change and

income effects are absorbed by (rising) fertility. Fertility, on the other hand, is rising

because of the intratemporal optimality between consumption and fertility. Rising life

expectancy implies rising total lifetime income and the agent will – by concavity of both

utility functions - distribute some of the additional “free” income to increase consumption

and fertility.19

Household Solution in the Public Education System

Parents could also have their children educated by teachers (j = pu) for tuition fees p per

unit of time. The crucial difference to the private system is that the opportunity costs of

child human capital are not valued by forgone adult wages but purely by monetary costs.

18This is the Ben-Porath (1967) mechanism. See however Hazan (2009) and Kalemli-Ozcan and Weil
(2002) for opposite views on the link between life expectancy, human capital investment and lifetime labor
supply (including the timing of retirement).

19An alternative way is to consider one equilibrium allocation of consumption c∗ and time {n∗, h∗} given
a life expectancy T ∗. Assume now that life expectancy rises but we hold fertility and adult schooling at
{n∗, h∗} constant. Then, per period consumption will always rise since at the given equilibrium allocation,
the propensity to spend out of an additional unit of income is smaller than one but holding {n∗, h∗}
constant implies that the entire additional income is available for consumption. On the other hand, rising
life expectancy makes investment into education more profitable introducing an additional “multiplier”
effect increasing total lifetime income even more. Thus, marginal utility of consumption will decrease even
further requiring a rise in fertility to equate marginal utilities. Consequently, the agent will sacrifice some
income when young and thereby equate marginal utility from consumption and fertility. This result can
also be established by assuming concavity of the production function f(h) and concave utility functions
u(·) and z(e) only and does not hinge on any functional form.
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Formally, the first order conditions associated with the problem are

βu′z − λ(ep + ωf(h)φ) = 0 (3.16)

βu′z′ − λp = 0 (3.17)

f ′(h)(T − h− φn)− f(h) = 0 (3.18)

In contrast to the setup with private education, child schooling costs are no time costs any

more. Thus, they do not enter the equation determining the optimal solution for adult

human capital but are only monetary costs valued by the marginal utility of consumption.

Combining again the first order conditions for quantity and quality of children we obtain

z

z′
=

ep + ωf(h)φ

p
(3.19)

e = ωf(h)
φ

p

γ

1− γ
(3.20)

where now adult human capital increases also investment in child quality. This is an income

effect stemming from the fact that the scarce factor time competing for labor supply and

adult human capital accumulation is freed up. Thus, the “production function” for child

human capital becomes linear instead of the convex costs caused by concave utility and

concave production of adult human capital. However, the fact that child schooling is

now purely a monetary cost implies also that the price of fertility relative to the price

of schooling is rising in adult human capital (see FOC). Thus, it is not straightforward

any more how fertility is changing if life expectancy (and h) is changing. Note that the

introduction of a free public schooling system is still compatible with this setup. It is

reasonable to assume that even without tuition fees the costs of schooling are bounded

away from zero. This ensures that the household has a well defined demand for child

education.

Solving the household problem now allows us to state the following proposition

Proposition 3.2. Assume that children are educated in the public system. If adult life

expectancy increases, adult schooling and child schooling will increase. Fertility is always

rising for σ ≤ 1 but may fall for σ > 1.

Proof. See appendix 3.A.
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Again, investment into adult human capital rises because of the horizon effect. Child

human capital rises because the price of schooling does not increase in f(h) and therefore

only the positive income effect is left over. Whether fertility increases or decreases depends

on the coefficient of relative risk aversion with respect to the quantity-quality composite.

Intuitively, if σ ≤ 1, then the income effect of higher adult human capital will dominate

(i.e. marginal utility from the quality-quantity composite is “less convex”). However, if

σ > 1, then the effect of higher price of fertility may dominate. Given σ > 1, the reaction

of fertility with respect to change in life expectancy depends mainly on the properties of

the adult human capital production function. The more adult human capital increases,

the more expensive fertility becomes and therefore fertility is likely to decline.

We can draw two main conclusions from analyzing household behavior under the two

schooling regimes. Firstly, if there is no public schooling system and the only input into

children’s human capital is parental time we will not observe a decrease in fertility if adult

life expectancy is increasing. Secondly, if there is a public schooling system, a decrease in

fertility is more likely but will not necessarily happen. If the agents are less risk averse

with respect to fertility than with respect to consumption, fertility will not decline as life

expectancy increases. Then, there is no change in behavior with respect to fertility either.

If σ > 1, then fertility may decrease if f(h) is increasing sufficiently as a consequence of

more investment into adult human capital h. In either case, child schooling will (given p

and ω) rise in the public system as parental human capital increases. Aggregate fertility

may decrease if the compositional effect is strong enough, i.e. sufficiently many agents

decide to switch to the public system. Being able to match the stylized facts, we proceed

for the rest of the paper with

Assumption 3.2.

σ > 1 (3.21)

While interpreting the results, we have to keep in mind that we have operated in a highly

stylized environment without any frictions. Returns to education are not affected by tech-

nological progress, an assumption frequently made in the literature.20 We also implicitly

20See e.g. Schultz (1964), Foster and Rosenzweig (1996) or Bartel and Sicherman (1998) on the link
between technological progress and investment into human capital.
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assumed that parents and teachers are equally efficient in teaching children. This may be

true if we deal with educated parents (who could also be teachers) or the level of knowledge

is rather low. Our assumption may be of limited use if parents are unskilled laborers or

illiterate. Further, the choice of the log-utility for consumption implies that income effects

– by simply raising wages (and p proportionally) – does not affect households’ allocations.

The purpose of these assumptions was to isolate the effect of different time allocation

schemes on individual decisions. The quantitative relevance of this mechanism relative to

competing explanations is ultimately an empirical question.

3.3.7 The Choice of Private vs. Public Schooling

Agents’ optimal choice includes the decision in which education system their children are

educated. For their decision, parents take their ability µ, wages ω, and the price of edu-

cation p as given. One would expect that more able parents find it optimal to send their

children to school and pay the tuition fees by spending more time on the labor market. The

decision which schooling system to chose depends only on the potential income of parents.

If they decide to send their children to a school, they do this because income earned on

the labor market outweighs the costs of tuition fees. This is the sorting mechanism the

model relies upon. The determinant is the wage-price ratio (ω/p) relative to potential

earnings. Potential earnings are determined by individual ability and life expectancy. The

more able agents are and the higher their life expectancy is, the cheaper and more efficient

is education for their children in a public system. Note that by assuming that ability is

bounded from above, there may be such a vector {p, ω} that even the most able agents

decide not to participate in the public schooling system.21 Then, we can state the following

proposition:

Proposition 3.3. If there is a vector {p, ω} such that agents are indifferent between the

private and public system, agents with µ ≥ µ̃ will decide to educate their children in the

public system whereas agents with µ < µ̃ will decide to educate their children at home. This

threshold ability level µ̃ is decreasing with rising life expectancy.

21The standardization with the upper bound of µ = 1 does not matter. It is obvious that for any finite
bounded ability, there is a sufficiently high price to deter even the most able agent from participating in
the public school system.
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Proof. See appendix 3.A.

Proposition 3.3 means that for a given relative price structure, also less able agents find it

optimal to switch to the public system as life expectancy is rising. The economic explana-

tion is that lower ability is partly compensated by higher investment into human capital. In

turn, rising life expectancy increases optimal investment into adult human capital thereby

raising the opportunity costs of educating children at home also for less able agents. And

obviously, if for an agent with ability µ = µ̃ it was optimal to join the public system given

T , this will be optimal for higher life expectancy too: the price of schooling is constant

and not increasing in h, thus the agent is always better off in the public system. Rising

life expectancy therefore implies that the indifferent agent becomes less able as T rises.

However, whether this happens on the aggregate level once we allow for feedback effects

of rising adult human capital investment on the price of education is not clear (see next

section). Further, switching from the private to the public education system means that

households’ investment into human capital and fertility will change discontinuously.

Lemma 3.1. If agents decide to educate their children in the public system, they will

increase investment in both types of human capital and decrease fertility.

Proof. See appendix 3.A.

This change in the optimal education system causes a change in educational attainment

and fertility due to a changing composition but does not necessarily involve a behavioral

change. Families choosing the public system still could increase their fertility as their

life expectancy increases. Moreover, heterogeneity in ability is now also reflected in the

heterogeneity of decisions.

Lemma 3.2. If children are educated in the private system, ability does not change the

solution to the households’ problem. If children are educated in the public system, higher

ability increases adult and child human capital investment and decreases fertility.

Proof. See appendix 3.A.

The negative correlation between parental education (ability) and fertility is a well docu-

mented and widely accepted fact (Skirbekk (2008)). Note that for this pattern to emerge
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we need that the price of children is partly decoupled from parents’ own human capi-

tal. Without the adoption of a public schooling system, agents’ allocations are identical

despite different ability levels. Higher ability introduces an effect which proportionally

raises prices of fertility and both types of human capital. Thus, more able agents enjoy

only higher lifetime utility (due to higher consumption) without changing their allocation

of time. Heterogenous behavior as a consequence of heterogeneity of skills requires that

higher ability “buys” more time. This is, however, only the case if the price of child

schooling is not perfectly linked to parents human capital.22

3.3.8 Aggregation

Aggregate human capital in goods’ production for a given generation τ is given by

Hτ = Pτ

[
µ̃τf(hpr

τ )`pr
τ +

∫ 1

µ̃τ

f(hpu
τ (a))`pu

τ (a)da− Eτ

]
(3.22)

where the first term measures effective labor supply of agents educating their children at

home. The second term measures total labor supply of agents educating their children

in the public system and the last term is the labor supply of teachers not available for

producing consumption goods. Total education time purchased on the market is given by

Eτ = f̄τ (h)

∫ 1

µ̃τ

npu
τ (a)epu

τ (a)da. (3.23)

Using the assumption of uniformly distributed ability in the population, average human

capital in the economy and fertility for any cohort τ are

f̄τ (h) = µ̃τf(hpr
τ ) +

∫ 1

µ̃τ

f(hpu
τ (a))da (3.24)

n̄τ = µ̃τn
pr
τ +

∫ 1

µ̃τ

npu
τ (a)da. (3.25)

The first term is human capital and fertility of agents educating their children at home

and the second term denotes the corresponding value for the families participating in the

22We could also allow for both – monetary and time costs – of child human capital with obviously
identical qualitatively conclusions.
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public system.

3.4 The Dynamic System

The development process is shaped by the interaction of individually optimal decisions

and macroeconomic externalities. Having solved the households’ problem with fixed prices

and for a given life expectancy, we will trace out the dynamics of simultaneous changes in

prices and life expectancy. First, we study how the driving force of the model, adult life

expectancy, is linked to the agents’ individual decisions and how it evolves over time. Then,

we will analyze the adjustment process of tuition fees when life expectancy is endogenous.

Finally, we look at the dynamics of demographic variables.

3.4.1 Life Expectancy

Research has led to mainly two competing explanations why life has increased over the

last centuries: improvements in nutrition and progress in medical knowledge. Whereas e.g.

Fogel (1997) argues that the increases in the intake of calories is responsible for decreasing

mortality, Cutler, Deaton, and Lleras-Muney (2006) object in their survey that it was

mainly progress of medical knowledge.23 Although is seems reasonable that life expectancy

at some time will reach a biological upper bound, there are no signs that this will happen

within the next generations. On the contrary, Oeppen and Vaupel (2002) show that record

(“best-practice”) life expectancy has risen for 150 years at a pace of 2.4 years per decade

making it impossible to derive a sensible prediction about maximum life expectancy. Using

the insights from this literature we assume that life expectancy is a positive function of the

available human capital in the economy capturing both effects. Particularly, we link the

next cohort’s life expectancy to the average human capital of the current cohort, implicitly

assuming that parents’ knowledge, health behavior, etc. determines the life expectancy of

23Cutler, Deaton, and Lleras-Muney (2006) show that there was no health-income gradient before the
Age of Enlightenment and assert that ideas like germ theory, boiling water or simply washing hands are
independent of the level of income. Mokyr (1993) takes a stand between the two theories writing that
“...knowledge is believed to respond to market signals, social and political pressures, changes in incentives,
institutions, and so on.” In other words, as people escape from a state of mere subsistence, they can afford
to spend resources on the advancement of knowledge.
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their children. We formalize this by writing

Tτ+1 = Ψ(f̄(h(Tτ ))), (3.26)

where Ψ is a strictly concave and non-decreasing function capturing the positive externality

of average human capital on life expectancy. To escape from a trivial solution we make

Assumption 3.3.

Tτ+1 − Tτ = ∆(Tτ ) = Ψ(f̄(h(Tτ )))− Tτ ≥ 0 ∀ Tτ > 0. (3.27)

This is a simple nonlinear difference equation leading to an arbitrary high but finite life

expectancy. By imposing the restriction that Ψ is non-decreasing and strictly concave we

rule out possible non-monotonicities on the development path. We do this for the sake

of clarity of the paper’s argument: the implications of a less restrictive specification of Ψ

are that we may end up with no or more than one steady-state without gaining additional

insights.

3.4.2 Schooling Choice in General Equilibrium

It is clear that as life expectancy rises, agents invest more into human capital and thus

p will increase. What matters, however, is the evolution of p relative to the evolution

of potential income. Rising tuition fees do not matter as long as they are outweighed

by sufficiently large increases in life expectancy. Put it differently: for any increase in

potential income, there is a corresponding surge in the price of education such that the

indifferent agent is characterized by exactly the same ability level. If prices increase by

less, also less able agents will decide to join the public system and µ̃ will decrease. If the

price of education rises faster then some less able agents will withdraw their offspring from

public schools. That is, the threshold ability level will increase undoing the positive effect

of a higher potential income on children’s education.

Proposition 3.4. If life expectancy rises, the share of agents participating in the public

schooling system may, depending on the strength of the externality increase or decrease.
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Without externalities, µ̃ will monotonically increase and may hit the upper bound of ability

for sufficiently large life expectancy.

Proof. See appendix 3.A.

For the sake of simplicity, assume for the moment that agents are homogenous or that each

agents hires a teacher from her own ability group. The equilibrium price of education is

then given by p = ωf(h(µ)). Plugging this price into the households’ solution for optimal

education (3.19) leads to a straightforward result: educational investment in the private

and public system are identical. The ratio of potential parental earnings ωf(h) and p is

unity in both cases. However, the absolute price of schooling in the public system is higher

since agents invest more into adult human capital (see lemma 3.1). In this case utility in

the public system is always lower than in the private system: agents in the public system

neglect the (negative) externality on the price of schooling they generate by investing more

into human capital. Hence, Upr > Upu holds for all T and optimizing agents will never

chose the public schooling system.24 This is the very reason why we need some positive

externality of higher human capital. Intuitively, if average human capital increases but

there is no externality, the average will increase faster than the human capital of the agent

with µ = µ̃.25 The agent indifferent between public and private schooling must therefore be

more skilled in order to compensate the higher price of education and make her indifferent

between the two options.

3.4.3 Population Dynamics

The dynamics of average (aggregate) fertility is ambiguous and depends on the strengths

of the different mechanisms at work. Simplifying (3.25) leads to

n̄τ = µ̃τ n̄
pr
τ + (1− µ̃τ )n̄

pu
τ . (3.28)

24See e.g. Bagnoud (1999) for Switzerland, Birchenough (1914) for England and Wales and Becker,
Cinnirella, and Woessmann (2009) for Prussia for evidence on the reluctance of people (especially peasants
and poor workers) to send their children to school despite compulsory schooling.

25Recall from lemma 3.2 that human capital investment is a positive function of µ. Then, human capital
of agents participating in the public system will raise by more than f(h(µ̃)pu).
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We know that a rising share of parents participating in the public system decreases fertility

via the composition effect. However, if the weight of these families is initially small, this

effect is likely to be dominated by the agents choosing the private system. Secondly, even

fertility of agents participating in the public system may rise for a while as T rises. While

the composition effect is then still working towards lower aggregate fertility, fertility of each

subgroup will increase as life expectancy rises. Only if the share of the public schooling

is high enough and these agents also have fewer children as T goes up, will aggregate

fertility of a cohort decrease unambiguously. Total population Pt and cohort size Pτ evolve

according to

Pt+1 = Pt + Nt(a) |a=aB

∫ 1

0

n(Tt−aB
, µ)dµ−Nt(a) |a=Tm , (3.29)

Pτ+1 = Pτ (n̄τ − 1), (3.30)

where Tm = T (t−Tm) denotes the life expectancy of the oldest agent in t−1 (who dies in t)

born Tm years ago. Nt(a) is the number of adults in t who either are of childbearing age

(a = aB) or die (a = Tm) this period.26 The number of newborns per agent of childbearing

age is determined by its life expectancy Tt−aB
and ability µ, and is denoted by n(Tt−aB

, µ).

Population growth rate for any stationary life expectancy T is implicitly defined by

gP =
n(T )

T

[
(1 + gP )T − 1

(1 + gP )T

]
(3.31)

The following corollary is rather obvious.

Corollary 3.1. If fertility is a hump-shaped function of adult life expectancy, the population

growth rate is also hump-shaped.

Proof. See appendix 3.A.

Population dynamics is slightly more complicated if we start from a stationary population

and let life expectancy increase. Then we have initially a positive effect on the population

growth rate due to higher fertility and a (delayed) positive effect due to the fact that old

agents are now living longer. However, the second effect is only transitory and vanishes

26Alternatively, population can be also written as the integral over all living cohorts Pt =
∫ t+aB

t−Tm
Nt(a)da.
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as life expectancy settles at a constant value. Whether in the new steady state popula-

tion is growing or shrinking depends on the fertility associated with the steady-state life

expectancy.

3.4.4 Technological Progress

As outlined in the introduction, technological progress occurs through the invention of

better and more productive machines which can be operated only by the cohort entering

the labor force at the time of the introduction of the new vintage. Following the literature,

we assume that higher level of human capital facilitates invention of more productive

technologies27 and model this by assuming

Aτ

Aτ−1

= g(f̄τ−1(h)), (3.32)

with g increasing and concave. After having defined the static solution to the households’

problem and specified how aggregate variables change over time, we are ready to define

the equilibrium development path of the economy.

Definition 1 (Equilibrium). Given an initial population P0 and initial life expectancy

T0, an equilibrium consists of a sequence of aggregate variables {Hτ , Yτ , Aτ , Tτ}, prices

{pτ , ωτ}, and individual decision rules {cj
τ , n

j
τ , h

j
τ , e

j
τ , j}, j ∈ {pu, pr}, such that

1. households optimality conditions given by equations (3.12) and (3.16) and subject to

the constraints (3.8) or (3.9) are satisfied,

2. aggregate variables are given by (3.1), (3.22), (3.26), and (3.32), prices by (3.3) and

(3.5), and

3. life expectancy, total population, and cohort size evolve according to (3.26), (3.29),

and (3.30).

27See e.g. Lucas (1988) or the excellent literature reviews by Jones (2005) and Klenow and Rodŕıgues-
Clare (2005).
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3.4.5 An Illustrative Simulation

The goal of this paper is to demonstrate the qualitative change in the behavior of agents

as they endogenously decide to invest into the human capital of their children via a formal

schooling system. In this subsection we provide therefore only an illustrative simulation

without any ambition to exactly match historical time series. Since the model lacks many

realistic features, it would require a lot of “twisting and tweaking” of model parameters

and a very lenient attitude with respect to the choice of functional forms which is of limited

use as far as further insights is concerned. Especially, the model is not able to explain the

drop in tuition fees caused by the introduction of the Free Education Act from 1891 see

(Fig. 3.1b). We therefore restrict ourselves to the choice of rather simple functional forms

and have to keep in mind that at some point of the development process, a more or less

exogenous drop in p took place. Our choices for Ψ and m are

Tτ+1 = δTτ + (f̄τ (h))α, (3.33)

m = (f̄τ (h))κ. (3.34)

The parameters of the simulated model can be found in table 3.1. To simulate a situation

without positive human capital externalities on the price of schooling, we set κ = 0 and

change the values for σ and δ in order to keep fertility and life expectancy within reasonable

bounds.

Table 3.1: Model Parameters for Simulation

κ β γ σ φ ρ θ κ α δ

With Externality 0.8 20 0.6 1.8 1.0 0.01 0.8 0.2 0.95 0.90
No Externality 0.0 20 0.6 1.2 1.0 0.01 0.8 1.0 0.95 0.85

Figure 3.2 shows the basic patterns of the development process. Initially, life expectancy is

low and only the most able agents invest into human capital of their children via the public

system. As life expectancy increases, despite a rising price of education the ability threshold

µ̃ decreases and more and more agents switch to the public schooling system. Note that life

expectancy and aggregate fertility are still rising. At this stage, average fertility in both

systems is still rising and the composition effect is not sufficient to bring aggregate fertility

down. However, this relationship changes during the development process. Despite the
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rising fertility of agents in the private system, aggregate fertility is falling: the economy

is now dominated by agents choosing the public system and their fertility is falling as life

expectancy keeps rising. On top of the compositional effect now also the behavioral effect

works towards lower fertility.

Figure 3.2: A Simulation Exercise: Human Capital Externalities
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Data sources: Own simulations. See text and table 3.1 for functional forms and parameter values.

In figure 3.3 we simulate an economy without a positive human capital externality in

the schooling system. The price of schooling for the indifferent agent is determined only

by its human capital relative to the average. As claimed in proposition 3.4, without
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Figure 3.3: A Simulation Exercise: No Human Capital Externality
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Data sources: Own simulations. See text and table 3.1 for functional forms and parameter values.

externalities the ability threshold µ̃ increases, and economy-wide fertility increases although

life expectancy is rising.

3.5 Conclusion and Discussion

This paper proposed a simple model arguing that to understand the change in agents’s

behavior during the demographic transition, it is crucial to account for changing nature of

the costs of child quality. We show that if the input in children’s human capital production

is only parental time, increasing life expectancy always increases fertility. This is because

the price of child quality and quantity rise simultaneously with higher life expectancy.

A behavioral change can only occur if parents decide to educate their children in the

public system. This transforms time costs into monetary costs. Then, higher lifetime

income “buys” also more time. In other words, if parents spend their own time to enhance

children’s human capital, rising life expectancy increases the price of quality and quantity.

With investment into child human capital via a school, increasing labor supply and adult

human capital increases only the opportunity costs of quantity but leaves the price of
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education unchanged. Hence, if parental human capital is sufficiently productive and the

marginal valuation of an additional child is sufficiently low, the rising relative price of

quantity will bias the parental decision towards more investment into quality and lower

quantity.

Since at early stages of development, the share of people deciding to educate their children

at home is high, gains in adult life expectancy initially increase fertility. As life expectancy

rises, more agents decide to send their children to schools, thereby strengthening the com-

position effect but at the same time also reinforcing the negative effect of a higher life

expectancy on fertility by a potential behavioral change. Once the share of parents partic-

ipating the public system is high enough, fertility will fall. Furthermore, in this paper we

have proposed a theory why a formal schooling system may emerge endogenously without

intervention by the state. We do not, however, make the next step and model why the

society – via government and parliament – decided set up a free public schooling system

financed by taxes. The extension by such a political economy element is left for future

research.
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3.A Appendix: Proofs

Since the problem has in general no closed form solution, we compute the comparative

statics by implicitly differentiating the system of first order conditions. Then, for a change

in variable X, the partial derivatives of n and h are given by

[
hX

nX

]
= −

[
Fhh Fhn

Fnh Fnn

]−1 [
FhX

FnX

]
= −|A|−1

[
FnnFhX −FhnFnX

−FnhFhX FhhFnX

]
(3.35)

Proof of proposition 3.1. From (3.15) we have that epr is constant. Then we can write the

household problem in terms of only n and h.

Fh =
1

c

(
f(h)− µhθ−1`

)
Fn =

β

n
(nz(e))1−σ − T (e + φ)

`
(3.36)

with ` ≡ T − h− n(e + φ) and c ≡ ωf(h)`T−1. Partial derivatives are given by

[
hT

nT

]
= −


−

T
h2

(
θ + h2

`2

)
−T e+φ

`2

−T e+φ
`2

−σβ
n2 (nz(e))1−σ − T (e+φ)2

`2



−1 [

θ
h

+ T−`
`2

(e+φ)(T−`)
`2

]
(3.37)

and the determinant |A| = FhhFnn − FhnFnh > 0 can be shown to be positve implying

that we have a maximum. Combining the elements from above establishes nT > 0 and

hT > 0.

Proof of proposition 3.2. The system of first order conditions is

Fh =
1

c

(
f(h)− µhθ−1`

)
Fn =

β

n
(nz(e))1−σ − 1

c
(pe + φωf(h)) (3.38)

Fs = n
(
βsγ−1(nz(e))−σ − p

c

)
(3.39)

with ` ≡ T − h − φn and c ≡ (ωf(h)` − npe)T−1. Combining Fs and Fn one obtains

e = f(h)φ
p

γ
1−γ

. Substituting this into the FOCs reduces the dimension of the system by
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one equation. We proceed by using Fh and Fn. For the comparative statics we have

[
hT

nT

]
= −


 −1

c

(
ωµhθ−1 1+θ

θ

) −1
c
ωµhθ−1φ

−
(

ωf(h)
c

)2
φ

T (1−γ)
+ (1− σ)βγθ (nz(e))1−σ

nh
−βσ(nz(e))1−σ

n2 +
(

ωf(h)
c

φ
1−γ

)2
1
T



−1

×



ωµhθ−1

c(
ωf(h)

T (1−γ)c

)2

φ(h(1− γ) + φn)


 (3.40)

It can be again shown that |A| = FhhFnn − FhnFnh > 0. Further we have

hT = |A|−1

[
βσ

(nz(e))1−σ

n2

(
ωf(h)φ

(1− γ)cT

)2

ωf(h)(1 + γθ)

]
(3.41)

nT = |A|−1

[(
φωf(h)

c(1− γ)T

)2
n

h
ωf(h)(1 + γθ) + βγθ2(1− σ)

ωf(h)(nz(e))1−σ

nc

]
(3.42)

where hT is always positive. nT is positive for σ ≤ 1 but may be negative otherwise.

Proof of Proposition 3.3. Substituting optimal choices for e and n into the utility function,

utility of agents conditional on their education system choice is

Upr = T log

(
ωµ

h1+θ

Tθ2

)
+

β (nz(e))1−σ

1− σ
e =

φγ

1− γ
(3.43)

Upu = T log

(
ωµ

hθ(h + (h− T )γθ)

(1− γ)Tθ2

)
+

β (nz(e))1−σ

1− σ
e =

ω

p

µφγhθ

θ(1− γ)
. (3.44)

and for a given vector {p, ω} the threshold ability level µ̃ is implicitly defined by setting

Upr = Upu. Since relative sub-utility from consumption is not affected directly by ω or µ

(shift consumption proportionally), the decision which system to adopt depends only µ and

{p, ω} to via investment into education (income effect). Note that a higher (lower) price

p requires a proportionally higher (lower) ability µ to restore indifference (the allocation

does not change for j = pr). Write the indifference condition as

T log

(
cpu

cpr

)
= β [u(nprz(epr))− u(npuz(epu))] . (3.45)

Since the decision to join the public system is based purely on a sufficiently large income
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effect, it holds that cpu ≥ cpr for all solutions. For T →∞ we have

npr =

(
β(1− γ)z(epr)1−σ

(1 + θ)φ

) 1
σ

hpr = T
θ

1 + θ
(3.46)

with epr as defined above. For indifference it must always hold that u(nprz(epr))−u(npuz(epu)) ≥
0. Given constant u(·)pr in the limit, we need that u(·)pu is also constant28 with the dif-

ference approaching zero. We also know that ∂hpu/∂T > 0 and hence ∂epu/∂T > 0. Using

npr > npu and epu > epr we know that it must hold that npu approaches npr from below and

npu approaches epr from above. For given p and ω, this can only happen if the threshold

ability level µ̃ is decreasing. Since utility is non-decreasing in µ, this must hold for all µ

and T .

Proof of Lemma 3.1. Assume that we have found a vector {p, ω, µ̃} such that Upr = Upu

holds. Further, we can rewrite the FOC Fn for both schooling systems to

(1− γ)σ Tφθ

β
= z(e)1−σ h(1− γ)

n(h)σ
if j = pr, (3.47)

Tφθ

β
= z(e(h))1−σ h + (h− T )γθ

n(h)σ
if j = pu. (3.48)

The LHS if j = pr is always smaller than the LHS if j = pu and the same ordering must

hold for the RHS in equilibrium. Since RHS is increasing in h, agents switching to the

public system have lower fertility and invest more in child human capital.

Proof of Lemma 3.2. Differentiating FOCs with respect to ability gives

Fhµ = 0 Fnµ = 0 if j = pr (3.49)

Fhµ = 0 Fnµ =
βγ(1− σ)

nµ
(nz(e))1−σ if j = pu (3.50)

Combining this with the Hessian from above proves that ability does not change households’

allocations. For j = pu and assumption 3.2 more able agents invest more into adult human

28Obviously, epu and/or npu cannot keep growing monotonically otherwise the condition u(·)pr−u(·)pu ≥
0 would be violated for some T .
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capital and lower fertility. Higher e follows trivially from (3.19).

Proof of Proposition 3.4. First, use the price of education from (3.5) to express the equi-

librium investment into education by parents choosing the public system. This gives

e = φ
γ

1− γ

f(h(µ̃))

f̄(h(T ))
m(f̄(h(T ))) (3.51)

Consider now the trivial case with m(f̄(h(T ))) = f̄(h(T )). Then, the price of education

relative to potential earnings is always one which brings us back to the partial equilibrium

situation from proposition 3.3: µ̃ decreases in T , the share of agents participating in the

public system increases. Consider now the polar case without any externalities (m(·) = 1)

implying that the dynamics of p is determined by the evolution of f(h(µ̃)pu) relative to the

average f̄(h). Substituting this into (3.45) gives

T log

(
cpu

cpr

)
= β

z(epr)1−σ

1− σ

[
(npr)1−σ − (npuz(Φ(µ̃, T )))1−σ

]
(3.52)

Φ(µ̃, T ) ≡ f(h(µ̃, T )pu)

µ̃f(h(T )pr) +
∫ 1

µ̃
f(h(a, T )pu)da

(3.53)

We know that the LHS is positive for all T . Since npr is converging to a constant, the

same must hold for u(npuz(epu)). With npu approaching npr from below, Φ(µ̃, T ) must

converge to a constant. Further, we have ∂µ̃/∂T = −(∂Φ/∂T )/(∂Φ/∂µ̃) < 0 implying

that the ability level is increasing. By monotonicity of the RHS in µ̃ this is holds for all T .

The result hinges on the fact that p is determined by the human capital of the indifferent

agent relative to the average. As T and h rise, human capital of the j = pu agent rises

slower than the average (note that the agent in the numerator is the first agent in the

integral in the denominator). Hence, the ability level of the indifferent agent has to rise.

This increases potential earnings of agent µ = µ̃ and decreases the f̄(h) by shifting agents

from the pr to pu (composition effect). Thus, µ̃ will get arbitrarily close to 1 for large T

(depends on fixed point of Ψ).

Proof of Corollary 3.1. If fertility is a concave function of T , there are two life expectancies

Tl and Th at which fertility per family equals 2 and there must be an intermediate life

expectancy Tim which maximizes fertility (above 2 children per couple) and population
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growth rate. Concavity gives us ∂n(Tl)
∂Tl

> 0 and ∂2n(Th)

∂T 2
h

< 0 resulting in rising and falling

population growth rate at the two stationary population levels (gP = 0).

∂gP

∂Tt

∣∣∣∣
gP =0

=
∂n(Tt)/∂Tt

1 + Tt

(3.54)

Maximum population growth is defined by (3.55) and the derivative of gP at that point is

given by (3.56). Thus, gP increases at Tl, attains a maximum at Tim and starts to decrease

thereafter and becomes even negative at Th.
29

1− (1 + gP )Tim + Tim log (1 + gP )Tim = 0 (3.55)

∂gP

∂Tim

∣∣∣∣
gP >0

= −(1 + gP ) log (1 + gP )

Tim

< 0 (3.56)

29This can be also trivially proven by applying the mean-value theorem since aggregate fertility is
continuous and differentiable in T .
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Chapter 4

Mortality, Fertility, Education and

Capital Accumulation in a Simple

OLG Economy

4.1 Introduction

Important aspects of economic history are the decline in mortality, the associated increase

in life expectancy and a notable rise in investment into human capital. Life expectancy at

birth in the UK was about 40 years in 1850, 65 years in 1950 and rose by 10 more years

until the year 2000 (Cutler, Deaton, and Lleras-Muney (2006)). The share of children aged

10-14 attending primary schools rose from 10% in 1820 to 80% in 1930 (Flora, Kraus, and

Pfenning (1983)). Universal schooling was reached soon thereafter. The same develop-

ment took place for secondary and tertiary education. Net enrollment rates for secondary

schooling increased from 67% in 1970 to 95% in 2000 (The World Bank (2004)). As can

be seen, these processes of rising life expectancy, falling birth rates and rising investment

into human capital are still going on in modern economies. The combined effect is that

the population structure of developed countries is changing rapidly with a rising share of

elderly people. This rise of the old-age dependency ratio and the associated rise in social

security contributions have shifted the “aging problem” into the focus of the academic

literature as well as public policy.

81
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In this paper we develop an analytically tractable two generations OLG model in the spirit

of Diamond (1965) in order to study the effects of demographic change on educational

investment decisions and capital accumulation. We augment the simple textbook model

with endogenous human capital formation. Population dynamics – the exogenous driving

force of our model – are modeled by considering uncertain survival to old age and birth

rates separately. Additionally, we look at the effects of changing lifetime labor supply. The

strength of our setup is that we can analyze the general equilibrium effects of population

dynamics using closed form solutions. The contribution of our paper is that using this rich

setup, we are able to show that changes in life expectancy, population growth and lifetime

labor supply have, in general, ambiguous effects on the capital stock and education. We

demonstrate that it is key to consider the interactions between annuity markets, the pension

system and productivity of education for understanding the qualitative and quantitative

effects of variations in the population structure on changes in physical and human capital

accumulation.

The relationship between mortality and investment into human capital has been investi-

gated is a number of theoretical and empirical studies. Empirical studies find that falling

mortality and the associated rise in life expectancy increase investment into human capital.

Using data for post-war India, Ram and Schultz (1979) find that improvements in mortal-

ity played a major role in the rise of educational attainment. Eckstein, Mira, and Wolpin

(1999) provide evidence for Sweden that the fall in child mortality was the most important

factor for the demographic transition and the rising educational attainment. On the other

hand, Mincer (1995) and Foster and Rosenzweig (1996) present empirical evidence that

rising education premia have a positive effect on schooling.

Theoretical work dealing with the ageing-education nexus by Boucekkine, de la Croix, and

Licandro (2002), de la Croix and Licandro (1999), Echevarria and Iza (2006) and Heijdra

and Romp (2009) use variations of a Blanchard (1985) type of perpetual youth setup.

By employing this model family the authors obtain closed form solutions and derive a

number of insights by relying entirely on analytical results. These papers assume that the

production processes use only labor (human capital) as an input or they consider only small

open economies. Thus, the general equilibrium feedback effect of population dynamics on

relative prices is ruled out by construction. A general conclusion of this literature is that
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increasing life expectancy increases investment into human and physical capital.

The papers by Hu (1999) and Kalemli-Ozcan, Ryder, and Weil (2000) are closest in spirit

to our work. They also employ a perpetual youth setup but overcome the limitations of

the above mentioned papers by developing tractable general equilibrium models. Our con-

tributions to their work are threefold. First, we do not only study the effects of changes

in mortality but also the effects of changing fertility on investment in education and hu-

man as well as physical capital accumulation. Second, we also analyze how changes in

the lifetime working horizon affect educational decisions and capital accumulation. This

additional channel in our model stands in for a lifelong learning motive and is increas-

ingly important in aging societies which reform their PAYG financed pension systems by

increasing retirement ages. Third, by using an OLG rather than a perpetual youth model,

we reconfirm some of the findings of the above mentioned authors: Rising survival rates

may lead to increasing educational efforts and capital accumulation. However, we empha-

size that there are potentially important offsetting effects. The lower degree of analytical

tractability of our OLG model – in comparison to the perpetual youth model – buys us

the possibility to include and to understand several interaction effects and to show how

these may change results. For example, using an equilibrium relationship of their model,

Kalemli-Ozcan, Ryder, and Weil (2000) argue that the interest rate varies positively with

mortality, “as would be expected from the simple intuition that shorter lives lead to lower

wealth accumulation” (p. 11). We show that this positive effect is smaller when annuity

markets are larger and that, by interpreting an equilibrium condition only, Kalemli-Ozcan,

Ryder, and Weil (2000) ignore two important and potentially offsetting effects: increasing

mortality (i) decreases the workforce and (ii) may decrease educational efforts and both

effects ceteris paribus lead to a negative variation of mortality and the interest rate.

Finally, Zhang, Zhang, and Lee (2001) add to this literature by modeling endogenous

fertility and child education employing a two-generations OLG setup as we do but using

a dynastic framework. These differences in the two approaches makes their work less

suitable as a benchmark for comparison. Furthermore, as a consequence of the endogenous

nature of fertility decisions, these authors cannot study the impact of changing fertility

and mortality in isolation as we do.

The remainder of this paper is structured as follows. Section 4.2 introduces the model. The
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results of the comparative static analysis are derived in section 4.3. In the same section we

also show the results of our calibration exercise where we perform an extensive sensitivity

analysis. Some concluding remarks are in section 4.4. Separate appendices contain proofs

and additional results.

4.2 The Model

We develop a simple OLG model with endogenous education decisions and a PAYG financed

social security system. The setup is as follows: agents live for two periods whereby survival

to the second period is uncertain. In the first period agents choose time investment into

education, saving and consumption. In the second period they consume their entire wealth

and work only an exogenously given fraction ω of their time. The rest of their time (1 -

ω) they are retired and receive a lump-sum pension, pt+1. We make this assumption for

analytical tractability; it allows us to analyze the effects of different social security regimes

in a model of human capital accumulation à la Ben-Porath (1967) within a 2-generations

model. In this setup, the parameter ω reflects a motive for life-long learning which can be

affected by policy, e.g., by increasing the retirement age.

4.2.1 Demographics

Each period, there are Nt,0 young households and Nt,1 old. Let γN
t be the birth rate so that

Nt,0 = γN
t Nt−1,0 and st be the survival rate, hence Nt,1 = stNt−1,0. Using these definitions,

the old-age dependency ratio (oadrt) – the fraction of the old to the young – in the economy

is given by

oadrt =
Nt,1

Nt,0

=
st

γN
t

. (4.1)

4.2.2 Markets for Annuities

We assume the existence of (imperfect) annuity markets for insurance against survival risk.

Let at,0 be savings of the period t young. Period t+1 asset holdings are consequently given
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by

at,0 + λat,0
1− st+1

st+1

= at,0
ζt+1

st+1

(4.2)

where

ζt+1 ≡ st+1 + λ(1− st+1) (4.3)

is an annuity factor introduced here for convenience and 0 ≤ λ ≤ 1 is the degree of

annuitization, also see Hansen and Imrohoroğlu (2008). Notice that, in the case of no

annuitization, we have λ = 0 and ζt+1 = st+1 and for complete (perfect) annuity markets

we have λ = 1 and ζt+1 = 1. Full annuitization implies that the assets of the deceased

agents are distributed uniformly among the surviving old agents which is an insurance

against longevity (Yaari (1965)).

Without annuity markets there is no “insurance effect” but agents receive a lump-sum

payment trt+1 from the government. To keep the analysis analytically tractable we assume

that in the case of incomplete annuitization the government distributes the accidental

bequests to the old.1 Accidental bequests are then redistributed to households as lump-

sum transfers and given by

trt+1 = (1− λ)
at,0(1 + rt+1)(1− st+1)Nt,0

Nt+1,1

. (4.4)

and, using the fact that

Nt+1,1 = Nt,ost+1,

we have

trt+1 = (1− λ)
at,0(1 + rt+1)(1− st+1)

st+1

. (4.5)
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4.2.3 Household Optimization

Households maximize expected lifetime utility

max
ct,0,ct+1,1

log ct,0 + βst+1 log ct+1,1, (4.6)

subject to the constraints

ct,0 + at,0 = (1− et)h0wt(1− τt) (4.7a)

ct+1,1 =
(1 + rt+1)ζt+1

st+1

at,0 + ωht+1,1wt+1(1− τt+1) + (1− ω)pt+1 + trt+1, (4.7b)

where β is the raw time discount factor, et is investment into education when young, h0 is

the stock of human capital given at birth (taken as exogenous and constant over cohorts),

wt is the wage rate per unit of human capital, rt+1 is the return on financial assets, τt

denotes the social security contribution rate, pt+1 are lump-sum pension payments, and

trt+1 are the distributed accidental bequests.

Due to the representative agent setup, two interpretations of ω are conceivable. In the

first interpretation ω is the fraction of time the representative agent of age 1 works. In the

second, it is the fraction in the population of age 1 that works. Either way, ω works like

a policy variable and a change in ω could be interpreted, e.g., as a change in retirement

legislation or labor market incentives affecting participation rates.

The present value budget constraint is accordingly given by

ct,0 + st+1
ct+1,1

ζt+1(1 + rt+1)
=

(1− et)h0wt(1− τt) + st+1
ωht+1,1wt+1(1− τt+1) + (1− ω)pt+1 + trt+1

ζt+1(1 + rt+1)
. (4.8)

The education technology is

ht+1,1 = (1 + g(et))h0, (4.9)

with g being a function mapping educational investment into formation of human capital.

We choose g such that it is increasing, concave in e and fulfills the lower Inada condi-



4.2. THE MODEL 87

tion. These are standard assumptions about the education function (see Willis (1986)).1

Later, we specify a parametric form for g(et) to obtain a closed form solution. Solving the

maximization problem gives the Euler equation

ct+1,1 = βζt+1(1 + rt+1)ct,0. (4.10)

Solving for the optimal educational investment gives

g′(et) =
ζt+1(1 + rt+1)

st+1

wt(1− τt)

ωwt+1(1− τt+1)
. (4.11)

This condition says that an individual invests into schooling until the marginal return of

schooling equals the return on net wages relative to the effective interest rate. Following

Bouzahzah, de la Croix, and Docquier (2002), we define the education function g(et) in

(4.9) as

g(et) = ξeψ
t , where 0 < ψ < 1, ξ > 0. (4.12)

Optimal education is then given by

et =

[
ωξψ

wt+1(1− τt+1)

wt(1− τt)

st+1

ζt+1(1 + rt+1)

] 1
1−ψ

. (4.13)

It can be seen that educational decisions depend positively on the ratio of net wage growth

to the return on capital holdings. This is the key general equilibrium effect we are interested

in. The scarcity of raw labor resulting from demographic change will lead to rising wages

and falling interest rates. According to equation (4.13) this will induce general equilibrium

feedback effects by leading to increases in education and thereby to an increase in the

second period human capital.

In addition to these general equilibrium effects, equation (4.13) shows direct effects on edu-

cational efforts through the educational productivity, ξ and ψ, the fraction of time working

in the second period, ω and the probability of survival if there is some annuitization, i.e.,

1For analytical reasons, we assume zero depreciation of human capital and we do not make h an
argument of g as in the standard Ben-Porath (1967) technology. This parametric restriction is also super-
imposed in some empirical studies, see the review in Browning, Hansen, and Heckman (1999).



88 CHAPTER 4. DEMOGRAPHICS IN A SIMPLE OLG ECONOMY

if λ > 0. The direct effect of survival on educational decisions has in part been labeled

as an effect due to an extension of the adult planning horizon, e.g., by Heijdra and Romp

(2009). This is a misleading interpretation because the direct effect of survival is in fact a

result of the induced adjustment of the rate of return to physical capital if there is some

annuitization.2 In the absence of annuitization, there is no adjustment of the rate of return

to physical capital to the survival rate and changes in the survival rate have a direct effect

only on the inter-temporal allocation of consumption (via the changing effective discount

rate st+1β). In our model, the “pure” effect of extending the planing horizon is represented

by an increase in ω.

Finally, households’ optimal consumption follows from using (4.10) in (4.8) as

ct,0 =

1

1 + βst+1

(
(1− et)h0wt(1− τt) + st+1

ωht+1,1wt+1(1− τt+1) + (1− ω)pt+1 + trt+1

ζt+1(1 + rt+1)

)

and using the above in (4.7a) gives savings as

at,0 =
1

1 + βst+1

(βst+1(1− et)h0wt(1− τt)−

st+1
ωht+1,1wt+1(1− τt+1) + (1− ω)pt+1 + trt+1

ζt+1(1 + rt+1)

)
. (4.14)

4.2.4 Firms

Firms produce output using a standard Cobb-Douglas production function

Yt = Kα
t (AtLt)

1−α. (4.15)

At is the firm’s technology level which is determined by

At+1 = Atγ
A, (4.16)

2This has already been shown by Hu (1999).
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where γA is the exogenous gross growth rate. Lt is effective labor input which is the sum

of human capital weighted labor supply of the young and of the old and accordingly given

by

Lt = (1− et)h0Nt,0 + ωht,1Nt,1. (4.17)

Competitive markets ensure that factors get paid their marginal products. We assume that

capital depreciates fully after one period so that

1 + rt = αkα−1
t (4.18a)

wt = (1− α)Atk
α
t , (4.18b)

where kt ≡ Kt

AtLt
.

4.2.5 Government

The role of the government is twofold. First, the government taxes accidental bequests in

the case of incomplete annuitization at a confiscatory rate and redistributes them as lump-

sum payments to the old. Second, the government runs a PAYG financed social security

system with a balanced budget in all periods requiring that total contributions by workers

equal total pension payments.3 By equation (4.17) we then have

wtτt ((1− et)h0Nt,0 + ωht,1Nt,1) = (1− ω)ptNt,1. (4.19)

Notice that the above, using equation (4.1), implies that

(1− ω)pt = wtτt

(
(1− et)h0

γN
t

st

+ ωht,1

)
. (4.20)

Changes in the population structure require adjustments of the social security policy. Let

%t denote the replacement rate, i.e., the ratio of pension income to average net wage income.

3While we explicitly model this inter-generational transfer system as a pension system, it may also be
interpreted as a metaphor for a more general intergenerational transfer system, e.g., a health care system.
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Then pension income can be expressed as

pt = %t
(1− τt)wt ((1− et)h0Nt,0 + ωht,1Nt,1)

Nt,0 + ωNt,1

.

Using the above definition in (4.19) and simplifying then links contribution and replacement

rates by

τt =
(1− ω)%t

γN
t /st + ω + (1− ω)%t

. (4.21)

It can be readily observed that τt increases in the fraction of pensioners, 1−ω, the generosity

of the pension system, %t, and in the old-age dependency ratio, st/γ
N
t . Using this setup,

fixing τt = τ̄ corresponds to a fixed contribution rate system and holding %t = %̄ corresponds

to a fixed replacement rate system.4

4.2.6 Equilibrium

In equilibrium all markets clear, households maximize utility and firms make zero profits.

Market clearing on the capital market requires that

Kt+1 = at,0Nt,0. (4.22)

Using (4.1) in (4.17), aggregate labor supply can be rewritten as

Lt = Nt,0h0

(
(1− et) + ω

st

γN
t

(1 + g(et−1))

)
. (4.23)

Collecting elements, the following proposition gives the law of motion of the aggregate

economy.

Proposition 4.1. For given k0 the aggregate dynamics of the economy are described by

the system of first-order difference equations in {kt, et} given by

kt+1 =
ϕtα(1− α)(1− τt)

φt

kα
t (4.24a)

4Notice that these definitions are not the same as what is referred to as defined contribution and defined
benefit systems in the literature.
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et =

(
st+1

ζt+1

ωξψ
γA(1− τt+1)kt+1

α(1− τt)kα
t

) 1
1−ψ

, (4.24b)

where

φt ≡ γA

((
α(2 + ρ̂t+1) + ϕt

(1− α)τt+1

ζt+1

(1 + ρ̂t+1)

)
1− et+1

1− et

γN
t+1

+ωst+1

(
α(2 + ρ̂t+1) + ϕt

1− α

ζt+1

(1 + ρ̂t+1)

)
1 + g(et)

1− et

)
(4.25a)

ϕt ≡ (2 + ρ̂t+1)ζt+1

(2 + ρ̂t+1)ζt+1 + (1− st+1)(1− λ))
(4.25b)

and ρ̂t+1 = 1
st+1β

− 1.

Proof. See appendix 4.A.

Proposition 4.2. If there is an equilibrium, education et is always interior on the interval

(0, 1). Further, education converges always to its steady state value.

Proof. See appendix 4.A.

4.2.7 Steady State Analysis

Definition 2. Along the balanced growth path (steady state) of the economy, all variables

grow at constant rates so that k = kt+1 = kt and e = et+1 = et ∀ t.

Proposition 4.3. For 0 < α < 1 and 0 ≤ τ < 1, the unique steady state of the economy

is given by

k =

(
ϕα(1− α)(1− τ)

φ

) 1
1−α

(4.26a)

e =

(
ωξψ

γA

α

) 1
1−ψ

(
s

ζ

) 1
1−ψ

k
1−α
1−ψ (4.26b)
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where

φ ≡ γA

((
α(2 + ρ̂) + ϕ

(1− α)τ

ζ
(1 + ρ̂)

)
γN+

+ωs

(
α(2 + ρ̂) + ϕ

1− α

ζ
(1 + ρ̂)

)
1 + g(e)

1− e

)
, (4.27a)

ϕ ≡ (2 + ρ̂)ζ

(2 + ρ̂)ζ + (1− s)(1− λ)
(4.27b)

and ρ̂ = 1
sβ
− 1.

Proof. See appendix 4.A.

4.3 Comparative Statics

In this section, we use our framework to study the effects of demographic change on the

economy by conducting a comparative statics analysis in steady state. In this respect our

model is a useful laboratory to provide intuition for the results of much of the quantitative

work, e.g., by Fougère and Mérette (1999), Sadahiro and Shimasawa (2002), Bouzahzah,

de la Croix, and Docquier (2002) and Ludwig, Schelkle, and Vogel (2008). To this end, we

analyze – by looking at partial derivatives – the effects of changing fertility, mortality and

working time on the capital stock and education. We first do so in a social security sce-

nario with constant contributions rates and then consider the opposite extreme by holding

replacement rates constant. While we can uniquely determine the signs of many partially

derivatives, we fail to do so in some cases. In these cases, our closed form solutions help

us to understand the various offsetting effects at work and to detect the sources of inde-

terminacy. Finally, we use a calibrated version of our model to illustrate how the signs of

partial derivatives depend on the parametrization of the model in the ambiguous cases.

4.3.1 Analytical Results

We drop the time indices to indicate steady state values. To begin with, we provide

analytical results followed by an interpretation.
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Proposition 4.4. In the steady state of the economy we have

1. for τ = τ̄ that
∂k

∂γN

∣∣∣∣
τ=τ̄

< 0 and
∂e

∂γN

∣∣∣∣
τ=τ̄

< 0, (4.28a)

∂k

∂s

∣∣∣∣
τ=τ̄

≷ 0 and
∂e

∂s

∣∣∣∣
τ=τ̄

≷ 0. (4.28b)

∂k

∂ω

∣∣∣∣
τ=τ̄

< 0 and
∂e

∂ω

∣∣∣∣
τ=τ̄

≷ 0, (4.28c)

2. For the relationship between the cases τ = τ̄ and % = %̄ we have that

∂k

∂γN

∣∣∣∣
%=%̄

>
∂k

∂γN

∣∣∣∣
τ=τ̄

and
∂e

∂γN

∣∣∣∣
%=%̄

>
∂e

∂γN

∣∣∣∣
τ=τ̄

(4.29a)

∂k

∂s

∣∣∣∣
%=%̄

<
∂k

∂s

∣∣∣∣
τ=τ̄

and
∂e

∂s

∣∣∣∣
%=%̄

<
∂e

∂s

∣∣∣∣
τ=τ̄

, (4.29b)

∂k

∂ω

∣∣∣∣
%=%̄

>
∂k

∂ω

∣∣∣∣
τ=τ̄

and
∂e

∂ω

∣∣∣∣
%=%̄

>
∂e

∂ω

∣∣∣∣
τ=τ̄

, (4.29c)

Proof. See appendix 4.A.

Interpretation of the partial derivatives of the capital stock and education in equation

(4.28a) is rather straightforward. First, observe from (4.26b) that there is no direct effect

of the birth rate, γN , on the education decision, e. Second, an increase of the birth

rate increases the effective supply of labor in the economy which decreases k, cf. (4.26a)

and (4.27a). Therefore, a change in the birth rate affects the relative prices of physical

and human capital through its effect on k. An increase of k increases the wage rate, w,

and decreases the return on physical capital, r. While the growth rate of wages (wt+1

wt
)

is unchanged in our steady state comparison, the return on physical capital decreases.

Consequently, optimal education goes up, cf. (4.13).

As stated in the proposition, the signs of the partial derivatives in (4.28b) cannot be

determined unambiguously. First, notice that there are various effects from increases of

s on savings and thus k at work, cf. (4.27a): (i) an increase of s decreases the effective
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discount rate ρ̂ which increases k. This is so because an increase of the survival rate

increases savings via its effect on current period income, cf. the first term in the brackets

of (4.14). (ii), however, an increase in the survival rate also increases the value of second

period income as long as λ > 0 (so that st+1/ζt+1 < 1) which dampens the increase of

savings. This dampening effect is the stronger, the larger is the size of the annuity market,

i.e., the higher is λ.5 (iii) for λ > 0, there is a direct effect of survival on education, cf.

(4.26b), which varies positively with λ. This increases effective labor supply and thereby

tends to decrease k. (iv) as s increases, raw labor supply increases as long as ω > 0. Observe

that the last two effects are stronger when the average human capital productivity is high,

because ω interacts with ξ via the term 1+g(e)
1−e

in (4.27a).

This discussion explains why the signs of the effects of s on k cannot be determined

unambiguously. It can only be said that the capital stock is likely to increase if ω, λ and

ξ are sufficiently small. For too high values of these parameters, the reaction of effective

labor supply is too strong and the capital stock kt may decrease (so that rt+1 increases).

Second, this ambiguity with respect to the effects of s on k translates into an ambiguous

effect of s on e, cf. (4.26b). However, even if k varies negatively with s, education may

still increase because of the direct effect of increasing survival on the education decision in

the presence of annuity markets (λ > 0). Indeed, in all of our simulations of subsection

4.3.3, schooling is found to increase if s rises, also in those cases in which k decreases when

annuity markets are perfect. On the contrary, with missing annuity markets, we never

find that k decreases in s so that there is also no ambiguity in the resulting educational

adjustments.

The effect of a changing lifetime labor supply ω given in equation (4.28c) is unambiguously

negative for the capital stock but ambiguous for the optimal education decision. First,

increasing ω increases total effective labor supply and thus decreases k. Second, an increase

of ω has a direct effect on education, cf. (4.13). This leads to an additional increase of

effective labor which further decreases k. However, third, a decrease of k also exerts a

dampening effect on education by increasing the return on physical capital. As this third

effect is only a second order general equilibrium feedback effect, it cannot offset the decrease

of k which explains the unambiguous sign for the partial derivative of k. However, the direct

5As can be immediately observed from (4.14), the overall effect of increasing survival on savings is
unambiguously positive. But it is larger for λ = 0 than for λ = 1.
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effect of ω on k and the resulting general equilibrium price effect could potentially be strong

enough to offset the direct effect of ω on education. This explains the ambiguous sign of

the partial derivative of e. While this is so analytically, we show below for a wide range of

parameter constellations of our simulations that education varies positively with ω.

The effect of an adjustment of the contribution rate τ is examined in the second part

of proposition 4.4. Recall that changing the contribution rate has only a direct effect

on capital accumulation but does not distort education decisions in steady state. Thus,

increasing the contribution rate only has an effect on steady state education to the extent

that it crowds out savings in physical capital. The uniform conclusion is therefore that a

rising (falling) contribution rate decreases (increases) the capital stock, thereby increases

(decreases) the interest rate and thus decreases (increases) the incentives to invest into

education. A brief verbal summary of the results is that the effect of falling birth rates,

rising survival rates, i.e., an aging of the population, or an extension of the lifetime labor

supply has a larger effect (in absolute values) on the capital stock and on education if the

contribution rate τ is held constant. The results do not say, however, that the signs do not

change. Since we add one layer of complexity, it is even harder to pin down the direction

of change.

4.3.2 Role of Annuity Markets

This subsection discusses the role of the degree of annuitization in more detail. We show

in the appendix that

Proposition 4.5. In the steady state of the economy we have

1. for τ = τ̄ that
∂k

∂λ

∣∣∣∣
τ=τ̄

> 0 and
∂e

∂λ

∣∣∣∣
τ=τ̄

≷ 0, (4.30a)

2. For the relationship between the cases τ = τ̄ and % = %̄ we have that

∂k

∂λ

∣∣∣∣
%=%̄

=
∂k

∂λ

∣∣∣∣
τ=τ̄

and
∂e

∂λ

∣∣∣∣
%=%̄

=
∂e

∂λ

∣∣∣∣
τ=τ̄

. (4.31a)

Proof. See appendix 4.A.
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More complete annuity markets increase savings but have an ambiguous effect on the

education decision. Again, the ambiguity comes from the fact that the direct effect of

increasing annuitization on the interest rate – which reduces educational investments, c.f.

equation (4.26b)– may be offset by the indirect effect of rising capital – which decreases the

interest rate and thereby increases education. Furthermore, the effect of λ on capital and

education is the same in both social security scenarios. This is so because the adjustment

of the contribution or replacement rate does not interact with λ.

More interesting is, however, how the level of λ interacts with the derivatives of k and

e with respect to s, γN and ω. Unfortunately, due to the algebraic complexity of the

problem, it is not possible to obtain clear results for these cross-derivatives. However, as

is shown in appendix 4.A, a higher λ makes it more likely that ∂k/∂s < 0. Further results

on the importance of annuity markets are illustrated in our numerical simulations, cf., in

particular, the discussion in subsection 4.3.3.

4.3.3 Numerical Results

As stated in the previous subsection, there are cases in which the sign of the derivatives

are ambiguous. For these cases we here present results from numerical simulations of

our model to illustrate the sources for this ambiguity. Obviously, our stylized two period

model fails to capture many relevant aspects. This exercise is therefore an illustration

only and is not meant to provide exact quantitative results of population aging on the

economy. We first investigate the case with perfect annuity markets and then the case

without annuity markets. Furthermore, we redo the calculations for both scenarios with

constant contribution and constant replacement rates.

Perfect Annuity Markets

In this subsection we focus on the case with perfect annuity markets (λ = 1) where the

direct effects of changing survival rates on the education decision is strongest and con-

sequently the effects of changing survival are likely to be ambiguous, cf. our previous

discussion in subsection 4.3.1 and appendix 4.A. Furthermore, the case with perfect annu-

ity markets, although empirically doubtful, makes our results directly comparable to the
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perpetual youth model of Kalemli-Ozcan, Ryder, and Weil (2000).

We take the periodicity of the model such that each generation covers a maximum of 40 years.

Agents are assumed to become economically active at the actual age of 20. Correspond-

ingly, the maximum age agents can reach is 100. Our calibration targets for some of

the population parameters are for averages of the three core European countries France,

Germany and Italy.6 For the survival rate, s, we take as calibration target the remain-

ing life expectancy at the age of 20, LE20, which is currently (in 2004) 68 years. As

survival in our model is certain in the first period of life, the survival rate is given by

s = LE20/40 − 1.0 = 0.69. We calibrate γN using the implied γN to match the old-age

dependency ratio of 44%. Accordingly, we set γN = 1.5574.7 The long-run growth rate of

productivity in European countries is roughly 0.015 Barro and Sala-i-Martin (2003) annu-

ally so that γA = 1.01540 = 1.81. We set the discount factor β = 0.9940 = 0.67 by reference

to other studies, e.g., Hurd (1990).

The most critical parameters are ω and ψ, and ξ. First, we calibrate ψ to medium value

of the estimates reported in Browning, Hansen, and Heckman (1999) which is 0.6. Second,

there is no direct empirical counterpart of ω because it just reflects an auxiliary variable

in our model that simplifies the exposition. To calibrate this parameter we use the share

of agents obtaining higher education as the calibration target.8 Since the timing of the

model is such that the first (and economically passive) period is 20 years, education can

be also viewed as the share of people investing into higher education (university and post-

graduate education). We construct aggregate indices using data from OECD (2008).9 The

procedure is as follows. We compute the average graduation age of a typical student for

the two university (or equivalent) diploma categories (Type A and B). Then we use this

number to compute how many years a person spends in tertiary education in excess of the

economic starting age (which is set to 20). For example, the “average” French student (see

6Our population data are based on the Human Mortality Database (2008).
7The alternative would be to calibrate γN with the gross growth rate of the working age population

ratio. This would require to set γN = 1.06. The implied oadr is then 0.66 and hence this alternative would
overestimate the actual old-age dependency.

8Alternative calibration targets are e.g. the fraction of the old (age 60 and older) in the population
who work which is 5.4% in the data. In our model this implies ω = 0.12 and e = 0.0077 (0.31 years of
education). The choice of this alternative measure does not change our conclusions (results available upon
request).

9The data we use can be found in tables A1.1a, A1.3a and X1.1c. See also the same publication for
more detailed information on the educational systems and definitions.
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table 4.1) is obtaining a type A diploma at the age of 24.5 and a type B diploma at the age

of 22. We then weight the “excess years” (4.5 and 2) by the population weights (0.11 and

0.15) to obtain years of tertiary education of a representative French agent (0.775). Then,

we weight the country specific years by the population of the three countries to compute

years of education for the “representative European” (0.874). As a last step, we divide

this number by the duration of one period (40 years) to convert it into the model specific

equivalent and use it as a calibration target. Hence, our target for e is e = 0.01988. Third,

we calibrate ξ endogenously to match the ratio of peak life cycle wages to the wage rate

at labor market entry which is 1.6 Attanasio (1999). Since we set h0 = 1, this is the data

equivalent to human capital holdings of the old, h1, and our calibration target requires

ξ = 6.30. Parameters are summarized in table 4.2.

Table 4.1: Calibration Target for Time in Tertiary Education

Graduation Age Share in Population Weighted Years

Type of Diploma B A B A B+A
France 22.0 24.5 0.11 0.15 0.775
Germany 22.0 25.5 0.09 0.14 0.950
Italy 22.5 26.0 0.01 0.12 0.601
Total 0.795

Graduation age refers to the average within the particular type of diploma. The country weights (France
0.31, Germany 0.40 and Italy 0.39) are given by the relative population size in 2006 computed from the
Human Mortality Database (2008).

As our discussion of the analytical results in subsection 4.3.1 shows, the most critical

parameters in the case of perfect annuitization (λ = 1) are s, ω, ξ, ψ. We therefore consider

a range of alternative specifications around the benchmark specification in table 4.2 for all

these parameters. The graphs have ω ∈ (0, 1) on the horizontal axis. The different lines are

always drawn for a tuple from {ξ⊗s} for selected values for ξ and s where the intermediate

values (solid lines) are from the benchmark calibration. Finally, in order to address the

sensitivity of our results with respect to the concavity of the education technology we redo

all calculations for ψ = 0.3.10 We recalibrate the model when we change the value of ψ.

10For the sake of brevity, simulation results with varying α and β are not displayed but are available
upon request.
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Table 4.2: Calibration parameters

Firm sector ψ = 0.6 ψ = 0.3
Capital share, α 0.3 0.3
Technological progress, γA 1.81 1.81
Household sector
Discount factor, β 0.67 0.67
Average productivity of human capital investments, ξ 6.30 1.94
Coefficient in human capital production function, ψ 0.6 0.3
Fraction of the old working, ω 0.36 0.94
Social Security
Replacement rate, % 0.6 0.6
Demographics
Birth rate, γN 1.56 1.56
Survival rate, s 0.69 0.69

The vertical black line is the calibrated value of ω. Observe that with lower concavity of the

education technology (lower ψ), the calibrated value of ω is increased substantially to match

the same target. Instead of reporting the rather uninformative numbers for the derivatives,

in the figures we show elasticities which are better comparable across calibrations.

The effect of changing survival rates on the capital stock are displayed in figure 4.1. As

claimed in proposition 4.4, the sign is ambiguous. The sign is more likely to be negative

for high survival rates, high marginal productivity of education (ψ and ξ) and high labor

market participation in the second period (high ω). Obviously, the higher the marginal

product of education (as determined by ξ and ψ), the more will agents invest into education

and the less they will work and save. The effect of ω goes into the same direction since it

is reinforcing the effect of education.

Figure 4.2 shows the elasticity of education with respect to the survival rate. Although we

show in proposition 4.4 that the sign cannot be determined unambiguously, the elasticity

is always positive in our simulations. Rising survival rates always increase educational

attainment. The simulations also show that the elasticity is smaller for high values of ξ

and higher survival rates. The curvature of the human capital production function ψ has

only a minor influence.

Finally, figure 4.3 shows how education varies with the time spent on the labor market in

the second period. Although the sign cannot be determined analytically, the simulations
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Figure 4.1: Elasticity of k with respect to s
(a) Benchmark concavity (ψ = 0.6)
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Figure 4.2: Elasticity of e with respect to s
(a) Benchmark concavity (ψ = 0.6)
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show that education always increases if ω increases. Thus, the direct effect of a rising ω is

not overturned by a general equilibrium effect of rising interest rates. The factor having

the largest influence is ψ which governs the shape of the marginal productivity of schooling

investment and other parameters seem to have only a small effect on the behavior of the

model. Not surprisingly, with more concavity of the human capital production function

the (positive) effect of increasing lifetime labor supply on the education decision increases.

Figure 4.3: Elasticity of e with respect to ω
(a) Benchmark concavity (ψ = 0.6)

(i) constant τ
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(b) Low concavity (ψ = 0.3)
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No Annuity Markets

This subsection provides a sensitivity analysis with respect to changes in the degree of

annuitization. We set λ = 0 (corresponding to an economy without annuity markets),
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recalibrate the model using the same calibration targets as above and report the new

parameters in table 4.3, appendix 4.B. Since only the partial derivative ∂k/∂s changes its

sign if we vary λ we here only show this result in figure 4.4. The other figures can be found

in appendix 4.B.

Indeed with λ = 0 the reaction of the capital stock to changes in the survival rate is always

positive, whereas for λ = 1 it may also be negative. Thus, the degree of completeness of

annuity markets has an important effect on the reaction of the economy. The qualitative

effects of changes in the population growth rate, γN , and lifetime labor supply, ω, are not

affected by the choice of λ (see appendix 4.B).

Figure 4.4: Elasticity of k with respect to s: No Annuity Markets
(a) Benchmark concavity (ψ = 0.6)

(i) constant τ

0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

ω

E
la

st
ic

ity
 o

f k
 w

.r
.t.

 s

Elasticity of k w.r.t. s − Constant τ (ψ = 0.6)

 

 
ξ=  1 s= 0.1
ξ=6.3 s= 0.1
ξ=40 s= 0.1
ξ=  1 s= 0.7
ξ=6.3 s= 0.7
ξ=40 s= 0.7
ξ=  1 s= 0.9
ξ=6.3 s= 0.9
ξ=40 s= 0.9

(ii) constant ρ

0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

ω

E
la

st
ic

ity
 o

f k
 w

.r
.t.

 s

Elasticity of k w.r.t. s − Constant ρ (ψ = 0.6)

 

 
ξ=  1 s= 0.1
ξ=6.3 s= 0.1
ξ=40 s= 0.1
ξ=  1 s= 0.7
ξ=6.3 s= 0.7
ξ=40 s= 0.7
ξ=  1 s= 0.9
ξ=6.3 s= 0.9
ξ=40 s= 0.9

(b) Low concavity (ψ = 0.3)
(i) constant τ

0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

ω

E
la

st
ic

ity
 o

f k
 w

.r
.t.

 s

Elasticity of k w.r.t. s − Constant τ (ψ = 0.3)

 

 
ξ=  1 s= 0.1
ξ=1.9 s= 0.1
ξ=40 s= 0.1
ξ=  1 s= 0.7
ξ=1.9 s= 0.7
ξ=40 s= 0.7
ξ=  1 s= 0.9
ξ=1.9 s= 0.9
ξ=40 s= 0.9

(ii) constant ρ

0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

ω

E
la

st
ic

ity
 o

f k
 w

.r
.t.

 s

Elasticity of k w.r.t. s − Constant ρ (ψ = 0.3)

 

 
ξ=  1 s= 0.1
ξ=1.9 s= 0.1
ξ=40 s= 0.1
ξ=  1 s= 0.7
ξ=1.9 s= 0.7
ξ=40 s= 0.7
ξ=  1 s= 0.9
ξ=1.9 s= 0.9
ξ=40 s= 0.9



104 CHAPTER 4. DEMOGRAPHICS IN A SIMPLE OLG ECONOMY

4.4 Conclusion

This paper investigates the effects of a changing population structure on capital accumula-

tion and educational investment in a tractable two period model in the spirit of Diamond

(1965). We vary the population structure by three dimensions, first, by the fertility rate,

second, by the survival rate and, third, by the degree of old-age labor supply. We show

that a decrease of the fertility rate and a corresponding increase of the old-age dependency

ratio unambiguously increases the capital intensity and education if contribution rates to

the pension system are held constant. An increase of the survival rate, on the other hand,

does not unambiguously vary with these variables. Our analytical results and our numeri-

cal illustrations shed light on the sources of this ambiguity by highlighting the various and

potentially offsetting interaction effects at work. Therefore, our tractable model is a useful

laboratory for understanding the magnitudes of the effects found in applied quantitative

work employing models with overlapping generations.
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4.A Appendix: Proofs

Proof of proposition 4.1. We have that

kt+1 =
Kt+1

At+1Lt+1

which, by (4.22), can be rewritten as

kt+1
Lt+1

Nt,0

=
at,0

At+1

(4.32)

We first work on the LHS of (4.32). Using (4.23) we get

kt+1
Lt+1

Nt,0

= kt+1h0

(
(1− et+1)γ

N
t+1 + ωst+1(1 + g(et))

)
. (4.33)

Next, we focus on the RHS of (4.32). Using (4.5), (4.9) and (4.20) in (4.14) and bringing

the terms involving at,0 to the LHS of the resulting expression we get

at,0

(
1 +

(1− st+1)(1− λ)

(1 + βst+1)ζt+1

)
=

h0

1 + βst+1

(
βst+1(1− et)(1− τt)wt−

wt+1

ζt+1(1 + rt+1)

(
st+1ω(1 + g(et)) + τt+1(1− et+1)γ

N
t+1

))
.

Bringing the term postmultiplying at,0 to the RHS, replacing rt and wt by their marginal

products from (4.18) and dividing by At+1 gives

at,0

At+1

= ϕt
h0

1 + βst+1

(
βst+1(1− et)(1− τt)(1− α)kα

t

1

γA

−1− α

αζt+1

kt+1

(
st+1ω(1 + g(et)) + τt+1(1− et+1)γ

N
t+1

))
. (4.34)

where

ϕt =
(1 + βst+1)ζt+1

(1 + βst+1)ζt+1 + (1− st+1)(1− λ)
. (4.35)
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Next, use the equation above and combine it with (4.33) to get

kt+1

(
(1− et+1)γ

N
t+1 + st+1ω(1 + g(et))+

ϕt
1− α

α(1 + βst+1)ζt+1

(
st+1ω(1 + g(et)) + τt+1(1− et+1)γ

N
t+1

))

= ϕt
βst+1(1− α)

γA(1 + βst+1)
(1− et)(1− τt)k

α
t .

Multiply the above by α(1 + βst+1) and simplify to get

kt+1

(
(1− et+1)γ

N
t+1

(
α(1 + βst+1) + ϕt

(1− α)τt+1

ζt+1

)
+

st+1ω(1 + g(et))

(
α(1 + βst+1) + ϕt

1− α

ζt+1

))

= ϕt
α(1− α)βst+1

γA
(1− et)(1− τt)k

α
t .

The expression for et immediately follows from replacing wages and interest rates by their

respective counterparts from equations (4.18a) and (4.18b). Using ρ̂ = 1
βst+1

−1 proves the

claim in the proposition.

Proof of proposition 4.2. First, given that the function g(e) satisfies the lower Inada con-

dition with lime→0 g′(e) → ∞ the solution with zero education is excluded for ω ∈ (0, 1].

Second, having full educational investment (i.e. e = 1), labor supply and thus wage income

of the young generation is zero. By the lower Inada condition of the utility function, we

have that ct,0 > 0 for positive wages. Consequently, savings in the first period would be

negative and so will be the capital stock of the economy. Thus, if there is an equilibrium

with finite and positive capital stock, education will always be lower than unity.

To show that education always converges to the steady state solution use (4.24a) in (4.24b)

and rewrite the resulting expression as

e1−ψ
t =

st+1

ζt+1

ωξψ
(1− α)(1− τt+1)(

Γ1
1−et+1

1−et
+ Γ2

1+g(et)
1−et

)
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where

Γ1 ≡
(

α(2 + ρ̂t+1) + ϕt
(1− α)τt+1

ζt+1

(1 + ρ̂t+1)

)
γN

t+1

Γ2 ≡ ωst+1

(
α(2 + ρ̂t+1) + ϕt

1− α

ζt+1

(1 + ρ̂t+1)

)

Defining ∆t ≡ et − et+1(k
∗) as measuring the distance between et and et+1 which is ul-

timately a function of the steady state capital stock. Thus, ∆t measures the change in

education between t and t + 1 outside the steady state. Rearranging gives

F (et, ∆t) = e1−ψ
t − st+1

ζt+1

ωξψ
(1− α)(1− τt+1)(

Γ1
1−et+∆t

1−et
+ Γ2

1+g(et)
1−et

) . (4.36)

Taking the derivative of et with respect to the distance to the steady state gives

∂et

∂∆t

= −∂F/∂∆t

∂F/∂et

< 0 (4.37a)

∂2et

∂∆2
t

> 0. (4.37b)

Therefore, if education is, e.g., below its new steady state level after an exogenous shock

(i.e., ∆t < 0), et will always converge monotonically to the new steady state value.

Proof of proposition 4.3. Existence:

Using equation (4.22) and the assumption of constant population growth we have

kt+1 =
1

γNγA
ãt,0,

where ãt,0 is equation (4.22) divided by At to transform at,0 into savings per efficient worker.

Define the function

d(wt, rt+1) = γAγNkt+1 − ã(wt(kt), rt+1(kt+1), et(kt+1)). (4.38a)

Where d(·) is the change in the capital stock per effective worker. Given that we use
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log-utility, et ∈ (0, 1) and a Cobb-Douglas production function it holds that

0 < ã(wt, rt+1, et) < w̃t, (4.38b)

0 <
ã(wt, rt+1, et)

kt+1

<
w̃t

kt+1

. (4.38c)

where w̃t denotes wages scaled by the level of technology. All we have to show is that d(·)
has opposite signs for kt+1 going to zero and infinity. Then by continuity of d(·) there is

at least one capital stock satisfying d(·) = 0. This holds since

d(wt, rt+1)

kt+1

= γNγA − ã(wt, rt+1, et)

kt+1

(4.38d)

and taking the limits gives

lim
kt+1→∞

d(wt, rt+1)

kt+1

= γNγA > 0 (4.38e)

lim
kt+1→0

d(wt, rt+1)

kt+1

= −∞ < 0 (4.38f)

for sufficiently small kt+1. For uniqueness it is sufficient to show that ∂d(wt, rt+1)/∂kt+1 > 0

for all k, i.e. that for a given wage rate d(wt, rt+1) is nondecreasing in the capital stock.

Taking equation (4.25a) and recalling that ∂e/∂k > 0 establishes the result. By using

equation (4.26b) it is clear that a unique solution for the capital stock automatically gives

a unique e.

Proof of proposition 4.4. From (4.26) define

F1(k, e; γN , s, λ, ω) = Ω(e, γN , s, λ, ω)
1

1−α − k = 0 (4.39a)

F2(k, e; γN , s, λ, ω) = c ·
(

s

ζ

) 1
1−ψ

· k 1−α
1−ψ − e = 0 (4.39b)



4.A. APPENDIX: PROOFS 109

where

Ω(e, γN , s, λ, ω) ≡ ϕ

φ
(1− τ)α(1− α)β (4.40)

c ≡
[
ωξψ

γA

α

] 1
1−ψ

(4.41)

and φ is as in (4.27a) and ϕ as in (4.27b).

1. For the case where τ = τ̄ , we can ignore that τ is related to γN and s by the steady

state version of (4.21). The general problem with two implicitly defined endogenous

variables can be written as

[
∂k
∂X

∂e
∂X

]
= −

[
∂F1

∂k
∂F1

∂e

∂F2

∂k
∂F2

∂e

]−1 [
∂F1

∂X

∂F2

∂X

]
= −A−1

[
∂F1

∂X

∂F2

∂X

]
(4.42)

where X is any variable from the vector of exogenous variables {γN , s, ω,} and there-

fore [
∂k
∂X

∂e
∂X

]
= −|A|−1

[
∂F2

∂e
−∂F1

∂e

−∂F2

∂k
∂F1

∂k

][
∂F1

∂X

∂F2

∂X

]
(4.43)

and rearranging gives

[
∂k
∂X

∂e
∂X

]
= −|A|−1

[
∂F2

∂e
∂F1

∂X
−∂F1

∂e
∂F2

∂X

−∂F2

∂k
∂F1

∂X
+∂F1

∂k
∂F2

∂X

]
(4.44)

Since τ = τ̄ , we get

∂F1

∂k
= −1 < 0 (4.45a)

∂F1

∂e
=

1

1− α
Ω1/(1−α)−1∂Ω

∂e
< 0 (4.45b)

∂F2

∂k
= c

(
s

ζ

) 1
1−ψ 1− α

1− ψ
k

1−α
1−ψ

−1 > 0 (4.45c)

∂F2

∂e
= −1 < 0 (4.45d)
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whereby the sign in (4.45b) follows from ∂Ω
∂e

< 0. Consequently,

|A| = ∂F1

∂k

∂F2

∂e︸ ︷︷ ︸
=1

− ∂F1

∂e

∂F2

∂k︸ ︷︷ ︸
<0

> 0. (4.46)

(a) To determine the effect of a changing population growth rate γN on k and e we

have to replace X by γN in equation (4.42) which gives

∂F1

∂γN
=

1

1− α
Ω1/(1−α)−1 ∂Ω

∂γN
< 0 (4.47a)

∂F2

∂γN
= 0, (4.47b)

whereby (4.47a) follows from ∂Ω
∂γN < 0, cf. equations (4.40) and (4.27a). To get

an intuitive idea what is determining the sign, note that we can write

∂Ω

∂γN
=

∂ϕ/∂γNφ− ϕ∂φ/∂γN

φ2
= −ϕ∂φ/∂γN

φ2
< 0 (4.48)

since ϕ is independent of γN and φ is a positive function of γN , cf. equa-

tions (4.26a) and (4.27). Thus, γN has a direct effect on k but only an indirect

effect on e via changing relative prices (this is the reason why ∂F2/∂γN = 0).

Formally, we have

∂k

∂γN
= −|A|−1




∂F2

∂e

∂F1

∂γN

︸ ︷︷ ︸
>0

− ∂F1

∂e

∂F2

∂γN

︸ ︷︷ ︸
=0


 < 0 (4.49a)

∂e

∂γN
= −|A|−1


−

∂F2

∂k

∂F1

∂γN

︸ ︷︷ ︸
<0

+
∂F1

∂k

∂F2

∂γN

︸ ︷︷ ︸
=0


 < 0. (4.49b)

(b) To derive the analogous steps for differentiation of (4.39) with respect to s,
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replace the terms in (4.47) by

∂F1

∂s
=

1

1− α
Ω1/(1−α)−1∂Ω

∂s
≷ 0 (4.50a)

∂F2

∂s
= ck

1−α
1−ψ

∂ s
ζ

∂s
≥ 0. (4.50b)

giving

∂k

∂s
= −|A|−1




∂F2

∂e

∂F1

∂s︸ ︷︷ ︸
≷0

− ∂F1

∂e

∂F2

∂s︸ ︷︷ ︸
≤0


 ≷ 0 (4.51a)

∂e

∂s
= −|A|−1


−

∂F2

∂k

∂F1

∂s︸ ︷︷ ︸
≷0

+
∂F1

∂k

∂F2

∂s︸ ︷︷ ︸
≤0


 ≷ 0. (4.51b)

Intuitively, the ambiguity of ∂e
∂s

results from the fact that, holding k constant,

e is increasing in s as long as λ > 0 (direct effect), but the capital stock may

increase or decrease in s for given education e. As e increases in k monotonically,

the ambiguity of ∂k
∂s

translates into the ambiguity of ∂e
∂s

(indirect effect of s on

e).

Arguing formally, the ambiguity of ∂k
∂s

comes from

∂Ω

∂s
=

∂(ϕ/φ)

∂s
= α(1− α)β(1− τ)

ϕ′φ− ϕφ′

φ2
≷ 0 (4.52)

where φ′ = ∂φ/∂s and ϕ′ = ∂ϕ/∂s, cf. equation (4.26a). It can be shown that

ϕ′ > 0. Consequently, the sign of ∂φ
∂s

determines the sign of ∂F1

∂s
(and thus ∂Ω

∂s
)

and therefore the sign of equation (4.50a) is unambiguous only if ∂φ
∂s

< 0.

To see what determines the sign of φ′, observe from (4.27a) that s enters in

three places: (i) s pre-multiplies the term ω 1+g(e)
1−e

, (ii) s decreases the effective

discount rate ρ̂, and (iii) s increases the annuity factor, ζ, as long as λ < 1.

Consequently, φ increases in s by effect (i) whereas it decreases in s by the

effects (ii) and (iii). We can therefore study an upper bound of φ′ by setting

λ = 1 so that effect (iii) is not at work.
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This helps clarifying the interaction at the cost of introducing a special case.

Using ρ̂ = 1
βs
− 1 in (4.27a) and taking the derivative of the resulting equation

with respect to s, gives

∂φ

∂s

1

γA

= ωα
1 + g(e)

1− e
− γN

s2β

[
1− (1− α) (1− τ)

]
≷ 0,

which is ambiguous.11 The right part of this equation consists only of exogenous

variables. The left part involves the endogenous education decision e for which

no closed form solution is available. Thus, it is not possible to show analytically

that the derivative has an unambiguous sign. However, constructing a few

special cases clarifies under which conditions ∂φ
∂s

< 0 may hold.

• For ω → 0 the left part converges to zero (e also converges to zero) and

thus ∂φ
∂s

< 0.

• For ω = 1, which implies that τ = 0, we have

∂φ

∂s

1

γA

= α

(
1 + g(e)

1− e
− γN

s2β

)
≷ 0.

• For ξ → 0 or ψ → 0 we have that e → 0 which means that

∂φ

∂s

1

γA

= ωα− γN

s2β

[
1− (1− α) (1− τ)

]
≷ 0.

Summarizing the arguments made so far, the sign of ∂φ
∂s

is negative (implying

that k is increasing in s) if

• returns to education are low (low ξ and/or ψ)

• the horizon over which the benefits can be reaped is short (low ω)

• the discount factor β is low (i.e. high discount rate)

11To see what happens for λ 6= 1 define µ ≡ ϕ/ξ and µ′ ≡ ∂µ/∂s. Then the corresponding term is

∂φ

∂s

1
γA

= ω
1 + ge(e)

1− e

(
α + µ′

1− α

β

)
− γN

s2β
(α + (1− α)µτ) + µ′

γN (1− α)τ
sβ

where it is obvious that the last two terms are negative (µ > 0 and µ′ < 0) but the sign of term in the
first bracket is ambiguous again. Thus, by setting λ = 1 (perfect annuity markets) which implies ϕ

ζ = 1
we know that φ′|0≤λ<1 < φ′|λ=1 holds.
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• the population growth rate γN is high

• and the survival probability s is low.

(c) Changing the planning horizon ω gives

∂F1

∂ω
=

∂Ω

∂ω
< 0 (4.53a)

∂F2

∂ω
=

1

1− ψ
ω

ψ
1−ψ

(
ξψ

γA

α

) 1
1−ψ

(
s

ζ

) 1
1−ψ

k
1−α
1−ψ > 0. (4.53b)

and therefore

∂k

∂ω
= −|A|−1


∂F2

∂e

∂F1

∂ω︸ ︷︷ ︸
>0

− ∂F1

∂e

∂F2

∂ω︸ ︷︷ ︸
<0


 < 0 (4.54a)

∂e

∂ω
= −|A|−1


− ∂F2

∂k

∂F1

∂ω︸ ︷︷ ︸
<0

+
∂F1

∂k

∂F2

∂ω︸ ︷︷ ︸
<0


 ≷ 0. (4.54b)

Some intuition why the sign of ∂e/∂ω is indeterminate can be gained by writing

out (4.54b) and inserting the derivatives from above which gives

∂e

∂ω
= |A|−1

(
s

ζ

) 1
1−ψ k

1−α
1−ψ

1− ψ

(
(1− α)

∂Ω

∂ω
k−1 + ω−1

)
.

Hence, the ambiguity is caused by the negative effect of rising labor market par-

ticipation on the capital stock (∂Ω/∂ω < 0) and the positive counterbalancing

effect of more education (ω−1) due to a higher lifetime labor supply ω.

On the contrary, the reason why the sign of ∂k/∂ω can always be determined is

that the effect of ω on k and e work into the same direction. Writing out (4.54a)

and simplifying yields

∂k

∂ω
= |A|−1

(
∂Ω

∂ω
− 1

1− ψ
ω−1e

)
< 0

where ∂Ω/∂ω < 0 captures the direct effect of more labor and the second part

captures the additional effect of changing education.
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2. In case % = %̄, there is a direct (d) and an indirect effect in the partial derivatives of

Ω, ∂Ω
∂X

= ( ∂Ω
∂X

)d + ∂Ω
∂τ

∂τ
∂X

. Observe from (4.21) that

∂τ

∂s
=

γN ρ̄(1− ω)

(s(ρ̄(1− ω) + ω) + γN)2
> 0 (4.55)

∂τ

∂γN
= − sρ̄(1− ω)

(s(ρ̄(1− ω) + ω) + γN)2
< 0 (4.56)

∂τ

∂ω
= − sρ̄(s + γN)

(s(ρ̄(1− ω) + ω) + γN)2
< 0 (4.57)

Therefore, for given γN , s, and ω, the strength of the indirect effect increases in %̄.

Note that changing the adjustment rule of the social security system affects only F1

because there is no direct effect of τ on the education decision in steady state. Due

to the additional indirect effect, it is not possible any more to determine the sign

of the derivatives. We can only say, whether the effects become smaller or larger,

compared to the τ = τ̄ case.

(a) The difference between the two social security scenarios if γN changes and τ

adjusts is given by

∂F1

∂γN
= Ω1/(1−α)−1αβ

(
∂ϕ/φ

∂γN
(1− τ)− ϕ

φ

∂τ

∂γN

)
(4.58)

with

∂φ

∂γN
= γA

(
α(2 + ρ̂) + ϕ

(1− α)

ζ
(1 + ρ̂)

(
τ + γN ∂τ

∂γN

))
> 0 (4.59)

where the difference to the τ = τ̄ scenario is only the term γN ∂τ
∂γN . Using

equation (4.56) implies that

∂F1

∂γN

∣∣∣∣
ρ=ρ̄

>
∂F1

∂γN

∣∣∣∣
τ=τ̄

(4.60)

which proves that

∂k

∂γN

∣∣∣∣
%=%̄

>
∂k

∂γN

∣∣∣∣
τ=τ̄

and
∂e

∂γN

∣∣∣∣
%=%̄

>
∂e

∂γN

∣∣∣∣
τ=τ̄

. (4.61)
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(b) To see how changes in the survival rate affect k and e with fixed replacement

rate we have to evaluate

∂F1

∂s
= Ω1/(1−α)−1βα

(
∂ϕ/φ

∂s
(1− τ)− ϕ

φ

∂τ

∂s

)
. (4.62)

The right part in the parentheses is obviously negative. To obtain the total

effect we have to evaluate ∂(ϕ/φ)
∂s

. Since ϕ does not vary with τ , there is no

indirect effect. Thus we again only have to evaluate the change in φ including

now the change in the contribution rate τ . Again differentiating (4.27a) with

respect to s gives

∂φ

∂s

1

γA

= ωα
1 + g(e)

1− e
− γN

s2β

[
1− (1− α) (1− τ)

]
+ (1− α)

γN

sβ

∂τ

∂s
< 0

where we see that the derivative is identical to the case with τ = τ̄ except for

the last positive term. Using (4.52) and knowing that ∂φ/∂s evaluated with

the indirect effect is larger (smaller in absolute value) gives

∂ϕ/φ

∂s

∣∣∣∣
ρ=ρ̄

<
∂ϕ/φ

∂s

∣∣∣∣
τ=τ̄

⇒ ∂F1

∂s

∣∣∣∣
ρ=ρ̄

<
∂F1

∂s

∣∣∣∣
τ=τ̄

(4.63)

which implies that

∂k

∂s

∣∣∣∣
%=%̄

<
∂k

∂s

∣∣∣∣
τ=τ̄

and
∂e

∂s

∣∣∣∣
%=%̄

<
∂e

∂s

∣∣∣∣
τ=τ̄

. (4.64)

(c) Differences between the two social security scenarios if ω changes are given by

∂F1

∂ω
= Ω1/(1−α)−1βα

(
∂ϕ/φ

∂ω
(1− τ)− ϕ

φ

∂τ

∂ω

)
. (4.65)

Differentiating equation (4.27a) with respect to ω gives

∂φ

∂ω
= γA

(
ϕ

(1− α)

ζ
(1 + ρ̂)γN ∂τ

∂ω

+s

(
α(2 + ρ̂) + ϕ

1− α

ζ
(1 + ρ̂)

)
1 + g(e)

1− e

)
, (4.66)



116 CHAPTER 4. DEMOGRAPHICS IN A SIMPLE OLG ECONOMY

where the difference being only the adjusting contribution rate ∂τ
∂ω

. Using equa-

tion (4.57) it holds that

∂F1

∂ω

∣∣∣∣
ρ=ρ̄

>
∂F1

∂ω

∣∣∣∣
τ=τ̄

(4.67)

proving that
∂k

∂ω

∣∣∣∣
%=%̄

>
∂k

∂ω

∣∣∣∣
τ=τ̄

and
∂e

∂ω

∣∣∣∣
%=%̄

>
∂e

∂ω

∣∣∣∣
τ=τ̄

. (4.68)

Proof of proposition 4.5. The effect of the degree of annuitization (λ) on the capital stock

and education decision is given by

∂F1

∂λ
=

∂Ω

∂λ
> 0 (4.69a)

∂F2

∂λ
= c · s 1

1−ψ k
1−α
1−ψ

∂ζ−1

∂λ
< 0. (4.69b)

Replacing the terms in (4.47) by the ones from above gives

∂k

∂λ
= −|A|−1


∂F2

∂e

∂F1

∂λ︸ ︷︷ ︸
<0

− ∂F1

∂e

∂F2

∂λ︸ ︷︷ ︸
>0


 > 0 (4.70a)

∂e

∂λ
= −|A|−1


− ∂F2

∂k

∂F1

∂λ︸ ︷︷ ︸
>0

+
∂F1

∂k

∂F2

∂λ︸ ︷︷ ︸
>0


 ≷ 0 (4.70b)

Qualitatively, changing λ has the same effects in both social security scenarios because the

availability of annuity markets does not interact with the adjustment of contribution or

replacement rates.



4.B. APPENDIX: NUMERICAL RESULTS WITHOUT ANNUITY MARKETS 117

4.B Appendix: Numerical Results without Annuity

Markets

Table 4.3: Calibration parameters: No Annuity Markets

Firm sector ψ = 0.6 ψ = 0.3
Capital share, α 0.3 0.3
Technological progress, γA 1.81 1.81
Household sector
Discount factor, β 0.67 0.67
Average productivity of human capital investments, ξ 6.30 1.94
Coefficient in human capital production function, ψ 0.6 0.3
Fraction of the old working, ω 0.33 0.86
Social Security
Replacement rate, % 0.6 0.6
Demographics
Birth rate, γN 1.56 1.56
Survival rate, s 0.69 0.69
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Figure 4.5: Elasticity of e with respect to s: No Annuity Markets
(a) Benchmark concavity (ψ = 0.6)

(i) constant τ
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(b) Low concavity (ψ = 0.3)
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Figure 4.6: Elasticity of e with respect to ω: No Annuity Markets
(a) Benchmark concavity (ψ = 0.6)

(i) constant τ

0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

ω

E
la

st
ic

ity
 o

f e
 w

.r
.t.

 
ω

Elasticity of e w.r.t. ω − Constant τ (ψ = 0.6)

 

 
ξ=  1 s= 0.1
ξ=6.3 s= 0.1
ξ=40 s= 0.1
ξ=  1 s= 0.7
ξ=6.3 s= 0.7
ξ=40 s= 0.7
ξ=  1 s= 0.9
ξ=6.3 s= 0.9
ξ=40 s= 0.9

(ii) constant ρ

0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

ω

E
la

st
ic

ity
 o

f e
 w

.r
.t.

 
ω

Elasticity of e w.r.t. ω − Constant ρ (ψ = 0.6)

 

 
ξ=  1 s= 0.1
ξ=6.3 s= 0.1
ξ=40 s= 0.1
ξ=  1 s= 0.7
ξ=6.3 s= 0.7
ξ=40 s= 0.7
ξ=  1 s= 0.9
ξ=6.3 s= 0.9
ξ=40 s= 0.9

(b) Low concavity (ψ = 0.3)
(i) constant τ
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Chapter 5

Demographic Change, Human

Capital and Welfare

5.1 Introduction

As in all major industrialized countries the population of the United States is aging over

time. This process is driven by increasing life-expectancy and a decline in birth rates from

the peak levels of the baby boom. Consequently, the fraction of the population in working-

age will decrease and the fraction of people in old-age will increase. Figure 5.1 presents

two summary measures of these demographic changes: The working-age population ratio

is predicted to decrease from 84% in 2005 to 75% in 2050 and the old-age dependency ratio

increases from 19% in 2005 to 34% in 2050.

These projected changes in the population structure will have important macroeconomic

effects on the balance between physical capital and labor. Specifically, labor is expected to

be scarce, relative to physical capital, with an ensuing decline in real returns on physical

capital and increases in gross wages. As shown in this paper, a strong incentive to invest

in human capital emanates from the combined effects of increasing life expectancy and

changes in relative prices particularly if social security systems are reformed so that con-

tribution rates are held constant. In general equilibrium, such endogenous human capital

adjustments substantially mitigate the effects of demographic change on macroeconomic

aggregates and individual welfare. The key contribution of our paper is to show that the
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Figure 5.1: Working age and old-age dependency ratio
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Notes: Working age population ratio (WAPR, left scale): ratio of population of age 16− 64 to
total adult population of age 16− 90. Old-age dependency ratio (OADR, right scale): ratio of
population of age 65− 90 to working age population.
Source: Own calculations based on Human Mortality Database (2008).

human capital adjustment mechanism is quantitatively important.

We add endogenous human capital accumulation to an otherwise standard large-scale OLG

model in the spirit of Auerbach and Kotlikoff (1987). The central part of our analysis

is then to work out the differences between our model with endogenous human capital

adjustments and endogenous labor supply and the “standard” models in the literature

with a fixed (exogenous) productivity profile.

We find that as a consequence of demographic change the decrease of the return to physical

capital in our model with endogenous human capital is only one third of the decrease in

the standard model. Welfare consequences from increasing wages and declines in rates of

return can be substantial. Newborns in 2005 experience welfare gains in the order of up

to 0.8% of lifetime consumption when contribution rates to the pension system are held

constant and welfare losses worth −3% of lifetime consumption when the generosity of the

pension system is maintained. In contrast, asset-rich households currently alive lose from

the decline in rates of return and these losses can be large depending on the future evolution

of the pension system. But importantly, these losses are about 50− 70% higher when the

human capital adjustment mechanism is shut down. Ignoring this adjustment channel thus
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leads to quantitatively important biases of the welfare assessment of demographic change.

Our work relates to a vast number of papers that have analyzed the economic consequences

of population aging and possible adjustment mechanisms. Important examples in closed

economies with a focus on social security adjustments include Huang, Imrohoroglu, and

Sargent (1997), De Nardi, Imrohoroglu, and Sargent (1999) and, with respect to migration,

Storesletten (2000). In open economies, Bösch-Supan, Ludwig, and Winter (2006), Attana-

sio, Kitao, and Violante (2007) and Krüger and Ludwig (2007), among others, investigate

the role of international capital flows during the demographic transition. We add to this

literature by highlighting an additional mechanism through which households can respond

to demographic change.

Our paper is closely related to the theoretical work on longevity, human capital, taxation

and growth1 and to Fougère and Mérette (1999) and Sadahiro and Shimasawa (2002) who

also investigate demographic change in large-scale OLG models with individual human

capital decisions. In contrast to their work, we focus our analysis on the relative price

changes during the demographic transition and therefore consider an exogenous growth

specification.2 We also extend their analysis along various dimensions. We use realistic de-

mographic projections instead of stylized scenarios. More importantly, our model contains

a labor supply-human capital formation-leisure trade-off. It can thus capture effects from

changes in individual labor supply, i.e., human capital utilization, on the return of human

capital investments. As has already been stressed by Becker (1967) and Ben-Porath (1967)

it is important to model human capital and labor supply decisions jointly in a life-cycle

framework. Along this line, a key feature of our quantitative investigation, is to employ

a Ben-Porath (1967) human capital model and calibrate it to replicate realistic life-cycle

wage profiles.3 Furthermore, we put particular emphasis on the welfare consequences of

1See for example de la Croix and Licandro (1999), Boucekkine, de la Croix, and Licandro (2002),
Kalemli-Ozcan, Ryder, and Weil (2000) Echevarria and Iza (2006), Heijdra and Romp (2007) and Ludwig
and Vogel (2009). Our paper is also related to a literature emphasizing the role of endogenous human
capital accumulation for the analysis of changes to the tax or social security system as in Lord (1989),
Trostel (1993), Perroni (1995), Dupor, Lochner, Taber, and Wittekind (1996) and Lau and Poutvaara
(2006), among others.

2Whether the trend growth rate endogenously fluctuates during the demographic transition or is held
constant is of minor importance for the questions we are interested in. This is shown in our earlier
unpublished working paper. Results are available upon request.

3The Ben-Porath (1967) model of human capital accumulation is one of the workhorses in labor eco-
nomics used to understand such issues as educational attainment, on-the-job training, and wage growth
over the life cycle, among others, see Browning, Hansen, and Heckman (1999) for a review. More re-
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population aging for households living through the demographic transition.

The paper is organized as follows. In section 5.2 we present the formal structure of our

quantitative model. Section 5.3 describes the calibration strategy and our computational

solution method. Our results are presented in section 5.4. Finally, section 5.5 concludes the

paper. Additional results, a description of our demographic model, and technical details

can be found in appendices 5.B and 5.A.

5.2 The Model

We employ a large scale OLG model à la Auerbach and Kotlikoff (1987) with endogenous

labor supply and endogenous human capital formation. The population structure is ex-

ogenously determined by time varying demographic processes for fertility and mortality,

the main driving forces of our model.4 Firms produce with a standard constant returns

to scale production function in a perfectly competitive environment. We assume that the

U.S. is a closed economy.5 Agents contribute a share of their wage to the pension system

and retirees receive a share of current net wages as pensions. Technological progress is

exogenous.

5.2.1 Timing, Demographics and Notation

Time is discrete and one period corresponds to one calendar year t. Each year, a new

generation is born. Birth in this paper refers to the first time households make own

decisions and is set to real life age of 16 (model age j = 0). Agents retire at an exogenously

given age of 65 (model age jr = 49). Agents live at most until age 90 (model age j = J =

74). At a given point in time t, individuals of age j survive to age j + 1 with probability

cently, extended versions of the model have been applied to study the significant changes to the U.S. wage
distribution and inequality observed since the early 1970s by Heckman, Lochner, and Taber (1998) and
Guvenen and Kuruscu (2009).

4We model neither endogenous life-expectancy or fertility, nor endogenous migration and assume that all
exogenous migration is completed before agents start making economically relevant decisions (cf. appendix
5.A).

5For our question, the closed economy assumption is a valid approximation. As documented in Krüger
and Ludwig (2007), demographically induced changes in the return to physical capital and wages from
the U.S. perspective do not differ much between small and open economy scenarios. The reason is that
demographic processes are correlated across countries and, in terms of speed of the aging processes, the
U.S. is somewhere in the middle when looking at all OECD countries.



5.2. THE MODEL 125

ϕt,j, where ϕt,J = 0. The number of agents of age j at time t is denoted by Nt,j and

Nt =
∑J

j=0 Nt,j is total population in t.

5.2.2 Households

Each household comprises of one representative agent who decides about consumption and

saving, labor supply and human capital investment. The household maximizes lifetime

utility at the beginning of economic life (j = 0) in period t,

max
J∑

j=0

βjπt,j
1

1− σ
{cφ

t+j,j(1− `t+j,j − et+j,j)
1−φ}1−σ, σ > 0, (5.1)

where the per period utility function is a function of individual consumption c, labor supply

` and time investment into formation of human capital, e. The agent is endowed with one

unit of time, so 1− l − e is leisure time. β is the pure time discount factor, φ determines

the weight of consumption in utility and σ is the inverse of the inter-temporal elasticity of

substitution with respect to the Cobb-Douglas aggregate of consumption and leisure time.

πt,j denotes the (unconditional) probability to survive until age j, πt,j =
∏j−1

i=0 ϕt+i,i, for

j > 0 and πt,0 = 1.

Agents earn labor income (pension income when retired) as well as interest payments on

their savings and receive accidental bequests. When working they pay a fraction τt from

their gross wages to the social security system. The net wage income in period t of an agent

of age j is given by wn
t,j = `t,jht,jwt(1−τt), where wt is the (gross) wage per unit of supplied

human capital at time t. There are no annuity markets and households leave accidental

bequests. These are collected by the government and redistributed in a lump-sum fashion

to all households. Accordingly, the dynamic budget constraint is given by

at+1,j+1 =





(at,j + trt)(1 + rt) + wn
t,j − ct,j if j < jr

(at,j + trt)(1 + rt) + pt,j − ct,j if j ≥ jr,
(5.2)

where at,j denotes assets, trt are transfers from accidental bequests, rt is the real interest

rate, the rate of return to physical capital, and pt,j is pension income. Initial household

assets are zero (at,0 = 0) and the transversality condition is at,J+1 = 0.
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5.2.3 Formation of Human Capital

The key element of our model is endogenous formation of human capital. Households enter

economic life with a predetermined and cohort invariant level of human capital ht,0 = h0.

Afterwards, they can invest a fraction of their time into acquiring additional human capital.

We adopt a version of the Ben-Porath (1967) human capital technology6 given by

ht+1,j+1 = ht,j(1− δh) + ξ(ht,jet,j)
ψ ψ ∈ (0, 1), ξ > 0, δh ≥ 0, (5.3)

where ξ is a scaling factor, the average learning ability, ψ determines the curvature of the

human capital technology, δh is the depreciation rate of human capital and et,j is time

investment into human capital formation.

The costs of investing into human capital in this model are only the opportunity costs

of foregone wage income and leisure. We understand the process of accumulating human

capital as a mixture of knowledge acquired by formal schooling and on the job training

programs after schooling. Human capital can be accumulated until retirement age but

agents’ optimally chosen time investment converges to zero some time before retirement.

5.2.4 The Pension System

The pension system is a simple balanced budget pay-as-you-go system. Workers contribute

a fraction τt of their gross wages and pensioners receive a fraction ρt of the current average

net wages of workers.7 The level of pensions in each period is then given by pt,j = ρt(1−
τt)wth̄t, where h̄t =

Pjr−1
j=0 `t,jht,jNt,jPjr−1

j=0 `t,jNt,j
denotes average human capital of workers. Using the

formula for pt,j, the budget constraint of the pension system8 simplifies to

τt

jr−1∑
j=0

`t,jNt,j = ρt(1− τt)
J∑

j=jr

Nt,j ∀t. (5.4)

6This functional form is widely used in the human capital literature, cf. Browning, Hansen, and
Heckman (1999) for a review.

7In the U.S. system, pension benefits are linked to individual monthly earnings which are indexed and
averaged over the life-cycle Diamond and Gruber (1999). The replacement rate, however, is a decreasing
function of monthly earnings so that the earnings related linkage is incomplete. By ignoring this earnings
related linkage, we somewhat overstate the distortion of the labor-human capital formation-leisure decision
induced by the pension system.

8The budget constraint is given by τtwt

∑jr−1
j=0 `t,jht,jNt,j =

∑J
j=jr pt,jNt,j ∀t.
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Below, we consider two polar scenarios of parametric adjustment of the pension system

to demographic change. In our first scenario (“const. τ”), we hold the contribution rate

constant, τt = τ̄ , and endogenously adjust the replacement rate to balance the budget of

the pension system. In the other extreme scenario (“const. ρ”), we hold the replacement

rate constant, ρt = ρ̄, and endogenously adjust the contribution rate.

5.2.5 Firms and Equilibrium

Firms operate in a perfectly competitive environment and produce one homogenous good

according to the Cobb-Douglas production function

Yt = Kα
t (AtLt)

1−α, (5.5)

where α denotes the share of capital used in production. Kt, Lt and At are the stocks of

physical capital, effective labor and the level of technology, respectively. Output can be

either consumed or used as an investment good. We assume that labor inputs and human

capital of different agents are perfect substitutes and effective labor input Lt is accordingly

given by Lt =
∑jr−1

j=0 `t,jht,jNt,j. Factors of production are paid their marginal products,

i.e. wt = (1−α) Yt

Lt
and rt = α Yt

Kt
− δt, where wt is the gross wage per unit of efficient labor,

rt is the interest rate and δt denotes the depreciation rate of physical capital. Total factor

productivity, At, is growing at the exogenous rate of gA
t : At+1 = At(1 + gA

t ).

The definition of equilibrium is standard and relegated to appendix 5.A.

5.2.6 Thought Experiments

We take as exogenous driving process a time-varying demographic structure. Computations

start in year 1850 (t = 0) assuming an artificial initial steady state. We then compute the

model equilibrium from 1850 to 2400 (t = T = 551) – when the new steady state is assumed

and verified to be reached9 – and report simulation results for the main projection period

of interest, from 2005 (t = 156) to 2050 (t = 206). We use data during our calibration

period, 1960 − 2005 (from t0 = 111 to t1 = 156), to determine several structural model

parameters (cf. section 5.3).

9In fact, changes in variables which are constant in steady state are numerically irrelevant already
around the year 2300.
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Our main interest is to compare the time paths of aggregate variables and welfare across two

model variants for two social security scenarios. Our first model variant is one in which

households adjust their human capital and our second variant is one in which human

capital is held constant across cohorts. Therefore, our strategy is to first solve for the

transitional dynamics using the model as described above. Next, we use the endogenously

obtained profile of time investment into human capital formation to compute an average

time investment and associated human capital profile which is then fed into our alternative

model in which agents are restricted with respect to their time investment choice. We do

so separately for the two polar social security scenarios described in subsection 5.2.4. The

average time investment is computed as ēj = 1
t1−t0+1

∑t1
t=t0

et,j for our calibration period

(t0 = 111 and t1 = 156). In the alternative model, we then add the constraint et,j = ēj.

The human capital profile is then obtained from (5.3) by iterating forward on age.10

5.3 Calibration and Computation

To calibrate the model, we choose model parameters such that simulated moments match

selected moments in NIPA data and the endogenous wage profiles match the empirically

observed wage profile in the U.S. during the calibration period 1960 − 2005.11 The cali-

brated parameters are summarized in table 5.1 below.

5.3.1 Demographics

Actual population data from 1950 − 2005 are taken from the Human Mortality Database

(2008). Our demographic projections beyond 2004 are based on a population model that

10By imposing the restriction of identical time investment profiles for all cohorts (instead of, e.g., impos-
ing the restriction only on cohorts born after 2005) we shut down direct effects from changing mortality on
human capital and indirect anticipation effects of changing returns. This alternative model is a “standard”
model of endogenous labor supply and an exogenously given age-specific productivity profile – as used in
numerous studies on the consequences of demographic change – with the only exception being that the
time endowment is age-specific. By setting time endowment to 1− ēj rather than 1 we avoid re-calibration
across model variants, further see below.

11We perform this moment matching in the endogenous human capital model and the constant con-
tribution rate scenario. We do not re-calibrate model parameters across social security scenarios or for
the alternative human capital model because simulated moments do not differ much. Furthermore, we
are interested in how our welfare conclusions are affected by imposing various constraints on the model –
either through our social security scenarios or by restricting human capital formation – and any parametric
change in this comparison would confound our welfare analysis.
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is described in detail in appendix 5.A.12

5.3.2 Household Behavior

The parameter σ, the inverse of the inter-temporal elasticity of substitution, is set to 2.

The time discount factor β is calibrated to match the empirically observed capital-output

ratio of 2.8 which requires β = 0.988. The weight of consumption in the utility function, φ,

is calibrated such that households spend one third of their time working on average which

requires φ = 0.411.

5.3.3 Individual Productivity Profiles

We choose values for the parameters of the human capital production function such that

average simulated wage profiles resulting from endogenous human capital formation repli-

cate empirically observed wage profiles. Data for age specific productivity are taken from

Huggett, Ventura, and Yaron (2007)13. We first normalize h0 = 1, and then determine the

values of the structural parameters {ξ, ψ, δh} by indirect inference methods (Smith (1993);

Gourieroux, Monfort, and Renault (1993)). To this end we run separate regressions of the

data and simulated wage profiles on a 3rd-order polynomial in age given by

log wj = η0 + η1j + η2j
2 + η3j

3 + εj. (5.6)

Here, wj is the age specific productivity. Denote the coefficient vector determining the

slope of the polynomial estimated from the actual wage data by −→η = [η1, η2, η3]
′ and

the one estimated from the simulated average human capital profile of cohorts born in

1960− 2004 by
−→̂
η = [η̂1, η̂2, η̂3]

′. The latter coefficient vector is a function of the structural

model parameters {ξ, ψ, δh}. Finally, the values of our structural model parameters are

determined by minimizing the distance ‖−→η −−→̂η ‖, see subsection 5.3.6 for further details.

12The key assumptions of this model are as follows: First, the total fertility rate is constant at 2005
levels of 2.0185 until 2100 when fertility is adjusted slightly such as to keep the number of newborns
constant for the remainder of the simulation period. Second, life expectancy monotonically increases from
a current (2004) average life expectancy at birth of 77.06 years to 88.42 years in 2100 when it is held
constant. Third, total migration is constant at the average migration for 1950− 2005 for the remainder of
the simulation period. These assumptions imply that a stationary population is reached in about 2200.

13We thank Mark Huggett for sending us the data.
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Figure 5.2 presents the empirically observed productivity profile and the estimated polyno-

mials. Our coefficients14 and the shape of the wage profile are in line with others reported

in the literature, especially with those obtained by Hansen (1993) and Altig, Auerbach,

Kotlikoff, Smetters, and Walliser (2001). The estimate of δh = 0.011 is reasonable (Arra-

zola and de Hevia (2004), Browning, Hansen, and Heckman (1999)), and the estimate of

ψ = 0.67 is just in the middle of the range reported in Browning, Hansen, and Heckman

(1999).15

Figure 5.2: Wage Profiles
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Notes: Observed profile: average life-cycle wage profiles taken from Huggett, Ventura, and
Yaron (2007). Polynomials: predicted wage profile based on estimated polynomial coefficients
of (5.6). Both profiles were normalized by their respective means.

5.3.4 Production

We calibrate the capital share in production, α, to match the income share of labor in the

data which requires α = 0.33. The average growth rate of total factor productivity, ḡA, is

14The coefficient estimates from the data are η0: -1.6262, η1: 0.1054, η2: -0.0017 and η3: 7.83e-06. We
do not display the calibrated profiles in figure 5.2 because they perfectly track the polynomial obtained
from the data.

15In a sensitivity analysis we have shown that the estimate of the average time investment productivity,
ξ = 0.16, depends on the predetermined value of h0, whereas the other parameters are rather insensitive
to this choice. We have also found that parameterizations with a different value for h0 yield the same
results for the effects of demographic change on aggregate variables and welfare.
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calibrated to match the growth rate of the Solow residual in the data. Accordingly, ḡA =

0.018. Finally, we calibrate δ̄ (and thereby scale the exogenous time path of depreciation,

δt) such that our simulated data match an average investment output ratio of 20% which

requires δ̄ = 0.039.

5.3.5 The Pension System

In our first social security scenario (“const. τ”) we fix contribution rates and adjust

replacement rates of the pension system. We calculate contribution rates from NIPA data

for 1960−2004 and freeze the contribution rate at the year 2004 level for all following years.

When simulating the alternative social security scenario with constant replacement rates

(“const. ρ”) we feed the equilibrium replacement rate obtained in the “const. τ” scenario

into the model and hold it constant at the 2004 level for all the remaining years. Then, the

contribution rate endogenously adjusts to balance the budget of the social security system.

5.3.6 Computational Method

For a given set of structural model parameters, solution of the model is by outer and

inner loop iterations. On the aggregate level (outer loop), the model is solved by guessing

initial time paths of four variables: the capital intensity, the ratio of bequests to wages,

the replacement rate (or contribution rate) of the pension system and the average human

capital stock for all periods from t = 0 until T . On the individual level (inner loop), we start

each iteration by guessing the terminal values for consumption and human capital. Then

we proceed by backward induction and iterate over these terminal values until convergence

of the inner loop iterations.16 In each outer loop, disaggregated variables are aggregated

each period. We then update aggregate variables until convergence using the Gauss-Seidel-

Quasi-Newton algorithm suggested in Ludwig (2007).

To calibrate the model in the “const. τ” scenario, we consider additional “outer outer”

loops to determine structural model parameters by minimizing the distance between the

simulated average values and their respective calibration targets for the calibration period

16As described in appendix 5.B, we implement a check for uniqueness of the solution at each age when
computing optimal human capital decisions.
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1960 − 2004. To summarize the description above, parameter values determined in this

way are β, φ, δ, ξ, ψ and δh.

Table 5.1: Model Parameters

Preferences σ Inverse of Inter-Temporal Elasticity of Substitution 2.00
β Pure Time Discount Factor 0.988
φ Weight of Consumption 0.411

Human Capital ξ Scaling Factor 0.16
ψ Curvature Parameter 0.67
δh Depreciation Rate of Human Capital 1.1%
h0 Initial Human Capital Endowment 1.00

Production α Share of Physical Capital in Production 0.33
δ̄ Depreciation Rate of Physical Capital 3.9%
ḡA Exogenous Growth Rate 1.8%

5.4 Results

Before using our model to investigate the effects of future demographic change, we show

how well it can replicate observed aggregate variables and individual life-cycle profiles in

the past. Next, we turn to the analysis of the transitional dynamics for the period 2005 to

2050 whereby we focus especially on the developments of major macroeconomic variables

and the welfare effects of demographic change.

5.4.1 Backfitting

In order to backfit our model we do the following. First, we estimate series of TFP and

actual depreciation using NIPA data. We HP filter these data series and then feed them

into the model for the period 1950 to 2005. Thereafter, both parameters, g and δ are held

constant at their respective means, see table 5.1. A key variable that determines paths

of the rate of return to physical capital and wages is the capital output ratio. Figure 5.3

shows actual and fitted values for the period 1960-2005. Evidently, the fit of our model

is quite remarkable along this key dimension of the data. Our model tracks the observed

long-run swings in the data. The predicted amplitudes are slightly bigger in the model
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than they are in the data.

Figure 5.3: Capital Output Ratio
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Notes: Capital-output ratio in the model and in aggregate data. The data is HP filtered.
Data Source: National income and product accounts (NIPA).

Turning to the individual level, we recognize that our model fails to replicate the empirically

observed life-cycle consumption profile, cf. figure 5.4(a). The increase of consumption

over the life cycle is too steep and the peak is too late compared to the data. Since in

a model without idiosyncratic risk the decrease of consumption after the peak is solely

caused by falling survival rates, we cannot expect to match this dimension of the data (cf.

Hansen and Imrohoroğlu (2008), Fernández-Villaverde and Krüger (2007)). As shown in

Ludwig, Krüger, and Börsch-Supan (2007), omitting idiosyncratic risk has only a negligible

effect on welfare calculations. This is because welfare calculations are based on differences

in consumption profiles and the exact shape of the consumption profile is therefore less

important.

We next look at asset profiles. Figure 5.4(b) shows household net worth data from the

Survey of Consumer Finances for a cross-section in 1995 obtained from Bucks, Kennickell,

and Moore (2006) and the corresponding cross-sectional asset profile in the model. Our

model matches the broad pattern in the data. Observed discrepancies are threefold: First,

as borrowing constraints are absent from our model, initial assets are negative whereas

they are positive in the data. Second, the run-up of wealth until retirement age is stronger
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Figure 5.4: Life-Cycle and Cross-Sectional Profiles
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(b) Assets
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(c) Labor Supply
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(d) Wages
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Notes: Model and data profiles for consumption, assets, labor supply and wages. The model
consumption profile is the life-cycle consumption profile for the cohort born in 1960. The other
profiles are cross-sectional profiles in 1990 and 1995. Consumption, asset and wage profiles are
normalized by their respective mean. Hours data is normalized by 76 total hours per week.
Data Sources: Based on consumption profile estimated by Fernández-Villaverde and Krüger
(2007), SCF net worth data obtained from Bucks, Kennickell, and Moore (2006), hours worked
data from McGrattan and Rogerson (2004) and PSID wage data.

in our model than it is in the data. Third, decumulation of assets is stronger as well. This

last fact is due to the fact that our model neither has health risks as in De Nardi, French,

and Jones (2009) nor explicit bequest motives.
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Our model does a good job in matching the cross-sectional hours profile observed in 1990

Census data taken from McGrattan and Rogerson (2004), see figure 5.4(c).17 We relegate

a discussion of Frisch labor supply elasticities to appendix 5.A.

Figure 5.4(d) shows the cross-sectional wage profile observed in PSID data in 1990.18

Although our model matches the broad pattern observed in the data, the fit is much better

in 1970 and 1980, cf. appendix 5.A.19

5.4.2 Transitional Dynamics

We divide our analysis of the transitional dynamics into two parts. First, we analyze the

behavior of several important aggregate variables from 2005 to 2050. Second, we investigate

the welfare consequences of demographic change for generations already alive in 2005 and

for households born in the future. Throughout, we demonstrate how the design of the

social security system affects our results.

Aggregate Variables

The evolution of the policy variables in the two social security scenarios are presented in

figure 5.5.20 In the “const. τ” scenario pensions become less generous over time represented

by a decrease in the replacement rate from around 24% in 2005 to 14% in 2050. In contrast,

in the “const. ρ” scenario the generosity of the pension system remains at the 2005 level

implying that contribution rates have to increase from around 12% in 2005 to 19% in 2050.

Figure 5.6 reports the dynamics of four major macroeconomic variables for the two model

variants – with endogenous and exogenous human capital – in the “const. τ” social security

scenario and figure 5.7 does so in the “const. ρ” scenario.

In figures 5.6(a) and 5.7(a) we show the evolution of the rate of return to physical capital

17The hours data is normalized with total hours per week equal to 76. This might appear to be a low
number for total available hours. But such a magnitude is needed to make the McGrattan and Rogerson
(2004) hours data broadly consistent with the common belief that agents spend about one third of their
time working and standard practice of macroeconomists to calibrate their models (which we have followed).

18In order to smooth the data we show a centered average of five subsequent PSID samples.
19Part of this is due to the fortunate cohorts born after the war (see Ehrlich (2007) for a discussion).
20Figure drawn for the endogenous human capital model. The policy variables in the exogenous human

capital model are similar.
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Figure 5.5: Evolution of Policy Variables
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(b) Replacement Rate
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Notes: Pension system contribution and replacement rate for the two social security scenarios.
“const. τ”: constant contribution rate scenario. “const. ρ”: constant replcement rate scenario.

for the different models.21 In the “standard” models with endogenous labor supply only,

the rate of return decreases from an initial level of around 8% in 2005 to 7.1% in the

“const. τ” scenario and to 7.5% in the “const. ρ” scenario in 2050.22 This magnitude

is in line with results reported elsewhere in the literature, cf., e.g., Bösch-Supan, Ludwig,

and Winter (2006) and Krüger and Ludwig (2007) whereas Attanasio, Kitao, and Violante

(2007) find slightly bigger effects. On the contrary, in the two models with endogenous

human capital adjustment, the rate of return is expected to fall by only 0.3 (0.1) percentage

points in the “const. τ” (“const. ρ”) scenario. This difference in the decrease of the rate

of return between the exogenous and the endogenous human capital models is large, at a

factor of about 3 (4.5).

In figure 5.6(b) and 5.7(b) we depict the evolution of average hours worked by all working

age individuals. Average hours worked increase both for the endogenous and exogenous

human capital models. Observe that there are level differences between the two model

21There are two reasons for the small level differences in 2005 across the various scenarios. First, our
calibration targets are averages for the period 1960 − 2004. Second, as already discussed in section 5.3,
we do not recalibrate across scenarios. Such level differences in initial values can be observed in all of the
following figures.

22The high initial level of the rate of return is caused by the baby boom in the past which increases the
labor force and hence decreases capital intensity.



5.4. RESULTS 137

Figure 5.6: Aggregate Variables for Constant Contribution Rate Scenario

(a) Rate of Return to Physical Capital
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(b) Average Hours Worked
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(c) Average Human Capital
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(d) Growth of GDP per Capita in %
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Notes: Rate of return to physical capital, average hours worked of the working age population,
average human capital per working hour and growth of GDP per capita in the constant contri-
bution rate social security scenario for two model variants. “endog. h.c.”: endogenous human
capital model. “exog. h.c.”: exogenous human capital model.

variants. This is mainly caused by differences in time investment into human capital

formation.

Figures 5.6(c) and 5.7(c) show that time investment into human capital formation increases

when agents are allowed to adjust their human capital. Specifically, with endogenous

human capital in the “const. τ” (“const. ρ”) scenario average human capital per working

hour increases by around 15% (10%) until 2050.
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Figure 5.7: Aggregate Variables for Constant Replacement Rate Scenario

(a) Rate of Return to Physical Capital
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(c) Average Human Capital
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(d) Growth of GDP per Capita in %
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Notes: Rate of return to physical capital, average hours worked of the working age population,
average human capital per working hour and growth of GDP per capita in the constant replace-
ment rate social security scenario for two model variants. “endog. h.c.”: endogenous human
capital model. “exog. h.c.”: exogenous human capital model.

Finally, we focus on the evolution of the growth rate of GDP per capita as shown in

figures 5.6(d) and 5.7(d). When the U.S. aging process peaks in 2025 (cf. figure 5.1), the

growth rate of per capita GDP falls in all scenarios to its lowest level. The drop is least

pronounced for the endogenous human capital model with a fixed contribution rate. There,

the growth rate gradually declines from 2.2% in 2005 to 1.9% in 2025.23 Comparing the

23The high initial growth rate is a consequence of the past baby boom, cf. footnote 22.
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two “const. τ” scenarios, it can be seen that not adjusting the human capital profile entails

a big drop in the growth rate. The maximum difference in about 2025 is 0.5 percentage

points. Although the difference across human capital models is only 0.3 percentage points

in case the replacement rate is held constant (“const. ρ” scenarios), the same conclusion

applies. The ageing process induces relative price changes so that agents increase their

time investment into human capital formation and thereby cushion the negative effects of

demographic change on growth.24

Welfare Effects

In our model, a household’s welfare is affected by two consequences of demographic change.

First, her lifetime utility changes because her own survival probabilities increase. Second,

households face a path of declining interest rates, increasing gross wages and decreasing

replacement rates (increasing contribution rates), relative to the situation without a de-

mographic transition.

We want to isolate the welfare consequences of the second effect. To this end, we com-

pare for an agent born at time t and of current age j her lifetime utility when she faces

equilibrium factor prices, transfers and contribution (replacement) rates as documented in

the previous section, with her lifetime utility when she instead faces prices, transfers and

contribution (replacement) rates that are held constant at their 2005 value. For both of

these scenarios we fix the households’ individual survival probabilities at their 2005 val-

ues.25 Following Attanasio, Kitao, and Violante (2007) and Krüger and Ludwig (2007),

we then compute the consumption equivalent variation gt,j, i.e. the percentage increase in

consumption that needs to be given to an agent with characteristics t, j at each date in

her remaining lifetime at fixed prices to make her as well off as under the situation with

changing prices.26 Positive numbers of gt,j thus indicate that households obtain welfare

24In appendix 5.A we show that the cumulative effect of these growth rate differences between the
endogenous and exogenous human capital model on the level of GDP per capita are large. With human
capital adjustments the detrended level of GDP per capita will increase by around 15% (10%) more until
2050 in the “const. τ” (“const. ρ”) scenario than without these adjustments.

25Of course, they fully retain their age-dependency. We show in appendix 5.A that varying the survival
probabilities according to the underlying demographic projections leaves our conclusions on welfare in the
comparison across the two models essentially unchanged.

26With our assumptions on preferences, gt,j can be calculated as gt,j =
(

V̄t,j

V̄ 2005
j

) 1
φ(1−σ) − 1, where V̄t,j
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gains from the general equilibrium effects of demographic change, negative numbers are

welfare losses.

Welfare of Generations Alive in 2005

Of particular interest is how the welfare of all generations already alive in 2005 will be

affected by demographic change. This analysis allows for an inter-generational welfare

comparison of the consequences of demographic change in terms of wellbeing that is not

possible using aggregated figures such as per capita GDP. Newborns and young generations

benefit from increasing wages as well as decreasing returns if they borrow to finance their

human capital formation. However, older – and thus asset-rich – generations are expected

to lose lifetime utility: First, they benefit less from increasing wages because they do not

significantly adjust their human capital and because their remaining working period is

short, second, falling returns diminish their capital income and, third, retirement income

decreases in our scenario with constant contribution rates.

Results, shown in figure 5.8, can be summarized as follows: First, newborn agents experi-

ence welfare gains in the “const. τ” scenarios of roughly 1% of life-time consumption and

welfare losses of roughly 3% in the “const. ρ” scenarios. As explained appendix 5.A, the

fact that these gains (and losses) are almost identical in the two human capital models

is due to a complex interaction between the value of human capital adjustments which

is positive and differential general equilibrium effects which partially offset this. Second,

middle-aged agents incur the highest losses in the “const. τ” scenarios: the maximum

loss of agents is much larger compared to a scenario with fixed replacement rates. Clearly,

constant replacement rates decrease net wages of the young but keep pensions more gen-

erous. This decreases lifetime utility of the young but narrows the loss of utility of the

old (compared to a situation with falling replacement rates). The redistribution through

the pension system shifts the balance somewhat in favor of the old. This also explains

why the maximum of the losses occurs at a much higher age in the “const. τ” scenario in

which agents close to retirement lose interest income and receive lower pensions. Third,

independent of future pension policy, agents lose relatively less in the endogenous human

capital model. Younger agents can adjust their human capital in response to higher wages

denotes lifetime utility at changing prices and V̄ 2005
j at fixed 2005 prices.
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whereas older (asset-rich) households benefit from a smaller drop in the interest rate (cf.

figures 5.6(a) and 5.7(a)) and higher pension payments.27

Figure 5.8: Consumption Equivalent Variation of Agents alive in 2005

(a) Constant Contribution Rate Scenario

20 30 40 50 60 70 80 90
−12

−10

−8

−6

−4

−2

0

2

Age

C
E

V

Consumption Equivalent Variation − Cohorts alive in 2005

 

 

endog. h.c.
exog. h.c.

(b) Constant Replacement Rate Scenario
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Notes: Consumption equivalent variation (CEV) in the two social security scenarios.

Table 5.2 finally provides numbers on the maximum welfare loss displayed in figure 5.8 as

a summary statistic. It is important to emphasize that, in the exogenous human capital

model, the maximum loss is about 3.7 (2.1) percentage points or 55% (71%) higher in

the “const. τ” (“const. ρ”) scenario than in the endogenous human capital model. This

exemplifies that ignoring the adjustment channel through human capital formation leads

to quantitatively important biases of the welfare assessments of demographic change.

Table 5.2: Maximum Utility Loss for Generations alive in 2005

Human Capital
Endogenous Exogenous

Const. τ (τt = τ̄) -6.8% -10.5%
Const. ρ (ρt = ρ̄) -3.1% -5.2%

27In appendix 5.A, we decompose the welfare differences between the two models into effects stemming
from differential changes in factor prices and the relative rise in social security benefits which is caused by
additional human capital formation.
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Welfare of Future Generations

We next look at the welfare consequences for all future newborns. Due to increasing

wages, agents born into a “const τ”-world with endogenous human capital experience

gains of lifetime utility throughout the entire projection window. Agents with exogenous

human capital born after 2035 incur utility losses of up to 1% of lifetime consumption.

However, welfare losses for future generations can be quite large despite the human capital

channel if the social security system is not reformed (“const ρ”). Despite of human capital

adjustments, they are at about −7% of lifetime consumption for cohorts born around and

after 2030 (−8% for exogenous human capital).28

5.5 Conclusion

This paper finds that increased investments in human capital may substantially mitigate

the macroeconomic impact of demographic change with profound implications for individ-

ual welfare. As labor will be relatively scarce and capital will be relatively abundant in an

aging society, interest rates will fall. As we emphasize, these effects will be much smaller

once we account for changes in human capital formation. For the U.S., our simulations

predict that if contribution rates (replacement rates) are kept constant then the rate of

return will fall by only 0.4 (0.7) percentage points until 2025 with endogenous human cap-

ital, compared to 1.1 (1.1) percentage points in the standard model with a fixed human

capital profile.

We also document that the welfare consequences from the increase in wages and declines

in rates of return can be substantial, in the order of up to 0.8% (-3%) with constant

contribution (replacement) rates in lifetime consumption for newborns in 2005. Thus,

welfare gains for newborns only come along if social security contribution rates are held

constant at current levels. Households that have already accumulated assets, on the other

hand, lose from the decline in rates of return. Importantly, we find that our model with

exogenous human capital overstates these losses by 50− 70%.

However we have operated in a frictionless environment where all endogenous human cap-

ital adjustments are driven by relative price changes. If instead human capital formation

28See graphs in appendix 5.A for more details.
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is characterized by substantial market failures then these automatic adjustments will be

inhibited. In this case appropriate education and training policies in aging societies are an

important topic for future research and the policy agenda.
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5.A Appendix: General Remarks

This appendix contains additional that could is not included in the main text due to

space limitations. The appendix is organized as follows. Section 5.A.1 contains the formal

equilibrium definition, sections 5.A.2 to 5.A.5 provide more results on the fit of our model

to observed life-cycle profiles of hours and wages, the implied labor supply elasticities of

our model, additional results on predicted aggregate variables during the demographic

transition as well as the associated welfare effects and our model to predict the future

population structure.

5.A.1 Equilibrium

Denoting current period/age variables by x and next period/age variables by x′, a house-

hold of age j solves, at the beginning of period t, the maximization problem

V (a, h, t, j) = max
c,`,e,a′,h′

{u(c, 1− `− e) + ϕβV (a′, h′, t + 1, j + 1)} (5.7)

subject to wn
t,j = `t,jht,jwt(1− τt), (5.2), (5.3) and the constraints ` ∈ [0, 1), e ∈ [0, 1).

Definition 3. Given the exogenous population distribution and survival rates in all peri-
ods {{Nt,j, ϕt,j}J

j=0}T
t=0, an initial physical capital stock and an initial level of average hu-

man capital {K0, h̄0}, and an initial distribution of assets and human capital {at,0, ht,0}J
j=0,

a competitive equilibrium are sequences of individual variables
{{ct,j, `t,j, et,j, at+1,j+1, ht+1,j+1}J

j=0}T
t=0, sequences of aggregate variables {Lt, Kt+1, Yt}T

t=0,
government policies {ρt, τt}T

t=0, prices {wt, rt}T
t=0, and transfers {trt}T

t=0 such that

1. given prices, bequests and initial conditions, households solve their maximization
problem as described above,

2. interest rates and wages are paid their marginal products, i.e. wt = (1 − α) Yt

Lt
and

rt = α Yt

Kt
− δ,

3. per capita transfers are determined by

trt =

∑J
j=0 at,j(1− ϕt−1,j−1)Nt−1,j−1∑J

j=0 Nt,j

, (5.8)

4. government policies are such that the budget of the social security system is balanced
every period, i.e. equation (5.4) holds ∀t, and household pension income is given by
pt,j = ρt(1− τt)wth̄t,
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5. markets clear every period:

Lt =

jr−1∑
j=0

`t,jht,jNt,j (5.9a)

Kt+1 =
J∑

j=0

at+1,j+1Nt,j (5.9b)

Yt =
J∑

j=0

ct,jNt,j + Kt+1 − (1− δ)Kt. (5.9c)

Definition 4. A stationary equilibrium is a competitive equilibrium in which per capita
variables grow at the constant rate 1+ ḡA and aggregate variables grow at the constant rate
(1 + ḡA)(1 + n).

5.A.2 Backfitting

Figure 5.9 presents the fit of our model to cross-sectional hours data from McGrattan and

Rogerson (2004) for the years 1970, 1980, 1990 and 2000. We observe that our model does

a very good job in matching the data along this dimension from 1980 onwards.

A comparison between wage profiles observed in PSID data and the model is shown in

Figure 5.10. The fit of our model is very good in 1970 and 1980 and still broadly consistent

with the data in 1990 and 2000.

5.A.3 Labor Supply Elasticities

Since agents’ human capital investments do not only depend on changes in relative returns

but also on the extent of labor supply adjustments, realistic labor supply elasticities are

key for our analysis. First, we compute the Frisch (or λ-constant) elasticity of labor supply

that holds the marginal utility of wealth constant. We do so using the standard formula. In

the context of our model this means holding time investment into human capital formation

constant. It is then given by

εj
`,w =

1− φ(1− σ)

σ

1− `j − ej

`j

, (5.10)

see Browning, Hansen, and Heckman (1999) for a derivation. In our model the Frisch

elasticity depends on the amount of leisure and labor supply and therefore is age-dependent.
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Figure 5.9: Labor Supply
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(b) 1980
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(c) 1990
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(d) 2000
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Notes: Model and data profiles for labor supply. Hours data is normalized by 76 total hours.
Data Sources: Based on hours worked data from the Decennial Censuses obtained from Mc-
Grattan and Rogerson (2004).

As a consequence of the hump-shaped labor supply, the Frisch labor supply elasticity is

u-shaped over the life-cycle. During the years 1960-2000 we find that agents between age

25 and 55 have a labor supply elasticity between 0.7 and 1.0, while it is higher for younger

and older agents. For agents of age 30-50 (20-60) the average Frisch elasticity is around

0.86 (1.10), while across all agents the average is around 1.36. If we aggregate the u-shaped

micro Frisch elasticities to a macro Frisch elasticity that takes the differing initial labor

supply at different ages of life into account then this yields a number around 1.17 for the
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Figure 5.10: Wages

(a) 1970

20 25 30 35 40 45 50 55 60
0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

Age

W
ag

e

Wage Profile in 1970

 

 

model
data

(b) 1980
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(c) 1990
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(d) 2000
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Notes: Model and data profiles for wages. The data is a centered average of five subsequent
PSID samples.
Data Sources: Based on PSID wage data.

macro elasticity.

We also report a Frisch labor supply elasticity that allows time investment into human

capital formation to vary. In the spirit of the Frisch elasticity concept we hold the marginal

utility of human capital constant in addition to the marginal utility of wealth. This Frisch



148 CHAPTER 5. DEMOGRAPHIC CHANGE, HUMAN CAPITAL AND WELFARE

elasticity is then given by

ε̃j
`,w =

1− φ(1− σ)

σ

1− `j − ej

`j

+
1

1− ψ

ej

`j

. (5.11)

As usual, an interior solution is assumed here. If we use this concept then the labor

supply elasticity is higher because the second term is positive, i.e. agents invest less into

human capital formation when they face a higher wage today and the marginal utility

of human capital remains unchanged. Due to decreasing time investment into human

capital formation, the second term decreases over the life-cycle. The resulting labor supply

elasticity is still u-shaped over the life-cycle. Accordingly, during 1960-2000 for agents of

age 30-50 (20-60) the resulting average Frisch elasticity with varying time investment is

around 1.26 (1.79), while across all agents the average is around 2.47. Here, the macro

Frisch elasticity is around 1.97 when accounting for the differing initial labor supply across

agents of different age.

The numbers we find in our model are higher than the standard estimates reported in

the literature which are about 0.5, see e.g. Domeij and Flodén (2006), or even lower,

see table 3.3 in Browning, Hansen, and Heckman (1999). However, the data used by

the empirical literature usually refers to prime-age, full-time employed, male workers and

therefore captures mainly the intensive margin. As reported above, if we restrict attention

to a subset of agents in the model, e.g. those of age 30-50, that is most comparable to

the data set of a typical empirical study then the estimates are quite close. Furthermore,

the fact that the empirical literature focusses mostly on the intensive margin and neglects

much of the extensive margin suggests that the empirical estimates are a lower bound on

the true labor supply elasticity. Browning, Hansen, and Heckman (1999) also report that

empirical estimates for females can be much higher than for males. The u-shape of labor

supply elasticities in our model can be regarded as a good property because the extensive

margin is probably most relevant towards the beginning and the end of the life-cycle.

Another potential source of downward bias of the empirical literature results from not

considering endogenous human capital accumulation explicitly and thereby not correctly

accounting for the true opportunity cost of time. This was shown by Imai and Keane

(2004) in the context of a learning-by-doing model, so it is not directly applicable to our

model. But similar biases might also be present here. With regard to the Frisch elasticity
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with varying time investment reported above we are unaware of any attempt to estimate

the Frisch elasticity empirically in this model framework, which would mean to include the

marginal utility of human capital in the set of conditioning variables.

Lastly, as shown in figures 5.9 and 5.10 our model does a good job in replicating observed

life-cycle profiles of hours and wages. This is probably a more meaningful test of the ability

of our model to explain the relation between hours worked and wages than comparing a

single number that is very hard to identify empirically.

5.A.4 Transitional Dynamics

Aggregate Variables

The cumulative effect of the differences in growth rates on GDP per capita are displayed in

figure 5.11. In the endogenous human capital model with constant contribution (replace-

ment) rates, GDP per capita will increase by about 15% (10%) more until the year 2050

than without human capital adjustments.

Figure 5.11: Detrended GDP per Capita [Index, 2005=100]

(a) Constant Contribution Rate Scenario
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(b) Constant Replacement Rate Scenario
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Welfare Effects

Welfare of Future Generations

In our main text, we mostly analyze the welfare consequences for agents alive in 2005

and only briefly glance at the consequences for future generations. We here look at those.

Figure 5.12 shows the consumption equivalent variation for the two models and the two

social security scenarios. Agents born into a world with endogenous human capital and

constant contribution rates experience gains of lifetime utility throughout the entire pro-

jection window. Even if agents are allowed to invest into human capital, welfare losses of

future generation can be quite large if the contribution rates rise (“const ρ”). Notice again

that, in our comparison across models, differences are not large because the positive value

of human capital adjustments is offset by the more beneficial general equilibrium effects in

the exogenous human capital model. For this reason welfare gains for some cohorts may

even be slightly higher in the exogenous human capital model when the contribution rate

is held constant.

Figure 5.12: Consumption Equivalent Variation of Agents born in 2005-2050

(a) Constant Contribution Rate Scenario
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(b) Constant Replacement Rate Scenario
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Notes: Consumption equivalent variation (CEV) in the two social security scenarios.
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The Value of Human Capital Adjustments

From figure 5.8 of our main text, we observe that welfare gains (and losses) for newborns are

almost identical in the endogenous and exogenous human capital models. Detailed numbers

are provided in table 5.3. The explanation for these similar welfare consequences is as

follows: While the value of human capital adjustments is positive (see below), the increase

of wages and the associated decrease of interest rates is much stronger in the exogenous

human capital model. As newborn households generally benefit from the combined effects

of increasing wages and decreasing returns, welfare gains from these general equilibrium

effects are higher in the exogenous human capital model. This explains why the overall

welfare consequences for newborns across models do not differ much despite the fact that

the value of human capital adjustments is positive.

Table 5.3: CEV for Generation Born in 2005 [in %]

Human Capital
Endogenous Exogenous

Const. τ (τt = τ̄) 0.8% 0.9%
Const. ρ (ρt = ρ̄) -3.0% -3.0%

Notes: CEV: consumption equivalent variation.

Our comparison across models does not tell us anything about the value of a flexible ad-

justment of human capital investments from the individual perspective, that is, about

the value of human capital adjustments within the endogenous human capital model. To

accomplish this, we store from our computation of V̄ 2005
j (see above) the associated endoge-

nous time investment profile, {e2005
j }J

j=0. Next, we compute V̄ CE
t,j as the lifetime utility of

agents born at time t, age j facing constant 2005 survival rates, a sequence of equilibrium

prices, transfers and contribution (replacement) rates as documented for the endogenous

human capital model in the previous section, but keep the time investment profile fixed at

{e2005
j }J

j=0. In correspondence to what we did before, we then compute

gCE
t,j =

(
V̄ CE

t,j

V̄ 2005
j

) 1
φ(1−σ)

− 1, (5.12)

as the consumption equivalent variation with constant time investment decisions. The
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difference gt,j − gCE
t,j is then our measure of the value of endogenous human capital (where

gt,j is the consumption equivalent variation with flexible time investments as computed

above).29

The value of human capital adjustments is obviously positive and more or less mono-

tonically decreasing with age (because of decreasing time investments over the life-cycle).

Furthermore, for all future generations, the value of human capital adjustments can be

expected to increase slightly because of the increasing rate of return to human capital for-

mation. For sake of brevity, we do not report these results and confine ourselves to a com-

parison of the value of human capital adjustments of newborns in 2005, that is g156,0−gCE
156,0

across social security scenarios. As reported in table 5.4, the value of human capital ad-

justments in the “const. τ” scenario is 0.35% compared to only 0.07% in the “const. ρ”

scenario and thereby around 5 times higher.

Table 5.4: The Value of Human Capital Adjustments in 2005

Const. τ (τt = τ̄) 0.35%
Const. ρ (ρt = ρ̄) 0.07%

Notes: The value of human capital adjustments is computed as gt,j − gCE
t,j .

Role of the Pension System: Agents alive in 2005

We here provide a decomposition of our welfare results into the effects stemming from

changes in relative factor prices and transfers and those of changing pension payments.

To this end, figure 5.13 shows the welfare consequences of demographic change for agents

alive in 2005 from changing factor prices alone, keeping pension payments constant. We

here look only at our scenario with constant contribution rates. Table 5.5 presents the

maximum utility loss for agents alive in 2005 with constant pension payments. In the

exogenous human capital model, the maximum loss is about 2.6 percentage points (or

270%) higher than in the endogenous human capital model. Observe from table 5.2 of

29To see this more clearly, rewrite the welfare difference as gt,j − gCE
t,j =

(V̄ 2005
j )−

1
φ(1−σ)

(
V̄

1
φ(1−σ)

t,j − V̄ CE
1

φ(1−σ)

t,j

)
. The difference between the terms in the brackets is only

due to the fact that agents are (or are not) allowed to adjust their human capital.
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our main text that, in terms of the percentage point difference, this gain relative to the

exogenous human capital model is roughly 3.7 percentage points when pension payments

adjust. From comparing these numbers we can therefore conclude that roughly two thirds of

the overall gain of 3.7 percentage points can be attributed to differential changes in interest

rates, wages and accidental bequests and one third to the relative rise in social security

benefits which is caused by the additional human capital formation and the accompanying

increase of average wages.

Figure 5.13: CEV of Agents alive in 2005 with constant pensions: Constant Contribution
Rates
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Notes: Consumption equivalent variation (CEV) in the constant contribution rate scenario with
constant pension payments. “endog. h.c.”: endogenous human capital model with constant
pensions. “exog. h.c.”: exogenous human capital model with constant pensions.

Table 5.5: Maximum Utility Loss for Generations alive in 2005 with Constant Pensions

Human Capital
Endogenous Exogenous

Const. τ (τt = τ̄) -0.94% -3.47%
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Role of Survival Rates for Welfare Calculations

So far, we computed the welfare effects of demographic change by holding survival rates

constant. We here present welfare results for varying survival rates. Figures 5.14 and 5.15

present the results of these calculations. Table 5.6 presents the maximum utility loss for

agents alive in 2005 with changing survival rates. Comparing these results to those of

figures 5.8 and table 5.2 of our main text and those of figure 5.12, we can conclude that

holding survival rates constant or varying them according to the underlying demographic

projections does not affect our conclusions about the welfare consequences of demographic

change in our comparisons across various scenarios.

Figure 5.14: CEV of Agents alive in 2005 with changing Survival Rates

(a) Constant Contribution Rate Scenario
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(b) Constant Replacement Rate Scenario
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Notes: Consumption equivalent variation (CEV) calculated with changing survival rates in the
two social security scenarios.

Table 5.6: Maximum Utility Loss for Generations alive in 2005 with changing Survival
Rates

Human Capital
Endogenous Exogenous

Const. τ (τt = τ̄) -6.7% -10.2%
Const. ρ (ρt = ρ̄) -3.0% -4.9%
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Figure 5.15: CEV of Agents born in 2005-2050 with changing Survival Rates

(a) Constant Contribution Rate Scenario
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(b) Constant Replacement Rate Scenario
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Notes: Consumption equivalent variation (CEV) calculated with changing survival rates in the
two social security scenarios.

5.A.5 Demographic Data

Our demographic data are based on the Human Mortality Database (2008). Population

of age j in year t is determined by four factors: (i) an initial population distribution in

year 0, (ii) age and time specific mortality rates, (iii) age and time specific fertility rates

and (iv) age and time specific migration rates. We describe here how we model all of these

elements and then briefly compare results of our demographic predictions with those of

United Nations (2007).

Initial Population Distribution

We take as data the age and time specific population for the periods 1950− 2004.

Mortality Rates

Our mortality model is based on sex, age and time specific mortality rates. To simplify

notation, we suppress a separate index for sex. Using data from 1950− 2004, we apply the
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procedure developed by Lee and Carter (1992) to decompose mortality rates as

ln(1− ϕt,j) = aj + bjdt, (5.13)

where aj and bj are vectors of age-specific constants and dt is a time-specific index that

equally affects all age groups. We assume that the time-specific index, dt, evolves according

to a unit-root process with drift,

dt = χ + dt−1 + εt. (5.14)

The estimate of the drift term is χ̂ = −1.2891. We then predict mortality rates into the

future (until 2100) by holding âj, b̂j and χ̂ constant and setting εt = 0 for all t. For all

years beyond 2100 we hold survival rates constant at their respective year 2100 values.

Figure 5.16 shows the corresponding path of life expectancy at birth.

Figure 5.16: Life Expectancy at Birth
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Notes: Own predictions of life-expectancy at birth based on Human Mortality Database (2008).
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Fertility Rates

Fertility in our model is age and time specific. For our predictions, we assume that

age-specific fertility rates are constant at their respective year 2004 values for all peri-

ods 2005, . . . , 2100. For periods after 2100 we assume that the number of newborns is

constant. Since the U.S. reproduction rate is slightly above replacement levels this implies

that the total fertility rate is slightly decreasing each year from 2100 onwards until about

year 2200 when the population converges to a stationary distribution.

Population Dynamics

We use the estimated fertility and mortality data to forecast the future population dynam-

ics. The transition of the population is accordingly given by

Nt,j =





Nt−1,j−1ϕt−1,j−1 for j > 0
∑J

i=0 ft−1,iNt−1,i for j = 0,
(5.15)

where ft,j denotes age and time specific fertility rates. Population growth is then given by

nt = Nt+1

Nt
− 1, where Nt =

∑J
j=0 Nt,j is total population in t.

Migration

Migration is exogenous in our economic model. Setting migration to zero would lead

us to overestimate future decreases in the working age population ratio and to overstate

the increases in old-age dependency. We therefore restrict migration to ages j ≤ 15 so

that migration plays a similar role as fertility in our economic model. This simplifying

assumption allows us to treat newborns and immigrants alike. We compute aggregate

migration from United Nations (2007) and distribute age-specific migrants in each year

equally across all ages 0, . . . , 15.

Evaluation

Figures 5.17-5.18 display the predicted working age population and old-age dependency

ratios, according to our population model and according to United Nations (2007). Com-

pared to this benchmark, our population model is close to the UN but predicts a slightly
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stronger decrease of the working age population ratio and a correspondingly stronger in-

crease of the old-age dependency ratio until 2050.

Figure 5.17: Working Age Population Ratio
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Notes: Population model: own predictions of the working age population ratio based on Human
Mortality Database (2008). UN data: working age population ratio according to United Nations
(2007).
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Figure 5.18: Old Age Dependency Ratio
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Notes: Population model: own predictions of the old-age dependency ratio based on Human
Mortality Database (2008). UN data: old-age dependency ratio according to United Nations
(2007).
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5.B Appendix: Computational Details

5.B.1 Household Problem

To simplify the description of the solution of the household model for given prices (wage

and interest rate), transfers and social security payments, we focus on steady states and

therefore drop the time index t. Furthermore, we focus on a de-trended version of the

household problem in which all variables x are transformed to x̃ = x
A

where A is the

technology level growing at the exogenous rate g. To simplify notation, we do not denote

variables by the symbol ·̃ but assume that the transformation is understood. The de-

trended version of the household problem is then given by

V (a, h, j) = max
c,`,e,a′,h′

{
u(c, 1− `− e) + βs(1 + g)φ(1−σ)V (a′, h′, j + 1)

}

s.t.

a′ =
1

1 + g
((a + tr)(1 + r) + y − c)

y =





`hw(1− τ) if j < jr

p if j ≥ jr

h′ = g(h, e) (5.16)

` ∈ [0, 1], e ∈ [0, 1].

Here, g(h, e) is the human capital technology.

Let β̃ = βs(1 + g)φ(1−σ) be the transformation of the discount factor. Using the budget

constraints, now rewrite the above as

V (a, h, j) = max
c,`,e,a′,h′

{
u(c, 1− `− e) + β̃V

(
1

1 + g
((a + tr)(1 + r) + y − c) , g(h, e), j + 1

)}

s.t.

` ≥ 0.

where we have also replaced the bounded support of time investment and leisure with a

one-side constraint on ` because the upper constraints, ` = 1, respectively e = 1, and the

lower constraint, e = 0, are never binding due to Inada conditions on the utility function
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and the functional form of the human capital technology (see below). Denoting by µ`

the Lagrange multiplier on the inequality constraint for `, we can write the first-order

conditions as

c : uc − β̃
1

1 + g
Va′(a

′, h′; j + 1) = 0 (5.17a)

` : − u1−`−e + β̃hw(1− τ)
1

1 + g
Va′(a

′, h′, j + 1) + µ` = 0 (5.17b)

e : − u1−`−e + β̃geVh′(a
′, h′, j + 1) = 0 (5.17c)

and the envelope conditions read as

a : Va(a, h, j) = β̃
1 + r

1 + g
Va′(a

′, h′, j + 1) (5.18a)

h : Vh(a, h, j) = β̃

(
`w(1− τ)

1

1 + g
Va′(a

′, h′, j + 1) + ghVh′(a
′, h′, j + 1)

)
. (5.18b)

Note that for the retirement period, i.e. for j ≥ jr, equations (5.17b) and (5.17c) are

irrelevant and equation (5.18b) has to be replaced by

Vh(a, h, j) = β̃ghVh′(a
′, h′, j + 1).

From (5.17a) and (5.18a) we get

Va = (1 + r)uc (5.19)

and, using the above in (5.17a), the familiar inter-temporal Euler equation for consumption

follows as

uc = β̃
1 + r

1 + g
uc′ . (5.20)

From (5.17a) and (5.17b) we get the familiar intra-temporal Euler equation for leisure,

u1−`−e = hw(1− τ)uc + µ`. (5.21)

From the human capital technology (5.3) we further have

ge = ξψ(eh)ψ−1h (5.22a)

gh = (1− δh) + ξψ(eh)ψ−1e. (5.22b)
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We loop backwards in j from j = J − 1, . . . , 0 by taking an initial guess of [cJ , hJ ] as

given and by initializing Va′(·, J) = Vh′(·, J) = 0. During retirement, that is for all ages

j ≥ jr, our solution procedure is by standard backward shooting using the first-order

conditions. However, during the period of human capital formation, that is for all ages

j < jr, the first order conditions would not be sufficient if the problem is not a convex-

programming problem. And thus, our backward shooting algorithm will not necessarily

find the true solution. In fact this may be the case in human capital models such as ours

because the effective wage rate is endogenous (it depends on the human capital investment

decision). For a given initial guess [cJ , hJ ] we therefore first compute a solution via first-

order conditions and then, for each age j < jr, we check whether this is the unique solution.

As an additional check, we consider variations of initial guesses of [cJ , hJ ] on a large grid.

In all of our scenarios we never found any multiplicities.

The details of our steps are as follows:

1. In each j, hj+1, Va′(·, j + 1), Vh′(·, j + 1) are known.

2. Compute uc from (5.17a).

3. For j ≥ jr, compute hj from (5.3) by setting ej = `j = 0 and by taking hj+1 as given

and compute cj directly from equation (5.26) below.

4. For j < jr:

(a) Assume ` ∈ [0, 1) so that µ` = 0.

(b) Combine (5.3), (5.17b), (5.17c) and (5.22a) to compute hj as

hj =
1

1− δh


hj+1 − ξ

(
ξψ 1

1+g
Vh′(·, j + 1)

ω(1− τ)Va′(·, j + 1)

) ψ
1−ψ


 (5.23)

(c) Compute e from (5.3) as

ej = 1
hj

(
hj+1−hj(1−δh)

ξ

) 1
ψ

. (5.24)

(d) Calculate lcrj =
1−ej−`j

cj
, the leisure to consumption ratio from (5.21) as follows:
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From our functional form assumption on utility marginal utilities are given by

uc =
(
cφ(1− `− e)1−φ

)−σ
φcφ−1(1− `− e)1−φ

u1−`−e =
(
cφ(1− `− e)1−φ

)−σ
(1− φ)cφ(1− `− e)−φ

hence we get from (5.21) the familiar equation:

u1−`−e

uc

= hw(1− τ) =
1− φ

φ

c

1− `− e
,

and therefore:

lcrj =
1− ej − `j

cj

=
1− φ

φ

1

hw(1− τ)
. (5.25)

(e) Next compute cj as follows. Notice first that one may also write marginal utility

from consumption as

uc = φcφ(1−σ)−1(1− `− e)(1−σ)(1−φ). (5.26)

Using (5.25) in (5.26) we then get

uc = φcφ(1−σ)−1(lcr · c)(1−σ)(1−φ)

= φc−σ · lcr(1−σ)(1−φ). (5.27)

Since uc is given from (5.17a), we can now compute c as

cj =

(
ucj

φ · lcr(1−σ)(1−φ)
j

)− 1
σ

. (5.28)

(f) Given cj, ej compute labor, `j, as

`j = 1− lcrj · cj − ej.

(g) If `j < 0, set `j = 0 and iterate on hj as follows:

i. Guess hj

ii. Compute e as in step 4c.
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iii. Noticing that `j = 0, update cj from (5.26) as

c =

(
uc

φ(1− e)(1−σ)(1−φ)

) 1
φ(1−σ)−1

.

iv. Compute µ` from (5.17b) as

µ` = u1−`−e − β̃hw(1− τ)Va′(·, j + 1)

v. Finally, combining equations (5.17b), (5.17c) and (5.22a) gives the following

distance function f

f = e−
(

β̃ξψhψ 1
1+g

Vh′(·)
β̃ωh(1− τ)Va′(·) + µ`

) 1
1−ψ

, (5.29)

where e is given from step 4(g)ii. We solve for the root of f to get hj by a

non-linear solver iterating on steps 4(g)ii through 4(g)v until convergence.

(h) Check for uniqueness I : What is computed above is a candidate solution under

the assumption that the first-order conditions are necessary and sufficient. As a

consequence of potential non-convexities of our programming problem first-order

conditions may however not be sufficient and our procedure may therefore not

give the unique global optimum. To address this, we next compute solutions

on a grid and check if the previously computed candidate solution is indeed

the only solution to our system of equations. We do so as follows: For a grid

of ej ∈ [e = 0.0001, e = 0.9999], denote the equally spaced grid points by

ej,i, i = 1, . . . , ne and:

i. For each ej,i, compute the corresponding hj,i from (5.3).

ii. Compute the corresponding cj,i, `j,i by the analogous steps as described

above, again taking the case distinction for binding labor into account.

iii. Compute the corresponding value of the distance function in (5.29), fj,i.
30

If for all ej,i, i = 1, . . . , ne the value of the distance function, fj,i, changes signs

only once, then our previously computed candidate solution is indeed the unique

optimum. If it would change signs more than once, then there would be mul-

30Notice that if `j,i > 0, then we know from equation (5.23) that xj,i = {cj,i, `j,i, ej,i, hj,i} cannot be a
solution but we still proceed by computing fj,i.
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tiplicities and our first-order conditions would accordingly not be sufficient.

Setting ne = 200 we never found this to be the case in any of our scenarios.

5. Update as follows:

(a) Update Va using either (5.18a) or (5.19).

(b) Update Vh using (5.18b).

Next, loop forward on the human capital technology (5.3) for given h0 and {ej}J
j=0 to

compute an update of hJ denoted by hn
J . Compute the present discounted value of con-

sumption, PV C, and, using the already computed values {hn
j }J

j=0, compute the present

discounted value of income, PV I. Use the relationship

cn
0 = c0 · PV I

PV C
(5.30)

to form an update of initial consumption, cn
0 , and next use the Euler equations for con-

sumption to form an update of cJ , denoted as cn
J . Define the distance functions

g1(cJ , hJ) = cJ − cn
J (5.31a)

g2(cJ , hJ) = hJ − hn
J . (5.31b)

In our search for general equilibrium prices, constraints of the household model are occa-

sionally binding. Therefore, solution of the system of equations in (5.31) using Newton

based methods, e.g., Broyden’s method, is instable. We solve this problem by a nested

Brent algorithm, that is, we solve two nested univariate problems, an outer one for cJ and

an inner one for hJ .

Check for uniqueness II: Observe that our nested Brent algorithm assumes that the func-

tions in (5.31) exhibit a unique root. As we adjust starting values [cJ , hJ ] with each outer

loop iteration we thereby consider different points in a variable box of [cJ , hJ ] as starting

values. For all of these combinations our procedure always converged. To systematically

check whether we also always converge to the unique optimum, we fix, after convergence

of the household problem, a large box around the previously computed [cJ , hJ ]. Precisely,

we choose as boundaries for this box ±50% of the solutions in the respective dimensions.

For these alternative starting values we then check whether there is an additional solution

to the system of equations (5.31). We never detected any such multiplicities.
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5.B.2 The Aggregate Model

For a given r× 1 vector ~Ψ of structural model parameters, we first solve for an “artificial”

initial steady state in period t = 0 which gives initial distributions of assets and human

capital. We thereby presume that households assume prices to remain constant for all

periods t ∈ {0, . . . , T} and are then surprised by the actual price changes induced by the

transitional dynamics. Next, we solve for the final steady state of our model which is

reached in period T and supported by our demographic projections, see appendix 5.A.5.

For both steady states, we solve for the equilibrium of the aggregate model by iterating on

the m×1 steady state vector ~Pss = [p1, . . . , pm]′. p1 is the capital intensity, p2 are transfers

(as a fraction of wages), p3 are social security contribution (or replacement) rates and p4 is

the average human capital stock. Notice that all elements of ~Pss are constant in the steady

state.

Solution for the steady states of the model involves the following steps:

1. In iteration q for a guess of ~P q
ss solve the household problem.

2. Update variables in ~Pss as follows:

(a) Aggregate across households to get aggregate assets and aggregate labor supply

to form an update of the capital intensity, pn
1 .

(b) Calculate an update of bequests to get pn
2 .

(c) Using the update of labor supply, update social security contribution (or re-

placement) rates to get pn
3 .

(d) Use labor supply and human capital decisions to form an update of the average

human capital stock, pn
4 .

3. Collect the updated variables in ~P n
ss and notice that ~P n

ss = H(~Pss) where H is a

vector-valued non-linear function.

4. Define the root-finding problem G(~Pss) = ~Pss − H(~Pss) and iterate on ~Pss until

convergence. We use Broyden’s method to solve the problem and denote the final

approximate Jacobi matrix by Bss.
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Next, we solve for the transitional dynamics by the following steps:

1. Use the steady state solutions to form a linear interpolation to get the starting

values for the m(T − 2) × 1 vector of equilibrium prices, ~P = [~p′1, . . . , ~p
′
m]′, where

pi, i = 1, . . . , m are vectors of length (T − 2)× 1.

2. In iteration q for guess ~P q solve the household problem. We do so by iterating

backwards in time for t = T − 1, . . . , 2 to get the decision rules and forward for

t = 2, . . . , T − 1 for aggregation.

3. Update variables as in the steady state solutions and denote by ~̃P = H(~P ) the

m(T − 2)× 1 vector of updated variables.

4. Define the root-finding problem as G(~P ) = ~P − H(~P ). Since T is large, this prob-

lem is substantially larger than the steady state root-finding problem and we use

the Gauss-Seidel-Quasi-Newton algorithm suggested in Ludwig (2007) to form and

update guesses of an approximate Jacobi matrix of the system of m(T −2) non-linear

equations. We initialize these loops by using a scaled up version of Bss.

5.B.3 Calibration of Structural Model Parameters

We split the r × 1 vector of structural model parameters, ~Ψ, as ~Ψ =
[
(~Ψe)′, (~Ψf )′

]′
. ~Ψf

is a vector of predetermined (fixed) parameters, whereas the e× 1 vector ~Ψe is estimated

by minimum distance (unconditional matching of moments using e moment conditions).

Denote by

ut(~Ψ
e) = yt − f(~Ψe) for t = 0, . . . , T0 (5.32)

the GMM error as the distance between data, yt, and model simulated (predicted) values,

f(~Ψe).

Under the assumption that the model is correctly specified, the restrictions on the GMM

error can be written as

E[ut(~Ψ
e
0)] = 0, (5.33)
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where Ψ̃e
0 denotes the vector of true values. Denote sample averages of ut as

gT0(~Ψ
e) ≡ 1

T0 + 1

T0∑
t=0

ut(~Ψ
e). (5.34)

We estimate the elements of ~Ψe by setting these sample averages to zero (up to some

tolerance level).

In our economic model, only two parameters are pre-determined and we therefore have

that

~Ψf = [σ, h0]
′ . (5.35)

The vector ~Ψe is given by

~Ψe =
[
g, α, δ, β, φ, ψ, ξ, δh

]′
. (5.36)

We estimate the structural model parameters using data from various sources for the period

1960, ..., 2004, hence T0 = 44. The parameters ~Ψe
1 = [g, α]′ are directly determined using

NIPA data on GDP, fixed assets, wages and labor supply. The remaining structural model

parameters, ~Ψe
2 = [δ, β, φ, ψ, ξ, δh]′ are estimated by simulation. Our calibration targets

are summarized in table 5.7.

Table 5.7: Calibration Targets

Parameter Target Moment
~Ψf

σ predetermined parameter
h0 predetermined parameter
~Ψe

1

gA growth rate of Solow residual 0.018
α share of wage income 0.33
~Ψe

2

δ investment output ratio 0.2
β capital output ratio 2.8
φ average hours worked 0.33
ψ, ξ, δh coefficients of wage polynomial (from PSID)

Determining the subset of parameters ~Ψe
2 along the transition is a computationally complex

problem that we translate into an equivalent simple problem. Point of departure of our
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procedure is the insight that calibrating the model for a steady state is easy and fast.

However, simulated steady state moments may differ quite substantially from simulated

averages along the transition even when the steady state is chosen to lie in the middle of

the calibration period, in our case year 1980. We therefore proceed as follows:

1. Initialization: Choose a vector of scaling factors, ~sf , of length e2 that appropriately

scales the steady state calibration targets (see below).

2. Calibrate the model in some steady state year, e.g., 1980, by solving the system of

equations
ȳe

2,i

sfi

− f e,ss
2,i (~Ψ) (5.37)

for all i = 1, . . . , e2 to get ~̂Ψe
2. Here, ȳe

2,i is the average of moment i in the data for

the calibration period (1960-2004), e.g., the investment-output ratio for i = 1.

3. For the estimated parameter vector, ~̂Ψe
2, solve the model along the transition.

4. Compute the relevant simulated moments for the transition, f e
2 (~Ψ).

5. Update the vector of scaling vectors as

sfi =
f e

2,i(~Ψ)

f e,ss
2,i (~Ψ)

(5.38)

for all i = 1, . . . , e2.

6. Continue with step 2 until convergence on scaling factors (fixed point problem).

We thereby translate a complex root-finding problem into a combination of a simple root-

finding problem (steady state calibration) and a fixed point iteration on scaling factors.

Since scaling factors are relatively insensitive to Ψe
2, convergence is fast and robust. The

resulting scaling factors range from 0.94 to 1.29 which means that differences between sim-

ulated moments in the artificial steady state year (1980) and averages during the transition

are large (up to 30%). This also implies that calibrating the model in some artificial steady

year only would lead to significantly biased estimates of structural model parameters.
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Kögel, T., and A. Prskawetz (2001): “Agricultural Productivity Growth and Escape

from the Malthusian Trap,” Journal of Economic Growth, 6, 337–357.

Kremer, M. (1993): “Population Growth and Technological Change: One Million B.C.

to 1990,” Quarterly Journal of Economics, 108(3), 681–716.
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Lagerlöf, N.-P. (2006): “The Galor-Weil model revisited: A quantitative exercise,”

Review of Economic Dynamics, (9), 116–142.

Lau, M. I., and P. Poutvaara (2006): “Social Security Incentives and Human Capital

Investments,” Finnish Economic Papers, 19(1), 16–24.

Lebergott, S. (1964): Manpower in Economic Growth: The American Record Since

1800. McGraw-Hill Book Company, New York.

Lee, R. D., and L. Carter (1992): “Modeling and Forecasting the Time Series of U.S.,”

Journal of the American Statistical Association, 87, 655–671.

Lehr, C. S. (2009): “Evidence on the Demographic Transition,” The Review of Economics

and Statistics, 91(4), 871–887.

Lord, W. (1989): “The Transition from Payroll to Consumption Receipts with Endoge-

nous Human Capital,” Journal of Public Economics, 38(1), 53–73.



180 BIBLIOGRAPHY

Lucas, R. E. (1988): “On the Mechanics of Economic Development,” Journal of Monetary

Economics, 22, 3–42.

Ludwig, A. (2007): “The Gauss-Seidel-Quasi-Newton Method: A Hybrid Algorithm for

Solving Dynamic Economic Models,” Journal of Economic Dynamics and Control, 31(5),

1610–1632.
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