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Non-technical summary

We investigate consumer welfare in transalpine freight transport using micro-data on in-
dividual route choice, tackling two core questions. First, to what extent does the way we
model unobserved heterogeneity matter for welfare estimates in discrete choice models?
Second, what is the loss in consumer surplus per year from shutting down a transalpine
road infrastructure such as the Mont Blanc tunnel? Closing this tunnel has been proposed
in the political debate following several fatal road accidents in large alpine tunnels. The
most severe accident, in the Mont Blanc in 1999, led to a full closure of the tunnel for a
period of 3 years.

We model route choice as a discrete choice among a number of mutually exclusive alter-
natives. Due to our rich data, we can flexibly model unobserved heterogeneity of decision
makers in their valuation of money and time. Decision makers may be heterogenous for
a number of reasons. For example, the value of alternatives may depend on the weight or
type of commodity a truck is transporting. These are examples for observable heterogene-
ity which are easily controlled for. However, the value of money and time is also likely to
depend on unobservable truck characteristics. These could be en route pick-ups of goods,
special logistic needs, or truck drivers’ personal tastes that favor one route over another.
Modeling such unobserved heterogeneity in the discrete choice framework has been at the
heart of research analyzing economic choices during the last two decades. Only recently,
researchers have started asking how the way we model unobserved heterogeneity affects
policy-relevant measures of consumer welfare.

We contribute to this literature by applying a recently proposed flexible nonparametric
estimator of unobserved heterogeneity to a random coefficients logit model and inves-
tigating the impact of parametric assumptions on a measure of consumer welfare. In a
nutshell, the idea of the estimator is to approximate the true underlying taste distribution
by a finite grid in the preference space. To our knowledge, we are the first to apply this
estimator to real-world data in a static discrete choice model with random coefficients.
To identify the underlying structural parameters, we use a large scale individual choice
data set from the 2004 Cross-Alpine Freight Transport survey. We exploit exogenous
variation in travel cost and time arising from the fixed geographic locations of origin,
destination, and alpine crossing points. While endogeneity concerns are less important
with individual-level data, we discuss several potential sources of endogeneity bias such
as congestion or weather conditions.

We find that parametric assumptions and the dimensionality of modeled unobserved het-
erogeneity have a significant impact on welfare results. Our nonparametric estimates
predict economically significantly higher annual losses in user surplus due to the Mont-
Blanc tunnel closure. The latter implies a loss of e5.39 millions and the parametric
random coefficients logit model a loss of e2.97 millions in specifications where both price
and time are assumed to have random coefficients. With one random coefficient, the
nonparametric estimate is almost double that of the parametric random coefficients logit
estimate, e7.09 millions versus e3.62 millions. Compared to the logit with fixed coeffi-
cients and the nonparametric estimates, both parametric random coefficient specifications
underestimate the loss in consumer surplus.



Das Wichtigste in Kürze

Die Alpen stellen europäische Transportplaner vor große Herausforderungen. Dieses
Nadelöhr zu überkommen ist nur über umständliche Alpenpässe möglich, oder durch
Strassen- und Eisenbahntunnels, die teuer zu betreiben und nur anhand sehr grosser In-
vestitionen zu bauen sind. Im Mittelpunkt vieler Diskussionen steht seit geraumer Zeit die
Sicherheit des Strassengüterverkehrs und Politikmassnahmen die zu ihrer Verbesserung
beitragen. Im Vordergrund steht meist die Förderung des Wechsels des Gütertransit-
verkehrs von der Strasse auf die Schiene. Insbesondere zwischen Italien und Frankreich
findet dieser Wechsel jedoch nach wie vor nur begrenzt statt. Gleichzeitig kosteten wieder-
holte schwere Unfälle in den grossen Alpentunnels – Mont Blanc (1999), Tauern (1999),
Gotthard (2001), Fréjus (2005) – zahlreiche Menschenleben und führten zu substantiellen
Schliessungen einzelner Tunnels. Der Mont-Blanc Tunnel blieb nach dem Unfall für 3
Jahre geschlossen.

In dieser Studie untersuchen wir die jährlichen Wohlfahrtsverluste einer solchen Schlies-
sung. Dabei berücksichtigen wir insbesondere die Modellierung unbeobachtbarer Hetero-
genität in einem Modell der transalpinen Routenwahl von Güterlastkraftwagen. Letztere
können sich aus verschiedenen Gründen in ihrer Preis- und Zeitkostensensitivität unter-
scheiden. Zum Einen spielen Art und Gewicht der transportierten Ladung eine Rolle.
Hierbei handelt es sich um beobachtbare Heterogenität, für die leicht kontrolliert werden
kann. Zum Anderen ist anzunehmen, dass sich Transporte auch durch spezielle logistische
sowie routenplanerische Eigenheiten oder auch persönliche Präferenzen einzelner LKW-
Fahrer unterscheiden. Diese Merkmale sind für uns nicht beobachtbar. Die Modellierung
solch unbeobachtbarer Heterogenität war und ist in der wirtschaftswissenschaftlichen Lit-
eratur von zentraler Bedeutung. Dagegen wurden bisher die Konsequenzen verschiedener
Ansätze bezüglich politik-relevanter Masse, wie die Konsumentenrente, kaum thema-
tisiert.

Der Beitrag dieser Studie ist die Anwendung eines kürzlich vorgeschlagenen nicht-
parametrischen Schätzers unbeobachtbarer Heterogenität im Rahmen des random coeffi-
cient logit Modells und der Vergleich der implizierten Konsumentenrenteschätzungen mit
solchen, die auf gängigen parametrischen Methoden basieren. Des Weiteren quantifizieren
wir die direkten jährlichen Wohlfahrtsverluste einer Schliessung des Mont-Blanc Tunnels
für den Strassengüterverkehr. Hierfür verwenden wir einen umfassenden Datensatz in-
dividueller Routenentscheidungen aus der Cross-Alpine Freight Transport Erhebung im
Jahr 2004.

Wir finden ökonomisch signifikante Unterschiede zwischen Wohlfahrtsschätzungen, die auf
unterschiedlichen parametrischen Annahmen über unbeobachtbare Heterogenität basieren.
Der jährliche Verlust an Konsumentenrente durch eine Schliessung des Mont-Blanc Tun-
nels, der durch unsere nicht-parametrischen Schätzungen vorhergesagt wird, ist deutlich
höher als die aus parametrischen Schätzungen folgenden Ergebnisse. Während aus er-
steren jährliche Verluste vone5.39 bise7.09 Millionen resultieren, ergeben die Schätzungen
aus dem parametrischen random coefficients logit Modell Verluste von e2.97 bis e3.62
Millionen.
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1 Introduction

In devising informed policy measures, reliable estimates of welfare implications
for affected individuals and firms are crucial. In many applied settings, decision
makers face a set of mutually exclusive options. To evaluate, for example, changes
in choice sets due to product entry/exit or changes in product characteristics in
the discrete choice framework, the Hicksian compensating variation, derived by
Small and Rosen (1981), has been used extensively in applied work. Prominent
examples that estimate welfare implications using discrete choice models are Tra-
jtenberg (1989), on the introduction of CT scanners, Goolsbee and Petrin (2002),
on Satellite TV in the US, and Petrin (2004), on the introduction of the Mini-
van in the US automotive market. Much progress has been made in identifying
and providing flexible ways of modeling unobserved consumer heterogeneity. The
current workhorse model is the random coefficients, or mixed, multinomial logit
model introduced by Boyd and Mellman (1980) and Cardell and Dunbar (1980).
McFadden and Train (2000) have shown that it can approximate any random
utility model arbitrarily well if the researcher knows the correct distribution of
random coefficients a priori. Just as the above examples, most applied work has
imposed parametric distributions on the coefficients over which individuals are
assumed to differ.1

In this paper, we provide insights into the impact of distributional assump-
tions in modeling unobserved heterogeneity on welfare estimates. If the researcher
aims to estimate consumer surplus, we expect an adequate representation of the
true underlying distribution of tastes to be important. To investigate this expec-
tation further, we consider alternative distributional assumptions in a transalpine
route choice setup. We employ revealed preference data from a large-scale trans-
port survey in 2004 and analyze the implications of a transport policy measure
which has been debated in recent years: the closure of the Mont Blanc tunnel to
freight traffic. In particular, we consider the choice of road tunnels by transalpine
freight traffic, where individual decision makers face a set of mutually exclusive
options. We proceed by estimating three discrete choice model specifications.
First, the simple fixed coefficient logit model. Second, the parametric random
coefficients logit model. Third, the nonparametric estimator of preference distri-
butions recently proposed by Bajari et al. (2007, 2010), henceforth BFKR. For
each specification, we estimate the loss in consumer surplus caused by a change
in choice sets and compare the results. To our knowledge, we are the first to ap-
ply the BFKR estimator to real-world data in a random coefficients logit setting.
Many applications have estimated welfare effects but we are not aware of many
studies exploring the role of unobserved heterogeneity in this context. A notable
exception are Hynes et al. (2008), who compare welfare implications of a random
coefficients logit model and a latent class model of kayakers’ destination choices of

1Standard choices have been the normal and the log-normal distributions.
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whitewater sites in Ireland. They find no significant differences in welfare results
from both models.

The Alps are Europe’s highest and most extensive mountain range running
from Mediterranean France to southern Austria. With its extreme geography,
the alpine region not only forms a natural frontier between Italy and central
Europe, but provides the unique gateway for ground transport between south-
eastern European regions (and beyond) and central and northern Europe. Due
to the limited number of crossing points, the Alps are a natural bottleneck at
the core of European economic activity. After the introduction of the European
single market, the opening of eastern Europe and the corresponding enlargement
of commercial relations within the European Free Trade Association (EFTA),
transalpine freight traffic has become not only an important topic in European
politics but a key component of transport infrastructure planning. Mountainous
road infrastructure exhibits elevated risks for its users, among others, due to its
reliance on long underground passages. Tragic displays of this fact have been
the accidents in the Mont Blanc tunnel in 1999, the Tauern tunnel in 1999, the
Gotthard tunnel in 2001, and the Frejus tunnel in 2005. The most severe of these
four accidents, in the Mont Blanc tunnel, cost 39 lives and lead to a full closure
of the tunnel for three years.

These events have brought about policy initiatives in various forms. For
the alpine regions, additional investment in security measures at tunnels and
formulating the objective of shifting freight to rail and maritime transport have
been particular examples.2 Prady and Ullrich (2010) find limited modal shift for
freight traffic in their evaluation of a proposed rail tunnel connecting Lyon and
Turin. Proposed safety measures have reached as far as the closure of certain road
tunnels to freight traffic.3 Quantifying the short-term monetary loss incurred by
the freight transport sector from the closure of a given tunnel is of interest to
inform policy decisions for two main reasons. First, quantifying the monetary
consequences of a potential closure for its users are at the core of any cost-benefit
analysis. Second, the burden caused by unintended closures due to accidents
must be known when assessing the monetary benefits of investment in safety
measures. There are few studies evaluating the accidental or deliberate closure of
transport infrastructure. One exception are Bilotkach et al. (2010) who exploit
the collapse of a freeway interchange in the San Francisco Bay Area to analyze
sensitivity of pricing behavior to demand shocks. In practice, removing transport
infrastructure is not as exotic a discussion as one may think. In New York City,
A recent debate has been ignited by the potential closure of an Expressway in
the Bronx (see Dolnick, 2010).

To investigate the impact of distributional assumptions on welfare implica-

2See, for example, European Commission (2001, 2006) and Andrews (2001).
3See European Parliament (2001), and articles in the LA times (http://articles.

latimes.com/2002/mar/10/news/mn-32111) and the BBC (http://news.bbc.co.uk/2/hi/
europe/1863245.stm).
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tions, we estimate the monetary relevance of alpine road infrastructure to road
freight crossing the Western Alpine corridor. In particular, we estimate the mon-
etary loss incurred by the freight transport sector due to a hypothetical closure
of the Mont Blanc tunnel. We analyze a hypothetical closure since we cannot
use the actual exogenous event in 1999 for identification as our data lacks within-
year time information. Our welfare analysis should be seen in a narrow sense.
Total welfare encompasses not only direct changes in consumer surplus but also
changes in external effects, e.g. caused by congestion or nuisances to other trav-
elers, as well as macroeconomic variables such as regional development or trade.
Particularly in the alpine regions, estimating the total social cost would need to
include both the direct costs to users (changes in consumer surplus) and external
effects on non-freight users (congestion, for example) and non-users of the infras-
tructure such as inhabitants of the respective alpine valleys. The monetary cost
of injuries, property damage and business interruption should be more directly
quantifiable while macro-economic effects on economic activity and trade are dif-
ficult to identify. Here we focus on direct short-term effects likely to be central
to the current political discussion.

We find that both parametric assumptions and the dimensionality of mod-
eled unobserved heterogeneity have a significant impact on welfare results. Our
BFKR estimates predict economically significantly higher annual losses in user
surplus due to the Mont Blanc tunnel closure. While the latter implies a loss of
e5.39 millions, the parametric random coefficients logit model predicts a loss of
e2.97 millions in specifications where both price and time are assumed to have
random coefficients. With one random coefficient, the BFKR estimate is almost
double that of the parametric random coefficients logit estimate, e7.09 millions
versus e3.62 millions. Compared to the fixed coefficients logit and the BFKR
estimates, both parametric random coefficient specifications underestimate the
loss in consumer surplus.

The next section presents our data on freight traffic in the alpine region. Sec-
tion 3 presents the empirical framework and discusses distributional assumptions
and identification. We present our estimation results in Section 4, discuss the
implied substitution pattern and welfare results in Section 5, and conclude in
Section 6.

2 Alpine Freight Traffic

Our data is a large-scale cross-section from the Cross-Alpine Freight Transport
(CAFT) survey done every 5 years.4 Each respective year, trucks are stopped
and surveyed at all possible Alpine crossings between Vintimille and Wechsel (see
Figure 2). The survey is a joint initiative by the Austrian, French, and Swiss gov-
ernments to produce a representative sample of transalpine freight transport. In

4The available waves are 1994, 1999, and 2004 with data quality increasing in each wave.
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2004, Germany and Italy joined the effort emphasizing the political relevance of
collecting high quality data on transalpine transport activity. The data set com-
prises detailed information on each truck’s origin and destination regions. Regions
are defined at the NUTS3 level, corresponding, for example, to departments in
France, districts in Germany, counties in the US. The data further include trans-
ported commodity classes, weight, vehicle characteristics, region of registration,
intermediary boarder crossings, traffic direction, and more. We merge this data
with shortest distances on a direct line, data on average gas and other operating
costs, road and tunnel tolls, as well as with GDP data on origin and destination
regions.5 Our sample includes all French-Italian passages and all Swiss-Italian
passages (see Appendix and Figure 2).

Table 1: Alternative-specific characteristics

Mean
Standard
Deviation

Alternative characteristics
Price 362.7 148.1
Distance 853.2 413.5
Time 18.4 11.6

User (truck) characteristics
Weight of goods (tons) 12.8 8.8
Per capita GDP at destination 30,788.1 11,299.7

Notes: The CAFT 2004 survey includes 285,656 observations
and 35,707 choice situations on French and Swiss passages.

In Table 1 we present descriptive statistics of our variables. We compute price
based on an average per kilometer cost estimated by the French Comité National
Routier on an annual basis6 and Alpine tunnel fees. For Swiss passages, we
include the Heavy Vehicle Fee which is based on ton-kilometers in Switzerland.
These fees provide exogenous variation at the level of individual trucks since they
are set by the regulator, irrespective of congestion or other choice-specific char-
acteristics which we cannot observe. We compute distance in kilometers from
origin to destination regions via each respective Alpine passage using Vincenty

5We also collected data on daily weather conditions during the sample period. Unfortu-
nately, only the French part of the sample includes observation dates and we cannot use this
information. Since mainly small and high-altitude passes are negatively affected by weather, we
expect the route fixed effects to capture weather effects. To some extent, we expect the same
with respect to traffic volume and congestion, even though traffic data provided by the German
automobile club (ADAC) does not show significant traffic jams during the sample period.

6See http://www.cnr.fr/grilles_couts/e-docs/00/00/00/26/document_grille_

cout.phtml.
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direct geographic distance calculations implemented in Stata. We also make use
of information on which border-crossings were used along the way.7 Prato (2009)
provides an up-to-date survey on the challenges in working with route choice data
and points out that using shortest point-to-point distances increases similarity
within the choice set. Thus, we expect substitutability to be over-estimated and
our consumer surplus estimates to be lower bounds. We observe that the large
majority of trucks choose the alternative with the minimal price and time. This
is intuitive and we therefore expect a negative impact of these variables on choice
probabilities in our estimation results. We do observe, however, that a small pro-
portion does not choose the price- and time-minimizing alternative. We can think
of two main reasons for this observation. First, there may be a trade-off between
time and price logistics firms face and there are some who prefer a longer route to
incurring the significant tunnel fees. Second, it could be the result of unobserved
heterogeneity related to logistic route choice. In order to reduce fixed costs, logis-
tic firms may choose to combine several loads into one truck. As a consequence,
some observations may not be pure Origin-Destination relationships but only the
start and end points of a more complex delivery route. Furthermore, depending
on the specific good and, for example, their service contract, we expect trucks to
have (unobserved) heterogenous preferences for saving money and time. Our time
variable is based on typical truck speed and including regular compulsory stops
by European law, conditional on the number of drivers per truck. We include
per capita GDP of the destination region as a user characteristic to proxy for the
value of a vehicle’s charge, in addition to the type of commodity. The mean in
our sample is closest to per capita GDP in the Netherlands in 2004.

3 Empirical Framework

We estimate the loss in user surplus from a hypothetical closure of a major
transalpine road tunnel. For example, consider the problem faced by a firm
located north of the Alps - say, in France - delivering its product to a downstream
producer located south of the Alps - say, in Italy. By our definition, the firm
faces eight mutually exclusive route options. While rail could be an option for
the firm, we restrict our analysis to road freight. Even though we are forced to
this restriction by our data,8 modal choice typically depends heavily on the type
of commodities and logistic specificities and is, thus, largely predetermined in our
choice situations. We further motivate excluding modal choice for our setup in

7Our attempts to obtain shortest-link route distances from routing service providers such
as Google Maps or Navteq failed, unfortunately. Thus, while we have a decent long-distance
approximation based on manual checks on a small sub-sample of routes, we need to assume
that no significant bias results from ignoring the fact that roads are not straight lines.

8For the same reason, our analysis is short-term in that we employ a static choice model
and do not allow for market growth or decline through an outside option.
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Figure 1: The Alpine corridor. Source: AlpInfo, Federal Office of Transport,
Swiss Confederation.

Section 3.3.
We adopt a discrete choice framework9 where the choice set is defined by

eight west-alpine crossings and the decision makers are individual freight trucks.
In particular, user i maximizes the benefit to be obtained from a delivery trip
through the Alps and faces j mutually exclusive routes. Thus, the objective
function is

Uij = αi(ri − pi,j) + xi,jβi + ξj + εij, (1)

where ri is the firm’s revenue from the transaction, pi,j the price for alternative
j and xi,j route characteristics, which both may contain interaction terms with
individual characteristics, ξj is a constant unobserved route characteristic, and εij
is assumed to be independently and identically type I extreme value distributed.
We have detailed user-specific information, such as GDP in destination and origin
regions, commodity class, goods weight, vehicle type, location of vehicle owner-
ship, and so on, allowing us to control for a range of observed user characteristics.
However, we expect there are still user characteristics we cannot observe, such as
en route pick-ups of goods, truck drivers’ personal tastes, or special logistic needs
that favor one route over another. It is common practice to model such unob-
served heterogeneity by assuming parametric distributions for the relevant taste
parameters. However, when estimating welfare measures, too strict assumptions

9See Train (2009), McFadden and Train (2000), and Hensher and Green (2003) for in-depth
treatments.
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will lead to biased results. Cherchi and Polak (2005) warn that assuming com-
mon mixing distributions such as the normal and log-normal may bias welfare
estimations due to an inadequate representation of the true underlying distri-
bution of tastes. Hensher and Greene (2003) give similar warnings and offer
a range of simple ways for investigating sensible distributional assumptions.10

BFKR propose a mixtures estimator that is nonparametric in the distribution
of random coefficients. We have no good prior as to how our taste parameters
should be distributed. We further would like to avoid assuming distributions
that force portions of decision makers to have negative and unreasonably large
coefficients, such as the normal distribution. Hence, we estimate both parametric
and nonparametric specifications11 and compare the welfare results.

3.1 Parametric Specification

We first model user heterogeneity such that taste parameters take the following
form: (

αi
βi

)
=

(
α
β

)
+ ΠDi + Σνi

where
νi ∼ N(0, I) (2)

and Di is a vector of user specific characteristics in our data. User i chooses route j
if and only if U(Di, νi, pi,j, xi,j, ξj; θ) ≥ U(Di, νi, pi,l, xi,l, ξl; θ) for l = 1, ..., J . The
individual choice probability for route j follows:

Pij =

∫
θ

exp(xi,jβi − pi,jαi + ξj)∑
l exp(xi,lβi − pi,lαi + ξl)

f(α)f(β)d(α)d(β) (3)

where we assume f(α) and f(β) to be normal distributions as defined in
Equation 2. We estimate the parameters θ by maximum simulated likelihood.
In the multinomial logit with fixed coefficients, α and β are constant across
individuals so that the index i is dropped.

10One straight-forward proposition is a jack-knife approach where the researcher estimates
fixed coefficient logit models on sub-samples and evaluates the distributions of estimated coef-
ficients expected to have a non-degenerate distribution.

11We also coded the EM algorithm proposed by Train (2008) but encountered severe conver-
gence problems, a common problem with EM algorithms. Fosgerau and Hess (2009) use the
method of sieves to increase flexibility. They investigate the ability to recover taste distribu-
tions using two flexible approaches: In the first, they add a series expansion to a continuous
base distribution using Legendre Polynomials. In the second, they employ discrete mixtures of
normal distributions.
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3.2 Nonparametric Specification

BFKR propose a general nonparametric sieve estimator of unobserved hetero-
geneity in a wide range of economic models. Their motivating example for the
random coefficients logit model lends directly to our analysis. The idea is that
the researcher has some prior over the dimensionality and range of random co-
efficients, that is, of unobserved heterogeneity in the utility function. Assume
there are r = 1, ..., R preference types in the population. We then specify a grid
over the assumed support of random coefficients β. At each grid point, that is
for each type r, we compute the predicted logit choice probabilities at xi,j

gj(xi,j, β
r) =

exp
(
x′i,jβ

r
)∑J

j=1 exp
(
x′i,jβ

r
) .

Treating these predicted probabilities as data, a simple linear regression with
R predicted choice probabilities as regressors yields estimates of R weights. The
left-hand side variable in this regression, yi,j, holds the observed choices. The
estimated weights are probability mass points representing the probability of
observing type r in the population. Constraining probability masses to the unit
interval and their sum to be equal to one, we obtain a discrete approximation to
the true distribution of random coefficients. The resulting implementation is a
linear inequality constrained OLS estimator.

One drawback of this simple model is the researcher’s need to specify the
support region where the random coefficients lie. If the latter is unknown, BFKR
propose a location scale model that allows to both estimate the location of the
support region and its scale. We have no good prior of the support region and
thus proceed with the location scale model. A further practical advantage of the
latter is the straight-forward inclusion of fixed coefficients. This is an open issue
in the linear estimator, given that, by definition, fixed coefficients are nonlinear
parameters in the logit model. In the location scale model, the weights θ still
enter linearly. However, the location and scale parameters for our grid and the
fixed coefficients enter non-linearly, analogously to the simple logit model. The
nonlinear estimator solves the constrained least squares problem

min
a,b,θ

1

NJ

N∑
i=1

J∑
j=1

(
yi,j −

R∑
r=1

θrgj(xi,j, a+ bβr)

)2

subject to
R∑
r=1

θr = 1 and θr ≥ 0,

(4)

where a = (a1, ..., aK)′ is a set of location parameters, b = (b1, ..., bK) a set of

8



scale parameters, θr the weight for the parameter vector βr = (βr1 , ..., β
r
K) , and

gj(xi,j, a+ bβr) =
exp

(∑K
k=1 xk,i,j(ak + bkβ

r
k)
)

∑J
j=1 exp

(∑K
k=1 xk,i,j(ak + bkβrk)

) .
We estimate scale parameters bK for random coefficients and set bK = 0 for

coefficients assumed to be fixed. We could allow all coefficients to be random but,
as common with nonparametric estimators, we reach computational limits fast
when increasing the number of random coefficients. Having reasonable starting
values is important in nonlinear least squares estimation. We use the fixed coef-
ficient logit estimates for the nonlinear parameters and 1

R
for θr. Experimenting

with starting values of the nonlinear parameters, we find our results are very ro-
bust to large variations in starting values. We still need to specify R grid points
in the unit interval. To do so, we use the Modified Latin Hypercube Sampling
method proposed by Hess et al. (2006). Compared to Halton methods, the latter
has the advantage of avoiding undesired correlation patterns across dimensions
while providing more uniform coverage in each dimension, and being simpler to
implement.

3.3 Identification

Given their regulated nature, tolls for individual tunnels and long-distance routes
vary little across time and routes. Thus, to identify demand patterns, we use
individual-level variation from users’ geographic dispersion across Europe. In
particular, users’ origin and destination locations vary relative to the locations of
alpine passages. This leads to variation both in route characteristics and individ-
ual choices. As road and tunnel tolls are not set strategically, we are confident
they are not correlated with the error term. There are two factors that may
affect both route choice and travel time. First, congestion may cause short-term
deviation to an alternative route. On French passages, however, congestion is not
a relevant problem. The Alpine Traffic Observatory, established by the European
Commission and the Swiss government in 2007, finds that the Frejus and Mont
Blanc tunnels rarely suffer from congestion due to heavy-duty vehicles.12 Second,
severe weather conditions may cause deviation to alternative routes while increas-
ing travel time. Unfortunately, we cannot fully correct for this potential problem
as only parts of our data have information on the date of the choice situation.13

Once we are willing to assume that truck drivers form long-term expectations on

12See, for example, the Observatory’s executive summary, page 6, at http://ec.europa.eu/
transport/road/doc/executive_summary_alpine_observatory_en.pdf.

13We did collect daily weather data for the different passages but were unable to obtain
survey dates for the Swiss part of the data. This applies to congestion data analogously.
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potential obstacles for each route alternative,14 we argue it is plausible to believe
that the alternative fixed effects will capture much, if not all, potential bias.

Implicitly, we assume that we observe each individual’s entire choice set and
that there is no outside good. While in the long run freight expeditors may switch
to other modes such as air, rail, and sea or even decide not to ship, in the short
run this is very unlikely. In the first two columns of Table 4, showing market
shares of alternatives before and after the Mont Blanc tunnel closure in 1999,
we cannot observe a remarkable shift in market shares towards any of the three
rail passages in the short-run.15 We also do not observe a downward shift in
monthly tons transported after the closure, suggesting that traffic fully deviated
to alternative road passages. We interpret this as evidence that modal shift is
not yet as relevant as it may be elsewhere. That interpretation is in line with
anecdotal evidence on freight transport in France and Italy, citing specific logistic
needs, the importance of geographical location, and freight terminals being major
bottlenecks as just a few of many remaining problems preventing increased modal
shift.16 While an important issue in general, we conclude that observing only one
mode is a minor drawback in our analysis.

Bajari et al. (2009) prove nonparametric identification of the distribution of
random coefficients by exploiting the logit distributional assumptions on εij and
without relying on large support (as compared to, for example, Berry and Haile,
2010) and monotonicity restrictions. The latter makes their identification result
particularly relevant for applied work. A limitation is that their proof is valid
only for continuous regressors. Both regressors, for which we assume random
coefficients, are continuous.

4 Estimation results

We report results for three models of heterogeneity. These are the simple logit,
the random coefficients logit with a normal distribution assumption, and the
nonparametric BFKR estimator of the random coefficient distribution.17 For
conciseness, we will refer to these as Logit, RC Logit, and BFKR, respectively.
In the Logit specification, observed heterogeneity in preferences can be identified
by interacting individual characteristics with route characteristics. Unobserved
heterogeneity is limited to the extreme value error term, which is assumed to be
independent of route characteristics. The Logit specification serves as an easy

14Deviating from a planned route is often prohibitive in terms of cost and time.
15Due to missing time information at the individual level, our data do not allow direct

estimation of the switch to rail and alternative roads caused by the Mont Blanc tunnel closure.
16See Andrews (2001), Lange and Ruffini (2007), and Peter Brett Associates LLP (2010).
17We run our parametric estimations using the mixlogit Stata command by Hole (2007). For

nonparametric estimations, inference, and compensating variation, Matlab code is available
from the authors on request.
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reference point lending well to the investigation of a variety of utility specifica-
tions. It also provides reasonable starting values for the RC Logit and BFKR
models. In the latter two, we report two specifications with one and two random
coefficients, respectively. In the RC Logit, we assume random coefficients to be
normally distributed, which is by far the most common distribution assumption
in the literature employing random coefficients logit models. In the BFKR model,
we make no assumption on the form of preference distribution whatsoever but
assume that our discrete approximation is a valid representation of the true dis-
tribution. All specifications include price-GDP interactions, route fixed effects,
and route fixed effects interacted with the weight of the goods transported. We
further include route-commodity class fixed effects and time-commodity class in-
teraction terms as well as route fixed effects interacted with dummies indicating
traffic connecting Italy with regions west and north of the Alps to capture further
observed heterogeneity important to route choice.

Tables 2 reports estimations results with one random coefficient, Table 3 re-
ports results with two. Both tables show that the estimated coefficients have
signs as expected. In particular, price and time have negative signs. The co-
efficients of the interaction terms between weight of goods transported and the
alternative specific constants show that heavily loaded trucks are less likely to use
Swiss passages and the Montgenevre passage.18 This corresponds to our expec-
tation that the Montgenevre pass, having the highest elevation, is less attractive
to heavy vehicles likely due to increased fuel consumption and safety concerns on
steep slopes. In Switzerland, extra incentives are given for transiting heavy goods
vehicles to switch to rail on their passage through the Alps. While we account for
monetary incentives by including the extra fees in our price variable, the weight
interaction terms may capture further incentives we cannot observe in our data.

In Table 2, price coefficients are higher, in absolute terms, in the RC Logit
and BFKR specifications than in the Logit. Hence, not modeling unobserved
heterogeneity not only fails to account for the spread of preferences but also biases
the estimated means. The means and standard deviations of the price coefficient
are significant in both random coefficient specifications. Figure 4 shows a decent
Gaussian shape, confirming our parametric distribution assumption in the RC
Logit. Hence, we can be reasonably confident that unobserved heterogeneity
with respect to price plays an important role in our freight transport setting. In
Table 3, we allow individuals to have heterogenous (and potentially correlated)
preferences over both price and time. Interpreting the RC Logit result, where the
standard deviation of the time coefficient is not statistically different from zero,
we conclude the estimated distribution to be degenerate. In economic terms,
we may be tempted to conclude that there is no unobserved heterogeneity in
preferences over time. Observing the BFKR estimates in Figure 4, however, we

18The base category both for the alternative specific constants and for the interaction term
with good weights is alternative 5, the Mediterranean passage at Vintimille.
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Table 2: Results with one random coefficient (1)

Logit
RC Logit

BFKR
Mean SD

Price -8.478*** -9.298*** 1.523*** See

Figure 4
(.118) (.149) (.079)

Time -.922*** -.869*** -.854***
(.230) (.232) (.040)

Price × GDPdestination 1.153*** 1.533*** 1.096***
(.294) (.317) (.001)

Mont Blanc 4.214*** 4.291*** 3.969***
(.280) (.297) (.243)

×Weight .008 .010 .014***
(.006) (.006) (.001)

Frejus 5.144*** 5.256*** 4.488***
(.234) (.254) (.318)

×Weight .020*** .023*** .026***
(.005) (.006) (.002)

Montgenevre -5.843*** -6.657*** -4.886***
(.552) (.657) (.291)

×Weight -.031*** -.036*** -.024***
(.009) (.010) (.005)

Gd St-Bernard .154 .178 .632***
(.310) (.332) (.065)

×Weight -.058*** -.063*** -.072***
(.009) (.010) (.004)

Simplon -.095 -.113 .428***
(.310) (.330) (.089)

×Weight -.047*** -.051*** -.085***
(.010) (.010) (.004)

St. Gotthard 3.576*** 3.730*** 4.128***
(.293) (.312) (.196)

×Weight -.073*** -.076*** -.096***
(.007) (.007) (.007)

San Bernadino 2.654*** 2.789*** 3.282***
(.297) (.316) (.102)

×Weight -.073*** -.075*** -.090***
(.008) (.008) (.005)

Likelihood ratio 105342.50 130.60
Prob > χ2 .000 .000
Pseudo R2 .71

Notes: All specifications include route dummy-commodity class and time-commodity
class interaction terms as well as route dummies interacted with dummies indicating
traffic connecting Italy with regions west and north of the Alps, respectively. The refer-
ence route is the Mediterranean crossing at Vintimille. Standard errors are reported in
parenthesis, choice situation-clustered robust standard errors in BFKR estimation. 500
Halton draws used for simulations in parametric random coefficients logit estimations.
285,656 observations.
*** p< 0.01, ** p< 0.05, * p < 0.1
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clearly see significant heterogeneity both in preferences over price and time. A
priori, it is not obvious which distribution to assume. It is difficult to proceed in
an ad-hoc fashion by assuming various readily available parametric distributions
and using the ones yielding significant parameters estimates. There is no clear
rule which and how many parametric distributions to investigate before ‘giving
up’ and coming to the conclusion that here may be no unobserved heterogeneity
in the data.
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Figure 2: Distribution of price coefficient from BFKR estimation in Table 2.
Regimes R=274.

The main assumption in BFKR is that their sieve estimator is a discrete ap-
proximation of the true distribution. Therefore, the number of grid points is a key
parameter the researcher needs to define. It is limited by sample size and com-
puter memory. With 8GB RAM and our sample size of 35,707 choice situations,
we are able to set R=274 with one and R=256 with two random coefficients,
that is R = N

130
whereas BFKR propose R = N

40
in their Monte Carlo experi-

ment. Furthermore, to use parametric methods for computing standard errors
of the BFKR estimates, we need to assume that the grid points r are the true
types that generated the data. Unless we can specify an almost infinite number
of r, estimated probability mass points and thus their standard errors can only
be approximations to the truth. We compute 95% confidence intervals, following
BFKR and Gallant (1975), using standard errors from unconstrained nonlinear
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Table 3: Results with two correlated random coefficients (2)

Logit
RC Logit

BFKR
Mean SD

Price -8.478*** -9.244*** 1.273***
See

Figure 4

(.118) (.148) (.078)

Time -.922*** -1.504*** .271
(.230) (.266) (.291)

Price × GDPdestination 1.153*** 1.520*** 1.160***
(.294) (.322) (.001)

Mont Blanc 4.214*** 4.276*** 5.913***
(.280) (.293) (.316)

×Weight .008 .010* .018***
(.006) (.006) (.002)

Frejus 5.144*** 5.254*** 6.753***
(.234) (.248) (.403)

×Weight .020*** .023*** .032***
(.005) (.005) (.003)

Montgenevre -5.843*** -6.638*** -5.318***
(.552) (.665) (.319)

×Weight -.031*** -.035*** -.013***
(.009) (.010) (.003)

Gd St-Bernard .154 .237 1.553***
(.310) (.332) (.067)

×Weight -.058*** -.065*** -.071***
(.009) (.010) (.004)

Simplon -.095 -.064 1.485***
(.310) (.330) (.089)

×Weight -.047*** -.053*** -.092***
(.010) (.011) (.004)

St. Gotthard 3.576*** 3.818*** 5.434***
(.293) (.310) (.225)

×Weight -.073*** -.077*** -.109***
(.007) (.007) (.008)

San Bernadino 2.654*** 2.872*** 4.509***
(.297) (.314) (.115)

×Weight -.073*** -.076*** -.102***
(.008) (.008) (.006)

Likelihood ratio 105342.50 262.77
Prob > χ2 .000 .000
Pseudo R2 .71

Notes: All specifications include route dummy-commodity class and time-commodity
class interaction terms as well as route dummies interacted with dummies indicating
traffic connecting Italy with regions west and north of the Alps, respectively. The refer-
ence route is the Mediterranean crossing at Vintimille. Standard errors are reported in
parenthesis, choice situation-clustered robust standard errors in BFKR estimation. 500
Halton draws used for simulations in parametric random coefficients logit estimations.
285,656 observations.
*** p< 0.01, ** p< 0.05, * p < 0.1
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Figure 3: Distribution of price and time coefficients from BFKR estimation in
Table 3. Regimes R=256.

regression and clustering by individual choice situations. Confidence intervals

are then defined as CI95 =
[
θ̂r − 1.96 · SE

(
θ̂runc

)
, θ̂r + 1.96 · SE

(
θ̂runc

)]
∩ [0, 1],

where SE =
√
ν̂ and

ν̂ =
NP

NP − 1

(
SSE

N − p
(J ′J)−1

(
M∑
k=1

(∑
j∈Gk

u′j
∑
j∈Gk

uj

))
SSE

N − p
(J ′J)−1

)
.

However, as do BFKR, we find these confidence intervals to be very conservative
and, thus, too uninformative to report. From our experience with estimations
using varying grids sizes, this problem seems to get worse as the number of grid
points R increases and θ are estimated closer to the zero boundary. Bootstrapping
is infeasible as the nonlinear least squares routine consumes significant computing
time with the size of our sample and parameter vector.
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5 Counterfactual Analysis

5.1 Diversion patterns

To verify the structural quality of our estimates, we compare counterfactual shares
with those observed after the Mont Blanc tunnel closure in 1999. Road tolls and
tunnel fees were not adjusted as a consequence of the closure and there is currently
no road congestion pricing on the relevant road network. Thus, we assume there
is no strategic pricing and prices remain fixed after a hypothetical future closure
of a tunnel. In Table 4, we present the substitution due to a hypothetical closure
of the Mont Blanc tunnel in 2004 predicted by the BFKR model with two random
coefficients. We compute market shares in the table based on tons transported.

Table 4: Passage Market Shares (%) - Counterfactual closure in 2004

1999 2004

Open Closed Open Closed

Road

Mont Blanc 21.79 10.14
Frejus 27.68 44.54 32.51 35.87

Montgenevre 1.09 3.38 0.67 2.31
Vintimille 21.26 24.36 33.76 33.31

Gd St-Bernard 1.19 1.99
Simplon 1.25 1.54

St. Gotthard 18.07 21.59
San Bernadino 2.41 3.38

Rail
Basel (CH) 10.61 10.84

Modane (Frejus) 15.42 15.21
Vintimille 2.16 1.67

Monthly tonnage (1000s) 4,455 4,619 4,038

Notes: 2004 Predictions are simulated using specification (2) of the BFKR model.
We use 1000 quasi-random draws to compute choice probabilities.

Table 4 shows that most traffic diverted to the nearby Frejus tunnel when the
Mont Blanc option dropped out in 1999. The traffic share at the Mont Blanc
dropped from 21.79% to 0%, causing an increase of the traffic share at the Frejus
from 27.68% to 44.54%. We do not have monthly data for Swiss passages in 1999,
limiting comparison to the French passages. A further limitation arises from
the fact that, between 1999 and 2004, Switzerland gradually increased weight
restrictions for heavy duty transit. For a large share of trucks, Swiss passages
were not an available option in 1999 while, in 2004, these limitations were virtually
gone. Since 1999, freight traffic through the Mont Blanc tunnel has been reduced
significantly, its share being 10.14% in 2004. Our counterfactual results show
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the largest shifts from the Mont Blanc tunnel to the Frejus and St. Gotthard
passages. While 10.14% traffic share need to be compensated by the remaining
passages, the traffic share at the Frejus is predicted to increase from 32.51% to
35.87% and at the St. Gotthard from 18.07% to 21.59%. We interpret the similar
tendencies on French passages throughout 1999 and 2004 to confirm the fit of the
BFKR model but stress the limited comparability of these market shares due to
institutional and observational differences.

5.2 Consumer surplus

We analyze a hypothetical closure of the Mont Blanc tunnel in 2004 and com-
pute users’ compensating variations, that is, the amount of money one would
have to give to infrastructure users to maintain their ex ante utility levels. We
define the ex ante situation as the reference point, as suggested by Trajtenberg
(1989). In the multinomial logit model, abstracting from observed heterogeneity
for notational simplicity, computation of the compensating variation is straight
forward and given by the difference of the ex post and ex ante values of the
logsum measure with no unobserved taste heterogeneity:

CV =
1

α

{
ln
∑
j

exp
(
β′xprej

)
− ln

∑
j

exp
(
β′xpostj

)}
(5)

As the random coefficients logit model introduces unobserved taste hetero-
geneity, each individual now may have her own valuation of route characteristics.
We integrate over the estimated mixing distributions by simulation and compute
the mean and total compensating variation. This is where the how we model
heterogeneity comes in. With random coefficients, any distributional assump-
tion has a direct impact on the consumer surplus measure which, following Train
(1998) and von Haefen (2003), we compute as:

CVi =

∫
1

αi

{
ln
∑
j

exp
(
β′xprei,j

)
− ln

∑
j

exp
(
β′xposti,j

)}
f (α | θpre) d(α) (6)

Equations 5 and 6 imply the assumption that the marginal utility of income,
αi, is independent of income. That is, indirect utility is additive and linear in
income. While this is a restrictive assumption, Train (2009) points out, on page
57, that it needs to hold only ‘over the range of implicit income changes that are
considered by the policy’. This means that if individual compensating variations
are low relative to income, which is arguably true for our case, the assump-
tion does not need to hold in general but only for the considered small range.
Maintaining this assumption significantly simplifies our computations. We solve
Equation 6 for each individual via simulation by sampling from the estimated
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mixing distributions. To obtain the population mean and total change in user
benefits, we weight the estimated sample means of compensating variations using
the expansion factor in the CAFT 2004 data.

Table 5: Welfare effects of tunnel closure

Compensating
variation
(in 2004 Euros)

Logit RC Logit BFKR

(1) (2) (1) (2)

Sample mean 1.11 .84 .69 1.80 1.39
Population mean 1.28 .96 .79 1.88 1.43
Population total (Mio) 4.83 3.62 2.97 7.09 5.39

Notes: We use 1000 quasi-random draws to solve the integral in Equation 6.

In Table 5, we report the compensating variation for closing the Mont Blanc
tunnel as the unweighted and weighted means over the sampled individuals, and
as the weighted sum yielding the population total. The BFKR estimates imply
economically significantly higher losses in user surplus. With two random coeffi-
cients, the BFKR estimate implies a loss of e5.39 Mio and the RC Logit a loss
of e2.97 Mio. With one random coefficient, the BFKR estimate is almost double
that of the RC Logit estimate, e7.09 Mio versus e3.62 Mio. Compared to both
the Logit and the BFKR estimates, both RC Logit specifications underestimate
the loss in consumer surplus. We admit that a more informative comparison
would include confidence intervals for these estimates. These can be computed
using the delta method. However, they rely on the estimated variances of θ̂r.
Since there is currently no method to estimate correct confidence intervals, for
the reasons elaborated in Section 4, we are not able to provide these inference
results for our welfare estimates. The large relative differences between the RC
Logit and BFKR results strongly suggest, however, that modeling unobserved
heterogeneity in a more flexible way can lead to severely differing economic con-
clusions.

6 Conclusion

Estimating welfare implications of specific policy measures is relevant in many
economic applications. The discrete choice framework provides a convenient way
to estimate the compensating variation, for example for changes in choice sets
or in product characteristics, when individuals face a set of mutually exclusive
choices. It is well known, that modeling heterogeneity is key to understanding
preferences and hence to quantify consumer surplus. While the random coeffi-
cients logit model offers a highly flexible way to approximate any random utility
model arbitrarily well, it hinges on the assumption that the researcher knows
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the correct distribution of random coefficients a priori. While estimating welfare
effects is a common exercise in many applications, we are not aware of many stud-
ies exploring the role of unobserved heterogeneity in this context. We provide
insights into the importance of how unobserved heterogeneity is modeled when
estimating welfare effects of policy measures. We do so by comparing consumer
surplus estimates from a recently proposed nonparametric estimator of prefer-
ence distributions and the standard parametric random coefficients logit model.
To our knowledge, we are the first to apply the BFKR estimator to real-world
data in a random coefficients logit setting. Employing revealed preference data,
we analyze the implications of a much debated transport policy measure: the
closure of the alpine Mont Blanc tunnel to freight traffic.

We estimate the annual loss in user benefits ranges from 2.97 to 3.62 million
Euros in the RC Logit model, while our BFKR estimates imply annual losses
ranging from 5.39 to 7.09 million Euros. Hence, in our analysis both parametric
assumptions and the dimensionality of modeled unobserved heterogeneity have
a significant impact on welfare results. We thus caution the exclusive use of
standard distributional assumptions in modeling heterogeneity and demonstrate
the simple implementation of the BFKR estimator.
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Appendix A Alpine passages

Our sample includes the following passages:

1. Mont Blanc tunnel

2. Frejus tunnel

3. Montgenevre pass

4. Vintimille expressway (along the Mediterranean coast)

5. Grand St-Bernard tunnel

6. Simplon pass

7. St. Gotthard tunnel

8. San Bernadino pass
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