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Abstract. Exploits that successfully attack computers are mostly based
on some form of shellcode, i.e., illegitimate code that is injected by the
attacker to take control of the system. Detecting and extracting such
code is the first step to detailed analysis of malware containing illegiti-
mate code. The amount and sophistication of modern malware calls for
automated mechanisms that perform such detection and extraction. In
this paper we present a novel generic and fully automatic approach to
detect the execution of illegitimate code and extract such code upon de-
tection. The basic idea of the approach is to flag critical memory pages
as non-executable and use a modified page fault handler to dump corre-
sponding memory pages. We present an implementation of the approach
for the Windows platform called CWXDetector . Evaluations using mali-
cious PDF documents as example show that CWXDetector produces no
false positives and has a similarly low false negative rate.

1 Introduction

1.1 Motivation

No matter what particular exploitation method or target is used, the ultimate
aim of an attacker is to perform malicious computation on the target system, i.e.,
to execute machine instructions whose type and order are under the complete
control of the attacker. Usually, malicious computation is caused by illegitimate
code, i.e., code that was not intended to be executed, neither by the developer
of the exploited process nor by the end-user of the system. Such code is usu-
ally injected into the target system using external data like network traffic or
application files.

As a countermeasure to this increasing threat, operating systems try to pre-
vent the execution of illegitimate code using techniques like Data Execution
Prevention (DEP) [14], which ensures that no code is executed from data pages,
and address space layout randomization (ASLR) [27]. However, prevention alone
does not generally help in the analysis of illegitimate code. Therefore, it is neces-
sary to develop mechanisms that detect and if possible extract illegitimate code
from malicious data.

In this work we present CWXDetector, a new tool for the analysis of malware
for the Windows operating system. CWXDetector follows a dynamic approach
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for detecting and extracting illegitimate code by instrumenting the memory man-
agement features of the operating system itself. Roughly speaking, the idea of
the approach is to mark critical memory pages as non-executable. This ensures
that upon execution of code in these regions the page fault handler of the operat-
ing system is called. This usually suffices to detect illegitimate code. However, to
extract illegitimate code, we modify the page fault handler so that the memory
page that caused the page fault gets dumped for later analysis.

Note that CWXDetector is not meant to protect a system, but to monitor
and analyze the execution of illegitimate code. Our system even disables some
security measures like DEP for that. Nevertheless, there are some similarities in
other preventive and analysis techniques that we now discuss.

1.2 Related Work

Preventive Measures A large body of related work mainly aims at the pre-
vention of malicious code execution, mostly following the reference monitor ap-
proach. Many such methods are directly integrated into contemporary compilers
and operating system [29]. Other methods restrict memory write operations or
control transfers. Kiriansky, Bruening and Amarasinghe [12] as well as Abadi
et al.[1] use code rewriting techniques to implement the monitoring. The main
difference to our work, is that those solutions terminate the monitored process
in the event of a security violation, and are not able to produce any further
analysis data. Furthermore, they all lack of capability to handle self-modifying
or dynamically created code and they are not able to handle specific types of
exploits (like SEH-related ones) under certain circumstances (e.g., if libraries are
involved that have the SafeSEH feature disabled).

Detection of Illegitimate Code The detection of illegitimate code is an ex-
tremely difficult problem today. Early attempts relied on static signatures [10],
but those had to be improved due to the heavy use of polymorphism, encryption
and other obfuscation methods. More enhanced methods try to detect certain
invariant parts of the shellcode, e.g., Akritidis et al. [2] search for the typical
“sled component” in such code. Others have used heuristics in combination with
dynamic analysis methods to detect illegitimate code. For example, machine
learning methods have been used to deal with the variable parts, e.g., Payer,
Teufl and Lamberger utilize a neural network [15] in combination with execution
chain evaluation. Polychronakis, Anagnostakis and Markatos [16] use emulation
to detect an ongoing decryption process which is typical for polymorphic shell-
code. Also Baecher and Koetter [3] use an emulated environment to identify
and isolate shellcode with the help of GetPC heuristics. Overall, and in contrast
to CWXDetector , these signature- or heuristics-based approaches are not fully
generic and have to be extended when new anti-detection measures of malicious
code come up.

It has been observed before that memory management can be used to detect
illegitimate code execution. For example, the PaX project [26] proposes several



different measures to implement non-executable memory — even on architec-
tures with no hardware support for that. Also hardware-DEP utilizes the no-
execute (NX) flag in the Windows page table to make particular memory pages
non-executable. However, and in contrast to our approach, these techniques do
not allow to extract illegitimate code since they totally block the execution of
illegitimate code.

Extraction of Illegitimate Code There exist several solutions aiming at
the extraction of illegitimate code, especially automated unpacking of malware.
These mechanisms usually interact deeply with the memory management of the
underlying operating system. In all cases those solutions try to detect the exe-
cution of memory regions which have been written to beforehand. OllyBone [25]
implements this by instrumenting the translation lookaside buffer. Since Olly-
Bone is a debugger-plugin, it imposes all the disadvantages of debugger-driven
malware analysis, e.g., its detectability. Another disadvantage that contrasts it
to our approach is that it is a semi-automated process, in which execution is
stopped at the first occurrence of malicious instructions and the human ana-
lyst has to continue with further extraction steps. Finally, it is not able to deal
with dynamically allocated memory regions (since it focuses on Windows PE
sections).

OmniUnpack [13] uses an approach similar to the PAGEEXEC method pro-
posed by PaX, i.e., the User/Supervisor page table flag is used to automatically
break on the execution of certain monitored pages. In order to decide whether
executed and previously written memory should be considered as malicious, an
external detector is used to scan unpacked memory for the existence of malicious
code. That detector, again, has to use signatures or heuristics that generate a
lot of false positives, especially if a JIT-compiler is involved. Finally, executed
memory is only considered if a critical system call is executed afterwards. Our
approach uses a more effective heuristic based on the concept of trusted callers
that results in much better detection results.

Renovo [11] runs the sample in an emulated environment (TEMU [21]) and
maintains a shadow memory to track written memory regions. Since this cannot
be done on a native system, the system cannot be realized without system-
emulation. Again, like with debuggers, this enables the monitored malware to
easily detect the synthetic environment.

1.3 Contributions

CWXDetector is a new dynamic approach for detecting and extracting illegit-
imate code. The power of the approach stems from its simplicity in using the
page fault handler of the operating system itself. Therefore, the challenge is to
evaluate its effectiveness in practice. This means to evaluate it for the Windows
platform of operating systems, since this platform is still the major target of ille-
gitimate code today. But since Windows is not an open source operating system,
we had to perform a lot of reverse engineering regarding the internal memory



management mechanisms of the Windows kernel [29]. Based on these insights,
we modified the kernel of a x86 Windows XP operating system by establish-
ing a custom page fault handler and intercepting some essential memory related
system functions.

We evaluated our approach by considering the task of detecting and extract-
ing illegitimate code in/from a particulary relevant class of application files,
namely those in Adobe’s portable document format (PDF) [17]. Our approach
proves to be very effective. We analyzed a set of 7278 malicious PDF documents
using a set of vulnerable versions of Adobe Reader and achieved a detection rate
of 93.2%. This can be regarded as a lower bound for our method since many
of the investigated PDF files appeared to be broken although they were flagged
as malicious by Antivirus products. The extracted shellcode data looks very
promising, but remains a topic for more sophisticated analysis in future work.
We also analyzed the same amount of benign PDF documents, resulting in a
(false positive) detection rate of 0%. Furthemore, our detection results compare
favorably to those of application specific detection tools like Wepawet [6], PDF
Examiner [28] and ADSandbox [8].

To summarize, the contributions of this paper are twofold:

– We present a generic and fully automatic approach to detect the execution
of illegitimate code and extract such code upon detection.

– We successfully evaluate our approach using malicious PDF documents as
example and show that we can improve state-of-the-art tools.

Obviously, our system is not meant to protect end consumer hosts, but its sole
purpose is to support malware analysis on dedicated analysis systems. It also has
to be emphasized that we are unable to detect malicious code which is embedded
in arbitrary data in general, but we solely are able to detect such code when it
gets executed.

To some extent our approach is similar to DEP [14], which totally disables
the execution of certain memory regions. This is accomplished by employing
the NX flags of the related page table entries in a similar way like we do it.
Nevertheless, there are big differences between DEP and our system: first we do
not completely prohibit the execution of illegitimate code, but we intentionally
allow it in order to get detailed analysis results. On the attempt to execute
non-executable memory, we dump the memory page that contains the code, and
then continue execution in order to obtain more information. Secondly, we do
not only take the type of memory into account when deciding which should
be monitored respectively executed, but we also check the initiator of memory
related modifications and allocations. As an effect we are able to correctly handle
cases in which malicious executable modules are mapped into memory, or when
DEP-conquering shellcode allocates regular executable memory.

Unfortunately, the existence of malicious computation does not always im-
ply the existence of illegitimate code. Therefore — and similar to DEP — our
approach has problems with novel exploitation techniques like return oriented
programming (ROP) [18] or JIT-spraying [5,19]. However, advanced attacks usu-
ally consist of multiple stages of which the first uses ROP/JIT-spraying to set



up a later stage comprising regular illegitimate code which then can be detected
and extracted using our method.

To some degree our system also constitutes a reference monitor, that is re-
stricted to monitor accesses to executable memory. In contrast to the inline so-
lutions proposed in the past [12,1], we do not modify the monitored application
itself, but the underlying operating system and incorporate hardware features
to perform the monitoring. This has several positive effects: it is much easier to
extract the executed memory, since we are already residing within the page fault
handler. Furthermore, we do not have any problems with dynamically created
or self modifying code. Finally, we do not have to manually track any control
transitions, i.e., some of the related work in this topic is unable to detect control
flow transitions that occur due to structured exception handling and not due to
a regular branch instruction.

1.4 Structure of this Paper

This paper is organized in the following way: Section 2 defines our attacker
model and some necessary terms. In Section 3 we describe our approach in
general, whereas Section 4 illustrates an implementation for the Windows XP
operating system. In Section 5 we explain how our system can be applied to the
analysis of malicious PDF documents and in Section 6 we present the results of
an experimental evaluation. Section 7 concludes this paper and gives topics for
future work.

2 Model and Definitions

In this section we specify our attacker model, define the term illegitimate code
and further concretize our two aims: the detection and extraction of executed
illegitimate code.

2.1 Attacker Model

In this work we assume a remote attacker that provides some malicious piece of
data in order to exploit a vulnerability in some handling application resulting in
the execution of shellcode. This data may have arbitrary form, e.g., a specially
crafted PDF document or a malicious input packet to some network application.

As mentioned above, we are aware of the threats posed by ROP [18] or JIT-
spraying [5,19] techniques, but nevertheless assume that an attack does not fully
consist of such code. To the best of our knowledge, we are not aware of any
documented instance of such a single staged full -ROP/JIT-sprayed attack in
the wild.

2.2 Illegitimate Code

We first define the counterpart of illegitimate code, namely legitimate code. For
this, we partition the files of a system into a set of trusted files and a set of



untrusted files. We assume that such a distinction is given, e.g., by defining all
files in a freshly installed system as trusted. Next we distinguish code portions
contained in trusted files into trusted functions and untrusted functions. Again
we assume such a distinction is given, e.g., by defining all standard memory
modification functions of the operating system as trusted and all others as un-
trusted. Then, legitimate code (LC) is code which is either contained in a trusted
(system or application) file or it is code that was dynamically created by any of
the trusted functions from one of those files.

We now define illegitimate code (ILC) as code that is not legitimate. Intu-
itively, ILC is code which would not be executed if the operating system and
the installed applications would function properly. In practice it is code that
is either injected by or constructed on behalf of an attacker by some malicious
piece of software or data. Therefore, ILC is similar to shellcode in its current
understanding.

2.3 Problem Statement

The aim of the system described in this work is to perform two tasks automati-
cally:

1. We wish to detect the execution of illegitimate code, and
2. to extract it, i.e., dump all relevant memory pages to disk, for a later in-depth

analysis.

3 Approach: Instrumenting the Page Fault Handler

In the following we describe our approach and how it can be applied to the
dynamic analysis of malware.

3.1 Enforcing an Invariant

Based on our attacker model, no matter what kind of exploit is used in an attack,
the resulting effect is always the execution of illegitimate code like we have
defined above. When the vulnerability is exploited, the control flow is redirected
to one of the following locations:

1. ILC on the stack (buffer overflow),
2. ILC in the heap (heap-spraying), or
3. ILC in a static data area (exploiting a static data buffer).

Throughout our approach, we establish and maintain the following invariant
condition:

All ILC resides in non-executable memory.

As an effect to this invariant, all execution attempts of ILC will result in the
invocation of the page fault handler of the operating system. By implement-
ing our own custom page fault handler, we are able to react on such attempts
appropriately.



3.2 Trusted Files and Functions

To establish the invariant, we need to identify the set of trusted files and func-
tions. For simplicity we trust all files which have been already existing when we
start our analysis, and distrust all files which were created or modified during
later system operation. To achieve this, we need to keep track of file manip-
ulation operations. Therefore it is necessary to intercept (“hook”) the system
service that is used to create files or open them with write-access.

For each trusted file we further define a set of trusted memory modification
functions, which contains all the functions which are allowed to dynamically
create executable memory or modify the protection settings of already existing
memory to being executable. The set of all such functions from all trusted files
is called trusted callers.

Fig. 1. Trusted Memory Modification Functions

Figure 1 illustrates our approach, showing an example with two trusted and
one untrusted file. While trusted file 1 contains two trusted memory modification
function, trusted file 2 only has one. The simplified version of the userspace
memory shows that all three files have been mapped into the virtual address
space. The memory related to the trusted files only contains trusted code, hence
constitutes LC memory, whereas that memory of the untrusted file may contain
illegitimate code. Furthermore, all mapped modules have allocated one dynamic
memory area, pointed to by the corresponding arrow. That area created by file



1 was created by a trusted caller and, hence, may contain legitimate executable
code. But the memory created by the untrusted caller from file 2 as well as the
region created by the untrusted file may contain ILC and, therefore, are marked
as ILC locations.

3.3 Memory Protection Modifications

Obviously it is also necessary to intercept attempts to modify the memory protec-
tion. This is realized by hooking critical system calls. Inside these hook functions
we enforce the following points to maintain our invariant:

– only trusted callers can allocate executable memory,
– only trusted callers can modify existing memory to being executable, and
– only trusted files can be mapped into executable memory.

All attempts that violate these rules are intercepted and the resulting memory
regions becomes non executable.

In summary, only trusted callers can create executable memory and only
trusted files can be loaded into executable memory. There is one exception: even
if a trusted caller tries to modify the memory protection, intervention may be
necessary under special circumstances: if the related target memory belongs to
a mapped trusted file and should become writable, the executable right has
to be removed. This enforces the W ⊕ X property [14]. In general, all legal
linkers should produce files which fulfill this requirement anyway. Nevertheless,
we enforce it on our own to also handle files securely which violate it by intent
or accident.

The realization of making memory non-executable strongly depends on the
underlying system architecture and also on the operating system. Many con-
temporary CPUs offer an execute disable (NX) protection flag on a page level.
Nevertheless, this feature is only used for valid page table entries (PTEs) and,
therefore, in most cases some additional OS memory objects may have to mod-
ified as well.

3.4 Custom Page Fault Handler

The heart of our detection method is the custom page fault handler, which reacts
on the attempt to execute memory regions which we have marked non-executable
beforehand. As described above, all necessary prerequisites are already done
when new memory is allocated or the protection of already existing one is tried
to be modified. Accordingly, the custom page fault handler only has to wait until
a protection-related page fault is triggered. In that event, it has to be checked
if the occurred page fault is really related to our system modifications. If so,
we have detected the execution of illegitimate code and, as a result, we dump
the related memory page to hard disk and create a log file entry. After that, the
related memory region is modified to being executable, such that the current and
all further execution attempts for this page will become successful. This is done



because we do not want to stop our analysis process once the first illegitimate
instruction is found. Finally, we resume the current process and wait for the next
fault.

4 Windows-based Implementation

In the following section we illustrate CWXDetector , which is the concrete im-
plementation of our approach for the x86 version of Windows XP. We have to
use the PAE kernel version of Windows, since only this one supports the NX
page table flag that we utilize to realize non executable memory. Although that
kernel version was originally intended to support physical memory that is larger
than 4 GB, it is nowadays used on all installations of the 32 bit Windows XP
version that have DEP enabled.

In summary, to realize our approach we need to

– define trusted files and trusted callers,
– implement hook functions for memory allocations and modifications,
– implement a custom page fault handler to detect and react on ILC execution,

and
– additionally modify essential system functions to support our approach.

Since Windows is not an open source operating system, a lot of reverse en-
gineering had to be performed previously, especially on the underlying memory
objects like VADs and PPTEs. The resulting findings are explained in detail in
an additional technical report [29].

4.1 Memory Functions Hooks

In order to ensure that only legitimate code resides in executable memory, we
redirect the calls of NtAllocateVirtualMemory, NtProtectVirtualMem-
ory and NtMapViewOfSection to custom hook functions in order to fulfill
the invariant from Section 3.1. On a lower level we realize non-executable mem-
ory by modifying the related memory structures, i.e., the execute disable (NX)
flag of the related page table entry as well as the VAD entry and the prototype
PTEs of the corresponding memory regions.

The hook of NtAllocateVirtualMemory first checks the caller and the
wanted memory protection. If the caller is not trusted, that protection value
is modified such that the allocated memory becomes not executable. Then the
original system service is invoked to actually perform the allocation operation.
All this happens transparently to the caller, i.e., no error result is returned in
case of a modified protection parameter.

The proceeding within the NtProtectVirtualMemory hook is rather sim-
ilar. Again, for all untrusted callers the protection parameter is manipulated to
being non-executable. Since this system service can be used to modify the pro-
tection settings of already loaded modules, we also have to intercept when it is
invoked by trusted callers. In that case it is first checked if the affected module



belongs to a trusted file or not. If it is not trusted, the protection value again is
modified to non-executable. The reason behind this is to block the execution of
untrusted files.

The hook function of NtMapViewOfSection ensures that after mapping
a file into address space, all containing memory fulfills our requirement. Since
we cannot simply modify a call parameter like within the previously mentioned
hook functions, but have to operate directly on the VAD [29] respectively PPTE
entries, the hook first calls the original system function. After that, different
actions are performed, depending on the fact if a data or an image file was
mapped.

For image files the effective page protection is taken from the related PPTE.
Therefore, our hook enumerates all executable subsections of the related segment
object and manipulates their PPTEs. In case of trusted files, only those PPTEs
are modified which also indicate writable memory. In such case the PPTEs re-
main writable, but are no longer executable. Otherwise it would be possible for
an attacker to modify the instructions which are contained in memory that is as-
sociated with legitimate code. By removing the execution property, an attacker
is still able to modify it, but we detect the approach to ultimately execute the
overwritten instructions. In general, a PE file should never contain executable
sections which are also writable, but due to the procedure described above we
are able to detect those as well.

If a data file is mapped, the situation is a bit different. For those kind of
files the effective protection setting is taken from the associated VAD entry.
When the related memory is actually accessed, the PTEs are created and their
protection settings are directly taken from the VAD. Therefore, again we check
if the section belongs to a trusted file or not. If it belongs to an untrusted file,
the VAD is modified to non-executable. If it is trusted, the VAD protection is
only modified if it is writable and executable.

4.2 Checking the Caller

In order to restrict the memory creation and modification attempts of executable
memory, we need to check the particular initiator of such operations against the
set of trusted callers. For that we have to walk the usermode call stack to a
certain depth and inspect the saved return addresses. Since our hooks functions
reside in the kernel, we therefore need to gather information about the current
usermode context, from which the kernel call has been performed. This kind of
information is stored within the so called trap frame, which can be accessed from
kernel mode via the KTHREAD structure that exists for each thread.

Figure 2 shows an example to illustrate the relationship between the user-
mode stack layout and trapframe values, when performing a system call. The
native API functions KiFastSystemCall and NtCreateFile use frame pointer
omission (FPO), which means that they do not set up a full stack frame. There-
fore, the saved frame pointer EBP cannot be used to locate their saved return
addresses on the stack. Nevertheless, those saved RET addresses can be ob-
tained from the raw usermode stack by inspecting the slots pointed to by the



Fig. 2. Stack Frames and Trap Frame

stack pointer ESP and ESP+4. As shown, the first usermode function with a full
stackframe can be reached via the saved EBP. All further calling functions can
then be enumerated by using the saved EBP values, as long as they do not per-
form FPO. In that case we would have to involve additional information about
the function’s prototype and local variable area in order to further enumerate
the stack frames. However, all trusted callers we are using in our experiments
set up a full stack frame.

4.3 Custom Page Fault Handler

We hook the Windows system function MmAccessFault to implement our
custom page fault handler. The code of this hook function is rather short, since
all necessary prerequisites are already done by the other hook functions. First,
we call the original page fault handler to actually resolve the fault, e.g., validate
the related PTE. Then we check if the fault was caused by an execute operation
and if the faulting address resides in user space. If so, we further verify if the
target address is valid, which can be determined easily by inspecting the values
of the related PDE and PTE. If all these conditions are met, a dump file of
the related memory page is created and the protection settings of the associated
PTE are modified to executable. A further modification of the PPTE and VAD
entry is not necessary here, since protection settings stored with those objects
are never used again, once a PTE was created from them.



4.4 Additional System Modifications

For distrusting all files which were created or modified during our analysis, we
hook the system service NtCreateFile, which has to be called to create new
and open existing files. Furthermore, we hook NtCreateProcess to monitor
and restrict the creation of new processes.

5 Application to the Analysis of PDF Documents

Our approach is completely generic and can be used in different scenarios. In
order to further illustrate it and evaluate its effectiveness we apply our tool
CWXDetector to the field of dynamic analysis of malicious PDF documents.
Malicious documents in general have become very popular in the past few years,
and especially the portable document format (PDF) is a commonly used medium
for malicious content. One reason for that is the extensive feature list of PDF
documents. It offers the two programming languages Javascript and Actionscript
and the possibility to embed many different object types like images, sounds
and even executables. Another reason for that increasing number of exploitation
attempts is the complexity, and hence error-proneness, of the PDF format itself
and its viewer applications. The latest PDF reference [9] from 2008 contains 756
pages and Adobe already has published several extensions to it meanwhile.

5.1 Dynamic PDF Analysis

During dynamic malware analysis in general the object under investigation is not
disassembled, but viewed as a blackbox and actually used in its intended way: an
executable is run, a document is opened in its associated viewer application and
so forth. This has several negative impacts: first of all the testing environment
may get infected, since the malicious code actually is executed. Secondly, it may
happen that though real malware is analyzed, no malicious operation may be
observed at all. There are always some necessary requirements to the environ-
ment, under which particular exploits may only work, e.g., a vulnerability may
be fixed in a newer version of the affected application or an exploit aims only
at a particular language version of a software. Accordingly, dynamic analysis in
general is incomplete and we try to address this disadvantage by testing each
PDF sample in different viewer applications and then combine all the findings.

In order to analyze PDF documents with our system, we have set up multiple
virtual machines with 32 bit Windows XP SP2 and installed a different PDF
viewer application on each of them. In particular we have used the Adobe Acrobat
Reader versions 6.0.0, 7.0.0, 7.0.7, 8.1.1, 8.1.2, 8.1.6, 9.0.0, 9.2.0 and 9.3.0. For
comparison we also have set up one machine with Foxit Reader version 3.0.0
for which also some vulnerabilities are known. This particular application and
version set have been chosen to cover the most of the known vulnerabilities for
PDF documents, but it should be mentioned, that it may not be optimal nor
have full coverage for all known existing exploits.



Each PDF sample is analyzed in all of those machines in parallel. During the
analysis we performed the following steps on each machine separately:

– We installed our customized page fault handler and our system hooks.
– We started the particular viewer application.
– We disabled DEP for the viewer application, since otherwise the execution

attempt of non-executable code would crash the process and we would not
have any possibility to intercept it in our custom page fault handler.

– We opened the PDF document in the viewer application.
– If new memory was allocated or existing memory was modified during exe-

cution, we enforced the invariant from Section 3.1.
– If the execution of illegitimate code was detected, we dumped the associated

memory page to a file, created a describing log entry, and modified the related
PTE to being executable. We then checked the dumped memory page for
typical patterns of illegal code. In case these could be found we marked this
case as “PATTERN ” in the log file.

– If a new process was created by the PDF viewer, we created an entry marked
“PROCESS” in the log file. We prevented the spawning of additional pro-
cesses since we are only interested in analyzing exploits in the PDF viewer
application itself.

– If a dialog window was shown by the PDF viewer, we created an entry
marked “DIALOG” in the log file and additionally logged the contents of
the window. We then simulated a user input to close the window and continue
viewing the PDF document.

The analysis process was stopped after a specific timeout (two minutes) had been
reached or the PDF viewer application terminates prematurely. In the latter case
we marked this execution as “CRASH ” in the log file. Finally, and if none of the
aforementioned special cases above have been occurred (PATTERN, DIALOG,
PROCESS, CRASH ), the case was labeled as NOTHING.

After the analysis we extracted the dump and log files from the machine and
then reverted it back to a clean state. What we finally got as analysis result is
a logfile that contains information about:

– All attempts to allocate executable memory which are not invoked by a
trusted caller,

– all attempts to modify existing memory to be executable, which are not
invoked by a trusted caller,

– all attempts to execute memory that contains illegitimate code,
– all created files (needed to maintain the list of untrusted files),
– all created processes (needed for evaluation and debugging purposes), and
– all created and shown user dialog windows.

Additionally the analysis may have produced several dump files which contain
the memory contents of each page from which illegitimate code was executed.

Overall, every PDF file ended up with a combination of two labels (d, c): the
first label d determined whether illegal code was detected or not, and the second



label c was either PATTERN, CRASH, PROCESS, DIALOG, NOTHING as
defined above. Since different PDF viewers can react differently to a single PDF
file, we needed to aggregate all the different results into one overall value. We
defined a lexicographic total order on the tuples as follows: (d, c) > (d′, c′) if
and only if either d had detected illegal code and d′ not, or (if d = d′) c > c′

according to the following ordering:

ILC > CRASH > PROCESS > DIALOG > NOTHING

We used the highest occurring value as combined overall value.
In Section 6 we describe our findings and the results of our experiments in

detail. Nevertheless, in general we are interested in the fact if a viewed PDF
document triggers the execution of ILC or not. If we are able to detect such an
attempt, we call our result a true positive. If we fail to detect it, we call it a false
negative. If on the other hand, a benign PDF document is analyzed and in reality
no ILC is executed at all, but our system erroneously reports ILC execution, we
call this a false positive. Finally, a true negative stands for such a case, in which
our system correctly does not report ILC execution.

5.2 Determining Trusted Callers

As explained in Section 2.2 we have to define a set of trusted memory modification
functions for each of the trusted files. For that purpose we have to identify all
the functions from each loaded image file, which are used to produce executable
memory, e.g., we have to search for all calls of memory-related APIs and inspect
the used parameters that specify the protection settings of the resulting memory.
This may be done fully-automated, but we have used a semi-automated process,
in which we have started with a white-list that only contained the loader-related
function from ntdll.dll. Then we have loaded benign PDF documents into the
different PDF viewer applications and if we have encountered a false positive,
we have manually inspected the disassembly of the related function call and
extended the white list appropriately. This process is fail-safe, since we may
only get false positives if we have forgotten particular trusted callers, but will
never create false negatives if we set up our trusted caller list correctly.

In the end we came up with only three files that had to be taken into ac-
count: ntdll.dll, AcroRd32.exe and authplay.dll. All of those contain functions
that allocate executable memory or modify existing one to being executable. nt-
dll.dll contains the Native API and especially the Windows loader functionality,
which of course, has to be able to create executable memory. For the particular
Windows version we are using, this is done from two different locations within
LdrpSnapIAT and LdrpSetProtection.

Acrobat Reader from version 9 on upwards contains a JIT-compiler that also
allocates executable memory. We have checked the affected library authplay.dll
and verified that the VirtualProtect API is called from two different places.
Since only one of those calls is used with an executable protection value, we only
have to put this one on to the list of trusted callers. Finally, we have observed



Acrobat Reader in version 7.xx to allocate executable memory from an MFC
function CLangBarItemMgr::CreateInstance. Hence, we also take care of
these calls.

6 Evaluation

We created two sets of PDF documents of size 7278 each (a benign set and a
malicious set) and used CWXDetector to analyze these files in order to evaluate
the approach.

6.1 Benign Sampleset

In order to test the false positive rate of our approach, we obtained a set of known
benign documents, which contain as much different PDF features as possible.
Accordingly, analyzing them enables us to monitor various different behaviors,
in form of code coverage of the PDF viewing application. We constructed this
set using the following method:

– We retrieved URLs of the TOP 5000 Internet sites from www.alexa.com.
– We queried Google for the first 10 PDF documents on each site and down-

loaded them.
– Using the tool pdfid [22], we selected all documents which contained JavaScript,

OpenActions or some other extended PDF features.
– We uniformly picked random samples from the other downloaded files until

the total set of files consisted of 7278 samples (the same size of the malicious
sample set, see below).

The final set has the following characteristic: altogether it contains 7278 samples,
600 of which contain Javascript, 782 contain AcroForms, 1573 samples have an
OpenAction and 751 some AdditionalAction.

All samples have been verified by Virus Total [20] and in 3 cases one or more
AV scanner delivered a positive result. We checked those samples by hand and
did not find any malicious content within them. Therefore, most probably these
detections are AV false positives.

We ran our system on the benign sample set. As a result, we did not detect
any single ILC execution, hence we have a false positive rate of 0%.

To speed up the analysis, we only used the three “most vulnerable” PDF
viewer applications for the benign sample set (namely Adobe Acrobat Reader
7.0.7, 8.1.1 and 9.0.0 ). Since the achieved false positive rate of our experiments
was so low, we can assume that it will not increase dramatically by using more
different viewers.

6.2 Malicious Sampleset

We obtained a set of 7278 known malicious PDF documents from a well-known
AV vendor. The set consisted of all their valid incoming PDF samples from



January 2011. These samples originated from different sources as shown in Table
1. We checked all samples with the publicly available service Virus Total [20]
which confirmed that all of them were indeed malicious.

Table 1. AV Sample Sources

Source Fraction

AV Sample Sharing 70.0 %
Found in the Wild 24.0 %
Multiscanner projects 4.8 %
Intercepted botnet traffic 1.2 %

We ran our tool on the malicious sample set and were able to detect and
extract executed ILC in 93.2% of all cases. The detailed analysis results are
shown in Table 2 and are explained in the following section.

Table 2. Overall Detection

illegal code detected no illegal code detected

Samples Fraction Samples Fraction

PATTERN 6658 91.5 % — —
CRASH 20 0.3 % 15 0.2 %

PROCESS 83 1.1 % 33 0.4 %
DIALOG 0 0.0 % 295 4.1 %

NOTHING 20 0.3 % 154 2.1 %

Total 6781 93.2 % 497 6.8 %

6.3 Discussion

Given the benign and malicious data sets as stated above we end up with a false
positive rate of 0% and a false negative rate of 6.8%. However, we have seen
a lot of samples which were broken and, though containing malicious content,
were not able to produce malicious functionality when loaded into a PDF viewer.
Furthermore, some samples only triggered their exploit when using a particular
PDF application, which was not contained in our application set. Finally, there
exist some samples that perform malicious behaviour that is not based on shell-
code, but exploits built-in PDF features. For instance some samples redirect to
malicious websites or exploit software bugs in third-party applications, which
can be started directly from within a PDF document. Therefore, we analyzed
the documents from the malicious data set in more detail.

Results without ILC Execution Detection To confirm the false positive
rate, we first investigated the 497 PDF documents for which no ILC execution



was detected. If we would be able to prove that none of them has executed
any ILC within our used environments, our detection rate would increase to
100%. However, since we are not able to manually analyze about 500 samples,
we developed the following heuristics to find at least hints that lead to the
assumption that these samples really failed to perform malicious computation.

We first checked those 15 files that crashed the PDF viewer. We verified if
the crashing operation is contained in any of the regular modules that belong
to the PDF viewer. In that case most probably some exploit went wrong or the
PDF consisted of an invalid structure, which lead to an erroneous termination
of the parsing application. Of course, we cannot be completely sure that no
illegitimate code has been executed beforehand, but since we have seen many
corrupt and broken PDF documents, it is very probable that we have not missed
anything but the viewer just has crashed before any illegitimate code could be
executed. After manually checking all 15 samples we found that indeed all of
them performed invalid memory accesses. So overall those samples are malicious
too but simply fail to execute their shellcode due to incompatibilities with the
underlying PDF viewer.

We then checked those 33 samples that created a new process. In the first
place one could suppose that starting a new process is a sure sign for malicious
activity that was missed by us. However, we discovered that in all cases regu-
lar built-in features of the PDF viewers were used to start a new process. All
checked 33 samples achieved to fork a new process without the help of illegal
code. The forked processes are Internet Explorer (iexplore.exe), Outlook Express
(msimn.exe) and the Command Shell (cmd.exe). Starting those processes it-
self is a PDF built-in feature and does not require any exploit. Nevertheless,
depending on the underlying PDF viewer the user first has to confirm a dialog
message before a new process can be spawned. In most cases the parameters used
when starting the Internet Explorer or Outlook Express are specially crafted to
produce a parsing error and execute arbitrary operations, e.g., we have seen pa-
rameters like those shown in Figure 3. Looking at these parameters it indeed
seems that these documents are malicious.

We then investigated the 295 cases where classified as showing a user dialog.
Most of the dialogs we have seen contain error messages of the parsing engine,
which state that the PDF document itself or some embedded JavaScript-code is
invalid. In that case we assume that either the PDF document really is corrupted
and will never succeed in performing any malicious operation or that we simply
have not used the expected environment to trigger its functionality. Additionally,
there are some PDF exploits that solely are based on social engineering, in which
the user is tricked to respond in a particular way to the shown dialog. For example
the warning dialog message for starting a new process is obfuscated in a way
such that the user will not notice that a new process will actually be spawning
when he clicks the OK button [23,24]. The user dialog can be either an error
message as a result of a broken PDF document or it can be a specially crafted
dialog which is shown on behalf of the PDF document itself. Table 4 shows the
three different classes of dialogs we have seen in our tests. Overall, it is unclear



mailto:

%/../../../../../Windows/system32/cmd".exe"" /c /q \"@echo off

&netsh firewall set opmode mode=disable&echo o 127.0.0.1>1

&echo binary>>1&echo get /ldr.exe>>1 &echo quit>>1

&ftp -s:1 -v -A>nul&del /q 1 &start ldr.exe&\" \"&\" "nul.bat

mailto:

%../../../../../windows/system32/mshta"" javascript:e=String.fromCharCode;

new ActiveXObject\(’wscript.shell’\).Run\(’cmd /c for /F %i IN

\(’+e\(39\)+’dir /b/s %Tmp%or~1\\\\content.ie5\\\\*.pdf’+e\(39\) +’\)

DO findstr /B CZY %i>c:/a.vbs&c:/a.vbs’,0\);\.close\(\)//.cmd)

Table 3. Malicious Process Parameters

whether these files are indeed malicious. However, it is also highly probable that
none of them executed any form of ILC during execution.

PDF parsing error messages:

– A 3D data parsing error has occurred
– An unrecognized token ’aaaaaaaaa’ was found
– The application is being terminated because of memory corruption

JavaScript errors messages:

– line 3 - GeneralError: Operation failed
– var ZUl8cVPKM33; var MpuldZ90lGs = new Array(); ...

Failed exploitation attempt messages :

– The application ”C:\AAAAA...” is set to be launched by this PDF file...
– Could not open the file ’/C/AAAAAAA AAAAAAAAAAAAAAAAAAAAAA...

Table 4. Dialog messages

Finally, 154 samples did not perform any malicious activity at all. Obviously,
this does not mean necessarily that the sample is harmless. It just means that
under the given environment it behaves benign. One reason for not triggering
detection could be that we have not used the correct PDF viewer environment
which is necessary to trigger the exploit. We manually checked a representative
random set of 30 samples of this class and we found that they do not contain any
working exploit at all. A reason for the AV scanners to mark them as malicious



may be that they contain pattern from their virus signature databases. This may
be either a pure coincidence, or it may be the result of a failed attempt to create
a working malicious PDF document.

Overall, given the above findings, in all 497 cases no ILC was executed.
So while our method failed to flag these samples as malicious, it succeeded in
detecting the execution of ILC: since no ILC was executed no detection was
triggered. In this sense all negatives are true negatives, and so after carefull
consideration one could also claim a false negative rate of 0% for our approach.

Results with ILC Execution Detection For completeness, we also discuss
the cases where our method detected ILC execution. In order to show that these
cases are correct, we have to ensure that all dumped memory really consists
of illegitimate code and that no prior ILC execution has been missed. Again,
confirming this for each individual case is impossible due to time restrictions
and, therefore, again we used heuristics to get trustful hints for the correctness.

In the 6658 cases that are flagged PATTERN we confirmed the presence of
known shell code patterns in the dumped memory pages. These patterns can be
for example different forms of nop sleds, commonly used methods to obtain the
current instruction pointer (call-pop, fsetenv), or direct system calls (int 0x2e).
Therefore, we can be sure that in fact ILC was executed.

We then checked those 20 samples that crashed the PDF viewer after the ILC
detection. This is also a clear sign for (a partly failed) malicious behavior. In
such cases we can be sure that the exploit from the PDF did not work well, either
because it was badly programmed or because it did not discover the environ-
ment which was needed to work correctly, e.g., a wrong PDF viewer application
was used. We call those samples broken. Even if the samples do not succeed to
perform any reasonable malicious operation, we can be sure that the observed
code execution really is related to ILC and, accordingly, is no false positive. All
of the 20 samples crashed due to an access violation when performing reading,
writing or executing memory operations on invalid regions.

Next we investigated those 83 PDF documents that spawned new processes
after the ILC execution. This is clear sign of beforehand executed ILC since
the test system was set up in a way that prevented new processes from being
spawned “legally” as an effect of just viewing a PDF document. For all of those
process types listed in Table 5, we can assume that starting them is an effect
of executed malicious code: it is either tried to perform malicious operations
from within a second extracted or downloaded malware, to open a benign PDF
document in order to hide the maliciousness of the initial document or to gather
essential information about an exploited system. Accordingly, we can be sure
that all of these samples really have executed shellcode.

Finally there are 20 remaining samples with ILC execution, for which all
of our previously described heuristics fail. Hence, we are not able to tell any-
thing automatically about their maliciousness and, therefore, we have checked
them manually. All of them really execute illegitimate code, from which some is
simply not working correctly and other does not even consist of valid machine



Obviously malicious processes:

– c:\a.exe

– c:\DOKUME~1\user\LOKALE~1\Temp\HotPAtcher.exe

New instances of the PDF viewer:

– c:\Programme\Adobe\Acrobat7.0\Reader\AcroRd32.exe"c:\DOKUME~1\user\

LOKALE~1\Temp\ASA2010.final1.pdf"

– cmd.exe/cstartAcroRd32.exe"c:\DOKUME~1\user\LOKALE~1\Temp\1465.pdf"

Common Windows system information tools:

– c:\WINDOWS\system32\winver.exe

– c:\WINDOWS\system32\whoami.exe

Table 5. Started Processes

instructions at all. We can only guess the reasons for that: most probably some
of these samples just were written badly or got corrupted due to some transmis-
sion error. Others may find some unexpected environment and, accordingly, do
not function well. Anyway, we have manually assured ourselves that in all cases
ILC was executed, no matter if the resulting operations were valid or not.

Detection Summary Though we are not able to manually verify all the sam-
ples we have analyzed with our system, the results shown in the previous sub-
sections lead to the conclusion that our approach works well. If we aggregate all
our findings with illegitimate code execution, we get a minimum detection rate
of 93.2 % for our particular set. If we furthermore assume that there is a serious
fraction of samples that do not contain working shellcode for any of our used
environments, we get a much higher detection rate.

6.4 Detection per Viewer Application

In Figure 3 we have summarized all ILC detections and show the detection rates
per PDF viewer. Note that these rates are heavily depending on the sample set,
and do not necessarily reflect the quality of the PDF viewers or the number
of exploits that exist for them in the wild. What definitely can be seen, is the
unsurprising fact that combining the partial results of our detection scheme
yields a higher detection rate. Furthermore, it is obvious that each single PDF
viewer instance is vulnerable to a significant amount of malicious PDFs. One
single exception to this is the Foxit Reader. Since this application is not nearly
as widespread as the Acrobat Reader, not much effort has been invested by
attackers into building exploits for it. Accordingly, the very low detection rate
for this viewer does not necessarily mean that it has less critical software bugs.



Fig. 3. Detections per Viewer

6.5 Detection Results of other Analyzers

In order to evaluate the effectiveness of our generic solution, we have com-
pared our results against those from some popular application specific analyzers:
Wepawet [6], PDF Examiner [28] and ADSandbox [8]. All of these analyzers
combine static and dynamic approaches, i.e., they parse the PDF document
structure, extract potential malicious pieces and then analyze them by different
means. Depending on the severity of the findings, each analyzed sample is then
labeled either benign, suspicious or malicious. Furthermore, additional compre-
hensive analysis data is generated, i.e., information about the embedded objects,
like PE files or URLs, or contained known exploits.

Wepawet [6] combines machine learning techniques with emulation. It ex-
tracts specific features while emulating Javascript code and then compares them
against a set of previously learned known benign profiles. It also uses a set of
signatures to detect anomalities, which are not based on Javascript. The author
has supported our project by analyzing our samples with the new version of his
tool, which currently is not available yet. A better detection rate in comparison
to the current available version could be achieved with that.

PDF Examiner [28] as well extracts all embedded objects and streams from
the PDF document and decrypts them if necessary. Then, signature scanning is
used to detect known malicious patterns and libemu[3] is used to detect shell-



code. From all the findings a score value is calculated, that decides about the
ultimate outcome of the analysis. Besides this value, a sophisticated GUI report
is generated that highlights suspicious and malicious parts of the PDF document.

In contrast to the two aforementioned analyzers, ADSandbox [8] solely aims
at the detection of malicious Javascript. For that purpose, all Javascript code
objects are extracted from a PDF sample and then executed in an isolated envi-
ronment. Finally, heuristics are used to decide from the executed operations and
the involved data about the maliciousness of the particular sample. ADSandbox
can be used with several different configurations settings, but we have used the
defaults for simplicity.

When comparing the results of such application specific analyzers to those
created by CWXDetector , one have to take into account that our tool only
triggers on the actual execution of ILC. Accordingly, it is only capable to label
a sample as benign or malicious, but not as suspicious.

Table 6 summarizes all results for the detection of malicious samples. As
you can see our approach yields even better results than those of the application
specific analyzers if only taking those samples into account, which were labeled as
definitely being malicious. But still when considering also the suspicious samples,
our results are comparable, i.e. 89.0% (Wepawet) and 98.9% (PDF Examiner)
vs. 93.2% (CWXDetector). Furthermore, we know that a significant part of
those malicious samples which have been not detected by CWXDetector are
corrupted and, hence, not executable at all. A signature scanning based approach
is obviously also able to detect malicious parts within those broken files, but
our method obviously fails on them. ADSandbox does not deliver a very high
detection rate on our malicious sample set. The most important reason for that
is that it is only capable to analyze Javascript exploits.

Table 6. Detection Results on Malicious Sampleset

Analyzer Malicious Samples Fraction Suspicious Samples Fraction

Wepawet 4737 65.1% 1739 23.9%
PDF Examiner 6089 83.7% 1108 15.2%
ADSandbox 2206 30.3% 232 3.2%
CWXDetector 6781 93.2% 0 0.0%

On the other hand, ADSandbox does not produce so many false positive as
the other two PDF analyzers, as you can see in Table 7. As we already have shown
in Section 6.1, our approach does not produce any false positive as well due to
its inner course of action. Unfortunately, the Wepawet results for analyzing the
benign sampleset have not been completed at the writing of this paper, but will
be presented on the website of the authors afterwards.



Table 7. Detection Results on Benign Sampleset

Analyzer Malicious Samples Fraction Suspicious Samples Fraction

Wepawet ? ?% ? ? %
PDF Examiner 82 1.1% 246 3.4%
ADSandbox 0 0.0% 3 <0.1%
CWXDetector 0 0.0% 0 0.0%

6.6 Extraction Results

We examine those pages which were dumped due to an initial ILC execution
detection. On average we have 267 dumped pages per sample, which is a rather
high number. Though after removing those pages which have been identified to
contain solely some form of nop sled, we are left with an average of only 1.22
pages per sample. Furthermore, we have 5 outliers with 32 (3 samples), 80 and
603 dumped pages. By manually verifying those samples we have learned that
something went wrong during the exploitation attempt and all of the dumped
pages contain the same (failing) shellcode. While ignoring those outliers, we
finally get an average value of 1.06 pages per sample. Since most shellcodes fit
within one single page, this result is not very astonishing.

7 Conclusions

In this paper we presented a generic and automatic method to detect and ex-
tract illegitimate code. We presented CWXDetector , an implementation of our
approach for the x86 Windows XP version, and evaluated it by using malicious
PDF document as examples. Our approach is very effective in supporting mal-
ware analysis, since the detection rates are very good and it directly supports
the analyst by extracting a small set of memory pages for manual inspection.
In our prototype, we also added a debugging feature in which the automated
process can be interrupted once the execution of illegitimate code is detected.
On that event automatically a debugger is attached to the affected process and
a hardware breakpoint is set on the first illegitimate instruction. This enables
an analyst to quickly and easily debug shellcode within its exploited process.

As an addition to the regular system we also implemented multi-version
dumping, in which each detected page containing illegitimate code is not dumped
only once, but several times in case that it is modified. By that we can detect self-
modifying code (SMC), which often is used for de-obfuscation and decryption.
As a result we get several versions of the same memory page, from which we
can easily isolate those parts that have been modified and infer the decrypted
shellcode instantly. We plan to evaluate this feature in future work.

Another topic we would like to focus on in future work is to improve our
system by implementing mechanisms to detect ROP and JIT-spraying code.
One way to handle ROP is a full call stack inspection on system calls and there
already exists different works in this field [7]. JIT-spraying itself may be hard to



detect [4] within our system, but we may patch the Interpreter runtime system
such that its allocated memory in general is non-executable and only made
executable on demand and in a controlled manner.
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