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We combine the safety-first principle of Telser (1955/56) and Arzac and Bawa (1977) with 
the principle of quantile maximization studied in Rostek (2010). While maintaining the short-
fall constraint of the safety-first principle, we propose to maximize an upper quantile of the 
return distribution instead of maximizing its expected value. We study the implications of this 
new decision principle for portfolio selection and capital market equilibrium on one hand and 
for risk-adjusted performance measurement on the other hand. 
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1. INTRODUCTION 

Risk/value-models (see e.g. Sarin and Weber 1993; Mitchell and Gelles 2003) for evaluating 

decisions under risk serve as a standard approach for constructing optimal portfolios. Tradi-

tionally, following the seminal work of Markowitz (1952) and Tobin (1958), mean/variance 

(MV)-investors are considered in portfolio theory. MV-investors are using the expected value 

as a measure for value (or reward) and the variance resp. the standard deviation as a measure 

for risk. 

 

The (risk-adjusted) performance ratio corresponding to this approach in the Sharpe ratio 

(Sharpe 1966, 1994). The CAPM (Sharpe 1964, Lintner 1965) is the corresponding model for 

capital market equilibrium. It is well known (see e.g. McNeil, Frey and Embrechts 2005, p. 

247) that under the assumption of elliptical return distributions, the use of any positive-

homogeneous and translation-invariant measure of risk to rank risks on one hand or to deter-

mine the optimal risk-minimizing portfolio under the condition that a certain expected return 

is attained on the other, is equivalent to using the variance resp. the standard deviation as the 

measure of risk. Alternative risk measures, such as value-at-risk (VaR) or conditional value-

at-risk (CVaR) give different numerical values, but have no effect on the management of risk. 
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However, in a non-symmetrical world1 this situation changes completely and alternative 

measures of risk and alternative performance ratios have attracted considerable interest2. 

 

There are many ways to construct risk/value-models alternative to the traditional MV-

approach. One possible approach is to use a safety-first (SF) principle, which we will focus in 

the present contribution. The first version of the SF principle was advocated by Roy (1952), 

who suggested that investors have in mind some disaster level of returns and that they behave 

as to minimize the probability of disaster (nowadays usually called shortfall probability). In 

this version the SF principle is a pure risk-minimizing strategy. As there is an equivalence 

between shortfall probabilities and (lower) quantiles of the return distribution, Roy's (1952) 

approach is equivalent to a quantile minimizing approach resp., when the distribution of the 

loss L = –R is considered instead of the return distribution, equivalent to a quantile maximi-

zing approach. Later on, Telser (1955/56) proposed a different version of the SF principle, 

which possesses a non-compensating form, i.e. an arbitrary trade-off between risk and value is 

not possible. The basic idea of Telser was to introduce a shortfall constraint, i.e. to limit the 

shortfall probability (or equivalently to limit a corresponding quantile), in a first stage and 

then in a second stage to maximize the expected return, given a reduced set of actions with 

admissible risk. Chipman (1971) resp. Arzac and Bawa (1977) propose to use a lexicographic 

form of the SF principles of Roy (1952) resp. Telser (1955/56), because these original criteria 

fail to order risky assets, which are unambiguously ordered by the dominance principle (prin-

ciple of absolute preference). Arzac and Bawa (1977), moreover, studied the implications of 

Telser's approach for portfolio selection and for capital market equilibrium. In the present 

contribution, we generalize Telser's resp. Arzac and Bawa's versions of the SF principle in 

that we combine it with the principle of quantile maximization recently studied in Rostek 

(2010). While maintaining the shortfall constraint of the SF-principle, we propose to maxi-

mize an upper quantile of the return distribution as a measure of value resp. reward instead of 

the expected value. Instead of "quantile maximization", which is a rather technical term, one 

could also speak of "maximizing the probable maximum return" to characterize the economic 

content of the corresponding behavior. After having introduced and characterized the new 

decision principle, which we call quantile maximization/safety-first (QSF) principle, we study 
                                                 
1 According to Cont (2001, p. 224) a gain/loss asymmetry is a stylized fact of asset returns. Vast literature 

has documented the asymmetry in stock index return distributions, see e.g. Ekholm and Pasternack 
(2005). Moreover there are pronounced skewness effects in connection with financial positions containing 
options (Bookstaber and Clarke 1984) and in connection with alternative investments (Brooks and Kat  
2002). 

2 For recent overviews on risk measures alternative to the variance and performance ratios alternative to the 
Sharpe ratio, see e.g. Biglova et al. (2004) and Farinelli et al. (2008). 
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the implications of this decision principle for portfolio selection and capital market equilibri-

um on one hand  (thereby generalizing the results of Arzac and Bawa 1977) and for risk-

adjusted performance measurement on the other hand. 

 

The present paper first contributes to the risk/value-approach for evaluating decisions under 

risk in that it proposes a new (non-compensating) risk/value-model. We introduce a new 

measure of risk (the quantile range) and a new measure of value resp. reward (the probable 

maximum return). Second, the paper contributes to the theory of portfolio selection in the 

presence of a riskless asset in providing a corresponding separation result. Third, the paper 

contributes to the field of capital market equilibrium models.  

 

From an application perspective, the paper develops a new performance ratio (the Q ratio). 

This performance ratio possesses a sound decision theoretic basis, which is in contrast to most 

performance ratios introduced in literature, being mere ad hoc-modifications of the Sharpe 

ratio. Finally, again from an application perspective the paper develops a new measure of re-

turn on risk-adjusted capital (Q-RORAC), suitable for enterprise risk management. 

 

The literature directly related to the present paper is limited. Beyond the already cited papers 

on SF principles our approach involves a quantile maximization and so there is a connection 

to this strand of literature. Chambers (2009) provides a characterization of quantiles on the 

basis of three axioms (ordinal covariance, weak monotonicity with respect to first-order sto-

chastic dominance, and upper semicontinuity), but he does not consider quantiles in any deci-

sion theoretical context. Rostek (2010) takes this decision theoretical perspective and intro-

duces the principle of quantile maximization. She gives a complete behavioral characteriza-

tion of a decision maker, who when choosing between uncertain alternatives evaluates each 

alternative by a quantile of the distribution (given a fixed confidence level) and selects the one 

with the highest quantile payoff (resp., the highest quantile of an utility over outcomes). When 

applied to financial returns, this approach basically involves the maximization of an upper 

quantile resp. the minimization of a lower quantile of the return distribution, which is corre-

sponding to Roy's approach. Rostek´s (2010) approach also contains maxmin and minmax 

choice rules. However, it does not involve any restriction of the risk of the considered deci-

sions. In fact Rostek's (2010) approach is a choice model and does not try to model risk or 

value separately at all. 
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As we will see, our approach implicitly defines a risk measure (the quantile range). This im-

plies that there is a connection to the extensive literature on risk measures and their axiomati-

zation (see e.g. Artzner et al. 1999, Rockafellar et al. 2006, or Heyde et al. 2007). However, 

being a risk/value-model our model not only involves a quantification of risk, but moreover a 

tradeoff between risk and return. Among risk/value-models our approach belongs to3 the class 

of non-compensating risk/value-models. With respect to the value component our model is 

non-standard as it is based on an upper quantile as a measure of value and not on the expected 

return. We are not aware of a similar decision model. To some extent, an exception is the pa-

per of Bernardo and Ledoit (2000). However, their definition of gain and loss is different (be-

ing the positive resp. the negative part of an excess payoff relative to a benchmark) and as 

well the problem they are studying (asset pricing in incomplete markets) is different. Howev-

er, the gain/loss-ratio Bernardo and Ledoit (2000) do introduce can be considered as a risk-

adjusted performance ratio, although the authors evaluate this ratio with respect to a risk neu-

tral measure and not with respect to a physical measure. This brings us to the connection of 

our contribution to the extensive literature on risk-adjusted performance ratios. We will elabo-

rate on this connection further in section 4.1. of the present contribution. At this point we 

merely want to mention that with a few exceptions (which we will explicitly address) most of 

these performance ratios are mere ad hoc-modifications of the Sharpe ratio. In contrast, the 

performance ratio (Q ratio) proposed in the present contribution explicitly is based on a deci-

sion theoretic model. 

 

With respect to the application in enterprise risk management, it is our impression that the 

RORAC-approach used in this field primarily is an ad hoc-approach, too, i.e. there is no deci-

sion theoretic model underlying this approach. The only exception we are aware of is the con-

tribution of Stoughton und Zechner (2007), which is based on an agency theoretical approach. 

Stoughton und Zechner (2007) consider a related quantity (RAROC) and apply it to the capi-

tal allocation problem. 

 

With respect to the resulting equations for capital market equilibrium in the presence of QSF-

investors our paper contributes to the arguments put forward in Levy (2010), who gives evi-

dence that the CAPM not only is valid in an expected utility framework. In the case of QSF-

investors the CAPM is obtained from a linear approximation of the equilibrium equations (the 

                                                 
3 This feature is also the key difference to decision models of the mean-lower partial moment type (see e.g. 

Fishburn 1977 or Harlow and Rao 1989) which belong to the (standard) class of compensating risk/value-
models. 
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result being exact for elliptical distributions). In a non-symmetrical world, however, the QSF 

equilibrium is different from the CAPM, which we will demonstrate on the basis of an explic-

it formula based on a quadratic approximation of the equilibrium equations. 

 

 

2. THE DECISION PRINCIPLE 

The intended primary application of the decision principle studied in the present distribution 

is the portfolio choice problem. Therefore we formulate the principle a priori in terms of one-

period returns and take as given a set D of one-period returns DR  . Throughout the paper, 

we will assume that the returns are random variables possessing a strictly positive density 

function. In consequence, all quantiles of the considered return distributions are unique. We 

specify two confidence levels 5.00   and 5.00  , with   and   being small num-

bers, and we specify a desired minimum return (target return, disaster level) z.  

 

Given any two returns DR1  and DR2   with corresponding shortfall probabilities 

)zR(Pp 11   resp. )zR(Pp 22   and upper quantiles )R(Q 11   resp. )R(Q 21  , we con-

sider the following strict preference order: 

 

(2.1) 
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
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





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



.pandpif,pp

pandp

pandpif,)R(Q)R(Q

RR

2112

21

212111

21   

 

Returns DR1  and DR2  are indifferent ),R~R( 21  if )R(Q)R(Q 2111    in the case of 

1p  and 2p  or if 21 pp   in case of 1p  and 2p . 

 

Given the disaster level z, the return with a smaller shortfall probability is preferred unless 

both returns possess a shortfall probability not exceeding the pre-specified confidence level 

.  In this case the return with a higher upper quantile 1Q  is preferred. As we have the pro-

perty   )QR(P 1 , the quantity )R(Q1   can intuitively be considered to be the probable 

maximum return at the confidence level 1 . The difference with respect to Arzac and 

Bawa's (1977) SF principle is that Arzac and Bawa take the expected value )R(E  instead of 

the probable maximum return )R(Q1   as the quantity to be maximized. The confidence level 
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  constrains the shortfall probability and the confidence level 1  is controlling the desired 

probable maximum return. 

 

The decision principle (2.1) produces a complete ordering of all risky prospects possessing 

finite quantiles at the level 1 . Moreover4, it satisfies the principle of absolute preference 

(dominance principle), as one sees as follows. Let there be given any two returns 1R  and 2R  

with distribution functions )x(F1  and )x(F2 . In case )x(F)x(F 12   for all x, we obviously 

have .pp 12   On the other hand, we also have5 ).R(Q)R(Q 1121    So )x(F)x(F 12   for all 

x implies 21 R~R  . 

 

We will call the decision principle (2.1) quantile-maximization/safety-first (QSF) principle.  

Correspondingly we will call investors who behave according to this principle quantile ma-

ximizing safety-first investors, or QSF-investors in short. 

 

As the SF principle of Arzac and Bawa (1977) the QSF principle (2.1) is incompatible with 

the axiom of continuity and the axiom of independence, which can be proven using the same 

arguments as given in Arzac and Bawa (1977). In consequence the decision principle (2.1) is 

not compatible with expected utility theory6. The core of this incompatibility is, that the SF 

principle as well as the QSF principle strictly limit risk, and so there is no arbitrary trade-off 

possible between "risk" and "value" (where value is measured via the expected value by Ar-

zac and Bawa and via an upper quantile in the present contribution). This feature may be not 

attractive from a decision theoretic point of view, but it precisely meets the restrictions to be 

kept in many important decision situations in business practice. Financial institutions, for in-

stance banks and insurance companies7, are regularly regulated in a way that the value-at-risk 

(which from a statistical perspective is nothing else than a quantile of the considered contribu-

tion) of the financial position of the company is strictly limited a priori, so there is no possi-

                                                 
4 One can also show, following exactly the arguments of Arzac and Bawa (1977, p. 281) that the QSF-

investors exhibit decreasing absolute risk aversion. 
5  This corresponds to the well known monotonicity property of quantiles, see e.g. Chambers (2009, p. 337). 
6 Consequently, the contributions in which the SF principle is studied from the perspective of expected 

utility theory, see e.g. Levy and Sarnat (1972) or Levy and Levy (2009), only relate to Roy's approach. 
7 Consequently, in actuarial literature traditionally the restriction of the so called ruin probability (which is 

a dynamic version of a shortfall constraint) is considered as a stability criterion, see e.g. Bühlmann (1970, 
Chapter 6.2). 
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bility of an arbitrary trade-off between "risk" and "value". Limiting the value-at-risk corre-

sponds exactly to the shortfall constraint involved in the SF resp. the QSF principle. 

 

Arzac and Bawa (1977) very clearly state that the axioms of continuity and independence, 

which are discussed intensively in the decision theoretic literature, are not compelling re-

strictions on economic choices and they do not find sufficient a priori or empirical basis for 

preferring expected utility to safety-first or vice versa. Thus, it seems reasonable to consider 

both principles complementary, and to develop theories of financial markets which allow the 

existence of both type of investors. 

 

In the standard situation (which regularly will be the case in the applications considered in the 

present contribution) where there is at least one return R in the decision set D which fulfills 

the shortfall constraint  )zR(P  , the optimal investment will be given on the basis of the 

following optimization problem: 

 

(2.2a) max!)R(Q1      DR   

 

(2.2b)  )zR(P . 

 

This generalizes the SF principle in the basic version of  Telser (1955/56). Obviously 

 )zR(P  is equivalent to 

 

(2.2b') z)R(Q  . 

 

Therefore, an equivalent interpretation of the decision principle proposed is that we constrain 

the probable minimum return at confidence level   and maximize the probable maximum 

return at level 1 . Defining as usually the value-at-risk (on the return level) at confidence 

level   as8 )R(Q)R(Q)R(VaR 1   , we in addition have another equivalent version 

of (2.2b), namely 

 

(2.2b'') z)R(VaR  , 

 
                                                 
8 The last equation requires the existence of a density function of the return distribution. 
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In consequence, the shortfall constraint (2.2b) is equivalent to a constraint of the value-at-risk 

at confidence level  . 

 

There is yet another interesting interpretation. Heyde et al. (2007) notice a connection be-

tween the risk measure "tail conditional median" and the risk measure "value at risk". In the 

context of the present contribution we have the (obvious) relations 

 

(2.3a) )R(Q)]R(QR|R[Q 2/115.0    

 

and 

 

(2.3b) )R(Q)]R(QR|R[Q 2/5.0   . 

 

This means, that the decision principle (2.2) can be interpreted to constrain the tail conditional 

median at confidence level 2  and to maximize the tail conditional median at confidence 

level  21 . 

 

As Heyde et al. (2007) argue, the risk measure tail conditional median is a more robust alter-

native to the risk measure tail conditional mean (which in turn is equivalent to the risk meas-

ure conditional value-at-risk for distributions possessing a density function). 

 

 

3. OPTIMAL PORTFOLIOS: A SEPARATION RESULT 

In our further analysis of the consequences of QSF-investors for portfolio selection we as-

sume the standard model of one-period portfolio theory including a riskless asset. We have n 

risky one-period returns )n,...,1i(Ri   and a riskless interest rate 0r  at which arbitrary 

amounts can be invested or borrowed. The return aR  of a leverage portfolio based on invest- 

ing a proportion a )a0(   in a risky portfolio P with a return PR  and investing a propor-

tion of a1  )1a1(   in the riskless security is given by 

 

(3.1) 0Pa r)a1(aRR  . 
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We assume9 0rz   and in addition 0r)R(E 0P  , i.e. a positive risk premium for risky port-

folios P. We note that quantiles are linear functionals as long as the linear transformation is 

positive, that is we have for 0a   

 

(3.2) b)R(aQ)baR(Q PP   

 

for any fixed confidence level. In consequence, we obtain 

 

(3.3) ]r)R(Q[ar)R(Q 0P10a1   . 

 

Assuming sufficiently small confidence levels   so that )R(E)R(Q PP1   , we see that the 

probable maximum return is (strictly) monotone increasing in the investment proportion a. 

 

On the other hand we also have 

 

(3.4) )]R(Qr[arr)a1()R(Qa)R(Q P000Pa   . 

 

Assuming small enough confidence levels so that 0P r)R(Q  , we see that )R(Q a  is (strict-

ly) monotone decreasing in a. Now z)R(Q a   is equivalent to 

 

(3.5) 
)R(Qr

zr
a

P0

0




 . 

 

As given our assumptions the right hand side is positive this means that the shortfall con-

straint (2.2b) can always be met for leverage portfolios involving an arbitrary risky portfolio 

P, if we choose the investment in P being "small enough". 

 

As QSF-investors maximize (3.3), which is monotone increasing in a, they will realize a max-

imal amount of a. The optimal leverage portfolio involving the risky portfolio P therefore is 

characterized by the following choice of )P(aa  : 

 

                                                 
9 In case z ≥ r0 , the riskless security would not be admissible for QSF-investors. 
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(3.6) 
)R(Qr

zr
)P(a

P0

0




 . 

 

Combining (3.6) with (3.3) we consequently have 

 

(3.7) 
)R(Qr

r)R(Q
)zr(r)R(Q

P0

0P1
00a1




 


 . 

 

This in turn implies that for a given level of z, the quantity )R(Q a1   is maximized when we 

maximize the ratio 

 

(3.8) 
)R(Qr

r)R(Q
)R(QSF

P0

0P1
P








 , 

 

which we call the quantile safety-first ratio, or QSF ratio for short. 

 

In consequence, we have demonstrated a separation property for QSF-investors. This separa-

tion result is generalizing the corresponding result of Arzac and Bawa (1977) for SF-

investors. This property is in complete analogy to the separation property of MV-investors. In 

a first step QSF-investors determine the optimal risky portfolio P* by maximizing the QSF-

ratio (3.8). This corresponds to the case of MV-investors, where P* is obtained by maximizing 

the Sharpe ratio. 

 

The optimal risky portfolio P* obviously is independent of the assumed minimum return z and 

only depends on the assumed confidence levels   and  . As from (3.2) we can easily obtain 

)R(QSF)R(QSF Pa  , in turn all optimal leverage portfolios are characterized by having a 

maximal QSF-ratio (3.8). Summing up, this means that the optimal leverage portfolio of a 

QSF-investor can be obtained in the following two steps: 

 

1. The investor determines the optimal (purely) 

risky portfolio maximizing the QSF ratio (3.8) 

2. The investor determines the optimal leverage 

portfolio on the basis of equation (3.7), i.e. specifies a desired minimum return z. This 

in turn determines the chosen level of risk. 
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This separation result for QSF-investors contributes to the literature, which aims at generali-

zations of the separation property for MV-investors. Usually this is done within the frame-

work of a (compensating) risk/value-model or within the framework of expected utility theory 

and either assumes specific families of utility functions (see e.g. Cass and Stiglitz, 1970, or 

Breuer and Gürtler, 2006) or specific families of distributions (see e.g. Owen and Rab-

inovitch, 1983). Alternatively, Breuer and Gürtler (2007) show that when the risk measure if 

fulfilling certain properties, a separation result also holds in a mean/risk-model. 

 

 

4. PERFORMANCE MEASUREMENT 

4.1. Investment Management: Q Ratio 

The distinct feature of the Sharpe ratio 

 

(4.1) 
)R(

r)R(E
)R(S 0




  

 

as a measure for risk-adjusted performance is based on the fact that for all MV-investors op-

timal leverage portfolios possess a maximal Sharpe ratio. In consequence, MV-investors have 

to maximize the Sharpe ratio to obtain an optimal portfolio. The basic risk measure for MV-

investors is the standard deviation of returns and this basic risk measure also is central to the 

Sharpe ratio. As the standard deviation makes no distinction between positive and negative 

deviations from the mean, the standard deviation is a good risk measure only for distributions, 

which are (approximately) symmetric around the mean, which is the case for elliptical distri-

butions. However, it is a stylized fact that asset returns often are of asymmetric nature10. Also 

in many areas of risk management loss distributions are highly skewed11. Consequently, there 

is a vast literature12 on asymmetric risk measures and correspondingly on asymmetric perfor-

mance measures where in (4.1) the standard deviation is replaced by an asymmetrical risk 

measure. However, most13 of these alternative performance ratios are mere ad-hoc modifica-

tions of the Sharpe ratio, and they do not possess any decision theoretic foundation. As we 

                                                 
10 See e.g. Cont (2001, p. 224). 
11 See e.g. McNeil et al. (2005, p. 44). 
12 For recent reviews see e.g. Biglova et al. (2004) and Farinelli et al. (2008). 
13 Notable exceptions being the contributions of Breuer and Gürtler (2006, 2007), Favre and Galeano (2002) 

and Leland (1999). 
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have seen, for QSF-investors there is a separation property as in the case of the Sharpe ratio. 

This suggests to construct a risk-adjusted performance measure based on the separation pro-

perty for QSF-investors. The risk measure implicitly contained in the QSF-ratio (3.8) is 

)R(Qr0  , which measures the distance between the riskless interest rate and the  -quantile 

of the distribution. This risk measure, however, has a main drawback.  It is location depend-

ent, whereas the standard deviation is a location-independent risk measure. This drawback, 

however, can be removed based on the fact that we have 

 

 
1

r)R(Q

)R(Q)R(Q
1

)R(Q)R(Q)R(Qr

r)R(Q

)R(Qr

r)R(Q

01

1110

01

0

01























 . 

 

This means that the QSF-ratio (3.8) is maximized, iff ]r)R(Q[/)]R(Q)R(Q[ 011    is 

minimized, which in turn is equivalent to the maximization of 

 

(4.2) 
)R(Q)R(Q

r)R(Q
)R(Q

1

01








 . 

 

In consequence, equivalent to (3.8) QSF-investors maximize the ratio (4.2), which we call the 

quantile ratio or Q ratio for short. The risk measure implicit in this ratio is the quantile range 

resp. quantile distance 

 

(4.3) )R(Q)R(Q)R(Q 11,   , 

 

or to put it equivalently, the distance between the probable maximum return at confidence 

level 1  and the probable minimum return at confidence level .  Obviously )R(Q  is a 

location-independent risk measure, i.e. )]R(ER[Q)R(Q   and it is a non-negative risk 

measure, i.e. 0)R(Q 1,   , because from 5.0,0   we have  1 . From (3.2) we 

know, that the risk measure is positively homogeneous, i.e. )R(Qa)aR(Q   for 0a  . 

Being the difference of two quantiles, the risk measure (4.3) shares a number of properties14 

with distribution quantiles resp. with value-at-risk. Beyond positive homogeneity we have law 

                                                 
14 See e.g. Tasche (2002, Proposition 2.3). 
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invariance and comonotonic additivity. We do not, however, have translation invariance and 

sub-additivity (as quantiles are not sub-additive in general). 

 

The risk measure Q  entering into (4.2) is not the only difference to the Sharpe ratio (4.1). 

Another distinctive feature is, that the expected return E(R) is replaced by the upper quantile 

)R(Q1  , the probable maximum return. In literature, usually only the risk measure is replaced 

in (4.1) to construct an alternative performance measure. Notable exceptions from this rule are 

the upside potential ratio advocated by Sortino et al. (1999), the omega measure studied by 

Keating and Shadwick (2002), the Farinelli/Tibiletti ratio proposed by Farinelli and Tibiletti 

(2008) and the Rachev ratio resp. the generalized Rachev ratio introduced in Biglova et al.  

(2004). The upside potential ratio and the omega measure are based on the upper partial mo-

ment )]0,rR[max(E 0  as a reward measure. Farinelli and Tibiletti use the measure 

p/1p
0 ])0,rR[max(E   as a value measure. The Rachev ratio is based on the value measure 

)]rR(VaRrR|rR[E 000   , the conditional value-at-risk of the excess return 0rR  . Fi-

nally, the generalized Rachev ratio is based on the value mea-sure 

)]rR(VaRrR|)0,rR[max(E 010
p

0   , which the authors call a power CVaR. 

 

From its structure the Q ratio (4.2) has further similarities with the Rachev ratio 

)]rR(VaRrR|Rr[E/)]rR(VaRrR|rR[E 0000100   . Both ratios are based 

on two different confidence levels 1  resp.   for the reward resp. the risk measure in-

volved. Moreover, as already mentioned at the end of section 2, the quantiles Q  and 1Q  

can also be interpreted as a corresponding tail condition median and the tail conditional medi-

an can be seen as a robust alternative to the CVaR-measures contained in the nominator and 

in the denominator of the Rachev ratio. 

 

As already noted, all the preceeding performance ratios are of an ad hoc-nature, they do not 

possess any decision theoretic basis. In contrast, the QSF ratio (4.2) is based on a separation 

property, i.e. it has a foundation comparable to the Sharpe ratio. Summing up, QSF-investors 

maximize the Q-ratio to obtain an optimal portfolio and the Q-ratio is based on 01 r)R(Q   

as a reward measure and )R(Q)R(Q)R(Q 11,    as a risk measure. 
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To obtain a standard example for this new performance measure, we look at the case of a 

normal distribution. In this case we have )R(N)R(E)R(Q 11    resp. 

)R(N)R(E)R(Q 1   , where 1N  resp. 1N  are the corresponding quantiles for the 

standard normal distribution. Altogether in case of normally distributed returns, i.e. 

),(N~R 2 , we have with   11 NN:H  

 

(4.4) 
.H/]N)R(S[

H

rN
)R(Q

1

01











 

 

This means although we not only have a different risk measure, but also a different reward 

measure, in case of the normal distribution the new performance ratio is a positive linear 

transformation of the Sharpe ratio and will therefore produce identical rankings in this case. 

As the quantiles of elliptical distributions possess a similar structure compared to the case of a 

normal distribution, i.e. they are of the form )R(Z)R(E  , this result can be generalized to 

all elliptical distributions. This is a reasonable result, because in the case of symmetrical dis-

tributions the validity of the Sharpe ratio is not put into question. Only in case of asymmetri-

cal distributions we will have divergent results. For instance, if we look at the (translated) 

lognormal distribution, i.e. )v,m(N~)R1ln( 2 , we have  

 

(4.5a) 
1)vexp(]1)vm([exp

)r1()vm(exp
)R(S

22
2
1

0
2

2
1




  

 

for the Sharpe ratio and 

 

(4.5b) 
)vNm(exp)vNm(exp

)r1()vNm(exp
)R(Q

11

01








  

 

for the Q ratio. Obviously, there is no linear relationship between the Sharpe ratio and the Q 

ratio in this case. So these ratios will produce different rankings in general. 
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4.2. Risk Management: Q-RORAC 

A second field of application of risk adjusted performance measures is enterprise risk ma-

nagement. Here the performance of a company or the performance of different business units 

of this company is usually measured using some sort of RORAC (return on risk-adjusted capi-

tal) approach15, i.e. considering a ratio of the form 

 

(4.6) 
capitalrisk

profitexpected
RORAC  . 

 

To obtain a suitable RORAC-version being consistent with the QSF-principle we re-examine 

the QSF-ratio (3.8) in terms of absolute values instead of return quantities. Denoting 0v  as the 

(known) market value of a risky investment in 0t   and 1V  as its (uncertain) market value in 

1t  , we have the relations 0v/VR   where 01 vVV   is the relevant profit variable in 

absolute terms. Expressing (3.8) in terms of V  , we in a first step obtain the ratio 

 

(4.7) 
)V(Qvr

vr)V(Q

00

001






 . 

 

Now, the value-at-risk at confidence level  , )V(VaR  , of the position V  corresponds to 

the quantile )V(Q1  , which in turn is equivalent16 to the quantile )V(Q   . So an equiva-

lent form of the expression (4.7) is 

 

(4.8) 
)vrV(VaR

)vrV(Q
)V(RORACQ

00

001







 , 

 

which we will call the Q-RORAC. Interpreting the value-at-risk as a necessary risk capital, 

the denominator of  (4.8) corresponds to the risk capital of the position 00vrV  , i.e. the 

(uncertain) profit in excess of the riskless profit 00vr . This riskless profit can be earned when 

the company invests the amount 0v  at the riskless interest rate. Similarly, the nominator in 

(4.8) corresponds to the upper quantile of this excess profit. Consistent with the generalized 

                                                 
15 See e.g. McNeil et al. (2005, p. 256). 
16 Assuming the existence of a density function of the distribution of V . 
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safety-first principle not the expected profit is the basis for evaluating the value of the finan-

cial position, but the upper quantile of its gain/loss-distribution. Another insight of the Q-

RORAC is, that not the profit V  itself is relevant, but only the profit 00vrV   in excess of 

the riskless profit. The denominator in (4.8) is location-dependent, which is reasonable, as the 

expected loss )V(E   is a part of the total loss VL   and therefore a part of the neces-

sary risk capital has to be calculated as a compensation for the expected loss. In case the risk 

capital is understood only to be a buffer for the unexpected loss17 

V)V(E)L(ELUL   the denominator of  (4.8) should be replaced with 

)V(MVaR)]vrV(EvrV[VaR 0000   , the mean value-at-risk of the profit posi-

tion, which now is location-independent. 

 

In practice, the RORAC typically is not maximized, but a minimum value Hr , the hurdle rate, 

is specified, which amounts to the relation 

 

(4.9) HrRORAC . 

 

In case of the Q-RORAC (4.8) the corresponding restriction is of the form 

 

(4.10) Hr)capitalrisk(vr)V(Q 001  . 

 

This implies, that the company considered demands a profit surcharge in excess of the riskless 

profit 00vr  and that this profit surcharge is proportional to the necessary risk capital. 

 

 

5. CAPITAL MARKET EQUILIBRIUM 

The existence of a separation property is the key to determine expected returns in capital mar-

ket equilibrium. In case of MV-investors one has to maximize the Sharpe ratio in order to 

obtain the capital market line, one of the key results of the CAPM. The same method is used 

by Arzac and Bawa (1977) in their study of a capital market equilibrium for SF-investors and 

in the present contribution we will take the same avenue. To do this we assume a capital mar-

                                                 
17 See e.g. McNeil et al. (2005, p. 412) for a corresponding approach. The necessary risk capital in this case 

is called economic capital by these authors. 
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ket with n risky assets with corresponding returns )n,...,1i(Ri   and one riskless asset with 

return 0r . All investors acting on this capital market are QSF-investors. We first define the Q-

ratio (4.2) in terms of the portfolio weights n1 x,...,x  of the risky assets 

 

(5.1) 
)x,...,x(G

)x,...,x(F

)R(Q)R(Q

r)R(Q
)x,...,x(Q

n1

n1

1

01
n1 







 . 

 

The quantities n1 x,...,x  are arbitrary real numbers. They do not have to sum up to one, be-

cause the difference to one corresponds to the amount of riskless investing resp. borrowing. 

With )rR(xrR 0ii0   we have 

 

(5.2a) )]rR(x[Q)x,...,x(F 0i1n1    

and 

(5.2b) 
.)]rR(x[Q)]rR(x[Q

)Rx(Q)Rx(Q)x,...,x(G

0ii0ii1

iiii1n1








 

 

The maximization of (5.1) leads to the first-order conditions 0x/Q j   for n,...1j  , which 

is equivalent to 

 

(5.3) )n,...,1j(x/G
G

F
x/F jj  . 

 

To calculate the partial derivaties of the functions F and G we have to use results in the con-

text of quantile derivatives, as obtained e.g. by Gourieroux et al. (2000) and as well Martin 

and Wilde (2002). Adapting their results to the present situation, we first obtain the general 

result 

 

(5.4) )]R(QR|R[Ex/)R(Q jj   . 

 

This result (only) assumes, that the vector T
n1 )R,...,R(  of the returns of the risky securities 

possesses a (multivariate) density function 0)r,...,r(f n1  , which is a rather weak assumption. 

From a structural point of view the j-th quantile derivative corresponds to the best prediction 
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(in terms of a minimum mean square error) of the return jR  given the information 

)R(QR  . Taking into consideration that in capital market equilibrium the optimal risky 

portfolio must agree with the market portfolio M and denoting the return of the market portfo-

lio as MR  we obtain from (5.2a) 

 

(5.5a) 
0M1Mj

0M10M0jj

r)]R(QR|R[E

)]rR(QrR|rR[Ex/F








 

 

And from (5.2b) 

 

(5.5b) }r)]R(QR|R[E{x/Fx/G 0MMjjj   . 

 

Summing up we obtain the following first-order conditions for capital market equilibrium. 

 

(5.6) 
.

)R(Q)R(Q

)]R(QR|R[E)]R(QR|R[E
]r)R(Q[

r)]R(QR|R[E

MM1

MMjM1Mj
0M1

0M1Mj















 

 

This result first generalizes the result of Arzac and Bawa (1977) with respect to the equations 

for the capital market equilibrium of SF-investors. Moreover, Arzac and Bawa (1977) only 

work with the formal quantile derivatives jn1 x/)x,...,x(Q    and are not able to substantiate 

these quantities further. Using the result (5.4) enables us to give an additional probabilistic 

interpretation of the quantities jx/Q   . We also note that the quantile function 

)Rx(Q)x,...,x(Q iin1    is a positive homogeneous function and from Euler's Theorem we 

therefore have 

 

)rR(Qx)]rR(x[Q)rR(Q 0M
M
j0i

M
i0M   . Rewriting (5.6) in the form 

 

(5.7) 

)R(Q)R(Q

)]R(QR|R[E)]R(QR|R[E

r)R(Q

r)]R(QR|R[E

MM1

MMjM1Mj

0M1

0M1Mj

















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it can be seen, that the nominator on the left hand side in (5.7) corresponds to the contribution 

of security j to the value measure 0M1 r)R(Q   of the market portfolio. In addition, the nom-

inator on the right hand side of (5.7) corresponds to the contribution of the j-th security to the 

risk measure )R(Q)R(Q MM1    of the market portfolio. This is in complete analogy to the 

CAPM, where relation (28) would read )R(Var/)R,R(Cov]r)R(E[/]r)R(E[ MMj0M0j  . 

 

Now (5.6) resp. (5.7) are structural relationships which are not easy to evaluate because of the 

conditional expectations involved. From an empirical point of view this is not a serious draw-

back, as one can perform a non-parametric estimation approach and estimate the conditional 

expectations involved in (5.6)  resp. (5.7) on the basis of (the conditional version of  the) Na-

daraya-Watson kernel estimate. However, in the rest of this chapter we want to investigate 

how to obtain explicit versions of the capital market equilibrium equation (5.6). A first strate-

gy would be to approximate the best prediction )X|Y(E  by the best linear prediction, i.e. the 

solution to the problem min!)])XaaY[(E 2
10   The solution is known to be 

 

(5.8) )]X(EX[)X,Y()Y(E)X|Y(E  , 

 

where )X(Var/)Y,X(Cov)X,Y(  . Using this result, the left hand side of (5.6) reduces to 

]r)R(Q)[R,R(r)R(E 0M1Mj0j    and the right hand side of (5.6) reduces to 

)R,R(]r)R(Q[ Mj0M1  . Reducing this equation further we obtain 

)R,R(]r)R(E[r)R(E Mj0M0j  , the capital market line equation of the CAPM! In this  

sense the CAPM can be understood to be a linear approximation to the equation (5.6), the 

QSF capital market line! In addition, it is well known since Kelker (1970) that for elliptical 

distributions the regressions )X|Y(E  are linear, i.e. that the best linear prediction is identical 

to the best prediction. In consequence, if we suppose T
n1 )R,...,R(  to follow a multivariate 

elliptical distribution, then T
Mj )R,R(  follows a bivariate elliptical distribution and the ex-

pression (5.8) is exact for )R|R(E Mj  . Consequently, the QSF-capital market line is identical 

with the CAPM-capital market line for the family of elliptical distributions. This is a reasona-

ble result, because only for asymmetrical distributions one is interested in an expression in-

volving asymmetrical elements of risk and value. To achieve a result in this direction, which 
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is not based on a particular distributional assumption, we consider the best quadratic approx-

imation, i.e. the solution to the problem min!)])XaXaaY[(E 22
210   instead of the best 

linear approximation. In this case the situation is slightly more involved. First, we have the 

standard result 

 

(5.9a) 
)],R(E)R(Q[a)]R(E)R(Q[a)R(E

)]R(QR|R[E
2
M

2
M2MM1j

MMj








 

 

where 

 

(5.9b) )]R,R(Cov)R,R(Cov)R(Var)R,R(Cov[
H

1
a 2

MM
2
Mj

2
MMj1   

 

(5.9c) )]R,R(Cov)R,R(Cov)R(Var)R,R(Cov[
H

1
a 2

MMMjM
2
Mj2   

 

and 

 

(5.9d) 
.)]R,R(1)[R(Var)R(Var

)R,R(Cov)R(Var)R(VarH
2
MM

22
MM

22
MM

2
MM




 

 

With  1  resp.   this result can be used to evaluate the conditional expectations 

involved in the general equation (5.6) for the QSF-capital market line. Realizing that 

 

(5.10a) 22
M

4
M

2
M ))R(E()R(E)R(Var   

 

(5.10b) )R(E)R(E)R(E)R,R(Cov 2
MM

3
M

2
MM  , 

 

it can be seen that using the quadratic approximation to (5.6), now third and fourth moments 

of the return of the market portfolio have to be taken into consideration as well. Another addi-

tional term compared to the linear approximation is )R,R(Cov 2
Mj . This term is not very con-

venient and so we are interested in approximating this term, too. Expanding the function 
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)Y(fZ   in a Taylor series about )Y(E  we obtain the approximation 

)]Y(E['f)]Y(EY[)]Y(E[fZ   and therefore 

 

(5.11) )Y,X(Cov)]Y(E['f))Y(f,X(Cov  . 

 

With jRX  , MRY   and 2y)y(f   we therefore obtain the approximation 

 

(5.12) )R(E)R,R(Cov2)R,R(Cov MMj
2
Mj  , 

 

which makes our analysis complete. 

 

 

6. CONNECTIONS TO THE SAFETY-FIRST PRINCIPLE 

Within the framework of the traditional safety-first principle of Telser (1955/56) and Arzac 

and Bawa (1977) the expected return is maximized instead of an upper quantile as done in the 

present contribution. Coming closest to the traditional version would be to maximize the me-

dian of the return distribution – being a quantity which is more robust than the expected value. 

Only for return distributions for which the median is identical to the expected value, the tradi-

tional safety-first principle is a true special case of the present approach. 

 

Looking at the traditional SF-principle a bit further and performing recalculations of the 

preceeding results using )R(E  instead of )R(Q1  , we obtain a number of corresponding re-

sults, which we will present in the following. 

 

Corresponding to (3.8) SF-investors maximize the ratio )]R(Qr[/]r)R(E[ P00P   to obtain 

an optimal risky portfolio. This is the result obtained by Arzac and Bawa (1977) in connection 

with the separation property for SF-investors. Equivalently and corresponding to (4.2) they 

maximize the ratio )]R(Q)R(E[/]r)R(E[ PP0P  . As for the mean value-at-risk we have 

)R(Q)R(E)R(E)R(Q)R(MVaR 1    , equivalently SF-investors maximize the 

ratio )R(MVaR/]r)R(E[)R(SF 0  , which would be the relevant performance measure for 

SF-investors. The quantity SF(R) could be called safety-first ratio or reward-to-mean value-
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at-risk ratio and is a performance measure already known from literature18. It should be noted 

that Favre and Galeano (2002) use this risk measure, too, in connection with hedge funds. 

These authors combine the ratio with a Cornish-Fisher-Expansion and call the resulting quan-

tity mean modified value-at-risk ratio. Moreover, Favre and Galeano (2002, pp. 22 – 24) ex-

plicitly address the fact that this ratio can be obtained on the basis of the separation result of 

Arzac and Bawa (1977). The quantity corresponding to (4.8) is 

)]V(MVaR[/]vr)V(E[ 00   , which one could call the Safety-first RORAC. Finally, ana-

lyzing the first-order conditions (5.6) for SF-investors we obtain the expression 

 

(6.1) 
)R(MVaR

)]R(QR|R[E)R(E
]r)R(E[r)R(E

M

MMjj
0M0j




 , 

 

which generalizes the corresponding result of Arzac and Bawa (1977) , who, however, are 

only able to express their results in terms of the formal quantities jM x/)R(Q   . Appro-

ximating )]R(QR|R[E MMj   by the corresponding best linear prediction again leads to the 

CAPM. This approximation is exact for elliptical return distributions, which generalizes the 

results obtained by Arzac and Bawa (1977), who note that this is the case for the normal dis-

tribution and for stable Paretian distributions (both of them belonging to the family of ellipti-

cal distributions). 

 

 

7. CONCLUDING REMARKS 

In the present paper we generalized the safety-first principle in the versions of Telser 

(1955/56) and Arzac and Bawa (1977) by combining it with the principle of quantile maximi-

zation of Rostek (2010). While maintaining the element of a shortfall constraint of the safety-

first principle we proposed to maximize an upper quantile of the (return) distribution instead 

of maximizing its expected value. After having introduced and characterized the new decision 

principle, we have studied the implications of the new decision principle for portfolio selec-

tion and capital market equilibrium. We were able to derive a separation result and on this 

basis, using results in connection with quantile derivatives, we obtained a structural character-

ization of the equilibrium equations involving conditional expectations, i.e. best predictions. 

                                                 
18 See e.g. Biglova et al. (2004, p. 106) and Farinelli et al. (2008, p. 2059), the ratio being called VaR-ratio 

by these authors. 
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Approximating these best predictions by best linear predictions resp. best quadratic predic-

tions we were able to obtain explicit solutions for the capital market equilibrium. In case of 

the best linear approximation (which is exact for elliptical distributions) the CAPM is ob-

tained. Moreover, we studied the consequences of the new decision principle for risk meas-

urement and for risk-adjusted performance measurement. We introduced a new risk measure, 

the quantile range, a new performance ratio, the Q ratio and a new measure for the return on 

risk-adjusted capital, the Q-RORAC. 

 

The present paper had its primary focus on the conceptual aspects of the problems studied. 

The safety-first principle in the versions of Telser (1955/56) resp. Arzac and Bawa (1977), 

however, has found a number of applications in the finance literature, too. These applications 

range from asset allocation (see e.g. Leibowitz and Kogelman 1991) to risk-adjusted perfor-

mance measurement (see e.g. Favre and Galeano 2002). With respect to these applications the 

present paper therefore also paves the way to a number of subsequent empirical studies. 
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