

METHODOLOGY AND ECOSYSTEM

FOR THE DESIGN OF A

COMPLEX NETWORK ASIC

Inauguraldissertation
zur Erlangung des akademischen Grades
eines Doktors der Naturwissenschaften

der Universität Mannheim

vorgelegt von

Sven Uwe Kapferer
(Diplom-Informatiker der Technischen Informatik)

aus Mannheim

Mannheim, 2012

Dekan: Prof. Dr. Heinz Jürgen Müller, Universität Mannheim
Referent: Prof. Dr. Ulrich Brüning, Universität Heidelberg
Korreferent: Prof. Dr. Holger Fröning, Universität Heidelberg

Tag der mündlichen Prüfung: 14.02.2013

Abstract

Performance of HPC systems has risen steadily. While the 10 Petaflop/s barrier has been
breached in the year 2011 the next large step into the exascale era is expected sometime
between the years 2018 and 2020. The EXTOLL project will be an integral part in this
venture. Originally designed as a research project on FPGA basis it will make the transition
to an ASIC to improve its already excelling performance even further. This transition poses
many challenges that will be presented in this thesis. Nowadays, it is not enough to look only
at single components in a system. EXTOLL is part of complex ecosystem which must be
optimized overall since everything is tightly interwoven and disregarding some aspects can
cause the whole system either to work with limited performance or even to fail.

This thesis examines four different aspects in the design hierarchy and proposes efficient
solutions or improvements for each of them. At first it takes a look at the design
implementation and the differences between FPGA and ASIC design. It introduces a
methodology to equip all on-chip memory with ECC logic automatically without the user’s
input and in a transparent way so that the underlying code that uses the memory does not
have to be changed. In the next step the floorplanning process is analyzed and an iterative
solution is worked out based on physical and logical constraints of the EXTOLL design.
Besides, a work flow for collaborative design is presented that allows multiple users to work
on the design concurrently. The third part concentrates on the high-speed signal path from
the chip to the connector and how it is affected by technological limitations. All constraints
are analyzed and a package layout for the EXTOLL chip is proposed that is seen as the
optimal solution. The last part develops a cost model for wafer and package level test and
raises technological concerns that will affect the testing methodology. In order to run testing
internally it proposes the development of a stand-alone test platform that is able to test
packaged EXTOLL chips in every aspect.

Zusammenfassung

Die Leistung von HPC Systemen hat sich kontinuierlich gesteigert. Im Jahr 2011 wurde die
10 Petaflop/s Grenze durchbrochen. Der nächste große Schritt in das Exascale Zeitalter wird
nun für irgendwann zwischen den Jahren 2018 und 2020 erwartet. Das EXTOLL Projekt
wird ein wesentlicher Bestandteil auf dem Weg dorthin sein. Ursprünglich für FPGA
Technologie entwickelt wird im nächsten Schritt die Umsetzung als ASIC verwirklicht, um
die schon jetzt ausgezeichnete Leistung noch weiter zu steigern. Dieser Wechsel birgt viele
Herausforderungen, die in dieser Arbeit vorgestellt werden. Heutzutage genügt es nicht, nur
die Einzelkomponenten eines Systems zu betrachten. EXTOLL ist ein Teil eines komplexen
Ganzen und muss an allen Stellen optimiert werden, da alle Einzelteile eng miteinander
verbunden sind. Die Vernachlässigung einzelner Aspekte kann dazu führen, dass das
Gesamtsystem entweder nur mit begrenzter Leistung oder vielleicht sogar gar nicht
funktioniert.

Diese Arbeit untersucht vier unterschiedliche Aspekte im Designablauf und stellt für jeden
dieser Aspekte eine effiziente Lösung oder Verbesserung vor. Zuerst wird die Umsetzung des
Designs betrachtet und die Unterschiede zwischen einem FPGA und einem ASIC Design. Es
wird eine Methodik vorgestellt, um den Speicher auf dem Chip automatisch und ohne Zutun
des Benutzers mit ECC Logik auszustatten und zwar so, dass der Code, der den Speicher
benutzt, nicht geändert werden muss. Im nächsten Schritt wird der Ablauf des
Floorplanning analysiert und eine iterative Lösung des Problems basierend auf den
technischen und internen Randbedingungen herausgearbeitet. Außerdem wird ein
Arbeitsablauf für gemeinschaftliches Arbeiten vorgestellt, der es mehreren Benutzern
erlaubt, gleichzeitig am Design zu arbeiten. Der dritte Teil konzentriert sich auf den
Hochgeschwindigkeitspfad vom Chip bis zum Stecker und welchen Einfluss die
technologischen Einschränkungen auf ihn haben. Alle Bedingungen werden analysiert und
ein Entwurf eines Package für den EXTOLL Chip wird aufgezeigt, der als bestmögliche
Lösung angesehen wird. Im letzten Teil wird ein Kostenmodell für Tests auf dem Wafer und
im Package entwickelt. Es werden technologische Bedenken geäußert, die Einfluss auf den
Testablauf haben. Um Tests im Labor selbst durchführen zu können, wird die Entwicklung
einer selbständigen Testplattform vorgeschlagen, die es erlaubt fertige EXTOLL Chips nach
allen Gesichtspunkten zu testen.

I

Table of Contents

1 Introduction .. 1

1.1 Motivation ... 1

1.2 Scope of Work ... 3

1.3 EXTOLL Design ... 4

1.3.1 Host Interface ... 5

1.3.2 EXTOLL Core Logic .. 6

1.3.3 EXTOLL NIC .. 8

1.4 Outline ... 8

2 EXTOLL ASIC ... 11

2.1 Design Decisions .. 11

2.1.1 Performance Comparison ... 11

2.1.2 Technology Analysis .. 12

2.2 Transition from FPGA to ASIC.. 17

2.3 Design Guidelines... 17

2.3.1 Timing Basics .. 18

2.3.2 Reset ... 19

2.4 Embedded Memory .. 21

2.4.1 Memory Faults .. 23

2.4.2 Automatic Memory Generator... 26

2.5 Design for Test .. 31

2.6 Clocking ... 32

2.6.1 Supporting Circuits .. 33

2.6.2 Clocking Structure ... 35

2.6.3 PLL ... 37

II

2.7 Prototyping ... 38

2.8 Toplevel Organization ... 41

3 ASIC Design Considerations .. 47

3.1 Design Preparation .. 47

3.1.1 LIB .. 47

3.1.2 LEF ... 48

3.1.3 Capacitance Tables .. 49

3.1.4 SDC / Timing Constraints .. 50

3.1.5 DEF .. 51

3.1.6 Flow Script .. 51

3.2 Data Hierarchy ... 52

3.3 Frontend Flow .. 54

3.4 Backend Flow .. 60

3.5 Floorplanning and Datapath Analysis .. 63

3.5.1 Datapath Analysis - Global View ... 66

3.5.2 Pre-placement .. 67

3.5.3 Datapath Analysis - Detailed View .. 69

3.5.4 Miniature Optimizations .. 74

4 Optimization of Complex Interconnection Structures ... 79

4.1 Design constraints .. 79

4.1.1 Technological Limitations .. 80

4.1.2 Signal Integrity ... 80

4.1.3 Viability ... 80

4.1.4 Economic Feasibility ... 80

4.2 Design Components .. 81

4.2.1 Connector ... 81

III

4.2.2 PCB .. 83

4.2.3 Package .. 86

4.2.4 Die .. 90

4.3 Automatic Generation ... 91

4.4 SI Analysis ... 92

4.5 PDN Design .. 93

4.6 Results .. 95

4.6.1 EXTOLL I/O ... 95

4.6.2 EXTOLL Supply ...101

4.6.3 Constraints and Efficiency ..103

5 EXTOLL Test .. 105

5.1 Test Analysis ...105

5.2 Wafer Test ...107

5.3 Package Test ..108

5.4 Process Analysis ..109

5.5 Test Setup ..113

5.6 Test Hardware ...116

5.6.1 Analysis..116

5.6.2 Proposal ...120

6 Conclusion... 125

6.1 Results ..125

6.2 Project Review ...127

6.3 Outlook ..128

A Acronyms .. 131

IV

B Bibliography .. 137

C EXTOLL Package .. 147

D STIL Example .. 153

V

List of Figures

Figure 1.1 TOP500 Development .. 1

Figure 1.2 DEEP Architecture .. 2

Figure 1.3 Booster Node Architecture .. 3

Figure 1.4 EXTOLL Block Diagram .. 5

Figure 2.1 Design Space Diagram for EXTOLL Technology Selection 13

Figure 2.2 Flip-Flop Timing Parameters ... 18

Figure 2.3 Reset Synchronizer Circuit ... 20

Figure 2.4 FPGA Memory Flow ... 21

Figure 2.5 Memory Size Distribution .. 22

Figure 2.6 Memory Speed Analysis ... 23

Figure 2.7 Occupied Chip Area .. 24

Figure 2.8 ECC Complexity Analysis .. 26

Figure 2.9 256x128 RAM Instance ... 27

Figure 2.10 RAM Timing with Handshaking ... 29

Figure 2.11 Levels of Indirection ... 29

Figure 2.12 Debug Port Overview.. 32

Figure 2.13 Divide-by-3 Clock Divider ... 33

Figure 2.14 Divide-by-3 Clock Divider Waveform ... 33

Figure 2.15 Divide-by-5 Clock Divider ... 34

Figure 2.16 Divide-by-5 Clock Divider Waveform ... 34

Figure 2.17 Glitchless Clock Multiplexer Waveform .. 34

Figure 2.18 Glitchless Clock Multiplexer .. 35

Figure 2.19 EXTOLL Clocking Scheme .. 36

Figure 2.20 EXTOLL PLL ... 37

VI

Figure 2.21 Ventoux Prototyping Platform ... 39

Figure 2.22 Galibier Prototyping Platform .. 40

Figure 2.23 PCIe Backplane ... 40

Figure 2.24 FPGA Toplevel Organization .. 41

Figure 2.25 ASIC Toplevel Organization ... 43

Figure 3.1 Layer Stack of EXTOLL ASIC ... 48

Figure 3.2 Effect of Optical Proximity Correction .. 48

Figure 3.3 Simple Inverter as Full Layout and Abstract View ... 49

Figure 3.4 EXTOLL ASIC Subversion Structure ... 53

Figure 3.5 Gate vs. Interconnect Delay ... 55

Figure 3.6 Synthesis Input and Output Files .. 55

Figure 3.7 Frontend Flow Organization ... 57

Figure 3.8 Memory Test Connections .. 59

Figure 3.9 Backend Flow Organization .. 61

Figure 3.10 Signal Reach in One Clock Cycle (8 FO4) ... 64

Figure 3.11 Automatic Placement without Floorplan .. 65

Figure 3.12 Global Datapath Analysis .. 67

Figure 3.13 Automatic Placement with Preplaced Macros .. 68

Figure 3.14 Hierarchical Floorplanning ... 69

Figure 3.15 HTAX Structure .. 72

Figure 3.16 EXTOLL XBAR Structure .. 73

Figure 3.17 Relative Placement Example .. 74

Figure 3.18 Schematic of a 4x2 Register Based RAM .. 76

Figure 4.1 Connectivity Design Constraints .. 79

Figure 4.2 Schematic Representation of Signal Path .. 81

Figure 4.3 Samtec HDI6 Connector .. 82

Figure 4.4 PCB Layout of HDI6 Connector ... 82

Figure 4.5 Impact of Parameters on Impedance ... 84

VII

Figure 4.6 Differential Stripline ... 84

Figure 4.7 Example PCB Stackup ... 85

Figure 4.8 Aspin Test Board ... 86

Figure 4.9 Differential Pair BGA Breakout ... 88

Figure 4.10 A 12x Serdes Breakout .. 89

Figure 4.11 Scripting Approach ... 91

Figure 4.12 Single Channel Simulation Setup .. 92

Figure 4.13 Eye Diagram at 10 Gb/s .. 93

Figure 4.14 Example of an Insufficient Power Supply .. 94

Figure 4.15 Oscillator Circuit ... 98

Figure 5.1 Test Options ...105

Figure 5.2 Chip Test Flow ...106

Figure 5.3 Teradyne Tester ...107

Figure 5.4 Microprobe Vx-MP Probe Card ..107

Figure 5.5 Spring Pin ...108

Figure 5.6 Test Cost Analysis ...112

Figure 5.7 Scan Chain Structure ..114

Figure 5.8 EXTOLL Test Organization ...115

Figure 5.9 CMOS Inverter ..118

Figure 5.10 Test Data Processing ...120

Figure 5.11 Design Space for Tester Development..120

Figure 5.12 Test Platform Proposal ...122

IX

List of Tables

Table 2.1 Competitor Overview ... 11

Table 2.2 Timing Parameters and Their Meaning .. 18

Table 3.1 Design Data Storage.. 54

Table 3.2 Floorplan Evaluation .. 70

Table 3.3 XBAR Area Distribution .. 73

Table 4.1 EXTOLL High Speed Connectivity .. 79

Table 4.2 Connector Overview ... 81

Table 4.3 HyperTransport Interface Pins ... 96

Table 4.4 PCI Express Interface Pins ... 96

Table 4.5 Network Interface Pins ... 97

Table 4.6 Clocking Pins ... 97

Table 4.7 Configuration and Reset Pins .. 98

Table 4.8 Miscellaneous Pins .. 99

Table 4.9 JTAG Interface Pins ..100

Table 4.10 Dedicated DFT Pins ...101

Table 4.11 Digital Core and I/O Supply ..102

Table 4.12 HyperTransport Supply ...102

Table 4.13 Clocking Supply ..103

Table 4.14 Serializer Supply ..103

Table 5.1 Parameters for Die Calculation ...109

Table 5.2 Parameters for Cost Calculation ...111

Introduction

1

1 Introduction

1.1 Motivation

“I think there is a world market for maybe five computers”

Alleged quote by Thomas Watson, IBM CEO, 1943

Regardless of the historical accuracy of the quote it represents a view that no one could
imagine that there is a need for actual computing power. Nevertheless, performance of
processors has risen steadily and continues growing exponentially. On the basis of Moore’s
law that states that the number of transistors in an integrated circuit doubles every two years
it was predicted that the performance doubles every 18 months. This prediction has even
been surpassed by the supercomputer market.

Figure 1.1 TOP500 Development

Introduction

2

A historical observation from the Top500 list1 [1] in figure 1.1 shows that the maximum
performance of the fastest installation which is measured by the Linpack benchmark [2] has
increased tenfold about every four years. With the first installation breaching the 10
Petaflop/s barrier in November 2011 it can be projected that the Exascale era will be reached
around 2020. However, current architectures will not scale up to this point [3]. One project
to meet the Exascale challenge is the DEEP (Dynamic Exascale Entry Platform) project which
is supported by the European Union through the Seventh Framework Programme (FP7).

The idea is to combine two separate networks. One is a typical cluster installation (CN)
connected through a central InfiniBand switch. The other network is a specialized booster
network consisting of accelerators (BN) that are connected in a torus topology through a
specialized high-performance, low latency network, EXTOLL. The following figure 1.2 shows
the organization of the DEEP architecture and how the two networks are connected through
so called Booster Interconnect (BI) nodes.

Cluster Network / InfiniBand Booster Network / EXTOLL

BNBN BN

BNBN BN

BNBN BN

BI

BI

BI

InfiniBand Switch

CN

CN

CN

CN

CN

Figure 1.2 DEEP Architecture

The following figure 1.3 shows a schematic representation of a Booster Node. At the moment
it is planned that one hardware node will consist of two booster nodes.

1 Based on the 39th list from June 2012

Introduction

3

EXTOLL Xeon Phi
Mem

PCIe

PC
Ie

 E
PPCIe RP

Figure 1.3 Booster Node Architecture

The noteworthy feature is that the system does not need a host CPU, the accelerator (Xeon
Phi) is directly connected to the network through EXTOLL.

1.2 Scope of Work

The International Technology Roadmap for Semiconductors (ITRS) identified “Networking”
in their 2011 report [4] as one of the key markets that drives the future of the semiconductor
industry. The need for higher bandwidth which is estimated to quadruple every 3-4 years, the
short time-to-market, high reliability and the need to keep the power envelope low lead to
advances in serializer technology, embedding of switching functionality and the ability to
integrate a larger number of gates in a chip to move all system functions into a single large
System-on-Chip (SoC). An analysis of the 10 fastest computers in the Top500 list suggests
that a custom / proprietary interconnect that is tailored specifically for the system is still the
best path to take. Such a custom interconnect that was selected for the DEEP system is the
EXTOLL interconnect which was specifically designed for the High Performance Computing
(HPC) market. Because it is an integral part of the functionality of the Booster Network as
seen in figures 1.2 and 1.3 it is especially important that it will have the highest performance
available so that the whole system will perform outstandingly. Highest performance means
that EXTOLL must be implemented as an ASIC [5] which allows both a high internal
frequency and also fast connectivity to the outside world. This cannot be achieved with an
FPGA since the performance gap between FPGAs and ASICs is rather large despite
continuous improvements in FPGA technology. For a purely logic based design an ASIC will
perform about 4 times faster than an FPGA [6].

However, a system does not only consist of a single component but is a complex ecosystem
that represents a pretty wide design space. With an ASIC that is designed from scratch this

Introduction

4

ecosystem can be optimized for all components. But this multi-dimensional optimization
problem must be solved concurrently since each decision has a direct impact on both the
performance and the optimization space of the remaining components.

This thesis analyzes four different aspects of the EXTOLL chip and its surrounding
ecosystem and either proposes solutions or methodologies that significantly improve the
final results.

- Design
The key differences between FPGA and ASIC design are worked and out, especially
in the area of on-chip memory and an innovative methodology is introduced to
handle on-chip error checking and correction in a transparent way.

- Physical implementation
Special consideration is given to the floorplanning process and how it relates to both
physical constraints like signal arrangement and logical constraints like the dataflow
inside the design.

- Connectivity and signal integrity
The signal path from the chip, through the package and the PCB to the connector is
analyzed and a package definition is proposed that is an optimal solution considering
the technological limitations, viability, signal integrity and also cost concerns.

- Testing
At last a cost model concerning test is developed and as a consequence of this a new
test platform is presented that is able to test packaged EXTOLL chips in every aspect.

1.3 EXTOLL Design

EXTOLL (EXtended aTOLL) is the successor of ATOLL, the first network chip developed at
the Chair of Computer Architecture, University of Mannheim, which was implemented in a
180nm process from UMC [7]. The good performance numbers and many promising ideas
lead to the next research project EXTOLL which has been in development for the last years.

EXTOLL can be logically divided into three different parts:

- The host interface part, which contains two exclusive commodity host interface
controllers

Introduction

5

- The EXTOLL core logic part, which contains both the FUs (functional units) that
make up EXTOLL’s basic functionality and assisting units that are needed to support
all features of EXTOLL

- The network interface part which includes the switching functionality as well as the
control logic to interface to the outside world

The block diagram in figure 1.4 gives an overview of the design blocks inside EXTOLL that
will be shortly described in the following.

HT
PHY

PCIe
PHY

HT3 16x

PCIe
Gen3
x16

HT3
Core

PCIe
Core
(EP/
RP)

PCIe
Bridge

HTAX
Bridge HTAX

VELO

RMA

SMFU

ATU

RF

NP

NP

NP

NP EXTOLL
Xbar

LP

LP

LP

LP

LP

LP

LPSNQ Debug-
port

Link
Ctrl

Link
Ctrl

Link
Ctrl

Link
Ctrl

Link
Ctrl

Link
Ctrl

Link
Ctrl

Link
PHY

Link
PHY

Link
PHY

Link
PHY

Link
PHY

Link
PHY

Link
PHY

12x

I2 C

SP
I

12x

12x

12x

12x

12x

12x

Figure 1.4 EXTOLL Block Diagram

1.3.1 Host Interface

One of the supported host interfaces is HyperTransport (HT) [8] that is specific to AMD
based systems. The HT3 core [9] inside of EXTOLL is a standard compliant implementation
of the protocol supporting all required features to directly connect to modern AMD
processors. The HT3 core is connected to the HT PHY that takes care of the physical layer
implementation of the HT links similar to the PHY implementations in the CPU [10] [11].
With a link width of 16 bit and supported transfer rates of up to 2.6 GT/s the link is able to
sustain a raw bandwidth of 10.8 GB/s.

Besides HyperTransport EXTOLL also supports PCI Express (PCIe) [12] as a host interface.
Both the PCIe PHY that handles the physical layer and the PCIe core that implements the

Introduction

6

data link layer and transaction layer are external IP and are not developed in-house. They
both support the latest 3.0 revision of the specification, thus providing up to 16 GB/s link
bandwidth for an x16 connection to the host system. The PCIe core can be configured either
as an endpoint, thereby assuming the role of a traditional network interface controller (NIC),
and also as a rootport. Working as a rootport allows a direct host-independent
communication with an endpoint, e.g. a graphics card. Therefore an arbitrary device can be
added to the network without the need for a host CPU. Although HyperTransport and PCIe
share architectural similarities they are not directly interchangeable. Thus, a translation layer,
the PCIe Bridge [13], is needed to generate packets that can be understood by the following
modules and to handle the peculiarities of the PCIe core and protocol.

The HTAX Bridge [14] is the interface between the host interfaces and the internal EXTOLL
logic. In RX direction it translates the packet format of the IP cores to the HTOC protocol
that is used internally for communication between functional units. For transmitting packets
the translation is reversed.

HTAX [15] is an internal 9x9 on-chip crossbar that connects the three virtual channels of the
host interfaces to the functional units inside EXTOLL. It represents a protocol independent
switching architecture with low overhead for direct communication between two ports.

1.3.2 EXTOLL Core Logic

The VELO (Virtualized Engine for Low Overhead) [16] functional unit has been designed to
transmit small messages up to a size of 64 bytes (which corresponds to one cache line in
today’s x86 based processors) efficiently and with minimal overhead. On an FPGA prototype
sub µs latency could be achieved with minimum size packets. Nevertheless, VELO can also
transmit larger messages, however, its efficiency decreases the larger the packets get.

For larger bulk transfers the RMA (Remote Memory Access) [17] unit was introduced. It
provides put and get operations that can be started with a single packet from the host system
and then work independently of the processor. It can work with both physical and virtual
addresses. Both VELO and RMA are fully virtualized and therefore allow concurrent access
from different user space processes.

The ATU (Address Translation Unit) [18] is a supporting unit for the RMA and provides
address translations from virtual addresses that are used in RMA to physical system
addresses without involving the operating system and therefore without the kernel overhead

Introduction

7

that would be required otherwise. Essentially it can be viewed as an MMU (Memory
Management Unit) since it performs a comparable task to the MMU in a CPU.

The SMFU (Shared Memory Functional Unit) [19] introduces support for a non-coherent
distributed shared memory by forwarding local stores and loads to non-local nodes. This is
done by splitting the local CPU’s address space in local and remote memory. Loads and
stores that are mapped to remote memory will be handled by the SMFU and transferred to
the correct node and executed there without any additional software support.

The RF (Registerfile) [18] module contains control information for all internal units and is
also used to collect debug data that is generated in the various instances. Since it is mapped
into the system’s address space the values can be easily changed through the system software.
The register file is automatically generated from an XML specification which leads not only
to a RTL implementation but also code for kernel drivers, documentation and verification is
generated automatically. With tens of thousands lines of codes and more than thousand
internal registers it is an integral part of EXTOLL. Because the register file is organized in a
hierarchical way register file nodes can be distributed over the chip and move into functional
units to shorten signal paths between the register file and the unit that is controlled by it.

The SNQ (System Notification Queue) [18] serves two purposes. It is used to send interrupts
to notify the host system that an important event has occurred in the device that should be
handled by the kernel driver. The second purpose is to collect debug information upon
triggers from units in the design and dump the information to main memory.

The Debugport [20] is actually not a part of the EXTOLL functionality but a safeguard against
mistakes in the design phase that might be discovered after the chip is produced and brought
up in the lab. It is also, as the name implies a method to access debug information after the
host system has crashed and software access to the device is no longer possible. In order to
perform this functionality the module contains two external interfaces. The Debugport
connects to an SPI flash that can contain replacement values for registers in the register file.
Those values will be loaded into the chip before the internal reset is released so that they are
available at the startup of the logic. By creating this bypass it is possible to correct wrong
initialization values for the host interface, for example, that might keep the chip from being
recognized in the system. In order to load debug values from the register file without access
to the system the Debugport also contains an I2C slave that is able to access the complete
register file. The module shares a direct access path to the register file with the SNQ so that it
does not have to depend on a clean state in the rest of the system.

Introduction

8

The NP (Network Port) [14] is the interface between the functional units and the EXTOLL
NIC. Since the functional units are not aware of protocol details the required framing and
deframing is performed in the NP as well as the flow control required for the network.

1.3.3 EXTOLL NIC

The key element of the EXTOLL NIC is the internal 11x11 EXTOLL XBAR [14]. The routing
is performed on a table-based algorithm [21] which makes it easy to implement adaptive
routing and reroute packets in error situations. Since switching is done using VCT (Virtual
Cut Through) the crossbar has significant memory requirements. With a route-through
latency of 17 clock cycles it shows an excellent performance.

The LP (Link Port) [22] protects EXTOLL packets by adding a CRC to them. In the case of
an erroneous transmission the packet is marked and a retransmission is started. Therefore
the LP contains a retransmission buffer that is able to store at least as many packets as are
required to perform a retransmission from the point when the defective packet was sent.

The Link Control units are the interface between the logical packets in the link port and the
physical transmission in the PHY layer. Like earlier FPGA based versions the EXTOLL ASIC
uses 8b10b coding to ensure DC balanced transmission. The Link Control module also
contains logic for link initialization, rate switching and training.

1.4 Outline

This thesis can be divided into two parts. Chapter 2 and 3 focus on the EXTOLL ASIC and its
implementation while the subsequent chapters 4 and 5 deal with the ecosystem around
EXTOLL. Each chapter focuses on one key aspect in the design that was analyzed and
optimized during the design process.

Chapter 2 gives an overview of the technological obstacles during the planning phase of the
EXTOLL chip. It also shows the relevant changes from an earlier FPGA based
implementation to an ASIC based implementation and focuses on the technological
differences. Some modules that were specifically designed for the ASIC implementation are
also introduced.

Chapter 3 introduces a modern ASIC flow that is used to implement the EXTOLL chip. It
gives a short overview of the complete design flow starting with synthesis up to the final
tapeout for chip production. A set of guidelines are presented for collaborative work on such

Introduction

9

a large chip. The rest of the chapter focuses on the development and optimization of the
floorplan with respect to the package layout developed in the next chapter.

Chapter 4 analyzes the design space for the package and PCB development for EXTOLL and
introduces a suitable solution while keeping signal integrity, production cost and other
relevant factors in mind.

At last, chapter 5 focuses on the testing of the EXTOLL ASIC for defects. It describes the
challenges in wafer testing and analyzes the cost structure of a complete chip test process. In
the end a test environment is presented that is able to perform these tasks in a lab
environment.

The thesis is concluded by a last chapter that summarizes the results that were worked out in
this thesis. It also reviews the design process and its complexity and introduces a set of
guidelines that were learned throughout the development. Finally, it also gives an outlook to
future developments regarding EXTOLL.

EXTOLL ASIC

11

2 EXTOLL ASIC

2.1 Design Decisions

The EXTOLL research project has been started as a successor of the ATOLL interconnect,
the previous interconnection network of the Computer Architecture Group at the University
of Mannheim. After the first version of EXTOLL (R1) was able to confirm and supersede
[23] the competitive results of ATOLL and more features were introduced to distinguish the
network from other vendors it was decided to move EXTOLL from a sole research interest to
a real product to be introduced to the global HPC market. Although ATOLL was built as an
ASIC, subsequent development switched to FPGAs that could be utilized easily as a rapid
prototyping platform. The idea to commercialize EXTOLL had to lead to a review of design
alternatives in order to determine the best path to create a product with a profitable price
structure and competitive performance.

2.1.1 Performance Comparison

In order to define the minimum performance parameters that EXTOLL had to achieve a look
at the competitors at that time was necessary:

Product Technology Clock
Frequency

Link
Bandwidth

Latency Msg rate

Infiniband
QDR

ASIC ~500 MHz 40 Gb/s 1.59 µs 6.7m msg/s

10GE ASIC ~125-312
MHz

12.5 Gb/s 12.5 µs <2.5m msg/s

Cray
Gemini

ASIC 650 / 800 MHz 75 Gb/s 1.5 µs ~2m msg/s

Tianhe-1a ASIC unknown 80 Gb/s 2.5 µs 1-3m msg/s
TOFU ASIC 312.5 MHz 50 Gb/s 1.5 µs >8m msg/s
Ventoux
(EXTOLL)

FPGA 200 MHz 16 Gb/s 1.2 µs 25m msg/s

Table 2.1 Competitor Overview

Three characteristics can be used to qualify the performance of an interconnection network:

EXTOLL ASIC

12

- Latency
The latency describes how much time it takes to send the smallest possible packet
between two communication partners. Unlike the round-trip latency this
measurement excludes the time that is spent processing the packet in the receiver
and is therefore more accurate.

- Link bandwidth
The link bandwidth defines the raw speed of a link between two endpoints including
the protocol overhead. This is an important metric for bulk transfers since best
utilization is usually reached by using maximum sized messages to carry the data

- Message rate
The last important characteristic is the message rate. It defines how many messages
can be exchanged between two endpoints in a second. Obviously, the highest
message rate can be achieved by using minimum sized packets.

Naturally, all these parameters are interlinked in some way and an overall outstanding
performance can only be reached by tuning each characteristic. Nevertheless, some
applications will benefit more from improving one metric over another because of their
unique communication patterns. All these measurements can be determined by a set of
micro benchmarks from Ohio State University, the OSU Micro-Benchmarks suite [24].

It is clearly visible from the table that the Ventoux prototype is comparable in terms of start-
up latency and even surpasses competitors regarding the message rate. The notable exception
is the raw link bandwidth which is the second worst of all compared technologies. It is
obvious that this is the area in which a commercial product must step up a notch in order to
provide unique performance across all metrics. Of course, it is not unfavorable if the other
numbers also improve by switching to another technology.

2.1.2 Technology Analysis

There are some limitations you have to consider when comparing to an industrial project,
especially with regards to development costs. Since EXTOLL stemmed from a research
project it was not required to develop the design from scratch. However, the high costs
associated with modern semiconductor technology prevent both complete pre-development
in a research context and also personal funding. This means that external funding must be
acquired from investors or venture capitalists. Unfortunately, this is rather difficult in
Germany where investors prefer spending their money on software projects. It is unusual to
acquire substantial sums for a hardware project because of the high risk involved. This also

EXTOLL ASIC

13

means that the budget for a chip implementation is limited and it is important to earn money
as soon as possible in order to keep the business going.

The following design space diagram in figure 2.1 outlines the different paths that can be
taken in order to realize a commercial EXTOLL product.

EXTOLL Technology

FPGA based ASIC based

Standard FPGA Hardened FPGA 28nm 65nm45nm 90nm

Figure 2.1 Design Space Diagram for EXTOLL Technology Selection

FPGA’s logic density has steadily increased from generation to generation. Altera’s Stratix V
family contains devices with up to 950k equivalent logic elements while Xilinx’s biggest
Virtex-7 device even offers two million logic cells. Although these numbers are not exactly
comparable because of different internal structures they both show that FPGAs provide an
enormous amount of logic resources. As a comparison, the EXTOLL Ventoux prototype
implemented on a Virtex-6, albeit with a slightly lower logic complexity, fills up a device with
240k logic cells. Thus, it can be assumed that an implementation of all the logic inside a
single FPGA would be feasible. However, prices from an authorized distributor for the
largest Virtex-7 available are in the range of $30,000 per device2. Although Xilinx offers
significant discounts for larger volumes [25], the final unit price would probably still be more
than $1,000. Coupled with the fact that it is very hard to exceed internal clock frequencies of
200 MHz (as seen in the prototypes) for complex logic it is easily transparent that it is not
possible to build a product that is competitive in both performance and financial aspects.

Both Altera and Xilinx as major FPGA vendors also offer solutions for hardened FPGAs.
However, their approaches are fundamentally different. Xilinx takes FPGAs that are not
100% functional and checks if the defective area affects the customer’s design. If the design
does work correctly this chip is sold as an EasyPath device. Since the chips are basically the
same devices as the original FPGAs they offer the same features as before but their
performance will not increase. The only advantages of this approach are the quick turn-

2 Avnet price list, checked in 09/2012

EXTOLL ASIC

14

around time and a price reduction of about 30% per device [25]. Altera’s HardCopy devices
on the other hand are custom produced devices. They contain configurable logic elements as
basic building blocks similar to the structure of an FPGA as well as the custom IP that is also
available in FPGAs like PCIe macros, however, the chips are fabricated by creating masks for
the upper metal layers that contain the wiring between the logic blocks. Since the lower metal
layers in a custom chip that contain the structures with the finest pitch and therefore are the
most expensive masks in an ASIC design are fixed the customer only has to pay for the metal
layers required for wiring. Because these structured ASICs are completely different chips
than the FPGAs they must be requalified for correct functionality. In contrary to Xilinx’s
solution HardCopy chips offer an increased performance of up to 50% and a significant
power reduction [26]. Altera also promises a price reduction of about 80% per unit compared
to a similar FPGA without taking into account the higher NRE costs for the masks. Though a
performance improvement is achievable the results do not justify the higher investment.

The most versatile solution is the production of a custom ASIC. This gives the most
flexibility with regards to features that can be incorporated into the chip. A short look at the
competitor overview in table 2.1 shows that the certain way to reach acceptable performance
is the implementation in an ASIC. However, in comparison to FPGA solutions ASICs suffer
from high initial NRE costs:

- Mask costs
All masks for the ASIC production must be fully paid by the customer. A full mask
set will cost hundreds of thousands of dollars even for relatively mature technologies
like 90nm. One can say, that the mask costs for each step to a smaller process node
will roughly double which sets a full set for 28nm in the range of several million
dollars.

- EDA tools
While FPGA vendors sell their tools for a moderate price of less than $10,000 for
dozens of licenses or even give the tools away for free designers that want to
implement an ASIC need a whole set of tools for the different steps in the design
flow and must pay prices that are an order of magnitude higher for a single license.

- IP costs
 A large number of IP elements (either Soft IP like PCI Express cores or Hard IP like
serializers, PLL and memories) that come for free with FPGAs must be purchased for
an ASIC development. Although foundries like TSMC usually offer a basic
functionality like standard cell libraries, simple CMOS I/O libraries and sometimes

EXTOLL ASIC

15

memory compilers for free it might be important to buy these elements also from 3rd
party vendors if the performance of the free cells does not match the requirements.
Depending on the complexity of the IP and the technology node prices range from
tens of thousands of dollars up to more than a million dollars per IP license.

Altogether, the initial investment is rather high and exceeds the volume of one million
dollars without problems. Despite these circumstances the price per unit is relatively cheap.
Depending on the chip size which determines how many chips can be cut out of a wafer a
price of less than $100 per die is undoubtedly achievable.

Since IP costs and EDA tool prices do not change much throughout process nodes the
differentiating cost factor are the mask costs. Therefore the correct technology is a
combination of technological feasibility (e.g. required performance, IP availability), existing
investment and expected revenue.

With a prospective volume of about 25k units over the lifetime of EXTOLL it is very
important to keep the costs as low as possible. An investment in 28nm, for example, would
lead to a tremendous unit price (especially regarding the rumored low yield) which will move
the point of ROI to the end-of-life of EXTOLL which means that no profit can be reached at
all.

Because of the low volume, a MLM (multi-layer mask) mask set [27] is a good way to cut
costs. For an MLM four layers are combined into one reticle, thus reducing the largest
possible die size to one quarter of a reticle. This allows a reduction of the mask costs because
fewer masks are needed in total. However, the price of the wafer goes up because it needs
more time to be processed due to the additional time required on the wafer stepper.
However, for low volume production the mask cost savings exceed the extra cost of the
wafer.

For the design a couple of external IP is needed:

- SERDES
An overview of serializers that are able to support PCIe Gen3 [28] shows that no IP
is available for 90nm which eliminates this option. Designing Gen3 IP at mature
nodes seems to be technologically difficult (or unprofitable) because only few
providers offer such IP, most offerings for PCIe Gen3 are available at 28nm. Many
vendors skipped the 65nm and 40nm process nodes and designed directly for 28nm.

EXTOLL ASIC

16

- Standard cells
Trial synthesis runs at 65nm showed that the technology is able to support the target
frequency of 750 MHz without changes to the RTL (like adding additional pipeline
stages). Because 90nm was already out of the question because of the missing
serializers it was no longer considered for evaluation. Since 65nm already meets the
performance goals smaller nodes will only increase the available margin for
increasing the internal clock frequency.

- HT3 PHY
The PHY that provides the physical layer for the HT3 core is only available in 65nm
and was originally developed by ATI. After AMD had purchased ATI the PHY was
donated for use. However, HyperTransport targets only a niche market since AMD
continuously lost market shares in the server market over the last few years. Thus,
the availability of an HT PHY is no key factor for the final decision.

- PLL
A PLL was already available for 65nm from a former research project. A design for
other nodes would be possible, the expected performance can be reached in all
nodes.

- I/O cells
CMOS I/O cells are provided by the foundry and do not have to be purchased.
Special purpose I/O cells that are required for differential signaling must be either
purchased or developed. However, there is no special performance criteria for these
cells so that they can be obtained for all technology nodes.

- Memory
Memories are usually the factor that limits the design speed in a digital design. As
before, it was determined by evaluation that the required performance could be
reached by using 65nm. Similar to standard cells, smaller process nodes will only
improve the speed and increase the margin for running at higher frequencies.

In the end it was decided to design EXTOLL as a 65nm chip because the combination of IP
availability, mask costs and expected revenue was the most compelling of all alternatives
while also maintaining the performance goals that are needed to outperform the
competition.

Consequently, the following subsections will present the challenges and design guidelines for
a successful port from an FPGA based prototype to an ASIC solution.

EXTOLL ASIC

17

2.2 Transition from FPGA to ASIC

EXTOLL is developed by using the Verilog Hardware Description language [29]. The source
files consist of more than 280,000 lines of code that utilize roughly 13MB of disk space3. In
general Verilog is target platform agnostic and will only be mapped during synthesis to a
target technology. However, there are certain aspects that need to be handled in a different
way depending on the final implementation.

Due to the size of the code base it is not feasible to maintain a completely separate
development environment. Instead it is important to keep as much code as possible
unmodified and shareable across all platforms.

Nevertheless, there are some constructs that will have to be developed separately while
keeping in mind that the overall structure of the design should not be modified.

The following aspects have been identified for special consideration:

- Internal memory, i.e. how the embedded memory is generated, accessed in the chip
and how it is protected

- Clocking / Timing, i.e. how are the clocks generated
- Reset, i.e. how is reset generated and distributed
- Testing, i.e. is a special testing methodology required
- Toplevel, i.e. how are the modules connected together

These issues will be addressed in the following paragraphs and guidelines for a successful
transition will be worked out.

2.3 Design Guidelines

The beginning of the design phase is the place where most impact can be made on the
performance of the chip. RTL that was badly implemented will hinder the overall
performance and can even waste runtime because tools are forced to optimize sections of
code that will have a hard time reaching timing closure or might even fail timing. An old
saying in computer science, “garbage in, garbage out”, is also valid for hardware design.
Therefore it is important to take care already in the beginning of the design process.

3 Values determined in Oct.’12, excluding external PCIe core

EXTOLL ASIC

18

2.3.1 Timing Basics

Flip-flops have a set of timing parameters that must be observed so that the flip-flop is not in
danger of becoming metastable. The following table 2.2 and figure 2.2 give an overview of the
different timing parameters for a flip-flop that is triggered on the positive clock edge.

Abbr. Timing parameter Description
tsu Setup time The time that the new value on the D input must be stable

before the rising clock edge
thd Hold time The time that the value on the D input must be kept stable

after the rising clock edge
tco Clock-to-output time The time between the sampling of the new value on the D

input and its subsequent appearance on the Q output
trec Recovery time Consistent to the setup time, but related to asynchronous

inputs (i.e. reset)
trem Removal time Consistent to the hold time, but related to asynchronous

inputs (i.e. reset)
Table 2.2 Timing Parameters and Their Meaning

CLK

D

tsu thd

RES_N

RES_N

trec

trem

tco

Q

Figure 2.2 Flip-Flop Timing Parameters

EXTOLL ASIC

19

These parameters also have an influence on the logic that follows afterwards and the
performance that can be reached. Setup time violations can be fixed by reducing the
propagation delay of the combinatorial logic before the flip-flop (either by upsizing cells or
rewriting RTL) or decreasing the internal clock frequency. Hold time violations are
independent from the clock and can only be fixed by buffer insertion or cell downsizing and
will lead to a non-functional chip if they are not corrected before tapeout.

For the setup time the following formula is valid where tclk is the clock cycle time and tpd is
the propagation delay of the logic between two flip-flops.

𝑡𝑐𝑙𝑘 ≥ 𝑡𝑐𝑜 + 𝑡𝑝𝑑 + 𝑡𝑠𝑢

Equally, the hold time is defined by the following formula:

𝑡𝑐𝑜 + 𝑡𝑝𝑑 ≥ 𝑡ℎ𝑑

2.3.2 Reset

A global reset signal is used to initialize a design to a well-known state. However, FPGAs
employ a completely different reset strategy than ASICs. FPGAs load their configuration
from an external bitstream which means that everything in an FPGA has a predefined initial
value so that a reset is actually not required [30]. Nevertheless, the internal registers inside
the FPGA support both asynchronous and synchronous reset styles. Analysis show that a
completely synchronous reset results in a better timing, an observation that is also indicated
by Xilinx [31]. Therefore, the EXTOLL FPGA prototypes use synchronous resets throughout
the complete design.

ASICs in return must be reset so that all registers have an initial state. Synchronous resets
suffer from two disadvantages. They require a stable clock because the reset signal is only
sampled at a clock edge and the reset pulse must be at least one cycle long so that it can be
detected. Therefore ASICs are usually reset asynchronously. However, this introduces the
problem of reset removal as characterized in the previous section 2.3.1.

A well known solution is the reset synchronizer circuit [32][33] showed in the following
figure 2.3.

EXTOLL ASIC

20

Q

QSET

CLR

D

Q

QSET

CLR

D

CLK

ARES_N

RES_N´1´

Figure 2.3 Reset Synchronizer Circuit

This simple circuit leads to an asynchronous assertion of the reset signal because the Q
output of the second flip-flop (the final reset signal) will go to 0 immediately as soon as the
ARES_N signal switches to 0. In the case of reset deassertion the value 1 of the first flip-flops
D input will be propagated through the two stages. Only the first flip-flop in the synchronizer
is in danger of becoming meta-stable because the removal time might be violated. However,
the second flip-flop will sample a valid input in the first cycle. In the second cycle the input
will be stable again and once again a valid input will be sampled. Thus, the second flip-flop
cannot become meta-stable and an invalid state will not be propagated along the reset tree.

Because of the arbitrary reset styles all always blocks have two sets of sensitivity lists that are
distinguished by a global ifdef macro. One set will lead to a synchronous reset style for an
FPGA implementation the other will infer an asynchronous reset for an ASIC.

In general it is important not to confuse a reset signal with an init signal to set the logic back
to a known state sometime during operation. Reset should only be used directly after power-
up to avoid unknown states. If it is necessary to “reset” the logic later on this functionality
should be introduced into the synchronous logic path. Adding combinatorial logic to the
reset path will only lead to problems later on during construction of the reset tree in the
backend design process. It might also introduce the problem of a reset glitch because the
output of a combinatorial cell might change its state for a short time (i.e. it glitches)
whenever an input changes even though the change on the input will not lead to another
output. In this case the following logic might be reset unintentionally.

There is also a pitfall with the Verilog implementation if registers are used inside the logic
although they are not resetted explicitly. This will cause the synthesis tool not to treat reset as
an ideal net but like any other net in a synchronous design. The condition for the non-reset
case (that is present in the code) will be combined with the logic that feeds the register. This
leads to a highly buffered reset net and completely ruins the timing for that path.

EXTOLL ASIC

21

2.4 Embedded Memory

In FPGAs using memory is very easy. All proprietary synthesis tools from either one of the
major FPGA vendors or 3rd parties like Synopsys recognize simple Verilog language
constructs and are able to map them to the integrated memory blocks [34] available in the
FPGA. This flow is depicted in the following figure 2.4.

always @(posedge clk) begin

 if (en) begin

 if (we)

 mem[waddr] <= data_in;

 data_out <= mem[raddr];

 end

end

Synthesis

Figure 2.4 FPGA Memory Flow

In ASICs, however, memories are usually generated with a memory generator, a special
purpose tool that builds the memory already as an optimized structure for the target
technology. The designer must instantiate this customized block in the design to use it. This
gives less flexibility in terms of configuration.

EXTOLL consists of about eighty different RAM configurations, ranging from small sizes like
16x61 up to really large memory sizes like 4096x64. Although it is possible to generate RAM
macro blocks for each of these configurations this would result in a large amount of libraries
that only differ marginally with respect to area and speed and increase the load time and the
memory consumption of the EDA tools.

Therefore the best approach is to generate a small number of building blocks in typical
configurations and build up all other configurations out of these building blocks. Although
this will waste area for RAMs that cannot be matched exactly to these blocks the easier
handling outweighs that disadvantage by far. For area critical designs this conclusion is
probably not valid, the EXTOLL die, however, will have enough space so that resource saving

EXTOLL ASIC

22

is not necessary. Constraining the designer to use only a small set of memory sizes as an
alternative only limits the flexibility in handling RAMs. It makes portability more difficult
since the basic RAM block size of an FPGA is not very efficient for an ASIC due to its small
capacity.

The following figure 2.5 shows the distribution of memory sizes that are required. For
simplicity the widths are divided in bins of powers of two. Several observations can be made
from the chart:

- There are a large number of RAMs with widths of less than or equal 32 bits that have
many entries though. Altogether almost 100 instances can be found.

- Combining the first four columns will add up to another 100 instances. Most of these
instances are wider than 64 bits.

- Most of the RAMs with a depth of 256 entries are less than 64 bits wide.
- Instances with widths of more than 128 bits are relatively uncommon.

Since the internal datapath has a width of 128 bits it is evident that there will also be many
instances required that have the same data width. Many modules employ at least one FIFO to
store internal data before it is forwarded to the next unit.

Figure 2.5 Memory Size Distribution

EXTOLL ASIC

23

An analysis of the speed of the memories which is shown in the following figure 2.6 (y-axis is
unlabeled to hide proprietary data) shows that the speed decreases in a linear way if the RAM
becomes wider. It also shows that the starting speed for the least wide configuration
decreases with an increasing number of entries. While the distance between the three
smallest configurations is almost the same, the offset becomes higher as soon as 128 entries
are exceeded. Although all configurations are nominally faster than the required internal
clock speed of EXTOLL the margin between that frequency and a RAM with 256 or more
entries might become critical so that there might be problems getting timing closure.

Figure 2.6 Memory Speed Analysis

2.4.1 Memory Faults

Memories are more susceptible to defects than standard logic cells because of their
optimized, highly packed structure. Memory cells are designed with minimum geometry
devices in order to achieve a high memory size / area ratio. Of course, this also means that
the probability of a memory fault rises as more and more memories get added to a chip
design.

As seen in the following figure 2.7 memories take up a large amount of the occupied chip
area in EXTOLL. Therefore it is essential that the possibility of a memory fault must be taken
into account and handled in a transparent way.

EXTOLL ASIC

24

Figure 2.7 Occupied Chip Area

Memory faults can be classified in dynamic and static faults. Permanent faults are caused by
manufacturing errors and can appear with many different fault models. While faults in the
address decoder might make some rows or columns in the memory array inaccessible, faults
in the array itself might exhibit diverse effects. For example, the cell could be stuck at either 0
or 1 (so called stuck-at faults), it could loose its value (data retention fault) or it might be
influenced by the activity of surrounding cells (coupling fault). These faults can be
discovered by running BIST (built-in self test) algorithms on the memory [35] which then
leads to a removal of the device from the production lot.

Transient or intermittent faults, so called soft errors, are usually caused by external
influences like radiation particles and can cause one or more cells to flip their value.

Both types of faults are well known and can be handled by introducing redundancy.
Introducing spare rows or columns [36] is a favored way for handling manufacturing defects.
If a row or column is identified as defective during BIST all accesses are remapped to the
redundant cells inside the memory. The mapping itself is not done dynamically at each
startup, instead the reconfiguration is permanently stored in the memory by using electrical
fuses. If a process is known to have a bad yield this is a great way to get a larger number of
fully functional chips from a wafer, however, the mapping and the additional logic inside the

EXTOLL ASIC

25

RAM block leads to a significant degradation of the RAM’s performance that can be in the
range of several hundred MHz.

Transient faults can be handled by introducing logical redundancy for on-the-fly error
checking and correction (ECC). The complexity of this operation depends on the failure rate
that must be covered by it. Regardless of the selected algorithm there will be a penalty on the
timing of the RAM and additional area consumption. A small side effect is that the
probability of a fault is slightly higher because the size of the RAM will also have to increase
in order to store the redundancy information. A study [37] by Intel suggests that 75% of all
defects can be corrected by using a SECDED (Single Error Correction, Double Error
Detection) algorithm while upgrading the error correction to DECTED (Double Error
Correction, Triple Error Detection) will improve this rate only marginally by 2% with the
drawback of a more complex implementation. A similar conclusion can be found in an
analysis in which RAMs are exposed to heavy ion radiation [38]. With a low dosage (which is
the most applicable scenario for normal operation) single bit upsets dominate the evaluation
of encountered bit errors. The same paper also compares the complexity of SECDED and
DECTED algorithms with the conclusion that the encoder complexity is almost the same for
a SECDED and DEC algorithm, the decoder, however, suffers from a performance decrease
of about 50% for a DEC algorithm in comparison to a SECDED implementation. A complete
DECTED implementation even takes up to three times longer. With these results in mind a
SECDED algorithm is the best solution for EXTOLL.

Because multi-bit error correction is not required, suitable codes like BCH (Bose-Chaudhuri-
Hocquenghem) [39][40] or Reed-Solomon [41] are not needed. Instead a simple Hamming
code [42] or an improved version SECDED algorithm, the Hsiao code [43] is used to handle
single bit upsets.

Depending on the number of available parity bits m a message with a length of 2m – m – 1
bits can be protected from single bit errors. In order to distinguish between a single bit error
that is correctable and an uncorrectable double bit error an additional parity bit is required.
Thus, a SECDED implementation requires a Hamming distance of 4.

The following figure 2.8 shows the number of gates required in relation to the usable data in
a memory as well as the propagation delay through this ECC circuit. As expected, timing
becomes worse for larger data widths. Both encoder and decoder roughly take the same time
to perform their task so that the penalty is the same for reading and writing to a memory. In
contrast the required area for the encoder does not increase as much as the area of the

EXTOLL ASIC

26

decoder for higher data widths. For the highest data width that was analyzed the decoder
consumes about three times the area of the encoder.

Figure 2.8 ECC Complexity Analysis

As a conclusion it can be said that adding an error correction algorithm that can handle
single bit upsets is essential for reliable operation if RAMs are required in a design.
Depending on the manufacturing error a SECDED implementation might also give the
possibility to reuse chips that would have been marked as defective otherwise, albeit with
losing the ability to correct additional errors that might occur. Nevertheless, these chips
could be used for internal testing while chips that are fully functional will be shipped to
customers.

2.4.2 Automatic Memory Generator

Since it is not feasible to instantiate the correct RAM instance in every module it was
necessary to support a parametrizable flow for flexibility reasons. The final mapping to the
RAM building blocks should be non-transparent to the designers. This is especially the case
for FIFOs that are usually used with parameters for both width and depth, but also many
other modules in EXTOLL can be changed with parameters which would result in different
RAM configurations. In order to keep the underlying changes invisible several steps are
needed.

EXTOLL ASIC

27

At first, a RAM building block for every single RAM configuration must be built. As
mentioned before only a small number of core blocks is available, all other configurations
must be built from these blocks. Because manual generation is both error-prone and tedious
an automatic approach was selected. A Perl [44] script takes the desired width and depth of
the RAM, analyzes which core block is most suitable and generates the Verilog code for the
resulting RAM. The following figure 2.9 shows the internal structure of a selected RAM
configuration.

ECC Gen ECC Gen

128x72

WE
WADDR

WDATA

RADDR

RDATA

128x72

WE
WADDR

WDATA

RADDR

RDATA

128x72

WE
WADDR

WDATA

RADDR

RDATA

128x72

WE
WADDR

WDATA

RADDR

RDATA

WDATA[127:0]

WADDR[7:0]

WE

RDATA[127:0]

RADDR[7:0]

RE

v

v

[7]

[6:0]

ECC Check /
Repair

ECC Check /
Repair

[6:0]

[7]

[63:0][127:64]

v

v

v

v

SEC

DED

72 72

Figure 2.9 256x128 RAM Instance

As stated in the previous paragraph ECC functionality is essential. Thus, the best approach is
the inclusion of ECC generation as well as ECC checking and error correction in the RAM
instance itself. This means that on the interface level the RAM looks standardized with a read
port and write port while all the ECC handling is hidden inside. In figure 2.9 a 256x128
configuration is built from 4 single 128x72 core blocks. 128 bits of data that will be written to

EXTOLL ASIC

28

the RAM are split in two 64 bit wide streams that are separately protected through ECC. This
adds additional 8 bits per data stream so that in the end 144 bits will be written. Because the
core blocks only have a depth of 128 entries instead of 256 a second row of RAMs had to be
added. The lower bits of the write address select the correct entry in the core block while the
highest bit of the address together with the write enable signal select the row to which a new
entry will be written.

A read operation is performed in a similar way, but it requires a little bit more logic. The
lower bits of the read address are applied to all core blocks simultaneously. The highest bit of
the read address which is delayed by a register stage to compensate for the read latency of the
RAM controls a multiplexer for each column that selects the correct row that must be read.
This multiplexer is followed by a register stage which is only updated if the read enable signal
is asserted. This allows the RAM to retain the value of the read port even if the applied read
address changes although no new read cycle was indicated through the read enable signal.
Each 72 bits wide bus is then fed through the ECC check and repair logic. The resulting 64
bit data streams are then concatenated to the 128 bit read data port. The ECC logic also gives
two indicators called sec (single error correct) or ded (double error detect) that can be
connected to the register file, for example, to show that an error condition occurred during
operation.

From a timing perspective some special characteristics have to be considered. Both ECC
generation in the write path and ECC checking in the read path take some time as seen in
figure 2.8. For writing this means that the propagation delay of the ECC generator must be
added to the setup time of the internal RAM blocks. In a well designed logic block this
should be no problem because the write data port will be driven by a register. Despite being a
bad design style the RAM instance is not output registered. This is caused by the fact that the
logic in EXTOLL was designed with FPGAs in mind and therefore optimized for the read
latency of a block RAM in an FPGA. An additional cycle of read latency would break the
following logic. By not registering the RAM output both ASIC and FPGA RAM blocks have
the same read latency. However, the time needed to check and probably correct the read data
is time that is missing in the next pipeline stage. Since a large part of a clock cycle is taken up
by the ECC logic the next stage can only perform small logic functions without breaking
timing. Nevertheless, in most cases this is not a problem because many RAMs are actually
used in FIFOs which include some additional register stages behind the RAM to support fall-
through functionality. Regardless, for future projects it would be helpful to introduce a
handshake mechanism with a read enable signal and a subsequent valid acknowledgement

EXTOLL ASIC

29

from the RAM as seen in the timing diagram in figure 2.10. This allows the surrounding logic
to work without relying on the exact timing parameters of the underlying technology since it
now does not have to adhere to a specific latency that is defined beforehand. An additional
pipeline stage for ECC checking could have been easily hidden in that case with the result of
a much more relaxed timing budget.

A1A0 A2

D1D0 D2

CLK

ADDR

RD_EN

RDATA

VALID

Arbitrary Read Latency

Figure 2.10 RAM Timing with Handshaking

In a second step another Perl script takes all the generated RAMs and builds a global RAM
wrapper for them. This is a parametrizable Verilog module that will instantiate the correct
RAM instance depending on the parameter set that is passed. If no matching RAM is found it
will throw an error in simulation so that the missing module can be identified easily.

Finally, a set of RAM templates exist for both ASIC and FPGA. They provide an identical
interface for both technologies and are used whenever a RAM is instantiated in the design.
For small RAM sizes the RAM template does not map the configuration to a set of hard
macros as described before but it builds an array of registers which is more efficient for small
storage blocks. The threshold can be changed, but is set to a size 1024 bits by default.
Altogether, the memory flow contains several levels of indirection as depicted in figure 2.11.

RAM template

Global RAM
Wrapper

RAM 1024x128
Register Array

RAM 1024x132

RAM 64x96

RAM 8192x8

<= threshold

>threshold

Figure 2.11 Levels of Indirection

EXTOLL ASIC

30

Three different templates are currently supported:

- 1R1W1C (1 read, 1 write, 1 clock)
This is probably the most common configuration because it is usually needed in
FIFOs. It consists of separate read and write ports and works with a common clock.
All generated RAMs are dual-port RAMs with both a read and a write clock. In order
to map the template to the underlying RAM the common clock is simply connected
as the read and write clock.

- 1R1W2C (1 read, 1 write, 2 clock)
This configuration is mostly needed for transfers between clock domains, commonly
in asynchronous FIFOs. It directly maps to the underlying RAM.

- 2R1W1C (2 read, 1 write, 1 clock)
This configuration is only used in the register file when both software and hardware
must be able to read data simultaneously. Since the RAMs only support a single read
and a single write port they cannot be mapped directly. Instead, two 1R1W1C RAM
templates are instantiated that are both written at the same time during a write
operation. With two separate RAM instances inside that hold the same data a second
read port can be offered, however with the penalty of additional area.

RAMs in FPGAs are always initialized and have a definite content. Unfortunately, this led to
design mistakes at a few points in the EXTOLL logic that were coded with the assumption
that this is always the case. However, RAMs in an ASIC are not initialized and can deliver an
arbitrary value. For these cases, a special instance of the 1R1W1C wrapper was designed that
performs an initialization of the RAM after the reset signal is deasserted by overwriting each
row with a default value. During the time that is needed for this procedure (as many clock
cycles as there are entries in the RAM) the RAM cannot be written to or read from. BIST
operation will not be impaired by this functionality since it accesses separate test ports and
the normal ports are disabled.

Generally, a RAM does not support reading and writing on the same address in the same
clock cycle. If it still happens due to badly designed logic, the resulting read data is corrupted
and might not reflect the value from the RAM. Logic should be aware of this issue and avoid
these situations. Nevertheless, this problem can occur in EXTOLL because some instances
are defined with a constant read enable signal and an address overlap will happen sooner or
later. For these RAMs the wrappers support an extra parameter that will add supporting logic
to perform a RAW (read-after-write) operation. By setting the parameter the write data will
be forwarded to the read port in the case of an address violation. Instead of using the corrupt

EXTOLL ASIC

31

value from the RAM the data that will be written in the same cycle is delivered on the read
port and the hazard situation is avoided. This is also the behavior of an FPGA RAM and will
not break the logic around it.

The automatic generation of the memory wrapper and the separate RAM instances is a
valuable tool for a more efficient ASIC design. More than 20,000 lines of Verilog code were
generated. If an error is found a small change in the underlying Perl code is sufficient and all
RAMs are rebuilt with the fix in a matter of seconds. If a new core RAM block was
introduced rerunning the tool would automatically check if building a RAM with the new
core block is more efficient and rewrite the RAM accordingly.

2.5 Design for Test

FPGAs are reconfigurable by design. ASICs on the other side are hardwired and cannot be
changed later on. Therefore it is important to make important parameters in the design
reconfigurable in the ASIC by moving them to the internal register file so that they are
changeable. The stored data can be divided into two categories:

- Initialization values
These are needed to bring up the design to a functional state and cover parameters
for the host interface or the internal PLL. A misconfiguration at this stage might
cause the chip to be unusable.

- Debug values
Several FSM states, counters and other valuable debug information from each unit
are also stored in the register file.

Usually, register file access is done by system software. If the design is not able to bring up
the host interface, for example, there is no way to get the system up and running. Therefore it
was important to introduce a mechanism to change these values early on. Thus, the Debug
Port contains an SPI [45] master that connects to an external flash memory. This flash can be
filled with addresses of registers and their updated values. The internal protocol engine
makes sure that all relevant registers can be updated before the chip continues its internal
operation. By doing this, critical initial values of the design can be fixed.

The Debug Port also includes a second mechanism to access the register file. An I2C [46]
slave allows external hardware to connect to the register file and read and write its values.
There are twofold applications for this. For one, it allows reading debug values even after the

EXTOLL ASIC

32

host system crashes which removes the normal operation mode of simply reading the register
file from the CPU. This might give invaluable insight to the current state of the design,
something which is a lot easier in an FPGA with tools like ChipScope [47] or SignalTap [48].
On the other hand it also allows an external management controller to read status values
continuously from the device to monitor correct functionality or collect overall system
statistics.

Both mechanisms access the register file via the SNQ interface. In order to offer fair access to
both the SNQ and the Debug Port an arbiter was built in front of the register file’s SNQ
interface to manage concurrent access requests from both units. Since the loading
mechanism from the flash is only executed shortly after power-up it will not impair the
further operation. The following figure 2.12 [20] summarizes the datapaths inside the
module.

SPI Master

I²C Slave

SPI Master
control

SPI to
Registerfile

Engine

I²C
Registerfile

Access

SPI

SNQ

Debug Port

SNQ

I²C

er
ro

r

re
se

t_
er

ro
r

lo
ad

_ f
ro

m
_f

la
sh

_d
on

e

lo
ad

_f
ro

m
_f

la
sh

SNQ

Flash Memory
(M25P64)

Figure 2.12 Debug Port Overview

2.6 Clocking

Clocking is besides reset the most important functionality in an ASIC. For maximum
redundancy EXTOLL contains many clocking options so that each stage in generating the
system clock can be bypassed and, if required, supplied externally from an on-board clock
source like a high-frequency oscillator.

EXTOLL ASIC

33

2.6.1 Supporting Circuits

There are many cases where a system clock has to be divided down to a slower clock. If the
relationship between the two clocks is a power of two this can be easily accomplished with a
simple binary counter. The easiest case of a by-2 clock divider is a single flip-flop that inverts
its output every clock cycle. Simple odd integer clock dividers [49] have the problem that
they do not generate a 50% duty cycle. The following figures 2.13 and 2.15 show two clock
dividers used in EXTOLL that will generate a 50% duty cycle together with their respective
waveforms in figures 2.14 and 2.16. The correct duty cycle is achieved by generating two
waveforms that are phase shifted by using a flip-flop that is triggered on the negative edge of
the source clock which are then logically combined to form the resulting waveform.

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

RES_N

CLK

DIV_CLK

Figure 2.13 Divide-by-3 Clock Divider

Figure 2.14 Divide-by-3 Clock Divider Waveform

A popular circuit for generating clock odd integer clock dividers is the Johnson counter [50].
It consists of a ring buffer built with a shift register. The inverted output of the last register is
fed back to the input of the first stage.

EXTOLL ASIC

34

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

DIV_CLK

RES_N

CLK

Figure 2.15 Divide-by-5 Clock Divider

Figure 2.16 Divide-by-5 Clock Divider Waveform

Another essential circuit is the glitchless clock multiplexer shown in figure 2.18. If two clock
sources are switched with a simple multiplexer there is the possibility of a glitch if the switch
happens between the rising edge of one clock and the falling edge of the other clock. If the
time between the two events is too short timing violations as described in section 2.3.1 can
occur. In order to avoid this occurrence from happening the switch will only be performed
when both clocks are aligned so that one single clock cycle will just be extended during the
switching as seen in the waveform in figure 2.17. A slightly longer cycle will not be
disadvantageous to the functionality of the logic as it will not cause metastable states in flip-
flops.

Figure 2.17 Glitchless Clock Multiplexer Waveform

EXTOLL ASIC

35

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

CLK0

CLK1

CLK

SEL

Figure 2.18 Glitchless Clock Multiplexer

2.6.2 Clocking Structure

Figure 2.19 shows the internal clocking structure of EXTOLL that is used to generate the
main clock. The PLL that is presented in the following section 2.6.3 generates the clock for
most of the logic inside EXTOLL. The PLL is fed by a 25 MHz reference clock which is
initially generated by an oscillator cell that is connected to an external crystal. In the
beginning the PLL is bypassed so that the debug logic can run and overwrite PLL parameters
if necessary. Because the PLL does not have a signal to indicate if it is locked a simple counter
is used to emulate this functionality. As soon as the PLL is locked the clock is switched
without glitches to the higher frequency with the circuit shown in figure 2.18. Afterwards
there are two more multiplexers in the clock path before the actual clock root of the design
that can be used to supply alternative clock externally. One of these inputs consists of a
CMOS input cell to provide the test clock for DFT and is only enabled if the design is run in
test mode, e.g. for scan tests. The other input is a backup in the case of a non-functional PLL.
Because of the high-speed nature of the clock that must be provided it is designed as a
differential CML input.

As soon as the system is up and running there is also the possibility to switch to a
synchronous network mode. Instead of the 25 MHz external reference clock one of the seven
link clocks that is recovered by the CDR circuit in the serializers and divided down to 25
MHz can be selected as reference clock for the PLL. This switch can only happen if the link is
running. Thus, a clock detector circuit is needed to determine if the link SERDES supplies a
stable clock. A phase comparator determines if the current and the new reference clock are in
phase and switches them indiscernible for the PLL so that the PLL output will continue to

EXTOLL ASIC

36

run stable. Of course, as soon as the link clock vanishes (e.g. by removing the corresponding
cable) the system must switch back to the on-board oscillator.

Se
rD

es
Bl

oc
k

Se
rD

es
Bl

oc
k

EX
TO

LL
 A

SI
C

Cl
oc

ki
ng

 M
od

ul
e

Co
nf

ig
 M

U
X JT

AG
 T

DR
Co

nf
ig

JT
AG

Gl
itc

hf
re

e
Cl

oc
k

Sw
itc

h

PL
L

Lo
ck

ed

Co
un

te
r

PL
L

Re
fc

lo
ck

Li
nk

 S
er

De
s R

X
Cl

oc
k

#1
..7

@
17

8.
5

M
Hz

@
37

5.
0

M
Hz

@
50

0.
0

M
Hz

@
62

5.
0

M
Hz

M
U

X

Ph
as

e
Co

m
pa

ra
to

r

An
al

og
 P

ar
t

Ex
to

ll
Cl

k
@

 7
50

M
Hz

M
U

X

Se
rD

es
 L

in
k

Re
fc

lo
ck

@
 1

25
M

Hz

O
sc

ill
at

or

In
pu

t C
el

l

Cr
ys

ta
l @

25
M

Hz

CM
O

S
In

pu
t

Ce
lls

EX
T_

CL
K_

IN

{N
,P

}

Ex
te

rn
al

 S
ig

na
ls

DF
T _

CL
K

@
50

M
Hz

RF
S

CS
R

Co
nf

ig

RF
S

CS
R

M
U

X

IN
T_

CL
K_

SE
LE

CT
DF

T_
TM

_N

PL
L

Di
gi

ta
l P

ar
t

(D
iv

id
er

 R
at

io
 e

tc
..)

PL
L

By
pa

ss

DB
G_

PL
L_

RE
FC

LK

PL
L

De
bu

g
O

ut
pu

ts

DB
G_

PL
L_

CL
K_

{P
,N

}

PL
L _

O
U

T
{ N

,P
}

FE
ED

BA
CK

_C
LK

O
SC

_
{X

IN
,X

O
U

T}
DB

G_
CL

K_
O

U
T_

{P
,N

}

Clock Tree Leaf Out

An
al

og
 I/

O
Ce

lls
An

al
og

 I/
O

Ce
lls

Se
rD

es
Bl

oc
k

7x

Se
rD

es
Bl

oc
k

/6
Cl

oc
k

Di
vi

de
r

Re
fc

lo
ck

In

pu
t

M
U

X

Ex
te

rn
al

Re

fc
lo

ck

RF
S

CS
R

PL
L

Fe
ed

ba
ck

 C
lo

ck
@

 R
ef

cl
oc

k
Sp

ee
d

Ex
te

rn
al

 R
ef

cl
oc

k
@

25
M

Hz

Pr
og

ra
m

m
ab

le
Cl

oc
k

Di
vi

de
r

(/
3,

 /4
 /5

)

Pr
es

ca
le

r
/5

Cl
oc

k
De

te
ct

or

Ph
as

e
Co

m
pa

ra
to

r

Co
nt

ro
l L

og
ic RF

S
CS

R

Figure 2.19 EXTOLL Clocking Scheme

EXTOLL ASIC

37

2.6.3 PLL

The central PLL in the EXTOLL chip was developed by researchers at RWTH Aachen [51]
during a collaboration project. The first tapeout was designed for TSMC 65nm LP, however,
the PLL was later ported to the GP process at the same node. Its layout is depicted in the
following figure 2.20.

Figure 2.20 EXTOLL PLL

The PLL is fed by a 25 MHz reference clock and can generate output frequencies in the range
of 600 MHz to 1.2 GHz. With a simulated output jitter of 400fs at 1 GHz the resulting clock
signal is excellent and thereby well suited to be used as reference clock for the serializer
circuits. In order to achieve a small footprint it was necessary to avoid using an LC oscillator
circuit. Instead a ring oscillator with as little noise as possible was used. The PLL can work
both in integer and fractional mode. In fractional mode the divider is split in an integer value
of 5 bits and a fractional part with an accuracy of 10 bits. This allows the output frequency to
be tuned in very small steps which enables easy overclocking of the final chip, e.g. to rate
some dies at higher frequencies.

EXTOLL ASIC

38

2.7 Prototyping

With the increasing complexity of designs verification has become more and more important
over the years. Large investments for a production of a chip in cutting edge technologies
require confidence in a completely functional design. This means that nowadays a large part
of the design process is spent in verification. In order to improve the quality and ease the
introduction of verification the UVM methodology [52] was introduced as a standard that is
supported by all major EDA vendors and superseded several proprietary implementations.

For EXTOLL a whole set of verification IP was developed in System Verilog [53] to debug
single functional units. A complete system-level environment [54] combines these VIPs for
debugging the whole EXTOLL design.

Another aspect of verification is the in-system testing. No matter how thorough verification
environments will be they will always suffer from performance problems because the
simulation speed is several orders of magnitude slower than reality. Also, often in-system
tests show peculiar communication patterns (sometimes depending on the host CPU) that
were not anticipated when the verification test stimuli were defined. Additionally, the ability
to run applications like the Intel MPI Benchmark [55] on a prototype gives confidence that
the final hardware will work as expected on typical workloads. Driver development can start
early in the design cycle, too.

Since the previous Virtex4 based board [56] that was used to prototype the 1st generation of
EXTOLL was limited in bandwidth and FPGA capacity it was decided to develop a new
board which is shown in figure 2.21. The increased performance of the used Virtex6 device
allows an increase of the host interface’s speed to HT600. The internal GTX transceivers of
the FPGA are routed to the front panel connectors, providing six 4x network links that are
capable of running at 6.6 Gbit per lane. Although the device sizes cannot be directly
compared because of changes in the internal structure of the FPGA the Virtex6 LX240T
device used offers about 3-4 times the space as the previous Virtex4 FX100. Still, the current
design is able to fill up the FPGA completely.

EXTOLL ASIC

39

Figure 2.21 Ventoux Prototyping Platform

Based on the HyperTransport Ventoux board a second prototyping board (Galibier) was
developed for PCI Express. The board layout is directly adapted from the previous board
which can be spotted immediately by looking at the board in figure 2.22 so that the
development effort could be reduced dramatically in relation to a completely new
development.

EXTOLL is supposed to be able to run as either a PCIe endpoint or PCIe rootport. While
testing the endpoint capability is no problem the second use case is rather difficult since
common COTS systems expect devices plugged into their PCIe slots to run as endpoints
while the PCIe bridge chipset as opposite party runs as rootport. Thus, a small PCIe
backplane which is shown in the following figure 2.23 was developed. This backplane
features two PCIe x16 connectors that are directly connected to each other. Required
sideband signaling and clocking are provided by the backplane. With this board the Galibier
prototype, configured as rootport, can communicate directly with an arbitrary PCIe
endpoint device.

EXTOLL ASIC

40

Figure 2.22 Galibier Prototyping Platform

Figure 2.23 PCIe Backplane

EXTOLL ASIC

41

At last, in a collaboration project with AMD a HT3 verification platform [55] was developed
to explore the option of running HT3 on FPGAs. Since the project never left the proof-of-
concept phase and due to severe limitations regarding performance, reusability and stability
all development efforts on this platform were discontinued.

2.8 Toplevel Organization

For the transition from FPGA to an ASIC development the structure of the toplevel design
could not be reused and had to be changed, too.

The FPGA’s design hierarchy is depicted in the following figure 2.24.

extoll_r2_top
extoll_dev_top

network_top gtx_wrapperht_16_cave_htax_top

HT1 16x
HT1
Core

HTAX
Bridge HTAX

VELO

RMA

SMFU

ATU

RF

NP

NP

NP

NP EXTOLL
Xbar

LP

LP

LP

LP

LP

LP

SNQ

Link
PHY

Link
PHY

Link
PHY

Link
PHY

Link
PHY

Link
PHY

4x

4x

4x

4x

4x

4x

Figure 2.24 FPGA Toplevel Organization

The outer layer extoll_r2_top consists of three major modules:

- ht_16_cave_htax_top
This module contains the HyperTransport core that is used to communicate with the
host system as well as the HTAX bridge. In the case of a PCIe implementation this
module is replaced by a PCIe specific module with the same interface signals to the
rest of the logic.

EXTOLL ASIC

42

- gtx_wrapper
This module is a wrapper for the FPGA’s serializer instances that take care of the
data transmissions over the link. This module is technology dependent and specific
to a single FPGA generation.

- extoll_dev_top
This module encapsulates the EXTOLL logic. It contains another level of redirection.
The modules belonging to the network logic are embedded into another submodule,
network_top.

Besides these three major blocks the toplevel only contains some glue logic and few small
clocking related modules.

For an FPGA implementation the hierarchy in the design is only of little importance besides
the logical structuring. FPGA tools do not easily support separate implementations of
submodules and rather run the whole design flat through the complete implementation flow.
This is partly owed to the fact that the devices only have limited capacity and the design flow
can be finished in a finite time.

In contrast, ASICs have always been more complex and ASIC designers have suffered from
long tool runtimes. Although performance features in current generations like multi-
threading and load balancing across a cluster alleviated this problem it can still be beneficial
to split the design into partitions and implement these partitions separately in parallel. It is
paramount that these partitions have a clean interface to each other, the fewer signals
between the partitions the better. Hundreds of signals do not only diminish the readability
but will also worsen the chances of getting fast timing closure during final chip assembly. In
order to benefit from time reductions of a parallel implementation each block should contain
a similar amount of logic or, if this is not possible, at least a significant part.

Thus, the EXTOLL ASIC design is split into four partitions that lie in the same hierarchy
level as seen in the following figure 2.25:

- ht3_partition
This module contains the HyperTransport PHY, the corresponding control logic and
the HyperTransport 3 core. The three virtual channels define the interface to the
adjacent block.

- pcie_partition
Similar to the HT3 partition this block contains the PCIe host interface logic

EXTOLL ASIC

43

consisting of the PCI Express PHYs, the PCIe Gen3 core and the PCIe bridging logic.
The interface to the next partition is also defined through the virtual channels.

- extoll_partition
This partition connects to the two host interfaces and contains the core EXTOLL
logic, including the HTAX bridge, the HTAX crossbar, the different functional units
as well as the network ports. The network port interface is used to connect to the last
partition.

- extoll_network_partition
The last partition contains all network related modules. The central part is the
EXTOLL crossbar which connects to the link ports. The serializer control logic as
well as the serializers is also placed in this partition.

-

extoll_asic_top
extoll_network_partitionextoll_partition

pcie_partition

ht3_partition

HT
PHY

PCIe
PHY

HT3 16x

PCIe
Gen3
x16

HT3
Core

PCIe
Core
(EP/
RP)

PCIe
Bridge

HTAX
Bridge HTAX

VELO

RMA

SMFU

ATU

RF

NP

NP

NP

NP EXTOLL
Xbar

LP

LP

LP

LP

LP

LP

LPSNQ Debug-
port

Link
Ctrl

Link
Ctrl

Link
Ctrl

Link
Ctrl

Link
Ctrl

Link
Ctrl

Link
Ctrl

Link
PHY

Link
PHY

Link
PHY

Link
PHY

Link
PHY

Link
PHY

Link
PHY

12x
I2 C

S
P

I

12x

12x

12x

12x

12x

12x

Figure 2.25 ASIC Toplevel Organization

Besides these four major modules the EXTOLL ASIC toplevel design still contains several
minor modules that take care of the clocking in the chip as well as reset management and the
control of the patch engine described in paragraph 2.5. The JTAG macro and BIST control
logic is also placed at the top of the design hierarchy.

While the serializer macros for both the link and the PCIe interface are embedded in their
respective partitions all CMOS I/O cells are clustered in the toplevel.

EXTOLL ASIC

44

In order to easily distinguish physical nets (i.e. nets that are connected to pads) from logical
nets the following naming convention was introduced:

- All external connections are identified by uppercase letters and routed to the
corresponding I/O cell or hard macro.

All internal connections coming from the I/O cells or macros are labeled in lowercase letters.

Although the number of signals between the partitions should be kept as small as possible
there are still numerous wires that must be connected. Fortunately, most of these
connections are grouped together in logical clusters and the SystemVerilog HDL offers a
construct to bundle signals in a so called interface.

The following code example shows an interface definition for the connection between two
hierarchies in the register file.

interface rf_interface #(parameter AWIDTH=8, parameter TWIDTH=1,
parameter RWIDTH=64, parameter WWIDTH=64) ();
 logic [AWIDTH-1:0] address;
 logic [RWIDTH-1:0] read_data;
 logic invalid_address;
 logic read_en;
 logic write_en;
 logic [WWIDTH-1:0] write_data;
 logic access_complete;
 logic [TWIDTH-1:0] triggers;

// …

endinterface

By default the signals in the interface do not have any direction information. Access to the
interface signals, however, can be limited by including another SystemVerilog feature, the
modport.

// interface definition

 modport master (
 output address,
 input read_data,
 input invalid_address,
 output read_en,
 output write_en,
 output write_data,
 input access_complete,
 input triggers
);

endinterface

EXTOLL ASIC

45

As seen above the modport is included in the interface section and enhances the signals from
the interface definition with direction information. Typically the modport name denotes the
role of that interface instance, in most cases there will be two modports in an interface that
define how data flows through the interface, e.g. master/slave, sender/receiver or a similar
denomination.

In the toplevel an interface instance is created and connected to the interface port of the
respective partitions as seen in the following code snippet. In this example the number of
ports that have to be connected is reduced from 8 to 1 for a single register file interface.

rf_interface #(
 .AWIDTH(`RFS_PCIE_RF_AWIDTH),
 .RWIDTH(`RFS_PCIE_RF_RWIDTH),
 .WWIDTH(`RFS_PCIE_RF_WWIDTH)) pcie_rf_if ();

pcie_partition pcie_partition_I (
// other signals
 .pcie_rf_if (pcie_rf_if)
);

extoll_partition extoll_partition_I (
// other signals
 .pcie_rf_if (pcie_rf_if)
);

The use of the interface constructs adds another abstraction layer to the design and moves
the design process in the direction of a system-level design where the actual implementation
details are hidden in a lower hierarchy level.

Reusability is also improved: in the case of an interface change like an additional signal it is
only necessary to change the interface definition and the change is reflected in every interface
instance. Thus, the change is only visible to the two endpoints of the interface. All layers in
between are signal agnostic. Without the use of interfaces additional wires would have to be
connected throughout the complete hierarchy causing lots of work for the designer.

Unfortunately, current FPGA design tools do not completely support interfaces so that they
were only used for connecting the toplevel in the ASIC design and all other modules still use
the old port syntax.

ASIC Design Considerations

47

3 ASIC Design Considerations

ASIC design is a highly complex process. In order to succeed with a working implementation
it is not only necessary that designers follow the guidelines presented in the previous chapter
to prepare a data basis that will lead to as few problems as possible but all the other steps
from RTL to tapeout must be planned and executed carefully. High complexity of today’s
multi-million-gate designs lead to tremendous tool runtimes. Therefore it is necessary that
design teams are able to work concurrently on the same design to reduce turnaround times if
parameters in the design flow must be adjusted.

The following chapter outlines some challenges in the ASIC flow and shows a methodology
to develop an efficient floorplan. Due to the close collaboration of the research group with
Cadence Design Systems [57], one of the major EDA companies in the world, the flow is
implemented with the tool chain from Cadence, namely RTL Compiler [58] for synthesis and
Encounter Digital Implementation [59] for the backend flow as well as surrounding support
tools.

3.1 Design Preparation

For the complete design flow a set of libraries and technology files is needed and should be
prepared or obtained in advance. The following subsections will give a short overview of the
required files throughout the design flow.

3.1.1 LIB

The Liberty file format [60] was introduced by Synopsys in 1987 and subsequently provided
as open source in 2000. It has become the industry standard for timing libraries and is
supported by virtually every EDA tool. It contains information about the logical function
performed by the cell, the cell area, pin capacitances, power consumption and dissipation as
well as timing arcs for the propagation delay through the cell depending on the input value.
The format has been enhanced over the time to incorporate information that is needed to
model the effects of Deep Sub Micron (DSM) technologies more accurately. Liberty files also
include wire load models to estimate the net delay between cells and are usually supplied by
the IP provider. For proprietary IP .LIB files must be generated using Spice simulations.

ASIC Design Considerations

48

3.1.2 LEF

The Library Exchange Format (LEF) [61] was introduced by Cadence Design Systems and
provides physical layout information for backend tools. Usually, the foundry provides a
technology LEF that contains information about the layer stackup, the vias that are allowed
for the technology and design rules for spacing the tool must adhere.

M1
M2
M3
M4
M5
M6
M7

M8

M9

APRDL

Figure 3.1 Layer Stack of EXTOLL ASIC

The format has evolved since its introduction to allow the definition of more and more
design rules that must be followed to avoid chip defects. Due to lithographic effects the
structures on the masks do not represent the structures that appear on the wafer. In order to
get the desired results on the wafer the masks must be altered by so called Optical Proximity
Correction (OPC).

Mask Wafer Mask Wafer

No Optical Proximity Correction With Optical Proximity Correction

Figure 3.2 Effect of Optical Proximity Correction

ASIC Design Considerations

49

As seen in figure 3.2 the wire on the right side must be extended with notches on the mask so
that a rectangular shape appears on the wafer. The LEF must include rules (so called end-of-
line rules) that take these notches that are added after tapeout into account so that no spacing
violations and unwanted shorts occur. The smaller the technology nodes have become the
more design rules had to be added to the LEF.

LEF files also provide an abstract view for cells and hard macros in the design. These LEF
files are supplied by the IP provider or must be generated from the analog layout tool for
proprietary cells. Since the Place&Route tool does not need the full layout information of the
transistors inside the cell it is sufficient to provide the size of the cell and the location and
shape of the cell’s pads as shown in the following exemplary inverter in figure 3.3.

Figure 3.3 Simple Inverter as Full Layout and Abstract View

3.1.3 Capacitance Tables

Although the LEF file contains parasitic information to model wire delays it is a
generalization that was created by the foundry for a specific process. For Deep Sub Micron
designs a more accurate definition is needed because of the variations that happen for
different process corners. A capacitance table is generated from an Interconnect Technology
(ICT) file that is provided by the foundry and contains detailed information about the

ASIC Design Considerations

50

semiconductor process (e.g. layer thickness, dielectric constants, material composition etc.)
that can be read by a specialized field solver that calculates a capacitance table from these
technology parameters. This process must be done for all available process corners so that
the information can be taken into account during the design flow.

3.1.4 SDC / Timing Constraints

The Synopsys Design Constraint (SDC) format [62] is based on the TCL language and used
to specify timing information for a design. It was originally developed by Synopsys but has
been adopted as standard by all major EDA vendors. In order to run timing analysis and
perform optimizations the tool has to know about all the clocks in the design. The following
code defines the main EXTOLL clock with a frequency of ~770 MHz and relatively large
margins for setup and hold analysis. During early design stages when no information is
available about the physical implementation of the clock routing the constraints are usually
more imprecise (and thus harder to achieve) but they will become more accurate later in the
design process.

create_clock -name extoll_clk -period 1.3 \
[get_pins extoll_clocking_I/extoll_clk]

set_clock_uncertainty 0.30 -setup extoll_clk
set_clock_uncertainty 0.05 -hold extoll_clk

If clock dividers as described in paragraph 2.6.1 are used the tool has to know the relation
between the parent clock and the derived clock:

create_generated_clock -name extoll_clk_by_5 -source clkdiv5/CK \
-divide_by 5 -duty_cycle 50 clkdiv5/CK_OUT

Based on the delay of the digital circuit that performs the division timing analysis can also
calculate the phase relation between the two clocks. Another important information is the
definition of paths that must not be analyzed. Clock domain crossings between two
independent clocks cannot be analyzed because the tool is not able to define a relationship
between them. Therefore, these false paths must be excluded from timing analysis. It is the
designer’s responsibility to take care that these paths are correctly handled by using suited
synchronizing circuits to avoid metastability.

set_false_path -from [get_clocks extoll_clk] \
-to [get_clocks pcie_clk]

set_false_path -to [get_clocks extoll_clk] \
-from [get_clocks pcie_clk]

ASIC Design Considerations

51

At last timing relaxations can be defined for certain paths where the designer knows that it is
not important whether a signal arrives one or several clock cycles later. In these cases
defining multi-cycle paths can help achieving timing closure.

set_multicycle_path 2 -setup -through ram_wrapper/pins_out/sec
set_multicycle_path 2 -setup -through ram_wrapper/pins_out/ded

Usually, a design does not consist of only one SDC file. Timing constraints can be defined for
different use cases, e.g. the test clock does not have to be constrained for normal operation.
The tools, however, have to optimize and analyze for all possible use cases.

3.1.5 DEF

A Design Exchange Format (DEF) file [61] contains the current state of a design in the
design process and can include both logical design data like constraints and physical design
data like placement locations and routing information. Together with the information in the
LEF files it is a complete representation of a chip’s design data. Its primary purpose is the
data transfer between different tools (design databases are usually stored in a proprietary
format). A DEF file does not have to include every possible feature but can be limited to store
only a subset of them, e.g. for transferring a floorplan from backend to frontend for physical
synthesis the DEF does only have to include the floorplan information.

3.1.6 Flow Script

Most EDA tools nowadays can be controlled through a graphical user interface. However,
many commands and switches cannot be reached via the GUI. Full control of the tool and
the flow can only be gained by using the integrated TCL based command interface. This does
not only allow the execution of a complete flow through a set of interwoven scripts by
running commands sequentially but also more complex design manipulations by accessing
the design databases through TCL commands and performing batch operations on them.

For example, in Encounter a bump of a flip chip die can only be assigned to an I/O driver
pin. However, this I/O pin can be anywhere in the hierarchy and might also change in the
design process. It is much easier to assign a net name to a bump. The following TCL
procedure introduces a function that takes a bump and a net name as parameters, searches
the design database for the cell that drives this net and connects the drivers output pin with
the associated bump:

ASIC Design Considerations

52

proc assignBumpByNet { bump net } {
 set iobuffer \
 [dbGet [dbGet -p top.nets.name $net].instTerms.inst.name]
 set iopin [string map [list $iobuffer/ ""] \
 [dbGet [dbGet -p top.nets.name $net].instTerms.name]]
 assignIOPinToBump -buffer $iobuffer -pins $iopin -bump $bump
}

If the tools supported only GUI access neither such enhancements nor a simply reproducible
flow could be achieved in chip design.

3.2 Data Hierarchy

Chip implementation tools have become more and more integrated over the last few years.
While it was common to run separate tools for different steps in the design nowadays the
whole subset of functionality can be controlled from a single tool even though the legacy tool
might still run in the background. Nevertheless, the user does not have to setup each tool
separately and can work in a common environment with a single setup.

The required input for the synthesis can be divided into technology files and user-generated
content. Technology files like libraries for standard cells or hard IP stay the same across
several projects at the same process node and should be stored at a central location on a
network drive to be easily accessible. Project dependent content like RTL, constraints or TCL
scripts to control the tool flow is usually stored in text files and can change over the time.
Storing this data in a version control system like subversion (SVN) [63] keeps track of
changes made during the project and also allows other designers to work on the files at the
same time. However, project dependent libraries like customized memories can also be
managed through the version control system. Figure 3.4 shows the directory structure of the
SVN that is used for the EXTOLL ASIC. All the design data is stored in a rtl folder while the
flow scripts are stored in a separate scripts folder. Other folders contain documentation files
(doc), constraint files (constraints), project libraries (lib) and verification related code (tests,
verification).

Designers can checkout the complete design database and its associated control scripts and
run the complete frontend and backend flow in their local working directory anywhere in the
network.

The results from the different steps are handled in a similar manner. While running localized
flows generates all the intermediate databases in the user’s directory structure known

ASIC Design Considerations

53

“golden” databases are stored at a central network location so that the designer can enter at
any point in the flow to optimize some details without having to rerun everything, a process
that could take several days for a complex design like EXTOLL.

verificationverification

teststests

scriptsscripts

encounterencounter

packagepackage

rcrc

rtlrtl

rmarma

xbarxbar

toptop

liblib

capTblcapTbl

ramram

techleftechlef

EXTOLL ASIC SVNEXTOLL ASIC SVN

constraintsconstraints

docdoc

Figure 3.4 EXTOLL ASIC Subversion Structure

The distributed organization of the design flow with centralized storage for important
information also allows several designers to work on the same project concurrently. They can
modify design scripts at the same time because the version management system can merge
the changes made by different users. Since intermediate results are stored centrally, one

ASIC Design Considerations

54

designer can review a specific step in the design flow while another reviews the step
afterwards.

The following table 3.1 summarizes the types of contents and their storage locations.

 Content Storage

Input data
EDA libraries (static content) Central network location
RTL, flow scripts etc. (dynamic content) Version management

Output data
“Golden” results Central network location
Intermediate user results User specific location

Table 3.1 Design Data Storage

Despite these techniques to ease collaboration ASIC design is a rather linear flow which will
be presented in the following paragraphs. The flow does not allow for much parallelization of
the actual design tasks since most scripting and adaptions can only be done after the previous
step has been completed successfully since the results rely on each other. However, there are
always some side tasks that can be carried out in parallel because they are not directly related
to the main flow (equivalence checking, for example).

A group of not more than four people can carry out the complete design flow efficiently
without much idle time in between; more resources assigned to the task will not improve the
efficiency any more.

3.3 Frontend Flow

In early days libraries for EDA tools were strictly separated in front-end and back-end views.
Usually, front-end design teams and back-end designers had little contact and worked
separately (so called throw-over-the-wall approach). Front-end designers required little to no
knowledge of the backend flow and vice versa. Synthesis tools only required timing libraries
to determine cell delays. Wire delays between standard cells were analyzed by using statistical
models, e.g. for a block of n gates a driver with a fanout of m is usually connected to a wire
with a delay of x ps. This worked well for designs on large process nodes where cell delay was
significantly higher than the wire delay. In DSM nodes the reverse is true, the total
propagation delay of a path is mainly determined by its wire delay [64]. The crossover point
has been reached at the 0.13µm node as shown in the graph in the following figure 3.5.

ASIC Design Considerations

55

Figure 3.5 Gate vs. Interconnect Delay4

As a first step it is important that the synthesis tool already has information about the size of
the cells and the intended technology to model wires with more accurate delays. The
following figure 3.6 summarizes these requisites.

Figure 3.6 Synthesis Input and Output Files

4 Courtesy of IDESA, an European Community FP7 project, www.idesa-training.org

ASIC Design Considerations

56

Knowledge about the technology allows the tool to run a prototype placement without
constraints during synthesis that is able so that a first estimation of the final wire length can
be achieved. For better correlation between frontend and backend the floorplan (either
preliminary or final) can be back-annotated to synthesis so that the placement estimation
and thus the resulting wire delays become more accurate.

This also allows the synthesis tool to direct its optimization efforts to paths that actually need
to be optimized. With a statistical model it is possible that the tool wastes computing power
on paths that will already meet timing because the gates in it are placed much closer than
assumed by the model. Because of the way how a synthesis tool works this can become a
problem for cases with many paths that are optimized unnecessarily. A synthesis tool usually
has a time budget allocated for optimization efforts so that it does not run indefinitely in
cases of unreachable timing. When it has to optimize lots of unnecessary paths it can happen
that it will stop its optimization efforts sometime in the flow without giving attention to
paths that are in earnest need of improvement.

The synthesis flow is a simple process that is shown in the following figure 3.7. Each step in
the flow is associated with one or more TCL script that performs the tasks required for each
step. In order to run the complete synthesis implementation only the master script
extoll_rc_flow.tcl has to be sourced by the user.

In the following each step in the design flow is shortly introduced:

- Load Libraries
As previously mentioned synthesis nowadays requires a whole set of libraries and
technology information. This information must be setup firsthand in the tool.
Sometimes there are inconsistencies between the frontend and backend views that
must be analyzed to let the tool know the more accurate definition.

set_attribute library [list required libs]
set_attribute lef_library [list required LEF]
set_attribute cap_table_file rcworst.capTbl

- Load Design
This step loads all the HDL files and elaborates the complete design. If any modules
are not available these instances will be marked as black boxes and synthesis will
continue without them.

read_hdl -define ASIC -sv [list all HDL files]
elaborate

ASIC Design Considerations

57

Figure 3.7 Frontend Flow Organization

- Load Constraints
Timing constraints have to be added to the design so that the synthesis tool has
information about its optimization goals. If no timing constraints are defined the
design is simply synthesized and mapped to the target technology, however, little to
no optimizations are performed. Typically, a design can operate in different modes
(e.g. functional mode for normal operation and test mode during test). Each of these
modes requires a separate set of timing constraints. The tool will analyze and
optimize timing for all defined modes concurrently. It is important that the

ASIC Design Considerations

58

constraints are not too tight so that amount of time used on optimization is still
reasonable.

create_mode -name {functional test }
read_sdc -mode functional functional.sdc common.sdc
read_sdc -mode test test.sdc common.sdc

At last, the back-annotated floorplan is also read in this design step to perform
Physical Layout Estimation (PLE).

read_def floorplan.def

- DFT Setup
While the previous steps only handled the loading of different design structures the
DFT steps take care of lots of design modifications that are required for testing. First
of all, basic DFT features have to be setup like the number of scan chains in the
design and their type (compressed/uncompressed), which pins are defined as scan
inputs and outputs and whether they are dedicated or shared with normal I/O pins
and so on. The JTAG macro including its connections also has to be defined.
The RAMs used in EXTOLL are equipped with internal test structures and test ports.
For normal operation and during development these ports are not used. Thus, the
design instantiates wrappers that can utilize the test ports. However, the wrapper
connections are tied off because the functionality is not needed during simulation.
After the design is elaborated in the synthesis tool the RAMs are spread all over the
hierarchy and the test signals must be connected to the test controller [65]. RTL
Compiler allows extensive manipulations on the netlist so that all these connections
can be made by TCL scripting.
The following figure 3.8 shows the process based on a simplified example.
At first all memories in the design are located and put in a list. In the first steps of the
design manipulation the tie-offs are disconnected from all memories.

edit_netlist disconnect mem_wrapper/pins_in/test_clk

The second step ties all signals together that are driven by a single global signal like
the test clock in this example.

edit_netlist hier_connect test_clk_root/pins_out/test_clk
mem_wrapper/pins_in/test_clk -in_prefix test_clk_in -out_prefix
test_clk_out

ASIC Design Considerations

59

At last in step 3 the connections between the different instances are established like
the shift register that holds the information about occurred errors in this example.

edit_netlist hier_connect mem_wrapper/pins_out/err_out
next_mem_wrapper/pins_in/err_in -in_prefix err_in -out_prefix
err_out

Memory Wrapper

Test Logic

Core Memory

CLKA

ADDRA

DA

CLKB

ADDRB

QB

test_clk

err_in err_out

Memory Wrapper

Test Logic

Core Memory

CLKA

ADDRA

DA

CLKB

ADDRB

QB

test_clk

err_in err_out

Memory Wrapper

Test Logic

Core Memory

CLKA

ADDRA

DA

CLKB

ADDRB

QB

test_clk

err_in err_out

‘0’

‘0’

1

test_clk

2

3

Figure 3.8 Memory Test Connections

Finally, logic is added around the PLL to allow on product clock generation during
test.

- Synthesis
Synthesis is actually the step that requires only minimal input from the designer.
Synthesis is performed in two separate steps. At first a general synthesis is performed
that maps the high-level HDL to simple generic gates. In the second step the
mapping to the target technology is performed together with optimizations that
become possible due to special complex gates that are available in the technology. In
between the two steps DFT violations that have occurred during synthesis must be
identified and fixed.

- Report
In order to determine the quality of the synthesis, the achieved timing and area a
whole set of reports is generated after synthesis concludes. These reports help to
identify problems that might have occurred at some time in the flow.

- Export Database
After the synthesis flow has completed the design must be written out. RTL
Compiler can directly write out a design database for Encounter that already
includes the complete setup of the libraries so that these steps can be skipped in the

ASIC Design Considerations

60

following backend flow. Besides the export to backend the synthesized netlist is also
written as standalone Verilog file for simulation. Further verification can be
performed by writing out setups for equivalence checking and constraint verification
tools.

3.4 Backend Flow

After synthesis is completed the design database must be imported by the backend tool. This
is the only real transition of databases in the whole ASIC flow. Fortunately, the tools are
designed to interoperate well so that RTL Compiler can already write out a complete
environment setup for Encounter that is not only able to load the synthesized netlist but
since all the physical design information in the libraries is already needed in the frontend also
all the required libraries are read in correctly.

The backend flow consists of a set of tasks that are executed sequentially in the design
process. Because a lot more process steps have to happen in backend the design flow is much
more complex than the synthesis flow. Like the frontend flow the backend flow is script
based. Each major step is controlled by a single TCL script file which can call additional
scripts to split tasks further in cases where the design task becomes too complex to be
handled by a single script. Although it would generally be possible to put every task in a
smaller number of scripts this reduces both readability and the possibility to easily reuse
scripts in upcoming designs.

Basic design information like the die size, the bump pitch etc. is outsorced to a common
setup script basic_chip_setup.tcl that is shared with the scripts that are used for package
generation (see paragraph 4.3). This means that as soon as one basic parameter has to be
changed due to manufacturing reasons the information is automatically propagated to all
relevant scripts and can be used for automatic regeneration.

set die_size_x 14000
set die_size_y 11600
set bump_pitch 200
set bump_edge_space_min 150
set bump_count_x [expr ($die_size_x - \
 2 * $bump_edge_space_min)/$bump_pitch]

The following figure 3.9 shows the major steps that have to be executed as well as their
associated script files.

ASIC Design Considerations

61

Figure 3.9 Backend Flow Organization

In the following each step of the backend flow is introduced before the next paragraph 3.5
outlines the challenges during floorplanning.

- Floorplan & Macro Placement
Floorplanning is one of the most important tasks in the physical design process as it
defines guidelines for the location of the cells in the netlist on the die. The process is
paramount for reaching timing closure and usually requires several iterations. The
process itself will be discussed in more detail in the following paragraph.

- Flip Chip Routing
In this step the bump array is defined and created. In the beginning all the bumps are
just dummy bumps with no net connections. These connections must then be
created logically by associating a driver pin with the respective bump location. In this
flow this is done by executing a script generated by the package generator that
annotates this information to the physical design. After everything is setup the
specialized flip chip router routes the wires from the bumps to the drivers while

ASIC Design Considerations

62

considering the constraints that are defined for the nets (e.g. differential routing to
balance p and n or shielded routing for sensitive wires).

- Powerplanning
A correct power distribution is fundamental for correct operation of the chip. Power
planning consists of several steps. At first, all cells in the design must be connected to
power nets because no power pin is connected after synthesis. As soon as logical
power connectivity is established the power grid that lies over the chip in the upper
metal layers must be defined. After placement the power stripes of the standard cells
will have to be connected to this grid. The bumps that deliver the power from an
external voltage regulator must also be connected to the power grid which is done by
back-annotating the information from the package. At last, power analysis must be
run carefully to simulate the expected IR drop due to switching activity all over the
chip. If the voltage drop exceeds the specified boundaries the power grid must be
redesigned to meet the new requirements or additional decoupling cells have to be
added to the affected region.

- Placement
The Placement step takes care of placing the cells on the die. For this purpose it
adheres to the guidelines defined during floorplanning and also considers all the cells
that were placed in a previous design step.

- Clock Tree Synthesis (CTS)
In this step the clock trees for the design are built. In order to do this the tool
requires input about all the clocks in the design. The user also has to define the cells
that are allowed to build the tree. In the synthesized netlist clock connections are
simple direct connections between the clock root and the clock pins at the gates.
However, since the clock is a high fanout net with a corresponding capacitive load it
is organized in a tree structure (hence the name clock tree) with buffers in between
to distribute the load across the tree. It is the task of the CTS to build a tree that is
balanced. A tree can be built either with buffers or inverters (two successive inverters
perform no logical operation), however, the cells must be symmetric, i.e. the rise
time and the fall time must be identical. The respective cells are logically added and
physically placed into the design by CTS. Afterwards the clock tree is routed as long
as the normal wires are not yet routed since the logic is sensitive to clock skew,
especially in a high performance design with almost no timing margin. Clock nets
can also be routed with shielding to reduce the possibility of cross-coupling or other
external influences. Besides clock nets CTS also performs routing of the reset net in a

ASIC Design Considerations

63

similar way since it has the same requirements for balanced routing as the clock nets
and is also a high fanout net.

- Route Design
In this step the remaining connections in the design are routed which means
millions of wires in a complex design like EXTOLL. During the routing process the
router tries to incorporate timing constraints (e.g. paths with a small timing budget
must be routed as short as possible) and signal integrity considerations (e.g. long
parallel routes facilitate crosstalk). Because the process is computationally intensive
it is split in two parts. During global routing the design is partitioned into cells and
the wires are only routed between the cells. This already gives an insight if an area
will be congested or not. In the following step, detailed routing the actual
connections between the globally routed wires and the pins are created. There can be
cases that some pins cannot be accessed or that the router creates shorts to connect a
pin. Although the tool tries to fix these problems by ripping up nets in these areas
and rerouting them it is possible that some violations will not be fixed automatically.
In this case the designer must find a solution.

- Signoff
The final step before tapeout is the Signoff process. In this step the completely routed
design is handed off to the signoff tool that will run a detailed 3D parasitic extraction
to model all physical conditions. This is the most accurate analysis that can be done
for the design, however, it can also take many days to complete. After timing analysis
and power analysis based on the extracted model are completed physical layout
verification is performed to check the physical design rules (DRC) and layout vs.
schematic (LVS) that checks if the layout implementation that is extracted from the
tapeout information matches the schematic representation of the design.

In between all these steps timing optimizations occur that are refined after new physical
structures have been added to the design. Additionally, as described in the previous
paragraph 3.2 after each step the database is exported so that the process can be interrupted
and continued almost anywhere in the flow.

3.5 Floorplanning and Datapath Analysis

As mentioned before with smaller technology nodes the wire delay has become significantly
more important than the gate delay. This means that the placement of logic cells in relation
to each other determines the maximum achievable clock frequency rather than the delay

ASIC Design Considerations

64

caused by logic cells. For example, the propagation delay of an inverter in EXTOLL’s 65nm
process is well below 10ps, the target clock cycle time on the other hand is about 1.3ns.
Modern SoC chips like EXTOLL utilize a large die area which means that logic cells can be
spread apart more than one centimeter, a distance that cannot be crossed during a single
clock cycle [66].

Steve Scott, Cray’s former Chief Technology Officer presented the following figure in his
keynote during the 15th International Conference on Parallel Architectures and Compilation
Techniques (PACT) [67] that gives an excellent representation of the signal reach problem in
modern SoC designs.

Die

16mm

65nm (2008)
90nm (2005)
130nm (2002)
180nm (2000)

45nm (2010)
32nm (2013)

Figure 3.10 Signal Reach in One Clock Cycle (8 FO4)

As such Floorplanning is one of the most important steps in the backend design flow. It
defines where the tool places the design instances. This has an effect on the routing
implementation later on and the achievable timing.

While the backend tool is able to analyze connections between modules to cluster logic
belonging to each other in nearby locations it is not able to determine the designer’s
intentions. Figure 3.11 shows an example of a placement that was automatically generated by
the tool with no external constraints. Each of the four partitions defined in paragraph 2.8
have been colored (PCIe partition in red, HT partition in blue, EXTOLL partition in green
and the EXTOLL network partition in yellow) to show how the tool placed related logic.

ASIC Design Considerations

65

However, the result is far from optimal. First of all most of the logic is placed in one corner of
the chip while the serializer blocks are placed in the other corner. This already leads to long
wire delays for the paths that have to connect from the logic cells to the serializer macros.

Figure 3.11 Automatic Placement without Floorplan

Fortunately, the designer who has an idea how the logical structure will map to the physical
implementation can support the tools with several placement guidelines that differ in their
strictness:

- The Guide is the most relaxed constraint. As the name says it guides the tool where
to place cells. The tool tries to adhere to the constraint by placing cells in the vicinity
of the guide. However, a guide which can be set on modules or groups of modules in
the logical hierarchy is a soft constraint and the tool is not forced to obey it.

- The Fence is the most restrictive floorplanning constraint. It has a fixed boundary
that limits the module and all its children to the defined area. At the same time, logic

ASIC Design Considerations

66

that does not belong to the sub-hierarchy of the module is not allowed to be placed
inside this region. A Fence should only be used if it is necessary or if the designer is
absolutely sure of his intentions. Since the tool is not allowed to override the
constraint it can lead to suboptimal placements.

- The Region constraint is related to the Fence. Like the Fence constraint it forces a
module or group with all its children into a fixed area. However, the boundary is not
restrictive for the rest of the design so that other modules may overlap into the
Region. This allows the tool to optimize placement in some areas where it thinks that
moving instances into the Region might be beneficial to the timing.

A nice side-effect of constraining the location of modules is the fact that it greatly reduces the
calculation time (placement is an NP-complete problem [68]) that the tool requires finding a
global solution and can spend more time on optimizing placement within the modules. For a
large design like EXTOLL placement can need several days until completion, a process that
can be sped up to several hours by utilizing multi-threading functionality.

3.5.1 Datapath Analysis - Global View

In order to define guides for the placer it is important to analyze the dataflow in the chip
which has direct impact on where modules should be placed. A block level schematic already
gives a good overview how modules and functional units inside the design are connected. On
a large scale it can be said that data packets traverse the chip from the host interface to the
link interface and vice versa. With a closer look at the following figure 3.12 it can be seen that
the dataflow itself is divided into two parts with the functional units being the transition
point between the two packet types:

- Packets coming from the host interface can be routed to all the functional units and
the other way round (denoted in light blue)

- The packets coming from the network interface can be routed to the functional units
or other network links (denoted in light red)

Both packet types are distributed through a central crossbar across the chip. The HTAX
crossbar switches host interface packets while the EXTOLL network crossbar switches the
network packets. Because these crossbars interconnect all the modules that are connected to
them they must spread over the chip in vertical direction while being close enough that
timing closure can be achieved.

ASIC Design Considerations

67

The block level schematic is already a good starting point for a first floorplan definition so
that it can be mapped directly to the die. While it is relatively coarse grained it gives a good
impression of the designer’s intention and dissuades the tool from placing modules at
unreasonable locations. However, it does not show any information about minor datapaths
in the design like the connection between the main register file and its children.

extoll_asic_top
extoll_network_partitionextoll_partition

pcie_partition

ht3_partition

HT
PHY

PCIe
PHY

HT3 16x

PCIe
Gen3
x16

HT3
Core

PCIe
Core
(EP/
RP)

PCIe
Bridge

HTAX
Bridge HTAX

VELO

RMA

SMFU

ATU

RF

NP

NP

NP

NP EXTOLL
Xbar

LP

LP

LP

LP

LP

LP

LPSNQ Debug-
port

Link
Ctrl

Link
Ctrl

Link
Ctrl

Link
Ctrl

Link
Ctrl

Link
Ctrl

Link
Ctrl

Link
PHY

Link
PHY

Link
PHY

Link
PHY

Link
PHY

Link
PHY

Link
PHY

12x

I2 C

S
P

I

12x

12x

12x

12x

12x

12x

Global Data Flow

Host Interface Data Flow Network Interface Data Flow

Figure 3.12 Global Datapath Analysis

3.5.2 Pre-placement

An article that appeared in EETimes in 2004 [69] stated that “hard macros will revolutionize
SoC design”. It analyzed that the number of hard macros in a SoC grows exponentially and
that the chip area is more and more determined by the area of these macros. Instead of a “sea
of cells” which was common about a decade ago we now see a “sea of hard macros” which is
an observation that can be confirmed by looking at figure 3.11.

The first improvement to the floorplan is the correct placement of the large serializer macros.
Although the steps performed are an actual placement it is considered to be a part of the
floorplanning process.

ASIC Design Considerations

68

The location of the serializer macros is tied to the package development which will be
discussed in the following chapter 4. Since the serializers cannot be placed at arbitrary
locations they must be put at predefined positions so that their I/O pads align with the bump
location defined in the package or at least in its vicinity.

The following figure 3.13 shows the result of an automatic placement after the serializer
macros have been fixed at their correct location.

The resulting placement is already a large improvement to the result seen in the previous
figure 3.11. The location of each partition already resembles the structure from the block
level diagram (mirrored along the y-axis). Nevertheless further improvements can be made
e.g. by defining module guides so that the free space between the links is utilized more
efficiently.

Figure 3.13 Automatic Placement with Preplaced Macros

ASIC Design Considerations

69

Modern placers are suited to place objects of different heights (i.e. not standard cell heights)
efficiently. Thus, it usually does not make sense to preplace RAM macros which could be a
tiresome process considering that there are more than 1,000 instances in EXTOLL. However,
situations can arise in the design process that might require preplacing at least some of them.
Such detailed floorplanning operations are discussed in the following paragraph 3.5.3.

3.5.3 Datapath Analysis - Detailed View

Floorplanning is a hierarchical iterative process as shown in the following figure 3.14. It
starts without any floorplan at all and continues with a coarse grained floorplan that maps
the logical structure of the design to the die area. As soon as the global floorplan is
satisfactory critical regions can be floorplanned in more detail. During and after each step the
floorplan should be analyzed to see if it caused improvements and did not actually worsen
the results.

Figure 3.14 Hierarchical Floorplanning

Analysis of the floorplan’s quality can be conducted by looking at two parameters:

- Congestion
After the floorplan is defined a Trial Route process is called that performs a complete
routing of the chip. However, for performance reasons it does not care about legal
placement of the routes so that routing channels might be over-utilized.
Nevertheless, it gives an indication if the design is routable at a later stage by looking

ASIC Design Considerations

70

at the percentage of congested paths in the design. If one area is highly congested it
might be a good candidate for further floorplanning to resolve issues that are caused
by tightly packed logic.

- Timing
The result of the Trial Route process are typically direct Manhattan style [70] routes
and therefore the shortest possible connection between two endpoints. This means
that analyzing chip timing based on this routing will give the designer feedback on
the quality of the floorplan. If the starting and end point of a path are placed far apart
because they belong to different floorplan objects this will have a negative impact on
the timing slack of the path. The sum of all negative (i.e. failing) paths will represent
a measurable metric that can be used as comparison between several implementation
runs.

The following table 3.2 shows the result of the first two floorplan iterations described in the
previous paragraphs which show a tremendous improvement in the 2nd iteration..

Floorplan No Floorplan Macros Preplaced

Timing
TNS (ns) -16300000 -1750000
Violating Paths 702000 684000

Congestion

Routing Direction Horizontal Vertical Horizontal Vertical
Congested Paths 0.98%

(658937)
3.57%
(2413961)

0.01%
(8466)

0.61%
(407206)

Uncongested Paths 99.02%
(66913224)

96.43%
(65168556)

99.99%
(67563375)

99.39%
(67175019)

Table 3.2 Floorplan Evaluation

While it might seem conducive to floorplan every module down to the lowest level,
overconstraining can be just as harmful as underconstraining [71]. It is important to
concentrate on modules that will benefit because of their structure (e.g. connections over
large distances) or because of their logic complexity.

For the remaining modules it is most likely sufficient to floorplan only the upper design
hierarchy. Only if the results that the tool produces are not satisfactory the designer should
descend into submodules and optimize them separately.

Because of their logical structure three critical modules can be identified in the EXTOLL
design that could benefit from a more accurate floorplanning:

ASIC Design Considerations

71

- Register File
Each functional unit has its own register file instance that contains control registers
as well as status and debug values. It became already apparent early in the design
phase during FPGA prototyping that holding all information at a single location is
detrimental to reaching timing closure. Therefore RFS already includes support for
hierarchical decomposition by introducing external register files that are connected
via a simple access interface to the main register file. Since read and write access to
the register file from the host system is not latency critical the connection between
the main register file and its children can be pipelined with one or more intermediate
delay elements that simply introduce an additional register stage in the data and
control path so that crossing large distances on the chip is not a problem any more.
Furthermore, for most status signals it is not relevant if changes are delayed one or
more clock cycles and that they might be visible to the module a little bit later.
Therefore multicycle timing constraints can be applied to these signals which can
also relax the timing requirements for the module where the register file is
embedded.
That means that despite initial assessment accurate floorplanning for the register file
is not needed because of its design structure and the resulting timing improvements.

Global datapath analysis in paragraph 3.5.1 showed that the two central crossbars are also
candidates for detailed floorplanning. Crossbars are by design limited in their scalability
because the internal datapaths have to be muxed from all the inputs. Additionally, arbitration
requires request signals from all inports. Of course, the crossbar should be as fast as possible.
Therefore it usually is latency optimized which means that it will consist of as few register
stages as possible. While this is a good aspect for performance, it is equally bad for layout on
the chip, especially for high radix switching architectures [72].

- HTAX
The HTAX network-on-chip (NoC) architecture is highly optimized for latency. Its
internal structure is shown in the following figure 3.15 that plainly shows the
problems of the architecture for efficient floorplanning.

ASIC Design Considerations

72

Figure 3.15 HTAX Structure

Requests from every functional unit must be routed to the arbitration logic that
determines which request is granted. The result of this combinatorial arbitration
logic then controls a multiplexer that selects the correct datastream that will be
switched to the outport of the stage. This architecture is replicated for every HTAX
port, in EXTOLL’s case nine times. Therefore it is important for the stages before the
HTAX to intermingle with the switch logic so that their output registers can be
placed ideally equidistant from all arbiters and muxes. This also means that the
HTAX crossbar should not be constrained to spread from the top to the bottom of
the chip. Instead its logic must be packed as close as possible. Otherwise it is highly
unlikely that the long combinatorial paths will meet timing.

- EXTOLL XBAR
The last identified critical structure is the EXTOLL crossbar. Its internal structure is
depicted in the following figure 3.16.
The crossbar is architecturally separated in inports and outports. The inport contains
all buffers to store packets and management information while the outports mainly
consist of the multiplexer logic for the datapath and the arbitration logic. Although
the EXTOLL crossbar is more pipelined than the previously discussed HTAX
physical implementation is still challenging. For once, there is a large size mismatch
between the inports and outports as seen in the following table 3.3 which shows that
one inport due to its memory requirements occupies about 55 times the area of one
outport.

ASIC Design Considerations

73

outport[0]inport[0]
routing_interpreter

pkt_store

mq_fifo_wrapper

port_request_unit

port_grant_unit

din_mux

credit_admin

outport[1]inport[1]
routing_interpreter

pkt_store

mq_fifo_wrapper

port_request_unit

port_grant_unit

din_mux

credit_admin

outport[10]inport[10]
routing_interpreter

pkt_store

mq_fifo_wrapper

port_request_unit

port_grant_unit

din_mux

credit_admin

Figure 3.16 EXTOLL XBAR Structure

 Inport Outport
Area (µm2) ~ 1550000 ~ 28000

Table 3.3 XBAR Area Distribution

This also means that one single outport only occupies less than 2‰ of the total area
in an 11x11 XBAR. Each output must therefore be strategically placed in the crossbar
area so that it can be reached by every inport for both the arbitration requests and
also the datapaths. On the other hand it is essential to utilize the area between the
serializers that is seen in figure 3.13 as much as possible which means pushing most
of the crossbar logic into the gap which, on the other hand, is detrimental to the goal
of placing the transitions between inport and outport as close together as possible.

In the end each case must be carefully analyzed and several floorplan iterations will have to
be tried out before a final floorplan is achieved that will also allow reaching the final goal of
timing closure.

ASIC Design Considerations

74

3.5.4 Miniature Optimizations

Besides floorplanning the modules from the upper design hierarchies there are also
structures at the bottom of the hierarchy that can benefit from a careful optimization
process. In the following two methodologies are presented that can alleviate timing
restrictions that can occur around RAMs in the design.

As mentioned in chapter 2 the RAMs are modeled so that they behave exactly as their
counterparts in the FPGA design. This means that the output register stage that would
normally be added at the output of a module is missing and the inserted ECC logic reduces
the timing budget of the following stage. Of course, this increases the problem of wire delays
because there are more logic cells in a path that must be interconnected. Thus, it seems
beneficial to group the ECC logic as close to the RAM macro as possible.

This feature is supported by a relative floorplan feature that allows defining a placement
relationship between different floorplan objects without knowing in advance where they will
be ultimately placed.

In the case of the ECC logic this means that the gates can be tightly grouped together by a
fence object and then be relatively placed next to the output pins of the RAM macro. The
following TCL command places the ECC_logic_grp object relatively to the RAM instance
ram_I with no spacing in between:

relativeFPlan --relativePlace ECC_logic_grp TL ram_I BL 0 0

ram_I

ECC_logic_grp

TL TR

BL BR

Figure 3.17 Relative Placement Example

ASIC Design Considerations

75

Placement information is quadrant based with top left (TL), top right (TR), bottom left (BL)
and bottom right (BR) as possible object locations. The relative placement defined in the
small example code can be seen in figure 3.17.

Another example of a floorplan optimization at the bottom hierarchy level is the register
based RAM. As described in paragraph 2.4 small RAMs are designed as arrays of flip-flops
because they are so small that using a dedicated RAM macro would be inefficient. The
following code snippet shows the module definition of such a flip-flop based RAM.

module reg_ram #(
 parameter DATASIZE = 2, // Memory data word width
 parameter ADDRSIZE = 2 // Number of memory address bits
) (
 input wire clk,
 input wire ren,
 input wire wen,
 input wire [DATASIZE-1:0] wdata,
 input wire [ADDRSIZE-1:0] waddr, raddr,
 output reg [DATASIZE-1:0] rdata
);
reg [DATASIZE-1:0] MEM [(2**ADDRSIZE)-1:0];

always @(posedge clk) begin
 if (wen) MEM[waddr] <= wdata;
end

always @(posedge clk) begin
 if (ren) rdata <= MEM[raddr];
end

endmodule

For a RAM definition with the width d and an address width of n bits a total of 𝑑 ∙ (2𝑛 + 1)
flip-flops are needed. The resulting synthesized structure that can be seen in figure 3.18 is
highly regular. Each flip-flop of the memory array is preceded by a multiplexer that switches
between the currently stored value and the applied value at the wdata input. The switch to
the wdata input only happens if both wen is asserted and waddr matches the row of the
memory element. The same applies to the output register rdata which is updated with the
value of the row selected by raddr when ren is asserted. These structures also scale for
memories that contain more storage elements than the 4x2 array used as an example.

ASIC Design Considerations

76

Figure 3.18 Schematic of a 4x2 Register Based RAM

Encounter supports so called Structured Data Paths (SDP) that can be used to layout such
register arrays in an efficient way. It is a semi-custom design methodology that allows exact
placement of single elements either at a fixed location or relative to each other.

The following TCL command, for example, aligns all flip-flops from memory row 0 in the
previous example also in a single row on the chip:

createSdpGroup -name row0 -type row -inst reg_ram/MEM_REG[0]*

This means that resulting structure is a row although the elements are actually placed in
columns next to each other.

Output Register Data Register Output Multiplexer Input Multiplexer

ASIC Design Considerations

77

The process can be repeated for all rows so that four groups exist each consisting of all
memory cells for a particular row address. These groups can then be combined to an array
structure:

createSdpGroup –name array –type column
addSdpGroupMember –group array –object {row0 row1 row2 row3}

In this case the defined structure is a column. Thus, each row is arranged below the previous
row so that the resulting placed structure will look as follows on the chip:

MEM_REG[0][0] MEM_REG[0][1]
MEM_REG[1][0] MEM_REG[1][1]
MEM_REG[2][0] MEM_REG[2][1]
MEM_REG[3][0] MEM_REG[3][1]

Although the approach is scripting based lots of effort has to be invested to build an efficient
solution. Detailed knowledge of the design or the respective module and its internal structure
is a prerequisite. Therefore it only makes sense to apply the methodology in cases where the
automatic placement algorithms of the tool cannot find a solution that will reach timing
closure and the designer determines that the cause is an irregularly placed structure that can
be optimized by hand to meet timing.

Optimization of Complex Interconnection Structures

79

4 Optimization of Complex
Interconnection Structures

As described in chapter 2 the EXTOLL ASIC features several external high-speed interfaces
to connect to the outside world.

Interface Signaling Lanes Speed Signals Total pins
PCIe Gen3 Differential 16 8 Gb/s 16 TX

16 RX
64

HyperTransport Differential 18 5.2 Gb/s 18 TX
18 RX

72

EXTOLL Link Differential 7 x 12 8 Gb/s 7 x 12 TX
7 x 12 RX

336

Table 4.1 EXTOLL High Speed Connectivity

Adding up the numbers from table 4.1 gives a total of 472 high speed pins that must be
handled in the design process. This large number means that all design aspects must be
carefully considered when building and optimizing the signal path from the chip to the
external connector. All testing and verification efforts of the digital logic to maintain
confidence are in vain if a successful and stable communication is not possible.

4.1 Design constraints

Design Constraints

Technological Limitation Signal Integrity

Viability Economic Feasability

Figure 4.1 Connectivity Design Constraints

Optimization of Complex Interconnection Structures

80

Figure 4.1 shows the design constraints associated with the optimization. In order to find an
ideal solution all four constraints must be met and in turn also optimized. The following
paragraphs will present these obstructions and how they are applied to the different stages in
the signal path.

4.1.1 Technological Limitations

At several points in the design process it can happen that the designer can think of a better
solution, but instead the option is not viable because it cannot be manufactured. A good
example is the width of a PCB trace which is usually limited to 75µm, but it might be
required to lower the width in order to match the impedance. The alternative is changing the
material to one with another permittivity which might increase the production cost.

4.1.2 Signal Integrity

There are several aspects that must be kept in mind in order not to mess up signal integrity
[73]. Enough distance between adjacent wires to minimize crosstalk, continuous ground
reference planes, as few impedance discontinuities as possible are just some examples of good
design practices that are the foundation of a clean signal transmission. Unfortunately, this
might limit the available space for routing signals, for example.

4.1.3 Viability

It might be desirable to pack all signals together in as little space as possible. However, high
density is no use if the design is not routable at any stage (e.g. in the package or on the PCB).
At any case the layout must be carefully optimized early on so that as few signal crossings as
possible will occur, otherwise the available routing channels might not suffice to route all
connections.

4.1.4 Economic Feasibility

Not everything that is technologically possible should be considered. Usually, pushing the
technological limits comes with a hefty price tag and it is important to find a good
compromise between cost on the one side and performance on the other side. E.g. the
shrinking of the trace width suggested in paragraph 4.1.1 can be done to a certain degree.
Unfortunately, this is not considered to be a “standard” process any more and will result with
a surcharge of up to 30% on the board price. Since this is a recurring cost for every PCB it
will diminish the earnings per unit independent of volume and should be avoided.

Optimization of Complex Interconnection Structures

81

It is especially important to consider all aspects in the design space. If a mistake is introduced
somewhere in the system it is possible that it might be too costly to fix and appear over the
complete lifetime of EXTOLL. At best it can still be fixed but the additional money invested
will hurt the profit in any case.

4.2 Design Components

In order to construct a system with low bit error rates and reliable communication all stages
in the signal path must be designed carefully with the overall goal kept in mind. The
following schematic representation in figure 4.2 (not to scale) shows the different
components that the signal must pass through on its way from the chip to the external cable
that provides connectivity to other nodes.

Die

Package

PCB

Connector
Signal path

Figure 4.2 Schematic Representation of Signal Path

The following paragraphs detail the considerations that have to be taken into account for
each component and how they were solved for the EXTOLL project.

4.2.1 Connector

The following table 4.2 gives an overview of commercially available connectors.

Connector Lanes Speed
HDI6 12 156 Gbps
CXP 12 120 Gbps
QSFP 4 40 Gbps
CX4 4 10 Gbps
SFP+ 1 10 Gbps

Table 4.2 Connector Overview

EXTOLL is designed to work with 12x links running at a speed of up to 10Gb/s per lane
which equals a link bandwidth of 120Gb/s. Currently, InfiniBand QDR [74] offers lane

Optimization of Complex Interconnection Structures

82

speeds of 14Gb/s, however, the available IB connectors QSFP and CXP are either limited in
the number of lanes or built with huge dimensions. Since the goal is building a 3D torus
network it is necessary to have six links. In order to build a card that adheres to the PCI
Express Card Electromechanical Specification [75] all six connectors must fit into the slot
bracket of a standard PCIe slot. This is only possible with a high-density connector which
excludes almost all commercially available products from the previous table. The only
connector that fits the specification is the HDI6 connector from Samtec [76]. Samtec fits two
double-stacked connectors with a total height of 13.34mm in a width of 23.95mm by
maintaining a pitch of 635µm between pins. The high pins-per-volume density also led to the
adaption as official connector for HyperTransport between nodes [77]. The following picture
4.3 shows the configuration with six links at the edge of a PCIe board.

Figure 4.3 Samtec HDI6 Connector

As seen in the following figure 4.4 the width of the connectors allows to place exactly 24 AC
coupling capacitors for both the upper and lower part.

Figure 4.4 PCB Layout of HDI6 Connector

Optimization of Complex Interconnection Structures

83

4.2.2 PCB

As seen in figure 4.4 the HDI6 connector is ordered in four rows. For a complete breakout of
all signals four routing layers are needed on the PCB, one for each row. Two rows carry the
TX signals of both the upper and lower part of the connector and the other two rows the RX
signals. AC coupling capacitors are placed on the bottom side of the PCB, one array towards
the board edge, the other behind the connector.

The PCI Express Card Electromechanical Specification defines the nominal thickness of PCIe
addin cards with 1.57mm (+/- about 10% tolerance). This limits the amount of layers that
can be stacked in a multi-layer board. For signal integrity reasons the high-speed signals of
the external links are routed as differential striplines with continuous reference ground
planes both above and below the track for proper shielding and to minimize the path for the
return current.

With these parameters there is not much room left to vary the structure of the PCB
internally: four inner routing layers, each surrounded by ground planes and the top and
bottom layer as well leave only enough space to add two more inner layers with higher
thickness for power routing without violating the PCI Express guidelines. Altogether, a 14-
layer board is needed to meet the routing requirements.

The final stackup also has a large influence on the impedance of the signal lines in the PCB.
For accurate calculations a 2D field solver is needed to determine the impedance of a
differential stripline. Nevertheless, approximations that are not far from the final result can
be made with the help of some simple formulas that only need some basic parameters.

The impedance of a single stripline with a thickness t and a width w embedded in a dielectric
of thickness b and a relative dielectric constant of εr can be calculated as follows [78]:

𝑍0 =
60
√𝜀𝑟

𝑙𝑛 �
1.9(2𝑏 + 𝑡)
(0.8𝑤 + 𝑡)

�𝑂ℎ𝑚

The following figure 4.5 shows the effect that changing either the dielectric material, its
thickness or the trace width has on the resulting impedance.

Optimization of Complex Interconnection Structures

84

Figure 4.5 Impact of Parameters on Impedance

The differential impedance of an edge-coupled differential stripline with FR-4 can be
approximated with the following formula [79]:

𝑍𝑑𝑖𝑓𝑓 ≅ 2𝑍0 �1 − 0.374𝑒−2.9𝑠ℎ�𝑂ℎ𝑚

where Z0 denotes the impedance of a single trace without coupling, s is the distance between
the differential traces and h is defined as the thickness of the dielectric between the ground
planes.

εr

s ht

w

Figure 4.6 Differential Stripline

Since the dielectric constant of “improved” FR-4 is in the range of 3.7 (may vary depending
on the manufacturer) and the thickness of the dielectric as well as the thickness of traces is
predefined by the stackup and the manufacturer’s guidelines the main variable that can be

Optimization of Complex Interconnection Structures

85

altered is the width of the trace. Many PCB companies define 75µm as the minimum width
that can be manufactured without special effort. Therefore the resulting maximum
impedance that can be achieved is roughly 55Ω. The differential impedance is twice the
single trace impedance in the case that no coupling occurs. For coupled traces, however, the
differential impedance decreases the nearer the traces come together. As a final result,
differential routing in the EXTOLL board stackup was defined by two traces with 75µm
width that are edge-coupled with a distance of 125µm, resulting in a differential impedance
of about 100Ω. The outcome is close enough to the desired values (since the parameters are
not always 100% accurate) that PCB manufacturers that offer controlled impedance for their
boards are able to tweak the parameters marginally to produce the board without problems.
The following figure 4.7 shows an example stackup with the previously defined parameters.

Top Layer

FR-4

Ground Layer

FR-4

FR-4

Ground Layer

Inner Routing

Ground Layer

FR-4

Inner Routing

FR-4

FR-4

Power Layer

FR-4

Power Layer

FR-4

Ground Layer

FR-4

Inner Routing

FR-4

Ground Layer

FR-4

Inner Routing

FR-4

Ground Layer

Bottom Layer

FR-4

1620µm

Figure 4.7 Example PCB Stackup

Optimization of Complex Interconnection Structures

86

However, the exact configuration may slightly vary depending on the manufacturer and their
available core and prepreg offerings.

In order to test the routability and to uncover eventual signal integrity issues a prototype
board was designed that featured two 12x capable double-stacked HDI6 connectors driven
by a Xilinx Virtex7 FPGA that is able to generate traffic at speed of up to 8.5Gbit.

Figure 4.8 Aspin Test Board

With the Aspin prototype board and the two Virtex6 based boards presented in paragraph
2.7 connectivity between chip and connector has been explored sufficiently. The boards also
gave valuable insight for developing the best power strategy for the final EXTOLL board.

4.2.3 Package

High pin count devices must be packaged as Ball Grid Arrays (BGAs). Because of the
arrangement of the solder balls as a grid array on the bottom side of the package a very high
pin density per area can be achieved.

BGAs also have other advantageous properties [80]:

Optimization of Complex Interconnection Structures

87

- During the soldering process the package itself can compensate a misalignment of up
to 50% due to the surface tension of the solder that pulls the chip to the correct
position.

- The larger number of balls between package and PCB and their composition
facilitate the heat transfer due to a lowered thermal resistance. The thermal
resistance directly correlates to the maximum allowed power dissipation:

𝑃𝑚𝑎𝑥 =
∆𝑇
Θ𝐽𝐴

∆T is defined as the difference between the junction temperature (about 125°C) and
the ambient temperature. The junction-to-ambient thermal resistance ΘJA is the sum
of all thermal resistances. A lower thermal resistance of the package means that the
chip can either dissipate more power or that other cooling solutions can be designed
more conservatively.

- Because the critical signal lengths in a BGA package can be greatly reduced the lead
inductance shrinks which has a positive effect on signal integrity which makes a
BGA an ideal candidate for high speed chips like EXTOLL.

The JEDEC publication 95 [81] defines a high number of different BGA packages. One of
their differentiating parameter is the pitch which defines the distance between the center
points of two adjacent balls on the bottom side of the package.

FPGA vendors which can be seen as producers of commodity devices offer their chips in
packages with a 1.00mm pitch with only few exceptions that have a pitch of 0.8mm.

A smaller pitch obviously has the advantage of a smaller package if the number of pins stays
the same or more pins than before can be accommodated on the same area. Especially chips
for mobile devices are nowadays produced with a pitch as small as 0.4mm. However, the on-
going miniaturization leads to technical problems:

- A smaller pitch also leads to smaller solder balls which are usually weaker in resisting
thermal cycling fatigue and might not be as reliable as the larger balls of devices with
a larger pitch [82].

- The higher connection density also poses a challenge for the PCB design. Signals
from all over the package must be routed to other devices or connectors. Before this
can happen, a so-called breakout must be done to route all signals from the bottom
of the chip to the outside area. The common approach consists of placing a via
diagonally across a pin and perform the breakout on another layer because the top
layer does not have enough routing channels for all signals (except for very small

Optimization of Complex Interconnection Structures

88

chips). However the space between these vias that are drilled through the complete
PCB is also limited so that only a certain amount of signals can be routed below the
BGA on a single layer. If the pitch is very small only a small wire will fit in a routing
channel. Most likely this will lead to an impedance discontinuity because spacing
rules limit the wire to a certain width that will not lead to an optimum impedance.
Differential routing will definitely not be possible below a fine pitch BGA.

Of course, the rule that finer structures are always more expensive also applies to the
miniaturization of BGA packages.

In the case of EXTOLL a 42x42 BGA package was defined to be sufficient to handle the
signaling and power requirements of EXTOLL. With 1764 balls and a proposed pitch of
1.00mm the package exhibits the same properties as the Virtex6 LX240 that is assembled on
the Ventoux and Galibier prototype boards. The FPGA prototypes already showed that
signals can be routed as differential pairs through a routing channel below the chip as shown
in the following figure 4.9.

Figure 4.9 Differential Pair BGA Breakout

The most critical part of the pin arrangement on the package is the location of the serializer
pins. As defined in the previous paragraphs four inner routing layers are available due to the
stackup which also matches the number of layers to route to a double-stacked connector. The

Optimization of Complex Interconnection Structures

89

best way to route a high-speed signal is over a continuous ground reference plane without
layer changes so that the return path in uninterrupted. Therefore, the obvious solution is to
use one layer for RX of one link, route TX on another signal layer and do the same for the
second link on the same connector. The serializers are already placed in rows on the die
which translates to a similar arrangement on the package. Due to the high number of
serializers a link consists of two rows (one for the P pins of the differential pair, the other for
the N pins) and 24 columns (12 RX and 12 TX). The previous figure showed that only one
differential pair can be routed between vias under the FPGA. This means that twelve routing
channels must be available per layer to route either RX or TX of one link. The following
figure 4.10 details the breakout pattern for this problem. The two foremost differential pairs
are directly routed out of the BGA area (albeit on two different layers). The next two pairs
share the adjacent routing channel. In the middle of the row the differential pairs will overlap
with the signals of the second connector. These signals, however, use the other two
remaining layers to route independently of the other signals. The rearmost differential pairs
will make use of the routing channel which lies next to the pins belonging to the next
connector. Since the remaining pins will be either unconnected or connect to ground or
power planes with their breakout vias it does not matter that the routing space below the
FPGA is completely utilized in the serializer area.

Figure 4.10 A 12x Serdes Breakout

Optimization of Complex Interconnection Structures

90

EXTOLL’s package will be manufactured by Kyocera SLC Technologies [83] that offer an
organic substrate with high density build up that is especially suited for high pin count BGA
devices with many high-speed signals. The package is designed in a 4-4-4 stackup [84]
configuration with a 4 layer core surrounded by 4 build-up layers on each side. Final
substrate height will be about 1160µm.

4.2.4 Die

Dies can be attached to a package either as flip chip [85] or with wirebonds. Because of the
large number of pins required and lots of high speed signals that greatly benefit from the
lowered inductance of a flip chip attachment EXTOLL is designed as flip chip which logically
fits to the choice of a BGA package since the same arguments apply that imply that a BGA is
a superior choice for high-speed signaling.

For flip chip the pins on the die are placed in an array on the top side of the chip. The same
pattern is also present on the package substrate. In order to bond die and package together
the die is flipped so that the pins face the substrate. This process was introduced by IBM in
1964 [86] and called Controlled Collapse Chip Connection (C4) which is still a common
acronym for flip chip technology.

EXTOLL’s die size is mainly determined by the size of the serializer macros. Likewise the
location of macros and I/O cells already predefines the general location of the associated
bumps so that the floorplan directly matches to the external connectivity. This avoids long
routing delays on the redistribution layer (RDL) that can potentially deteriorate signal
integrity.

The allocated die area implies minimum rules for bump size and pitch according to the
TSMC reference manual [87] for the technology. Bump pitch and die size in turn determine
the size of the bump array. The number of available bumps on the die is larger than the
available balls on the package since it is common to define a complete array mainly due to
mechanical reasons to prevent the die from breaking when it is attached to the package. This
means that many bumps do not have a signal assigned. These bumps can either be left as
dummy bumps with no connection to the chip or used as additional ground / power contacts
to improve the power distribution network.

Optimization of Complex Interconnection Structures

91

4.3 Automatic Generation

Changes in the signal arrangement can happen frequently, especially in the starting phase of
a design. While earlier changes tend to be more extensive, later updates will usually only shift
the position of very few pins.

These changes always affect a set of different tools that use different databases to store this
information. Changes on the die must be kept in sync between the backend tool and the
package design tool while changes on the BGA side must be reflected in the PCB tool.

Therefore, the best approach to avoid any inconsistencies was the development of a small
TCL script that generates assignments for all tools from a global database while taking care of
the different tools’ peculiarities:

- Depending on the tool the pin location must either be done by absolute x/y positions
or by row/column definition.

- While the backend tool numbers rows and columns with digits the package designer
relies on the JEDEC definition.

- The backend tool needs a clear distinction between signal and power/ground pins.

The script takes care of all these corner cases and generates a definitions text file for the
package designer that can be directly imported and a TCL script for the backend tool that
assigns all pins after it is sourced.

Since many structures appear with a regular pattern (like the serializer arrangement or the
location of power/ground pins) and with names that can also easily be composed
automatically the maintenance effort for the script is rather low while reducing risk of a
mismatch in the databases at the same time.

Figure 4.11 Scripting Approach

Optimization of Complex Interconnection Structures

92

4.4 SI Analysis

For every high-speed design an accurate signal integrity analysis is of utmost importance.
While good design practices help to achieve building a system that will work in most cases,
especially for multi-GHz signals the simulation of the traces with a field solver cannot be
avoided.

While the package design was performed with Cadence Design System’s Allegro Package
Designer [88] all simulations were accomplished using Agilent’s Advanced Design System
(ADS) [89].

This paragraph will give a short overview of the simulations for the high-speed differential
traces for the EXTOLL links that are designed to run at speeds of up to 10 Gbit/s.

The following figure 4.12 shows the simulation setup for a single channel. The testbench
consists of a pseudo random generator that drives a differential CML driver. The receiver
side is terminated to the current mode voltage VCM inside the serializer. The data from the
differential receiver is then analyzed in the connected probe. In between the channel model
of the extracted package traces is inserted in a first step. For further analysis the rest of the
signal path like PCB traces and connector models can also be inserted to simulate the whole
system to get an authoritative answer regarding the signal integrity.

CML TxPRBS
Generator CML RxVcm ProbeChannel Model

Figure 4.12 Single Channel Simulation Setup

The following figure 4.13 shows an eye diagram that was measured after the signal has
crossed the package. The BGA balls, however, have not been included in the simulation. The
simulation has been run at 10 Gbps with an output driver voltage swing of 800mV across a
package trace with a length of 25.6 mm. No equalization was performed.

The eye diagram with a width of 98.2ps and a height of 595mV shows pretty good results
considering the high signal rate. However, the trace is rather short and there are no
impedance discontinuities. The eye diagram at the end of the complete channel model will
look much worse. For a detailed analysis of signal integrity problems and further simulations
kindly refer to [90].

Optimization of Complex Interconnection Structures

93

Figure 4.13 Eye Diagram at 10 Gb/s

4.5 PDN Design

Designing a sufficient power distribution network is as important as designing for optimal
signal integrity. A core supply that looks like the one in the following figure 4.14 will cause
unexpected problems during the device’s operation and the chip might fail to work correctly.

The goal of an efficient PDN is to supply the same voltage all over the chip with an allowed
noise tolerance (ripple) and to reduce the effect of ground bounce. Both goals are related in
some way and are affected by unwanted inductance in the current path. Ground bounce [91]
which is also called simultaneous switching noise (SSN) occurs during the switch from 1 to 0.
The current flowing from the load capacitor in combination with the inductance of the
current path generates a voltage which can be seen as ground bounce on a scope.

𝑉 = 𝐿
𝑑𝑖
𝑑𝑡

If only few circuits switch at the same time the induced voltage is minimal, however, when
many circuits switch simultaneously the effect is measurable.

Time (ps)

A
m

pl
itu

de
 (V

)

Optimization of Complex Interconnection Structures

94

Figure 4.14 Example of an Insufficient Power Supply

On the other hand, the current going through the power network to the chip causes a voltage
drop (IR drop) that is caused by the resistance of the network. However, the power
distribution network does also have inductive and capacitive qualities leading to an
impedance that is dependent on the frequency so that the resulting voltage is a function of
the complex impedance of the PDN and the current flowing through it.

Thus, the goal of the PDN design is to achieve a target impedance that is low enough that the
voltage drop caused by it is below the specified ripple specification r.

𝑍 <
𝑟𝑉𝐷𝐷
𝐼𝑡

In cases where the transient current It is not available an approximation of about 50% of the
peak current is a good estimation.

For FPGA designs a concrete PDN analysis is not really necessary since the FPGA vendors
have already run extensive simulations and provide elaborate guidelines on the number and
values of the required decoupling capacitors. Especially for first chip releases these
recommendations are exceedingly conservative so that adhering to the guidelines should
suffice for a smooth operation.

Optimization of Complex Interconnection Structures

95

For EXTOLL such data is not available for now so that an accurate simulation of the power
distribution network using a SPICE simulator is recommended. Overdesigning the network
to achieve a lower impedance is always a viable option to build in some safety, however,
additional components required for this step will cause higher costs.

4.6 Results

The next paragraphs present an overview of EXTOLL’s final package considering the
constraints for the implementation that were analyzed in previous sections.

4.6.1 EXTOLL I/O

The following tables 4.3 to 4.10 show a list of all I/O signals of EXTOLL. The pins are divided
in logical groups combining signals together that belong either to a certain standard or a
specific application.

Pin Name Description
HT_RX_CLK{H,L}_{P,N} HT RX CLK differential pairs
HT_RX_{P,N}_[0..15] HT RX CAD differential pairs
HT_RX_CTL{H,L}_{P,N} HT RX CTL differential pairs
HT_TX_CLK{H,L}_{P,N} HT TX CLK differential pairs
HT_TX_{P,N}_[0..15] HT TX CAD differential pairs
HT_TX_CTL{H,L}_{P,N} HT TX CTL differential pairs
HT_REFCLK_{P,N} HT reference clock differential pair
HT_PWROK HT PWROK
HT_RESET_N HT Reset
HT_LDTSTOP HT LDTSTOP
HT_CALTX HT TX calibration resistor

Connect an external 1.2K precision resistor between
HT_CALTX and HT_CALTXRTN.

HT_CALTXRTN HT TX calibration resistor
Connect an external 1.2K precision resistor between
HT_CALTX and HT_CALTXRTN.

HT_CALRX HT RX calibration resistor
Connect an external 1.2K precision resistor between
HT_CALRX and HT_CALRXRTN.

HT_CALRXRTN HT RX calibration resistor
Connect an external 1.2K precision resistor between

Optimization of Complex Interconnection Structures

96

HT_CALRX and HT_CALRXRTN.
Table 4.3 HyperTransport Interface Pins

Besides the 16 CAD, 2 CTL and 2 CLK signals for both RX and TX that transfer link data,
control information and a clock for each 8 bit sublink this group also includes three sideband
signals that are defined in the HyperTransport protocol.

Both the HT_PWROK and HT_RESET_N signal control the reset sequence of the HT link.
The HT_PWROK signal can be viewed as a cold reset for the HT system and indicates that
both the power and the clocks are running and stable. HT_RESET_N on the other side can
be seen as a warm reset that resets the HT link. After powering up the initialization sequence
consists of a deassertion of the HT_PWROK signal by the host system followed by a
deassertion of HT_RESET_N a short time later. The HT_LDTSTOP signal is a power
management signal for the HyperTransport link that can both stop (upon assertion) and
resume (upon deassertion) link operation. Usage of both HT_RESET_N and HT_LDTSTOP
is commonly limited to changes in the link configuration after the BIOS has determined both
the host’s and the addon card’s capabilities.

Additionally, the 200 MHz reference clock that is the base clock for all links in the
HyperTransport system is fed into the chip through the HT_REFCLK differential pair.

For transmitter and receiver impedance calibration two pin pairs (HT_CALTX/
HT_CALTXRTN and HT_CALRX/ HT_CALRXRTN) are provided that must be connected
to an external precision resistor.

Pin Name Description
PCIE_RX_{P,N}_[0..15] PCIe RX differential pairs
PCIE_TX_{P,N}_[0..15] PCIe TX differential pairs
PCIE_REFCLK_{P,N} PCIe reference clock differential pair
PERST_N PCIe Reset

Table 4.4 PCI Express Interface Pins

The PCI Express pin group consists of 16 lanes for data transfer between root port and
endpoint. Additionally, the PCIe reference clock with a nominal frequency of 100 MHz (with
an allowable deviation of ±300ppm) is provided through the PCIE_REFCLK differential pair.
Like the HyperTransport reference clock the PCI Express reference clock allows for spread
spectrum clocking (SSC).

Optimization of Complex Interconnection Structures

97

PERST_N is the only reset signal provided in a PCI Express environment. Its meaning is
analogous to HT_PWROK, i.e. it is deasserted as soon as both the power and the clocking is
completely stable.

Pin Name Description
L[0..6]_RX_{P,N}_[0..11] RX links
L[0..6]_TX_{P,N}_[0..11] TX links
L[0..6]_REFCLK_{P,N} External link reference clock input
L[0..6]_CBL_DET_N Cable detect for links (internal pullup)

Table 4.5 Network Interface Pins

Although table 4.5 is only sparsely populated it covers a large number of pins. Each of the
seven network link consists of 12 different pairs for each receive and transmit as well as a
reference clock input. The reference clock input, however, does not have to be connected
necessarily since the normal mode of operation is supplying the reference clock on-chip as
described in section 2.6.

A simple state signal with an internal pullup resistor for cable detection that is pulled down
to ground as soon as a cable is inserted is also provided once per link.

Pin Name Description
OSC_IN Oscillator input, crystal connection, or 25MHz ext.

input
OSC_OUT Oscillator out, crystal connection
EXT_CLK_IN_{P,N} External CML clock input, high speed input
DBG_CLK_OUT_{P,N} Debug clock leaf output
DBG_PLL_CLK_{P,N} Debug PLL output clock
DBG_PLL_REFCLK PLL reference clock debug output
PLL_LDO_OUT PLL internal LDO output pin, connected to at least

4.7µF. It can also be directly connected to 1.2V for PLL
core. All blocks of the PLL are directly connected to
this voltage.

PLL_BG_OUT Bandgap output current, which is linearly proportional
to the temperature. The pin is pulled to GND with a
weak pulldown resistor.

Table 4.6 Clocking Pins

In the clocking section all pins are grouped that are related to either the internal PLL or
defined as backup alternatives. The OSC_IN / OSC_OUT pins are used to build an oscillator

Optimization of Complex Interconnection Structures

98

circuit (as seen in the following figure 4.15) that generates the 25 MHz reference clock for the
PLL which is the foundation of the core EXTOLL clock.

In order to assure correct functionality a high-speed differential clock input EXT_CLK_IN is
also provided for injecting the core EXTOLL clock directly, thus circumventing the PLL.

OSC_IN

OSC_OUT

CLK

Figure 4.15 Oscillator Circuit

For initial bringup three clock debug ports are connected that will output the clock during
different stages in its generation. During normal operation these pins may be unconnected.

Pin Name Description
EXTOLL_PON_RES_N EXTOLL global power-on reset (internal pullup)
PCIE_IF_SELECT Host interface select signal. (0: HT, 1: PCIe (internal

pullup), static)
INT_CLK_SELECT Clock source select signal. (0: external clk, 1: internal

clock (internal pullup), static)
PCIE_EP_ENABLE Switch between PCIe rootport and endpoint capability.

(0: RP, 1:EP (internal pullup), static)
PATCH_FROM_FLASH_N Configures the patch flash mechanism (0: patch, 1: no

patch (internal pullup), static)
DBG_MODE_EN_N Configures the GPIO interface as debug output. (0:

debug mode on GPIO, 1: std. operation (internal
pullup))

Table 4.7 Configuration and Reset Pins

The pins in table 4.7 are used to hard wire configuration options and control the reset of
EXTOLL.

The PCIE_IF_SELECT signal controls which of the two host interfaces is active. The default
setting is PCI Express since that will be the most common setting. Furthermore, the PCI

Optimization of Complex Interconnection Structures

99

Express mode can be operated either as endpoint (which is the default) or as rootport. This
feature can be selected with the PCIE_EP_ENABLE pin.

The PATCH_FROM_FLASH_N signal is needed to enable the patch process from an SPI
flash through the debug port. The default setting is that no patching is performed, only if it
turns out that there are incorrect values in the register file it is required to set the signal.

In the case of a non-functional PLL or another malfunction in the clocking circuit a backup
clock coming from EXT_CLK_IN can be used by setting INT_CLK_SELECT.

EXTOLL_PON_RES_N is EXTOLL’s global reset signal that will be deasserted as soon as
external power and clocking is stable and normal operation can commence.

Pin Name Description
I2C_SLAVE_SCL I2C slave debug port clock signal
I2C_SLAVE_SDA I2C slave debug port data signal
I2C_SLAVE_ADDR_SEL I2C slave address selection switch. Defines the LSB of

the I2C slave address.
I2C_MASTER_SCL I2C master clock signal
I2C_MASTER_SDA I2C master data signal
SPI_Q SPI master data input
SPI_CLK SPI master clock
SPI_D SPI master data out
SPI_CS_{0,1} SPI chip select (patch flash or optional device)
GPIO_[0..15] General Purpose I/O (shared with SI[0..7]/SO[0..7]

during scantest)
Table 4.8 Miscellaneous Pins

Most of the signals in table 4.8 are used to connect to the debug port (see paragraph 2.5).

An I2C master that is internally controlled through the register file is reachable through the
I2C_MASTER_SCL/SDA pins that control the clock and data signal of the interface. The
same set of signals is available for the I2C slave in the debug port that can be used to read
debug information from the register file during operation. In order to operate two separate
chips in a common I2C chain (as intended for the DEEP system) the
I2C_SLAVE_ADDR_SEL pin can be used to set the least significant bit of the slave’s address
so that both devices can be addressed separately.

Optimization of Complex Interconnection Structures

100

In order to read and write from an SPI flash as needed for the debug port a set of common
pins (SPI_Q, SPI_CLK, SPI_D) is available. Two separate flash devices can be operated that
are selected through the two chip select signals (SPI_CS).

A set of GPIO pins is also available. These can be accessed through the register file and can
be used to either read the status information from an external device or control another
component on the board, e.g. an LED. The GPIO interface can also be used to output debug
information if the debug mode is enabled as shown in the previous paragraph. If the debug
mode is enabled the lower eight pins of the bus output a set of debug signals that can help
verifying the operation of the chip. These signals consist of:

- EXTOLL global reset
- Status signal that patching from the patch flash has been completed
- A trigger that a packet was either sent to or received from the host on a specific

virtual channel (posted, nonposted, response)

The third mode of operation of the GPIO pins is available during scan test. In this case half
of the pins operate as scan input, the other half as scan output to access the internal scan
chains of the chip.

Pin Name Description
TDI Common JTAG data input
TCK Common JTAG test clock
TMS_0 Memory BIST JTAG test mode input
TDO_0 Memory BIST JTAG data output
TMS_1 Serdes JTAG test mode input
TDO_1 Serdes JTAG data output
TRST_N Testlogic reset (JTAG TAP, TDR and memory BIST)

Table 4.9 JTAG Interface Pins

All JTAG [92] pins are test related and do not have to be connected for normal operation.
There are two separate JTAG controllers inside EXTOLL as shown in the following chapter 5
in figure 5.8. The two controllers share a common set of signals, namely TDI for data input,
TCK as clock and a common reset TRST_N. JTAG data output TDO and test mode select
TMS that controls the state machine of the controller is implemented separately.

Pin Name Description
DFT_TM_N Dedicated test mode signal. NC for normal operation.
DFT_SE_N Dedicated shift enable during scantest. NC for normal

Optimization of Complex Interconnection Structures

101

operation.
DFT_CLK Dedicated test clock. NC for normal operation.
DFT_OPCG_EN Enable OPCG pulses during scantest. NC for normal

operation.
DFT_OPCG_LD_CLK To load OPCG configuration register. NC for normal

operation.
DFT_OPCG_TRIGGER Trigger pulses. NC for normal operation.
DFT_COMP_EN Enable scan chain compression. NC for normal

operation.
DFT_SPREAD_EN Enable scan chain decompression. NC for normal

operation.
DFT_MASK_LOAD Enable scan chain masking logic mask loading. NC for

normal operation.
DFT_MASK_EN Enable masking logic. NC for normal operation.

Table 4.10 Dedicated DFT Pins

All signals in table 4.10 are used for testing the chip and do not have to be connected for
normal operation. In order to switch to test mode the DFT_TM_N signal must be asserted.
Data is then shifted into and out of the internal scan chains through the GPIO pins with the
DFT_SE_N signal and clocked with the dedicated DFT_CLK which will only run at a
moderate speed of about 50 MHz. Scan compression and decompression can be enabled with
the DFT_COMP_EN and DFT_SPREAD_EN signals. In order to improve the efficiency of
the compression logic unknown (X) values can be masked out. Masking will be enabled
through the DFT_MASK_EN signal. In order to share the test clock with the masking clock
(instead of providing a separate input) the DFT_MASK_LOAD input is used. Upon assertion
the signal gates the clock to the design except the mask register so that only the mask register
will be loaded.

On-Product Clock Generation (OPCG) to enable at speed testing is controlled through three
pins. OPCG will be configured by loading configuration registers clocked with
DFT_OPCG_LD_CLK. The OPCG logic will then be enabled by asserting the
DFT_OPCG_EN signal. In order to advance the design by one high-speed clock cycle the
trigger signal DFT_OPCG_TRIGGER is used to generate pulses.

4.6.2 EXTOLL Supply

A large part of EXTOLL’s package is taken up by power supply pins which will be presented
in the following.

Optimization of Complex Interconnection Structures

102

Pin Name Description
VDD_CORE EXTOLL logic core voltage @ 1.0V
GND_CORE Common digital logic ground.
VDD_IO CMOS I/O voltage @ 3.3V or 2.5V
GND_IO CMOS I/O ground.

Table 4.11 Digital Core and I/O Supply

TSMC’s 65nm GP process requires a core supply of 1.0V which is supplied via the
VDD_CORE pins distributed across the chip. The I/O voltage can be either 3.3V or 2.5V and
is limited to the I/O islands in the chip. Each of these I/O islands could be run with a
different I/O voltage; however, since all external components are able to run at 3.3V there is
only a single I/O voltage which in turn also simplifies the design of the package. The ground
pins of the core and I/O can be tied together since the I/O cells only operate at a low speeds
and are not susceptible to increased noise.

Pin Name Description
HT_VDDHT HT PHY digital voltage @ 1.1V
HT_VSSHT HT PHY digital ground.
HT_VDDC HT PHY digital core level voltage @ 1.0V (probably

1.1)
HT_VSSC HT PHY digital core level ground.
HT_VDD18 HT bias supply for RX termination and PLL supply @

1.8V
HT_VDDRX HT RX analog clean voltage @ 1.1V
HT_VDDTX HT TX supply voltage @ 1.2V
HT_VSSA HT PHY common analog ground.

Table 4.12 HyperTransport Supply

A whole set of supplies is needed to operate the HyperTransport PHY. Both receiver and
transmitter need a clean analog supply, running at 1.1V (HT_VDDRX) and 1.2V
(HT_VDDTX) respectively. An analog ground that is separated from digital ground must
also be provided (HT_VSSA). The digital core logic is supplied through HT_VDDHT and
HT_VDDC, each coupled with ground pins (HT_VSSHT and HT_VSSC). For performance
reasons these supplies are overdriven to at least 1.1V. Eventually, they must be increased up
to 1.25V for correct operation at the highest possible speed. At last, 1.8V are supplied
through HT_VDD18 for the PLL and RX bias supply.

Pin Name Description
VDD_PLL PLL supply voltage @ 1.8V

Optimization of Complex Interconnection Structures

103

GND_PLL PLL analog ground.
PLL_IREF_IN PLL reference current (100uA) (optional fallback)
VDD_OSC Crystal oscillator I/O voltage @ 3.3V
GND_OSC Crystal oscillator I/O cell ground.

Table 4.13 Clocking Supply

The PLL is supplied through an individual VDD_PLL pin. Both the bandgap and the internal
LDO are connected to this voltage. An analog ground pin is also required. In the case of a
non-working bandgap the reference current required for the PLL can also be supplied
through a separate PLL_IREF_IN pin.

At last, the I/O bank containing the oscillator cell is supplied separately (VDD_OSC) from
the rest of the I/O cells to avoid external noise that will influence the jitter characteristics of
the clock in a negative way. A coupled ground pin (GND_OSC) concludes the clocking
supply.

Pin Name Description
TC_VCCA1 Serializer analog voltage @ 1.0V
TC_VCCA2 Serializer analog voltage @ 1.8V
TC_VCCD Serializer digital voltage @ 1.0V
TC_VSSA Serializer common analog ground.
TC_VSSD Serializer digital ground

Table 4.14 Serializer Supply

Besides the digital core most power will be consumed in the serializers in EXTOLL. The
serializers need two different analog voltages running at 1.8V and 1.0V respectively and a
digital voltage at 1.0V. Of course, both the analog and digital supply also require a separate
ground.

4.6.3 Constraints and Efficiency

Appendix C shows the layout and mechanical diagrams of EXTOLL’s package.

In summary, one can say that it is important to have a global view on the whole system and
optimize all corners in parallel. Unfortunately, up to now there is no tool available that can
support the design process. Existing solutions only cover partial aspects like the integration
of backend and package development, but they still require lots of manual work. This means
that a lot work has to be done traditionally with pencil and paper to develop a coarse

Optimization of Complex Interconnection Structures

104

approach and refine the different steps later. Although this cannot be done automatically it
can be supported with a scripting approach to avoid costly mistakes.

In the overall EXTOLL system everything fits together nicely, for each part of the signal path
a satisfactory result could be found without having to resort to an inferior solution due to
external constraints. The final package adheres to the constraints that were defined in the
previous sections and constitutes the best solution to connect all interfaces.

EXTOLL Test

105

5 EXTOLL Test

ASIC production is not perfect. Although the production process takes place in a clean room
there is still a possibility that small dust particles can cause manufacturing defects. Also,
small changes in the process might lead to a small variation somewhere on the wafer so that
the die at that location will not function properly anymore. New process technologies usually
exhibit a subpar yield that will increase over time while the chip manufacturer fine tunes the
process and its design rules. Mature nodes that have been in production for years usually
perform very well and a large number of dies per wafer will work as expected.

Design for test (DFT) is sometimes an underestimated aspect in the design process; however,
designing a chip without test structures can be compared to designing RTL without a
thorough verification strategy. In both cases the chances of getting a fully functional chip are
slim.

The International Technology Roadmap for Semiconductors [93] sees test cost as a key
challenge in the near future. Therefore the correct test approach is also determined from an
economic viewpoint.

The following chapter will outline the testing methodology that has been implemented for
the EXTOLL chip and work out an approach to perform testing in-house before final PCB
assembly.

5.1 Test Analysis

The following figure 5.1 shows the available options that can be considered to test produced
ASICs after wafer production.

Test Options

Wafer-level Test In-package Test

Figure 5.1 Test Options

EXTOLL Test

106

Usually, both test options are taken into account. The first test is performed at wafer level
before the individual dies are sliced. At this point, defective dies are marked as bad (in
former days with an ink spot, hence the name inking, nowadays this is done by a digital
inking process) and sorted out after the wafer is scribed and cut so that only known good
dies will be packaged by the packaging house. The goal of this test is to actively sort out
devices with major defects so that they will not be packaged. Thus, the packaging cost can be
saved for these dies.

In general, a second test is also performed after packaging which can also detect problems
that were introduced during this step, but a more thorough test can be run on the final chip,
too. Since wafer tests are not as thorough as they should be to find all defects a more
comprehensive set of test patterns are run on the packaged chip. Afterwards it is guaranteed
that only tested chips that are fully operational (in relation to the tests performed) will be
shipped to the PCB assembly house. This common flow is shown in the following figure 5.2.

Wafer Level Test

Die OK? Package Chip Package Test

Test OK?Discard

NO

YES

PCB Assembly

YES

NO

Figure 5.2 Chip Test Flow

The following two paragraphs give a short overview of the two test methods before the cost is
analyzed for each of them. Afterwards the DFT features for EXTOLL are shortly presented
including the main problems during test before a testing platform is introduced.

EXTOLL Test

107

5.2 Wafer Test

Wafer test needs special Automatic Test Equipment (ATE). This equipment consists of the
tester itself which runs the test program that controls the actual tests, the testing logic and the
wafer stepper. In order to connect to the bare dies on the wafer an adapter is needed, the so
called probe card. The following two figures 5.3 and 5.4 show an example of current state-of-
the-art equipment needed for high-performance chips. It is clear that the tester must be more
complex if the chip to be tested contains more logic or advanced features.

Figure 5.3 Teradyne Tester5

Figure 5.4 Microprobe Vx-MP Probe Card6

While the tester itself is already available at the test house both the probe card and the test
program must be developed specifically for the device under test. Several factors limit the
testing process:

- The tester only has limited memory to store patterns and their responses. For
complex designs these patterns can be rather memory consuming and the more logic
the chip contains the more patterns must be analyzed to receive good test coverage.

- Power consumption is a big issue during test which will also be discussed later in the
chapter. A typical C4 bump can deliver about 50mA of current to the device which
means that a large number of bumps must be connected to supply adequate power
for test operation. During touchdown each probe pin applies a force of 5-10 g on the
die [94] so that the number of probe pins is also limited due to mechanical reasons.

5 http://www.teradyne.com
6 http://www.microprobe.com

EXTOLL Test

108

As a conclusion this means that thorough tests will not be possible during wafer test
and only basic defects will be detected during this step.

- The testers lack functionality to test high-speed structures like multi-gigabit
transceivers that are more and more common in modern SoC design.

- In general, high-speed signals are problematic. Most testers are not able to supply
clocks running at several hundred MHz.

- The probe card itself is only good for a limited number of touchdowns. With each
tested die the probe pins will be more blunted until they are no longer sharp enough
to connect the pad structures on the wafer reliably. Since the pins are also built with
µm structures they can also break due to mechanical stress.

- The tester steps over the complete wafer and must test all dies. The more complex
the test program is the more time this process consumes. However, tester time is not
cheap and every second spent on wafer test costs money.

5.3 Package Test

Because of the limitations outlined in the previous paragraph wafer level testing is not as
thorough as it should be to find all defects in the chip. Therefore it is essential to run a
second phase of tests with more exhaustive coverage after the dies have been packaged. This
process will sort out again a number of defective chips so that only fully tested chips are
prepared for final assembly or shipment to the customer.

In this phase chips are already packaged and balled. This means that the tester needs some
kind of adapter to connect to these balled BGAs. There are three kinds of connection
structures for this application [95]:

- Pogo pins
- Elastomer connectors
- MEMS cantilever probes

The most common structure is the pogo pin which is
also called spring pin or spring probe pin and is shown
in figure 5.57.

7 http://www.ironwoodelectronics.com

Figure 5.5 Spring Pin

EXTOLL Test

109

As with all test structures physical endurance is a major concern. A test socket must work
reliably for at least several thousand test cycles. At the same time it should avoid damaging
the balls on the chip. Since package tests should also support tests in the multi-gigabit range
the electrical characteristics of the connection should not have a large influence on the signal
integrity.

5.4 Process Analysis

Every additional step in ASIC production means additional costs which leads to either a
decrease of profit margins or higher retail prices. In order to define the cost of a chip all
parameters must be analyzed to see whether there is room for improvement somewhere.
Because each project has its own unique requirement there is no single solution that is fitting
for all purposes. In the following a cost model for the EXTOLL ASIC will be developed. A
generalized statement by Gordon Bell says that when the volume doubles, costs reduce by
10% [96]. But predicting the actual cost of an ASIC including test is complex and depends on
many variables. However, available models [97] are sometimes too detailed when a more
general point of view could also give enough insight without taking into account dozens of
parameters.

In general, costs can be divided into NRE costs and unit costs as discussed in chapter 2. The
NRE costs are always fixed for a stage in the design process. In the following the costs per
unit will be laid out. At first some naming conventions have to be introduced in the
following table 5.1:

Variable Definition
GDW Gross dies per wafer. This is the number of dies that can be cut out of

a wafer
DW The number of dies that will be tested during wafer test
W The number of wafers produced
DP The number of dies that have been identified as not defective during

wafer test. These dies will be packaged
YWT The yield achieved during wafer test
YPT The yield achieved during package test
KGD Known good dies. This is the number of dies per wafer that are fully

tested and operational.
Y Overall yield

Table 5.1 Parameters for Die Calculation

EXTOLL Test

110

The gross number of dies gained from a single wafer can be calculated as follows [98]:

𝐺𝐷𝑊 = �
𝜋𝑅𝑒𝑓𝑓2

𝐴 � 𝑒
−0.58(𝐻+𝑊)

𝑅𝑒𝑓𝑓

Reff denotes the effective radius of the wafer, i.e. the physical radius without the edge
exclusion. A is the die area including the scribe lane. For a rectangular chip H and W signify
height and width of the die, for a quadratic chip H and W are identical, of course.

The number of dies gained from W wafers is then

𝐷𝑊 = 𝐺𝐷𝑊 ∙𝑊

A number of these dies will be sorted out during wafer test. Depending on the yield the
number of dies to be packaged is

𝐷𝑃 = 𝐷𝑊 ∙ 𝑌𝑊𝑇 ⇔𝐷𝑊 =
𝐷𝑃
𝑌𝑊𝑇

Once again, a certain number of dies will be sorted out during package test so that the
number of known good dies KGD is defined as

𝐾𝐺𝐷 = 𝐷𝑃 ∙ 𝑌𝑃𝑇 ⇔𝐷𝑃 =
𝐾𝐺𝐷
𝑌𝑃𝑇

The total yield of a wafer is then described as the percentage of good dies from all dies that
were sliced.

𝑌 =
𝐾𝐺𝐷
𝐺𝐷𝑊

Alternatively the overall yield Y can be calculated as the combination of the yield number of
the two test phases.

𝑌 = 𝑌𝑊𝑇 ∙ 𝑌𝑃𝑇

From these numbers the cost of running test can be determined. For simplicity reasons it is
assumed that a defective chip is tested as long as a good die (and thus causes the same costs)
although normally the test would be aborted as soon as a defect was found.

Since the cost to test a die is now time invariant only a few new metrics have to be introduced
in the following table 5.2:

EXTOLL Test

111

Variable Definition
CWT The cost of testing a single die during wafer test
CPT The cost of testing a single die during package test
CP The cost of packaging a single die
NREWT NRE costs of wafer test
NREPT NRE costs of package test
NREP NRE costs of package development
TCWT Total cost of wafer test
TCPT Total cost of package test
TCP Total cost of packaging

Table 5.2 Parameters for Cost Calculation

The total cost of wafer testing can be calculated as follows:

𝑇𝐶𝑊𝑇 = 𝐷𝑊 ∙ 𝐶𝑊𝑇 + 𝑁𝑅𝐸𝑊𝑇

Essentially, for a wafer level test the cost can be broken down to the setup cost of the tester
and the time the wafer stays in the machine to perform the tests.

The cost of packaging is determined in a similar way:

𝑇𝐶𝑃 = 𝐷𝑃 ∙ 𝐶𝑃 + 𝑁𝑅𝐸𝑃

At last, in order to test these packaged chips the cost is defined as:

𝑇𝐶𝑃𝑇 = 𝐷𝑃 ∙ 𝐶𝑃𝑇 + 𝑁𝑅𝐸𝑃𝑇

In total the cost of test TC is defined as the sum of these three components:

𝑇𝐶 = 𝑇𝐶𝑊𝑇 + 𝑇𝐶𝑃 + 𝑇𝐶𝑃𝑇 = 𝐷𝑊 ∙ 𝐶𝑊𝑇 + 𝐷𝑊 ∙ 𝑌𝑊𝑇(𝐶𝑃 + 𝐶𝑃𝑇) + �𝑁𝑅𝐸

Besides the total cost it is interesting to see how much money must be spent to get a specific
number of good dies. This cost per unit C can be calculated by considering the yield of both
test runs:

𝐶 =
𝑇𝐶

𝑌𝑊𝑇 ∙ 𝑌𝑃𝑇 ∙ 𝐺𝐷𝑊 ∙ 𝑊

During package test the same tests that are performed on the wafer can also be run. Thus, it
is a reasonable suggestion to skip wafer test completely and concentrate on package test. In
order to determine the best test strategy one should compare the costs associated with both

EXTOLL Test

112

options. In order to do this the costs should be calculated as function of known good dies
since this is the desired result in the end.

𝑓(𝐾𝐺𝐷) =
𝐾𝐺𝐷
𝑌𝑃𝑇

(𝐶𝑃𝑇 + 𝐶𝑃) +
𝐾𝐺𝐷
𝑌𝑃𝑇𝑌𝑊𝑇

𝐶𝑊𝑇 + 𝑁𝑅𝐸𝑊𝑇 +𝑁𝑅𝐸𝑃𝑇 +𝑁𝑅𝐸𝑃

The above function calculates the cost for a number of working dies while taking into
account that two steps of tests are performed, once on wafer level and once in the package.

𝑔(𝐾𝐺𝐷) =
𝐾𝐺𝐷
𝑌𝑃𝑇

(𝐶𝑃𝑇 + 𝐶𝑃) + 𝑁𝑅𝐸𝑃𝑇 + 𝑁𝑅𝐸𝑃

The second function also calculates the cost for a number of working dies, however, in this
case only package tests are performed. It is important to note that the yield number YPT in the
two functions is not the same. In the second function g(KGD) YPT also includes dies that were
sorted out in the first function during wafer test and is therefore significantly lower.

The NRE costs for setting up both packaging and the package test accrue in both cases and
can therefore be neglected for the analysis. The following figure 5.6 plots the cost
development for both variants for different yield numbers. The NRE costs for wafer test are
assumed to be in the range of 100,000$.

Figure 5.6 Test Cost Analysis

EXTOLL Test

113

The crossing point of two correlated plots defines the point after which setting up wafer test
would be preferable in order to save cost. However, it should be made clear that the numbers
inserted into the formulas are based on rough estimates gained from publicly available
resources and might not be completely accurate for the EXTOLL project.

A clear conclusion on the best test approach cannot be given since it all comes down to the
yield numbers. In the case of a good yield wafer tests might be a waste of time and money
since almost all of the chips will be packaged. On the other hand, a wafer test will already sort
out lots of defective chips in the case of sub-par yield so that lots of packaging costs can be
saved. Therefore it is prudent to completely package the first batch of (prototype) chips in
order to determine approximate overall yield numbers so that subsequent production runs
can be optimized. It is clearly visible from the plot above that for a bad yield the crossing
point is reached already at small numbers and for a volumes of about 10,000 chips savings in
the range of several 100,000$ can be achieved while the crossing point for an 80% yield is not
even reached in the plot.

In the case of EXTOLL the minimum order for the first run will already produce enough
chips for the entire lifetime of the product even with a conservative yield for a mature
technology. Thus, wafer tests will be skipped for EXTOLL and all dies will be packaged
anyway. However, if EXTOLL’s successor enters the market with a higher volume this
conclusion might be void and future products will be in need of wafer tests.

5.5 Test Setup

In order to develop the optimal testing methodology for EXTOLL one has to look at the
available test options. Several DFT [99] features were included in EXTOLL that will be
shown in the following section:

- Internal Scan: Flip-flops in the design have been replaced with so called Scan FFs
that include a multiplexer in the datapath that switches between the normal data
input and a scan input. These flip-flops are then connected (“stitched”) to scan
chains with each scan input being driven by the data output of the previous flip-flop
as seen in the following figure 5.7.

EXTOLL Test

114

CLK

SI

DODI

SE CLK

SI

DODI

SE
Logic

Scan Enable

(Test) CLK

Figure 5.7 Scan Chain Structure

In order to determine the chip’s correct functionality the following steps are
performed by the tester:

o A global signal (scan enable, SE) switches all multiplexers of the scan flip-
flops to the scan input

o A bit pattern is shifted in the chain
o The multiplexers are switched back to the regular data input by deasserting

the scan enable signal
o One clock cycle is triggered so that the logic between two flip-flops is

executed
o The resulting pattern is shifted out again
o If the results match the pre-calculated response no defect was found

Certainly, this process can overlap two consecutive tests. The cycles in which a result
is shifted out can also be used to shift in the next pattern.
Of course, a single pattern will not be able to find all defects (e.g. a stuck-at 1 fault
cannot be found if the response of the circuit would also produce a 1), therefore the
ATPG tool will calculate patterns that will cover most of the error space.
The solution space for the ATPG tool is enormous because not all data inputs of flip-
flops in the real design are dependent on the state of one other flip-flop like shown in
the figure above, but rather on a combination of flip-flops. In order to find all defects
in chains of tens of thousands of flip-flops many test patterns have to be calculated.
Due to the size of these patterns and to reduce testing time the patterns are loaded as
compressed data and later decompressed on chip. The same process in reverse order
will happen during shift-out.

EXTOLL Test

115

- Memory BIST: EXTOLL contains more than 1,000 memory instances that are
susceptible to manufacturing defects due to their structure. All memories include an
internal self-test that can be controlled via JTAG. For accessing the test structures the
JTAG TAP controller converts the JTAG commands to an IEEE 1500 compliant
[100] access which is used to connect to the test master. The tester runs several
march tests designed to detect the most common faults in memory so that it can be
determined whether only correctable single bit errors exist or if the device cannot be
saved.

- Serializer BIST: The serializers are also equipped with a built-in self-test that is
controlled via JTAG, too. For testing, the serializer can be setup either with an
internal loopback to test the analog structures or with external loopback to test for
packaging problems. The test patterns are generated with a PRBS module that drives
the transmitter and generates random traffic which is then sampled on the receiving
side to check for consistency errors.

The following figure 5.8 gives a simplified overview of the internal features. Unfortunately,
scan tests and the JTAG controlled testing functionality can not be controlled in parallel
because the BIST logic is also scanable. This means that the state of the BIST logic is in an
undefined state during scan test.

JTAG controller

Mem

Memory BIST

SerdesJTAG BIST

SerdesJTAG BIST

D
ec

om
pr

es
so

r C
om

pressor

Scan input

Scan output

JTAG In/Out

Figure 5.8 EXTOLL Test Organization

EXTOLL Test

116

Besides the already mentioned global test features EXTOLL also supports On-Product Clock
Generation (OPCG) to run at-speed tests without relying on an externally induced high-
speed clock [101]. Instead the internal PLL is used to generate the operating frequency of the
circuit. Test structures inserted in the clock path take care that only a single clock pulse is
propagated through the design during at-speed tests.

Unfortunately, there is no way to test the integrated HyperTransport PHY because its
documentation did not allow any insight to the offered testability options although scan in-
and outputs are available. This means that using HyperTransport is a huge gamble because
correct functionality is uncertain until the chip is assembled on an add-on card and is tested
in a server system.

5.6 Test Hardware

Since the EXTOLL dies are not tested on the wafer and will be packaged regardless of their
functionality there is need for an on-site tester for bring-up that will be able to perform all
the aforementioned tests and – if a test fails - give feedback on the location of the defect so
that an analysis can be developed whether there are yield sensitive areas in the design.

The following paragraphs analyze the requirements for such a platform and propose a system
to perform those tasks in a cost-efficient way.

5.6.1 Analysis

In order to build a test system for packaged EXTOLL chips several aspects have to be taken
into consideration:

- What are the important features that must be tested?
- How large is the power consumption during test?
- How does the clocking work?
- How are the tests performed and evaluated?
- How can the system be built as cheap as possible?

Testing is always a tradeoff between time and coverage. Of course, best test coverage can be
achieved by running test patterns for a very long time; however, the test throughput suffers
greatly. On the other hand, a short tester time will hardly be sufficient to perform enough
tests to feel confident about the tested chip.

EXTOLL Test

117

A test platform should be able to perform the following tests that are all included in EXTOLL
as described in the previous section 5.4:

- Thorough scan tests both with test clock and also with OPCG
- Memory BIST
- Serializer BIST both with internal and external loopback

Since the tester will not be a production system it makes sense to also use it for
characterization to see how well the chip behaves across several voltage corners. This means
it should also support so called burn-in tests to accelerate aging effects like electro migration
e.g. by applying higher voltages.

One of the biggest problems for testers is power consumption [102]. This is not only the case
for wafer test where the restricted number of connectable probe pins limits the power that
can be delivered to the DUT but also the generally higher power consumption while the chip
is running in test mode. This is derived from the way power is consumed in the device.

Power consumption can be divided into three components:

- Static power is consumed even when there is no switching activity. This is caused by
leaking effects, predominantly by gate leakage. However, for future technology nodes
sub-threshold leakage is assumed to take over the dominant part [103]. Regardless,
static power is irrelevant while looking at power consumption during test since it is
consumed independently from switching activity.

- Dynamic dissipation because of shorts during switching. Because of the internal
structure of CMOS logic there are always two parts in a logic gate that perform
complementary operation: either the PMOS part conducts and the NMOS part does
not conduct or the other way round. The PMOS part is responsible for generating a
logic 1 on the output of circuit since it is connected to VDD while the NMOS part is
connected to ground. However, switching does not happen instantly. Instead both
transistor types conduct at the same time for a finite period and there is a short
between VDD and ground.

- The most important case for test is the dynamic power consumption which is caused
by switching activity since it is the largest contributor to the power requirements
during test.

EXTOLL Test

118

CL

VOUT

VDD

Figure 5.9 CMOS Inverter

The dynamic power consumption of a circuit can be derived best from a simple CMOS
inverter as seen in figure 5.9. It consists of a p-channel and an n-channel MOSFET. If a ‘0’ is
applied to the inverter input the PMOS transistor conducts and a ‘1’ appears at the output. In
the reverse case, if a ‘1’ is applied the NMOS transistor conducts and a ‘0’ appears at the
output. The output of the inverter is driving a capacitive load CL.

During the transition from low to high energy is taken from the supply that can be calculated
as follows [104]:

𝐸𝑉𝐷𝐷 = � 𝑖𝑉𝐷𝐷(𝑡)𝑉𝐷𝐷𝑑𝑡
∞

0

= 𝑉𝐷𝐷 � 𝐶𝐿
𝑑𝑣𝑜𝑢𝑡
𝑑𝑡

𝑑𝑡
∞

0

= 𝐶𝐿𝑉𝐷𝐷 � 𝑑𝑣𝑜𝑢𝑡

𝑉𝐷𝐷

0

= 𝐶𝐿𝑉𝐷𝐷2

The energy stored on the capacitor can be derived as:

𝐸𝐶 = � 𝑖𝑉𝐷𝐷(𝑡)𝑣𝑜𝑢𝑡𝑑𝑡 =
∞

0

� 𝐶𝐿
𝑑𝑣𝑜𝑢𝑡
𝑑𝑡

𝑣𝑜𝑢𝑡𝑑𝑡 =
∞

0

𝐶𝐿 � 𝑣𝑜𝑢𝑡𝑑𝑣𝑜𝑢𝑡

𝑉𝐷𝐷

0

=
𝐶𝐿𝑉𝐷𝐷2

2

The missing energy is dissipated in the PMOS transistor. During the high-to-low transition
the energy on the capacitor is discharged and dissipated in the NMOS transistor so that the
total energy is equal to CLVDD

2. The dynamic power consumption now depends on the
number of times the load capacitance is charged and discharged. Since this directly relates to
the frequency of the circuit the following formula applies:

𝑃𝑑𝑦𝑛 = 𝐶𝐿𝑉𝐷𝐷2 𝑓

During normal operation only a small part of the logic is actively switching so that the
formula above can be enhanced with a corrective factor α. During test, however, a much
larger portion of the design is active because low power structures like clock gating are

EXTOLL Test

119

disabled, all portions in the design are tested in parallel (e.g. in EXTOLL during normal
operation the HT3 core and the PCIe core will never be active simultaneously) and the test
patterns try to switch as many circuits as possible in as little time as possible. All this causes
higher power dissipation. While this problem is alleviated during normal test operation
because of the lower test clock frequency it affects at-speed tests heavily. ATPG tools can
account for this issue by calculating test patterns that limit the switching activity in the chip
to a certain amount [105]. In turn this means that more patterns must be generated and
analyzed to generate the same coverage which increases the overall time on the tester.

A test platform should be able to drive all clocking pins that exist in EXTOLL. This means,
external components like an oscillator, a high-speed backup clock must be included. Of
course, it is also advantageous if the possibility to introduce a clean reference clocks from an
external clock generator is added.

EXTOLL features several configuration and reset pins that are described in table 4.7. These
pins should not be static but configurable from the tester so that the chip can be put into
different modes.

The patterns that are generated by the ATPG tool consume lots of space, not only because
they must contain large test vectors, but also because they are saved in a text based and
therefore also human-readable format, the Standard Test Interface Language (STIL) [106].

The test platform must be able to load this data from an external storage, shift the patterns
into the chip and in return also analyze the results and compare them with the expected
response.

The last point is not technological, but nevertheless crucial. The tester cost should not exceed
certain boundaries. Since it is not mass produced there will not be any discounts for the
components based on high volumes. Even if components are shared between the tester and
the final EXTOLL PCB the synergy effects are little because tester assembly will predate the
EXTOLL PCB production and it does not make sense to order large quantities of parts weeks
or months in advance. The key message is that the tester must be as cheap as possible while
offering as much features as possible, a cost of tens of thousands dollars will greatly reduce
the economic viability.

EXTOLL Test

120

5.6.2 Proposal

As mentioned before test patterns are saved in a text based format. An example of such a
STIL file is given in appendix D. While the format facilitates readability for humans it is not
optimal for automatic processing. Thus, it is usually only used as an intermediate format that
is translated to a native format understandable by the ATE by an interpreter program
developed by the vendor of the test equipment. This flow is shown in the following figure
5.10:

Figure 5.10 Test Data Processing

A similar approach is also necessary for the proposed tester since processing the STIL format
directly on the tester would require both a fast CPU and also lots of RAM resources.

The tester development consists of two design decision levels as seen in the following
representation 5.11: the technology that will be used to implement the design and the
question whether test data is stored directly on the tester or not.

Figure 5.11 Design Space for Tester Development

Test data must be made available to the tester. Two approaches can be considered for this:
on-site and off-site storage. On-site storage would require access to mass storage by the test
platform, either via SATA or a simpler SDIO interface for flash based memory cards. While
it makes the tester independent of external devices it also means that the data must be
replaced in case of an updated test procedure. Also, feedback of the test progress and failed

EXTOLL Test

121

patterns might be less detailed or can only be analyzed afterwards. At last although the
concern might be minor nowadays, test patterns are limited by available disk sizes.

Off-site storage in return requires an external host that continuously pushes test data to the
tester. This means that an interface must be available on the tester that is able to handle this
amount of data. In this case, the user of the tester gets almost immediate feedback if a test
fails and can react accordingly via the host PC that controls the tester. Depending on the
complexity and usability of the tester program progress and problems can be identified more
accurately.

Looking at the two options it can be said that both approaches will work fine, however, the
additional features that come with off-site storage make this option the preferable one.

The hardware implementation of the device that controls the tester also shows two paths: a
microcontroller that executes a specific test program or an FPGA that contains a tester
program in hardware.

Microcontrollers are not only available as small and slow devices, but also with powerful
processing cores and lots of versatility. As an example, the F4 µ-controller series by ST
Microelectronics [107] includes an ARM Cortex M4 core running at up to 168 MHz, lots of
integrated communication interfaces like SDIO, USB2, I2C and Ethernet as well as up to 136
GPIO pins for about 10$ per unit8. This means it could perform scan tests by reading the
data from an attached mass storage device, communicate with the ASIC’s scan interface
through its GPIO pins and then write back the results to the mass storage. However, because
of the integrated interfaces the device is also well equipped to handle off-site storage of scan
patterns that could be transferred by USB, for example. Since microcontrollers nowadays are
usually programmed in a high-level language instead of assembler development of a test
module should not be more challenging as any other software project. One problem of the
microcontroller is the fact that the GPIO pins cannot be run at arbitrary speeds but is limited
to a selection of predefined values.

An FPGA in its basic state only consists of a bunch of pins without any intelligence. This
means a test design must be completely developed from scratch in Verilog which might be a
little bit harder than developing in C for example. Mass storage access would be hard since
the complete functionality including protocol stack had to be developed in hardware.
However, an FPGA can easily connect to other interfaces like an Ethernet or USB port so

8 Price from November 2012, www.digikey.com

EXTOLL Test

122

that off-site storage as the preferred solution is no problem. One of the biggest benefits of
using an FPGA is the fact that the timing of pins can be controlled accurately. This means
not only that the speed of the tester can be tuned in an acute range but also that it is easy to
compensate for I/O timing problems. Unfortunately, a simple FPGA will already cost more
than a microcontroller chip.

Although a microcontroller seems to be a good solution the proposal for the tester includes
an FPGA based test controller. This is mainly based on the fact that there is already lots of
expertise for developing hardware. Since a design for the tester must be developed anyway it
makes sense to do this development in a familiar environment. Verification for a hardware
solution is also easier since verification components are already available. Of course, it is also
possible to verify the tester together with the EXTOLL design in a joint simulation
beforehand. Essentially, the higher cost of an FPGA solution is negligible in relation to the
cost of the ASIC.

A schematic representation of the proposed platform is shown in the following figure 5.12:

Test Socket Spartan 6

FTDI

LTM LTM LTM

Pow
er

USB

Data
TX/RX

JTAG
Config

External Clock

JTAG

Scan In

Scan Out

8

8

Control
I2C

Figure 5.12 Test Platform Proposal

It contains a low-cost FPGA (e.g. Spartan6 by Xilinx) and a USB2 interface chip by FTDI
[108] that constitute the main functionality of the tester. The FPGA is responsible for shifting
in and out scan patterns to the EXTOLL chip under test and also controls its JTAG interface.

EXTOLL Test

123

The USB chip contains two channels and connects via USB2 to the host computer. One of
the channels is configured as a JTAG controller and controls the JTAG port of the FPGA to
load the design into the device. The other channel is configured as a FIFO interface and is
responsible for controlling the operation of the tester and the data exchange of scan patterns
and results between the host computer and the test platform.

The packaged EXTOLL chip is inserted into a socket that is soldered onto the tester’s PCB.
Its scan inputs and outputs as well as the JTAG and control pins are connected to the FPGA.
The PCB stackup can be relatively simple and the production therefore low priced since no
high-speed interfaces will be routed on the board. The serializer outputs will directly be
connected to the corresponding receive channel so that external loopback tests can be run.

At last, the test board only contains DC/DC converters and LDOs for all the power supplies
needed by EXTOLL. For higher flexibility, power can also be injected externally. This is also
the case for all clocks that are needed to run the tester. In order to debug and measure as
much data as possible the board should contain many measurement points where a scope
probe can be attached.

Because of the higher power consumption during test a cooling solution must also be
installed. It remains to be seen whether a passive heatsink with external fans blowing air
might suffice or if an active cooling solution has to be installed.

In the following a short cost estimate is given for the tester (all numbers for small
quantities)9:

- A Spartan6 FPGA is available for about 50$ with 45k LUTs which should be enough
logic elements to realize the required functionality.

- The FTDI USB chip is available for 5$.
- The socket adapter is the most expensive component on the board. A first estimate

lies in the range of 1000$ per socket.
- The power supply is handled by power modules by Linear Technology that were

already tested on the prototype boards. These modules are available for about 30$
each.

- For the PCB a simple 6 layer stackup might be sufficient. Stackup and size
requirements are similar to the PCIe backplane presented in paragraph 2.7 so that a
price of about 100$ per PCB is possible.

9 All prices looked up in December ’12

EXTOLL Test

124

- Assembly for a board with few BGA devices can be assumed to be less than 500$ per
board.

- For the remaining components (including SMD capacitors and resistors) an
additional 200-300$ should suffice.

Altogether, the complete tester should be not more expensive than about 2000$ for small
quantities. As with every hardware projects production costs decrease rapidly when
quantities go up. However, for the tester anything higher than 10 would be a large
discrepancy with regards to the expected volume of EXTOLL chips.

With this test platform there is an easy and cost efficient way to test packaged EXTOLL dies.
Analysis of the testing process and the associated problems showed that a package test is not
only able to find defects that would be identified during wafer-test but can also run more
detailed tests because it can deliver more power to the chip. Furthermore testing of serializer
structures with external loopback is only possible during the final test phase. With regards to
the cost analysis it can also be cost efficient to skip wafer tests altogether in cases of a high
yield and a low volume.

Conclusion

125

6 Conclusion

6.1 Results

The goal of this thesis was to look at the methodology and the surrounding ecosystem for the
design of a complex network ASIC. It was analyzed that it is not enough to only look at the
optimization of a single component in an ecosystem. Instead, due to the high integration
everything is interwoven, and the optimization space suddenly becomes multi-dimensional
and all processes must be analyzed and improved concurrently.

In this context four different aspects in the design process were analyzed in this thesis and
solutions or improvements are presented for each of them.

By looking at the competitors and analyzing the technological options it was determined that
EXTOLL must be implemented as an ASIC to deliver the highest possible performance. Due
to technological differences designs cannot be directly ported to another technology although
they are written in the Verilog HDL. One of the key differences is the handling of memory
blocks. ASIC memories are susceptible to bit errors. The probability for a bit error increases
with the number of RAM instances and the area they occupy on the die. Thus, it is essential
that error checking and correction is implemented in all memories. This work introduces a
memory generator script that can build memories of arbitrary width and depth automatically
based on a small set of building blocks. These memories are internally protected with ECC
logic while keeping this functionality hidden from the user. This means that these generated
memories can be plugged into the design without rewriting any code and sacrificing
performance. The script is used to generate several dozen of diverse memory configurations
that are used in the EXTOLL ASIC and generates more than 20,000 lines of Verilog code. It
has become an efficient and integral part of the design process.

The ASIC design flow is both complex and time consuming. A scripting based approach in
combination with a version management system and a concise data organization can enable
collaborative work to reduce the overall time needed to finish the project. As backend design
is an iterative approach it makes sense to work with a basic set of parameters that define the
design and all further design requirements are derived from them. For example, if a basic
condition like the size of the die must be changed all following steps have to be updated. For

Conclusion

126

example, the number of bumps has to be changed, the placement of the large serializer blocks
must be adapted, the floorplan must be redefined and many more areas will also be affected.
Special consideration in the design flow was given to the floorplanning process as it is one of
the key elements for a successful (which means both routable and able to achieve timing
closure) implementation. A floorplanning methodology was developed that takes
information from the package development into account and also depends on a datapath
analysis of the design.

Until the signal of a high-speed link arrives at the connector it has crossed several hierarchies
in the signal path. Each of these hierarchies comes with unique requirements that narrow the
design space. In this thesis each level was analyzed and in turn a package definition was
proposed that is seen as an optimal solution considering the technological limitations, the
viability, signal integrity and also cost concerns.

The testing of dies after the wafers have been processed in the fab is a cost-intensive task
which might not be efficient for small volumes. In order to determine the best test approach
a cost model is developed. Furthermore the DFT structure in EXTOLL are analyzed and the
problems regarding power consumption during test are considered for both wafer-level and
package based testing. In order to run full tests to qualify chips in a lab environment this
thesis contributes a proposal for an integrated FPGA based test platform that is able to run
all test features thoroughly.

After going through the complete design process and significantly improving several aspects
of it a high confidence could be reached that EXTOLL will be optimized as good as possible
and the solutions worked out in the thesis helped to advance the overall design methodology.

Despite many challenges in the overall development it was possible to develop a highly
complex network chip with a low budget and a small team of highly engaged researchers.
The chip is currently scheduled for tapeout in Q1/2013 so that market introduction can
happen in the 2nd half of the same year which will be in time for the DEEP prototype to show
its capability to scale to the exascale era. However, there are also several other markets to
explore and many collaboration possibilities with researchers and companies from all over
the world are expected.

Conclusion

127

6.2 Project Review

It can be said that the development of a highly complex chip like EXTOLL was not an easy
task. In retrospect it must be stated that the team of researchers was too small so that
inevitable delays had to happen in the design process. But not only can the high workload be
blamed for the repeated shift of the tapeout date but also problems with acquiring external IP
components and the funding of the project.

However, some lessons could be learned from this venture that might be able to speed up
further designs and avoid repeating mistakes that were made before.

- FPGAs should only be used for verification and prototyping purposes. The task of
developing and maintaining a separate codebase that is usually necessary because of
performance issues is wasting resources that are missing somewhere else in the
design process. The verification effort increases as well. Although the development of
the Ventoux board showed that an FPGA can make a competitive product, its
price/performance ratio is worse than a high-end ASIC implementation. It makes
more sense to build a small number of prototyping boards that can emulate most of
the design’s functionality. Developing two or more products in parallel should only
happen if there are enough engineers available so that all projects can be worked on
with sufficient resources.

- Verification is supposed to consume 70% of the overall design effort for an SoC
[109]. A study [110] commissioned by Mentor Graphics showed that on average
almost eight verification engineers worked on a design with 1 to 20 million gates
which is consistent with the complexity of the EXTOLL design. Thus, verification
should already start as early as possible during the design phase and as many
resources as possible should be assigned to this task. The more complex the design
becomes the harder it is to be sure that all bugs are found and fixed. It is always more
expensive to find bugs later in the end phase of the implementation or even in the
final chip.

- Design guidelines that were introduced in chapter 2 make sure that the developed
RTL is already as portable as possible. Careless design just because something works
on an FPGA means that the code must be rewritten again later in the design process.
A linter [111] can detect common design mistakes early on and prompt the designer
to fix them.

Conclusion

128

- Depending on the timeframe it should be carefully analyzed if it is possible to
develop all necessary IP in-house or in cooperation with another university.
Depending on external IP providers can unexpectedly delay or even jeopardize the
whole project because offered IP is no longer available or is downgraded in
performance so that it does not meet the expectations anymore. Within a timeframe
of 1-2 years it should be possible to develop a SERDES, for instance, with a team of
two or three analog experts and two MPW test runs at a cost that will be less than the
amount of money that is charged by commercial vendors for an IP license. However,
since standard cell libraries and sometimes memories are either offered for free by
the foundry or can be acquired with a comparably small price tag it probably will not
be profitable to shift these developments in-house.

- A clear and concise feature list should be designed early in the project. Some
modules in EXTOLL were rewritten several times to accommodate new features that
were originally not planned for the design. This wasted not only time for the
engineer that had to write the code but also hindered the verification process.

- Bug tracking software like Trac [112] should already be used from the project start
and continuously be updated. It gives an excellent overview of open tasks for a
specific design milestone and tracks the progress that has already been made on the
project. It tightly integrates with the version management system so that changes
that were made in the RTL code to fix a bug can directly be referred in the bug
report.

6.3 Outlook

A lot of things could be learned from undertaking such a large project as the EXTOLL chip.
While the first implementation was implemented on a relatively old and mature and
therefore cheap process node the next implementation will have to advance technologically.
A node change to a current 28nm process will allow further performance improvements not
only regarding the internal frequency but also with serializers that support operation at rates
higher than 10 Gb/s.

However, using a 28nm process will also mean a high investment. In order to minimize the
risk of schedule changes IP development as suggested in the previous paragraph should start
as early as possible. New features that will be included in EXTOLL have to be defined within
the next months and both design and verification must commence as soon as possible if the
planned schedule of a subsequent tapeout within 2 years should be reached.

Conclusion

129

Like the adoption of EXTOLL in the DEEP system in a specialized hardware there are
considerations to build a bareblade system that removes all support chips like the
Southbridge from the mainboard by integrating the functionality into EXTOLL. This would
allow building a system with a low number of components that is highly dense and can be
stacked efficiently to build large clusters of compute nodes.

Another research interest is the combination of a CPU with a network, namely EXTOLL.
This integration could happen as a multi-chip-module in the first step, but the final goal is
the integration of the interconnect’s functionality in the CPU. While this will most likely not
be possible with mainstream x86-based CPUs (except probably with a low performance
Atom processor) there are several other CPU families that are more open.

In the end it can be said that EXTOLL’s development is not over yet and will continue over
the next years.

Acronyms

131

A Acronyms

AC Alternating Current

AMD Advanced Micro Devices

ASIC Application Specific Integrated Circuit

ATE Automatic Test Equipment

ATOLL Atomic Low Latency

ATPG Automatic Test Pattern Generation

ATU Address Translation Unit

BCH Bose-Chaudhuri-Hocquenghem

BGA Ball Grid Array

BI Booster Interconnect

BIST Built-In Self Test

BN Booster Node

C4 Controlled Collapse Chip Connection

CDR Clock-Data Recovery

CEO Chief Executive Officer

CML Current Mode Logic

CMOS Complementary Metal-Oxide-Semiconductor

CN Cluster Node

COTS Commercial Of The Shelf

CPU Central Processing Unit

CRC Cyclic Redundancy Check

CTS Clock Tree Synthesis

DC Direct Current

DEC Double Error Correction

DECTED Double Error Correction, Triple Error Detection

Acronyms

132

DEEP Dynamic Exascale Entry Platform

DEF Design Exchange Format

DFT Design For Test

DRC Design Rule Check

DSM Deep Sub Micron

ECC Error Checking and Correction

EDA Electronic Design Automation

EP Endpoint

EXTOLL Extended ATOLL

FF Flip-Flop

FIFO First In, First Out

FPGA Field Programmable Gate Array

FU Functional Unit

GPIO General Purpose I/O

GUI Graphical User Interface

HDL Hardware Design Language

HPC High Performance Computing

HT HyperTransport

HTAX HyperTransport Advanced Crossbar

I/O Input / Output

I2C Inter-Integrated Circuit

IB InfiniBand

IBM International Business Machines

IP Intellectual Property

ITRS International Technology Roadmap for Semiconductors

ITRS International Technology Roadmap for Semiconductors

JEDEC Joint Electron Devices Engineering Counsil

Acronyms

133

JTAG Joint Test Action Group

LDO Low-Dropout Linear Regulator

LEF Library Exchange Format

LIB Liberty Library File

LP Link Port

LSB Least Significant Bit

LVS Layout Versus Schematic

MBIST Memory Built-In Self Test

MEMS Microelectromechanical Systems

MLM Multi Layer Mask

MMU Memory Management Unit

MPI Message Passing Interface

MPW Multi Project Wafer

MSB Most Significant Bit

NIC Network Interface Controller

NoC Network-on-Chip

NP Network Port

NRE Non-Recurring Engineering

OPC Optical Proximity Correction

OPCG On-Product Clock Generation

PCB Printed Circuit Board

PCIe PCI Express

PDN Power Distribution Network

PLE Physical Layout Estimation

PLL Phase-Locked Loop

PRBS Pseudo Random Bit Stream

RAM Random Access Memory

RDL Redistribution Layer

Acronyms

134

RF Register File

RFS Register File System

RMA Remote Memory Access

ROI Return Of Investment

RP Root Port

RS Reed-Solomon

RTL Register Transfer Level

RX Receive

SATA Serial Advanced Technology Attachment

SDC Synopsys Design Constraint

SDIO Secure Digital Input Output

SECDED Single Error Correction, Double Error Detection

SERDES Serializer, Deserializer

SI Signal Integrity

SMFU Shared Memory Functional Unit

SNQ System Notification Queue

SoC System-on-Chip

SPI Serial Peripheral Interface

SSC Spread Spectrum Clocking

SSN Simultaneous Switching Noise

STIL Standard Test Interface Language

TCL Tool Command Language

TSMC Taiwan Semiconductor Manufacturing Company

TX Transmit

UMC United Microelectronics Corporation

USB Universal Serial Bus

UVM Universal Verification Methodology

VCT Virtual Cut-Through

VELO Virtualized Engine for Low Overhead

Acronyms

135

VIP Verification IP

XBAR Crossbar

XML Extensible Markup Language

Bibliography

137

B Bibliography

[1] TOP500 Supercomputing Sites, http://www.top500.org/, [last accessed: 21-Sep-2012]

[2] Linpack Benchmark, http://www.netlib.org/benchmark/hpl/, [last accessed: 21-Sep-
2012]

[3] P. Kogge, S. Lead, D. Campbell, J. Hiller, M. Richards, and A. Snavely, ExaScale
Computing Study: Technology Challenges in Achieving Exascale Systems

[4] ITRS, System Drivers, in International Technology Roadmap for Semiconductors, 2011

[5] M. J. S. Smith, Application-Specific Integrated Circuits. Prentice Hall, 2008, p. 1040,
ISBN 0321602757

[6] I. Kuon and J. Rose, Measuring the Gap Between FPGAs and ASICs, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 26,
no. 2, pp. 203–215, Feb. 2007

[7] L. Rzymianowicz, Designing Efficient Network Interfaces For System Area Networks,
Dissertation, University of Mannheim, 2002

[8] HyperTransport Consortium, HyperTransportTM I / O Link Specification. 2008

[9] B. Kalisch, A. Giese, H. Litz, and U. Brüning, HyperTransport 3 Core: A Next
Generation Host Interface with Extremely High Bandwidth, in 1st International
Workshop on HyperTransport Research and Applications, 2009

[10] A. L. S. Loke, B. A. Doyle, M. M. Oshima, W. L. Williams, R. G. Lewis, C. L. Wang, A.
Hanpachern, K. M. Tucker, P. Gurunath, G. C. Asada, C. O. Lackey, T. T. Wee, and E.
S. Fang, Loopback architecture for wafer-level at-speed testing of embedded
HyperTransportTM processor links, in 2009 IEEE Custom Integrated Circuits
Conference, 2009, pp. 605–608

[11] A. L. S. Loke, B. A. Doyle, S. K. Maheshwari, D. M. Fischette, C. L. Wang, T. T. Wee,
and E. S. Fang, An 8.0-Gb/s HyperTransport Transceiver for 32-nm SOI-CMOS Server
Processors, IEEE Journal of Solid-State Circuits, pp. 1–1, 2012

Bibliography

138

[12] PCI-SIG, PCI Express Base Specification Revision 3.0. 2010

[13] T. Reubold, Design, Implementation and Verification of a PCI Express to
HyperTransport Protocol Bridge, Diploma Thesis, University of Mannheim, 2008

[14] B. Geib, Hardware Support for Efficient Packet Processing, Dissertation, University of
Mannheim, 2012

[15] H. Litz, Improving the Scalability of High Performance Computer Systems,
Dissertation, University of Mannheim, 2010

[16] H. Litz, H. Froening, M. Nuessle, and U. Bruening, VELO: A Novel Communication
Engine for Ultra-Low Latency Message Transfers, in 2008 37th International
Conference on Parallel Processing, 2008, pp. 238–245

[17] M. Nüssle, M. Scherer, and U. Brüning, A Resource Optimized Remote-Memory-
Access Architecture for Low-latency Communication, in 2009 International Conference
on Parallel Processing, 2009, pp. 220–227

[18] C. Leber, Efficient Hardware For Low Latency Applications, Dissertation, University of
Mannheim, 2012

[19] H. Fröning and H. Litz, Efficient hardware support for the Partitioned Global Address
Space, in 2010 IEEE International Symposium on Parallel & Distributed Processing,
Workshops and Phd Forum (IPDPSW), 2010, pp. 1–6

[20] M. Müller, Exploring the Testability Methodology and the Development of Test and
Debug Functions for a Complex Network ASIC, Diploma Thesis, University of
Mannheim, 2011

[21] P. Kermani and L. Kleinrock, Virtual cut-through: A new computer communication
switching technique, Computer Networks, vol. 3, no. 4, pp. 267–286, 1979

[22] N. Burkhardt, Fast Hardware Barrier Synchronisation for a Reliable Interconnection
Network, Diploma Thesis, University of Mannheim, 2007

[23] M. Nuessle, H. Froening, S. Kapferer, and U. Bruening, Proposal: Accelerate
Communication, not Computation!, in High-Performance Computing Using FPGAs,
Springer London, Limited, 2013, p. 400

Bibliography

139

[24] B. Chandrasekaran, D. Buntinas, S. Kini, D. K. Panda, and P. Wyckoff,
Microbenchmark performance comparison of high-speed cluster interconnects, IEEE
Micro, vol. 24, no. 1, pp. 42–51, Jan. 2004

[25] Semico Research Corporation, How an FPGA Approach to Complex System Design
Can Improve Profitability: Real Case Studies, 2012

[26] Altera Corporation, HardCopy IV Device Handbook, vol. 1.

[27] Taiwan Semiconductor Manufacturing Company Inc., TSMC Announces Multi-layer
Mask Service, 2007

[28] ChipEstimate.com - Chip Planning Portal and IP Catalog,
http://www.chipestimate.com/, [last accessed: 01-Oct-2012]

[29] IEEE Computer Society, 1364-2005 - IEEE Standard for Verilog Hardware Description
Language. 2006

[30] K. Chapman, Get Smart About Reset : Think Local, Not Global, vol. 272. pp. 1–7, 2008

[31] K. Chapman, Get your Priorities Right – Make your Design Up to 50 % Smaller, vol.
275. pp. 1–9, 2007

[32] C. Cummings, Synchronous Resets? Asynchronous Resets? I am so confused! How will I
ever know which to use?, Synopsys Users Group Conference, San Jose, 2002

[33] C. Cummings and D. Mills, Asynchronous & synchronous reset design techniques-part
deux, SNUG Boston 2003, 2003

[34] Xilinx Inc., 7 Series FPGAs Memory Resources User Guide, 2012

[35] A. J. Van De Goor, Using march tests to test SRAMs, IEEE Design & Test of
Computers, vol. 10, no. 1, pp. 8–14, Mar. 1993

[36] S. E. Schuster, Multiple word/bit line redundancy for semiconductor memories, IEEE
Journal of Solid-State Circuits, vol. 13, no. 5, pp. 698–703, Oct. 1978

[37] M. Spica and T. M. Mak, Do we need anything more than single bit error correction
(ECC)?, Records of the 2004 International Workshop on Memory Technology, Design
and Testing, 2004., pp. 111–116, 2004

Bibliography

140

[38] R. Naseer and J. Draper, Parallel double error correcting code design to mitigate multi-
bit upsets in SRAMs, in ESSCIRC 2008 - 34th European Solid-State Circuits
Conference, 2008, pp. 222–225

[39] R. C. Bose and D. K. Ray-Chaudhuri, On a class of error correcting binary group codes,
Information and Control, vol. 3, no. 1, pp. 68–79, Mar. 1960

[40] A. Hocquenghem, Codes correcteurs d’erreurs, Chiffres (Paris), vol. 2, pp. 147–156,
1959

[41] I. S. Reed and G. Solomon, Polynomial Codes Over Certain Finite Fields, Journal of the
Society for Industrial and Applied Mathematics, vol. 8, no. 2, pp. 300–304, Jun. 1960

[42] R. W. Hamming, Error detecting and error correcting codes, Bell System Technical
Journal, vol. 29, no. 2, pp. 147–160, 1950

[43] M. Y. Hsiao, A Class of Optimal Minimum Odd-weight-column SEC-DED Codes, IBM
Journal of Research and Development, vol. 14, no. 4, pp. 395–401, Jul. 1970

[44] The Perl Programming Language, http://www.perl.org/, [last accessed: 09-Oct-2012]

[45] Motorola, M68HC11 Reference Manual. 2007

[46] NXP Semiconductors, I2C-bus specification and user manual.

[47] Xilinx Inc., Chipscope Pro and Cores, 2012

[48] Altera Corporation, Design Debugging Using the SignalTap II Logic Analyzer, in
Quartus II Handbook v12.0, 2012, pp. 1517–1588

[49] M. Arora, Clock Dividers Made Easy, SNUG Boston 2002, pp. 1–19

[50] F. H. J. Feldbrugge, Johnson counter circuit with invalid counter position detection and
correction mechanism, U.S. Patent US49930511989

[51] Y. Zhang, Design and Implementation of a PLL Clock Generator in 65nm CMOS,
Master Thesis, RWTH Aachen, 2010

[52] Accelera, Universal Verification Methodology (UVM) 1.1 User’s Guide. 2011

[53] IEEE Computer Society, 1800-2009 - IEEE Standard for System Verilog-Unified
Hardware Design, Specification, and Verification Language. 2009

Bibliography

141

[54] N. Burkhardt, A Hardware Verification Methodology for an Interconnection Network
with Fast Process Synchronization, Dissertation, University of Mannheim, 2012

[55] Intel Corporation, Intel MPI Benchmark, http://software.intel.com/en-
us/articles/intel-mpi-benchmarks, [last accessed: 30-Oct-2012]

[56] H. Fröning, M. Nüssle, D. Slogsnat, H. Litz, and U. Brüning, The HTX-Board: A
Rapid Prototyping Station, 3rd annual FPGAworld Conference, 2006

[57] P. R. Schulz, U. Bruning, and G. Strube, SEED2002 support of educational course for
electronic design, in Proceedings 2003 IEEE International Conference on
Microelectronic Systems Education. MSE’03, pp. 53–54

[58] Cadence Design Systems, Encounter RTL Compiler,
http://www.cadence.com/products/ld/rtl_compiler/pages/default.aspx, [last accessed:
21-Nov-2012]

[59] Cadence Design Systems, Encounter Digital Implementation System,
http://www.cadence.com/products/di/edi_system/pages/default.aspx, [last accessed:
21-Nov-2012]

[60] I. Synopsys, Liberty User Guides and Reference Manual Suite. 2011

[61] Cadence Design Systems, LEF / DEF Language Reference, 2012

[62] Synopsys Inc., Using the Synopsys® Design Constraints Format, 2010

[63] Apache Subversion, http://subversion.apache.org/, [last accessed: 01-Aug-2012]

[64] J. Cong, Z. Pan, L. He, C.-K. Koh, and K.-Y. Khoo, Interconnect design for deep
submicron ICs, in Proceedings of IEEE International Conference on Computer Aided
Design (ICCAD) ICCAD-97, 1997, pp. 478–485

[65] Y. Zorian and A. Yessayan, IEEE 1500 utilization in SOC design and test, in IEEE
International Conference on Test, 2005., pp. 543–552

[66] D. Sylvester and K. Keutzer, A global wiring paradigm for deep submicron design, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 19,
no. 2, pp. 242–252, 2000

Bibliography

142

[67] S. Scott, Challenges and opportunities in the post single-thread-processor era,
Proceedings of the 15th international conference on Parallel architectures and
compilation techniques - PACT ’06, pp. 63–63, 2006

[68] K. Shahookar and P. Mazumder, VLSI cell placement techniques, ACM Computing
Surveys, vol. 23, no. 2, pp. 143–220, Jun. 1991

[69] E. Wein and J. Benkoski, Hard macros will revolutionize SoC design, EETimes, 2004

[70] N. A. Sherwani, Algorithms for VLSI physical design automation. Kluwer Academic
Publishers, 1999, p. 572, ISBN 0792383931

[71] A. B. Kahng, Classical floorplanning harmful?, in Proceedings of the 2000 international
symposium on Physical design - ISPD ’00, 2000, pp. 207–213

[72] A. Pullini, F. Angiolini, S. Murali, D. Atienza, G. De Micheli, and L. Benini, Bringing
NoCs to 65 nm, IEEE Micro, vol. 27, no. 5, pp. 75–85, Sep. 2007

[73] E. Bogatin, Signal and Power Integrity - Simplified (2nd Edition). Prentice Hall, 2009,
p. 792, ISBN 0132349795

[74] IBTA - InfiniBand Trade Association, http://www.infinibandta.org, [last accessed: 06-
Nov-2012]

[75] PCI-SIG, PCI Express Card Electromechanical Specification, Revision 2. 2007

[76] Samtec Inc., High Density High Speed I/O System HDI6, HDC Series.

[77] HyperTransport Technology Consortium, HyperTransportTM Node Connector
Specification. 2009

[78] IPC, IPC-2221 Generic Standard on Printed Board Design. 1998, pp. 1–123

[79] J. A. Mears, National Semiconductor Application Note 905. 1996

[80] E. Bogatin, Roadmaps of Packaging Technology. Integrated Circuit Engineering, 1997,
ISBN 1-877750-61-1

[81] JEDEC JC-11 Committee, JEDEC Registered and Standard Outlines for Solid State and
Related Products (JEP95).

Bibliography

143

[82] L. Wang, Z. Zhao, Q. Wang, and J. Lee, Characterize the microstructure and reliability
of ultra fine pitch BGA joints, in 2009 International Conference on Electronic
Packaging Technology & High Density Packaging, 2009, pp. 674–678

[83] KYOCERA SLC Technologies, http://www.kyocera-slc.co.jp/, [last accessed: 13-Nov-
2012]

[84] KYOCERA SLC Technologies, Organic Substrate HDBU Design Guideline. 2010

[85] J. H. Lau, Flip chip technologies. McGraw-Hill, 1996, p. 565, ISBN 0070366098

[86] R. R. Tummala, E. J. Rymaszewski, and A. G. Klopfenstein, Microelectronics
Packaging Handbook, Part 2: Semiconductor Packaging (Pt. 1). Springer, 1997, p.
1030, ISBN 0412084414

[87] Taiwan Semiconductor Manufacturing Company Inc., TSMC 65NM/55NM CMOS
LOGIC/MS_RF DESIGN RULE. 2009, ISBN 1202006140

[88] Cadence Design Systems, Allegro Package Designer,
http://www.cadence.com/products/pkg/package_designer/pages/default.aspx, [last
accessed: 21-Nov-2012]

[89] Agilent, Advanced Design System (ADS), http://www.home.agilent.com/en/pc-
1297113/advanced-design-system-ads, [last accessed: 21-Nov-2012]

[90] M. Magin, Power and Signal Analysis of a High Performance ASIC, Master Thesis,
University of Heidelberg, 2013

[91] Altera Corporation, Minimizing Ground Bounce & VCC Sag Whitepaper

[92] IEEE Computer Society, 1149.1-1990 - IEEE Standard Test Access Port and Boundary
- Scan Architecture. 1990

[93] ITRS, Test and Test Equipment, in International Technology Roadmap for
Semiconductors, 2011

[94] S. Kundu, T. M. Mak, and R. Galivanche, Trends in manufacturing test methods and
their implications, in 2004 International Conference on Test, pp. 679–687

[95] S. Kim, D. Kong, C. Cho, J. Nam, B. Kim, and J. Lee, Design and fabrication of MEMS
test socket for BGA IC packages, in 2010 IEEE Sensors, 2010, pp. 1896–1899

Bibliography

144

[96] C. G. Bell, J. C. Mudge, and J. E. McNamara, Computer Engineering: A DEC View of
Hardware Systems Design. Digital Press, 1978, p. 585, ISBN 0932376002

[97] V.-K. Kim, T. Chen, and M. Tegethoff, ASIC manufacturing test cost prediction at
early design stage, Proceedings International Test Conference 1997, pp. 356–361, 1997

[98] D. K. deVries, Investigation of Gross Die Per Wafer Formulas, IEEE Transactions on
Semiconductor Manufacturing, vol. 18, no. 1, pp. 136–139, Feb. 2005

[99] L.-T. Wang, C.-W. Wu, and X. Wen, VLSI Test Principles and Architectures: Design
for Testability (The Morgan Kaufmann Series in Systems on Silicon). Morgan
Kaufmann, 2006, p. 808, ISBN 0123705975

[100] IEEE Computer Society, IEEE Std 1500TM-2005 IEEE Standard Testability Method for
Embedded Core-based Integrated Circuits, no. August. 2005, ISBN 0738146935

[101] V. Iyengar, T. Yokota, K. Yamada, T. Anemikos, B. Bassett, M. Degregorio, R.
Farmer, G. Grise, M. Johnson, D. Milton, M. Taylor, and F. Woytowich, At-Speed
Structural Test For High-Performance ASICs, in 2006 IEEE International Test
Conference, 2006, pp. 1–10

[102] P. Girard, N. Nicolici, and X. Wen, Power-Aware Testing and Test Strategies for Low
Power Devices, vol. 2009. Springer, 2009, p. 353, ISBN 1441909273

[103] ITRS, Design, in International Technology Roadmap for Semiconductors, 2011

[104] J. M. Rabaey, A. Chandrakasan, and B. Nikolic, Digital Integrated Circuits (2nd
Edition). Prentice Hall, 2003, p. 761, ISBN 0130909963

[105] N. Badereddine, P. Girard, S. Pravossoudovitch, C. Landrault, A. Virazel, and H.-J.
Wunderlich, Minimizing peak power consumption during scan testing: test pattern
modification with X filling heuristics, in International Conference on Design and Test
of Integrated Systems in Nanoscale Technology, 2006. DTIS 2006., 2006, pp. 359–364

[106] IEEE Computer Society, 1450-1999 - IEEE Standard Test Interface Language (STIL)
for Digital Test Vector Data. 1999

[107] ST Microelectronics, STM32F405xx / STM32F407xx Datasheet. 2012

[108] Future Technology Devices International Ltd., FT2232H - Hi-Speed Dual USB
UART/FIFO IC Datasheet.

Bibliography

145

[109] P. Rashinkar, P. Paterson, and L. Singh, System-on-a-Chip Verification: Methodology
and Techniques. Springer, 2000, p. 392, ISBN 0792372794

[110] Wilson Research Group and Mentor Graphics, 2010 Functional Verification Study,
2010

[111] P. Yeung and S. Choi, Advanced static verification for SoC designs, in 2009
International SoC Design Conference (ISOCC), 2009, pp. 295–300

[112] The Trac Project, http://trac.edgewall.org/, [last accessed: 17-Dec-2012]

EXTOLL Package

147

C EXTOLL Package

Symbol Millimeters Description
A tbd.10 Overall Height
A1 tbd. Vertical Stand Off
A2 tbd. Package Body Thickness
A3 tbd. Height of Thermal Lid
b 0.60 ± 0.10 Ball Diameter
D 42.50 Package Body Length
D1 42.00 Distance between the centerlines of the

two outermost columns of balls
E 42.50 Package Body Width
e 1.00 Distance between the centerlines of two

adjacent balls
E1 42.00 Distance between the centerlines of the

two outermost rows of balls

A

A1

A2A3

Figure C.1 Side View

10 Substrate thickness is 1160µm

EXTOLL Package

148

D

E

Figure C.2 Top View

EXTOLL Package

149

A

C

E

G

J

L

N

R

U

W

AA

AC

AE

AG

AJ

AL

AN

AR

AU

AW

BA

B

D

F

H

K

M

P

T

V

Y

AB

AD

AF

AH

AK

AM

AP

AT

AV

AY

BB

1357911131517192123252729313335373941

24681012141618202224262830323436384042

e

e

D1

E
1

b

Figure C.3 Bottom View

EXTOLL Package

150

1
1

A

2
2

3
3

4
4

5
5

6
6

7
7

8
8

9
9

10
10

11
11

12
12

13
13

14
14

15
15

16
16

17
17

18
18

19
19

20
20

21
21

22
22

23
23

24
24

25
25

26
26

27
27

28
28

29
29

30
30

31
31

32
32

33
33

34
34

35
35

36
36

37
37

38
38

39
39

40
40

41
41

42
42

B

C

D

E

F

G

H

J

K

L

M

N

P

R

T

U

V

W

Y

AA

AB

AC

AD

AE

AF

AG

AH

AJ

AK

AL

AM

AN

AP

AR

AT

AU

AV

AW

AY

BA

BB

NC NC

NC NC

NC NC

NC NC

NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC

NC NC

NC NC NC

NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC

NC NC

NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC

NC NC NC

NC NC NC

NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC

NC NC

NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC

NC NC NC NC NC NC NC NC

NC NC NC NC NC NC NC NC

NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC

NC NC

NC

NC

NC

NC

NC NC

NC

NC NC

NC NC

NC

NC NC

N

PP

N N

PP

N N

PP

N N

PP

N N

PP

N N

PP

N N

PP

N N

PP

N N

PP

N N

PP

N N

PP

N N

PP

N

N

PP

N N

PP

N N

PP

N N

PP

N N

PP

N N

PP

N N

PP

N N

PP

N N

PP

N N

PP

N N

PP

N N

PP

N

N

PP

N N

PP

N N

PP

N N

PP

N N

PP

N N

PP

N N

PP

N N

PP

N N

PP

N N

PP

N N

PP

N N

PP

N

N

PP

N N

PP

N N

PP

N N

PP

N N

PP

N N

PP

N N

PP

N N

PP

N N

PP

N N

PP

N N

PP

N N

PP

N

N

PP

N N

PP

N N

PP

N N

PP

N N

PP

N N

PP

N N

PP

N N

PP

N N

PP

N N

PP

N N

PP

N N

PP

N

N

PP

N N

PP

N N

PP

N N

PP

N N

PP

N N

PP

N N

PP

N N

PP

N N

PP

N N

PP

N N

PP

N N

PP

N

N

PP

N N

PP

N N

PP

N N

PP

N N

PP

N N

PP

N N

PP

N N

PP

N N

PP

N N

PP

N N

PP

N N

PP

N

P

N

P

N

P

N

P

N

P

N

P

N

P

N

P

N

P

N

P

N

P

N

P

N

P

N

P

N

P

N

P

N

P

N

P

N

N N N N N N N N N N N N N N N N N N

P P P P P P P P P P P P P P P P P P

N N N N N N N N N N N N N N N N N

P P P P P P P P P P P P P P P P P

N N N N N N N N

P P P P P P P P

N N N N N N N N

P P P P P P P P

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

L L

LL

L

L L

C C

CC

TT T T TT T T T

TT T T T T T T

D D D D D

D D D D D

S S S

S S NC

D

D

X

X

XP

XN

D

D

D

D

L L

L

N P N P N P RR

RRN P N P

Figure C.4 Signal Assignment

EXTOLL Package

151

P N P N Link TX/RX Digital Core GND
P N P N HT TX/RX Digital Core VCC
P N P N PCIe TX/RX Analog Serializer GND

NC Not Connected Analog Serializer VCC1
T Test Related Signals Analog Serializer VCC2
L Link Detect I/O VCC
C Global Config Signals Analog GND
G GPIO Analog VCC
D Debug Signals PLL GND
X Oscillator PLL VCC

XP XN Backup Clock HT Bias Supply
S Sideband Signals HT Digital Core GND
R Resistor Calibration HT Digital Core VCC

 HT Digital GND
 HT Digital VCC
 HT Analog GND
 HT Analog VCC

STIL Example

153

D STIL Example

STIL 1.0;

Signals {
 A0 InOut;
 B0 InOut;
 TC In;
}

SignalGroups {
 ALL = ’A0 + B0’ + TC;
 SI1 = ’A0’ { ScanIn 10; }
 SO1 = ’B0’ { ScanOut 10; }
 TCK = ’TC’;
}

Timing {
 WaveformTable scan_wf {
 Period ’100ns’;
 Waveforms {
 ALL { 10 { ’0ns’ U/D; }}
 ALL { HLZX{ ’0ns’ Z; ’50ns’ H/L/T/X; }}
 TCK { P { ’0ns’ D; ’10ns’ U; ’60ns’ D; }}
 }
 }
}

PatternBurst “scan_burst” {
 PatList { “scan”; }
}

PatternExec {
 PatternBurst “scan_burst”;
}

MacroDefs {
 “scan” {
 W scan_wf;
 C { TCK=P; SI1=0; SO1=X; }
 Shift { V { SI1=#; SO1=#; } }
 C { TCK=0; }
 }
}

Procedures {
 “scan” {
 W scan_wf;
 V { ALL=0Z0; }
 Shift { V { TCK=P; SI1=#;SO1=#; }}
 }
}

Pattern “scan” {

STIL Example

154

 W scan_wf;
 V { ALL=0Z0; }
 Macro “scan” {
 SI1=0000000000; }
 V { TCK=P; }
 Call “scan” {
 SO1=LLLLLLLLLL; }
}

The STIL file is divided in several sections.

The first section “Signals” defines the available pins and their directions. In this example two
bidirectional pins are defined, A0 and B0 as well as an input signal TC.

In the next section “SignalGroups” the signals defined before are added to logical groups so
that they can be referenced later on. This example defines a signal vector ALL that
concatenates all signals as well as SI and SO with a single member each (A0 / B0) that are
defined as scan input and scan output with a scan chain depth of 10. At last TCK is defined
with the single member TC.

In the “Timing” sections so called waveforms can be defined that describe how signals are
processed. In the example, the basic clock cycle is set to 10 MHz (100ns). For the ALL vector
two behaviors are assigned. In the case of a 1 or a 0 in the datastream the waveform goes
up/down immediately. If a H,L,Z or X is used there is a 50ns wait so that the data value can
be sampled in the middle of the clock cycle. The value will be mapped to H(igh), L(ow),
T(ristate) or X(Unknown). For TCK a pulse (P) behavior is defined to generate a clocking
event.

Because of the simplicity of the example the next two sections are rather short. The
“PatternBurst” section only calls one scan pattern that is defined later in the file. The
“PatternExec” section in turn also only calls the one “PatternBurst” that was defined.

The next two sections are similar. One defines a macro that is used to shift scan patterns in,
the other is a procedure that captures data at the scan outputs. Both are then used in the
“Pattern” section. Once again, the example only defines a single construct. The pattern calls
the macro “scan” to shift ten consecutive zeros into the scan chain. Afterwards the clock is
pulsed for one cycle and the procedure “scan” is called to shift the patterns out. The expected
return value for this operation is the same as the input, ten consecutive zeros.

However, the example above is only a short excerpt of the capabilities of the STIL language to
give some insight to the syntax. More information can be found in the official specification.

	1 Introduction
	1.1 Motivation
	1.2 Scope of Work
	1.3 EXTOLL Design
	1.3.1 Host Interface
	1.3.2 EXTOLL Core Logic
	1.3.3 EXTOLL NIC

	1.4 Outline

	2 EXTOLL ASIC
	2.1 Design Decisions
	2.1.1 Performance Comparison
	2.1.2 Technology Analysis

	2.2 Transition from FPGA to ASIC
	2.3 Design Guidelines
	2.3.1 Timing Basics
	2.3.2 Reset

	2.4 Embedded Memory
	2.4.1 Memory Faults
	2.4.2 Automatic Memory Generator

	2.5 Design for Test
	2.6 Clocking
	2.6.1 Supporting Circuits
	2.6.2 Clocking Structure
	2.6.3 PLL

	2.7 Prototyping
	2.8 Toplevel Organization

	3 ASIC Design Considerations
	3.1 Design Preparation
	3.1.1 LIB
	3.1.2 LEF
	3.1.3 Capacitance Tables
	3.1.4 SDC / Timing Constraints
	3.1.5 DEF
	3.1.6 Flow Script

	3.2 Data Hierarchy
	3.3 Frontend Flow
	3.4 Backend Flow
	3.5 Floorplanning and Datapath Analysis
	3.5.1 Datapath Analysis - Global View
	3.5.2 Pre-placement
	3.5.3 Datapath Analysis - Detailed View
	3.5.4 Miniature Optimizations

	4 Optimization of Complex Interconnection Structures
	4.1 Design constraints
	4.1.1 Technological Limitations
	4.1.2 Signal Integrity
	4.1.3 Viability
	4.1.4 Economic Feasibility

	4.2 Design Components
	4.2.1 Connector
	4.2.2 PCB
	4.2.3 Package
	4.2.4 Die

	4.3 Automatic Generation
	4.4 SI Analysis
	4.5 PDN Design
	4.6 Results
	4.6.1 EXTOLL I/O
	4.6.2 EXTOLL Supply
	4.6.3 Constraints and Efficiency

	5 EXTOLL Test
	5.1 Test Analysis
	5.2 Wafer Test
	5.3 Package Test
	5.4 Process Analysis
	5.5 Test Setup
	5.6 Test Hardware
	5.6.1 Analysis
	5.6.2 Proposal

	6 Conclusion
	6.1 Results
	6.2 Project Review
	6.3 Outlook

	A Acronyms
	B Bibliography
	C EXTOLL Package
	D STIL Example

