
Edited by:
Ralf Gitzel, Markus Aleksy, Martin Schader, Chandra Krintz

4th International Conference on Principles
and Practices of Programming in Java

Ed
it

ed
 b

y:
 R

al
f

G
it

ze
l,

M
ar

ku
s

Al
ek

sy
, M

ar
ti

n
Sc

ha
de

r,
Ch

an
dr

a
Kr

in
tz

4t
h

In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 P

ri
nc

ip
le

s
an

d
Pr

ac
ti

ce
s

of
 P

ro
gr

am
m

in
g

in
 J

av
a

ISBN: 3-939352-05-5
ISBN: 978-3-939352-05-1

Unbenannt-2 1Unbenannt-2 1 28.08.2006 15:50:02 Uhr28.08.2006 15:50:02 Uhr

Proceedings of the

4th International Conference on

Principles and Practices of Programming
in Java

Mannheim, Germany. August 30 – September 1, 2006

Edited by: Ralf Gitzel, Markus Aleksy, Martin Schader, Chandra Krintz

A Volume in the ACM International Conference Proceedings Series

Message from the Chairs

Dear conference participants,

We are very pleased and proud to present you with the proceedings of the 4th International
Conference on the Principles and Practices of Programming in Java (PPPJ 2006). After a
short break in 2005, it is good to see that the conference has not only kept its impetus of
2004 but actually has attracted even more submissions and has received increased interest.

This year’s call for papers resulted in 47 submissions. In our rigorous review process, every
submitted paper was carefully examined by at least three program committee members.
Ultimately, the committee accepted 17 full papers and 7 short papers, leading to an
acceptance rate of 36% for full papers. We are happy to say that the papers selected are of
high quality and cover a wide range of topics of interest to the Java community.

Due to the support of three major interest groups (ACM SIGAPP, ACM SIGPLAN, and the GI
Fachgruppe 2.1.4), we were able to recruit a wide spectrum of specialist reviewers. The
program committee consisted of 36 members each with varying backgrounds, expertise, and
research areas that covered the wide range of topics of interest to the PPPJ community. In a
transparent and discussion-based process, only the best papers were chosen for the
conference.

Organizing a conference such as the PPPJ 2006 is of course a team effort. And while it is
our names that grace the front cover as editors, we gladly admit that we had the help of
many very professional people. Thus, it is only fitting and proper that we take this
opportunity to thank them. In particular, we are indebted to the international program
committee and the PPPJ steering committee for helping to ensure the success of PPPJ06
and future events in the PPPJ line. We also thank Thomas Preuss for providing us with the
excellent ConfMaster submissions software that has taken a great administrative burden
from our shoulders. We owe thanks to Priya Nagpurkar, our submission chair, who very
professionally contributed to the submission and review process. ACM SIGPLAN and
SIGAPP as well as the German GI Fachgruppe 2.1.4 deserve our gratitude for their support,
especially regarding the recruitment of reviewers and publicity for the conference. Finally,
we thank the authors of all submitted papers, who have allowed us to present you with
such an interesting program.

We hope that you find the 2006 PPPJ final program inspiring and that the conference
provides you with the opportunity to interact, share ideas with, and learn from other Java
researchers from around the world. We also encourage you to continue to participate in
future PPPJ conferences, to increase its visibility, and to interest others in contributing to
this growing community.

Ralf Gitzel

Markus Aleksy

Martin Schader

Chandra Krintz

PPPJ 2006 Organizing Committee

General Chairs
Ralf Gitzel, University of Mannheim (Germany)
Markus Aleksy, University of Mannheim (Germany)
Martin Schader, University of Mannheim (Germany)

Program Chair
Chandra Krintz, University of California, Santa Barbara (USA)

Submission Chair
Priya Nagpurkar, University of California, Santa Barbara (USA)

Steering Committee
Ralf Gitzel, University of Mannheim (Germany)
Markus Aleksy, University of Mannheim (Germany)
Martin Schader, University of Mannheim (Germany)
John Waldron , Trinity College Dublin (Ireland)
James Power, National University of Ireland (Ireland)

International Program Committee
Jose Nelson Amaral Univ. Alberta (Canada)
Matthew Arnold, IBM Research
Leonard Barolli, Fukuoka Institute of Technology (Japan)
Koen De Bosschere, Ghent University (Belgium)
Robert Cartwright, Rice University (USA)
John Cavazos, University of Edinburgh (UK)
Michal Cierniak, Google
Conrad Cunningham, University of Mississippi (USA)
Laurent Daynes, Sun Microsystems
Michael Franz, UC Irvine (USA)
David Gregg, University of Dublin (Ireland)
Gilles Grimaud, University of Sci/Tech of Lille (France)
Sam Guyer, Tufts Univeristy (USA)
Matthias Hauswirth, University of Lugano (Switzerland)
Martin Hirzel, IBM Research
Wade Holst, University of Western Ontario (Canada)
Patrick Hung, University of Ontario (Canada)
Richard Jones, University Kent (UK)
Gregory Kapfhammer, Allegheny College (USA)
Axel Korthaus, University of Mannheim (Germany)
Herbert Kuchen, Westfälische Wilhelms-Universität Münster (Germany)
Thomas Kühne, University of Tech. Darmstadt (Germany)
Brian Lewis, Intel
Yi Liu, South Dakota State University (USA)
Qusay H. Mahmoud, University of Guelph (Canada)
Brian Malloy, Clemson University (USA)

Sam Midkiff, Purdue University (USA)
Klaus Ostermann, Univ. of Tech. Darmstadt (Germany)
Christian Probst, Technical University of Denmark (Denmark)
Thomas Preuss, University of Brandenburg (Germany)
Witawas Srisa-an, University of Nebraska (USA)
Makoto Takizawa, Tokyo Denki University (Japan)
Jan Vitek, Purdue University (USA)
Jeffery Von Ronne, University of Texas, San Antonio (USA)
Zhenlin Wang, Michigan Tech. (USA)
Hamdi Yahyaoui, Concordia University, Montreal (Canada)

Table of Contents

Session A: JVM Tools___ 1

The Project Maxwell Assembler System
Bernd Mathiske, Doug Simon, Dave Ungar _____________________________________3

Tatoo: An Innovative Parser Generator
Julien Cervelle, Rémi Forax, Gilles Roussel____________________________________ 13

Session B: Program and Performance Analysis ______________________________ 21

Cost and Benefit of Rigorous Decoupling with Context-Specific Interfaces
Florian Forster __ 23

Dynamic Analysis of Program Concepts in Java
Jeremy Singer, Chris Kirkham __ 31

Investigating Throughput Degradation Behavior of Java Application Servers:
A View from Inside a Virtual Machine
Feng Xian, Witawas Srisa-an, Hong Jiang ____________________________________ 40

Session C: Mobile and Distributed Systems _________________________________ 51

Streaming Support for Java RMI in Distributed Environments
Chih-Chieh Yang, Chung-Kai Chen, Yu-Hao Chang, Kai-Hsin Chung, Jenq-Kuen Lee _ 53

Enabling Java Mobile Computing on the IBM Jikes Research Virtual Machine
Giacomo Cabri, Letizia Leonardi, Raffaele Quitadamo___________________________ 62

JuxtaCat: A JXTA-based Platform for Distributed Computing
Joan Esteve Riasol, Fatos Xhafa __ 72

Session D: Resource and Object Management _______________________________ 83

The Management of Users, Roles, and Permissions in JDOSecure
Matthias Merz __ 85

An Extensible Mechanism for Long-Term Persistence of JavaBeans Components
Chien-Min Wang, Shun-Te Wang, Hsi-Min Chen, Chi-Chang Huang_______________ 94

Heap Protection for Java Virtual Machines
Yuji Chiba __ 103

A Framework for Unified Resource Management in Java
Derek A. Park, Stephen V. Rice __ 113

Session E: Software Engineering ___ 123

Experiences with the Development of a Reverse Engineering Tool for
UML Sequence Diagrams: A Case Study in Modern Java Development
Matthias Merdes, Dirk Dorsch___ 125

Propagation of JML Non-Null Annotations in Java Programs
Maciej Cielecki, Jedrzej Fulara, Krzysztof Jakubczyk, ×ukasz Jancewicz,
Jacek Chrzaszcz, Aleksy Schubert, ×ukasz Jancewicz __________________________ 135

Session F: Novel Uses of Java__ 141

On the Design of a Java Computer Algebra System
Heinz Kredel __ 143

Components: A Valuable Investment for Financial Engineering -
Why Derivative Contracts Should be Active Documents
Markus Reitz, Ulrich Nögel ___ 153

Aranea—Web Framework Construction and Integration Kit
Oleg Mürk, Jevgeni Kabonov ___ 163

Session G: Short Papers___ 173

Typeless Programming in Java 5.0
Martin Plümicke, Jörg Bäuerle __ 175

Infinite Streams in Java
Dominik Gruntz__ 182

Interaction Among Objects via Roles - Sessions and Affordances in Java
Matteo Baldoni, Guido Boella, Leendert van der Torre _________________________ 188

Experiences of Using the Dagstuhl Middle Metamodel for Defining Software Metrics
Jacqueline A. McQuillan, James F. Power ___________________________________ 194

Reducing Java Internet Project Risks: A Case Study of Public Measurement
of Client Component Functionality in the User Community
Tomas Hruz, Matthias Hirsch-Hoffmann, Willhelm Gruissem, Philip Zimmermann___ 199

Teaching Inheritance Concepts with Java
Axel Schmolitzky ___ 203

Improving the Quality of Programming Education by Online Assessment
Gregor Fischer, Jürgen Wolff von Gudenberg ________________________________ 208

Invited Workshop on Java-based Distributed Systems and Middleware _________ 213

Experiences With Hierarchy-Based Code Generation in the J2EE Context
Ralf Gitzel, Michael Schwind ___ 216

M3PS: A Multi-Platform P2P System Based on JXTA and Java
Leonard Barolli __ 224

Mapping Clouds of SOA- and Business-related Events for an Enterprise
Cockpit in a Java-based Environment
Daniel Jobst, Gerald Preissler ___ 230

Business Activity Monitoring of norisbank - Taking the Example of the Application
easyCredit and the Future Adoption of Complex Event Processing (CEP)
Torsten Greiner, Willy Düster, Francis Pouatcha, Rainer von Ammon,
Hans-Martin Brandl, David Guschakowski ___________________________________ 237

Author Index ___ 243

Session A
JVM Tools

1

2

The Project Maxwell Assembler System

Bernd Mathiske, Doug Simon, Dave Ungar
Sun Microsystems Laboratories

16 Network Circle, Menlo Park, CA 94025, USA
{Bernd.Mathiske,Doug.Simon,David.Ungar}@sun.com

ABSTRACT
The JavaTM programming language is primarily used for
platform-independent programming. Yet it also offers many
productivity, maintainability and performance benefits for
platform-specific functions, such as the generation of ma-
chine code.

We have created reliable assemblers for SPARCTM, AMD64,
IA32 and PowerPC which support all user mode and privi-
leged instructions and with 64-bit mode support for all but
the latter. These assemblers are generated as Java source
code by our extensible assembler framework, which itself is
written in the Java language. The assembler generator also
produces javadoc comments that precisely specify the legal
values for each operand.

Our design is based on the Klein Assembler System writ-
ten in Self. Assemblers are generated from a specification,
as are table-driven disassemblers and unit tests. The spec-
ifications that drive the generators are expressed as Java
language objects. Thus no extra parsers are needed and de-
velopers do not need to learn any new syntax to extend the
framework for additional ISAs.

Every generated assembler is tested against a preexisting
assembler by comparing the output of both. Each instruc-
tion’s test cases are derived from the cross product of its
potential operand values. The majority of tests are positive
(i.e., result in a legal instruction encoding). The framework
also generates negative tests, which are expected to cause an
error detection by an assembler. As with the Klein Assem-
bler System, we have found bugs in the external assemblers
as well as in ISA reference manuals.

Our framework generates tens of millions of tests. For
symbolic operands, our tests include all applicable prede-
fined constants. For integral operands, the important bound-
ary values, such as the respective minimum, maximum, 0,
1 and -1, are tested. Full testing can take hours to run but
gives us a high degree of confidence regarding correctness.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

PPPJ 2006, August 30 – September 1, 2006, Mannheim, Germany.

Copyright 2006 ACM ...$5.00.

Keywords
cross assembler, assembler generator, disassembler, auto-
mated testing, the Java language, domain-specific frame-
work, systems programming

1. INTRODUCTION AND MOTIVATION
Even though the Java programming language is designed

for platform-independent programming, many of its attrac-
tions1 are clearly more generally applicable and thus also
carry over to platform-specific tasks. For instance, popu-
lar integrated development environments (IDEs) that are
written in the Java language have been extended (see e.g.
[5]) to support development in languages such as C/C++,
which get statically compiled to platform-specific machine
code. Except for legacy program reuse, we see no reason
why compilers in such an environment should not enjoy all
the usual advantages attributed to developing software in
the Java language (in contrast to C/C++). Furthermore,
several Java virtual machines have been written in the Java
language (e.g., [3], [21], [14]), including compilers from byte
code to machine code.

With the contributions presented in this paper we intend
to encourage and support further compiler construction re-
search and development in Java. Our software relieves pro-
grammers of arguably the most platform-specific task of all,
the correct generation of machine instructions adhering to
existing general purpose instruction set architecture (ISA)
specifications.

We focus on this low-level issue in clean separation from
any higher level tasks such as instruction selection, instruc-
tion scheduling, addressing mode selection, register alloca-
tion, or any kind of optimization. This separation of con-
cerns allows us to match our specifications directly and uni-
formly to existing documentation (reference manuals) and to
exploit pre-existing textual assemblers for systematic, com-
prehensive testing. Thus our system virtually eliminates an
entire class of particularly hard-to-find bugs and users gain
a fundament of trust to build further compiler layers upon.

Considering different approaches for building assemblers,
we encounter these categories:

1To name just a few: automatic memory management,
generic static typing, object orientation, exception handling,
excellent IDE support, large collection of standard libraries.

3

Stand-alone assembler programs: These take textual
input and produce a binary output file. Compared to
the other two variants they are relatively slow and they
have long startup times. Therefore stand-alone assem-
blers are primarily used for static code generation. On
the plus side, they typically offer the richest feature
sets beyond mere instruction encoding: object file for-
mat output, segmentation and linkage directives, data
and code alignment, macros and much more.

Inline assemblers: Some compilers for higher program-
ming languages (HLLs) such as C/C++ provide di-
rect embedding of assembly language source code in
HLL source code. Typically they also have syntactic
provisions to address and manipulate HLL entities in
assembly code.

Assembler libraries: These are aggregations of HLL rou-
tines that emit binary assembly instructions (e.g., [9],
[13]). Their features may not always be directly con-
gruent with textual assembly language. For example,
many methods in the x86 assembler library that is part
of the HotSpotTM Java virtual machine [18], which
is written in C++, take generalized location descrip-
tors as parameters instead of explicitly broken down
operands. Further along this path, the distinction be-
tween a mere assembler and the following category be-
comes quite diffuse.

Code generator libraries: These integrate assembling
with higher level tasks, typically instruction selection
and scheduling, arranging ABI compliance, etc., or
even some code optimization techniques.

We observed that only the first of the above categories of as-
semblers is readily available to today’s Java programmers:
that is, stand-alone assemblers, which can be invoked by the
System.exec() method. This approach may be sufficient for
some limited static code generation purposes, but it suffers
from the lack of language integration and the administrative
overhead resulting from having separate programs. Regard-
ing dynamic code generation, the startup costs of external
assembler processes are virtually prohibitive.

We are not aware of any inline assembler in any Java com-
piler and to our knowledge there are only very few assembler
libraries in the form of Java packages2.

According to our argument above concerning the separa-
tion of concerns, building a code generator framework would
have to be an extension of, rather than an alternative to, our
contributions.

In this paper we present a new assembler library (in the
form of Java packages) that covers the most popular instruc-
tion sets (for any systems larger than handhelds): SPARC,
PowerPC, AMD64 and IA32. In addition our library in-
cludes matching disassemblers, comprehensive assembler test
programs, and an extensible framework with specification-
driven generators for all parts that depend on ISA specifics.
All of the above together comprise the Project Maxwell As-
sembler System (PMAS).

The design of the PMAS is to a large extent derived from
the Klein Assembler System (KAS), which has been devel-
oped previously by some of us as part of the Klein Virtual

2We exclude Java byte code “assemblers”, since they do not
generate hardware intructions.

.amd64

.ia32

.x86

.sparc

.ppc

.gen

.dis

.cisc

.risc

.bitRange

.field

.ppc

.sparc

.amd64

.ia32

.x86

.ppc

.sparc

.amd64

.ia32

.x86.asm

disassemblers

generators
 and testers

assemblers

Figure 1: Overview of the PMAS packages

Machine [19]. The KAS, which supports the two RISC ISAs
SPARC and PowerPC, is written in Self [1], a prototype-
based, object-oriented language with dynamic typing.

Providing an assembler with a programmatic interface al-
ready delivers a significant efficiency gain over a textual in-
put based assembler as the cost of parsing is incurred during
Java source compilation instead of during the execution of
the assembler. In addition, we will discuss how making ap-
propriate usage of Java’s type system can also shift some of
the cost of input validation to the Java source compiler.

2. OVERVIEW
Figure 1 gives an overview of the PMAS package struc-

ture.3 The .gen package and its subpackages contain ISA
descriptions and miscellanous generator and test programs.
The .dis subtree implements disassemblers, reusing the .gen
subtree. The other five direct subpackages of .asm contain
assemblers, which have no references to the above two sub-
trees. Each package ending in .x86 provides shared classes
for either colocated .amd64 and .ia32 packages.

It is straightforward to reduce the framework to support
any subset of ISAs, simply by gathering only those packages
that do not have any names which pertain only to excluded
ISAs.

The next section explains how to use the generated assem-
blers in Java programs. For each assembler there is a com-
plementary disassembler, as described in section 4. We de-
scribe the framework that creates these assemblers and dis-
assemblers in section 5. First we introduce the structure of
our ISA representations (section 5.1), then we sketch the in-
struction templates (section 5.2) that are derived from them.
We regard the latter as the centerpiece of our framework, as
it is shared among its three main functional units, which pro-
vide the topics of the subsequent three sections: the struc-
ture of generated assembler source code (section 5.3), then
the main disassembler algorithms (section 5.4) and fully au-

3We have split our source code into two separate IDE
projects, one of which contains miscellaneous general pur-
pose packages that are reused in other projects and that we
regard as relatively basic extensions of the JDK. Here we
only discuss packages unique to the PMAS.

4

tomated assembler and disassembler testing (section 5.5).
We briefly discuss related work in section 6 and the paper
concludes with notable observations and future work (sec-
tion 7).

3. HOW TO USE THE ASSEMBLERS
Each assembler consists of the top level package

com.sun.max.asm and the subpackage matching its ISA
as listed in Figure 1. In addition, the package
com.sun.max.asm.x86 is shared between the AMD64 and
the IA32 assembler. Hence, to use the AMD64 assem-
bler the following packages are needed:4 com.sun.max.asm,
com.sun.max.asm.amd64 and com.sun.max.asm.x86. None
of the assemblers requires any of the packages under .gen

and .dis.
To use an assembler, one starts by instantiating one of the

leaf classes shown in Figure 2. The top class Assembler pro-
vides common methods for all assemblers, concerning e.g.
label binding and output to streams or byte arrays. The
generated classes in the middle contain the ISA-specific as-
sembly routines. For ease of use, these methods are purpose-
fully closely oriented at existing assembly reference manuals,
with method names that mimic mnemonics and parameters
that directly correspond to individual symbolic and integral
operands.

Here is an example for AMD64 that creates a small se-
quence of machine code instructions (shown in Figure 3) in
a Java byte array:

import stat ic
. . . asm . amd64 . AMD64GeneralRegister64 . ∗ ;
. . .

public byte [] c r e a t e I n s t r u c t i o n s () {
long s ta r tAddres s = 0x12345678L ;
AMD64Assembler asm =

new AMD64Assembler (s ta r tAddres s) ;

Label loop = new Label () ;
Label subrout ine = new Label () ;
asm . f i xLabe l (subrout ine , 0x234L) ;

asm .mov(RDX, 12 , RSP. i n d i r e c t ()) ;
asm . bindLabel (loop) ;
asm . c a l l (subrout ine) ;
asm . sub (RDX, RAX) ;
asm . cmpq(RDX, 0) ;
asm . jnz (loop) ;

asm .mov(20 , RCX. base () , RDI . index () ,
SCALE 8 , RDX) ;

return asm . toByteArray () ;
}

Instead of using a byte array, assembler output can also be
directed to a stream (e.g. to write to a file or into memory):

OutputStream stream = new . . . Stream (. . .) ;
asm . output (stream) ;

The above example illustrates two different kinds of label
usage. Label loop is bound to the instruction following the
bindLabel() call. In contrast, label subroutine is bound
to an absolute address. In both cases, the assembler cre-
ates PC-relative code, though, by computing the respective

4In addition, general purpose packages from MaxwellBase
and the JRE are needed.

offset argument.5 An explicit non-label argument can be
expressed by using int (or sometimes long) values instead
of labels, as in:

asm . c a l l (2 0 0) ;

The variant of call() used here is defined in the raw assem-
bler (AMD64RawAssembler) superclass of our assembler and
it takes a “raw” int argument:

public void c a l l (int r e l 3 2) { . . . }

In contrast, the call() method used in the first example
is defined in the label assembler (AMD64LabelAssembler),
which sits between our assembler class and the raw assem-
bler class:

public void c a l l (Label label) {
. . . c a l l (l a b e lO f f s e tA s In t (label)) ; . . .

}

This method builds on the raw call() method, as sketched
in its body.

These methods, like many others, are syntactically dif-
ferentiated by means of parameter overloading. This Java
language feature is also leveraged to distinguish whether a
register is used directly, indirectly, or in the role of a base
or an index. For example, the expression RSP.indirect()

above results in a different Java type than plain RSP, thus
clarifying which addressing mode the given mov instruction
must use. Similarily, RCX.base() specifies a register in the
role of a base, etc.

If there is an argument with a relatively limited range of
valid values, a matching enum class rather than a primi-
tive Java type is defined as the parameter type. This is for
instance the case regarding SCALE 8 in the SIB addressing
expression above. Its type is declared as follows:

public enum Sca l e . . . {
SCALE 1 , SCALE 2 , SCALE 4 , SCALE 8 ;
. . .

}

Each RISC assembler features synthetic instructions ac-
cording to the corresponding reference manual. For in-
stance, one can write these statements to create some syn-
thetic SPARC instructions [20]:

import stat ic . . . asm . sparc .GPR. ∗ ;

SPARC32Assembler asm = new SPARC32Assembler (. . .) ;
asm . nop () ;
asm . s e t (55 , G3) ;
asm . inc (4 , G7) ;
asm . r e t l () ;
. . .

Let’s take a look at the generated source code of one of these
methods:

5In our current implementation, labels always generate PC-
relative code, i.e. absolute addressing is only supported by
the raw assemblers.

5

Assembler

LittleEndianAssembler BigEndianAssembler

IA32RawAssembler AMD64RawAssembler PPCRawAssembler SPARCRawAssembler

IA32LabelAssembler AMD64LabelAssembler PPCLabelAssembler SPARCLabelAssembler

SPARCAssembler

SPARC32Assembler SPARC64Assembler

IA32Assembler AMD64Assembler PPCAssembler

PPC64AssemblerPPC32Assembler

 generated

 instantiatable

Figure 2: Assembler class hierarchy

/∗∗
∗ Externa l assembler syntax :
∗ <code>inc</code> <i>simm13</i >, <i>rd</i>
∗ <p>
∗ Syn the t i c i n s t r u c t i on e qu i v a l en t to :
∗ <code>{@link #add (GPR, int , GPR) add}

(rd . va lue () , simm13 , rd)</code>
∗ <p>
∗ Constraint : <code>−4096 <= simm13 &&

simm13 <= 4095</code>

∗
∗ @see ”<a hre f =”... − Sect ion G.3”
∗/

public void i n c (int simm13 , GPR rd) {
int i n s t r = 0x80002000 ;
checkConstra int (−4096 <= simm13 &&

simm13 <= 4095 ,
”−4096 <= simm13 && simm13 <= 4095”) ;

i n s t r |= ((rd . va lue () & 0 x1f) << 14) ;
i n s t r |= (simm13 & 0 x 1 f f f) ;
i n s t r |= ((rd . va lue () & 0 x1f) << 25) ;
emit Int (i n s t r) ;

}

As we see here, our assembler generator creates a javadoc
comment disclosing the textual external assembler syntax
of each instruction and pointing out the exact place (“sec-
tion G.3”) in the reference manual [20] to find a detailed
instruction description.

As is often the case for RISC (but not x86) assembler
methods, the int argument above is limited to a value range
of less than 32 bits, here only 13. In such cases, we resort
to dynamic checking resulting in runtime exceptions if an
out-of-range argument is passed. In all other situations, our
assemblers are statically type-safe.

4. HOW TO USE THE DISASSEMBLERS
Since performance is less critical for disassemblers than

for assemblers, our disassemblers are not generated as Java
source code. Instead they are manually written programs,
which on every program restart rely on the PMAS frame-
work to generate instruction template tables (see 5.2). Thus
using a disassembler always requires loading the respective
packages under .gen as well.

This Java statement sequence disassembles AMD64 in-
structions from an input stream, given a start address for
PC-relative decoding, and directs its textual output to the
console:

AMD64Disassembler disasm =
new AMD64Disassembler (s ta r tAddres s) ;

BufferedInputStream stream = . . . ;
new BufferedInputStream (. . .) ;

disasm . scanAndPrint (stream , System . out) ;

Applied to the instructions in the AMD64 code example at
the beginning of the preceding section, this produces the
output in Figure 3.

Our disassembled syntax for AMD64 (and IA32) is a blend
of so-called Intel and AT&T syntax [6], with some modifi-
cations regarding address parameterization. Our address
rendering mimics C/Java syntax, which we find much more
intuitive.

As demonstrated by label L1 in Figure 3, the disassembler
automatically synthesizes labels for any address in the range
of the disassembled code. Instructions that reference a label
are printed giving both the label and its underlying raw
value.

The disassemblers for SPARC and PowerPC create tex-
tual output that is virtually identical to the syntax found in
the reference manuals, except for also providing label syn-
thesis. In any case, the source code that needs to be changed
to adjust any disassembler’s output to one’s personal liking
is fairly minimal.

5. THE GENERATOR FRAMEWORK
Having described the use of our assemblers and disassem-

blers, we will now address how they are implemented and
tested. The following subsections describe how our frame-
work starts from the internal description of an ISA and de-
rives an abstract representation of assembler methods called
templates. These constitute the centerpiece of the assembler
generators, the disassemblers and for fully automated test-
ing.

5.1 Constructing an ISA Representation
We represent each ISA by a collection of instruction de-

scriptions in the form of Java object arrays. Each of these
specifies the exact composition of a group of closely related
instructions.

The first object in every description must be a string
which specifies the external name, i.e. the instruction
mnemonic used in external assembler syntax. This string
will also be used as the internal name, i.e., the base name for
generated assembler methods, unless a second string is also
given, which then defines a different internal name. For ex-
ample, as the return instruction in the SPARC ISA clashes
with a Java keyword, we gave it the internal name return .

6

0x0000000012345678 00 mov rdx, [rsp + 12] [48 8B 94 24 0C 00 00 00]
0x0000000012345680 08 L1: call -305419345 [E8 AF AB CB ED]
0x0000000012345685 13 sub rdx, rax [48 29 C2]
0x0000000012345688 16 cmpq rdx, 0x0 [48 81 FA 00 00 00 00]
0x000000001234568F 23 jnz L1: -17 [75 EF]
0x0000000012345691 25 mov rcx[rdi * 8 + 20], rdx [48 89 94 F9 14 00 00 00]

memory address offset mnemonic arguments raw bytes in hex

Figure 3: Disassembled AMD64 instructions

5.1.1 RISC Instruction Descriptions
A RISC instruction has 32 bits and it is typically specified

as sequences of bit fields. See for example the specification of
the casa instruction from the SPARC reference manual [20]:

11 rd op3 rs1 i=0 imm asi rs2

31 30 29 25 24 19 18 14 13 12 5 4 0

Our system follows this structure by treating RISC in-
structions as a sequence of bit fields that either have con-
stant values or an associated operand type. We have the
following description types at our disposal:

RiscField: describes a bit range and how it relates to an
operand. This implicitly specifies an assembly method
parameter. A field may also append a suffix to the
external and internal names.

RiscConstant: combines a field with a predefined value,
which will occupy the field’s bit range in each assem-
bled instruction. This constitutes a part of the instruc-
tion’s opcode.

OperandConstraint: a predicate that constrains the legal
combination of argument values an assembler method
may accept.

String: a piece of external assembler syntax (e.g., a paren-
thesis or a comma), that will be inserted among
operands, at a place that corresponds to its relative
position in the description.

Here is our specification of the casa instruction:

de f i n e (” casa ” , op (0 x3) , op3 (0 x3c) , ” [” , r s1 ,
”] ” , i (0) , imm asi , ” , ” , r s2 , rd) ;

This specifies the name, the external syntax and the fields
of the casa instruction. There are three constant fields
(RiscConstant), op6, op3 and i, as well as 4 variable fields
(RiscField), rs1, imm asi, rs2 and rd. An example us-
ing the external syntax would be:

casa [G3] 12 , I5

The same field may be constant in some instructions, but
variable in others. When writing field definitions for an ISA,
one defines the same field in two ways, once as a Java value
and once as a Java method.

6This field is not named in the reference manual diagram.

public stat ic f ina l
SymbolicOperandField<GPR> rd =
createSymbol icOperandFie ld (GPR.SYMBOLIZER,

29 , 2 5) ;

public stat ic RiscConstant rd (GPR gpr) {
return rd . constant (gpr) ;

}

private stat ic f ina l ConstantFie ld op3 =
createConstantF i e ld (24 , 1 9) ;

public stat ic RiscConstant op3 (int value) {
return op3 . constant (va lue) ;

}
. . .
public class ConstantFie ld extends Ris cF i e ld {

RiscConstant constant (int value) {
return new RiscConstant (this , va lue) ;

}
}

This means that one can reference the return register field
as a parameter operand (rd) or as a constant field (e.g.,
rd(G3)). Field op3 however, is always supposed to be con-
stant, so we made only its method public.

The following specifies a PowerPC instruction featuring
an opcode field and 6 parameter fields:

de f i n e (” rlwinm” , opcd (21) , ra , r s ,
sh , mb , me , r c) ;

In all instruction descriptions we apply the static import
feature of the Java language, to avoid qualifying static field
and method names. This greatly improved both the ease of
writing descriptions and their readability. For instance, the
above would otherwise have to be written as:

de f i n e (” rlwinm” , PPCFIelds . opcd (21) ,
PPCFields . ra , PPCFields . r s ,
PPCFields . sh , PPCFields . mb ,
PPCFields . me , PPCFields . r c) ;

The PowerPC ISA is particularily replete with synthetic
instructions, the specifications of which build on other in-
structions [11]. To match the structure of existing documen-
tation closely, there is a synthesize method that derives a
synthetic instruction from a previously defined (raw or syn-
thetic) instruction. This method interprets its instruction
description arguments to replace parameters of the refer-
enced instruction with constants or alternative parameters.
For example, we can define the rotlwi instruction by referring
to the above rlwinm instruction:

s yn th e s i z e (” r o t lw i ” , ” rlwinm” , sh (n) ,
mb(0) , me(31) , n) ;

7

Here, we specify a new parameter field n and cause the
generated assembly method to assign its respective argu-
ment to field sh. The fields mb and me become constant
with the given predefined values.

Furthermore, fields in synthetic instructions can be spec-
ified by arithmetic expressions composed of numeric con-
stants and fields. For example, the values of the mb and me

fields in the following instruction description are the result
of subtraction expressions.

s yn th e s i z e (” c l r l s l w i ” , ” rlwinm” , sh (n) ,
mb(SUB(b , n)) , me(SUB(31 , n)) ,
b , n , LE(n , b) , LT(b , 3 2)) ;

The repeated use of field n exemplifies how one operand
may contribute to the values of several fields.

5.1.2 x86 Instruction Descriptions
The number of possible instructions in x86 ISAs is about

an order of magnitude larger than in the given RISC ISAs.
If one tried to follow the same approach to create instruction
descriptions, one would spend an enormous amount of time
just writing the description listings. More importantly, our
primitives to specify RISC instructions are insufficient to
express instruction prefixes, suffixes, intricate mod r/m re-
lationships, etc. Instead of a rich bit-field structure, x86 in-
structions tend to have a byte-wise composition determined
by numerous not quite orthogonal features.

As opcode tables provide the densest, most complete,
well-publicized instruction set descriptions available for x86,
we decided to build our descriptions and generators around
those. For an x86 ISA, the symbolic constant values of the
following description object types are verbatim from opcode
tables found in x86 reference manuals (e.g., [12]):

AddressingMethodCode: We allow M to be used in lieu
of the operand code Mv to faithfully mirror published
opcode tables in our instruction descriptions.

OperandTypeCode: e.g. b, d, v, z. Specifies a
mnemonic suffix for the external syntax.

OperandCode: the concatenation of an addressing mode
code with an operand type code, e.g. Eb, Gv, Iz, spec-
ifies explicit operands, resulting in assembler method
parameters.

RegisterOperandCode: e.g. eAX, rDX.

GeneralRegister: e.g. BL, AX, ECX, R10.

SegmentRegister: e.g. ES, DS, GS.

StackRegister: e.g. ST, ST 1, ST 2.

The latter three result in implicit operands, i.e. the gener-
ated assembler methods do not represent them by parame-
ters. Instead we append an underscore and the respective
operand to the method name. For example, the external as-
sembly instruction add EAX, 10 becomes add EAX(10) when
using the generated assembler. We also generate the variant
with an explicit parameter that can be used as add(EAX,

10), but that is a different instruction, which is one byte
longer in the resulting binary form. External textual as-
semblers typically do not provide any way to express such
choices.

In addition, these object types are used to describe x86
instructions:

HexByte: an enum providing hexadecimal unsigned byte
values, used to specify an opcode. Every x86 instruc-
tion has either one or two of these. In case of two, the
first opcode must be 0F.

ModRMGroup: specifies a table in which alternative ad-
ditional sets of instruction description objects are lo-
cated, indexed by the respective 3-bit opcode field in
the mod r/m byte of each generated instruction.

ModCase: a 2-bit value to which the mod field of the mod
r/m byte is then constrained.

FloatingPointOperandCode: a floating point operand
not further described here.

Integer: an implicit byte operand to be appended to the
instruction, typically 1.

OperandConstraint: same as for RISC above, but much
more rarely used, since almost all integral x86 operand
value ranges coincide with Java primitive types.

Given these features, we can almost trivially transcribe the
“One Byte Opcode Map” for IA32:

de f i n e (00 , ”ADD” , Eb , Gb) ;
d e f i n e (01 , ”ADD” , Ev , Gv) ;
. . .
d e f i n e (15 , ”ADC” , eAX, Iv) ;
d e f i n e (16 , ”PUSH” , SS) ;
. . .
d e f i n e (80 , GROUP 1, b ,

Eb . exc ludeExterna lTestArgs (AL) , Ib) ;
. . .
d e f i n e (CA , ”RETF” ,

Iw) . beNotExterna l lyTestab le () ;
// gas does not support segments

. . .
d e f i n e (6B , ”IMUL” , Gv, Ev ,

Ib . externalRange (0 , 0 x7f)) ;
. . .

Many description objects and the respective result value of
define have modification methods that convey special in-
formation to the generator and the tester. In the example
above we see the exclusion of a register from testing, the ex-
clusion of an entire instruction from testing and the restric-
tion of an integer test argument to a certain value range.
These features suppress already known testing errors that
are merely due to restrictions, limited capabilities, or bugs
in a given external assembler.

Analogous methods to the above are available for RISC
instruction descriptions. For x86, however, there are ad-
ditional methods that modify generator behavior to match
details of the ISA specification which are not explicit in the
opcode table. This occurs for example in the “Two Byte
Opcode Table” for AMD64:

de f i n e (0F , 80 , ”JO” ,
Jz) . se tDefau l tOperandSize (BITS 64) ;

. . .
d e f i n e (0F , C7 ,

GROUP 9a) . r equ i r eAddre s sS i z e (BITS 32) ;

8

5.2 Instruction Templates
The assembler generator, the disassembler and the assem-

bler tester of each ISA share a common internal representa-
tion derived from instruction descriptions called instruction
templates and a common mechanism to create these, the
template generator.

For RISC, an instruction template is created by binding
constants to all the non-parameter operands in an instruc-
tion description and by building the cross product of all
possible bindings for option fields.

The template generator for x86 is far more complex. It ex-
plores the cross product of all possible values of the following
instruction properties, considering them in this order: ad-
dress size attribute, operand size attribute, mod case, mod
r/m group, rm case, SIB index case and SIB base case. The
search for valid combinations of the above is directed by in-
dications derived from the respective instruction description
objects.

For shorter instructions, a result may be found after
the first few stages. For example, an instruction that
does not have a mod r/m byte, as determined by exam-
ining its opcode, may have templates with different address
and operand size attributes, but enumerating different mod
cases, etc., is unnecessary.

There are numerous relatively difficult to describe cir-
cumstances that limit the combinatorial scope for valid in-
structions. In such cases, the template generator internally
throws the exception TemplateNotNeededException in the
respective description object visitor to backtrack among the
above stages. For example, instructions with addressing
method code M occurring in their description do not require
consideration of any other rm cases than the normal case
when exploring mod case 3. In other words, if two general
registers are used directly as operands (mod case 3), then
there will be no complex addressing forms involving a SIB
byte and no special (rm) cases such as memory access by an
immediate address.

The number of templates that can be generated for any
given instruction description ranges anywhere from 1 (for
most RISC instructions) to 216 (for the xor AMD64 in-
struction).

5.3 Generating Assembler Source Code
Each assembler generator writes two Java source code

classes containing hundreds or thousands of assembly meth-
ods:7 a raw assembler class and a label assembler class. As
indicated in Figure 2, these generated classes are accom-
panied by manually written classes that implement all nec-
essary support subroutines as e.g. output buffering, label
definition and binding, and instruction length adjustments
and that define symbolic operand types, such as registers,
special constants, etc.

For x86, we managed to use Java enums to represent
all symbolic operands. For most symbolic RISC operands,
though, we had to resort to a manually created pattern that
mimics enums in order to capture relatively complex inter-
relationships such as subsetting. For example, only every
second SPARC floating point register syntactically can be
“double” and only every fourth can be “quadruple”.

7The generated AMD64 assembler (without optional 16-bit
addressing) contains 8450 methods in ≈85k lines of code,
half of which are comments. The totals for the SPARC
assembler are 832 methods and ≈13k lines of code.

By limiting the scope of all symbolic operand construc-
tors to their respective class we restrict symbolic operands
to predefined constants and thus we syntactically and there-
fore statically prevent the passing of illegal arguments to
assembler methods.

To represent integral values we use Java primitive types
(i.e., int, short, char, etc) of the appropriate value size. If
the range of legal values for an integral parameter does not
exactly correspond to the range of legal values for the Java
type then we add a constraint accordingly to the instruction
description.

A generator needs to be run only once per assembler re-
lease. It also programmatically invokes a Java compiler8 to
reduce the generated source code to class files.

A generated raw assembler class contains one assembly
method for every instruction template derived from the
given ISA description. The corresponding label assembler
class inherits all these methods and provides additional
derivative methods with label parameters in lieu of primi-
tive type (raw) parameters, wherever this is useful, based
on the semantics of the respective instruction.

Each label assembler method translates its label argu-
ments to raw operands and calls the corresponding under-
lying raw assembler method. In the case of x86, label as-
sembler methods also support span-dependent instruction
selection. The inherited top level assembler class (see Fig-
ure 2) provides reusable algorithms for label resolution and
for span-dependent instruction management.

The generated code that assembles a RISC instruction
shifts and masks incoming parameters into position and
combines the resulting bits using the logical or operation.

The assembly of x86, on the other hand, is mostly orga-
nized as a sequence of bytes, with conditional statements
guarding the emission of certain prefixes. Some more com-
plex bytes such as mod r/m bytes or REX prefixes also re-
quire a certain amount of bit combining.

5.4 Implementing Disassemblers
The disassemblers also reuse the template generator, but

they are entirely manually written. They have simple, al-
most but not quite brute force algorithms with usable but
not great performance. At startup, a disassembler first cre-
ates all templates for the given ISA. When applied to an in-
struction stream it then tries to find templates that match
its binary input. The details for this task vary between
the RISC and x86 disassemblers. They are described in the
following two subsections. In either case, the disassembler
extracts operand values and then produces a textual output
including program counter addresses, offsets, synthesized la-
bels and raw bytes.

5.4.1 RISC Disassemblers
A SPARC or PowerPC disassembler only needs to read a

32-bit word to obtain a full bit image of any given instruc-
tion. To explain how it then finds a matching template, we
use these notions:

8Programmatic Java compiler invocation is provided for
both Sun’s javac (used in NetBeans) and for IBM’s Jikes
compiler (used in Eclipse).

9

opcode mask: the combined (not necessarily contiguous)
bit range of all constant fields in an instruction,

opcode: a binding of bit values to a given opcode mask,

opcode mask group: a collection of templates that share
the same opcode mask,

specificity: the number of bits in an opcode mask,

specificity group: a collection of opcode mask groups
with the same specificity (but different opcode bit po-
sitions).

The disassembler keeps all instruction templates sorted by
specificity group. To find the template with the most specific
opcode mask it will iterate over all specificity groups in order
of decreasing specificity. Optionally, it can do the opposite.

During the iteration, the disassembler tries the following
with each opcode mask group in the given specificity group.
A logical and of the opcode mask group’s opcode mask with
the corresponding bits in the instruction yields a hypotheti-
cal opcode. Next, every template in the opcode mask group
that has this opcode is regarded as a candidate. For each
such candidate, the disassembler tries to disassemble the in-
struction’s encoded arguments.

If this succeeds, we reassemble an instruction from the
candidate template with these arguments. This simple
trick assures that we only report decodings that match all
operand constraints. Finally, if the resulting bits are the
same as the ones we have originally read, we have a result.

5.4.2 x86 Disassemblers
An AMD64 and IA32 assembler must determine the in-

struction length on the fly, sometimes backtracking a little
bit. An instruction is first scanned byte by byte, gathering
potential prefixes, the first opcode, and, if present, the sec-
ond opcode. The disassembler can then determine a group
of templates that matches the given opcode combination,
ignoring any prefixes at the moment.

The disassembler iterates over all templates in the same
opcode group, extracts operand values and reassembles as
described above in case of RISC. In short, some effort is
made to exclude certain predictably unnecessary decoding
attempts, but overall, the x86 disassembler algorithm uses
an even more brute force approach than the RISC disassem-
blers.

5.5 Fully Automated Self-Testing
The same template generators used to create assemblers

and disassemblers are reused once again for fully automated
testing of these artifacts. The respective test generator cre-
ates an exhaustive set of test cases by iterating over a cross
product of legal values for each parameter of an assembler
method. For symbolic parameters, the legal values amount
to the set of all predefined constants of the given symbol
type. For integral parameters, if the number of legal values
is greater than some plausible threshold (currently 32), only
a selection of values representing all important boundary
cases is used.

The above represent positive test cases, i.e., they are ex-
pected to result in valid instruction encodings. In addition,
the testing framework generates negative test cases, i.e., test
cases that should cause an assembler to display error behav-
ior (e.g., return an error code or throw an exception). There

asmTest.o

Template

Template
Generator

Test Operand
 Generator

Operands

asmTest.s

Assembler
External Syntax

Writer

External
Assembler

bits Disassembler

Operands

Template

bitsReader

=?=

=?=

=?=

Figure 4: Testing

will be far fewer negative test cases than positive test cases
as our use of Java’s static typing leaves very few opportu-
nities for specifying illegal arguments. By far most negative
test cases in the ISAs implemented so far are due to RISC
integral fields whose ranges of legal values are not exactly
matched by a Java primitive type (e.g., int, short, char, etc).

For complete testing of an assembler and its corresponding
disassembler, the template generator creates all templates
for an ISA and presents them one by one to the following
testing procedure.9

First, an assembler instance is created and the assembler’s
Java method that corresponds to the given template is iden-
tified by means of Java reflection. Then the test generator
creates all test case operand sets for the given template.

Figure 4 illustrates the further steps taken for each
operand set. The assembler method is invoked with the
operand set as arguments and the identical operand set is
also passed together with the template to the external syn-
tax writer, which creates a corresponding textual assembler
code line and writes it into an assembler source code file.
The latter is thereupon translated by an external assembler
program (e.g., gas [6]), producing an object file. By notic-
ing certain prearranged markers in the object file, a reader
utility is able to extract those bits from the object file that
correspond to output of the external syntax writer into an-
other byte array.

Now the two byte arrays are compared. Next, one of the
byte arrays is passed to the disassembler, which reuses the
same set of templates from above and determines, which
template exactly matches this binary representation. Fur-
thermore, the disassembler extracts operand values.

Eventually, the template and operand values determined
by the disassembler are compared to the original template
and operand values.

Probing all variants of even a single mnemonic may take
minutes. Once a test failure has been detected, we can ar-

9The description is slightly simplified: the actual program
does not write a new assembler source file per instruction,
but accumulates those for the same template.

10

range for a very short restart/debug cycle by limiting testing
to a subset of instruction templates. The instruction tem-
plates in question are easily identified by serial numbers,
which are listed in the test output. When restarting the
test program, we then constrain the range of templates to
be retested by means of a command line option.

6. RELATED WORK
We have based our design on the Klein Assembler System

(KAS), deriving for example the following features from it:

• specification-driven generation of assemblers, disas-
semblers and testers,

• instruction descriptions in the form of object arrays,

• instruction templates as the central internal represen-
tation for multiple purposes,

• most of the generator, disassembler and tester algo-
rithms for RISC instructions,

• employment of existing external assemblers for testing.

Furthermore, we were able to copy and then simply
transcode the instruction descriptions for SPARC and Pow-
erPC. The x86 part of the PMAS has no precedent in the
KAS. Whereas the general approach carried over and there
is considerable reuse between the RISC and the x86 part
of the framework, we had to devise different instruction de-
scriptions, template structures, template generators and dis-
assemblers for AMD64 and IA32.

The NJMC toolkit [16] has many similarities with our
architecture. It is a specification driven framework for gen-
erating assemblers and disassemblers. Like ours, it includes
mechanisms for checking the correctness of a specification
internally as well as against an external assembler [7]. How-
ever, the decoders it generates are more efficient and exten-
sible.10 Also, it produces C source code, uses a special lan-
guage for the specifications (SLED [17]) and is implemented
in ML. This use of three different languages makes using,
extending and modifying the toolkit harder in the context
of a Java based compilation system. In contrast, the PMAS
uses Java as the single language for all its purposes.

Other specification language based assembler generators
are also described in [22], [4] and similar publications about
cross assemblers.

There are several extremely fast code generator and as-
sembler frameworks written for and implemented in C/C++
which are specially apt for dynamic code generation.

GNU lightning [9] provides an abstract RISC-like instruc-
tion set interface. This makes assembly code written to this
interface highly portable while trading off complete control
over the native instructions that are emitted.

CCG [15] is a combination of preprocessor and runtime
assembler that allows code generation to be embedded in
arbritrary C programs and requires no compiler-specific
extensions (such as inline asm statements or the various
assembler-related extensions implemented by gcc). It gives
the programmer complete control over what instructions are
emitted.

One can find many more code generator frameworks (e.g.,
[8]) for C/C++.

10This is something we plan to remedy as described in sec-
tion 7.

7. OBSERVATIONS AND FUTURE WORK
Conventionally, assemblers that run on one hardware ar-

chitecture and generate code for another are categorized as
cross assemblers and those that don’t are not. Interestingly,
this categorization is no longer static, i.e. determined at
assembler build time, when it comes to assemblers written
in a platform-independent language such as Java. Whether
they cross-assemble is merely a dynamic artifact of invoking
them on different platforms. On the other hand, one could
argue that they run on a virtual instruction set, Java byte
codes, and are therefore always cross-assembling.

Developing in the Java 5 language [10], we found that the
features (generics, enums, static imports, varargs, annota-
tions, etc.) introduced in this release of the language con-
tributed substantially to our design, especially to support
static type-safety of assembler applications.

The use of static typing by the Java compiler to prevent
expressing illegal operand values greatly reduces the number
of negative tests (e.g. ≈6000 for AMD64). Most are derived
from RISC instruction operands that cannot be modelled
precisely by a Java primitive type (e.g. int, short, char,
etc).

We first created a minimal framework that would only
cover very few instructions but contained all parts neces-
sary to run our instruction testing suite as described in sec-
tion 5.5. Thus we were able to catch numerous bugs, result-
ing from faulty instruction descriptions, missing features in
our framework and various mistakes, early on. Then we ex-
panded the number of instruction descriptions and added
functionality as needed.

The effort required to develop the assembler generators
shrank with each successive ISA. The CISC ISAs (IA32 and
AMD64) took about 3 engineer months to complete. A large
portion of this time can be attributed to the development
and extension of the general framework as these were the
first ISAs we implemented. The SPARC and PowerPC ISA
ports each took about 1 month. Once again, about half of
this time can be attributed to adding missing features to the
framework.

We discovered a handful of errors in most ISA reference
manuals and we even found a few bugs in every external
assembler. This could be determined by three-way compar-
isons between our assemblers, the external assemblers and
reference manuals.

Even though there is no absolute certainty regarding the
validity of our instruction encodings and decodings, we stip-
ulate that the number of bugs that our system would con-
tribute to a complex compiler system should be minimal.

For now we have been focusing on correctness, function-
ality and completeness, and we have not yet had enough
time to analyze and tune the performance of any part of the
PMAS.

Not having emphasized performance in the design of the
disassemblers, generators and testers, we find it sufficient
that the disassemblers produce pages of listings quicker than
humans can read even a single line and that each generator
runs maximally for tens of seconds.

With regard to assembler performance, we paid attention
to avoiding impediments that would be difficult to remedy
later. Our first impressions suggest that even without tun-
ing our assemblers are fast enough for use in static compilers
and in optimizing dynamic compilers with intermediate rep-
resentations. Performance is clearly not yet adequate when

11

emitting code in a single pass JIT, though. To remove the
most obvious performance bottleneck, we plan to replace
currently deeply stacked output routines with more efficient
operations, e.g., from java.nio.

As future work, we envision generating source code for
disassemblers and providing a more elegant programmatic
disassembler interface to identify and manipulate disassem-
bled instructions abstractly.

The full source code of the PMAS is available under a
BSD license at [2]. We recommend direct CVS download
into an IDE. Project files for both NetBeans and Eclipse are
included. Complementary prepackaged assembler jar files
are planned, but not yet available at the time of this writing.

8. ACKNOWLEDGEMENTS
Adam Spitz created a draft version for SPARC and Pow-

erPC of the presented system by porting the Klein Assem-
bler System from Self to the Java language.

We would like to thank Mario Wolczko and Greg Wright
for their helpful comments, and their insightful perusal of
our first draft. We’d also like to thank Cristina Cifuentes
for sharing her insights on the NJMC toolkit with us.

9. REFERENCES
[1] O. Agesen, L. Bak, C. Chambers, B.-W. Chang,

U. Hölzle, J. Maloney, R. B. Smith, D. Ungar, and
M. Wolczko. The SELF 4.0 Programmer’s Reference
Manual. Sun Microsystems, 1995.

[2] Bernd Mathiske and Doug Simon. Project Maxwell
Assembler System [online]. 2006. Available from:
http://maxwellassembler.dev.java.net/.

[3] M. Burke, J.-D. Choi, S. Fink, D. Grove, M. Hind,
V. Sarkar, M. Serrano, V. Sreedhar, and H. Srinivasan.
The Jalapeno Dynamic Optimizing Compiler for Java.
In ACM Java Grande Conference, June 1999.

[4] P. P. K. Chiu and S. T. K. Fu. A generative approach
to universal cross assembler design. SIGPLAN
Notices, 25(1):43–51, 1990.

[5] Eclipse.org. C/C++ Development Tools [online]. 2003.
Available from: http://eclipse.org/cdt.

[6] D. Elsner, J. Fenlason, and et al. Using the gnu AS
assembler [online]. 1999. Available from:
http://www.gnu.org/software/binutils/manual/

gas-2.9.1/as.html.

[7] M. F. Fernandez and N. Ramsey. Automatic checking
of instruction specifications. In ICSE, pages 326–336,
1997.

[8] C. W. Fraser, D. R. Hanson, and T. A. Proebsting.
Engineering a simple, efficient code-generator
generator. ACM Letters on Programming Languages
and Systems, 1(3):213–226, Sept. 1992.

[9] Free Software Foundation, Inc. GNU Lightning
[online]. 1998. Available from:
http://www.gnu.org/software/lightning.

[10] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java
Language Specification, Third Edition. The Java
Series. Addison-Wesley, Boston, Massachusetts, 2005.

[11] IBM Corporation. The PowerPC Architecture: A
Specification for a New Family of RISC Processors.
Morgan Kaufmann Publishers, second edition, 1994.

[12] Intel. IA-32 Intel Architecture Software Developer’s

Manual, Volume 2A: Instruction Set Reference, A-M,
2006. Available from: ftp://download.intel.com/

design/Pentium4/manuals/25366619.pdf.

[13] P. Johnson and M. Urman. The Yasm Core Library:
Libyasm [online]. 2003. Available from:
http://www.tortall.net/projects/yasm/wiki/Libyasm.

[14] ovm.org. OVM [online]. 2005. Available from:
http://www.cs.purdue.edu/homes/jv/soft/ovm/.

[15] I. Piumarta. The virtual processor: Fast,
architecture-neutral dynamic code generation. In
Virtual Machine Research and Technology Symposium,
pages 97–110. USENIX, 2004.

[16] N. Ramsey and M. F. Fernandez. The New Jersey
Machine-Code Toolkit. In USENIX Winter, pages
289–302, 1995.

[17] N. Ramsey and M. F. Fernandez. Specifying
Representations of Machine Instructions. ACM Trans.
Program. Lang. Syst., 19(3):492–524, 1997.

[18] Sun Microsystems. The Java HotSpot Virtual
Machine, 2001. Technical White Paper.

[19] D. Ungar, A. Spitz, and A. Ausch. Constructing a
metacircular virtual machine in an exploratory
programming environment. In Companion to the 20th
Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA 2005, pages 11–20. ACM,
2005.

[20] D. L. Weaver and T. Germond. The SPARC
Architecture Manual - Version 9. Prentice-Hall PTR,
1994.

[21] J. Whaley. Joeq: A virtual machine and compiler
infrastructure. Sci. Comput. Program, 57(3):339–356,
2005.

[22] J. D. Wick. Automatic Generation of Assemblers.
Outstanding Dissertations in the Computer Sciences.
Garland Publishing, New York, 1975.

12

Tatoo: an innovative parser generator

Julien Cervelle
Université de Marne la Vallée
Institut Gaspard-Monge
UMR CNRS 8049

77454 Marne-la-Vallée France
julien.cervelle@univ-mlv.fr

Rémi Forax
Université de Marne la Vallée
Institut Gaspard-Monge
UMR CNRS 8049

77454 Marne-la-Vallée France
remi.forax@univ-mlv.fr

Gilles Roussel
Université de Marne la Vallée
Institut Gaspard-Monge
UMR CNRS 8049

77454 Marne-la-Vallée France
gilles.roussel@univ-mlv.fr

ABSTRACT
This paper presents Tatoo, a new parser generator. This
tool, written in Java 1.5, produces lexer and bottom-up
parsers. Its design has been driven by three main concerns:
the ability to use the parser with the non-blocking IO API;
the possibility to simply deal with several language versions;
a clean separation between the lexer definition, the parser
definition and the semantics. Moreover, Tatoo integrates
several other interesting features such as lookahead-based
rule selection, pluggable error recovery mechanism, multiple
character sets optimized support.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors; D.2.2 [Soft-

ware Engineering]: Design Tools and Techniques

Keywords
Parser generator

1. INTRODUCTION
This paper presents Tatoo, a new parser generator. More

precisely, given a set of regular expressions describing to-
kens, a formal specification of a grammar and several se-
mantic hints, Tatoo, like many other existing tools [13, 10],
can generate a lexer, a parser and several implementation
glues allowing to run a complete analyzer that creates trees
or computes simpler values. Thanks to a clean separation
between specifications, the lexer and the parser may be used
independently. Moreover, there implementations are not
strongly linked to a particular semantic evaluation and may
be reused, in different contexts, without modification.

Tatoo is written in Java 1.5 and heavily uses parame-
terized types. Currently, generated implementations are
also Java 1.5 compliant but thanks to the simple extension
mechanism of Tatoo, other back-ends may be provided for
different target languages or implementations. This exten-
sion mechanism is already used to produce different lexer

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPPJ 2006, August 30 – September 1, 2006, Mannheim, Germany
Copyright 2006 ACM 0-12345-67-8/90/01 ...$5.00.

and parser implementations. For the lexing, depending on
the character encoding, Tatoo provides three implementa-
tions: interval based, table based and switch-case based.
For the parsing, depending on the grammar, SLR, LR(1)
and LALR(1) implementations are available.

For the front-end, the Tatoo engine relies on reified lexer
or parser specifications where regular expressions or pro-
ductions are Java objects. Thus, everything may be im-
plemented in Java. However, for usability, a simple XML
front-end for these specifications is also provided.

For the Java back-end, a library is provided for runtime
support. It contains generic classes for lexer and parser im-
plementation, glue code between lexer and parser, a basic
AST support and some helper classes that ease debugging.
Generated Java code uses parameterized types and enumera-
tion facilities to specialize this runtime support code. More-
over, all memory allocations are performed at creation time.

One main feature of the Java back-end resides in its ability
to work in presence of non-blocking inputs such as network
connections. Indeed, the Tatoo runtime supports push lex-
ing and parsing. More precisely, contrarily to most existing
tools, Tatoo lexers do not directly retrieve “characters” from
the data input stream but are fed by an input observer which
may work on non blocking inputs. The lexer retains its lex-
ing state and resumes lexing when new data is provided by
the observer. When a token is unambiguously recognized the
lexer pushes it to the parser in order to perform the analysis.
It is easy to provide a classical pull implementation based
on this push implementation.

Another innovative feature of Tatoo is its support of lan-
guage versions. This is provided by two distinct mecha-
nisms. First, productions can be tagged with a version and
the Tatoo engine produces a shared parser table tagged with
these versions. Then, given a version provided at runtime,
the parser selects dynamically the correct actions to per-
form. Second, the glue code linking the lexer and the parser
supports dynamic activation of lexer rules according to the
parser context. This feature allows, in particular, the acti-
vation of keywords according to the version.

Moreover, Tatoo integrates several other interesting fea-
tures such as a pluggable error recovery mechanism and mul-
tiple character sets optimized support.

The rest of this paper is organized as follows. An overview
of Tatoo development process is given in section 2. Then, in
section 3, innovative features of Tatoo are detailed. Related
works are presented in section 4, before conclusion.

2. TATOO OVERVIEW

13

2.1 General presentation
In this section a general overview of the typical construc-

tion of an analyzer using Tatoo is detailed. This process is
divided into three steps:

• specification of the language to be parsed and of sev-
eral semantic hints;

• automated implementation of parsing mechanism ac-
cording to the chosen method and target language;

• implementation of the semantics.

2.2 Language specification
In order to simplify the bootstrapping of our system, we

have chosen to describe the language using XML files, and
a SAX-based XML parser. The specification of a language
is provided by three files: one for the lexer (.xlex), one for
the parser (.xpars) and one for the glue between them and
a semantic part (.xtls).

For each file item (lexer rule, terminal, non-terminal, pro-
duction, version, ...), a corresponding id is defined. At run-
time, those items are referenced using this id.

In order to have the grammar unpolluted by code or se-
mantic information, the grammar and the lexer specifica-
tions are clearly separated from the semantics, so that the
same language can be used with different semantics.

2.2.1 Lexer
The lexing process consists in cutting the input text in

lexical units called tokens. The specification file defines rules
which are matched against the input. The lexer forwards the
recognized tokens to a listener which, may or may not, send
them to the parser.

2.2.1.1 Rules.
Each rule is described by one main regular expression and,

optionally, a following regular expression. A rule is matched
if the input matches the former expression and is followed
by a sequence which matches the latter regular expression,
if provided.

Regular expression can be expressed either using a Perl-
like syntax [4], or using an XML syntax, the latter being
mainly used for bootstrapping. For instance, an identifier is
defined in XML by:

<rule-xml id="identifier">

<main>

<!-- definition of main regex -->

<cat>

<set>

<interval from="a" to="z"/>

<interval from="A" to="Z"/>

<letter value="_"/>

</set>

<star>

<set>

<interval from="a" to="z"/>

<interval from="A" to="Z"/>

<interval from="0" to="9"/>

<letter value="_"/>

</set>

</star>

</cat>

<!-- no follow expression -->

</rule-xml>

and in Perl-like by:

<rule id="identifier"

pattern=’[a-zA-Z_][a-zA-Z0-9_]*’/>

At runtime, when a particular rule is recognized, its id is
forwarded to the listener using a back-end dependent type.
The default Java back-end uses Java 1.5 enumeration types.
The character sequence corresponding to the token is also
provided, but it is not extracted from the input. It is the
responsibility of the programmer to retrieve it, if needed.

As in other lexer generators, support for macros is also
provided using define-macro-xml and define-macro XML
tags.

2.2.1.2 Activator.
In order to speed up lexing process, a mechanism is pro-

vided to only select a subset of “useful” rules. The lexer
is constructed using an object implementing the interface
RuleActivator that selects, depending of the context, which
rules are active.

One possible use of this mechanism is the implementation
of Lex [12] start conditions, but as explained in section 3.2.1
it is also used to support language evolutions.

2.2.2 Parser
The parsing process consists in verifying that the flow of

tokens produced by the lexer respects a particular organiza-
tion described by a formal grammar.

The parser file specifies this grammar. It is described
by the declaration of its productions, allowing an extended
syntax of BNF using one-depth regular expressions (lists
and optional elements). One or more starts (or axioms) for
the grammar must be declared. If more that one axiom is
declared for the grammar, the “real” axiom is precised to
the parser at runtime.

For instance, Java method headers can be declared using
the following production:

<production id="header">

<lhs id="header"/>

<rhs>

<list id="modifiers" empty="true"

element="methodModifier"/>

<right id="returnType"/>

<right id="identifier/>

<right id="leftPar"/>

<list id="parameters" empty="true"

element="variableDeclaration"

separator="comma"/>

<right id="rightPar"/>

<right id="throwsDeclaration"

optional="true"/>

</rhs>

</production>

right means a single or possibly no occurrence of a terminal
or non-terminal ; list means a list of terminals and non-
terminals.

To resolve common conflicts, as in Yacc [9], priorities can
be associated with productions and terminals. For simplic-
ity, priorities of productions are automatically deduced from
priorities of their terminals, if applicable.

14

In the grammar file an error terminal is also declared for
error recovery (see section 3.3.2) and versions may be speci-
fied for productions (see section 3.2.2). Moreover, the parser
can provide, back to the lexer, the set of expected terminals
at each step of parsing (see section 3.2.1).

2.2.3 Tools
A complete language analyzer uses lexer and parser pro-

cesses to perform semantic computations according to a par-
ticular input stream. The tools file describes how the lexer
and the parser work together and their interfaces with the
semantics.

First, the association between rules and terminals is de-
scribed. This piece of information is declared for two pur-
poses. On the one hand, Tatoo generates automatically a
lexer listener which forwards the corresponding terminal to
the parser. On the other hand, it generates a lexer activa-
tor that selects only useful rules according to the expected
set of terminals provided by the parser (see section 3.2.1).
Rules that have to be always selected (like blank skipping
rule) are those not associated with any terminal.

For instance the following lines associate rule identifier

with terminal identifier and says that space are not pushed
to the parser.

<rule id="identifier" terminal="identifier"/>

<rule id="space" spawn="false"/>

Second, like in Yacc, the tools file declares the type (prim-
itive or not) of the attribute associated with each terminal
and each non-terminal.

For instance, following lines associate the type String

with the terminal identifier and the type int with non-
terminals ref and expr.

<terminal id="identifier" type="String"/>

<non-terminal id="ref" type="int"/>

<non-terminal id="expr" type="int"/>

This piece of information is used to generate automatically
a lexer listener. The listener receives, at creation time, an
object provided by the developer that computes the terminal
attribute value from the character sequence matched by the
rule. This object specify a particular semantics for terminal
attributes implementing the interface TerminalAttribute-

Evaluator that is generated by Tatoo. Hence, the semantics
can be modified without regenerating the lexer classes.

For our running example, tools generator produces the
interface below:

interface TerminalAttributeEvaluator {

void space(CharSequence seq);

String identifier(CharSequence seq);

}

Types of non-terminals and terminals are also used to
build a parser listener which performs semantic actions. Like
for the lexer listener, the developer has to provide, at cre-
ation time, an implementation of an interface called Grammar-

Evaluator generated by Tatoo. For all productions this im-
plementation constructs the attribute of the left hand side
non-terminal from attributes of the right hand side elements.
An implementation for the attribute stack and for shift han-
dling are provided to simplify this implementation.

Here again, since the semantic computations conform to
a predefined interface, changing the behavior of the parser

does not require to reprocess lexer and parser files. More-
over, different semantics may be attached to the very same
generated lexer and parser.

For example, using previous tools specification and a gram-
mar like the following:

<start id="expr"/>

<production id="p1">

<lhs id="expr"/>

<rhs>

<right id="expr"/>

<right id="plus"/>

<right id="expr"/>

</rhs>

</production>

<production id="p2">

<lhs id="expr"/>

<rhs><right id="ref"/></rhs>

</production>

<production id="p3">

<lhs id="ref"/>

<rhs>

<right id="excl_mark"/>

<right id="identifier"/>

</rhs>

</production>

the interface generated by tools generator is:

interface GrammarEvaluator {

int p1(int expr, int expr2);

int p2(int ref);

int p3(String indentifier);

void acceptExpr(int expr);

}

In this generated interface, there is one method for each
production. Each one is strongly typed according to types
associated with terminals and non-terminals in the tools file.
Moreover, one accept() method is generated for each ax-
iom non-terminal. Here, the only axiom specified for the
grammar is expr.

Finally, tools generator offers the possibility, if needed,
to produce a special semantic evaluator that performs the
construction of an abstract syntax tree. In this tree, each
node kind has a corresponding Java type. It allows efficient
traversal of the tree using the visitor design pattern (see
section 3.3.3).

2.3 Generation
Tatoo provides pluggable generators in order to build code

for any target language. The Tatoo engine builds all the
tables and maps needed to write the lexer, parser and tools
code

• the transition tables of each finite automaton;

• the action table for the parser (according to state and
lookahead);

• maps between various objects (versions and produc-
tions, rules and terminals...)

In order to generate class and interface files, these objects
are made available in the generator, for back-end extensions,
using a bus mechanism. The default Java back-end uses

15

Velocity [2], an Apache package that follows a model-view
approach to generate files. More precisely, the Velocity lan-
guage allows to specify template files used by the Velocity
engine that directly interacts with Java objects provided by
the Tatoo generator to produce output files.

2.4 Runtime

2.4.1 Memory allocation
One main concern about the runtime was to prevent the

parser and the lexer from creating any new object. Thus, all
memory required by the runtime is allocated when the lexer
and the parser are created. No more memory is allocated
during execution, except potential parser stack extensions.
This feature is important in order to allow to embed Tatoo
parsers in long-living applications such as web servers.

2.4.2 Lexer
The lexer is built on top of a buffer used to store available

characters from the input stream to be processed. When
new characters are made available in this buffer by an exter-
nal mechanism (such as a file reader or a network observer),
the step() method of the lexer may be called. Then, all
available characters in the buffer will be examined. For each
character, once all rules have been applied, the lexer verify
if a lexical unit has been completely recognized. When mul-
tiple rules match, the lexer uses the following priority: first
the longest match, and then the first one declared (this be-
havior conforms to Lex [12]). Each time a “winning” rule
is unambiguously found, the lexer listener’s only method,
ruleVerified(), is called with this rule and an object im-
plementing the interface TokenBuffer as arguments. The in-
terface TokenBuffer provided a method view() to access (as
a CharSequence) the recognized lexical unit and a method
discard() to indicate that recognized characters may be
pulled off the lexer input buffer (they are not discarded au-
tomatically).

2.4.3 Parser
Within the lexer listener generated by the tools genera-

tor, terminals are passed, when required, to the parser using
its method step(). This method performs all the actions it
can using this new input terminal (possibly some reduces
and one shift). Like for the lexer, a listener is attached to
the parser at creation time, and for each action, the lis-
tener is called in order to perform the semantic part. The
parser listener has three methods, one for each kind of ac-
tion: shift() which means a terminal is read; reduce()

which means a production is applied and its left hand side
replaces its right hand side; and accept() when the input
is accepted for a specific axiom. To trigger acceptance, one
has to call the close() method. It happens when the lexer
reaches an “end-of-file” condition.

All these gears are described in figure 1.
Together with these mechanisms, error recovery (see sec-

tion 3.3.2), selection of valid rules according to expected ter-
minals and support for language versions (see section 3.2.2)
are also available.

3. INNOVATIVE CONCERNS

3.1 Non blocking parsing

Figure 1: Lexer, parser and tools interactions

The primary goal of the development of Tatoo was to pro-
vide a parser generator compatible with non-blocking IO. In-
deed, popular existing parser generators only produce lexers
and parsers working with blocking API. These extract data
from the stream and wait until data is available. This be-
havior is known as pull parser (see figure 2) and calls to the
parser are blocking. This behavior is acceptable for parsers
since they usually work on files where blocking periods are
small, but this is not compatible with network streams where
waiting periods may be long. In order to support an efficient
parsing of network input streams Tatoo supports push lexers
and parsers.

Figure 2: Pull parsers and lexers

3.1.1 Push behavior
In the push behavior (see figure 3), the lexer and the

parser processes maintain a state. These processes are started
explicitly when data is available and stopped when no more
data remains in the input buffer which does not mean that
the end of the stream is reached. Indeed, data may ar-
rive later and thus the end of the stream has to be noti-
fied explicitly. Thus, the basic API of our push lexers and
parsers contains two methods: step() and close(). The
method step() is used to push characters or terminals and
the method close() indicates the end of the stream. A
method run() is provided for convenience to simulate pull
behavior. It just performs a read/step loop until the end of
the file is reached and then it closes the lexer that closes the
parser.

3.1.2 Common abstract buffer API

16

Figure 3: Push parsers and lexers

Lexers generated by Tatoo can run on several kinds of
buffer. Indeed, the lexer only requires four methods en-
capsulated in the interface ChararacterBuffer to be imple-
mented. These four methods are: next(), hasRemaining(),
unwind() and previousWasNewLine(). The first method
returns the next character in the buffer; the second tells
whether characters remain in the buffer; the third is used
by the lexer to indicate that a token is recognized and that
the lexing has to resume; the last one is used to select rules
that require to occur at the beginning of a line.

Tatoo runtime provides several wrappers implementing
this interface for Java NIO buffers, readers and input streams.

3.2 Language evolution
In order to follow language evolutions such as those of

Java, Tatoo introduces two special mechanisms. The first
one is called lookahead activator and it simplifies keyword
additions. The second, called grammar versioning, permits
to specify, in a single grammar, different language construc-
tions tagged with their version.

3.2.1 Lookahead activator
Like several other lexer generators such as Lex [12], the

lexer specification is composed of multiple rules and of an
activator to activate or deactivate these rules during analy-
sis. The activator is usually implemented by the developer
to implement start conditions in the lexer. In Tatoo, by
default, the tools generator implements a special activator
based on the terminals expected by the parser, known as
lookahead. More precisely, for each state of the push-down
automaton, the parser only provides the terminals that do
not cause syntax errors. These terminals are associated with
particular lexer rules that the generated activator retains,
deactivating other rules.

This feature allows first to speed up the lexing process
since usually only few terminals/rules are selected in each
parser state. Second, and more importantly, it allows to
minimize conflicts in existing source codes when a new key-
word is introduced in the language. Indeed, if the new key-
word only appears in a particular production of the gram-
mar, the lexing rules matching this keyword is not selected
in other productions, and the keyword can be recognized as
an identifier. For instance, the enum new keyword of Java
1.5 potentially conflicts with identifiers of previous versions.
However, since enum keyword is never acceptable where an
enum identifier is acceptable, a Java parser that uses the
lookahead activator could suppress such conflicts.

This approach suppresses parser process errors. Indeed,
the lexer never generates an unexpected terminal. Thus, it
disables the classical grammar-based error recovery mech-
anisms. This is why the Tatoo tools generator translates
lexing exceptions into parser errors, pushing a special error
terminal to the parser.

3.2.2 Grammar version
The parser file allows to associate a particular version with

each production and specify a single inheritance relation be-
tween these versions. The version hierarchy tree is specified
by declaring for each version an optional implied version.
The implication relation between versions is transitive. Each
production can only declare one version, but if this version
is implied by other versions, it is used by all these versions.

For instance, the following portion of parser file specifies
two different versions v1 and v2 linked by an implication
relation and two productions p1 and p2 with their respective
versions. Since, v1 is implied by v2, production p1 is active
for version v2.

<version id="v1"/>

<version id="v2" implies="v1"/>

<production id="p1" version="v1">

<lhs id="A"/><rhs><right id="a"/></rhs>

</production>

<production id="p2" version="v2">

<lhs id="A"/><rhs><right id="b"/></rhs>

</production>

Given a versioned parser specification, first, the parser
generator computes the push-down automaton according to
the grammar, using a bottom-up algorithm (SLR, LR(1) or
LALR(1)) taking into account neither versions nor priori-
ties. Afterwards, for each version, the Tatoo engine selects
transitions compatible with this version. More precisely, a
reduce transition is compatible with a version if the tar-
get production is active for the selected version. A shift
transition is compatible with a version if one of the kernel
items (productions) of its target state is active. Then, for
each version, the classical conflict resolver based on priority
and associativity determines the unique action to perform.
Lastly, in order to reduce action lookup and the size of the
table, if all versions lead to a same action, version informa-
tion are not saved in the table. Otherwise an action is saved
for each version using a composite action. The “real” ver-
sion, provided at runtime, allows to select the correct action
to perform. Figure 4 illustrates all these steps.

Figure 4: Parser table construction with versions

3.3 Other features
Even if non-blocking API and grammar evolution sup-

ports were primary goals for the development of Tatoo, gen-
erated analyzers also support several other interesting fea-
tures.

17

3.3.1 Charset selection
In order to support multiple charsets, Tatoo can rely on

the Java java.util.Reader mechanism. However, it is also
possible to encode, at generation, the lexer tables in the tar-
get charset of the input stream. This mechanism avoids un-
necessary decoding of characters at runtime. The drawbacks
of this approach are that lexer implementations is linked
with a particular charset and that interval specification in
regular expressions, such as [a-d], depends of the character
encoding. However, these intervals should only concern let-
ters or digits whose intervals do not depend on the charset.

Another optimization that depends on the charset is the
lexer implementation of rule automata. The classical imple-
mentation of transitions in these automata uses character
intervals since for unicode charset they cannot be imple-
mented directly using a character array. Two other imple-
mentations are provided. The first one uses arrays if the
charset is small enough. The second one uses a switch-case

implementation and is valuable if most transitions can be
implemented by the default case, which is often the case for
programming languages tokens.

3.3.2 Pluggable error recovery
As explained in section 3.2, only lexer errors may occur

during analysis, but these errors are forwarded to the parser
in order to trigger an error recovery mechanism. This mech-
anism is plugged into the parser, at creation time, by the de-
veloper. The default algorithm provided to the parser does
not perform any error recovery.

However, it is quite simple (even if less user-friendly than
for LL(k) parser) to develop an error recovery mechanism,
specific to a particular context, implementing the abstract
class ErrorRecoveryPolicy. Two main methods have to be
implemented: recoverOnError() and skipStep(). When
an error occurs, the method recoverOnError() is called
with the parser state in order to recover from the error.
Then, either the error is recoverable and parsing may con-
tinue, or parsing is aborted. Moreover, the method skipStep()

is called each time a terminal is pushed to the parser. It can
be used by the error recovery mechanism to indicate that
this terminal must be ignored; for instance to skip all ter-
minals until a semicolon is found.

We provide the implementation of two classical error re-
covery algorithms. The first one is described in [1] and used
by Yacc [9] and the second one is similar to the ANTLR [13]
error recovery algorithm.

Because these two algorithms can pop a state out of the
stack, the implementation uses a specific listener, Error-

RecoveryListener, in order to signal to the semantic part
that the error recovery mechanism has popped a state.

3.3.3 Generic AST construction
Abstract tree construction is an optional feature of the

tools generator that does not require extra specification.
The AST generator uses the tools file and it produces a
specific semantic evaluator linked with the parser.

Like in SableCC [5], types of nodes are directly deduced
from the grammar. Furthermore, these types accept visi-
tors [6] for semantic evaluations.

However, Tatoo generated types are particular since they
allow two views of the same node. For the first one, Tatoo
creates a specific set of classes and interfaces directly de-
duced from the grammar specification. This view is compa-

Figure 5: Example of AST type hierarchy

rable with the tree implementation produced by the JAXB [14]
approach for XML document. There is one interface for each
non-terminal and a concrete class for each production. The
right hand side of the production is implemented using at-
tributes. Their types are as precise as possible.

The second view allows a generic access to the tree com-
parable with the XML DOM [11] approach. Tree nodes
are viewed through the common interface Node. Its method
nodeList() returns the read-only list of its children and its
method getParent() returns its parent. The interface Node

is implemented by all specific classes generated by Tatoo
and a generic list of children is lazily generated from their
attribute list, on demand.

For instance, given the following grammar in BNF nota-
tion, the type hierarchy represented in figure 5 is generated
by Tatoo tools.

p1: expr ::= expr ’+’ expr

p2: expr ::= identifier

p3: identifier ::= ’!’ ’identifier’

Generated trees accept two kinds of visitor: a generic one
and a specific one that respectively correspond to the dif-
ferent views of the tree. Here is a simplified version of the
generic visitor NodeVisitor:

class NodeVisitor<R,P,D,E extends Throwable> {

R visit(Node node,P param) throws E {

throw new RuntimeException();

}

}

This visitor is parameterized by the signature of the method
visit() and only permits a simple traversal of the tree.

A strongly typed visitor of the generated type hierarchy is
also produced. It inherits from NodeVisitor and, by default,
its methods visit() delegate their implementation to a less
precise method according to the type hierarchy.

For instance, if we consider the previous grammar and the
type hierarchy of figure 5, the generator produces a visitor
that contains the following methods:

R visit(P1 p1, P param) throws E {

18

return visit((Expr)p1, param);

}

R visit(Expr e, P param) throws E {

return visit((Node) e, param);

}

This delegation model allows developers to implement gen-
eral behavior for some types and specific ones for others.
More precisely, they do not have to implement all methods
visit() if one of the super-type visitor captures all behav-
iors of its subtypes. For instance, if the behavior of the visit
is the same for nodes of types P1 and P2, the developer only
has to implement the method visit(Expr e,...).

3.3.4 Runtime lexer and parser
By default, the lexer and the parser are generated offline

by the Tatoo generators using XML specifications. How-
ever, it is possible to construct them entirely at runtime
specifying everything in Java. Indeed, XML specifications
are only available for convenience. Internally, rules or pro-
ductions are reified into Java objects that the developer may
construct directly.

For instance, the following portion of code creates a rule
with id value recognizing numbers using a rule factory. A
similar factory is also available for grammar dynamic spec-
ification.

RuleFactory rf = new RuleFactoryImpl();

Encoding charset = LexerType.unicode.getEncoding();

Map<String,Regex> map =

Collections.<String,Regex>emptyMap();

PatternRuleCompilerImpl ruleCompiler=

new PatternRuleCompilerImpl(map,charset);

ruleCompiler.createRule(rf,"value","[0-9]+");

Then, given the description of rules, it is possible to di-
rectly obtain a lexer without intermediate code generation.
However, lexer creation induces several costly computations
at runtime, such as automata minimization.

The following portion of code constructs a lexer given a
rule factory rf, a character buffer b and a lexer listener l.

SimpleLexer lexer =

RuntimeLexerFactory.createRuntimeLexer(rf,b,l);

The lexer constructed this way is then almost as efficient
as offline-constructed lexers.

4. RELATED WORKS
In this section, the overview of existing compiler gener-

ators is restricted to those written in Java and producing
Java implementations. Of course, many other tools exist for
other languages.

4.1 JavaCC
Developed by Sun Microsystems, Java Compiler Com-

piler [10] is a parser generator written in Java generating
top-down parsers.

JavaCC by default only works for LL(1) grammars and let
the user annotate the grammar with a specific k lookahead
to resolve ambiguities.

The semantic part of the parser is directly integrated in
the grammar specification. The actions are specified in Java
and some keywords allow to obtain parsing information. The

fact that grammar and semantic part are mixed in the same
file is error prone with large grammar and does not permit
to reuse the grammar without its semantics.

4.2 ANTLR
ANother Tool for Language Recognition [13] written by

Terence Parr, is a parser generator generating top-down
compilers from grammatical specifications with back-ends
in Java, C#, C++, or Python.

Like JavaCC, ANTLR is a LL(k) parser generator. The
grammar is augmented with actions specifying the semantics
of the compiler or translator. ANTLR provides a domain
specific language for tree construction, tree walking and tree
transformation.

4.3 JFLex/Cup
JFlex [7] and Cup [8] are ports of Lex and Yacc in Java.

JFlex is a lexer generator in Java that reuses the same regex
format than Lex on the unicode charset. Cup generates
bottom-up compilers from LALR(1) grammar using a syn-
tax similar to Yacc. Like JavaCC, it mixes the grammar
specification and the semantic actions specified in Java.

4.4 SableCC
Sable Compiler Compiler [5] was initially written by Eti-

enne Gagnon during its master thesis. It generates a bottom-
up compiler from a LALR(1) grammar. However, it does not
allow to resolve conflicts with associativity and priorities.

SableCC does not permit to specify semantics in the gram-
mar but it generates an AST letting the developer rely on
visitors to express the semantics. Thus it provides a clean
separation between grammar specification and semantics.
However, even if the generated AST is tweakable there is
no way to generate a specifc tree without creating another
AST.

4.5 Beaver
Beaver [3] is an LALR(1) parser generator that claims to

generate fast compilers.
Like Tatoo, beaver generates only a parser table and re-

lies on a runtime parser. Furthermore the table contains
actions to perform using late-binding call that frequently
outperform the traditional switch implementation.

5. CONCLUSION
In this paper we have presented Tatoo a new compiler

generator written in Java which main innovative features
are:

• push lexing and parsing in order to support non block-
ing IO;

• support for grammar evolutions.

Tatoo has been used this year for compilation courses. Dur-
ing these courses, students have implemented a compiler for
a simple language that produces Java bytecode. We did
not encounter special difficulties induces by Tatoo’s specific
architecture compared with SableCC used previous years.
However, we still have to implement a parser for a real lan-
guage such as Java or C and to perform benchmarks to prove
usefulness of Tatoo features.

In order to enhance Tatoo usability, we plan to support
complete EBNF specification. Second, we also want to add

19

automatic documentation comparable to Javadoc in input
specifications. Finally, other language back-ends, such as
C++ and C#, will be added.

The latest stable version of Tatoo is freely available on the
Web and can be downloaded from http://tatoo.univ-mlv.fr/ .

6. REFERENCES
[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers:

Principles, Techniques and Tools. Addison-Wesley,
1986.

[2] Apache Software Foundation. Velocity 1.4 User Guide.
http://jakarta.apache.org/velocity/ , Jan. 2006.

[3] A. Demenchuk. Beaver - a LALR parser generator.
http://beaver.sourceforge.net/index.html , 2006.

[4] J. E. F. Friedl. Mastering Regular Expressions.
O’Reilly, 2nd edition, July 2002.

[5] E. M. Gagnon and L. J. Hendren. SableCC, an
object-oriented compiler framework. In Technology of

Object-Oriented Languages and Systems, pages
140–154. IEEE Computer Society, 1998.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley, 1995.

[7] K. Gerwin. JFlex User’s Manual, July 2005.

[8] S. E. Hudson. CUP User’s Manual. Usability Center,
Georgia Institute of Technology, July 1999.

[9] S. C. Johnson. Yacc: Yet Another Compiler Compiler,
1979.

[10] V. Kodaganallur. Incorporating language processing
into java applications: A JavaCC tutorial. IEEE

Software, 21(4):70–77, Aug. 2004.

[11] A. Le Hors and P. Le Hégaret. Document object
model level 3 core. http://www.w3.org/DOM/DOMTR ,
Apr. 2004.

[12] M. E. Lesk and E. Schmidt. Lex - a lexical analyzer
generator. Technical Report 39, Bell Laboratories,
July 1975.

[13] T. J. Parr and R. W. Quong. ANTLR: A
predicated-LL(k) parser generator. Software Practice

and Experience, 25(7):789–810, 1995.

[14] Sun Microsystems Inc. Java(TM) architecture for
XML binding specification.
http://java.sun.com/xml/downloads/jaxb.html ,
Jan. 2003.

20

Session B
Program and Performance Analysis

21

22

Cost and Benefit of Rigorous Decoupling
with Context-Specific Interfaces

 Florian Forster
University of Hagen
Universitätsstraße
D-58097 Hagen

+49 (0) 2331 987-4290

florian.forster@fernuni-hagen.de

ABSTRACT
In Java programs, classes are coupled to each other through the
use of typed references. In order to minimize coupling without
changing the executed code, interfaces can be introduced for
every declaration element such that each interface contains only
those members that are actually needed from the objects
referenced by that element. While these interfaces can be
automatically computed using type inference, concerns have been
raised that rigorous application of this principle would increase
the number of types in a program to levels beyond manageability.
It should be clear that decoupling is required only in selected
places and no one would seriously introduce a minimal interface
for every declaration element in a program. Nevertheless we have
investigated the actual cost of so doing (counted as the number of
new types required) by applying rigorous decoupling to a number
of open source Java projects, and contrasted it with the benefit,
measured in terms of reduced overall coupling. Our results
suggest that (a) fewer new interfaces are needed than one might
believe and (b) that a small number of new interfaces accounts for
a large number of declaration elements. Particularly the latter
means that automated derivation of decoupling interfaces may at
times be useful, if the number of new interfaces is limited a priori
to the popular ones.

Categories and Subject Descriptors
D.2.2 [Design Tools and Techniques]: Modules and interfaces

General Terms
Design

Keywords
The Java Language::Java-specific metrics
The Java Language::Optimization
Software Engineering with Java::Tools for Java Programming

1. INTRODUCTION
Interface-based programming as described in [1] is accepted as a
useful object-oriented programming technique. According to it,

references in a program should be declared with interfaces and not
classes as their types. Two main benefits can be expected from
this: First, flexibility is increased as classes implementing an
interface can be exchanged without notification of the client using
the classes' services via the interface. Second, the access to the
class is restricted to the methods declared in the interface typing a
variable which holds a reference to an instance of the class. While
these interfaces can be automatically computed using type
inference, concerns have been raised that rigorous application of
this principle would increase the number of types in a program to
levels beyond manageability

Nevertheless we have investigated the actual cost of so doing
(counted as the number of new types required) by applying
rigorous decoupling to a number of open source Java projects, and
contrasted it with the benefit, measured in terms of reduced
overall coupling.

The rest of the paper is organized as follows. In section 2 we will
briefly introduce the refactoring and the metrics used in this
paper, which already have been described in [10]. In section 3.1
we introduce our test suite, which consists of six open source
projects. Afterward, we outline the initial situation before the
refactoring using various metrics in section 3.2. The same metrics
are applied on the projects after the refactoring in section 3.3. In
section 3.4 we discuss the costs of the refactoring in terms of new
types required in contrast to the reduced overall coupling. In
section 3.5 we present additional insights gained during the
investigation of our test suite. Section 4 recapitulates our results;
section 5 concludes and provides pointers to future work.

2. THE REFACTORING
2.1 Measuring Coupling
Typing rules in Java enforce the type of a declaration element to
offer at least the set of methods invoked on that declaration
element. Coupling between classes increases to levels beyond
what is necessary, when a declaration element is declared with a
type offering more methods than actually needed by this
declaration element. In the following we use the goal question
metric approach to derive a suitable metric measuring unnecessary
coupling.

The methods publicly available for a type T are a subset of all the
methods declared in T or one of its supertypes1. Let µ(T) be the
set of methods declared in a type T. Then we declare

1 In Java we do not count the methods inherited from Object.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
PPPJ 2006, August 30 – September 1, 2006, Mannheim, Germany.
Copyright 2006 ACM 1-58113-000-0/00/0004…$5.00.

23

}|)({:)(methodnonstaticpublicaismTmT µπ ∈=

as the set of methods offered by a type T to all declaration element
typed with T.

In strongly typed languages like Java, each declaration element
has a declared type. Besides its declared type, each declaration
element also has an inferred type. Here, we define the inferred
type of a declaration element d as the type I whose set of publicly
available methods π(I) is the smallest set containing all methods
directly accessed on d, united with the sets of methods accessed
on all declaration elements d possibly gets assigned to. We define
π(I) as a function of d, ι(d), which can be computed by analyzing
the source code using Static Class Hierarchy Analysis as
described in [9]. We call this inferred type I a context-specific
interface or minimal interface for d and ι(d) the access set of d.

In order to reduce unnecessary coupling between classes we have
to redeclare every declaration element d with the type I so that
π(I)=ι(d), i.e. the new declared type of d offers only those
methods which are actually invoked on d or one of the declaration
elements d possibly gets assigned to. According to the goal
question metric approach described in [14] we can define a metric
for coupling. Our question is how much unnecessary coupling is
introduced to a type T by means of a declaration element d, and
our goal is to reduce this unnecessary coupling. We therefore
define the coupling induced by a declaration element d as the
quotient of the number of methods needed from d, and the number
of methods provided by its declared type T:

|)(|

|)(|

T

d

π
ι

A value of 1 indicates that d is declared with the least specific
(most general or minimal in the sense that it has as few members
as possible) type T, i.e. the type offering only those methods
actually needed, whereas one of 0 implies that none of T’s
methods are used.

Obviously 1 – the quotient is a measure of the possible reduction
of the unnecessary coupling established by the declaration
element d, if d is redeclared with a type I so that π(I)=ι(d). We
have called this metric the Actual Context Distance (ACD) [10]
for a declaration element d with type T and write

|)(|
|)(||)(|

),(
T

dT
TdACD

π
ιπ −=

The Best Context Distance (BCD) for a declaration element d is
then the lowest value of ACD achievable by redeclaring d with a
type T which is already available in the project. It is a measure for
the maximum decoupling that can be achieved by using only
existing types.

We define ACD and BCD for a type T as the average ACD and
BCD of all declaration elements typed with T. The ACD and BCD
for a project is the weighted average, the weight of a type T being
the number of declaration elements typed with T, of the ACD and
BCD for each type of the project.

2.2 Refactoring for interface-based
programming
In order to improve decoupling to the maximum, we can use the
refactoring described in [10]. It reduces ACD(d,T) to zero for
every declaration element d in a project. This is done by either

Table 1: Use of interfaces and decoupling quality in six open source projects before the refactoring

Project: JChessBoard JUnit Mars GoGrinder DrawSWF JHotDraw

Types 49 (100%) 73 (100%) 103 (100%) 118 (100%) 346 (100%) 395 (100%)

 Classes 32 (65%) 48 (66%) 77 (75%) 95 (80%) 282 (82%) 301 (76%)

 Interfaces 17 (35%) 25 (34%) 26 (25%) 23 (20%) 64 (18%) 94 (24%)

 Ratio 1:0,53 1:0,52 1:0,34 1:0,24 1:0,23 1:0,31

Declaration Elements 190 166 278 468 1361 1801

 Class typed 190 71 244 450 1109 395

 Interface typed 0 95 34 18 252 1406

 Ratio - 1:1,338 1:0,139 1:0,040 1:0,227 1:3,560

ACD

 Average 0,365 0,216 0,447 0,567 0,416 0,142

 Highest 0,813 0,997 1 0,998 1 1

 Lowest 0 0 0 0 0 0

BCD

 Average 0,341 0,211 0,336 0,484 0,351 0,100

 Highest 0,813 0,992 0,961 0,998 0,996 0,998

 Lowest 0 0 0 0 0 0

ACD-BCD

 Average 0,024 0,005 0,110 0,084 0,065 0,041

 Highest 0,222 0,326 1 0,795 1 1

 Lowest 0 0 0 0 0 0

24

a) using an existing, better suited interface I for d with π(I)=ι(d),
or by

b) introducing a new interface I for d tailored to fulfill π(I)=ι(d)

for the redeclaration of d so that ACD(d,I)=0.

For the purpose of redeclaring d with its least specific type I, no
matter if this type already exists or is newly introduced, the type
inference algorithm we use has to consider three cases.

First if the declared type T of a declaration element d is already
minimal, i.e. π(T)=ι(d), no changes to the program are necessary.

If however |π(T)|>|ι(d)|, i.e. d’s declared type is not minimal, and d
terminates an assignment chain, i.e. d is not assigned to any other
declaration element, all we have to do is declare d’s minimal type
I, i.e. π(I)=ι(d), as a supertype of T and redeclare d with I.

Finally d’s declared type might neither be minimal nor terminate
an assignment chain. To illustrate this case we use a primitive
scenario with two declaration elements A a and B b and the
assignment b=a.

Assuming that the program at hand is type correct and using the
rules for typing in Java we know that the type B is the same type
as A or a supertype of A. Computing ι(a) gives us the new type I
for the declaration element a. Unfortunately redeclaring a with I
results in a program which is not type correct, as the assignment
of a to b, i.e. b=a for I a and B b, is undefined in Java, if I is not a
subtype of B .

To solve this issue we can simply declare I as a subtype of B. This
makes the program type correct as A is a subtype of or equal to B
and I is a subtype of or equal to A. However introducing this
relationship might renders I not to be a minimal type for a as it
might add unwanted methods to I coming from B, i.e. π(B) - π(I)
is not empty.

As the introduction of this relationship might result in unwanted
methods added to I, we redeclare the declaration element b with
some type J, so that J is a supertype of I, to make the program
type correct again.

In case J is a real supertype of I, i.e. π(J) ⊂ π(I), we have to make
sure that J is declared as a supertype of I. Furthermore in order to
keep other assignments to b correct we have to make sure that J is
declared as a supertype of B.

2.3 Limitations of the Refactoring for Java
The implementation of the refactoring described in the last section
has a few limitations due to Java’s type system. If fields of a class
are directly accessed using a declaration element, i.e. without
using accessor methods, this declaration element can not be
redeclared with an interface. Even though one could define an
abstract class for the purpose of redeclaration we do not do so, as
multiple inheritance is not possible in Java. Therefore this
workaround would work only in a limit number of cases.
Furthermore redeclaration of a declaration element with an
interface is also not possible if nonpublic methods are accessed on
the declaration element. Thus we excluded these declaration
elements from our investigation as they can not be redeclared, i.e.
unnecessary coupling does not exist.

The second limitation are empty interfaces. Declaration elements
with empty access sets might be redeclared with empty interfaces
as they are an ideal type. However empty interfaces, so called
tagging interfaces or marker interfaces, are used in instanceof
boolean expressions in Java. Typing a declaration element with an
empty interface might therefore lead to circumstances, in which
the boolean expression evaluates to true after the redeclaration. To
avoid these cases we rather redeclare declaration elements with
empty access sets with the root of the type hierarchy, i.e. Object in
Java. As only the number of declaration elements typed with types
defined within the project is considered for the metrics, the
declaration elements retyped with Object disappear. This is
justified by the fact that every declaration element which is typed
with Object has no influence on the coupling as a “coupling” with
Object always exists due to the nature of Java, i.e. every type is
subtype of Object.

Furthermore interfaces already existing in a project might become
superfluous after the refactoring, i.e. no declaration elements are
typed with these interfaces. However, even though we could, we
do not delete these interfaces!

In the remainder of this paper we will use InferType on a number
of open source projects, so that we can evaluate both the costs, in
terms of newly introduced types, and the benefits, in terms of
improved decoupling, of rigorous decoupling.

Table 2: Use of interfaces and decoupling quality in six open source projects after the refactoring

Project: JChessBoard JUnit Mars GoGrinder DrawSWF JHotDraw

Types 92 (100%) 110 (100%) 190 (100%) 260 (100%) 599 (100%) 709 (100%)

 Classes 32 (35%) 48 (43%) 77 (41%) 95 (37%) 282 (47%) 301 (42%)

 Interfaces 60 (65%) 63 (57%) 113 (59%) 165 (63%) 317 (53%) 418 (58%)

 Ratio 1:1,88 1:1,31 1:1,47 1:1,74 1:1,13 1:1,39

Declaration Elements 177 124 267 447 1241 1655

 Class typed 103 34 81 121 404 81

 Interface typed 74 90 186 326 837 1574

 Ratio 1:0,71 1:2,64 1:2,30 1:2,69 1:2,07 1:19,43

Declaration Elements per type 1,92 1,12 1,41 1,72 2,07 2,33

25

2.4 Implementation of the Refactoring
The refactoring described in [10] was implemented and called
InferType2. The algorithm used for applying the refactoring to a
complete project is outlined below:

changes=false
do
 foreach type in project
 DEs:=getDeclarationElements(type)
 foreach DE in DEs
 refactor(DE)
 if(hasChanged(project))
 changes=true
 endif
 endfor
 endfor
while(changes)

For each type in the project we iterate over all the declaration
elements declared with this type. We then apply the refactoring
described in section 2.2 to each of these declaration elements. If
there was a change, i.e. a new type was introduced to the project
during the refactoring of a declaration element; we repeat the
process until no more changes happen. After using this algorithm
on a project every declaration element in this project is typed with
a minimal type, i.e. ACD(d,T) is always zero.

3. ANALYISING RIGOROUS
DECOUPLING WITH CONTEXT-
SPECIFIC INTERFACES
3.1 Introducing the Test Suite
To evaluate the costs and benefits of rigorous decoupling using
minimal interfaces we investigated six picked open source
projects. We created a balanced test suite using popular Java
projects3 which span a number of domains.

2 Available at http://www.fernuni-hagen.de/ps/docs/InferType/.
3 We used the popularity rating provided at

http://www.freshmeat.net.

JChessBoard [2] is a chess game capable using a regular TCP/IP
connection to play against human opponents. Furthermore it is
capable of editing and viewing the PGN4 format.

JUnit [3] is a popular framework for unit testing in the Java
programming language.

Mars [4] is a simple, extensible, services-oriented network status
monitor written in Java.

GoGrinder [5] is a Java program for practicing Go problems
using the SGF5 format to load these problems.

DrawSWF [6] is a simple drawing application written in Java.
The drawings created can be exported as an animated SWF
(Macromedia Flash) file.

JHotDraw [7] is a well-known framework for developing two-
dimensional structured drawing editors.

These projects have been completely refactored using InferType.
Table 1 presents metrics regarding the size of the projects and
decoupling before the refactoring occurs. We will discuss these
results in detail in the next subsections.

3.2 Before the Refactoring
3.2.1 General Observations
In every project we found that there exist more classes than
interfaces. Values range from about two classes per interface to
about five classes per interface. We expect that after the
refactoring the numbers are in favor of the interfaces, i.e. there are
more interfaces than classes in each project.

Table 1 also reveals that there are developers, or project teams,
which use interfaces for typing declaration elements, and those
who don’t. In particular in JUnit and JHotDraw more declaration
elements are typed with interfaces than with classes. Contrary to
these two projects a much smaller number of declaration elements
are typed with interfaces in Mars, GoGrinder and DrawSWF.
Even worse in JChessBoard there is not a single declaration
element typed with an interface.

4 PGN stands for "Portable Game Notation", a standard designed

for the representation of chess game data using ASCII text files.
5 SGF is the abbreviation of 'Smart Game Format'. The file format

is designed to store game records of board games for two
players.

Table 3: Comparison of the situation before and after the refactoring

Project: JChessBoard JUnit Mars GoGrinder DrawSWF JHotDraw

∆Types +43 / +88% +37 / +50% +87 / +85% +142 / +105% +253 / +73% +314 / +80%

 ∆Interfaces +43 / -- +37 / +37% +87 / +335% +142 / +617% +253 / +395% +314 / +343%

∆Declaration Elements -13 / -7% -42 / -25% -11 / -4% -21 / -5% -120 / -8% -146 / -8%

 ∆Class typed -87 / -46 % -37 / -52% -163 / -66% -329 / -73% -705 / -64% -314 / -80%

 ∆Interface typed +74 / +∞ % -5 / -5% + 152 /
+447%

+308 / +1711% +585 / +232% +168 / +12%

∆ACD average -0,365 -0,216 -0,447 -0,567 -0,416 -0,142

ACD average per new type -0,0084 -0,0057 -0,0051 -0,0040 -0,0016 -0,0004

26

As could be expected given the large number of available
interfaces ACD values for both JUnit and JHotDraw are low. For
example in JHotDraw a declaration element on average does not
use 10% of the available methods, whereas a declaration element
in GoGrinder on average does not use 57% of the available
methods.

However, BCD values indicate that decoupling in all projects
could be improved using only existing types. Nevertheless these
improvements are small and therefore we conclude that
developers already make good use of existing types for typing
declaration elements.

3.2.2 The Projects in Detail
JChessBoard was the smallest project in our test suite. Even
though half of the used types in these projects are interfaces, not a
single declaration element is typed with an interface. This is due
to the fact that JChessBoard extends classes from the JDK. These
classes therefore contain methods from the JDK classes for which
the formal parameters are typed with interfaces. Due to Java’s
typing rules the classes in JChessBoard have to implement these
interfaces to make use of the inherited methods. Additionally 149
out of 190 declaration elements are typed with one out of five
types from the total number of 49 available types. We expect that
the benefit of refactoring in relation to the number of newly
introduced types is biggest for this project.

JUnit is one of two projects in our test suite in which more
declaration elements are typed with an interface than with a class.
In JUnit the difference of the average ACD and the average BCD
is significantly low, i.e. JUnit’s declaration elements are mostly
typed with the best fitting type existing in the project.
Furthermore the interface junit.framework.Test is used to type 68
out of 166 declaration elements. We expect that most of these
declaration elements will be retyped with new interfaces, i.e. we
expect that junit.framework.Test offers more methods than needed
for most declaration elements.

Mars is the counterpart to JUnit regarding the usage of existing
types. Redeclaration of every declaration element with existing
types would already reduce the ACD value by 0,11. Notably,
similar to JChessBoard, five out of 103 types account for 143 out
of 278 declaration elements.

GoGrinder is similar to JChessBoard in terms of typing
declaration elements with interfaces. Only 4% of all declaration
elements in this project are typed with interfaces. Furthermore it
has the highest average ACD value of all projects. We expect that
some types, most likely the ones with a high ACD value, will
trigger the creation of many new interfaces.

DrawSWF has the lowest class-to-interface ratio of all projects.
There are approximately five times as many classes as interfaces
used in this project. Furthermore half of the declaration elements
were typed with 7% of the existing types.

JHotDraw is outstanding in two ways. First it is the project
which makes most use of interfaces for typing declaration
elements. Second both the average ACD value and the average
BCD value are the lowest in our test suite, i.e. there is little
coupling existing in this project and most times the best fitting
and existing type is used to type a declaration element.

3.3 After the Refactoring
3.3.1 General Observations
Table 2 shows the same metrics as Table 1, but this time after
using InferType on the projects. Note that we omitted all ACD
and BCD values as the very purpose of the refactoring is making
these values zero, in which it succeeded.

However, it is surprising that less new interfaces were introduced
to the projects than one might fear. The worst case, i.e. one new
interface for every existing declaration element, never occurred.
Actually all projects were not even close to the worst case as the
last row in Table 2 shows. This is an indication that at least some
declaration elements are using the same access set and could
therefore be declared with the same type. Nevertheless there are
many newly introduced interfaces which are unpopular, i.e. there
are only few declaration elements typed with these interfaces.
Figures 1 to 8 in the appendix show the popularity, in terms of
declaration elements typed with a particular interface, of each
interface for every project.

Yet, not every declaration element is declared with an interface as
its type. Except the two extremes JChessBoard and JHotDraw
around two or three times as many declaration elements are typed
with interfaces as with classes.

A comparison of the situation before and after the refactoring is
show in Table 3. In the next section we will present more detailed
information about the changes which occurred during the
refactoring.

3.3.2 The Projects in Detail
JChessBoard profited the most from the refactoring which is not
astonishing, because it was using no interface at all for typing
declaration elements. About half of the declaration elements are
retyped with interfaces during the refactoring. From 149
declaration elements declared with one out of five types only 73
declaration elements where still typed with these types after the
refactoring. In particular all declaration elements formally typed
with the inner class STR from jchessboard.PGN are now typed
with an interface.

JUnit offered a little surprise as after the refactoring less
declaration elements were typed with interfaces than before the
refactoring. This is due to the fact that declaration elements
formerly typed with an interface are now typed with Object, as the
access set of these declaration elements was empty. To be precise,
42 out of 68 declaration elements of the interface
junit.framework.Test are now typed with Object.

Mars had a similar starting position as JChessBoard. In both
projects a small number of types have been used to type an
overwhelming part of the existing declaration elements. Hence
both projects behaved similar during the refactoring. Like in
JChessBoard, from 143 declaration elements typed with one out
of five types from all available types only 46 of them were still
typed with these types after the refactoring. In particular from the
34 declaration elements typed with the clas org.altara.mars.Status
only one was still typed with this class after the refactoring.

GoGrinder was the second worst project -JChessBoard being the
worst- in terms of using interfaces for typing declaration elements.
Furthermore it had the highest average ACD value of all projects,
i.e. a declaration element in GoGrinder on average did not use
57% of the available methods, and we expected that some types

27

will trigger the creation of many new interfaces. For example
GoGrinder.ProbCollection, the most popular type before the
refactoring, triggered the creation of 19 new interfaces for
redeclaring the declaration elements formally typed with
GoGrinder.ProbCollection.

DrawSWF had the lowest class-to-interface ratio before the
refactoring and after the refactoring not much changed. It is
interesting to note that one of the newly introduced interfaces is
more popular than any interface or class before the refactoring6.
This leads to the conclusion that this new interface is used to
redeclare declaration elements from various types, a strong
indication that an unwanted structural match occurred. This leads
to circumstances in which two declaration elements are
considered in terms of types, and therefore the methods which can
be accessed, even though one of the objects is not. Thus even the
program is type correct; semantics of the program might have
changed. Furthermore 158 of the 253 newly introduced interfaces
were so specific that each of them was used to retype only one
declaration.

JHotDraw was the project which made the heaviest use of
interfaces for typing declaration elements. Furthermore the ACD
values were small throughout, i.e. the amount of unused methods
was relatively small. Thus newly introduced interfaces are very
specific. As a matter of fact, 164 out of 324 newly introduced
interfaces were used to redeclare just one declaration element.

3.4 Costs of Rigorous Decoupling
About twice as many types exist after the refactoring than before
refactoring in every project. Even though the introduction of
additional types is necessary for removing unnecessary
decoupling every additional type makes the type hierarchy harder
to understand and maintain. For example the class
GoGrinder.ProbCollection in the project GoGrinder implements
as many as seventeen interfaces after the refactoring. Therefore to
evaluate the refactoring we use the number of newly introduced
types as the cost for the refactoring.

Table 3 shows the average reduction of the ACD value in relation
to the number of new types introduced, i.e. the higher the value
the better. We will use this number as our cost/benefit ratio as the
number of new types is our cost of the refactoring, and the
average reduction of the ACD value is the benefit of the
refactoring.

The low number for JHotDraw is eye-catching but not surprising,
as this project already used more interfaces for typing declaration
elements than classes before the refactoring. As mentioned in the
last section about half of the new interfaces were so specific that
they were used to type just one declaration element each.

The cost/benefit ratio for DrawSWF is similar to the one of
JHotDraw. This is due to the fact that during the refactoring many
very specific interfaces have been introduced to this.

In the remaining four projects the newly introduced interfaces
were not as specific as in the above mentioned projects. This
circumstance is reflected in the higher values of the cost/benefit
ratio. Still a big part of the newly introduced interfaces was so

6 Unfortunately we have to omit the data which provided this

insight due to its length.

specific that only few declaration elements could be redeclared
with these interfaces. Figures 1 to 8 in the appendix show the
popularity of the newly introduced types for a project. It is eye-
catching that all projects have a few popular and many unpopular
types.

3.5 Popular Types
Therefore the most interesting insight we gained after refactoring
for each project is that popular access sets, which lead to popular
interfaces during the refactoring, exist in every project. Figures 1
to 8 in the appendix show the popularity of each inferred
interface. The popularity of an interface is defined as the number
of declaration elements (the y-axis in the figures) declared with
this interface.

All the diagrams in Figures 1 to 8 suggest a pareto distribution
[13]. As a matter of fact the distribution of declaration elements
among the types approximately follows the 80/20 rule, i.e. 80% of
all declaration elements are typed with 20% of the available types,
whereas the remaining 20% of all declaration elements are typed
with 80% of the available types. Unfortunately most areas in
which such a distribution occurs suffer from the so called long
tail. In our case the long tail are all those types which are used
only by a few declaration elements.

The results JHotDraw provides strong evidence that the
cost/benefit ration also suffers from this distribution and that
popular interfaces should be preferred. The average ACD value of
this project was already low before the refactoring, i.e. the
declared types provided a good decoupling. The refactoring
introduced many unpopular types which were used to retype just
one declaration element. This consequently led to the worst
cost/benefit ratio. We therefore conclude that using only the most
popular types, i.e. the 20% which are used by 80% of the retyped
declaration elements, instead of using minimal interfaces
everywhere results in a better cost/benefit ratio in terms of average
ACD decrease per type.

In [11] we presented a metric, a tool and a guideline for finding
popular access sets for a specific type. Using the refactoring
however explicitly declares interfaces for all popular access sets in
a project. These popular interfaces can be introduced to the
original version of the project to reduce the ACD value, yet
keeping the number of new types limited.

4. LESSONS LEARNED
In [12] the author noted that interfaces represent the roles a class
plays and vice versa. However using an automatic refactoring to
introduce minimal interfaces for every declaration element
violates this principle. For example all declaration elements typed
with junit.framework.Test in JUnit obviously play a specific role
which is designated by the name of the interface. After redeclaring
these declaration elements with Object no indication to a role is
left. In section 3.5 we have shown that popular types exist in
every project after the refactoring. [11] has shown that in many
cases a role can be found for these popular types.

Rigorous decoupling comes with a high cost as shown in section
3.4. In section 3.5 we argued that introducing only popular
interfaces might significantly reduce coupling, yet keeping the
number of new types small.

Finally the results from section 3.2 indicate that finding the best
fitting and existing type in a project for typing a declaration

28

element is not a problem. The difference of ACD and BCD value
was low amongst all projects. This might be due to the fact that
refactorings in prominent IDEs like Eclipse and IntelliJ exist
which help the developer to find the best fitting type among all
existing.

5. FUTURE WORK AND CONCLUSION
We have used an existing refactoring to evaluate both cost and
benefit of the most rigorous decoupling as made possible by
introducing context-specific types. Our results provide evidence
that -as would be expected- rigorous decoupling is not a good
idea. Too many unpopular interfaces are introduced during the
refactoring. The data we have shown indicate that the best trade-
off between decoupling and number of types is to introduce only
the most popular interfaces for classes. We will have to adjust our
refactoring and present data which either confirms or disproves
our assumption.

6. ACKNOWLEDGMENTS
The author thanks Andreas Meißner and Phillip Mayer for
implementing most of the described refactoring.

7. REFERENCES
[1] Löwy, J. Programming .NET Components, O’Reilly Media,

2005.

[2] JChessBoard is available from
http://jchessboard.sourceforge.net

[3] JUnit is available from http://www.junit.org.

[4] Mars is available from http://leapfrog-mars.sourceforge.net/.

[5] GoGrinder is available from
http://gogrinder.sourceforge.net/.

[6] DrawSWF is available from http://drawswf.sourceforge.net/.

[7] JHotDraw is available from http://www.jhotdraw.org/.

[8] Gamma, E. et al., Design Patterns, Addison-Wesley
Professional, 1997.

[9] Dean, J. , Grove, D. and Chambers, C., Optimization of
object-oriented programs using static class hierarchy
analysis, In: Proc of ECOOOP, 1995, 77-101.

[10] Steimann, F., Mayer, P. and Meißner, A., Decoupling classes
with inferred interfaces, In: Proceedings of the 2006 ACM
Symposium on Applied Computing, (SAC) (ACM 2006).

[11] Forster, F., Mining Interfaces In Java Programs, Technical
Report, Fernuniversität Hagen, 2006.

[12] Steimann, F., Role = Interface: a merger of concepts,
Journal of Object-Oriented Programming 14:4, 2001, 23–32.

[13] Pareto Distribution,
http://en.wikipedia.org/wiki/Pareto_distribution, last visit
27.05.2006

[14] Basili, V.R., Caldiera, G. and Rombach, D., The goal
question metric approach, In: Encyclopedia of Software
Engineering, (John Wiley & Sons, 1994).

29

Appendix A

0

1

2

3

4

5

6

7

8

9

10

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43

Figure 1: Popularity of new interfaces in JChessBoard

0

10

20

30

40

50

60

70

1 15 29 43 57 71 85 99 113 127 141 155 169 183 197 211 225 239 253

Figure 2: Popularity of new interfaces in DrawSWF

0

2

4

6

8

10

12

14

16

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106 113 120 127 134 141

Figure 3: Popularity of new interfaces in GoGrinder

0

20

40

60

80

100

120

140

160

180

1 18 35 52 69 86 103 120 137 154 171 188 205 222 239 256 273 290 307

Figure 4: Interface Popularity of JHotDraw

0

2

4

6

8

10

12

14

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37

Figure 5: Interface Popularity of JUnit

0

2

4

6

8

10

12

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85

Figure 6: Interface Popularity of Mars

30

Dynamic Analysis of Program Concepts in Java

Jeremy Singer
School of Computer Science
University of Manchester, UK

jsinger@cs.man.ac.uk

Chris Kirkham
School of Computer Science
University of Manchester, UK

chris@cs.man.ac.uk

ABSTRACT
Concept assignment identifies units of source code that are
functionally related, even if this is not apparent from a syn-
tactic point of view. Until now, the results of concept as-
signment have only been used for static analysis, mostly of
program source code. This paper investigates the possibil-
ity of using concept information as part of dynamic analy-
sis of programs. There are two case studies involving (i) a
small Java program used in a previous research study; (ii) a
large Java virtual machine (the popular Jikes RVM system).
These studies demonstrate the usefulness of concept infor-
mation for dynamic approaches to profiling, debugging and
comprehension. This paper also introduces the new idea of
feedback-directed concept assignment.

1. INTRODUCTION
This paper fuses together ideas from program comprehen-
sion (concepts and visualization) with program compilation
(dynamic analysis). The aim is to provide techniques to
visualize Java program execution traces in a user-friendly
manner, at a higher level of abstraction than current tools
support. These techniques should enable more effective pro-
gram comprehension, profiling and debugging.

1.1 Concepts
Program concepts are a means of high-level program com-
prehension. Biggerstaff et al [4] define a concept as ‘an ex-
pression of computational intent in human-oriented terms,
involving a rich context of knowledge about the world.’ They
argue that a programmer must have some knowledge of
program concepts (some informal intuition about the pro-
gram’s operation) in order to manipulate that program in
any meaningful fashion. Concepts attempt to encapsulate
original design intention, which may be obscured by the syn-
tax of the programming language in which the system is im-
plemented. Concept selection identifies how many orthog-
onal intentions the programmer has expressed in the pro-
gram. Concept assignment infers the programmer’s inten-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPPJ 2006, August 30 – September 1, 2006, Mannheim, Germany.
Copyright 2006 ACM ...$5.00

tions from the program source code. As a simple example,
concept assignment would relate the human-oriented con-
cept buyATrainTicket with the low-level implementation-
oriented artefacts:

{ queue();

requestTicket(destination);

pay(fare);

takeTicket();

sayThankYou();

}

Often, human-oriented concepts are expressed using UML
diagrams or other high-level specification schemes, which are
far removed from the typical programming language sphere
of discourse. In contrast, implementation-oriented artefacts
are expressed directly in terms of source code features, such
as variables and method calls.

Concept assignment is a form of reverse engineering. In
effect, it attempts to work backward from source code to
recover the ‘concepts’ that the original programmers were
thinking about as they wrote each part of the program. This
conceptual pattern matching assists maintainers to search
existing source code for program fragments that implement
a concept from the application. This is useful for program
comprehension, refactoring, and post-deployment extension.

Generally, each individual source code entity implements a
single concept. The granularity of concepts may be as small
as per-token or per-line; or as large as per-block, per-method
or per-class. Often, concepts are visualized by colouring
each source code entity with the colour associated with that
particular concept. Concept assignment can be expressed
mathematically. Given a set U of source code units u0, u1, . . . ,

un and a set C of concepts c0, c1, . . . , cm then concept assign-
ment is the construction of a mapping from U to C. Often
the mapping itself is known as the concept assignment.

Note that there is some overlap between concepts and as-
pects. Both attempt to represent high-level information cou-
pled with low-level program descriptions. The principal dif-
ference is that concepts are universal. Every source code
entity implements some concept. In contrast, only some
of the source code implements aspects. Aspects encapsulate
implementation-oriented cross-cutting concerns, whereas con-
cepts encapsulate human-oriented concerns which may or
may not be cross-cutting.

31

Throughout this paper, we make no assumptions about how
concept selection or assignment takes place. In fact, all the
concepts are selected and assigned manually in our two case
studies. This paper concentrates on how the concept infor-
mation is applied, which is entirely independent of how it is
constructed. However we note that automatic concept se-
lection and assignment is a non-trivial artificial intelligence
problem.

1.2 Dynamic Analysis with Concepts
To date, concept information has only been used for static
analysis of program source code or higher-level program de-
scriptions [4, 10, 11]. This work focuses on dynamic anal-
ysis using concept information, for Java programs. Such
dynamic analysis relies on embedded concept information
within dynamic execution traces of programs.

1.3 Contributions
This paper makes three major contributions:

1. Section 2 discusses how to represent concepts practi-
cally in Java source code and JVM dynamic execution
traces.

2. Sections 3.2 and 3.3 outline two different ways of visu-
alizing dynamic concept information.

3. Sections 3 and 4 report on two case studies of systems
investigated by dynamic analysis of concepts.

2. CONCEPTS IN JAVA
This section considers several possible approaches for em-
bedding concept information into Java programs. The in-
formation needs to be apparent at the source code level (for
static analysis of concepts) and also in the execution trace
of the bytecode program (for dynamic analysis of concepts).

There are obvious advantages and disadvantages with each
approach. The main concerns are:

• ease of marking up concepts, presumably in source
code. We hope to be able to do this manually, at least
for simple test cases. Nonetheless it has to be simple
enough to automate properly.

• ease of gathering dynamic information about concept
execution at or after runtime. We hope to be able
to use simple dump files of traces of concepts. These
should be easy to postprocess with perl scripts or sim-
ilar.

• ease of analysis of information. We would like to use
visual tools to aid comprehension. We hope to be
able to interface to the popular Linux profiling tool
Kcachegrind [1], part of the Valgrind toolset [16].

The rest of this section considers different possibilities for
embedded concept information and discusses how each ap-
proach copes with the above concerns.

public @interface Concept1 { }

public @interface Concept2 { }

...

@Concept1 public class Test {

@Concept2 public void f() { ... }

...

}

Figure 1: Annotation-based concepts in example
Java source code

2.1 Annotations
Custom annotations have only been supported in Java since
version 1.5. This restricts their applicability to the most
recent JVMs, excluding many research tools such as Jikes
RVM [2].

Annotations are declared as special interface types. They
can appear in Java wherever a modifier can appear. Hence
annotations can be associated with classes and fields within
classes. They cannot be used for more fine-grained (statement-
level) markup.

Figure 1 shows an example that uses annotations to support
concepts. It would be straightforward to construct and mark
up concepts using this mechanism, whether by hand or with
an automated source code processing tool.

Many systems use annotations to pass information from the
static compiler to the runtime system. An early example is
the AJIT system from Azevedo et al [3]. Brown and Hor-
spool present a more recent set of techniques [5].

One potential difficulty with an annotation-based concept
system is that it would be necessary to modify the JVM, so
that it would dump concept information out to a trace file
whenever it encounters a concept annotation.

2.2 Syntax Abuse
Since the annotations are only markers, and do not con-
vey any information other than the particular concept name
(which may be embedded in the annotation name) then it is
not actually necessary to use the full power of annotations.
Instead, we can use marker interfaces and exceptions, which
are supported by all versions of Java. The Jikes RVM system
[2] employs this technique to convey information to the JIT
compiler, such as inlining information and specific calling
conventions.

This information can only be attached to classes (which ref-
erence marker interfaces in their implements clauses) and
methods (which reference marker exceptions in their throws
clauses). No finer level of granularity is possible in this
model. Again, these syntactic annotations are easy to in-
sert into source code. However a major disadvantage is the
need to modify the JVM to dump concept information when
it encounters a marker during program execution.

2.3 Custom Metadata
Concept information can be embedded directly into class
and method names. Alternatively each class can have a

32

special concept field, which would allow us to take advan-
tage of the class inheritance mechanism. Each method can
have a special concept parameter. However this system
is thoroughly intrusive. Consider inserting concept infor-
mation after the Java source code has been written. The
concept information will cause wide-ranging changes to the
source code, even affecting the actual API! This is an unac-
ceptably invasive transformation. Now consider using such
custom metadata at runtime. Again, the metadata will only
be useful on a specially instrumented JVM that can dump
appropriate concept information as it encounters the meta-
data.

2.4 Custom Comments
A key disadvantage of the above approaches is that con-
cepts can only be embedded at certain points in the pro-
gram, for specific granularities (classes and methods). In
contrast, comments can occur at arbitrary program points.
It would be possible to insert concept information in special
comments, that could be recognised by some kind of pre-
processor and transformed into something more useful. The
Javadoc system supports custom tags in comments. This
would allow us to insert concept information at arbitrary
program points! Then we use a Javadoc style preprocessor
(properly called a doclet system in Java) to perform source-
to-source transformation.

We eventually adopted this method for supporting concepts
in our Java source code, due to its simplicity of concept
creation, markup and compilation.

The custom comments can be transformed to suitable state-
ments that will be executed at runtime as the flow of execu-
tion crosses the marked concept boundaries. Such a state-
ment would need to record the name of the concept, the
boundary type (entry or exit) and some form of timestamp.

In our first system (see Section 3) the custom comments
are replaced by simple println statements and timestamps
are computed using the System.nanoTime() Java 1.5 API
routine, thus there is no need for a specially instrumented
JVM.

In our second system (see Section 4) the custom comments
are replaced by Jikes RVM specific logging statements, which
more efficient than println statements, but entirely non-
portable. Timestamps are computed using the IA32 TSC

register, via a new ‘magic’ method. Again this should be
more efficient than using the System.nanoTime() routine.

In order to change the runtime behaviour at concept bound-
aries, all that is required is to change the few lines in the
concept doclet that specify the code to be executed at the
boundaries. One could imagine that more complicated code
is possible, such as data transfer via a network socket in a
distributed system. However note the following efficiency
concern: One aim of this logging is that it should be unob-
trusive. The execution overhead of concept logging should
be no more than noise, otherwise any profiling will be in-
accurate! In the studies described in this paper, the mean
execution time overhead for running concept-annotated code
is 35% for the small Java program (Section 3) but only 2%
for the large Java program (Section 4).

// @concept_begin Concept1

public class Test {

public void f() {

....

while (...)

// @concept_end Concept1

// @concept_begin Concept2

}

...

}

// @concept_end Concept2

Figure 2: Comments-based concepts in example
Java source code

Figure 2 shows some example Java source code with con-
cepts marked up as custom comments.

There are certainly other approaches for supporting con-
cepts, but the four presented above seemed the most intu-
itive and the final one seemed the most effective.

3. DYNAMIC ANALYSIS FOR SMALL JAVA
PROGRAM

The first case study involves a small Java program called
BasicPredictors which is around 500 lines in total. This
program analyses textual streams of values and computes
how well these values could be predicted using standard
hardware prediction mechanisms. It also computes informa-
tion theoretic quantities such as the entropy of the stream.
The program was used to generate the results for an earlier
study on method return value predictability for Java pro-
grams [23].

3.1 Concept Assignment
The BasicPredictors code is an interesting subject for con-
cept assignment since it calculates values for different pur-
poses in the same control flow structures (for instance, it is
possible to re-use information for prediction mechanisms to
compute entropy).

We have identified four concepts in the source code, shown
below.

system: the default concept. Prints output to stdout, reads
in input file. Reads arguments. allocates memory.

predictor compute: performs accuracy calculation for sev-
eral computational value prediction mechanisms.

predictor context: performs accuracy calculation for context-
based value prediction mechanism (table lookup).

entropy: performs calculation to determine information the-
oretic entropy of entire stream of values.

The concepts are marked up manually using custom Javadoc
tags, as described in Section 2.4. This code is transformed
using the custom doclet, so the comments have been re-
placed by println statements that dump out concept in-
formation at execution time. After we have executed the

33

instrumented program and obtained the dynamic execution
trace which includes concept information, we are now in a
position to perform some dynamic analysis.

3.2 Dynamic Analysis for Concept Proportions
The first analysis simply processes the dynamic concept
trace and calculates the overall amount of time spent in each
concept. (At this stage we do not permit nesting of concepts,
so code can only belong to a single concept at any point in
execution time.) This analysis is similar to standard func-
tion profiling, except that it is now based on specification-
level features of programs, rather than low-level syntactic
features such as function calls.

The tool outputs its data in a format suitable for use with
the Kcachegrind profiling and visualization toolkit [1]. Fig-
ure 3 shows a screenshot of the Kcachegrind system, with
data from the BasicPredictors program. It is clear to see
that most of the time is spent in the system concept. It is
also interesting to note that predictor context is far more
expensive than predictor compute. This is a well-known
fact in the value prediction literature [19].

3.3 Dynamic Analysis for Concept Phases
While the analysis above is useful for determining overall
time spent in each concept, it gives no indication of the
temporal relationship between concepts.

It is commonly acknowledged that programs go through dif-
ferent phases of execution which may be visible at the mi-
croarchitectural [7] and method [9, 15] levels of detail. It
should be possible to visualize phases at the higher level of
concepts also.

So the visualization in Figure 4 attempts to plot concepts
against execution time. The different concepts are high-
lighted in different colours, with time running horizontally
from left-to-right. Again, this information is extracted from
the dynamic concept trace using a simple perl script, this
time visualized as HTML within any standard web browser.

There are many algorithms to perform phase detection but
even just by observation, it is possible to see three phases
in this program. The startup phase has long periods of
system (opening and reading files) and predictor context

(setting up initial table) concept execution. This is fol-
lowed by a periodic phase of prediction concepts, alternately
predictor context and predictor compute. Finally there
is a result report and shutdown phase.

3.4 Applying this Information
How can these visualizations be used? They are ideal for
visualization and program comprehension. They may also
be useful tools for debugging (since concept anomalies often
indicate bugs [22]) and profiling (since they show where most
of the execution time is spent).

Extensions are possible. At the moment we only draw a
single bar. It would be necessary to move to something
resembling a Gantt chart if we allow nested concepts (so a
source code entity can belong to more than one concept at
once) or if we have multiple threads of execution (so more
than one concept is being executed at once).

4. DYNAMIC ANALYSIS FOR LARGE JAVA
PROGRAM

The second case study uses Jikes RVM [2] which is a reason-
ably large Java system. It is a production-quality adaptive
JVM written in Java. It has become a significant vehicle for
JVM research, particularly into adaptive compilation mech-
anisms and garbage collection. All the tests reported in this
section use Jikes RVM version 2.4.4 on IA32 Linux.

A common complaint from new users of Jikes RVM is that
it is hard to understand how the different adaptive runtime
mechanisms operate and interact. So this case study selects
some high-level concepts from the adaptive infrastructure,
thus enabling visualization of runtime behaviour.

After some navigation of the Jikes RVM source code, we
inserted concepts tags around a few key points that en-
capsulate adaptive mechanisms like garbage collection and
method compilation. Note that all code not in such a con-
cept (both Jikes RVM code and user application code) is in
the default system concept.

4.1 Garbage Collection
Figure 5 shows concept visualization of two runs of the
_201_compress benchmark from SPEC JVM98. The top
run has an initial and maximum heap size of 20MB (-Xms20M
-Xmx20M) whereas the bottom run has an initial and max-
imum heap size of 200MB. It is clear to see that garbage
collection occurs far more frequently in the smaller heap,
as might be expected. In the top run, the garbage collec-
tor executes frequently and periodically, doing a non-trivial
amount of work as it compacts the heap. In the bottom
run, there is a single trivial call to System.gc() as part of
the initial benchmark harness code. After this, garbage col-
lection is never required so we assume that the heap size is
larger than the memory footprint of the benchmark.

Many other garbage collection investigations are possible.
So far we have only considered varying the heap configu-
ration. It is also possible to change the garbage collection
algorithms in Jikes RVM, and determine from concept visu-
alizations what effect this has on runtime performance.

4.2 Runtime Compilation
In the investigation above, the compilation concept only
captures optimizing compiler behaviour. However since Jikes
RVM is an adaptive compilation system, it has several lev-
els of compilation. The cheapest compiler to run (but one
that generates least efficient code) is known as the base-
line compiler. This is a simple macro-expansion routine
from Java bytecode instructions to IA32 assembler. Higher
levels of code efficiency (and corresponding compilation ex-
pense!) are provided by the sophisticated optimizing com-
piler, which can operate at different levels since it has many
flags to enable or disable various optimization strategies. In
general, Jikes RVM initially compiles application methods
using the baseline compiler. The adaptive monitoring sys-
tem identifies ‘hot’ methods that are frequently executed,
and these are candidates for optimizing compilation. The
hottest methods should be the most heavily optimized meth-
ods.

34

Figure 3: Screenshot of Kcachegrind tool visualizing percentage of total program runtime spent in each
concept

Figure 4: Simple webpage visualizing phased behaviour of concept execution trace

35

Figure 5: Investigation of garbage collection activity for different heap sizes

We use the _201_compress benchmark from SPEC JVM98
again. Figure 6 shows the start of benchmark execution
using the default (adaptive) compilation settings (top) and
specifying that the optimizing compiler should be used by
default (bottom, -X:aos:initial compiler=opt). In the
top execution, the baseline compiler is invoked frequently for
a small amount of time each invocation. On the other hand,
in the bottom execution, the optimizing compiler is invoked
more frequently. It takes a long time on some methods (since
it employs expensive analysis techniques). However note
that even with the optimizing compiler as default, it is still
the case that there are some baseline compiled methods.
This is not necessarily intuitive, but it is clear to see from
the visualization!

Figure 7 shows the same execution profiles, only further on
in execution time. The top visualization (default compila-
tion settings) shows that many methods are now (re)compiled
using the optimizing compiler. As methods get hot at differ-
ent times, optimizing compiler execution is scattered across
runtime. In the bottom visualization, once all the methods
have been compiled with the optimizing compiler, there is
generally no need for recompilation.

Note that both Figures 6 and 7 demonstrate that the opti-
mizing compiler causes more garbage collection! The com-
pilation system uses the same heap as user applications, and
there is intensive memory usage for some optimizing com-
piler analyses.

There are plenty of other investigations to be performed with
the Jikes RVM compilation system. In addition, we hope to
identify other interesting concepts in Jikes RVM.

5. RELATED WORK
Hauswirth et al [13] introduce the discipline of vertical pro-
filing which involves monitoring events at all levels of ab-

straction (from hardware counters through virtual machine
state to user-defined application-specific debugging statis-
tics). Their system is built around Jikes RVM. It is able
to correlate events at different abstraction levels in dynamic
execution traces. They present some interesting case studies
to explain performance anomalies in standard benchmarks.
Our work focuses on user-defined high-level concepts, and
how source code and dynamic execution traces are parti-
tioned by concepts. Their work relies more on event-based
counters at all levels of abstraction in dynamic execution
traces.

GCspy [18] is an elegant visualization tool also incorporated
with Jikes RVM. It is an extremely flexible tool for visual-
izing heaps and garbage collection behaviour. Our work ex-
amines processor utilization by source code concepts, rather
than heap utilization by source code mutators.

Sefika et al [20] introduce architecture-oriented visualiza-
tion. They recognise that classes and methods are the base
units of instrumentation and visualization, but they state
that higher-level aggregates (which we term concepts!) are
more likely to be useful. They instrument methods in the
memory management system of an experimental operating
system. The methods are grouped into architectural units
(concepts) and instrumentation is enabled or disabled for
each concept. This allows efficient partial instrumentation
on a per-concept basis, with a corresponding reduction in
the dynamic trace data size. Our instrumentation is better
in that it can operate at a finer granularity than method-
level. However our instrumentation cannot be selectively
disabled, other than by re-assigning concepts to reduce the
number of concept boundaries.

Sevitsky et al [21] describe a tool for analysing performance
of Java programs using execution slices. An execution slice
is a set of program elements that a user specifies to belong

36

Figure 6: Investigation of initial runtime compilation activity for different adaptive configurations. Top
graph is for default compilation strategy, i.e. use baseline before optimizing compiler. Bottom graph is for
optimizing compilation strategy, i.e. use optimizing compiler whenever possible.

Figure 7: Investigation of later runtime compilation activity for different adaptive configurations. (Same
configurations as in previous figure.)

37

to the same category—again, this is a disguised concept!
Their tool builds on the work of Jinsight [17] which creates
a database for a Java program execution trace. Whereas
Jinsight only operates on typical object-oriented structures
like classes and methods, the tool by Sevitsky et al handles
compound execution slices. Again, our instrumentation is
at a finer granularity. Our system also does not specify
how concepts are assigned. They allow manual selection or
automatic selection based on attribute values—for instance,
method invocations may be characterized as slow, medium
or fast based on their execution times.

Eng [8] presents a system for representing static and dy-
namic analysis information in an XML document frame-
work. All Java source code entities are represented, and
may be tagged with analysis results. This could be used for
static representation of concept information, but it is not
clear how the information could be extracted at runtime for
the dynamic execution trace.

Other Java visualization research projects (for example, [6,
12]) instrument JVMs to dump out low-level dynamic exe-
cution information. However they have no facility for deal-
ing with higher-level concept information. In principle it
would be possible to reconstruct concept information from
the lower-level traces in a postprocessing stage, but this
would cause unnecessarily complication, inefficiency and po-
tential inaccuracy.

6. CONCLUDING REMARKS
Until now, concepts have been a compile-time feature. They
have been used for static analysis and program comprehen-
sion. This work has driven concept information through
the compilation process from source code to dynamic exe-
cution trace, and made use of the concept information in
dynamic analyses. This follows the recent trend of retain-
ing compile-time information until execution time. Consider
typed assembly language, for instance [14].

Feedback-directed concept assignment is the process of (1)
selecting concepts, (2) assigning concepts to source code,
(3) running the program, (4) checking results from dynamic
analysis of concepts and (5) using this information to repeat
step (1)! This is similar to feedback-directed (or profile-
guided) compilation. In effect, this is how we made the
decision to examine both baseline and optimizing compilers
in Section 4.2 rather than just optimizing compiler as in
Section 4.1. The process could be entirely automated, with
sufficient tool support.

With regard to future work, we should incorporate these
analyses and visualizations into an integrated development
environment such as Eclipse. Further experience reports
would be helpful, as we conduct more investigations with
these tools. The addition of timestamps information to the
phases visualization (Section 3.3) would make the compar-
ison of different runs easier. We need to formulate other
dynamic analyses in addition to concept proportions and
phases. One possibility is concept hotness, which would
record how the execution profile changes over time, with
more or less time being spent executing different concepts.
This kind of information is readily available for method-
level analysis in Jikes RVM, but no-one has extended it to

higher-level abstractions.

7. ACKNOWLEDGEMENTS
The first author is employed as a research associate on the
Jamaica project, which is funded by the EPSRC Portfolio
Award GR/S61270.

The small Java program described in Section 3 was written
by Gavin Brown. We thank him for allowing us to analyse
his program and report on the results.

Finally we thank the conference referees for their thoughtful
and helpful feedback on this paper.

8. REFERENCES
[1] 2005. Kcachegrind profiling visualization, Josef

Weidendorfer. see kcachegrind.sourceforge.net for
details.

[2] B. Alpern, S. Augart, S. Blackburn, M. Butrico,
A. Cocchi, P. Cheng, J. Dolby, S. Fink, D. Grove,
M. Hind, et al. The Jikes research virtual machine
project: building an open-source research community.
IBM Systems Journal, 44(2):399–417, 2005.

[3] A. Azevedo, A. Nicolau, and J. Hummel. Java
annotation-aware just-in-time (AJIT) compilation
system. In Proceedings of the ACM 1999 Conference
on Java Grande, pages 142–151, 1999.

[4] T. Biggerstaff, B. Mitbander, and D. Webster.
Program understanding and the concept assignment
problem. Communications of the ACM, 37(5):72–82,
1994.

[5] R. H. F. Brown and R. N. Horspool. Object-specific
redundancy elimination techniques. In Proceedings of
Workshop on Implementation, Compilation,
Optimization of Object-Oriented Languages, Programs
and Systems, 2006.

[6] P. Dourish and J. Byttner. A visual virtual machine
for Java programs: exploration and early experiences.
In Proceedings of the ICDMS Workshop on Visual
Computing, 2002.

[7] E. Duesterwald, C. Cascaval, and S. Dwarkadas.
Characterizing and predicting program behavior and
its variability. In Proceedings of the 12th International
Conference on Parallel Architectures and Compilation
Techniques, pages 220–231, 2003.

[8] D. Eng. Combining static and dynamic data in code
visualization. In Proceedings of the 2002 ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis
for Software Tools and Engineering, pages 43–50, 2002.

[9] A. Georges, D. Buytaert, L. Eeckhout, and
K. De Bosschere. Method-level phase behavior in Java
workloads. Proceedings of the 19th ACM SIGPLAN
Conference on Object-Oriented Programming,
Systems, Languages, and Applications, pages 270–287,
2004.

38

[10] N. Gold. Hypothesis-based concept assignment to
support software maintenance. In Proceedings of the
IEEE International Conference on Software
Maintenance, pages 545–548, 2001.

[11] N. Gold, M. Harman, D. Binkley, and R. Hierons.
Unifying program slicing and concept assignment for
higher-level executable source code extraction.
Software—Practice & Experience, 35(10):977–1006,
2005.

[12] M. Golm, C. Wawersich, J. Baumann, M. Felser, and
J. Kleinöder. Understanding the performance of the
Java operating system JX using visualization
techniques. In Proceedings of the 2002 joint
ACM-ISCOPE conference on Java Grande, page 230,
2002.

[13] M. Hauswirth, P. F. Sweeney, A. Diwan, and M. Hind.
Vertical profiling: understanding the behavior of
object-oriented applications. In Proceedings of the 19th
ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications,
pages 251–269, 2004.

[14] G. Morrisett, D. Walker, K. Crary, and N. Glew. From
system F to typed assembly language. ACM
Transactions on Programming Languages and
Systems, 21(3):527–568, 1999.

[15] P. Nagpurkar and C. Krintz. Visualization and
analysis of phased behavior in Java programs. In
Proceedings of the 3rd International Symposium on
Principles and Practice of Programming in Java,
pages 27–33, 2004.

[16] N. Nethercote and J. Seward. Valgrind: A program
supervision framework. Electronic Notes in Theoretical
Computer Science, 89(2):1–23, 2003.

[17] W. D. Pauw, E. Jensen, N. Mitchell, G. Sevitsky,
J. Vlissides, and J. Yang. Visualizing the execution of
Java programs. In Software Visualization, volume
2269 of Lecture Notes in Computer Science, pages
151–162, 2002.

[18] T. Printezis and R. Jones. GCspy: an adaptable heap
visualisation framework. In Proceedings of the 17th
ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications,
pages 343–358, 2002.

[19] Y. Sazeides and J. E. Smith. The predictability of
data values. In Proceedings of the 30th ACM/IEEE
International Symposium on Microarchitecture, pages
248–258, 1997.

[20] M. Sefika, A. Sane, and R. H. Campbell.
Architecture-oriented visualization. In Proceedings of
the 11th ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages,
and Applications, pages 389–405, 1996.

[21] G. Sevitsky, W. D. Pauw, and R. Konuru. An
information exploration tool for performance analysis
of Java programs. In Proceedings of TOOLS Europe
Conference, 2001.

[22] J. Singer. Concept assignment as a debugging
technique for code generators. In Proceedings of the
5th IEEE International Workshop on Source Code
Analysis and Manipulation, pages 75–84, 2005.

[23] J. Singer and G. Brown. Return value prediction
meets information theory. In Proceedings of the 4th
Workshop on Quantitative Aspects of Programming
Languages, 2006. To appear in Electronic Notes in
Theoretical Computer Science.

39

Investigating Throughput Degradation Behavior of Java
Application Servers: A View from Inside a Virtual Machine

Feng Xian
Computer Science &

Engineering
University of Nebraska-Lincoln

Lincoln, NE 68588-0115
fxian@cse.unl.edu

Witawas Srisa-an
Computer Science &

Engineering
University of Nebraska-Lincoln

Lincoln, NE 68588-0115
witty@cse.unl.edu

Hong Jiang
Computer Science &

Engineering
University of Nebraska-Lincoln

Lincoln, NE 68588-0115
jiang@cse.unl.edu

ABSTRACT
Application servers are gaining popularity as a way for businesses
to conduct day-to-day operations. Currently, the most adopted tech-
nologies for Application Servers are Java and .NET. While strong
emphasis has been placed on the performance and throughput of
these servers, only a few research efforts have focused on the degra-
dation behaviors. Specifically, investigating how they perform un-
der stress and factors that affect their throughput degradation be-
haviors. As a preliminary study, we conducted experiments to
observe the throughput degradation behavior of Java application
servers and found that the throughput degrades ungracefully. Thus,
the goal of this work is three-fold: (i) identifying the primary fac-
tors that cause poor throughput degradation, (ii) investigating how
these factors affect the throughput degradation, and (iii) observing
how changes of algorithms and policies governing these factors af-
fect the throughput degradation.

Categories and Subject Descriptors
D.3.4 [Programming Language]: Processors—Memory manage-
ment (garbage collection)

General Terms
Experimentation, Languages, Performance

Keywords
Application servers, Throughput, Garbage collection

1. INTRODUCTION
Web applications have recently become a method of choice for

businesses to provide services and gain visibility in the global mar-
ket place. For example, eBay is enjoying over 180 million users
worldwide. In addition, the advent of Microsoft Office Live1, busi-
ness productivity services, also propels the sophistication of Web

1Microsoft Office Live, www.officelive.com

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

PPPJ 2006, August 30 – September 1, 2006, Mannheim, Germany

Copyright 2006 ACM ...$5.00.

services and applications to a new height. The enabling software
that allows applications to be served through the Web is referred
to as application servers. As of now, industrial observers expect
applications servers to be a $27 billion business by the year 20102.

Two of the most adopted application server technologies are based
on Java and .NET, which occupy about 70% of application servers
market share (40% for Java and 30% for .NET) [16]. The major
reason for such popularity is due to the rich set of libraries and
features provided by these technologies that promote quick devel-
opment and short time-to-market. On average, such technologies
often reduce the code size and development cycle by 50% when
compared to older technologies such as CGI written in C/C++3.

Application servers often face significant variation in service de-
mands — the higher demands often coincide with “the times when
the service has the most value” [23]. Thus, these servers are ex-
pected to maintain responsiveness, robustness, and availability re-
gardless of the changing demands. However, the current generation
of application servers are not well equipped to meet such expecta-
tion as they often fail under heavy workload. For example, on the
day that Apple announced the release its Video IPOD, the Apple
Store site was down for over one hour due to heavy traffic4. In ad-
dition, these servers are susceptible to Distributed Denial of Service
(DDoS) attacks. One notable example is when a group of Korean
high school students launched a DDoS attack on a university Web
site to prevent other students from applying5. While application
server technologies continue to be widely adopted, the knowledge
of why these servers fail and how to prevent them from failing is
still elusive.

To date, very little research has been conducted on the through-
put degradation behavior of Java application servers [9, 12]. Specif-
ically, very little information is known about the systems behavior
under stress. We have conducted experiments and found that the
throughput of Java application servers does not degrade gracefully.
A relatively small change in client’s requests (22% increase) can
cause the throughput to drop by as much as 75%. This is in con-
trast to the Apache Web server in which the throughput degrades
much more gracefully. This paper reports the results of our exten-
sive study to investigate the reasons behind poor throughput degra-
dation in Java application servers. There are three major contribu-
tions resulting from our work.

2“Web Services to Reach $21 Billion by 2007”, Web Hosting
News, http://thewhir.com/marketwatch/idc020503.cfm.
3Five Reasons to Move to the J2SE 5 Platform, January 2005,
http://java.sun.com/developer/technicalArticles/J2SE/5reasons.html
4from netcraft.com, http://www.netcraft.com
5“Cyber Crime Behind College Application Server Crash” from
http://english.chosun.com/w21data/html/news/200602/200602100025.html

40

1. Identifying the primary factors that cause the poor through-
put degradation.

2. Investigating the effects of these factors on throughput.

3. Observing how changes of algorithms and policies in these
factors affect the throughput degradation.

The remainder of this paper is organized as follows. Section 2
details our experiments to identify opportunities for improvement.
Section 3 details our experimentation plan. Sections 4 and 5 re-
port the results and discuss possible improvements. Section 6 dis-
cusses background information and highlights related work. Sec-
tion 7 concludes the paper.

2. MOTIVATION
In 2001, Welsh et al. [23] reported three important trends that

magnify the challenges facing Web-based applications. First, ser-
vices are becoming more complex with widespread adoption of
dynamic contents in place of static contents. Second, the service
logics “tend to change rapidly”. Thus, the complexity of devel-
opment and deployment increases. Third, these services are de-
ployed on general-purpose systems and not “carefully engineered
systems for a particular service.” Such trends are now a common
practice. Complex services including entire suites of business ap-
plications are now deployed using Web application servers run-
ning commodity processors and open-source software. With this in
mind, we conduct an experiment to observe the degradation behav-
ior of Java application servers on an experimental platform similar
to the current common practice (i.e. using Linux on X86 system
with MySQL database and JBoss application server). For detailed
information about the experimental setup, refer to section 3.2.

Initially, our experiments were conducted using the smallest amount
of workload allowed by SPECjAppServer2004, a standardized bench-
mark to measure the performance of Java application servers. We
set the maximum heap size to be twice as large as the physical
memory—4 GB heap with 2 GB of physical memory in this case.
We monitored the throughput delivered by the system. We then
gradually increased the workload until the system refuses to ser-
vice any requests.

For comparison, we also conducted another experiment to ob-
serve the degradation behavior of the Apache Web server (we used
the same computer system and SPECweb2005 to create requested
traffic). Since the two benchmarks report different throughput met-
rics — jobs per second for jAppServer2004 vs connections per sec-
ond for Web2005 — we normalized the throughput and the work-
load to percentage. That is we considered the maximum through-
put delivered by a system during an execution as 100% (referred
to as t) and the maximum workload i.e. the workload that the sys-
tems completely refuse connection as 100% (referred to as w). The
degradation rate (referred to as d) is d = ∆t

∆w
. The result of our

comparison is shown in Figure 1.
The result shows that JBoss is able to deliver high throughput

for about 60% of the given workload. However, when the work-
load surpasses 60%, the throughput reduces drastically. This sys-
tem begins to refuse connection at 80% of the maximum workload.
A drastic degradation in throughput (nearly 75%) occurs when the
workload increases by only 20%. Thus, the degradation rate, d, is
0.75
0.20

= 3.40. Also notice that the value of d for the Apache is 1.69
(see Figure 1). A smaller value of d means that the application is
more failure-resistant to increasing workload. We also investigated
the effect of larger memory on the throughput. Again, larger mem-
ory improves the maximum throughput (see Figure 2 but has very
little effect on the degradation behavior.

According to [12], the degradation behavior experienced in our
experiments is considered ungraceful because such behavior can
lead to non-robust systems. Moreover, it gives very little time to
administer recovery procedures. The authors investigated the fac-
tors that affect throughput degradation behavior of Java Servlets by
examining the operating system behaviors. They found that thread
synchronization is the most prominent factor at the OS level. We
would like to point out that their work did not study the factors
within the Java virtual machine. On the contrary, our investigation
concentrated specifically at the Java Virtual Machine level. Since
Java Virtual Machines (JVMs) provide the execution environment
for these application servers, we conjectured that the major factors
that cause the throughput to degrade ungracefully reside in the Vir-
tual Machines.

3. EXPERIMENTS
In this study, our main objectives are as follows:

Research Objective 1 (RO1): Identifying the major factors re-
sponsible for the rapidly declining throughput of Java application
servers triggered by small workload increase.
Research Objective 2 (RO2): Investigating how these factors af-
fect the throughput of Java server applications.
Research Objective 3 (RO3): Observing how the changes in algo-
rithms and policies controlling these factors affect the throughput
of Java application servers. To achieve this objective, we manip-
ulate the algorithms and policies governing the behaviors of these
factors.

3.1 Benchmarks
There are two major components in our experimental objects, the

application servers and the workload drivers. The selected applica-
tion servers must meet the following criteria. First, they must be
representative of real-world/widely used application servers. Sec-
ond, we must have accessibility to the source code to control and
manipulate their execution context. Our effort began with the iden-
tification of server applications that fit the two criteria. We have
investigated several possibilities and selected two open-source ap-
plications described below.
JBoss [13] is by far the most popular open-source Java applica-
tion server (34% of market share and over five million downloads
to date)6. It fully supports J2EE 1.4 with advanced optimization
including object cache to reduce the overhead of object creation.
Java Open Application Server (JOnAS)7 is another open-source
application server. It is built as part of the ObjectWeb initiative.
Its collaborators include the France Telecom, INRIA, and Bull (a
software development company).

In addition to identifying the applications, we also need to iden-
tify workload drivers that create a realistic client/server environ-
ment. We choose an application server benchmark from SPEC,
jAppServer2004 [19], which is the standard benchmark for test-
ing the performance of Java application servers. It emulates an
automobile manufacturing company and its associated dealerships.
Dealers interact with the system using web browsers (simulated by
a driver program) while the actual manufacturing process is accom-
plished via RMI (also driven by the driver). This workload stresses
the ability of Web and EJB containers to handle the complexities of
memory management, connection pooling, passivation/activation,
caching, etc.
6from http://www.gridtoday.com/04/0927/103890.html
7JOnAS: Java Open Application Server available from
http://jonas.objectweb.org

41

Figure 1: Throughput degradation behaviors of JBoss and
Apache.

Figure 2: Throughput comparison with respect to heap sizes.

Workload of the benchmark is measured by transaction rate, which
specifies the number of Dealer and Manufacturing threads. Through-
put of the benchmark is measured by JOPS (job operations per sec-
ond). The SPECjAppServer2004 Design Document [19] includes a
complete description of the workload and the application environ-
ment in which it is executed.

3.2 Experimental Platforms
To deploy SPECjAppServer2004, we used four machines to con-

struct the three-tier architecture. Since our experiments utilized
both the Uniprocessor system and the Multiprocessor system, our
configuration can be described as follows.
Uniprocessor application server (System A): The client machine
is a dual-processor Apple PowerMac with 2x2GHz PowerPC G5
processors and 2 GB of memory. The server is a single-processor
1.6 GHz Athlon with 1GB of memory. The MySQL8 database
server is a Sun Blade with dual 2GHz AMD Opteron processors
as the client machine running Fedora Core 2 and 2 GB of memory.
Multiprocessor application server (System B): The client ma-
chine is the same as the system above. However, we swapped the
application server machine and the database server machine. Thus,
the dual-processor Sun Blade is used as the application server, and
the single-processor Athlon is used as the database server.

In all experiments, we used Suns J2SE 1.5.0 on the server side,
and the young generation area is set to the default value, which is
1/9 of the entire heap and has shown to minimize the number of the
expensive mature collections. We ran all experiments in standalone
mode with all non-essential daemons and services shut down.

The virtual machine is instrumented to generate trace informa-
tion pertaining to the runtime behavior such as object allocation
information, reference assignment, execution thread information,
and garbage collection (GC) information. It is not uncommon that
such trace files be as large as several gigabytes. These trace files are
then used as inputs to our analysis tool that performs lifetime anal-
ysis similar to the Merlin algorithm proposed by Hertz et al. [10].
The major difference between our approach and theirs is that ours
uses off-line analysis and theirs uses on-line analysis. To obtain
micro-architecture information, we utilize model specific perfor-
mance monitoring registers.
8MySQL available from http://www.mysql.com

3.3 Variables and Measures
We utilized several workload configurations to vary the level

of stress on the selected applications. In all experiments, we in-
creased the workload from the minimum value available to the
maximum value that still allow the application to operate. For ex-
ample, we began our experiment by setting the workload value of
SPECjAppServer2004 to 1. In each subsequent experiment, we
increased the workload value until JBoss encounters failure. The
failure point is considered to be the maximum workload that the
system (combination of application server, JVM, OS, etc.) can han-
dle. As shown in section 2, the throughput dramatically degrades
as the workload increases. This degradation is likely caused by
the runtime overhead. To address our RO1, we monitor the overall
execution time (T), which is defined as:

T = Tapp + Tgc + Tjit + Tsync

It is worth noticing that Tapp is the time spent executing the ap-
plication itself. Tgc is the time spent on garbage collection. Tjit

is the time spent on runtime compilation. Many modern virtual
machines use Just-In-Time (JIT) compilers to translate byte-code
into native instructions when a method is first executed. This time
does not include the execution of compiled methods; instead, it is
the time spent on the actual methods compilation and code cache
management. Finally, Tsync is the time spent on synchronization.
We monitored synchronization operations such as lock/unlock, no-
tify/wait, the number of threads yield due to lock contentions. We
chose these time components because they have historically been
used to measure the performance of Java Virtual Machines [2].

By measuring the execution of each run-time function, we can
identify the function that is most sensitive to the increasing work-
load. The result of this research objective is used as the focal point
in RO2. To address RO2, we further investigated the runtime be-
haviors of these factors. Once again, we varied the workload but
this time, we also measured other performance parameters such as
the number of page faults in addition to the throughput. These pa-
rameters give us more insight into the effect of these factors on
the throughput. Specifically, we closely examined the governing
policies of these runtime factors (causes) to gain more understand-
ing of the effects they have on the throughput. To address RO3, we
conducted experiments that adjust both the fundamental algorithms
and the policies used by the runtime factors and observed their ef-

42

fects on the throughput. By making these changes, we expected to
identify alternative algorithms and policies more suitable for Java
application servers.

3.4 Hypotheses
We conjectured that increasing workload can affect two major

runtime components of a JVM, threading and garbage collection.
Our conjecture is based on two observations. First, increasing work-
load results in more simultaneous clients. This can, in turn result in
more synchronization overhead, which affects performance. Sec-
ond, higher workload also results in more object creations. There-
fore, the heap gets filled up quicker; thus, garbage collection is
called more frequently. In addition, a study has shown that the lifes-
pan of objects in server applications is longer than that of objects
in desktop applications [18]. Longer living objects can degrade
the garbage collection efficiency, prolong garbage collection pause
times, and reduce the throughput. We will conduct experiments to
investigate the validity of these conjectures empirically based on
the following hypothesis.
H1: Thread synchronization and garbage collection are the two
run-time functions most sensitive to workload. Our second re-
search question attempts to identify the causes that affect the per-
formance of the identified runtime functions, and in turn, affect the
throughput of the applications. We conjectured that runtime al-
gorithms (e.g. generational garbage collection) and policies (e.g.
when to call garbage collection) can greatly affect the performance
of runtime functions. Therefore, our experiments are designed to
also validate the following hypothesis.
H2: Runtime algorithms and management policies can affect
the performance of runtime functions and overall throughput.
Therefore, changes in the algorithms and/or policies can affect the
throughput degradation behavior. We will conduct experiments to
validate this hypothesis and report the preliminary results.

4. RESULTS

4.1 RO1: Factors that affect throughput.
We conducted experiments to identify factors that can affect the

throughput of Java application servers. We measured the execution
time of all major runtime functions in the virtual machine when the
system is facing the lightest workload as well as the heaviest work-
load. Figure 3 reports the accumulated execution time (T). Notice
that when the workload is light, only a small portion of time is spent
in common VM functions. That is, Tgc, Tsync, and Tjit only ac-
count for 5%, 2% and 5% of the execution time, respectively. The
remaining 88% is spent on application execution (Tapp). Within
this period, the maximum throughput is also achieved. Also notice
that Tjit is very small and does not increase with workload. Be-
cause most commercial virtual machines do not discard compiled
methods, they can be reused throughout the program execution [20,
27].
Synchronization as a factor. Work by [12] found that thread syn-
chronization is the major factor that causes the throughput of the
dynamic content generation tier to degrade differently among vari-
ous operating systems; in most cases, the degradation was ungrace-
ful. Because their observation was made mainly at the operating
system level, it is not surprising for them to draw such a conclu-
sion. Most runtime functions in JVMs may not utilize system calls.
For example, memory allocators typically need system calls only
when more space is needed in the heap. Thus, their methodology
would regard runtime functions in the VM as application execution.
We expect that more insight can be gained by observing the virtual

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

concurrent transaction rate

App

GC

Sync

JIT

Figure 3: Accumulative time spent in major runtime functions.

machine performance.
As stated earlier, we monitored the accumulated execution time

of all major runtime functions in the HotSpot VM. Our result is re-
ported in Figure 3. Notice that the experimental result confirms our
hypothesis that synchronization is workload sensitive as the time
spent in synchronization becomes larger with increasing workload
due to the increased resource contention. However, the increase is
only a small percentage and should not affect the throughput degra-
dation behavior.
Garbage Collection as a factor. On the other hand, we observed
the amount of time spent in garbage collection as the workload in-
creases. Figure 3 indicates that the time spent in garbage collec-
tion increases dramatically with heavier workload. Just prior to the
complete failure of JBoss, the accumulative garbage collection time
can take up over 50% of the overall execution time. We also found
that garbage collection pauses can be as much as 300 seconds dur-
ing the heaviest workload (see Table 1). As more time is spent on
garbage collection, less time is spent on executing the application;
thus, the throughput degrades dramatically. As a result, we con-
clude that garbage collection is a major factor that can affect the
throughput and the degradation behavior of Java application server.

4.2 RO2: GC effects on throughput.
Currently, many commercial virtual machines including Sun J2SE

1.5 and Microsoft .NET CLR rely on generational garbage collec-
tion as the algorithm of choice for object management in server sys-
tems. Thus, our first focus will be on the effect of the generational
algorithm on the application throughput. For more information on
generational garbage collection, refer to Section 6.

Since the heap size can also affect the garbage collection perfor-
mance (i.e. bigger heap translates to more time for objects to die),
heap resizing policy can also play an important role. Thus, it is the
second focus of our study.

4.2.1 Effect of generational collector
Generational collectors are designed to work well when the ma-

jority of objects die young. As reported earlier, the generational
collector used in the JDK 1.5 performs extremely well when the
workload is light. However, its throughput degrades significantly
as the workload becomes much heavier. To understand the major
causes of such a drastic degradation, we investigated the garbage
collection frequency when the workload is heavy.

Notice that more time is spent on full collection as the work-
load is getting heavier (see Figure 4). At the heaviest workload, the
system spent over 7000 seconds on full collection (about 36 times
longer than that of minor collection and over 190 times longer than

43

Minor GC Full GC
Workload # of Avg. Pause (min:max) # of Avg. Pause (min:max)

invocations (seconds) invocations (seconds)
10 2037 0.021 (0.015:0.026) 48 0.78 (0.412:1.340)
20 2219 0.020 (0.011:0.033) 72 1.02 (0.232:2.021)
30 2901 0.022 (0.014:0.031) 115 1.13 (0.512:2.372)
40 3213 0.024 (0.011:0.039) 140 1.20 (0.412:3.721)
50 3907 0.021 (0.015:0.029) 192 1.45 (0.670:5.142)
60 4506 0.023 (0.012:0.026) 250 2.91 (1.010:7.020)
70 5102 0.027 (0.014:0.036) 370 3.31 (1.012:12.012)
80 5678 0.023 (0.015:0.037) 422 4.98 (2.102:34.014)
90 6150 0.025 (0.013:0.039) 512 6.12 (2.456:100.040)

100 7008 0.028 (0.015:0.039) 709 10.10 (3.124:300.024)

Table 1: Garbage collection activities and pause times.

1

10

100

1000

10000

10 20 30 40 50 60 70 80 90 100

Normalized Workload (%)

Time (seconds)

Minor Collection Full Collection

40

Figure 4: Time spent in minor and full collection.

the time spent on full GC at the lightest workload). We further
investigated this behavior and found that frequent garbage collec-
tion prevents application from making any significant progress. In
effect, the garbage collector simply thrashes. Thus, mark-sweep
collector used for full collection would touch objects again and
again. Therefore, the garbage collection processing cost becomes
very high. As more time is spent on garbage collection, less time is
spent executing the server applications.
Remote versus Local Objects. A study by [18] has shown that
there are commonly two types of objects in .NET server appli-
ations, local and remote. Remote objects are defined as objects
created to serve remote requests 9, and local objects are created
to serve local requests 10. The study showed that objects of these
two corresponding types have very distinct lifespan, remote objects
tend to live much longer. To investigate whether such observation
applies to our experiments, we observed the amount of remote ob-
jects and local objects over the allocation time during the heaviest
workload and the their lifespans. Figure 5 report our findings.

9We define remote object as a remotable object (a remotable ob-
ject is the object which implements interface java.rmi.Remote) or
an object rooted in a remotable object. In Java Application Servers
(J2EE, JBoss, etc), all EJBs are remotable objects. They imple-
ment two interfaces: EJBHome and EJBObject, which extend the
superinterface java.rmi.Remote.

10all objects other than remote objects are local objects

Figure 5: Comparison of quantity and lifespans of local and
remote objects.

The figures indicate the ratio of these two types of objects in the
heap and their average lifespan in one execution of jAppServer2004
running on JBoss. Figure 5 shows that remote objects dominate the
heap in all the workload settings. Moreover, their average lifespan
is longer than that of local objects, as indicated in Figure 5. Thus,
the remote objects in JBoss are mostly long-lived and generational
garbage collector will likely spend additional time and resources to
promote these long-lived remote objects.

4.2.2 Effect of heap enlargement policy
We also investigated heap enlargement policy as a possible cause

of poor garbage collection performance. Typically, there are two
major considerations to perform heap resizing: when to resize and
by how much.

In HotSpot VM, the pause time of each GC is evaluated by ap-

44

Figure 7: Throughput after applying the adaptive sizing mech-
anism.

plying a linear curve fitting process on recent GC pause times. If
the slope of the resultant linear function is positive, which means
GC pause time is increasing, the VM will expand the heap by 20%.
If the slope is negative, then the system will reduce the heap by
4%. This approach had two significant drawbacks based our exper-
imental observation. First, the VM increases heap aggressively but
reduces the heap too conservatively. When the footprint in the heap
is smaller than the memory size but the total heap is larger than the
memory size, it takes a long time to reduce the heap.

Second, the heap enlargement mechanism does not take into ac-
count the physical memory available and often indiscriminately
grows larger than physical memory very quickly. For example, Fig-
ure 6 (right) shows the heap sizing activity at the heaviest workload
(transaction 100). Note that the physical memory size is 2GB. The
solid line is the new heap size after each sizing point. The dotted
line is the actual heap usage (i.e., the amount of live objects) after
a GC invocation. The star line is the number of page faults during
the lifetime measured using the scale shown on the left y-axis. The
figure shows that the heap is increased to be larger than the physi-
cal memory size at about 33% of the execution time. At this point,
the actual heap usage is still smaller than the physical memory size.
This enlargement induces a large amount of page faults for the re-
mainder of the execution. As stated earlier (see Table 1), the pause
time can be as long as 300 seconds as a significant amount of page
faults occur during a full collection.
Remark. We found that generational garbage collection may not
be suitable for application server under stress. This is due to a large
number of objects in applications servers tend to be longer living;
thus, less objects are collected in each minor collection and more
full collection is invoked.

In addition, the current policy enlarges the heap very frequently
to yield optimal garbage collection performance early on. In this
strategy, the heap can become so large that the heap working set
can no longer fit within the physical memory capacity. If this point
is reached too soon, the system would spend a large amount of
time servicing page faults. This is especially true during the mature
collection, as mark-sweep has been known to yield poor paging
locality [14, 11]. Two possible solutions to address this issue are
(i) to use garbage collection techniques that are more suitable for
long-lived objects and (ii) to adaptively resize the heap based on the
amount of physical memory and transaction time requirement. We
will preliminarily evaluate these two options in the next subsection.

Figure 8: Heap usage with the adaptive sizing mechanism.

4.3 RO3: Effects of changes in algorithms and
policies on throughput.

4.3.1 Adaptive Heap Sizing Mechanism
From the previous section, we discovered that the adopted pol-

icy in the HotSpot VM increases the heap size so quickly that the
heap exceeds the physical memory capacity very early in the exe-
cution. As a result, the system suffers a large number of page faults.
We experimented with a new adaptive heap sizing policy that has
been implemented into the HotSpot. Our new policy attempted to
maintain the lowest possible heap size especially when the physical
memory resource is scarce. As stated earlier, there are two consid-
erations to perform heap resizing: when to expand or reduce the
heap and by how much.

Our approach does not change the decision of when to resize the
heap. However, we changed the adjustment quantity. Based on our
study of the current heap sizing policy in the HotSpot, we noticed
that page faults begin to occur when the heap is larger than 75%
of physical memory (e.g. 1500 MB heap in a system with 2 GB
physical memory). Thus, we used this insight to set a parameter to
adjust our sizing policy. Basically, our threshold value is 75% of
physical memory. When the current heap size is smaller than the
threshold, the heap is increase by α percent during an expansion.
Once the heap size exceeds the 75% threshold, we then reduced the
percentage of enlargement to β percent (β < α). We investigated
the throughput and its degradation behavior under four different
configurations of α and β: α=20/β=20, α=20/β=10, α=10/β=5,
and α=5/β=2.5 Notice that α=20 and β=20 represents the original
policy. In the α=20/β=20 approach, the heap is always increased
by 20% of the current size, no matter if it exceeds the physical
memory capacity or not. In our adaptive approach, the JVM adjusts
the increasing percentage according to the available memory space.
For example, in the α=10/β=5 approach, the heap is enlarged by
10% prior to 1500 MB heap size; afterward, the heap is increased
by only 5%.

Figure 7 reports our finding. It is worth noticing that the changes
in heap sizing policy have only minor effect on the throughput and
degradation performance. However; conservative growth policy
can significantly degrade the throughput as shown with α=5/β=2.5
configuration. Also notice that the current policy used by the HotSpot
VM (α=20/β=20) does not yield the best throughput, instead, α=10/β=5

45

Figure 6: Comparing memory and paging activities of Jboss with (left) and without (right) the adaptive sizing mechanism (transac-
tion rate=100).

yields the best throughput throughout the execution. Even though
the proposed adaptive heap sizing policy has very little effect on the
throughput degradation behavior, it can yield two additional bene-
fits: lower heap usage and smaller number of page faults.
Reduction in heap usage. In Figure 8, we compared the amount
of heap space needed by the application server with the actual heap
size allocated by the JVM using two policies: α=20/β=20 and
α=10/β=5. As a reminder, α=20/β=20 is the approach used in
the current HotSpot VM and α=10/β=5 has shown to yield higher
throughput. Notice that the proposed adaptive heap sizing policy
utilizes the heap space more efficiently by committing the heap
memory only slightly higher than the actual heap usage (125 MB).
On the other hand, the approach currently used by the HotSpot
committed a much larger amount of additional memory (about 500
MB) once the memory usage exceeds the physical memory.
Reduction in page faults. We compared the number of page faults
between the two policies: α=20/β=20 and α=10/β=5. Figure 6
shows that our decision to slow the growth percentage at the begin-
ning (α=10 instead of α=20) results in a reduction in the number of
page faults early on (indicated by the rectangular box). The reduc-
tion is about 10%. However, the further reduction after the thresh-
old is reached has very little effect on the number of page faults.
Based on our results, we conclude that:

• Moderately conservative heap sizing policy only has slight
effect on the maximum throughput. This is illustrated when
we can achieve the best throughput with α=10/β=5 approach.

• Moderately conservative heap sizing policy can significantly
reduce the number of page faults. However, the technique is
more effective before the threshold is reached.

• Moderately conservative heap sizing policy can reduce the
amount of memory usage and slightly improves the through-
put throughout the execution. However, it has very little ef-
fect on the throughput degradation behavior.

4.3.2 Improving Garbage Collection Paralellism
Starting in J2SE 1.4.x, Sun also provides two additional GC tech-

niques, parallel garbage collection (ParGC) and concurrent garbage
collection in addition to the default generational mark-sweep [9].

Figure 9: Effect of CMS on throughput.

The parallel collector is similar to the generational mark-sweep ap-
proach except the it utilizes parallel threads to perform minor and
major collection. Thus, it is a stop-the-world approach designed to
minimize pause time.

In Concurrent Mark-Sweep (CMS), a separate garbage collec-
tor thread performs parts of the major collection concurrently with
the applications threads. For each major collection the concurrent
collector will pause all the application threads for a brief period at
the beginning of the collection and toward the middle of the col-
lection. The remainder of the collection is done concurrently with
the application. This collector performs parallel scavenging in the
minor collections and concurrent mark-and-sweep in the major col-
lections.

According to Sun, the Concurrent collector is ideal for server ap-
plications running on multi-processor systems (it cannot be used in
single-processor systems). A study by Sun has shown that the con-
current collector can deliver higher throughput than the other ap-
proaches. However, the effects of the concurrent garbage collector
on the throughput degradation behavior are not known. Therefore,
the goal of this experiment is to investigate the effect of CMS on
throughput degradation behavior. Note that we used system B, the

46

Figure 10: Comparing throughputs of systemHotSpot and
systemRV M .

multi-processor system for this experiment.
Figure 9 clearly indicates that CMS can greatly improve the max-

imum throughput of the system. The difference in throughputs be-
tween the concurrent collector and the single threaded generational
mark-sweep (GenMS) can be as high as 40%. However, comparing
the degradation rates of the three GC techniques, dCMS , dParGC ,
and dgenMS , shows that both CMS and ParGC did’t exhibit sig-
nificant different on degradation rates. Based on this finding, we
concluded that the concurrent collector running on a more power-
ful computer system improves the maximum throughput due to bet-
ter parallelism, but does not improve the throughput degradation
behavior.

4.3.3 Different Garbage Collection Techniques
We conducted our experiments on the Jikes RVM due to its flex-

ibility in choosing multiple garbage collection algorithms. Since
JBoss is not supported on the RVM, we also need to use a differ-
ent application server. JOnAS is another open-source application
server that is supported by the RVM. Once again, we use SPEC-
jAppServer2004 as the workload driver.

To make certain that our substitution still provides a sound ex-
perimental platform, we conducted an experiment to compare the
throughput degradation behaviors of the two systems, systemHotSpot

(SPECjAppServer running on JBoss and J2SE 1.5) and systemRV M

(SPECjAppServer running on JOnAS and RVM using generational
collection (GenMS)). If the two systems show similar throughput
pattern (based on normalized information), we assumed that any
improvements resulting from modification of systemRV M would
also translate to similar improvements in systemHotSpot if similar
modifications were also applied. Figure 10 depicts the results of
our comparison. Notice that the patterns are nearly identical.

Next, we conduct a set of experiments using different garbage
collection techniques. The goal of these experiments is to com-
pare the differences in the throughput behavior of each technique
from the reference configuration (systemRV M). The description
of each technique is given below.
GenMS: This hybrid generational collector uses a copying nursery
and the MarkSweep policy for the mature generation. It is very
similar to the generational mark-and-sweep collector in HotSpot.
Thus, it is used as the reference configuration.
SemiSpace: The semi-space algorithm uses two equal sized copy
spaces. It contiguously allocates into one, and reserves the other
space for copying into since in the worst case all objects could sur-

vive. When full, it traces and copies live objects into the other
space, and then swaps them.
GenCopy: The classic copying generational collector [1] allocates
into a young (nursery) space. The write barrier records pointers
from mature to nursery objects. It collects when the nursery is full,
and promotes survivors into a mature semi-space. When the mature
space is exhausted, it collects the entire heap.
MarkSweep: It is a tracing and non-generational collector. When
the heap is full, it triggers a collection. The collection traces and
marks the live objects using bit maps, and lazily finds free slots
during allocation. Tracing is thus proportional to the number of
live objects, and reclamation is incremental and proportional to al-
location.
RefCount: The deferred reference-counting collector uses a freel-
ist allocator. During mutation, the write barrier ignores stores to
roots and logs mutated objects. It then periodically updates ref-
erence counts for root referents and generates reference count in-
crements and decrements using the logged objects. It then deletes
objects with a zero reference count and recursively applies decre-
ments. It uses trial deletion to detect cycles [3, 4].
GenRC: This hybrid generational collector uses a copying nursery
and RefCount for the mature generation [7]. It ignores mutations
to nursery objects by marking them as logged, and logs the ad-
dresses of all mutated mature objects. When the nursery fills, it pro-
motes nursery survivors into the reference counting space. As part
of the promotion of nursery objects, it generates reference counts
for them and their referents. At the end of the nursery collection,
GenRC computes reference counts and deletes dead objects, as in
RefCount.

Figure 11: Comparing the throughputs of different GC tech-
niques.

Figure 11 reports our finding. It is worth noticing that most tech-
niques yield very similar throughput degradation behaviors. The
two exceptions are SemiSpace and GenRC. For SemiSpace, the
collection time is proportional to the number of live objects in
the heap. Its throughput suffers because it reserves a half of heap
for copying and repeatedly copies objects that survive for a long
time. Additionally, its throughput performance and its responsive-
ness suffer because it collects the entire heap every time. Therefore,
it has the lowest throughput at all workloads compared to the other
5 collectors.

47

GenRC on the other hand, allows the throughput of the appli-
cation server to degrade much more gracefully. Unlike GenMS in
which mature collection is frequently invoked during the heaviest
workload, GenRC allows mature collection to be performed incre-
mentally; thus, long pauses are eliminated and the memory space
is recycled more efficiently. In addition, GenRC also ignores muta-
tions of the young objects; thus, the overhead of reference manipu-
lations is avoided.

5. DISCUSSION
In Java application servers, objects can be classified into local

objects and remote objects, depending on the type of services they
were created for. We have demonstrated that remote objects tend
to be long-lived. We are currently working on a Service-Oriented
garbage collection that segregates objects based on service types.
The simulation results have shown that the scheme can significantly
reduce the number of mature collection invocations.

In this paper, we investigated GC overhead by looking at sev-
eral GC components like heap size, collector algorithm, triggering
mechanism and sizing policy. We did not consider other non-GC
components in the VM that may influence GC and server through-
put. One possible component is thread scheduling. In the multi-
threaded server environment, a large number of threads are created
and operate simultaneously. We plan to experiment with thread
scheduling algorithms that are GC cognizant. For example, threads
that are expected to relinquish a large amount of memory may be
given a higher priority so that memory is timely reclaimed. We ex-
pect that such algorithms can further improve throughput and affect
the degradation behavior.

6. BACKGROUND AND RELATED WORK

6.1 Garbage Collection Overview
One of the most useful language features of modern object-oriented

programming languages is garbage collection (GC). GC improves
programming productivity by reducing errors resulting from ex-
plicit memory management. Moreover, GC underpins sound soft-
ware engineering principles of abstraction and modularity. GC
leads to cleaner code since memory management concerns are no
longer cluttered with the programming logic [6, 14]. For our pur-
pose, we summarize three garbage collection schemes that are re-
lated to this paper: mark-sweep, generational, and reference count-
ing. Refer to [14, 24] for comprehensive summaries of the collec-
tion algorithms.
Mark and sweep collection [15] consists of two phases: marking
and sweeping. In marking phase, the collector distinguishes live
objects by tracing the heap and marking each of the live objects
found. Tracing is basically traversing all live references to heap
memory, to find all of the reachable objects. The traversal usually
starts from a set of roots—such as program stacks, statically al-
located memory, and registers—and results in a transitive closure
over the set of live objects. In sweeping, the memory is exhaus-
tively examined to find all the unmarked (garbage) objects and the
collector “sweeps” their space by linking them into a free list. After
sweeping, the heap can be compacted to reduce fragmentation.
Generational garbage collection [14, 21] segregates objects into
“generations” using age as the criterion. The generational collec-
tion exploits the fact that objects have different lifetime character-
istics; some objects have short lifespan while others live for a long
time. Distribution wise, studies have shown that “most objects die
young” (referred to as the weak generational hypothesis [21, 14]).
Thus, the main motivation is to collect in the youngest generation,

which is only a small portion of the heap, as frequently as possi-
ble. Collection in the young generation is referred to as minor and
collection of the entire heap is referred to as major or full. Since
most of the generational collectors are copying based (refer to [14]
for more information), small numbers of surviving objects translate
to short garbage collection pauses because there are less number of
objects to traverse and copy. Short pauses often translate to higher
efficiency—a ratio of the space collected over the space that has
been used prior to a collection [14, 17].
Reference Counting (RC) [22] records the number of references
to an object in its reference count field (often resides in the object’s
header [7, 14]). The counter is initialized to zero when the object is
allocated. Each time a pointer to that object is copied, the reference
count field is incremented, and each time a pointer to that object is
removed, the reference count is decremented. When the reference
count reaches zero, the object is reclaimed. This approach suffers
from the inability to reclaim cyclic structures. Each structure is
purely self-referential that represents memory space that will not
be reclaimed during the program’s execution. Because of this lim-
itation, reference counting is generally accompanied by a back-up
tracing collector [14] or a complex algorithm to break up and detect
the cyclic structures [3, 8].

6.2 Related Work
There are several research efforts recognizing the effect of garbage

collection on the throughput. Work by [7] attempted to improve the
overall throughput of Java applications by using reference counting
for the mature generation space. Work by [11, 25] also attempted to
improve the throughput by creating a garbage collection technique
that reduces paging, but their techniques need operating system’s
support. Recent work by [26] proposed a program-level memory
management scheme, which tracks the memory usage and number
of page faults at program’s phase boundaries and adaptively finds
a good heap size. But their scheme needs to instrument the appli-
cation program. Work by [5] compared different GC techniques
to investigate the cost of different GC techniques on different heap
size and architectures. They did not study the influence of GC tech-
niques on throughput degradation of application servers.

Work by [12] investigated the degradation behavior of Web ap-
plication servers running on different operating systems including
Linux, Solaris 9, FreeBSD, and Windows 2003 servers. They found
that Solaris 9 has the most graceful degradation behavior. They also
identified the factor that has the greatest effect on the degradation
behavior as thread synchronization (waiting time to acquire locks).
They reported that Linux threads issue a larger number of system
calls during the operation and the thread scheduling policy is inap-
propriate.

7. CONCLUSIONS
This paper explored the throughput degradation behavior of Java

application servers. We found the throughout of Java application
servers degrade ungracefully. During heavy workload, a 22% in-
crease in the workload can degrade the throughout by as much as
75%. This result motivated us to investigate what are the major
factors affecting the throughput degradation and how do they affect
the degradation.

We monitored execution time of three major components in the
Virtual Machine: runtime compilation, garbage collection, and syn-
chronization. Our results showed that garbage collection is the ma-
jor factor because its overhead increases drastically (as much as
50% of the overall execution time) at the heaviest workload. Fur-
ther studies led us to the following conclusions. First, the assump-

48

tion that most objects die young is no longer true in application
servers. Thus, the Generation Mark-Sweep technique used in the
HotSpot VM does not perform well. Second, garbage collection
techniques to increase paralellism while greatly improve the max-
imum throughput, make degradation behavior worse. Third, Ul-
terior Reference Counting, an incremental generational technique,
can positively impacted the degradation behavior. Last, more con-
servative heap sizing policy only has slightly positive effect on the
degradation behavior. However, it can significantly reduce the heap
usage (20%) and the number of page fault (10%).

8. ACKNOWLEDGMENTS
This work is support in part by NSF under grant number CNS-

0411043. We also thank the reviewers for valuable comments.

9. REFERENCES
[1] A. W. Appel. Simple generational garbage collection and fast

allocation. Software Practice and Experience,
19(2):171–183, 1989.

[2] E. Armstrong. Hotspot a new breed of virtual machine.
JavaWorld, 1998.

[3] D. F. Bacon, C. R. Attanasio, H. Lee, V. T. Rajan, and
S. Smith. Java without the Coffee Breaks: A Nonintrusive
Multiprocessor Garbage Collector. In SIGPLAN Conference
on Programming Language Design and Implementation,
pages 92–103, 2001.

[4] D. F. Bacon and V. T. Rajan. Concurrent cycle collection in
reference counted systems. Lecture Notes in Computer
Science, 2072:207–235, 2001.

[5] S. M. Blackburn, P. Cheng, and K. S. McKinley. Myths and
realities: the performance impact of garbage collection. In
SIGMETRICS 2004/PERFORMANCE 2004: Proceedings of
the joint international conference on Measurement and
modeling of computer systems, pages 25–36, New York, NY,
USA, 2004. ACM Press.

[6] S. M. Blackburn, R. E. Jones, K. S. McKinley, and J. E. . B.
Moss. Beltway: Getting Around Garbage Collection
Gridlock. In Proceedings of the Programming Languages
Design and Implementatio n, 2002.

[7] S. M. Blackburn and K. S. McKinley. Ulterior reference
counting: fast garbage collection without a long wait. In
OOPSLA ’03: Proceedings of the 18th annual ACM
SIGPLAN conference on Object-oriented programing,
systems, languages, and applications, pages 344–358, New
York, NY, USA, 2003. ACM Press.

[8] T. W. Christopher. Reference count garbage collection.
Software Practice and Experience, 14(6):503–507, June,
1984.

[9] A. Gupta and M. Doyle. Turbo-charging Java HotSpot
Virtual Machine, v1.4.x to Im-
prove the Performance and Scalability of Application Servers.
http://java.sun.com/developer/technicalArticles/Programming/turbo/.

[10] M. Hertz, S. M. Blackburn, J. E. B. Moss, K. S. McKinley,
and D. Stefanovic. Error-free garbage collection traces: how
to cheat and not get caught. In SIGMETRICS ’02:
Proceedings of the 2002 ACM SIGMETRICS international
conference on Measurement and modeling of computer
systems, pages 140–151, New York, NY, USA, 2002. ACM
Press.

[11] M. Hertz, Y. Feng, and E. D. Berger. Garbage collection
without paging. In PLDI ’05: Proceedings of the 2005 ACM

SIGPLAN conference on Programming language design and
implementation, pages 143–153, New York, NY, USA, 2005.
ACM Press.

[12] H. Hibino, K. Kourai, and S. Shiba. Difference of
Degradation Schemes among Operating Systems:
Experimental Analysis for Web Application Servers. In
Workshop on Dependable Software, Tools and Methods,
Yokohama, Japan, July 2005.

[13] JBoss. Jboss Application Server. Product Literature, Last
Retrieved: June 2005. http://www.jboss.org/products/jbossas.

[14] R. Jones and R. Lins. Garbage Collection: Algorithms for
automatic Dynamic Memory Management. John Wiley and
Sons, 1998.

[15] J. L. McCarthy. Recursive Functions of Symbolic
Expressions and Their Computation by Machine.
Communications of the ACM, 3(4):184–195, 1960.

[16] D. Sholler. .NET seen gaining steam in dev projects. In ZD
Net, http://techupdate.zdnet.com, April 2002.

[17] W. Srisa-an, C. Lo, and J. Chang. Do generational schemes
improve the garbage collection efficiency. In International
Symposium on Performance Analysis of Systems and
Software (ISPASS 2000, pages 58–63, Austin, TX, April
24-25, 2000.

[18] W. Srisa-an, M. Oey, and S. Elbaum. Garbage collection in
the presence of remote objects: An empirical study. In
International Symposium on Distributed Objects and
Applications, Agia Napa, Cyprus, 2005.

[19] Standard Performance Evaluation Corporation.
SPECjAppServer2004 User’s Guide. On-Line User’s Guide,
2004.
http://www.spec.org/osg/jAppServer2004/docs/UserGuide.html.

[20] D. Stutz, T. Neward, and G. Shilling. Shared Source CLI
Essentials. O’Reilly and Associates, 2003.

[21] D. Ungar. Generational scavenging: A non-disruptive high
performance storage reclamation algorithm. In ACM
SIGSOFT/SIGPLAN Software Engineering Symposium on
Practical Software Development Environments, pages
157–167, April 1984.

[22] J. Weizenbaum. Symmetric List Processor. Communications
of the ACM, 6(9):524–544, 1963.

[23] M. Welsh, D. E. Culler, and E. A. Brewer. SEDA: An
architecture for well-conditioned, scalable internet services.
In Symposium on Operating Systems Principles, pages
230–243, 2001.

[24] P. R. Wilson. Uniprocessor garbage collection techniques. In
Proceedings of the International Workshop on Memory
Management, 1992.

[25] T. Yang, M. Hertz, E. D. Berger, S. F. Kaplan, and J. E. B.
Moss. Automatic Heap Sizing: Taking Real Memory into
Account. In Proceedings of the International Symposium on
Memory Management, 2004.

[26] C. Zhang, K. Kelsey, X. Shen, C. Ding, M. Hertz, and
M. Ogihara. Program-level adaptive memory management.
In International Symposium on Memory Management,
Ottawa, Canada, June 2006.

[27] L. Zhang and C. Krintz. Adaptive code unloading for
resource-constrained JVMs. In Proceedings of the 2004 ACM
SIGPLAN/SIGBED conference on Languages, compilers,
and tools, pages 155–164, Washington, DC, USA, 2004.

49

50

Session C
Mobile and Distributed Systems

51

52

Streaming Support for Java RMI in Distributed
Environments

Chih-Chieh Yang, Chung-Kai Chen,
Yu-Hao Chang, Kai-Hsin Chung and Jenq-Kuen Lee

Department of Computer Science
National Tsing Hua University

Hsinchu 30013, Taiwan

{ccyang, ckchen, yhchang, kschung}@pllab.cs.nthu.edu.tw, jklee@cs.nthu.edu.tw

ABSTRACT
In this paper we present novel methodologies for enhancing the
streaming capabilities of Java RMI. Our streaming support for Java
RMI includes thepushingmechanism, which allows servers to push
data in a streaming fashion to the client site, and theaggregation
mechanism, which allows the client site to make a single remote in-
vocation to gather data from multiple servers that keep replicas of
data streams and aggregate partial data into a complete data stream.
In addition, our system also allows the client site toforward local
data to other clients . Our framework is implemented by extending
the Java RMI stub to allow custom designs for streaming buffers
and controls, and by providing a continuous buffer for raw data in
the transport layer socket. This enhanced framework allows stan-
dard Java RMI services to enjoy streaming capabilities. In addi-
tion, we propose aggregation algorithms as scheduling methods in
such an environment. Preliminary experiments using our frame-
work demonstrate its promising performance in the provision of
streaming services in Java RMI layers.

Categories and Subject Descriptors
C.2.4 [Computer-communication Networks]: Distributed Sys-
tems—Distributed applications

General Terms
Algorithms, Experimentation, Languages

Keywords
Java RMI, Streaming Java RMI, Aggregation Scheduling Methods,
Novel Applications of Java, Java-based Tools

1. INTRODUCTION
The increasing importance of distributed object-oriented envi-

ronments for use in parallel and distributed service frameworks has
increased interest in efficiently supporting for remote-invocation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPPJ 2006,August 30–September 01, 2006, Mannheim, Germany.
Copyright 2006 ACM ...$5.00.

frameworks, since this layer appears to be a promising paradigm
for supporting ubiquitous component communications in hetero-
geneous network environments. This is also the layer where the
well-known software layers such as Java Remote Method Invoca-
tion (RMI), .NET Remoting, and CCA (Common Component Ar-
chitecture) remoting are located.

There has been abundant research in this area recently, which has
yielded an open RMI implementation that makes better use of the
object-oriented features of Java [1]. The ARMI [2] and Manta [3]
systems reduce various drawbacks of RMI and provide new RMI-
style systems with extended functionality. KaRMI [4] improves the
implementation of RMI by exploiting Myrinet hardware features to
reduce latencies. A broad range of RMI applications has also been
done in [5]. Our research group has also investigated issues asso-
ciated with the use of RMI in a wireless environment [6, 7]. The
Aroma system [8], which is Java-based middleware, aims to ex-
ploit Java RMI to replicate objects so as to ensure both availability
and adaptability. The dynamic proxy is used as an interceptor to
extend the capabilities of Java RMI. In addition, we have also re-
ported on specifications for RMI programs operating in heteroge-
neous network environments [9]. In recent years, network stream-
ing becomes a highly popular research topic in computer science
due to the fact that a large proportion of network traffic is occupied
by multimedia streaming. In the network streaming scenario, data
that are retrieved from the network can be processed immediately
after a sufficient portion (but not necessarily all) of the total stream
has arrived. The streaming technology is applied mostly to multi-
media data due to the large sizes of these files, allowing users to
listen or view a multimedia file while downloading it. Java RMI
allows programmers to rapidly establish distributed object-oriented
applications. However, the one-to-one and call-and-wait schemes
in Java RMI do not match the properties required for streaming in
applications. We therefore aimed to extend Java RMI by inserting
extra components so as to implement support for streaming.

In this paper we present our novel methodologies for enhancing
the streaming capabilities of Java RMI to provide a flexible and
convenient framework for streaming applications. Our streaming
support for Java RMI includes thepushingmechanism, which al-
lows servers to push data in a streaming fashion to the client site
via Java RMI, and theaggregationmechanism, which allows the
client site in a single remote invocation to gather data from multi-
ple servers that keep replicas of data streams and aggregate partial
data into a complete data stream. In addition, our system also al-
lows the client site toforward local data for further services. Our
framework is implemented by extending the Java RMI stub to allow
custom designs for streaming buffers and controls, and by provid-

53

ing a continuous buffer for raw data in the transport layer socket.
This enhanced framework allows standard Java RMI services to
enjoy streaming capabilities. In addition, we propose aggregation
algorithms as scheduling methods in such an environment. Our
scheme schedules communications by also considering both the re-
sources and data available at each server. Preliminary experiments
using our framework demonstrate its promising performance in the
provision of streaming services in Java RMI layers.

The remainder of this paper is organized as follows. Section 2
introduces the basics of Java RMI, and Section 3 introduces the
software architecture of streaming RMI. Sections 4, 5, and 6 dis-
cuss the three important mechanisms in our framework. Section 7
introduces the user APIs of streaming RMI. The results of our
performance evaluation are presented in Section 8, several related
works are mentioned in Section 9, and conclusions are drawn in
Section 10.

2. THE BASICS OF JAVA RMI
In a distributed system, applications run in different machines in

the network. These applications need to communicate with each
other to send commands and exchange computation results from
time to time. A socket is the basic communication mechanism that
is supported in almost every programming language and operating
system. Sockets are highly flexible, but they are at a level that is too
low for developers because new protocols need to be designed for
specific purposes, and they need to encode and decode messages
for exchange.

The Java platform provides developers with Java RMI, which uti-
lizes features such as dynamic class loading and reflection of Java,
and uses a stub object to manage the method invocations. Devel-
opers simply create a stub that is used to make method invocations,
which takes care of marshalling the invocation and sending it to the
remote RMI server. From the developer’s viewpoint, this is just like
calling a local object.

The architecture of Java RMI is shown in Figure 1.

ClientClient
StubStub

TransportTransport

ClientClient
StubStub

TransportTransport

RegistryRegistry ServerServerServerServer

ClientClient
StubStub

TransportTransport

ClientClient
StubStub

TransportTransport

Retrieve stubs

RMI

Figure 1: Java RMI architecture.

All RMI servers register with the registry server of their host-
ing remote objects . RMI clients first look up stubs of a remote
object on the registry server, which they subsequently use to call
their corresponding remote objects. The stub is very important in
Java RMI. It acts as the remote object to the client application by
implementing the same interface as the remote object. The client

application invokes methods on the stub, and the stub will carry out
the methods call on the remote object. It marshals the parameters to
the remote JVM, waits for the result, unmarshals the return value,
and returns the result to the application. In this work we focus on
how to modify the behavior of an RMI stub to integrate streaming
ability into Java RMI.

3. SOFTWARE ARCHITECTURE OF
STREAMING RMI

The main work of this research was to design an extended archi-
tecture for Java RMI to provide capabilities for streaming applica-
tions. Figure 2 presents an overview of our proposed architecture,
calledstreaming RMI.

Continuous
Buffer

Continuous
Buffer

StubStub

RMI
Client
RMI
Client

Streaming
Buffer

Streaming
Buffer

Continuous
Buffer

Continuous
Buffer

Streaming
Controller
Streaming
Controller

RMI
Server
RMI

Server

Continuous
Buffer

Continuous
Buffer

RMI
Server
RMI

Server

Continuous
Buffer

Continuous
Buffer

Application Layer

Streaming Layer

RDMA-like
Transportation

Figure 2: Overview of streaming RMI architecture.

Several important components are needed to support streaming.
First, acontinuous bufferprovides the basic buffering of compo-
nent communications. When a server wants to send data to a client,
it writes its own continuous buffer that will push the data through
the network to the client. A client reads continuous buffers of its
own to receive data from the network. Second, there are two addi-
tional components needed in the client-side architecture:streaming
controllerandstreaming buffer. The streaming controller is respon-
sible for scheduling how servers should send their data, and for ag-
gregating the received data from continuous buffers. The streaming
buffer is a repository for aggregated data. With these components, a
streaming RMI client can gather data from many different stream-
ing RMI servers simultaneously and aggregate the data received
into a new data stream . Figure 3 shows how these new compo-
nents can be deployed in the layers of standard Java RMI.

Figure 3 extends the Java RMI framework on both the client and
server sides. In the client side, we extend the stub to include a
streaming controller and a streaming buffer. We also extend the
transport layer socket to include continuous buffer support. In the
server side, we extend the stub with a loader and a continuous
buffer. The detailed behavior of each component is as follows:

Stub The stub of Java RMI is usually generated automatically. In
order to add customized features, we disassemble the class
file generated by the RMI compiler (rmic) to Java source
code, and modify its content to intercept method calls. We
make it able to create multiple streaming sessions to different
servers, and able to pass intercepted method invocations to

54

InternetInternet

StubStub

Client ApplicationClient Application

Remote Reference LayerRemote Reference Layer

Streaming Controller
Streaming Buffer

Streaming Controller
Streaming Buffer

TransportTransport
Continuous Buffer

TransportTransport
Continuous Buffer

LoaderLoader

RMI ServerRMI Server
Remote Object

LoaderLoader

RMI ServerRMI Server
Remote Object
RMI ServerRMI Server

Remote Object
Application Layer

Streaming RMI Layer

TransportTransport
Continuous Buffer

TransportTransport
Continuous Buffer

Figure 3: Details of streaming RMI architecture.

the streaming controller that is responsible for parsing their
meaning and making necessary modifications before sending
the invocations to streaming RMI servers.

Streaming Controller The streaming controller communicates with
the stub. It receives remote invocations intercepted by the
stub and parses their content. After parsing, the stub may
make modifications, distribute the invocations to many stream-
ing RMI servers, or directly return results that already re-
side in the local streaming buffer. It is also responsible for
scheduling which data each server should send to clients, and
how this should be achieved. The streaming controller also
gathers raw data received in continuous buffers, aggregates
them, and stores them in a streaming buffer.

Streaming Buffer The streaming buffer exists only on the client
side of a streaming RMI infrastructure, and serves as an ag-
gregation repository. A streaming RMI client may receive
raw data from different servers in the network. The stream-
ing controller knows how to aggregate these raw data and
store the results in the streaming buffer for applications to
retrieve.

Continuous Buffer The continuous buffer is responsible for push-
ing raw data from the server side to the client side, and so it
exists both on the client and server sides and can be treated
as a pair. The continuous buffer is in charge of buffering
data to send and sending data to the corresponding continu-
ous buffer on the client side at a specific rate. In addition,
the upper layer of the client side is able to read data from the
local continuous buffer for further processing.

Loader Standard Java RMI on the server side is designed to pas-
sively respond to client requests. To maximize efficiency,
streaming RMI servers should be able to actively send data to
clients. To achieve this, the loader is added to the server-side
architecture to periodically load streaming data into the con-
tinuous buffer after an initial streaming session is set up. The
data in the continuous buffer will then be pushed to clients.

A streaming RMI session is started as follows:

1. The server of the streaming session begins listening for an
incoming connection request.

2. A client queries for the specific type of remote object with an
RMI registry to obtain a stub.

3. The client application calls a specific initialization method on
a stub. The stub will forward the invocation to the streaming
controller.

4. The streaming controller parses the method invocation, looks
for available streaming RMI servers, creates continuous buffers,
and schedules how servers should send streaming data.

5. Initialization messages are sent to streaming RMI servers, as
in standard RMI; and continuous buffers create extra connec-
tions to server-side continuous buffers to support data push-
ing (see Section 4).

6. Data are loaded by server-side loaders to continuous buffers
and pushed to the client through sockets automatically. The
streaming controller collects and aggregates data, which are
stored in the streaming buffer after aggregation.

7. If subsequent data requests from client applications can be
satisfied by data stored in the streaming buffer, these method
invocations will be returned immediately.

4. PUSHING MECHANISM
This section describes pushing, which is the data transmission

mechanism in our streaming RMI architecture that replaces the
call-and-wait behavior in standard Java RMI. Our automatic mech-
anism of pushing from a server to clients is achieved by creating a
dedicated communication channel for data pushing, with the origi-
nal channel used by RMI to exchange control messages only. The
loader in the server of the streaming RMI infrastructure creates a
server socket and listens for incoming connections from clients. In
order to serve multiple clients, the loader creates a new thread and
activates the corresponding continuous buffer to handle the pushing
mechanism of the client each time it accepts a client socket. The
client sends the client ID through the socket to the server, allow-
ing the server to identify this client and know where to push the
data. After these session setup steps, the continuous buffer of the
streaming RMI server starts pushing data to the client.

Application of the pushing mechanism requires a method to co-
ordinate the pushing speed of the server. Because the physical
buffer length is always limited, the server may overwrite data not
yet received by the client if the data rate is too high, which can
cause a fatal system error.

Three flow control policies of the pushing mechanism are con-
sidered in our design:

1. Send Only When Consumed: In this scheme the client sends
the state of the buffer pointer to the server to determine how
much data has been consumed by client applications. The
server then pushes this amount of data to the client.

2. Adaptive: In this scheme the servers dynamically adjust the
pushing rate according to the buffer status of the client. The
adaptation is triggered when the client-side continuous buffer
is empty or full for a certain time period. The server will then
increase or decrease the pushing speed accordingly.

3. As Fast As Possible: In this scheme the servers push data as
fast as possible. This may cause some of the data in client
buffers to be overwritten. This policy can be applied when

55

the data arrival speed is more important than data integrity or
when expired data are useless to the user applications.

The application developers can choose the most suitable flow
control policy for specific applications, which makes the use of
streaming RMI more flexible in various distributed applications.

5. AGGREGATION
When a streaming RMI client requires a specific data stream,

there may be multiple streaming servers that are able to supply it.
It is likely to be desirable to create multiple connections to these
servers for several reasons: (1) this will share the load among the
servers (load balancing), (2) the bandwidth from several servers can
be used to supply the stream simultaneously so as to ensure smooth
playback, and (3) different data streams from different servers can
be merged into a new aggregated stream. Information on the avail-
ability of streaming servers can be obtained in several ways. For
example, one can use a peer-to-peer query (if we choose peer-
to-peer environment as our network transport layer) or via a cen-
tralized content-locator server. In our current implementation for
experiments, we adopt the second approach. A peer-to-peer en-
vironment can can be incorporated as well. Information of the
streaming servers containing specific content is obtained by the
streaming controller of a streaming RMI client simply querying
the content locator. After the information of available streaming
servers is available, a schedule on how these servers should send
the stream needs to be made. The optimal schedule depends on the
types of streams we retrieve, examples of which include the same
static (fixed-sized) content spread across different servers (such as
a movie) and different streams with the same properties (such as
video and audio streams of a baseball game) that will be aggre-
gated locally. Our streaming RMI framework makes it possible
for developers to customize the scheduling policies that are best
for their streams with component interfaces. After scheduling, the
schedules are sent out through multiple RMI connections to all of
the associated servers.

In this work, we focused on how to gather static data streams
from multiple servers that keep replicas of streams and aggregate
partial data into a complete data stream. We first introduce some
notation used to describe our aggregation algorithm:

• A set of streaming servers:S = {si|i = 1, . . . , n}.
• A set of data blocks:D = {dj |j = 1, . . . , m}.
• For each streaming serversi:

– The supplying bandwidthbi of si.

– A set of data blocks that exists insi: Blocks(si).

– The completeness of data insi: Completeness(si)

– The amount of content:ki

• The bandwidth requirement of the streaming session:Req(dj)

• The bandwidth allocation table:BATm×n

Algorithm 1 presents a mechanism to schedule the same data
stream coming from different servers. First, we evaluate theweight
for each streaming server, which represents their priorities. A server
with a higher weight is said to bepreferred. Three factors are used
to evaluate the weight of a server. If the bandwidth of a server is
higher, the server is capable of supplying more streaming sessions.
Another factor is the completeness of the data stream – when a
server has most of a data stream, it is more preferred. It is because

Algorithm 1 : Bandwidth allocation for aggregation

begin
/* Evaluate weight of each server */
foreachstreaming serversi in S do

Weight(si) =

α× bi
Req(dj)

+ β × Completeness(si) + γ × (1
ki

)

end
/* Sort list S by the weight of each

server in decreasing order */
Sort(List S)
/* Allocate bandwidth */
for i=1 to n do

for j=1 to m do
if Req(dj) > 0 anddj in Blocks(si) then

BAT (i, j) = MIN(bi, Req(dj))
Req(dj) = Req(dj)−BAT (i, j)

end
end
if every element inReq is 0 then

Break
end

end
end

Server ID Bandwidth Set of blocks contained Amount of content
A 10 {0, 1, 2, 3} 10
B 20 {0, 1} 5
C 10 {2, 3} 10

Table 1: A running example for Algorithm 1.

when we allocate supplying bandwidth from a streaming server, the
bandwidth will be occupied by the requesting client from the time
of admission till the end of the session. If it is only a small portion
of the complete data stream, there must be a lot of idle time for the
pushing thread of the streaming server, and the allocated bandwidth
is wasted. The completeness is by

Completeness(si) =
size(Blocks(si))

size(D)
, (1)

The third factor we considered is the amount of different content
on a streaming server. A server is less preferred if it has a larger
amount of different data streams, because it is better to first utilize
the bandwidth of those with fewer data streams, as they offer less
flexibility in the scheduling process. The server that is harder to
utilize is given work first whenever it has data that are required.
The weight of a server is defined as

Weight(si) = α× bi + β × Completeness(si) + γ × 1

ki
, (2)

whereα, β, andγ are coefficients that vary among network envi-
ronments and parameters.

However, theα in equation (2) which falls in the range from 0 to
bi, might effect on the result weight too much compared with other
coefficients. Normalization helps us better choose appropriate co-
efficients. The normalized weight equation is defined as

Weight(si) = α× bi

Req(dj)
+β×Completeness(si)+γ× 1

ki
, (3)

In Equation (3) we fixed theα coefficient by letting it be divided
by the required bandwidth of the data stream. Therefore, we can
set theα, β, andγ coefficients from 0 to 1 to calculate the weight.

56

The input to Algorithm 1 is the set of streaming servers,S.
We first evaluate weights for each server, and then sort the list by
weight. Next, we use up all of the bandwidth that the topmost
server can provide, followed by the second, etc., until all the re-
quired bandwidth is satisfied. The experiments described in Sec-
tion 8 demonstrate the effects of our proposed scheme.

Table 1 lists an example to illustrate how our algorithm works. A
stream with four blocks{0, 1, 2, 3} is requested, the bandwidth for
each block is 20 and there are three available streaming servers con-
taining blocks. If we chooseα=0.1,β=0.5, andγ=1, equation (3)
indicates that the weight of server A is0.05+0.5+0.1 = 0.65, the
weight of server B is0.1 + 0.25 + 0.2 = 0.55, and the weight of
server C is0.05 + 0.25 + 0.1 = 0.4. Server A has the highest pri-
ority, so we schedule it first. We allocate all the bandwidth needed
by blocks{0, 1, 2, 3} to it. After that, we allocate the bandwidth
needed by blocks{0, 1} from server B. If the bandwidth require-
ment is not satisfied by servers A and B, we allocate bandwidth
from server C. If the requirement cannot be satisfied by these three
streaming servers, the system reports that the allocation operation
has failed.

6. FORWARDING
It is possible that some popular media streams will be down-

loaded by many requesting clients simultaneously. In this situation,
the loading of streaming servers can be reduced if some of the ac-
tive clients are able to forward their content to other clients. For
example, in Figure 4, requesting clientsR2 andR3 can obtain the
data stream from forwarding clientR1.

S

R1R2

R3

Figure 4: Forwarding behavior.

In our design a requesting client can query the content locator
for available forwarding clients, which should reply with several
parameters, including the set of data blocks currently in its buffer,
the time to live (TTL) for the set of blocks (i.e., the time at which
the set will be available), and the bandwidth it can supply. We give
the descriptions for those parameters below.

Set of Forwardable Data Blocks The forwarding client may have
some blocks buffered before they are consumed by applica-
tions. These blocks can be forwarded to other clients, and
hence the forwarding client should notify the content locator
with the number of blocks available. We assume that the for-
warding client is able to forward all subsequent blocks of the
stream.

Time To Live We need an estimate of the time at which these blocks
will exist in the buffer before they expire; this information is
provided to requesting clients.

Supplying Bandwidth The forwarding client also needs to report
the amount of bandwidth it has available.

Algorithm 2 : Looking for forwarding clients

/* Query the content locator about the
availability of forwarding clients */

begin
foreach response from forwarding clientsdo

foreachblock in the set of forwardable blocksdo
if the TTL of this block is acceptablethen

Treat this forwarding client as a streaming
server containing all the required blocks after
this one
Break

end
end

end
end

Algorithm 2 presents our algorithm for the forwarding case. When
a requesting client needs forwarding clients, it sends a query to the
content locator as for querying a streaming server. When it receives
the responses, it has to check the TTLs of the set of data blocks and
dump those that may be expired when the client needs them. If a
block passes the test, the requesting client can assume the forward-
ing client is able to forward all subsequent blocks of the specific
stream, and schedule them as resources according to Algorithm 1.

7. SOFTWARE APIS OF STREAMING RMI
The major advantage of the Java RMI programming model is that

it hides the details of network communications. Our intention here
is to add streaming ability to the model while preserving this advan-
tage. In addition, we provide developers with as much flexibility as
possible in manipulating various types of data stream. Developers
are able to specify their customized scheduling policies to optimize
the performance and aggregation operators for post-processing.

The code shown in Figure 5 illustrates how to write a streaming
RMI client, which was actually used in our experiment. (See Sec-
tion 8.) It simply reads the remote object for specific amount of data
and writes the data read into a file. As shown in the example, the
initialization steps, such as registry creation and looking up for the
stub, are similar to standard RMI. The difference is in the line that
dataObj.initialize() is invoked, where several streaming
session setting parameters (including the address of the content lo-
cator, streaming data ID) are wrapped in objectInitSetting
and sent through standard RMI transport channel to participating
servers. The parameters are received by the loader at the server for
session setup procedures. After these initialization steps, the client
simply callsdataObj.read() to copy data to its own buffer.
The streaming server code is not listed here, because it is almost
exactly the same as a standard RMI server program except for the
use of theStreamingData class as the type of remote object.

We are able to specify customized scheduling policies by speci-
fying the type of scheduler to load in the configuration file (if this
is not done, the default scheduler will be applied). The interfaces
of the scheduler and operator are listed in Figure 6. A scheduler
takes a set of available sources and constraints of the streaming
session as input and returns a set of schedule plans once scheduling
is completed.

Figure 6 also defines the interface of aggregation operators. Pro-
grammers need to implement theProcess() method, which takes
a set of data blocks from different continuous buffers as input and
outputs a set of processed data blocks. The use of the two methods
SetNextOperator() andGetNextOperator() allows op-

57

public class StreamingClient {
public static void main(String args[]) {

byte[] buf = new byte[100 * 1024]; //read buffer
int toRead = 10*1024; // read block size = 10kB
int bytesRead = 0;
try {

Registry registry =
LocateRegistry.getRegistry(host, 9999);

StreamingInterface dataObj =
(StreamingInterface)
registry.lookup("StreamingData");

String id =
dataObj.initialize(
new InitSetting(host, "test.avi")
);

File file = new File("copy.avi");
FileOutputStream os = new FileOutputStream(file);
while (true) {

bytesRead = dataObj.read(buf, 0, toRead);
if (bytesRead == -1) {

os.close();
return;

}
os.write(buf, 0, bytesRead);
if (bytesRead == 0)

Thread.sleep(5); \\ rest for a while
}

} catch (Exception e) {
e.printStackTrace();

}
}

}

Figure 5: Code listing: initialization of a streaming RMI client.

public IScheduler {
Plan[] Schedule(Node[] sources, Constraints c);

}

public IOperator {
Block[] Process(Block[] blocks);
void SetNextOperator(IOperator op);
IOperator GetNextOperator();

}

Figure 6: Code listing: interfaces of scheduler and operator.

erators to be chained to each other to perform a series of operations.
For example, we can chain a decompression operator and a merge
operator to decompress streams before merging them.

The above examples indicate that creating a streaming RMI ap-
plication is as simple as creating a standard RMI one. Our stream-
ing RMI framework also provides flexibility for developers to per-
form various aggregation operations and to apply customized schedul-
ing policies.

8. EXPERIMENTS
We evaluated the performance and overhead of our streaming

designs using experiments in which it was deployed in a simple
streaming application, and compared it with standard RMI. In ad-
dition, we performed a simulation to show the advantages of our
proposed aggregation algorithm.

In our first experiment, we evaluated the performance by setting
up a streaming server and a requesting client (which is listed in Sec-
tion 7) over a 100Mbits/sec bandwidth link. The programs are built
and tested under JDK version 1.5.004 in Microsoft Windows XP
machines. The client tried to retrieve a data stream by repeatedly
requesting a fixed-sized block. We measured the throughput ob-

tained by varying the block size the client requested in eachread
operation. In streaming RMI, the operation should benefit from our
pushing mechanism for its prefetching behavior.

0

10

20

30

40

50

60

70

80

90

100

1 10 20 30 40 50

Size of each read operation (kB)

T
hr

ou
gh

pu
t (

M
b/

s)

Standard RMI Streaming RMI

Figure 7: Performance benefits with the pushing mechanism.

Figure 7 presents the performance comparison, and indicates that
the smaller the read block size was, the worse standard RMI per-
formed. From the result, we observed that pushing mechanism ac-
tually made data streaming effective, because streaming RMI was
able to utilize about 85% of network bandwidth provided, while the
throughput of standard RMI suffered from frequent remote method
invocations to the RMI server. For streaming RMI, method invoca-
tions are performed only at initialization or changing streaming set-
tings and data are automatically pushed from server to client with-
out extra remote method invocations, while standard RMI needs
client to make a remote method invocation with streaming server
for each block requested. Although the situation for standard RMI
improved with the increasing size of read blocks, its throughput
was still far behind the throughput of streaming RMI.

Read block size (kbyte) 1 10 50 100
Read times 5000 500 100 50

Standard RMI read overhead (byte) 243777 25000 5979 3129
Streaming RMI read overhead (byte) 769 768 769 769
Standard RMI write overhead (byte) 228798 23413 5223 2880

Streaming RMI write overhead (byte) 647 646 647 646

Table 2: The data overhead in sum caused by invocation mes-
sages.

In the second experiment, we compared the additional data over-
head caused by invocation messages of standard RMI with the over-
head in streaming RMI. We set up a streaming server and a client.
The client requested for a 5 MB data stream from the server by
repeatedly reading a fixed-sized block, and we used a counting
socket in RMI transport layer to measure total amount of bytes
sent and received from the socket. In standard RMI, eachread
operation is marshalled by its stub and sent to RMI transport layer,
but in streaming RMI, theread operation performed by a client
is handled bystreaming controllerby checking the local continu-
ous buffer for data prefetched from a dedicated pushing channel.
As a result, these invocations are handled locally without travelling
through the network. We suppose the data overhead from invoca-
tion messages is greatly reduced in streaming RMI, and the exper-
imental results proved it.

58

0 0.2 0.4 0.6 0.8 1
0

0.4

0.8

0.4

0.44

0.48

0.52

0.56
R

at
io

β

γ

(a)
Simulation A

0.52-0.56

0.48-0.52

0.44-0.48

0.4-0.44

α= 0.5
Number of streams = 400

0 0.2 0.4 0.6 0.8 1
0

0.4

0.8

0.4

0.44

0.48

0.52

0.56

R
at

io

β

γ

(b)
Simulation B

0.52-0.56

0.48-0.52

0.44-0.48

0.4-0.44

α= 0.5
Number of streams = 200

0 0.2 0.4 0.6 0.8 1
0

0.4

0.8

0.4

0.44

0.48

0.52

0.56

R
at

io

β

γ

(c)
Simulation C

0.52-0.56

0.48-0.52

0.44-0.48

0.4-0.44

α= 0.5
Number of streams = 100

0 0.2 0.4 0.6 0.8 1
0

0.4

0.8

0.34

0.38

0.42

0.46

0.5

R
at

io

β

γ

(d)
Simulation D

0.46-0.5

0.42-0.46

0.38-0.42

0.34-0.38

α= 0.1
Number of streams = 100

Figure 8: The simulation results with different coefficient weights from our aggregation method.

From Table 2, we are able to see that in standard RMI, the total
data overhead was large when the read block size was small. Be-
cause the client needed to send more invocation messages for the
same stream. With pushing mechanism, the data was prefetched in
the local buffer of the client, and the need of exchanging invocation
request and response messages was greatly reduced. Thus, no mat-
ter which size of the read block was, the total overhead was nearly
the same and minimal.

Next, we designed an experimental simulator for investigating
the effects of our proposed aggregation policy. We input parameters
needed into the simulator, and the simulator runs by the following
steps:

1. Creates nodes and bandwidth information.

2. Generates and distributes streaming contents into the nodes.

3. Generates and distributes streaming requests into the nodes.

4. Run the simulation. Scheduling is performed at the time each
request is issued.

Table 3 lists the parameters and their values used in the simula-
tion. The number of nodes, the number of different streams, the
simulation period, and the size of the data stream were fixed. The
number of duplicates of a stream, the bandwidth settings of nodes,
and the bandwidth requirements of streams were selected consid-
ering behaviors of real life applications, with the samples being
uniformly distributed between the upper and lower bounds. We

tested the performance under different coefficient sets with a fixed
requests. In our simulation, parameters were set as shown in Ta-
ble 3. The results are presented in Figure 8.

Parameter Value
Number of nodes 1000

Size of data streams (MB) 2
Simulation period (s) 3600
Number of duplicates 1, 2, 3, . . . , 100

In-bound bandwidth (kB/s) 8, 16, 32, 64, 128
Out-bound bandwidth (kB/s) 8, 16, 32

Bandwidth requirement (kB/s) 8, 16, 32, 64, 128, 256, 512
Number of requests 5000

β, γ 0, 0.1, 0.2, 0.3,. . . , 1.0

Simulation (a) (b) (c) (d)
α 0.5 0.5 0.5 0.1

Number of different streams 400 200 100 100

Table 3: Parameter sets used in the simulation.

The x-axis isβ, the y-axis isγ, and the z-axis representsthe ratio
of average waiting timeof systems deploying our aggregation pol-
icy compared with those without aggregation policy (which means
that only nodes with complete data streams are able to supply the
request). Thus the the lower z values represents the better results.

In Figures 8(a), 8(b), and 8(c), there is a clear trend that when the
coefficientβ (which represents completeness of a data stream) was
increased, the ratio of average waiting time is lower. This shows the

59

importance ofβ in our aggregation policy. Also by observing the
three figures, we know that when the number of different streams
reduced, the slope was getting steeper but the results are not overall
worse. It indicates the possiblity for a system manager to adjust
the coefficients to get better performance, or the system automati-
cally adjusts them from machine learning experiences when stream
sources become fewer.

And from Figures 8(c) and 8(d), we found that whenα (which
represents the importance of available bandwidth) was lower, the
effect ofβ andγ is magnified, and achieved overall better results.
We suppose that with aggregation, the bandwidth requirement of
a streaming session is easy to be satisfied while there are lots of
duplicates in the network. Thus the importance ofα is reduced.

The simulation results indicate that our aggregation policy greatly
reduces the average waiting time, and that better performance is
obtained in all cases when all three factors are considered. It also
demonstrates that the completeness of a stream is the most impor-
tant factor, and suggests that tuning of coefficients may further im-
prove system performances.

9. RELATED WORK AND DISCUSSION
Streaming multimedia has great increased in popularity in recent

years, in applications such as video on demand. A streaming mod-
ule implements “play while downloading” instead of “play after
downloading”. Several techniques have been proposed to imple-
ment streaming on the Internet. A distributed video streaming is
presented in [12], where each session involves multiple replicated
video servers. The idea is similar to our aggregation mechanism
in Section 5. However, the system lacks scalability without mech-
anisms like forwarding, so the system may be overloaded if the
number of clients grows. In [13], multiple reliable servers are in-
stalled across the network to act as a software router with multicast
capability. This approach can allow a client to obtain data not only
from the source but also from the software router, thus alleviating
the bandwidth demand on the source, which is similar to the effect
of the forwarding mechanism.

The Object Management Group has defined a specification for
the control and management of audiovisual streams [14], based on
the CORBA (Common Object Request Broker Architecture) ref-
erence model [15]. This specification defines the mode of imple-
mentation of an open distributed multimedia streaming framework.
In [16], TAO audiovisual streaming services are addressed and pro-
vide applications with the advantages of using CORBA IIOP in
their stream establishment and control module, while allowing the
use of more efficient transport-layer protocols for data streaming.
An explicit open bindings mechanism is proposed in [17], which
allows the programmer to set up an additional transport connec-
tion between CORBA objects. This connection can be used for
more precise control over streaming session. This is similar to our
work in extending a remote method invocation mechanism to pro-
vide streaming ability. Nevertheless, it only focuses on the data
delivery process, and lacks data aggregation mechanism for users
to better manipulate the content of streaming data.

Compared with previous research works, our work is designed to
extend the streaming capabilities for standard Java RMI, which is a
well known language feature of a popular object-oriented program-
ming language. We also provide software APIs for programmers to
build streaming applications on top of our framework.

In this paper we provide an alternative method on handling stream-
ing data. We model data streams into objects which can be ac-
cessed remotely by our extended RMI mechanism. Our design
also presents a framework allowing the data stream objects to dis-
tribute the delivering jobs to other duplicated source and the client

to schedule and aggregate the data. Different scheduling algorithms
can be plugged in this framework to provide adequate functionality.
We believe this extended RMI can be used as prime functions ex-
posed to the users of Data Stream Management Systems (DSMS)
such as Aurora [18] and Nile [19]. In JSR 158: Java Stream As-
sembly [20], a model for stream manipulation is proposed, which is
similar with what we would like to achieve in aggregation mecha-
nism. We might consider the possibilities of integrating these tech-
niques into our framework in the future.

As to the issue of garbage collection, the processing and deliv-
ering of streaming data might be interfered when garbage collec-
tion occurs. In our implementation we reuse most objects such as
temporary buffers to reduce the need of heap allocation. Neverthe-
less this can not completely avoid garbage collection. To guarantee
smooth streaming processing, a system incorporating performance
issues and models of real-time garbage collection schemes is also
be needed.

10. CONCLUSIONS
In this paper we present our novel methodologies for enhanc-

ing the streaming capabilities of Java RMI by inserting additional
components such as streaming controller, streaming buffer, contin-
uous buffer, and loader. These components are designed for sup-
porting core streaming technologies with pushing, aggregation, and
forwarding mechanisms. Our work also comes with a software de-
sign that is ready for use. Preliminary experiments performed using
our framework demonstrate the promising performance of our pro-
posed schemes in providing streaming services in Java RMI layers.

Acknowledgements
We would like to thank the anonymous reviewers for their valuable
suggestions and comments that have helped to improve the presen-
tation and quality of our paper.

This work was supported in part by Ministry of Economic Af-
fairs under grant no. 95-EC-17-A-01-S1-034, by National Science
Council under grant no. NSC 94-2220-E-007-019, NSC 94-2220-
E-007-020, NSC 94-2213-E-007-074, NSC 95-2752-E-007-004-
PAE, and NSC 95-3113-P-007-002, and by Institute for Informa-
tion Industry under grant no. 95-EC-17-A-99-R1-0461.

11. REFERENCES
[1] G. K. Thiruvathukal, L. S. Thomas, and A. T. Korczynski.

Reflective remote method invocation.Concurrency: Practice
and Experience, 10(11–13):911–925, 1998.

[2] R. R. Raje, J. I. Williams, and M. Boyles. Asynchronous
Remote Method Invocation (ARMI) mechanism for Java.
Concurrency: Practice and Experience, 9(11):1207–1211,
1997.

[3] J. Maassen, R. van Nieuwport, R. Veldema, H. E. Bal, and A.
Plaat. An efficient implementation of Java remote method
invocation. In:The Proceedings of the 7th ACM SIGPLAN
Symp. on Principles and Practice of Parallel Programming,
Atlanta, GA, pp. 173–182, May 1999.

[4] C. Nester, M. Philippsen, and B. Haumacher. A more
efficient RMI for Java. In:Proceedings of the ACM Java
Grande Conference, San Francisco, CA, pp. 152–157, Jun.
1999.

[5] F. Breg, S. Diwan, J. Villacis, J. Balasubramanian, E.
Akman, and D. Gannon. Java RMI performance and object
model interoperability: experiments with Java/HPC++.
Concurrency: Practice and Experience, 10(11–13):941–956,
1998.

60

[6] P. C. Wey, J. S. Chen, C.-W. Chen, and J.-K. Lee. Support
and optimization of Java RMI over Bluetooth environments.
In: Proceedings of the ACM Java Grande - ISCOPE
Conference, Seattle, WA, 17:967–989, Nov. 2002.

[7] C.-W. Chen, C.-K. Chen, J.-C. Chen, C.-T. Ko, J.-K. Lee,
H.-W. Lin, and W.-J. Wu. Efficient support of Java RMI over
heterogeneous wireless networks. In:Proceedings of ICC,
Paris, France, pp. 1391–1395, Jun. 2004.

[8] N. Narasimhan, L. E. Moser, and P. M. Melliar-Smith.
Interception in the Aroma system. In:Proceedings of the
ACM Java Grande Conference, San Francisco, CA,
pp. 107–115, Jun. 2000.

[9] C.-K. Chen, C.-W. Chen, and J.-K. Lee. Specification and
architecture supports for component adaptations on
distributed environments. In:Proceedings of IPDPS, Santa
Fe, NM, pp. 47a, Apr. 2004.

[10] C.-K. Chen, Y.-H. Chang, C.-W. Chen, Y.-T. Chen, C.-C.
Yang, and J.-K. Lee. Efficient switching supports of
distributed .NET Remoting with network processors. In:
Proceedings of ICPP, Oslo, Norway, pp. 350–357, Jun. 2005.

[11] National Science Council (NSC).Research Excellence
Project.http://www.ccrc.nthu.edu.tw/PPAEUII/.

[12] T. Nguyen and A. Zakhor. Distributed video streaming over
Internet. In:Proceedings of SPIE/ACM MMCN, San Jones,
CA, Jan. 2002.

[13] J. Jannotti, D. K. Gifford, and K. L. Johnson. Overcast:
reliable multicasting with an overlay network. In:
Proceedings of the USENIX Symposium on Operating
System Design and Implementation, San Diego, CA,
pp. 209–301, Oct. 2000.

[14] Object Management Group. Control and management of
A/V streams specification. OMG document telecom,
97-05-07 edn., Oct. 1997.

[15] Object Management Group. The common object request
broker: architecture and specification, edn. 2.2, Feb. 1998.

[16] S. Mungee, N. Surendran, D. C. Schmidt. The design and
performance of a CORBA audio/video streaming service. In:
Proceedings of the Hawaii International Conference on
System Sciences, Maui, Hawaii, pp. 8043, Jan. 1999.

[17] T. Fitzpatrick, G. Blair, G. Coulson, N. Davies, and P. Robin.
Supporting adaptive multimedia applications through open
bindings. In:Proceedings of ICCDS, Annapolis, Maryland,
pp. 128, May 1998.

[18] D. J. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C.
Convey, S. Lee, M. Stonebraker, N. Tatbul, and S. Zdonik.
Aurora: a new model and architecture for data stream
management In:The VLDB Journal, 12(2):120–139, 2003.

[19] M. A. Hammad, M. F. Mokbel, M. H. Ali, W. G. Aref, A. C.
Catlin, A. K. Elmagarmid, M. Eltabakh, M. G. Elfeky, T. M.
Ghanem, R. Gwadera, I. F. Ilyas, M. Marzouk, and X. Xiong.
Nile: a query processing engine for data streams. In:
Proceedings of ICDE, Boston, MA, pp. 851-, Mar 2004.

[20] Sun Microsystems, Inc. JSR 158: Java Stream Assembly.
http://jcp.org/en/jsr/detail?id=158.

61

 Enabling Java Mobile Computing on the IBM Jikes
Research Virtual Machine

Giacomo Cabri
Dipartimento di Ingegneria

dell’Informazione – Università di
Modena e Reggio Emilia

cabri.giacomo@unimore.it

Letizia Leonardi
Dipartimento di Ingegneria

dell’Informazione – Università di
Modena e Reggio Emilia

leonardi.letizia@unimore.it

Raffaele Quitadamo
Dipartimento di Ingegneria

dell’Informazione – Università di
Modena e Reggio Emilia

quitadamo.raffaele@unimore.it

ABSTRACT
Today’s complex applications must face the distribution of data
and code among different network nodes. Java is a wide-spread
language that allows developers to build complex software, even
distributed, but it cannot handle the migration of computations
(i.e. threads), due to intrinsic limitations of many traditional
JVMs. After analyzing the approaches in literature, this paper
presents our research work on the IBM Jikes Research Virtual
Machine: exploiting some of its innovative VM techniques, we
implemented an extension of its scheduler that allows applications
to easily capture the state of a running thread and makes it
possible to restore it elsewhere (i.e. on a different hardware or
software architecture, but still with a version of JikesRVM
installed). Our thread serialization mechanism provides support
for both proactive and reactive migration of single- and multi-
threaded Java applications. With respect to previous approaches,
we implemented the mobility framework without recompiling a
previous JVM source code, but simply extending its
functionalities with a full Java package.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and
Features D.1.3 [Concurrent Programming]: Distributed
Programming; D.3.3 [Programming Languages]: Language
Constructs and Features.

General Terms
Design, Experimentation, Languages.

Keywords
Java Virtual Machine, thread persistence, code mobility,
distributed applications.

1. INTRODUCTION
Modern distributed systems are becoming more and more
complex, leading to the need for flexibility, that has to be

considered very desirable, if not mandatory, when large scale
distributed computations are performed. Conventional software
components, scattered among network nodes, provide services to
other components or to end users, but are often statically bound to
their hosting environment. This view is being challenged by
technical developments that introduce a degree of mobility in
distributed systems. Wireless LANs and mobile devices have
already highlighted the potentials of physical mobility [15, 4].
Code mobility is instead reshaping the logical structure of modern
distributed systems as it enriches software components (in
particular, execution units) with the capability to dynamically
reconfigure their bindings with the underlying execution
environments. The concept is simple and elegant; an object (that
may be active or passive) that resides on one node is migrated to
another node where execution is continued. The main advantages
of mobile computations, be they object-based or not, are as
follows: (i) load balancing: distributing computations (e.g. Java
threads) among many processors as opposed to one processor
gives faster performance for tasks that can be fragmented; (ii)
communication performance: active objects that interact
intensively can be moved to the same node to reduce the
communication cost for the duration of their interaction; (iii)
availability: objects can be moved to different nodes to improve
the service and provide better failure coverage or to mitigate
against lost or broken connections; (iv) reconfiguration: migrating
objects permits continued service during upgrade or node failure.
(v) location independence: an object visiting a node can rebind to
generic services without needing to specifically locate them. They
can also move to take advantage of services or capabilities of
particular nodes.

It can be argued that Java has all the prerogatives to make thread
mobility possible: its platform-independent bytecode language
and the support for object serialization. Regular Java object can
be easily made persistent or migrated to other machines, by means
of the JVM built-in serialization facility. Java threads are
coherently presented to the programmer as objects as well, but
their serialization does not produce the desired effect of
“capturing their current execution flow and resuming it
elsewhere”; it is just the java.lang.Thread object, with its
fields, that is serialized, while the real execution flow is still
tightly bound to the execution environment. The Java
programming language does not therefore support the migration
of execution units (e.g. threads), which exists for other languages
and specific operating systems [17].

Some kind of framework or “JVM enhancement” is thus needed
to enable mobile computations in distributed Java applications.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
PPPJ2006, August 30 – September 1, 2006, Mannheim, Germany.
Copyright 2006 ACM …$5.00.

62

Several approaches have been proposed and experimented in
order to add thread migration capability to the Java run-time
environment. The bulk of them provide only a “weaker form” of
mobility, where the system simply allows the migration of the
code and some data, but discards the execution state (e.g. the Java
method stack, context registers and instruction pointer). In
Section 2 of this paper, we argue that weak mobility is not always
the best choice (e.g. particularly when dealing with complex
parallel computations) and is sometimes definitely unsuitable in
some cases (e.g. if the program has a recursive behavior).
Therefore, after having shortly discussing the main issues of
thread migration in the literature and its motivations with some
potential applications, in Section 3 we outline the main
contributions of this paper: a novel approach towards the
provision of Java thread strong migration on top of the IBM Jikes
Research Virtual Machine, exploiting some well-established
object-oriented language techniques (e.g. On-Stack Replacement,
type-accurate garbage collectors, quasi-preemptive Java thread
scheduler, etc.) to capture the execution state of a running thread;
an extension of the IBM JikesRVM scheduler that Java
programmers can dynamically enable, simply importing a Java
package into their mobile Java applications. The choice of
JikesRVM is strongly motivated by the fact that it was born as a
VM specifically targeted to multiprocessor SMP servers.
Likewise, our framework focuses on these kinds of hardware,
where strong mobility is mostly required. In Section 4, we present
our performance tests, made writing a benchmark based on the
Fibonacci recursive algorithm, and in Section 5 we prospect our
future research work on this mobility framework. Conclusions are
drawn in Section 6.

2. BACKGROUND AND MOTIVATIONS
This section introduces the main issues to address when designing
a thread migration mechanism and provides a brief overview of
proposed approaches in literature. It also sketches some real
applications that would benefit from the work explained later.

2.1 Motivations
The choice of thread mobility, when designing distributed Java
applications, has to be carefully motivated, since it is not always
the best one in most simple cases. Distributed and parallel
computations can be considered perhaps the “killer application”
of such technique. For instance, complex elaborations, possibly
with a high degree of parallelism, carried out on a cluster of
servers would certainly benefit from a thread migration facility in
the JVM. Well-know cases of such applications are mathematical
computations, which are often recursive by their own nature (e.g.
fractal calculations) and can be parallelized to achieve better
elaboration times.

Another field of application for mobile threads is load balancing
in distributed systems (e.g. in the Grid Computing field), where a
number of worker nodes have several tasks appointed to them. In
order to avoid overloading some nodes while leaving some others
idle (for a better exploitation of the available resources and an
increased throughput), these systems need to constantly monitor
the execution of their tasks and possibly re-assign them,
according to an established load-balancing algorithm. As we will
see later, a particular kind of thread migration (called reactive
migration), that we provide in our framework, fits very well the
requirements of these systems.

2.2 Thread mobility issues
Java threads are often considered a valid example of a so-called
execution unit [11], performing their tasks in a computational
environment (i.e. the JVM), but without any possibility of
detaching from their native environment. An execution unit is
conventionally split into three separate parts that are supposed to
be movable to achieve the overall mobility of the execution unit:

• the code segment (i.e. the set of compiled methods of
the application);

• the data space, a collection of all the resources accessed
by the execution unit. In an object-oriented system,
these resources are represented by objects in the heap;

• an execution state, containing private data as well as
control information, such as the call stack and the
instruction pointer.

Weakly mobile threads can transfer their execution, bringing only
code and some data, while the call stack is lost. From the
architectural standpoint, it is relatively easy to implement weak
mobility on top of the JVM, because the Java language provides
very powerful tools for that purpose: object serialization is used
to migrate data, such as objects referenced by the program;
bytecode and dynamic class-loaders facilitate the task of moving
the code across distant JVMs, hosted by heterogeneous hardware
platforms and operating systems.

public class MyAgent extends Agent {

protected boolean migrated = false;
// indicates if the agent has moved yet

public void run(){
 if(! migrated){
 //…things to do before the migration
 migrated = true;
 try{ migrate(newURL(“nexthost.unimore.it”);
 }catch(Exception e){ migrated = false; }
 }
 else{ // things to do on the destination host
 // possibly other if/else to handle other
 // conditions…
 }
}}

Figure 1. An example of a weak mobile agent.
From an application point of view, weakly mobile systems
usually force the programmer to write code in a less natural style:
extra programming effort is required in order to manually save the
execution state, with flags and other artificial expedients. For
instance, Mobile Agents (MA) [9] are usually weakly mobile
execution units, used in many scenarios: e.g. distributed
information retrieval, online auctions and other systems where
they have to follow the user’s movements, for migrating from and
to the user’s portable device (mobile phone, PDA, etc.). A simple
weak agent is shown in Figure 1. The point is that, with weak
mobility, it is as the code routinely performs rollbacks. In fact,
looking at the code in Figure 1, it is clear how, after a successful
migrate() method call that causes the agent migration, the code
does not continue its execution in the run() method from that
point. Instead, the code restarts from the beginning of the run()
method (on the destination machine, of course), and thus there is a
code rollback. The fact that an agent restarts its execution always
from a defined entry point, could produce awkward solutions,
forcing the developer to use flags and other indicators to take care
of the host the agent is currently running on.

63

A strongly mobile thread has the ability to migrate its code and
execution state, including the program counter, saved processor
registers, return addresses and local variables. The component is
suspended, marshaled, transmitted, unmarshaled and then
restarted at the destination node without loss of data or execution
state. Strong mobility turns out to be far more powerful where
complex distributed computations are required, as it preserves the
traditional programming style of threads, without requiring any
code rollback or other expedients: it reduces the migration
programming effort to the invocation of a single operation (e.g. a
migrate() method) and leads to cleaner implementations.
Despite these advantages, many systems support only weak
mobility and the reason lies mainly in the complexity issues of
strong mobility and in the insufficient support of existing JVMs to
deal with the execution state. Moreover, a weakly mobile system
gives the programmer more control over the amount of state that
has to be transferred, while an agent using strong migration may
bring unnecessary state, increasing the size of the serialized data.

2.3 Related work
Several approaches have been proposed so far to overcome the
limitations of the JVM as concerns the execution state
management. The main decision that each approach has to take
into account is how to capture the internal state of threads,
providing a fair trade-off between performances and portability.
In literature, we can typically find two categories of approaches:

• modifying or extending the source code of existing
JVMs to introduce APIs for enabling migration (JVM-
level approach);

• translating somehow the application’s source code in
order to trace constantly the state of each thread and
using the gathered information to rebuild the state
remotely (application-level approach).

2.3.1 JVM-level approach
The former approach is, with no doubt, more intuitive because it
provides the user with an advanced version of the JVM, which
can completely externalize the state of Java threads (for thread
serialization) and can, furthermore, initialize a thread with a
particular state (for thread de-serialization). The kind of
manipulations made upon the JVM can be several.

The first proposed projects following the JVM-level approach like
Sumatra [22], Merpati [21], JavaThread [6] and NOMADS [23],
extend the Java interpreter to precisely monitor the execution
state evolution. They, usually, face the problem of stack
references collection modifying the interpreter in such a way that
each time a bytecode instruction pushes a value on the stack, the
type of this value is determined and stored "somewhere" (e.g., in a
parallel stack). The drawback of this solution is that it introduces
a significant performance overhead on thread execution, since
additional computation has to be performed in parallel with
bytecode interpretation. Other projects tried to reduce this
penalization avoiding interpreter extension, but rather using JIT
(Just In Time) re-compilation (such as Jessica2 [28]) or
performing type inference only at serialization time (and not
during thread normal execution). In ITS [5], the bytecode of each
method in the call stack is analyzed with one pass at serialization
time: the type of stacked data is retrieved and used to build a
portable data structure representing the state. The main drawback
of every JVM-level solution is that they implement special

modified JVM versions that users have often to download;
therefore they are forced to run their applications on a prototypal
and possibly unreliable JVM.

2.3.2 Application-level approach
In order to address the issue of non-portability on multiple Java
environments, some projects propose a solution at the application
level. In these approaches, the application code is filtered by a
pre-processor, prior to execution, and new statements are inserted,
with the purpose of managing state capturing and restoration.
Some of these solutions rely on a bytecode pre-processor (e.g.
JavaGoX [18] or Brakes [25]), while others provide source code
translation (e.g. Wasp [12], JavaGo [19], Wang's proposal [26]).
Two of them [19, 26] hide a weak mobility system behind the
appearance of a strong mobility one: they, in fact, re-organize
"strongly-mobile" written code into a "weakly-mobile" style, so
that weak mobility can be used instead. Portability is achieved at
the price of a slowdown, due to the many added statements.

2.3.3 Discussion
Starting from the above considerations, we have decided to design
and implement a strong thread migration system able to overcome
many of the problems of the above-explained approaches. In
particular, our framework is written entirely in Java and it does
neither suffer performance overheads, due to bytecode
instrumentations, nor reliability problems, because the user does
not have to download a new, possibly untrustworthy, version of
JikesRVM. The framework is capable of dynamically installing
itself on several recent versions of JikesRVM (we carried out
successful tests starting from release 2.3.2). In fact, every single
component of the migration system has been designed and
developed to be used as a normal Java library, without requiring
rebuilding or changing the VM source code. Therefore, our
JikesRVM-based approach can be classified as a midway
approach between the above-mentioned JVM-level and
Application-level approaches. Other midway approaches [14]
exploit the JPDA (Java Platform Debugger Architecture) that
allows debuggers to access and modify runtime information of
running Java applications. The JPDA can be used to capture and
restore the state of a running program, obtaining a transparent
migration of mobile agents in Java, although it suffers from some
performance degradation due to the debugger intrusion.

3. ENABLING THREAD MIGRATION ON
TOP OF JIKESRVM
In this section we will describe how we implemented our strong
migration mechanism on top of the IBM Jikes Research Virtual
Machine (RVM). The JikesRVM project was born in 1997 at the
IBM T.J. Watson Laboratories [1] and it has been recently
donated by IBM to the open-source community. Two main design
goals drove the development of such successful research project
[2]: (i) supporting high performance Java servers; (ii) providing a
flexible research platform “where novel VM ideas can be
explored, tested and evaluated”.

In this research virtual machine, several modern programming
language techniques have been experimented and, throughout this
presentation, we will focus mainly on those features that are most
strategic to our system. The proposed description will follow the
migration process in its fundamental steps, from thread state
capturing to resuming at the destination machine.

64

3.1 Our JikesRVM extension
When the programmer wants to endow her threads with the
capability to migrate or be made persistent on disk, the first
simple thing to do is to import the mobility package, which
exposes the MobileThread class. The latter inherits directly from
the java.lang.Thread class and has to be sub-classed by user-
defined threads.
The configuration of the scheduler, when our JikesRVM
extension is installed, is reported in Figure 2: the idea is that now,
with mobility, threads can enter and exit the local environment
through some migration channels. These channels are represented
in Figure 2 using the classical notation of queuing networks. The
software components added by our infrastructure are highlighted
with boxes and it can be clearly seen how these parts are
dynamically integrated into JikesRVM scheduler, when the
programmer enables the migration services.
The single output channel is implemented through a regular
thread, which runs in a loop, performing the following actions:

1) extract a mobile thread from the migration queue, where
these threads wait to be transferred;

2) establish a TCP socket connection with the destination
specified by the extracted thread;

3) if the previous step is successful, then capture the
complete thread state data (i.e. the MobileThread
object and the sequence of frames into its call stack, as
better explained in Subsection 3.3);

4) serialize those data into the socket stream
(java.io.ObjectOutputStream);

5) close the connection with the other end-point.

Figure 2. Adding migration channels to JikesRVM scheduler
One or more input channels are implemented by means of regular
threads listening on specific TCP ports. When a connection
request is issued from the network, they simply do the followings:

1) open the connection with the requesting host;
2) read thread state data from the socket stream

(java.io.ObjectInputStream);
3) re-establish a local instance of the arrived thread and

resume it;
4) close the connection socket.

A first observation is that non-mobile (“stationary” as in Figure 2)
threads in the system are not influenced at all by the infrastructure
built upon the scheduler. Only those threads that inherit from our

enhanced MobileThread class are interested in the added
migration services.

3.2 Proactive migration vs. reactive migration
There are two ways for a MobileThread to get queued into the
migration queue, waiting for the output channel to transfer it [11]:

• the mobile thread autonomously determines the time
and destination for its migration, calling the
MobileThread.migrate(URL destination)
method (proactive migration);

• its movement is triggered by a different thread that can
have some kind of relationship with the thread to be
migrated, e.g. acting as a manager of roaming threads
(reactive migration).

Exploiting JikesRVM features, we successfully implemented both
migration types, in particular the reactive migration. As
anticipated in Subsection 2.1, an application, in which reactive
migration can be essential, is a load-balancing facility in a
distributed system. If the virtual machine provides such
functionality to authorized threads, a load monitor thread may
want to suspend the execution of a worker thread A, assign it to
the least overloaded machine and resume its execution from the
next instruction in A’s code. This form of transparent externally-
requested migration is harder to implement with respect to the
proactive case, mainly because of its asynchronous nature.
Proactive migration raises, in fact, less semantic issues than the
reactive one, though identical to the latter from the
technological/implementation point of view: in both cases we
have to walk back the call stack of the thread, extract the
meaningful frames and send the entire thread data to destination
(see the following two subsections for more details). The
fundamental difference is that proactive migration is synchronized
by its own nature (the thread invokes migrate() when it means
to migrate), while for reactive migration the time when the thread
has to be interrupted could be unpredictable (the requester thread
notifies the migration request to the destination thread, but the
operation is not supposed to be instantaneous). Therefore, in the
latter case, the critical design-level decision is about the degree of
asynchronism to provide. In a few words, the question is: should
the designated thread be interruptible anywhere in its code or just
in specific safe migration points?
We chose to provide a more coarse-grained migration in the
reactive case. Our choice has a twofold motivation: (i) designing
the migration facility is simpler; (ii) decreasing migration
granularity reduces inconsistency risks. Although these
motivations can be considered general rules-of-thumb, they are
indeed related to the VM we adopted. In fact, the scheduling of
the threads in JikesRVM has been defined as quasi-preemptive
[1], since it is driven by JikesRVM compilers. In JikesRVM, Java
threads are objects that can be executed and scheduled by several
kernel-level threads, called virtual processors, each one running
on a physical processor. What happens is that the compiler
introduces, within each compiled method body, special code
(yieldpoints) that causes the thread to request its virtual processor
if it can continue the execution or not. If the virtual processor
grants the execution, the virtual thread continues until a new
yieldpoint is reached, otherwise it suspends itself so that the
virtual processor can execute another virtual thread. In particular,
when the thread reaches a certain yieldpoint (e.g. because its time
slice is expired), it prepares itself to dismiss the scheduler and let

65

a context switch occur. The invoked function to deal with a
reached yieldpoint is the static method
VM_Thread.yieldpoint(). If we allow a reactive migration
with a too fine granularity (i.e. potentially at any yieldpoint in
thread’s life), inconsistency problems are guaranteed. The thread
can potentially lose control in any methods, from its own user-
implemented methods to internal Java library methods (e.g.
System.out.println(), Object.wait() and so forth). It may
occur that a critical I/O operation is being carried out and a blind
thread migration would result in possible inconsistency errors.
We are currently tackling the reactive migration issues thanks to
JikesRVM yieldpoints and the JIT compiler. In order to make
mobile threads interruptible with the mentioned coarse
granularity, we introduced the migration point concept: migration
points are always a subset of yieldpoints, because they are
reached only if a yieldpoint is taken. The only difference is that
migration points are inserted only:

1) in the methods of the MobileThread class (by default);
2) in all user-defined class implementing the special

Dispatchable interface (class-level granularity);
3) in those user-methods that are declared to throw

DispatchablePragmaException (method-level
granularity).

The introduction of a migration point forces the thread to check
also for a possibly pending migration request (notified reactively
by another thread through the same migrate() method invoked
on the target MobileThread). If the mobile thread takes the
migration point, it suspends its execution locally and waits in the
migration queue (described in Subsection 3.1) until the service
thread, responsible for the output channel, selects it and starts the
necessary migration operations (see the next two subsections).
The code for these additional tests is partly reported in Figure 3.
This approach has several advantages: firstly, it rids us of the
problem of unpredictable interruptions in internal Java library
methods (not interested by migration points at all); then, it also
gives the programmer more control over the migration, by letting
her select those safely interruptible methods; last but not least, it
leaves the stack of the suspended thread in a well-defined state,
making the state capturing phase simpler. We achieved the
insertion of migration points, simply patching at runtime a
method of the JIT compiler (the source code of the VM is left
untouched and one can use every OSR-enabled version of the
JikesRVM). As we already mentioned, yieldpoints are inserted by
the JIT compiler, when it compiles a method for the first time.
These yieldpoints are installed into method prologues, epilogues
and loop heads by the genThreadSwitchTest() method of the
compiler. In order to force the compiler to insert our migration
points instead of yieldpoints in the methods listed above, we
patched the genThreadSwitchTest()method with an internal
method of the framework: the new method has a code nearly
identical to the old one, except for the special treatment of the
three cases listed above. In these cases, the thread enters the code
in Figure 3 and is auto-suspended, waiting to be serialized by the
output channel described in Subsection 3.1. We must point out
that JikesRVM’s compiler does not allow unauthorized user’s
code to access and patch internal runtime structures. User’s code,
compiled with a standard JDK implementation, will not have any
visibility of such low-level JikesRVM-specific details.

static void migrationPoint() throws NoInlinePragma
{

if (migrationRequested){
// Process a migration point

 outputChannel.queue(Thread.getCurrentThread());
 suspend(); // thread-switch beneficial

// The thread is resumed here at the
// destination

 }
 else // Process a regular yieldpoint
 {
 yieldpoint();
 }
}

Figure 3. The method that deals with a migration point

3.3 Capturing the execution state of a thread
When the service thread, owner of the output channel described in
Subsection 3.1, selects a MobileThread candidate to
serialization, it starts a walk back through its call stack, from the
last frame to the run() method of the thread..

Figure 4. The stack walk-back of a suspended MobileThread

This jumping is shown schematically in Figure 4, where the stack
is logically partitioned into three areas: (i) internal preamble
frames, which are always present and do not need to be migrated;
(ii) user-pushed frames, to be fully captured as explained later;
(iii) thread-switch internal frames, which can be safely replaced
at the destination and, thus, not captured at all.
MobileFrame extractSingleFrame() {

 /*Move to the previous user frame (walk-back)*/
 if(!moveToPreviousFrame())
 return null; //no more user frames to capture

 /*Extract the state in the specified object*/
 return defOSRExtractor.extractState(...);

}

Figure 5. The extractSingleFrame() method of the
FrameExtractor class

66

A special utility class, called FrameExtractor, has been
implemented in our framework, with the precise goal of capturing
all the frames in the user area in a portable bytecode-level form.
The most interesting method of this class is the
extractSingleFrame() method reported in the code of Figure
5. This method uses an OSR extractor to capture the frame state
representation and returns it to the caller, ready to be serialized
and sent to destination or to be checkpointed on disk.

3.3.1 The JikesRVM OSR Extractor
The OSR (On-Stack Replacement) extractor is another
fundamental component of the framework: it takes inspiration
from the OSR extractors provided by JikesRVM [10], though it
has been re-written for the purposes of our project.
The OSR technique was introduced in JikesRVM, with a
completely different objective: enabling adaptive re-compilation
of hot methods. In fact, JikesRVM can rely not only on a baseline
compiler but also on an optimized one [7]. Every bytecode
method is initially compiled with the baseline compiler, but when
the Adaptive Optimization System (AOS) [3] decides that the
current executing method is worth being optimized, the thread is
drawn from the ready queue and the previous less-optimized
frame is replaced by a new more-optimized frame. The thread is
then rescheduled and continues its execution in that method. This
technique was first pioneered by the Self programming language
[8]. An innovative implementation of the OSR was integrated into
the JikesRVM [10], which uses source code specialization to set
up the new stack frame and continue execution at the desired
program counter. The transition between different kinds of frames
required the definition of the so-called JVM scope descriptor that
is “the compiler-independent state of a running activation of a
method” based on the stack model of the JVM [13]. When an
OSR is triggered by JikesRVM, the scope descriptor for the
current method is retrieved and is used to construct a method, in
bytecode, that sets up the new stack frame and continues
execution, preserving semantics.

3.3.2 Our modified OSR Extractor
The JikesRVM OSR frame extractor has been rewritten for the
purpose of our mobility framework (we called it
OSR_MobilityExtractor) to produce a frame representation,
suitable for a thread migration context. The scenario we are
talking about is a wide-opened one, where different machines
running JikesRVM mutually exchange their MobileThreads
without sharing the main memory. We introduced, therefore, a
portable version of the scope descriptor, called MobileFrame,
whose structure is reported in Figure 6. While the OSR
implementation in JikesRVM uses an internal object of class
VM_NormalMethod to identify the method of the frame, we
cannot make such an assumption; the only way to identify that
method is through the triplet

<method name, method descriptor, full class name>
that is universally valid. This triplet (represented by the three
fields methodName, methodDescriptor and methodClass in
Figure 6) is used to refer the method at the destination (e.g. its
bytecode must be downloaded if not locally available yet), maybe
after a local compilation. The bytecode index (i.e. the bcIndex
field) is the most portable form to represent the return address of
each method body and it is already provided in JikesRVM by
default OSR. Finally, we have two arrays (i.e. the locals and

stack_operands fields) that, respectively, contain the values of
local variables (including parameters) and stack operands in that
frame. These values are extracted from the physical frame at the
specified bytecode index and converted into their corresponding
Java types (int, float, Object references and so on). In
addition, it must be pointed out that the
OSR_MobilityExtractor class fixes up some problems that we
run across during our implementation: here, we think it is
worthwhile mentioning the problem of “uninitialized local
variables”. Default OSR extractor does not consider, in the JVM
scope descriptor, those variables that are not active at the
specified bytecode index. Nevertheless, these local variables have
their space allocated in the stack and this fact should be taken into
account when that frame is re-established at the destination.
class MobileFrame {
 /** Name of the method which adds this frame*/
 public String methodName;

 /** Method descriptor

e.g. “(I)V” for a method
getting an integer and returning void */

 public String methodDescriptor;

/** Fully qualified method class
(e.g.“mypackage.myClass”)*/

 public String methodClass;

/** The bytecode index (i.e. return address)
within this method*/

 public int bcIndex;

/** The local bytecode-level local variable
including parameters */

 public MobileFrameElement[] locals;

/** The value of the stack operands at the
specified bytecode index */

 public MobileFrameElement[] stack_operands;

 // methods and static fields omitted…
}

Figure 6. The main fields of the MobileFrame class
To summarize, in our mobility framework threads are serialized
in a strong fashion: the MobileThread object is serialized as a
regular object, while the execution state is transferred as a chain
of fully serializable MobileFrame objects (produced by multiple
invocations of the extractSingleFrame() method of Figure 5).

3.4 Resuming a migrated thread
The symmetrical part of the migration process is the creation, at
the destination host, of a local instance of the migrated thread.
This task is appointed to the service input-channel threads that
listen for migratory threads coming from the network. The entire
process has been summarized in Subsection 3.1, but in this one
we are going to see how the thread is rebuilt in JikesRVM.
The first operation is creating a thread whose only task is to start
execution and auto-suspend. This allows the infrastructure to
safely reshape the current stack object of this thread, injecting one
by one all the frames, belonging to the arrived thread. In more
details, a new stack is allocated and it is filled with the thread-
switch internal frames, taken from the auto-suspended thread.
Then, every MobileFrame object is installed, in the same order
as they were read from the socket stream (i.e. from the
Methodn() to run(), looking at Figure 4). The brand-new stack
is closed with the remaining preamble frames, again borrowed
from the auto-suspended thread. The code in Figure 7 shows the

67

above phases. Now, the new stack has been prepared and the
context registers are properly adjusted (pointers are updated to
refer to the new stack memory). This stack takes the place of the
old stack belonging to the auto-suspended thread (the old one is
discarded and becomes “garbage”). The new MobileThread
object, with its execution state completely re-established, can be
transparently resumed and continues from the next instruction.
void installStack() {
 // omitted auxiliary local variables

/*1. First of all we have to compute the
required space for the new stack to allocate*/

 for(int i=0;i<frameSet.size();i++){
 frame = (MobileFrame) frameSet.get(i);
 userFrameSpace+=frame.computeRealSize();
 }

 stackSpace=fixedFramesSizes[0] /*preamble*/ +

userFrameSpace + fixedFramesSizes[1] /*thread-
switch part*/;

/*2. With the computed space, allocate a new
stack*/
byte[] newStack = MM_Interface.newStack(
 stackSpace,false);

 /*3. Attach the top frames for suspension*/
 attachTopFrames(newStack);

/*4. Install every MobileFrame read from the
socket stream*/

 for(int i=0;i<frameSet.size();i++) {
 frame = (MobileFrame) frameSet.get(i);
 frame.installFrame(/*omitted parameters*/);
 }
 /*5. Copy the bottom frames to complete stack*/
 copyBottomFrames(newStack);
}

Figure 7. The stack installation phases in a code excerpt

3.5 Additional features
In this section, some additional features implemented in our
JikesRVM-based framework are outlined. These features, even
though not strictly essential for the purpose of pure thread
migration implementation, are likewise important, because they
characterize the programming paradigm proposed to the
programmer.

3.5.1 Dealing with object references
The set of all the referenced objects of a thread has been prior
defined as its data space [11] and, at any point during the
execution, is composed of all the objects that can be reached by
the thread through the call stack or through references to other
objects. As concerns the stack, the space that the thread is
supposed to carry with itself comprises all the objects pointed by
the parameters and local variables of methods, together with those
objects pushed on the operand stack of each frame in the stack.
Object references pose three kinds of problems, when designing a
mobility framework: (i) identifying object references in the call
stack of the thread; (ii) collecting some of these objects; (iii)
properly relocating the collected objects according to some
relocation strategy. As concerns the identification of object
references in the call stack, it must be pointed out how we tackled
this problem with a zero-overhead approach, thanks to the type
accurate garbage collectors provided by JikesRVM. Traditional
JVMs do not provide any information at runtime that can help
inferring the types of data pushed on the thread’s call stack (i.e.
local variables, stack operands and parameters). The only place

where these types are known is the bytecode of the methods that
pushed the data on the stack. Many systems [22, 21] take the
easier way of modifying the Java compiler to store type
information "somewhere", when a value is pushed on the stack by
a bytecode instruction (e.g. maintaining a separate type stack for
each thread). This approach requires significant modifications to
the JVM and it introduces an important overhead on the bytecode
execution, since a parallel type stack has to be managed. Another
possible approach [5] delays such “type inference” until migration
time.
JikesRVM uses type-accurate garbage collectors that build the so-
called reference maps automatically at compile-time, unlike
conservative collectors, which attempt somehow to infer whether
a stack word is a reference or not [27]. These reference maps are
periodical snapshots of the situation of references in each method
frame, taken only at the above mentioned yieldpoints. Therefore,
since our MobileThreads are allowed to migrate only in their
migration points (which are also yieldpoints, as explained in
Subsection 3.2), object references in the stack are safely identified
and collected by the framework. These reference maps, which are
used to speed up JikesRVM type-accurate garbage collectors, rid
us of the need for more potentially intrusive “type inference”
mechanisms required by many existing strongly mobile systems.
After their identification, object references must be collected for
serialization. According to the above definition of data space, we
thought natural to scatter fragments of the data space directly
among the portable frames mentioned in the previous Subsection.
Local and stack operands are transferred in two arrays of
MobileFrameElement objects (refer to Figure 6). The
conceptual structure of such elements and their relationship with a
MobileFrame is graphically schematized in Figure 8. The ref
field of the MobileFrameElement contains the reference to the
object, to be serialized together with its owner MobileFrame
object (non-reference values are stored in another specific field).
As for the relocation of such objects, it has been argued [11] that
the conventional Java serialization is often not well suited to the
requirements of mobile thread programmers. Some objects, such
as I/O devices, cannot be blindly serialized; rather they have to be
adjusted (e.g., being substituted by their local copies on the
destination JVM). Furthermore, other objects require a “dedicated
management” when they travel to another JVM heap. Consider,
for instance, a File object, which is serializable but, when
serialized, the binding to the file system object gets lost. If the
programmer wants that a File object is available even from
remote hosts over the network, she must be able to handle the
migration/serialization, thus for example she can substitute the
file “pointer” to a local file with a network file (using for instance
NFS). Such issues can be dealt with exploiting, for instance, the
Java serialization flexibility: using the Externalizable
interface the programmer can customize the serialization of her
objects [24]. It is also frequent to have objects shared by multiple
threads in the system: in such cases, currently the migration
mechanism simply serializes the object toword destination and
does not affect other threads referencing the same object (i.e. the
object stays alive in the source heap). We guess some new
programming language constructs would be desirable, in order to
place constraints on specific objects, preventing inconsistency
situations after thread migration (e.g. a sort of “object pinning”).

68

Though crucial for the successful adoption of the mobile code
paradigm (they are present in weakly mobile systems as well),
such issues are not of concern for this technical paper.

Figure 8. A schematic representation of a MobileFrame

3.5.2 Multi-threaded migration
Creating multiple, concurrent, related threads with mutual
interactions becomes, in many distributed computing scenarios, a
real must: in these cases, the concept of execution unit [11] can be
generalized to comprise multi-threaded applications. The trickiest
implications of this extended concept come from the scattered
nature of the state to be captured and migrated. Thus, we have
enhanced the presented mobility infrastructure to support thread
groups serialization too.
Starting from the per-thread serialization protocol, we examined
what serializing a group implies and experimented a simple
recursive protocol for this. Thread groups (i.e.
java.lang.ThreadGroup) are useful for two reasons: they
allow the programmer to manipulate many threads by calling a
single method, and they provide the basis that Java security
mechanism uses to interact with threads [16]. Groups are
structured hierarchically as a tree with a “main” root and
unlimited levels of subgroups. Thus, chosen a group as the
serialization root, a migrate() method recursively serializes its
sub-tree of groups and every thread within each group. The sub-
tree is moved from the source JVM group hierarchy and attached
to the destination JVM hierarchy. Thus, if a mobile multithreaded
application has to be migrated on multiple machines (e.g. a GUI
Java application where we can have an event thread, timers and
callback threads), the programmer has just to follow the standard
concept of Java thread groups, creating siblings threads belonging
all to the same MobileThreadGroup.
Group migration is carried out as a sort of synchronized
migration, with a synchronization barrier established when a
migration is requested on a certain group. All threads belonging to
that group or to children subgroups synchronize themselves with
the barrier (proactively or reactively, as seen in Subsection 3.2)
and, when all threads have reached the synchronization point, the
migration begins. Moving from the root to the leaves, each group
object is serialized, together with its owned threads; then,
recursively all its direct subgroups are serialized in their turn and
thus migrated. In order to carefully manage this distributed state,
the relationships between threads and groups must be accounted
for. For this purpose, we have chosen a symbolic naming for
threads and groups in the serialized sub-tree, using unique

numeric identifiers (id). Therefore, each reference within the sub-
tree is temporary substituted by the internal id of the referenced
element (thread or group). When deserialization is performed, ids
are re-converted to references with the help of a specific hash-
map. Threads belonging to a MobileThreadGroup can only
migrate as a group and never separately and references to such
threads in other external threads are set to null, because they are
no longer locally available. As for shared objects among
migrating and non migrating threads, it must be underlined that,
using Java serialization for their migration, they are actually
“cloned” remotely. As already mentioned in Subsection 3.5.1, we
deem all other possible object migration strategies bound to the
specific user application requirements.

4. PERFORMANCE AND EVALUATION
At the current stage of our project (whose code is available at
http://www.agentgroup.unimore.it), the thread serialization
mechanism, discussed so far, has been successfully tested,
focusing mainly on the times needed for state capturing and
restoring. We made, therefore, some performance tests to discover
possible bottlenecks and evaluate the cost of each migration
phase. We wrote a benchmark based on the Fibonacci recursive
algorithm, just to see the variation of migration times with respect
to an increasing number of frames into the stack. The times
measured are expressed in seconds and are average values
computed across multiple runs, on a Pentium IV 3.4 GHz, 1GB
RAM,JikesRVM release 2.4.1. Some sample times (taken with a
number of 5, 15 and 25 frames) are listed in Table 1 and Table 2
and they demonstrate very graceful time degradation. The times
have been conceptually divided into two phases, where Table 1
refers to the thread serialization phase, while Table 2 refers to the
corresponding de-serialization phase at the arrival host (the
transfer time through the network has not been considered
significant here and so it is not reported).
Considering how these times are partitioned among the different
phases of the thread serialization, we can see that the bulk of the
time is wasted in the pure Java serialization of the captured state,
while the frame extraction mechanism (i.e. the core of our entire
facility) has very short times instead.

 5 frames 15 frames 25 frames

OSR Frame
capturing 1.78E-5 1.89E-5 1.96E-5

State building 3.44E-5 3.75E-5 3.43E-5

Pure
serialization 2.49E-3 7.32E-3 1.50E-2

Overall times 2.54E-3 7.38E-3 1.51E-2

Table 1. Evaluated times for thread serialization (sec.)
The same bottleneck due the Java serialization may be observed
in the de-serialization of the thread. In the latter case, however,
we have an additional foreseeable time in the stack installation
phase, since the system has often to create a new thread and
compile the methods for the injected frames. These performance
bottlenecks can be further minimized, perhaps using
externalization to speed up the serialization of the thread state
[24].

69

 5 frames 15 frames 25 frames

Pure de-
serialization 4.46E-3 5.33E-3 7.06E-3

State rebuilding 5.45E-4 5.27E-4 5.06E-4

Stack installation 1.53E-3 1.60E-3 1.71E-3

Overall times 6.54E-3 7.46E-3 9.28E-3

Table 2. Evaluated times for thread rebuilding (sec.)
In Subsection 3.1, a JIT compiler extension was described that
allowed us to perform reactive migration, in addition to the
simpler proactive case. We said that, in that cases, migration
points are installed instead of traditional yieldpoints in some
chosen method bodies. This has two negligible costs:
1. on thread execution time, since migration points are taken

only if a thread switch is requested (they are in fact a subset
of yieldpoints). However, such an approach does not suffer
from the slowdown of many application-level approaches
reported in Subsection 2.3.2: many of those systems inject
checkpoint instructions into the bytecode, to trace the
execution state and let the thread migrate only in predefined
points. We do not, instead, insert any additional checkpoint in
the code, but simply extend the functionality of normal pre-
existent JikesRVM yieldpoints.

2. on method JIT compilation time; this is due to an additional
test to be performed on the candidate method to JIT
compilation. Referring again to Subsection 3.1, the extended
genThreadSwitchTest() method performs three simple
necessary tests, to determine if the method needs the insertion
of our migration points or the old JikesRVM yieldpoints.

No other overhead are imposed on JikesRVM normal
performances. In addition, group migration (beside the time
needed for each thread to reach the synchronization barrier) has
essentially identical measured times, since it uses the same single-
thread migration mechanism.

5. FUTURE WORK
Additional features can be, of course, implemented to extend our
thread mobility framework in the future. First of all, the optimized
compiler is not fully supported yet. OSR can extract the JVM
scope descriptor even from optimized method frames, but this
requires some cooperation from the optimizing compiler to
generate mapping information needed to correctly interpret the
structure of the optimized frame: in fact, while baseline frames
have a fully predictable layout, the same is not true for optimized
ones where local variables can be allocated into machine
registers, pieces of code can be suppressed or inlined, and so
forth. For these reasons, the optimizing compiler choices some
points in the code where OSR can occur and, just for these points,
maintains all the necessary mapping information. Such points,
called OSR Points, do not include “method call sites” and for that
reason our serialization system cannot capture optimized frames
yet. Nevertheless, we are aware of a project by Krintz et al.[20]
trying to present a more general-purpose version of OSR that is
more amenable to optimizations than the current one. The
improvement descending from this work will be exploited to
perform a more complete thread state capturing, even in presence
of code optimizations.

Future work includes also a comparison with other proposed
thread migration systems, to improve our performance evaluation
understanding and identify possible undetected bottlenecks.
Finally we are currently working to port the implemented code
also on PPC architectures (JikesRVM is available also for this
processor), allowing the migration of a thread among
heterogeneous platform as well.

6. CONCLUSIONS
This paper has presented our framework that extends the facilities
provided by the IBM JikesRVM in order to support Java thread
strong migration. Thanks to its modular design and its minimally
intrusive nature, the developed framework can be easily adopted
in distributed application developments, provided that a recent
OSR-enabled version of JikesRVM is installed in the system (it
can be classified as a midway approach between the described
JVM-level and the application-level approaches). Users do not
have to download a modified, untrustworthy, version of
JikesRVM, but can import the implemented mobility package into
their code and execute it on their own copy of JikesRVM.
Moreover, thanks to the support for thread-group migration, even
complex multi-threaded applications can become fully mobile.

Acknowledgements. Work supported by the European
Community within the EU FET project "CASCADAS".

REFERENCES

[1] B. Alpern, D. Attanasio, J. J. Barton, A. Cocchi, S. F.

Hummel, D. Lieber, M. Mergen, T. Ngo, J. Shepherd, S.
Smith, Implementing Jalapeño in Java, ACM SIGPLAN
Conference on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA '99), Denver,
Colorado, November 1, 1999

[2] B.Alpern, C.R. Attanasio, D. Grove and others, The
Jalapeno virtual machine, IBM System Journal, Vol. 39,
N°1, 2000

[3] M. Arnold, S. Fink, D. Grove, M. Hind, P. F. Sweeney,
Adaptive Optimization in the Jalapeño JVM, ACM
SIGPLAN Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA 2000),
Minneapolis, Minnesota, October 15-19, 2000

[4] A. Balachandran, G. M. Voelker, and P. Bahl, Wireless
Hotspots: Current Challenges and Future Directions, in
Mobile Networks and Applications Journal, Springer Science
Publishers, pp. 265-274, 2005

[5] S. Bouchenak, D. Hagimot, Pickling Threads State in the
Java System, Technology of Object-Oriented Languages and
Systems Europe (TOOLS Europe'2000) Mont-Saint-
Michel/Saint-Malo, France, June 2000

[6] S. Bouchenak, D. Hagimont, S. Krakowiak, N. De Palma and
F. Boyer, Experiences Implementing Efficient Java Thread
Serialization, Mobility and Persistence", I.N.R.I.A.,
Research report n°4662, December 2002

[7] G. Burke, J.Choi, S. Fink, D.Grove, M. Hind, V. Sarkar, M.J.
Serrano, V.C. Sreedhar, H. Srinivasan, The Jalapeno
Dynamic Optimizing Compiler for Java, ACM Java Grande
Conference, June 1999

70

[8] C. Chambers, The Design and Implementation of the Self
Compiler, an Optimizing Compiler for Object-Oriented
Programming Languages, PhD thesis, Stanford University,
Mar. 1992. Published as tech. report STAN-CS-92-1420

[9] G. Cabri, L. Leonardi, F. Zambonelli, Weak and Strong
Mobility in Mobile Agent Applications, Proceedings of the
2nd International Conference and Exhibition on The
Practical Application of Java (PA JAVA 2000), Manchester
(UK), April 2000

[10] S. Fink, F. Qian, Design, Implementation and Evaluation of
Adaptive Recompilation with On-Stack Replacement,
International Symposium on Code Generation and
Optimization San Francisco, California, March 2003

[11] A. Fuggetta, G. P. Picco, G. Vigna, Understanding Code
Mobility, IEEE Transactions on Software Engineering, Vol
24, 1998

[12] S. Funfrocken, Transparent Migration of Java-based Mobile
Agents (Capturing and Reestablishing the state of Java
Programs), 2nd International Workshop on Mobile Agents
98 (MA'98), Stuttgart, Germany, Sep. 1998

[13] T. Lindholm, F. Yellin, The Java Virtual Machine
Specification, second edition, SUN Microsystem

[14] T. Illmann, T. Krueger, F. Kargl, M. Weber, Transparent
Migration of Mobile Agents Using the Java Platform
Debugger Architecture, Proceedings of the 5th International
Conference on Mobile Agents, Atlanta, Georgia, USA,
December 2001

[15] M. Kim, D. Kotz and S. Kim. Extracting a mobility model
from real user traces, In Proceedings of the 25th Annual
Joint Conference of the IEEE Computer and
Communications Societies (INFOCOM), Barcelona, Spain,
April, 2006

[16] S. Oaks, H. Wong, Java Threads, 2nd edition, Oreilly, 1999
[17] The OpenMosix Project, http://openmosix.sourceforge.net/
[18] T. Sakamoto, T. Sekiguchi, A. Yonezawa, A Bytecode

Transformation for Portable Thread Migration in Java, 4th
International Symposium on Mobile Agents 2000
(MA'2000), Zurich, Sep. 2000

[19] T. Sekiguchi, A. Yonezawa, H. Masuhara, A Simple
Extension of Java Language for Controllable Transparent
Migration and its Portable Implementation, 3rd International
Conference on Coordination Models and Languages,
Amsterdam, The Netherlands, Apr. 1999

[20] S. Soman, C. Krintz, Efficient, General-Purpose, On-Stack
Replacement for Aggressive Program Specialization,
University of California, Santa Barbara Technical Report
#2004-24

[21] T. Suezawa, Persistent Execution State of a Java Virtual
Machine, ACM Java Grande 2000 Conference, San
Francisco, CA, USA, June 200

[22] A. Acharya, M. Ranganathan, J. Saltz, Sumatra: A Language
for Resource-aware Mobile Programs. 2nd International
Workshop on Mobile Object Systems (MOS'96), Linz,
Austria, 1996

[23] N. Suri et al., An Overview of the NOMADS Mobile Agent
System, Workshop On Mobile Object Systems in association
with the 14th European Conference on Object-Oriented
Programming (ECOOP 2000), Cannes, France, 2000

[24] Sun Microsystems. Improving Serialization Performance
with Externalizable, http://java.sun.com/developer/
TechTips/txtarchive/2000/Apr00_StuH.txt

[25] E. Truyen, B. Robben, B. Vanhaute, T. Coninx, W. Joosen,
P. Verbaeten, Portable support for Transparent Thread
Migration in Java, 4th International Symposium on Mobile
Agents 2000 (MA'2000), Zurich, Switzerland, Sep. 2000

[26] X. Wang, Translation from Strong Mobility to Weak Mobility
for Java, Master's thesis, The Ohio State University, 2001

[27] P.R.Wilson, Uniprocessor Garbage Collector Techniques, in
the Proceedings of the International Workshop on Memory
Management (IWMM92), St. Malo, France, September 1992

[28] W. Zhu, C. Wang, F. C. M. Lau, JESSICA2: A Distributed
Java Virtual Machine with Transparent Thread Migration
Support. IEEE Fourth International Conference on Cluster
Computing, Chicago, USA, September

71

Juxta-Cat: A JXTA-based platform for distributed
computing ∗

Joan Esteve Riasol
Computing Laboratory

Informatics Faculty of Barcelona
Campus Nord, C5
C/Jordi Girona 1-3

08034 Barcelona, Spain

jesteve@fib.upc.edu

Fatos Xhafa
Dept. of Languages and Informatics Systems

Polytechnic University of Catalonia
Campus Nord, Ed. Omega

C/Jordi Girona 1-3
08034 Barcelona, Spain

fatos@lsi.upc.edu

ABSTRACT
In this paper we present a JXTA-based platform, called
Juxta-CAT, which is an effort to use the JXTA architecture
to build a job execution-sharing distributed environment.
The Juxta-CAT platform has been deployed in a large-scale,
distributed and heterogeneous P2P network, based on open
JXTA protocols. The goal of our platform is to create a
shared Grid where client peers can submit their tasks in the
form of java programs stored on signed jar files and are re-
motely solved on the nodes of the platform. Thus, the main
goal of our platform is giving direct access to resources and
sharing of the computing resources of nodes, in contrast to
other well-known P2P systems that only share hard disk
contents.

The architecture of our platform is made up of two types
of peers: common client peers and broker peers. The former
can create and submit their requests using a GUI-based ap-
plication while the later are the administrators of the Grid,
which are in charge of efficiently assigning client requests
to the Grid nodes and notify the results to the owner’s re-
quests. To assure an efficient use of resources, brokers use an
allocation algorithm, which can be viewed as a price-based
economic model, to determine the best candidate node to
process each new received petition. The implementation
and design of peers, groups, job and presence discovery,
pipe-based messaging, etc. are developed using the latest
updated JXTA libraries (currently release 2.3.7) and JDK
1.5 version.

Several types of applications arising from different fields
such as scientific calculations, simulations, data mining, etc.
can be solved in Juxta-CAT. To create a suitable demo sce-
nario and test the proposed platform, we have joined and

∗Research partially supported by ASCE Project TIN2005-
09198-C02-02 and Project FP6-2004-IST-FETPI (AEO-
LUS).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPPJ’06 Mannheim, Germany
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

used the PlanetLab platform (http://www.planet-lab.org/).
Juxta-CAT Project and its official web site have been hosted
in Java.NET community at https://juxtacat.dev.java.net.

1. INTRODUCTION AND MOTIVATION
The rapid development of Internet and other new tech-

nologies has yielded to new paradigms of distributed com-
puting, among others the Computational Grids and P2P
systems. Computational Grids were introduced by Foster
and other researchers in late ’90 [7, 8, 6]. The main fo-
cus of this new distributed paradigm was that of providing
new computational frameworks by which geographically dis-
tributed resources are logically unified as a computational
unit. As pointed out by Foster et al. Computational Grid
is “... a type of parallel and distributed system that en-
ables the sharing, selection, and aggregation of geographi-
cally distributed autonomous resources dynamically depend-
ing on their availability, capability, performance, cost, and
users’ QoS requirements.” Grid computing motivated the
development of large scale applications that benefit from the
large computing capacity offered by the Grid. Thus, several
projects such as NetSolve [4], MetaNeos Project (Metacom-
puting environments for optimization), and applications for
Stochastic Programming [9], Optimization Problems [15], to
name a few, used grid computing.

On the other hand, P2P systems [13, 11, 2] appeared as
the new paradigm after client-server and web-based com-
puting. P2P systems are quite known due to popular P2P
systems such as Napster, Gnutella, FreeNet and others. One
of the main characteristics of such systems is file sharing
among peers. Due to this, and in order to stress the dif-
ference between computational grids and P2P systems, Fos-
ter et al. remarked that “... the sharing that we are con-
cerned with is not primarily file exchange but rather direct
access to computers, software, data, and other resources, as
is required by a range of collaborative problem-solving and
resource brokerage strategies emerging in industry, science,
and engineering”

It should be noted however that since the appearance of
first grid systems and P2P systems, the grid computing and
P2P computing has evolved so that both paradigms have
many characteristics in common, among which we distin-
guish the distributed computing. It is precisely this char-
acteristic that we explore in this work, that is, the use of
resource sharing for problem solving in dynamic environ-

72

ments. Grid systems has shown to be very useful for real
world applications, indeed, several types of grids has ap-
peared such as Compute Grids, Data Grids, Science Grids,
Access Grids, Bio Grids, Sensor Grids, Cluster Grids, Cam-
pus Grids, Tera Grids, and Commodity Grids, among oth-
ers. The success of computational grids could be explained
by the development of several middleware, such as Globus,
MPI-Grid2 and Condor-G that facilitate the development
of grid-based applications. On the P2P side, the improve-
ment of P2P protocols is enabling the development of P2P
applications others than the well-known file-sharing applica-
tions. However, there is still few work to bring P2P system
to real word applications, mainly due to the lack of robust
P2P platforms that would allow the deployment of large P2P
systems. This is precisely the motivation of this work. We
propose a P2P platform, called Juxta-CAT, developed using
JXTA architecture.

The goal of the Juxta-CAT platform is to create a shared
Grid where client peers can submit their tasks in the form
of java programs stored on signed jar files and are remotely
solved on the nodes of the platform. Thus the Juxta-CAT is
a real peer-to-peer environment that represents a workspace
structured as a grid, where peer clients can share their re-
sources of CPU, memory and hard disk for solving their
problems.

The architecture of our platform is made up of two types
of peers: common client peers and broker peers. The former
can create and send their requests using a GUI-based ap-
plication while the later are the administrators of the Grid,
which are in charge of efficiently assigning client requests to
the Grid nodes and notify the results to the owner’s requests.
One key issue in such systems is the flexible and efficient use
of resources [5, 3, 14, 12] in order to benefit from the com-
puting capacity as efficiently and economically possible. To
this end, the brokers in our platform use an allocation algo-
rithm, which can be viewed as a simple price-based economic
model, to determine the best candidate peers to process each
new received petition. The implementation and design of
peers, groups, job and presence discovery, pipe-based mes-
saging, etc. are developed using the latest updated JXTA
libraries (currently release 2.3.7) and JDK 1.5 version. Our
proposal extends and improves several existing features of
the JXTA, especially those related to the management of
presence mechanism and the pipe service system.

Several types of applications arising from different fields
such as scientific calculations, simulations, data mining, etc.
can be solved using Juxta-CAT. To create a suitable demo
scenario and test the proposed platform, we have joined and
used the PlanetLab platform (http://www.planet-lab.org/).
In this stage of the work we have considered some simple ap-
plications (e.g. computing Π number with high precision),
namely applications that are composed of many indepen-
dent tasks that can be simultaneously submitted and solved
in the grid. Using this type of applications we were able
to test the robustness of the Juxta-CAT and measure its
performance as regards the speed-up of computation. Our
experimental results show the feasibility of the Juxta-CAT
for developing large-scale applications as we have deployed
the grid applications in a real P2P network based on Plan-
etLab nodes.

Juxta-CAT Project and its official web site have been
hosted in Java.NET at https://juxtacat.dev.java.net and has
also been published in the JXTA Developer Spotlight of

March 2006 at http://www.jxta.org.
The paper is organized as follows. We give in Sect. 2 some

preliminaries on JXTA protocols that we have used in the
development of Juxta-CAT. The architecture of the Juxta-
CAT platform is given in Sect. 3. In Sect. 4 we give some
of the implementations issues, the improvements on JXTA
protocols as well as the allocation algorithm used by bro-
kers. The evaluation of the Juxta-CAT platform and some
computational results are given in Sect. 5. We conclude in
Sect. 6 with some remarks and point out further work.

2. OVERVIEW ON BASIC JXTA PROTO-
COLS

JXTA technology is a set of open protocols proposed by
Sun Microsystems that allow any connected device on the
network ranging from cell phones and wireless PDAs to PCs
and servers to communicate and collaborate in a P2P man-
ner (see e.g. [2, 10]). JXTA peers create a virtual network in
which any peer can interact with other peers and resources
directly even when some of the peers and resources are be-
hind fire-walls and NATs or when they are on different net-
work transports.

The current specification of this architecture determines
the management of the clients (peers) of the developed net-
works.

• Discover peers and resources on the network even across
fire-walls

• Share files with peers across the network

• Create your own group of peers of devices across dif-
ferent networks

• Communicate securely with peers across public net-
works

One important advantage of JXTA is its platform inde-
pendence as regards:

• Programming language: Implementations of JXTA pro-
tocols are found in Java, C, C++ and other languages.

• Transport protocol : It is not required to use an specific
net structure. P2P applications can be developed over
TCP/IP, HTTP, Bluetooth and other transports.

• Security : Developers are free to manage the security
issues of the developed platform.

The updated core libraries for each implementation are
found at the official JXTA page at http://www.jxta.org. For
the purposes of the development of Juxta-CAT platform, we
needed to only work with the J2SE version of JXTA.

The JXTA protocols have been structured as a working
stack, as can be seen in Fig. 1. It should be noticed that
JXTA protocols are independent among them. A definition
of a JXTA peer does not require implementing the set of
all protocols in order to participate in the network. For in-
stance, a node may need not statistical information about
the other members of the peergroup, therefore it is not neces-
sary for that node to implement the Protocol of Information
or a node could have previously stored in its memory the set
of peers or services to work with, and hence it does not need
the additional protocol of resource discovery.

73

Figure 1: JXTA Architecture.

3. JUXTA-CAT ARCHITECTURE
In this section we describe the basic aspects of the Juxta-

CAT platform. Before starting the design of the platform
we carefully identified the possible roles that each peer par-
ticipant was going to play in the Juxta-Cat platform. The
importance of a clear specification of the peer roles was cru-
cial to the architecture of the platform. Indeed, each role
represents a “subsystem” of the platform requiring a dif-
ferent treatment during design and implementation stages.
From now on, we use the term peer to denote the machine
or node on the Juxta-Cat platform. As we show next, peers
can execute either a client or a broker and hence we speak
of client peers and broker peers.

We will also speak of request, petition, job or task indis-
tinctly to denote a task submitted to the grid. To be precise,
the request will contain all the information that a grid node,
which receives the request, needs for solving a task.

3.1 Client peers
Client peers are the end users of the Juxta-CAT. Client

peers are obtained by downloading and installing the appli-
cation from the official page of Juxta-CAT. Once the ma-
chine is “converted” into a client peer, on the one hand, the
user will connect to the peer-to-peer network and submit ex-
ecution requests to their peergroup partners. One the other
hand, client peers will also be able to process received re-
quests sent to it by other nodes through the brokering and
notify them the result of the request, once it is completed
(see Fig. 2 for an UML diagram representation.)

Therefore, a client peer plays two possible roles as regards
the resolution requests:

(a) submitting job requests to the grid and receiving the
results.

(b) receiving job requests submitted to the grid by other
client peers and notifying the result to the correspond-
ing owners of the requests.

Note that, while submitting job requests to the grid, a
client peer can also decide whether it includes itself as a
possible candidate peer to receive the proper submitted re-
quests or not.

Figure 2: UML diagram of the Juxta-CAT Client.

3.2 Broker peers
Broker peers are the governors of the request allocation in

Juxta-Cat (see Fig. 3 for an UML diagram representation.)

Figure 3: UML diagram of the Juxta-CAT Broker.

Brokers act like bots of the network: they are connected to
the to P2P platform and are in charge of receiving and allo-
cating the requests sent by clients of the peergroup. When-
ever a broker receives a request, it explores the state of the
rest of nodes currently connected to the network, examining
their working and connection statistics. Then, it uses this
historical/statistical data to select, according to an simple
price-based economic model, the best candidate peer for pro-
cessing that request.

Once the best node, for a given request, is selected, the
broker sends to that node a message with the information
needed for the processing the request. If there were some
error in sending the message, or if there were no nodes avail-
able to receive the requests (a request not necessarily is pro-
cessable by all nodes) then the broker adds the request to

74

the queue of pending requests. Thus, each broker maintains
and manages its own pending request queue, which is up-
dated according to the state of the network and the arrival
on new requests (see Fig. 4).

Figure 4: UML diagram of the requests queue main-
tained by the Broker.

4. IMPLEMENTATION ISSUES
The design pattern used for Juxta-CAT is an integration

of the Model-View-Controller and Observer patterns. We
have thus three independent modules or layers: View, Model
and Control incorporating the observer pattern to commu-
nicate the results between different layers (from Control to
Model and from Model to View). We give this organization
of Juxta-CAT in layers in Fig. 5 (see also Fig. 6).

Cost exclusiu de Grid (milliseconds)

N=1000000000; N=2000000000; N=3000000000

Variable Tests Slowest Average
Hosts=2 15 4025 2188
Hosts=4 15 6868 3985
Hosts=8 15 12555 7851
Hosts=12 15 19788 10858
Hosts=16 15 28455 14655

Figure 5: JXTA architecture (MVC+Observer).

Further, as can be seen from Fig. 6, we decided to imple-
ment two types of client peers: GUI client peers and CMD
client peers. The former (implemented using Java Swing)

Figure 6: Juxta-CAT architecture (layer descrip-
tion).

allows the peer to have both functions (a) and (b) (see Sub-
sect. 3.1), that is, submitting and receiving requests, while
the later can only receive requests. In this way, any user
can contribute his/her resources to the platform even when
he/she is not interested in submitting requests to the grid.

During the development of Juxta-CAT, it has been nec-
essary to improve the original JXTA libraries regarding the
presence mechanism and pipe service system. JXTA is an
open specification that only offers a standard mechanism,
based on concrete but adaptable protocols, to build very
basic peer-to-peer applications. In a certain sense, these li-
braries are just the starting point for the definition of a basic
skeleton of the final application.

4.1 Improvements to JXTA protocols
In the case of Juxta-CAT platform, it is very important

to maintain and efficiently manage the updated publication
of the presence information and statistics as well as its pub-
lication to the nodes. The existing mechanisms offered by
JXTA did not match our requirements. Therefore, it was
necessary to change part of the implementation of the Dis-
covery Service and Pipe Service of JXTA to adapt them to
the requirements of Juxta-CAT. We deal with these changes
in next paragraphs.

Improvement of the JXTA Discovery Service.Originally,
JXTA maintains the peergroup information by the notifica-
tion of presence that each node publishes in the cache of
other nodes. But this procedure is not automatic, therefore,
if we do not worry to refresh this information to the Discov-
ery Service of Resources, we will never be able to guarantee
that the collected data are updated.

Therefore, Juxta-CAT will have its own process, a Java
Thread, that periodically updates the information contained
in his local cache and trying to diminish the data traffic of
the network. In this way, the discovery service in Juxta-CAT
follows essentially these steps:

• Periodically publish the presence advertisement in its
own local cache using the method publish() of the
DiscoveryService.

• Publish remotely this advertisement in the cache of the
rendezvous node of the peergroup (remotePublish()
method).

75

• Send a discovery query to the peergroup asking for
other presence advertisements.

• Copy responses to local cache and delete those that
have expired.

(See also Fig. 7 for an UML diagram representation.)

Figure 7: UML diagram of the Juxta-CAT Discov-
ery Service manager.

Improvement of Pipe Service.We explain next how is
improved the Pipe Service system that performs communi-
cation between nodes of a JXTA network. This is certainly
one of the most important aspects of the Juxta-CAT. The
main observation here is that JXTA Pipe Service doesn’t
check whether a message has been successfully delivered to
its destination. In case of failure, JXTA doesn’t attempt a
new delivery of the message. Clearly, there is no timeout
control as regards message delivery.

In order to send messages or data between peers, JXTA
uses a pipe mechanism. A pipe is a virtual communication
channel established between two processes. A computer con-
nected to the network can open, at transport level, as many
pipes as its operating system permits. These channels act as
data links between the two communication points. Different
programming languages such as C++ or Java have specific
libraries with the necessary system calls for managing pipes
with opening, reading, writing and closing operations of the
connections.

Next we briefly describe how we solved the above men-
tioned problems of the JXTA Pipe System resulting thus in
an improved Pipe Service (see Fig. 8).

• Presence through Pipe Advertisement : a Juxta-CAT
node declares, when its launched, an advertisement
with the information relative to the user: role (client
peer vs broker peer) within the grid, IP address, node
name, and the unique JXTA identifier. This Adver-
tisement is distributed by the network through Dis-
covery Service, notifying to the rest of users of the
grid the address of the pipe.

• Inbox messages control (see Fig. 9 for an UML dia-
gram representation). Each node creates one pipe for

Figure 8: UML diagram of the package
net.jxta.juxtacat.modules.pipe.*.

receiving messages. This inbox pipe is managed by an
independent thread that notifies to the superior lay-
ers of the system all the messages that are sent to the
node.

Figure 9: UML diagram of the Juxta-CAT Inbox
manager.

• Outbox messages control (see Fig. 10 for an UML dia-
gram representation). In order to assure that the mes-
sages are successfully delivered to their addresses, we
have developed a managing system based on queues.
Each queue belongs to a possible destination node of
our messages. When we want to send a message, we
add it to its respective queue. Periodically, the man-
ager sends simultaneously, according to the order of
messages in the sequence, all the messages that have
been kept in each queue. If a connection establishment
fails, the message returns to the first position of the
destination queue. A queue without pending messages
to be sent remains blocked, and it does not consume
resources nor memory of the Java Virtual machine.

• Timeout Window. A timeout window is used while
trying to establish a connection. Each attempt to con-
nect with a remote pipe through its advertisement has

76

Figure 10: UML diagram of the Juxta-CAT Outbox
manager.

a timeout limit. We have defined a time interval, in
a way that any failed connection retries the delivery
with an increased timeout. We give in Table 1 the
values for the timeout window used in Juxta-CAT.

Table 1: Timeout Window for sending and receiving.

Tries 1 2 3 4 5 > 5
Broker’s
Sending 1750 2500 4000 6000 12000 18000
Window
(millisec)

Client
Sending 2000 3500 6000 12000 18000 30000
Window
(millisec)

During the testing phase of Juxta-CAT we observed that
the number of lost messages ranges in 0% - 1% of the total
number of sent messages, which requires sending them again.

4.2 The allocation of jobs to resources
Allocation of jobs to resources is a key issue in order to

assure a high performance of applications running on the
Juxta-CAT. In this section we show the algorithm imple-
mented by brokers to allocate requests to the resources (see
Fig. 11 for an UML diagram representation.)

The algorithm can be seen as a simple price-based model
and uses historical information maintained by Juxta-Cat
brokers. Therefore, it is fundamental for any broker to main-
tain updated information about the state of the network and
statistics on the performance of the nodes of the grid.

When a broker receives an execution request, it will con-
sult its own historical information and use it (according to
the price-model) to determine the price of the allocation to
different nodes and finally will decide which is the “cheap-
est” candidate to execute this request. This policy of task
allocation is common for all brokers in Juxta-CAT.

The allocation algorithm works as follows. Based on the
historical information on the nodes, the broker uses a set of
criteria to compute a score for each candidate node. These

Figure 11: UML diagram of the allocation model
used by brokers of Juxta-CAT.

criteria are quantitative and can be independent among them.
Altogether, these criteria must contribute to bring knowl-
edge to the broker about the “economic saving” that would
report any candidate node for the given task resolution. The
score for any node is computed according to the following
criteria:

1. Total amount of resolved jobs: the larger is this num-
ber the better is the node and vice-versa.

2. Number of enqueued jobs waiting for execution: the
larger is this number the worse is the node and vice-
versa.

3. Number of enqueued JXTA messages waiting to be
sent: the larger is this number the worse is the node
and vice-versa.

4. Average number of resolved versus failed jobs: the
larger is the number of successfully resolved jobs and
smaller the number of uncompleted jobs, the better is
the node and vice-versa.

5. Average number of successfully sent messages to the
P2P network: the larger is this number the better is
the node and vice-versa.

We use a simple scoring system. The candidate which
receives the best score in a criterion will receive a fixed value
of 10 points. The second best node has the second better
score, 8 points. The rest of scores are 6, 5, 4, 3, 2 and 1
respectively. Furthermore, the scores of the candidates are
weighted according to the user’s priority, that is, the user
of the application can indicate to the Juxta-CAT which is
the most important criterion, the second most important
criterion and so on.

Thus, by letting N the number of candidate nodes for
the task resolution, K the total number of criteria, wi the
weight or priority of criterion i and S(i, j) the score of the
ith candidate under criterion j, then the total score Si of
the ith candidate node is:

Si =

K∑
j=1

wi · S(i, j).

77

The best candidate is then the one of maximum score,
that is, candidate node imax such that

Simax = max
1≤i≤K

Si.

It should be noted that it is very important to keep the
historical information updated in the cache of each broker.
To achieve this, any node periodically communicates to the
brokers its recent statistics. The statistics generated and
sent by broker peers are:

• JXTA statistics regarding: sent messages, lost mes-
sages, current message queue size, average time in mes-
sage delivery, visible nodes, connections and discon-
nections to the network.

• Brokering statistics regarding: successfully assigned
requests, pending requests in the queue, lost requests,
average time in allocating tasks to candidate nodes.
Also, the historical information of most recent assign-
ments is maintained.

On the other hand, the statistics generated and sent by
client peers are:

• JXTA statistics regarding: sent messages, lost mes-
sages, current message queue size, average time in mes-
sage delivery, visible nodes, connections and discon-
nections to the network.

• Execution statistics regarding: number of requests ac-
cepted, successfully completed tasks, uncompleted tasks,
number of pending tasks.

• Statistics on sent requests regarding: number of re-
quests sent to the grid, number of requests waiting for
the broker response, number of requests waiting for
the response of the remote node, number of requests
successfully completed, lost or cancelled requests and
requests under execution.

In order to publish its statistics, each node generates at
a certain interval rate an XML document storing the sta-
tistical information indicated above. This document is sent
then to the P2P network as an advertisements through the
JXTA Discovery Service. This service publishes the adver-
tisement in the local cache of the node and in the cache of
the Rendezvous node of the peergroup. After that, it is the
Rendezvous node who propagates this information to the
rest of caches of the grid nodes.

Although this allocation algorithm is simple, it uses rele-
vant information as regards the performance of the network.
This model is flexible as regards the number of criteria to
be used as well as the weights to be given to these criteria.

5. EVALUATION OF THE JUXTA-CAT PLAT-
FORM

We have completed a first evaluation of the proposed plat-
form. At this stage of the work, the objective of the evalu-
ation was twofold:

• First, to see the feasibility of the Juxta-CAT as a dis-
tributed computing environments regarding scalabil-
ity, robustness and consistency of the network. In

other terms we wanted to evaluate that the network
allows broker peers and client peers to join and per-
form their responsibilities and also end users to submit
and solve their tasks using the platform.

• Secondly, to measure the performance of the Juxta-
CAT as regards the efficiency of solving problems. We
are concerned here mainly with the speedup obtained
in solving problems decomposable into independent
tasks submitted to the grid. But, also we wanted to
measure the time needed by the Juxta-CAT to allocate
the tasks to the grid nodes.

We describe next the scenario used for Juxta-CAT testing.
It is important to notice that the evaluation process is car-
ried out in a real grid of nodes (see Subsect. 5.2) consisting
in a set of geographically distributed real machines.

5.1 Evaluation scenario

We have chosen a simple application scenario yet having
rather reasonable computational cost. This is the computa-
tion of Π number using approximation series, more precisely
the Gregory’s series:

Π = 4 ·
N=∞∑
i=0

(−i)i 1

2i + 1
.

This problem consists in approximately computing the
value of Π as a sum of N fractions, for a given value of
N . We run a simple java program on a local machine (P4
2.4 Ghz 512 Mb RAM) that solves the problem and mea-
sured the time for different input sizes (values of N) given
in Table 2.

Table 2: Sequential execution time of approximating
Π.

N Result Computation time
10 3,0418396189294032 trivial
103 3,1405926538397941 trivial
106 3,1415916535897744 trivial
109 3,1415926525880504 2 minutes 9 secs

2 · 109 3,1415926530880768 4 minutes 16 secs
3 · 109 3,1415926532549256 6 minutes 36 secs

This problem is efficiently parallelized by splitting1 the
whole series into as many parts as nodes of the grid to be
used, sending each part to the nodes and sum up the partial
results. Thus in this scenario, we generate as many tasks as
number of nodes to be used in computation, submit these
tasks to the grid and notify the final result. Thus, we had
to basically implement the following classes in Java:

• Sum.java: receives in input parameters iinit and ifinal

and computes the sum of fractions comprised between
iinit and ifinal. This class will be run by client peers
of the grid.

• Collector.java: receives in input a text file each line of
which is the partial computed by a peer and computes
the final result.

1One could use a more efficient version known as the classi-
cal partial sum problem.

78

These classes are then packed in jar files. Thus, for in-
stance, an end user can submit the following four requests2

to compute the approximate value of Π for N = 109 terms:
java -cp samples.jar juxtacat.samples.pi.Pi -params

0 499999999

java -cp samples.jar juxtacat.samples.pi.Pi -params

500000000 999999999

java -cp samples.jar juxtacat.samples.pi.Pi -params

1000000000 1499999999

java -cp samples.jar juxtacat.samples.pi.Pi -params

1500000000 1999999999

Note that the efficiency of approximating Π will certainly
depend on the efficient allocation of tasks to the nodes of
the grid by the broker peers.

For any instance of the problem, the total execution time
(from submitting the task to the grid till outputting the final
result) is composed of the time needed to allocate tasks to
grid nodes, communication time and the proper computa-
tion time of the nodes. Thus, in conducting the experiment
we measured the speedup of the computing the approximate
value of Π in grid as the number of grid nodes used increases
and also the time needed by the grid to allocate the tasks
as the number of task increases. Speedup is defined in the
usual way:

speedup =
Tseq

nbNodes · Tgrid
,

where Tseq is the sequential resolution time and Tgrid the
resolution time in the grid using nbNodes.

5.2 Platform settings
In order to deploy Juxta-CAT in a real grid, we joined

the PlanetLab platform [1]. The sample set of PlanetLab’s
machines prepared for this analysis is about 20 nodes dis-
tributed around the European continent. The following
nodes3 were used to install4 the CMD Juxta-Cat version
(client without GUI).

Table 3: Nodes added to the PlanetLab slice.

Host Description
planet1.manchester.ac.uk University of Manchester

lsirextpc01.epfl.ch École Fédérale de Lausanne
planetlab1.polito.it Politecnico di Torino
planetlab1.info.ucl.ac.be University of Louivain
planetlab2.upc.es Universitat Politècnica de Catalunya
planetlab1.sics.se Swedish Institute of Computer Sci.
planetlab1.ifi.uio.no University of Oslo
planetlab3.upc.es Universitat Politècnica de Catalunya
planetlab1.ls.fi.upm.es Universidad Politécnica de Madrid
planetlab1.hiit.fi Technology Institute of Helsinki
planetlab-1.cs.ucy.ac.cy University of Cyprus
planetlab1.ru.is University of Reykjavik
planetlab2.sics.se Swedish Institute of Computer Sci.
planetlab1.mini.pw.edu.pl Telekomunikacja Polska Warsaw
planetlab1.cs.uit.no University of Tromso
planetlab-02.ipv6.lip6.fr Laboratoire d’Informatique de Paris

We have also used a small cluster5 of 6 machines: no-
zomi.lsi.upc.edu, which manages the processes and has access
2In general, just one request is submitted.
3PlanetLab node satisfy the following minimum require-
ments: CPU of 2.0 Mhz, 1024 Mb RAM.
4We remark that we have access to PlanetLab nodes only
through SSH connections on text-mode.
5At the Department of Languages and Informatics Systems,
Polytechnic University of Catalonia, Spain

to Internet (Celeron 2.5 Ghz, 1 Gb RAM, 2 HD IDE RAID1)
and 5 equal nodes (AMD64X2 4.4 Ghz, 4 Gb RAM DDR
ECC, 2 HD IDE RAID1) making an independent Gigabit
network.

5.3 Computational results
Computational results were obtained for the execution

scenarios given in Table 4 the experimental setting.

Table 4: Execution scenarios for approximating Π.
N Local p hosts (p = 2, 4, 8, 12, 16)
109 5 tests 5 tests

p · 10 petitions
2 · 109 5 tests 5 tests

p · 10 petitions
3 · 109 5 tests 5 tests

p · 10 petitions

For each combination (input size, number of machines)
results6 are averaged over 5 executions; the standard devi-
ation is also presented. We present7 in Fig. 12 and Fig. 13
the resolution time and speedup for N = 109 and in Fig. 14
and Fig. 15, for N = 2 · 109, rspectively.

In these figures we can observe:

• Using grid nodes yields a clear reduction in resolution
times. However, increasing the number of grid nodes
is “justified” as far as the complexity of the problem
needs more processors. In our case, using more than
16 grid nodes does not help in reducing the resolution
time. In fact, from Fig. 12 we see that for N = 109

this “critical” number of processors is around 8 and
increases up to 12 when the input size is doubled (see
Fig. 14).

• A similar observation holds for speedup. As the num-
ber of grid nodes participating in the resolution of
the problem increases, the speedup decreases due the
increment in the communication times and the time
needed by the grid to allocate tasks to grid nodes.
Again, by considering a certain number of grid nodes
the speedup increases as the input size of the prob-
lem increases. Thus, for N = 109 and 16 grid nodes
the speedup is around 0.35 (see Fig. 13) and when the
input size is doubled the speedup is around 0.45 (see
Fig. 15) and increases up to 0.6 for N = 3 · 109.

We also measured the time needed by the grid system to
allocate the requests, that is, the brokering time. We give in
Fig. 16 the slowest and averaged brokering time for different
numbers of hosts. As can bee seen from this figure, there
is a reasonable increase (which seem to be proportional to
the increase in the number of grid nodes) in the average
brokering time.

6See also the documentation section related to the Juxta-
CAT at https://juxtacat.dev.java.net.
7We omit the figures for N = 3 · 109.

79

web of Juxta-CAT, and it is possible to be consulted in the documentation section related to the
Project (https://juxtacat.dev.java.net).

N=1000000000

Resolution Time (milliseconds) Speed-up

Variable Tests Mean StDev
Local 5 122363 603
Hosts=2 5 65107 677
Hosts=4 5 35604 809
Hosts=8 5 23554 895
Hosts=12 5 22091 1514
Hosts=16 5 23831 3044

Variable Tests Mean StDev
Hosts=2 5 0,9370 0,0097
Hosts=4 5 0,8570 0,0198
Hosts=8 5 0,6482 0,0248
Hosts=12 5 0,4620 0,0327
Hosts=16 5 0,3240 0,0397

N=2000000000

Resolution Time Speed-up

Variable Tests Mean StDev
Local 5 246648 759
Hosts=2 5 126993 980
Hosts=4 5 66423 817
Hosts=8 5 39828 1535
Hosts=12 5 32649 2156
Hosts=16 5 32324 2576

Variable Tests Mean StDev
Hosts=2 5 0,9686 0,0075
Hosts=4 5 0,9260 0,0114
Hosts=8 5 0,7730 0,0300
Hosts=12 5 0,6330 0,0370
Hosts=16 5 0,4782 0,0400

m
ill

is
ec

o
nd

s
av

er
a

ge

Hosts=16Hosts=12Hosts=8Hosts=4Hosts=2Local

120000

100000

80000

60000

40000

20000

Individual Plot : TEMPS DE RESOLUCIO MIG (N=1000000000)

sp
e

ed
-u

p
 a

ve
ra

g
e

Hosts=16Hosts=12Hosts=8Hosts=4Hosts=2

1,0

0,9

0,8

0,7

0,6

0,5

0,4

0,3

0,2

0,1

Interval Plot: SPEED-UP MIG (N=1000000000)

sp
e

ed
-u

p
 a

ve
ra

g
e

Hosts=16Hosts=12Hosts=8Hosts=4Hosts=2

1,0

0,9

0,8

0,7

0,6

0,5

0,4

0,3

0,2

0,1

Interval Plot: SPEED-UP MIG (N=2000000000)

m
ill

is
ec

o
nd

s
av

er
a

ge

Hosts=16Hosts=12Hosts=8Hosts=4Hosts=2Local

250000

200000

150000

100000

50000

0

Individual Plot : TEMPS DE RESOLUCIO MIG (N=2000000000)

Figure 12: Resolution time for input size N = 109.

web of Juxta-CAT, and it is possible to be consulted in the documentation section related to the
Project (https://juxtacat.dev.java.net).

N=1000000000

Resolution Time (milliseconds) Speed-up

Variable Tests Mean StDev
Local 5 122363 603
Hosts=2 5 65107 677
Hosts=4 5 35604 809
Hosts=8 5 23554 895
Hosts=12 5 22091 1514
Hosts=16 5 23831 3044

Variable Tests Mean StDev
Hosts=2 5 0,9370 0,0097
Hosts=4 5 0,8570 0,0198
Hosts=8 5 0,6482 0,0248
Hosts=12 5 0,4620 0,0327
Hosts=16 5 0,3240 0,0397

N=2000000000

Resolution Time Speed-up

Variable Tests Mean StDev
Local 5 246648 759
Hosts=2 5 126993 980
Hosts=4 5 66423 817
Hosts=8 5 39828 1535
Hosts=12 5 32649 2156
Hosts=16 5 32324 2576

Variable Tests Mean StDev
Hosts=2 5 0,9686 0,0075
Hosts=4 5 0,9260 0,0114
Hosts=8 5 0,7730 0,0300
Hosts=12 5 0,6330 0,0370
Hosts=16 5 0,4782 0,0400

m
ill

is
ec

o
nd

s
av

er
a

ge

Hosts=16Hosts=12Hosts=8Hosts=4Hosts=2Local

120000

100000

80000

60000

40000

20000

Individual Plot : TEMPS DE RESOLUCIO MIG (N=1000000000)

sp
e

ed
-u

p
 a

ve
ra

g
e

Hosts=16Hosts=12Hosts=8Hosts=4Hosts=2

1,0

0,9

0,8

0,7

0,6

0,5

0,4

0,3

0,2

0,1

Interval Plot: SPEED-UP MIG (N=1000000000)

sp
e

ed
-u

p
 a

ve
ra

g
e

Hosts=16Hosts=12Hosts=8Hosts=4Hosts=2

1,0

0,9

0,8

0,7

0,6

0,5

0,4

0,3

0,2

0,1

Interval Plot: SPEED-UP MIG (N=2000000000)

m
ill

is
ec

o
nd

s
av

er
a

ge

Hosts=16Hosts=12Hosts=8Hosts=4Hosts=2Local

250000

200000

150000

100000

50000

0

Individual Plot : TEMPS DE RESOLUCIO MIG (N=2000000000)

Figure 13: Speedup for input size N = 109 and dif-
ferent numbers of grid nodes.

web of Juxta-CAT, and it is possible to be consulted in the documentation section related to the
Project (https://juxtacat.dev.java.net).

N=1000000000

Resolution Time (milliseconds) Speed-up

Variable Tests Mean StDev
Local 5 122363 603
Hosts=2 5 65107 677
Hosts=4 5 35604 809
Hosts=8 5 23554 895
Hosts=12 5 22091 1514
Hosts=16 5 23831 3044

Variable Tests Mean StDev
Hosts=2 5 0,9370 0,0097
Hosts=4 5 0,8570 0,0198
Hosts=8 5 0,6482 0,0248
Hosts=12 5 0,4620 0,0327
Hosts=16 5 0,3240 0,0397

N=2000000000

Resolution Time (milliseconds) Speed-up

Variable Tests Mean StDev
Local 5 246648 759
Hosts=2 5 126993 980
Hosts=4 5 66423 817
Hosts=8 5 39828 1535
Hosts=12 5 32649 2156
Hosts=16 5 32324 2576

Variable Tests Mean StDev
Hosts=2 5 0,9686 0,0075
Hosts=4 5 0,9260 0,0114
Hosts=8 5 0,7730 0,0300
Hosts=12 5 0,6330 0,0370
Hosts=16 5 0,4782 0,0400

m

ill
is

ec
o

nd
s

av
er

a
ge

Hosts=16Hosts=12Hosts=8Hosts=4Hosts=2Local

120000

100000

80000

60000

40000

20000

Individual Plot : TEMPS DE RESOLUCIO MIG (N=1000000000)

sp
e

ed
-u

p
 a

ve
ra

g
e

Hosts=16Hosts=12Hosts=8Hosts=4Hosts=2

1,0

0,9

0,8

0,7

0,6

0,5

0,4

0,3

0,2

0,1

Interval Plot: SPEED-UP MIG (N=1000000000)

sp
e

ed
-u

p
 a

ve
ra

g
e

Hosts=16Hosts=12Hosts=8Hosts=4Hosts=2

1,0

0,9

0,8

0,7

0,6

0,5

0,4

0,3

0,2

0,1

Interval Plot: SPEED-UP MIG (N=2000000000)

m
ill

is
ec

o
nd

s
av

er
a

ge
Hosts=16Hosts=12Hosts=8Hosts=4Hosts=2Local

250000

200000

150000

100000

50000

0

Individual Plot : TEMPS DE RESOLUCIO MIG (N=2000000000)

Figure 14: Resolution time for input size N = 2 · 109.

web of Juxta-CAT, and it is possible to be consulted in the documentation section related to the
Project (https://juxtacat.dev.java.net).

N=1000000000

Resolution Time (milliseconds) Speed-up

Variable Tests Mean StDev
Local 5 122363 603
Hosts=2 5 65107 677
Hosts=4 5 35604 809
Hosts=8 5 23554 895
Hosts=12 5 22091 1514
Hosts=16 5 23831 3044

Variable Tests Mean StDev
Hosts=2 5 0,9370 0,0097
Hosts=4 5 0,8570 0,0198
Hosts=8 5 0,6482 0,0248
Hosts=12 5 0,4620 0,0327
Hosts=16 5 0,3240 0,0397

N=2000000000

Resolution Time Speed-up

Variable Tests Mean StDev
Local 5 246648 759
Hosts=2 5 126993 980
Hosts=4 5 66423 817
Hosts=8 5 39828 1535
Hosts=12 5 32649 2156
Hosts=16 5 32324 2576

Variable Tests Mean StDev
Hosts=2 5 0,9686 0,0075
Hosts=4 5 0,9260 0,0114
Hosts=8 5 0,7730 0,0300
Hosts=12 5 0,6330 0,0370
Hosts=16 5 0,4782 0,0400

m
ill

is
ec

o
nd

s
av

er
a

ge

Hosts=16Hosts=12Hosts=8Hosts=4Hosts=2Local

120000

100000

80000

60000

40000

20000

Individual Plot : TEMPS DE RESOLUCIO MIG (N=1000000000)

sp
e

ed
-u

p
 a

ve
ra

g
e

Hosts=16Hosts=12Hosts=8Hosts=4Hosts=2

1,0

0,9

0,8

0,7

0,6

0,5

0,4

0,3

0,2

0,1

Interval Plot: SPEED-UP MIG (N=1000000000)

sp
e

ed
-u

p
 a

ve
ra

g
e

Hosts=16Hosts=12Hosts=8Hosts=4Hosts=2

1,0

0,9

0,8

0,7

0,6

0,5

0,4

0,3

0,2

0,1

Interval Plot: SPEED-UP MIG (N=2000000000)

m
ill

is
ec

o
nd

s
av

er
a

ge

Hosts=16Hosts=12Hosts=8Hosts=4Hosts=2Local

250000

200000

150000

100000

50000

0

Individual Plot : TEMPS DE RESOLUCIO MIG (N=2000000000)

Figure 15: Speedup for input size N = 2 · 109 and
different numbers of grid nodes.

80

Cost exclusiu de Grid (milliseconds)

N=1000000000; N=2000000000; N=3000000000

Variable Tests Slowest Average
Hosts=2 15 4025 2188
Hosts=4 15 6868 3985
Hosts=8 15 12555 7851
Hosts=12 15 19788 10858
Hosts=16 15 28455 14655

Figure 16: Brokering time.

6. CONCLUSIONS AND FURTHER WORK
In this work we have presented the Juxta-CAT platform

developed using JXTA protocols and Java language. Juxta-
CAT offers a P2P system for distributed computing. Juxta-
CAT can be used from users to submit their tasks in the
form of java programs stored on signed jar files and ben-
efit from the large computing power offered by this dis-
tributed platform. Users can join Juxta-CAT either as a
simple contributor with their machine(s) or as a client peer.
The development of our platform required certain improve-
ment/extensions to the original JXTA protocols, especially
as regards the Presence Service and Pipe Service protocols.
The architecture of Juxta-CAT relays on two types of peers:
broker peers that are in charge of managing the allocation
of tasks to grid nodes and client peers.

The Juxta-CAT environment has been deployed in a large-
scale, distributed and heterogeneous P2P network that we
obtained by joining the PlanetLab platform. We have used
some simple scenarios to validate and evaluate the proposed
platform. The experimental study show the feasibility of
our approach and its usefulness in using the Juxta-CAT to
speedup task resolution. Moreover, the Juxta-CAT’s archi-
tecture does not suppose any obstacle for the “gridification”
process of task resolution.

We plan to continue the work on Juxta-CAT. On the one
hand, we would like to add new functionalities and improve-
ments. Some of these would comprise:

• Allow the resolutions of problems written in languages
other than Java; currently, we can only send state-
ments of problems written in Java language.

• Develop a remote launching system for Juxta-CAT’s
brokers and clients. Due to security restrictions on
PlanetLab nodes, we have to launch each peer by con-
necting first to the remote machine using SSH.

• Provide new and more powerful economic-based mod-
els for allocation of tasks to nodes.

On the other hand, we plan to use the current version
of Juxta-CAT to develop more realistic applications. Thus

we are envisaging the development of an application to pro-
cess large log-files of daily activity of students at a Virtual
University.

Juxta-CAT is included in one of the best showcases of the
Java developer’s community, where new interested members
who would like to participate can be registered.

Finally, there are other issues related to Juxta-CAT such
as security issues not mentioned in this paper. The reader is
referred to https://juxtacat.dev.java.net for further details.

Acknowledgements
We would like to thank many participants of the Java.net
and Jxta.org for their help. In particular, we are grateful to
Daniel Brookshier for his support during the development
of Juxta-CAT project.

7. REFERENCES
[1] D. Bickson. Planetlab project how-to. DANSS LAB

(Distributed Algorithms Networking and Secure
Systems Group).

[2] D. Brookshier, D. Govoni, N. Krishnan, and J.C Soto.
JXTA: Java P2P Programming. Sams Pub., 2002.

[3] R. Buyya, D. Abramson, J. Giddy, and H. Stockinger.
Economic models for resource management and
scheduling in grid computing. Concurrency and
Computation: Practice and Experience,
14(13-15):1507–1542, 2002.

[4] H. Casanova and J. Dongarra. Netsolve: Network
enabled solvers. IEEE Computational Science and
Engineering, 5(3):57–67, 1998.

[5] S.H.. Clearwater, editor. Market-Based Control: A
Paradigm for Distributed Resource Allocation. World
Scientific Press, Singapore, 1996.

[6] I. Foster. What is the grid? A three point checklist.
White Paper, July 2002.

[7] I. Foster and C. Kesselman. The Grid-Blueprint for a
New Computing Infrastructure. Morgan Kauf., 1998.

[8] I. Foster, C. Kesselman, and S. Tuecke. The anatomy
of the grid. International Journal of Supercomputer
Applications, 15(3), 2001.

[9] L. Linderoth and S.J. Wright. Decomposition
algorithms for stochastic programming on a
computational grid. Computational Optimization and
Applications, 24:207–250, 2003.

[10] S. Oaks, B. Traversat, and L. Gong. JXTA in a
Nutshell. O’Reilly, 2003.

[11] A. Oram, editor. Peer-to-Peer: Harnessing the Power
of Disruptive Technologies. O’Reilly, 1st edition, 2001.

[12] T.T. Ping, G.Ch.. Sodhy, Ch.H.. Yong, F. Haron, and
R. Buyya. A market-based scheduler for jxta-based
peer-to-peer computing system. In ICCSA (4), pages
147–157, 2004.

[13] C. Shikey. What is P2P ... and what isn’t. O’Reilly
Network, November 2000.

[14] R. Wolski, J. Brevik, J. Plank, and T. Bryan. Grid
resource allocation and control using computational
economies. In G.Foxand F.Berman and A.Hey, editors,
Grid Computing- Making the Global. Infrastructure a
Reality, chapter 32. Wiley, 2003.

[15] S.J. Wright. Solving optimization problems on
computational grids. Optima, 65, 2001.

81

82

Session D
Resource and Object Management

83

84

The Management of Users, Roles, and
Permissions in JDOSecure

Matthias Merz
Department of Information Systems III

University of Mannheim
L 5,5, D-68131 Mannheim, Germany

merz@uni-mannheim.de

ABSTRACT
The Java Data Objects (JDO) specification proposes a
transparent and database-independent persistence abstrac-
tion layer for Java. Since JDO is designed as a lightweight
persistence approach, it does not provide any authentica-
tion or authorization capabilities in order to restrict user
access to persistent objects. The novel security approach,
JDOSecure, introduces a role-based permission system to
the JDO persistence layer, which is based on the Java Au-
thentication and Authorization Service (JAAS). However,
using JAAS policy files to define appropriate permissions be-
comes more complex and, therefore, error-prone with an in-
creasing number of different users and roles. Thus, JDOSe-
cure comprises a management solution for users, roles, and
permissions. It allows storing the information which is nec-
essary for authentication and authorization in any arbitrary
JDO resource. Furthermore, a Java-based administration
utility with a graphical user interface simplifies the mainte-
nance of security privileges and permissions.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures;
K.6.5 [Management of Computing and Information
Systems]: Security and Protection

1. INTRODUCTION
The Java Data Objects (JDO) specification proposes a

transparent and database-independent persistence abstrac-
tion layer for Java [6, 7]. It enables application developers
to deal with persistent objects in a transparent fashion. Fur-
thermore, JDO as a data store independent abstraction layer
enables the mapping of domain object architectures to any
arbitrary type of data store.

JDOSecure [9, 10] is a novel security architecture devel-
oped as an add-on for the Java Data Objects specifica-
tion (more information about JDOSecure could be found at
projekt-jdo.uni-mannheim.de/JDOSecure). Its objective

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPPJ 2006 August 30 – September 1, 2006, Mannheim, Germany
Copyright 2006 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

is preventing unauthorized access to the data store while
using the JDO API. It introduces a fine grained access con-
trol mechanism to the JDO persistence layer and allows the
definition of role-based permissions. In detail, permissions
could be set for individual user-roles, a specific package or
class, and a CRUD1-operation. Based on the dynamic proxy
approach, JDOSecure is able to collaborate with any JDO
implementation without source code modification or recom-
pilation.

In order to authenticate and authorize users accessing a
JDO resource, JDOSecure implements the Java Authentica-
tion and Authorization Service (JAAS). The default JAAS
implementation uses permissions and simple policy-files to
allow or disallow access to crucial system resources. How-
ever, defining appropriate permissions in simple text-files be-
comes more and more complex with an increasing number of
different users and roles. In order to reduce possible incon-
sistency and potential typos, JDOSecure comprises a man-
agement solution for users, roles, and permissions. It allows
storing the authentication and authorization information in
any arbitrary JDO resource. Furthermore, a Java-based ad-
ministration utility with a graphical user interface simplifies
the maintenance of security privileges and permissions.

In this paper, we shall focus on the management of users,
roles, and permissions in JDOSecure. The outline of the
paper is organized as following: Section two introduces the
current JDO specification and recalls the design of the Java
Authentication and Authorization Service. Section three
outlines the architecture of JDOSecure. In section four we
will present the new management solution for users, roles,
and permissions. The last section will give a critical review
and will address topics for future research.

2. TECHNOLOGY OVERVIEW
In this section, we will provide a basic technology overview

to the Java Data Objects specification and to the Java Au-
thentication and Authorization Service.

2.1 The Java Data Objects Specification
The Java Data Objects specification is an industry stan-

dard for object persistence developed by an initiative of Sun
Microsystems under the auspices of the Java Community
Process [6]. JDO was introduced in April 2002 and is in-
tended for the usage within the Java 2 Standard (J2SE) and

1CRUD is an acronym for Create, Retrieve, Update, and
Delete. Persistence Frameworks usually provide appropriate
methods to manage persistent objects.

85

Enterprise Edition (J2EE). It enables application develop-
ers to deal with persistent objects in a transparent fashion.
Thus, JDO as a data store independent abstraction layer
enables the mapping of domain object architectures to any
type of data store. The recent version of JDO (JDO 2.0)
was finally approved in may 2006 [7]. Its objective is to
simplify the usage of JDO e.g. by providing a standardized
object/relational mapping format to allow a higher degree of
application portability. It also introduces an attach/detach
mechanism for persistent objects to facilitate middle tier
architectures. One of its most beneficial features is the ex-
tension of the JDO Query language (JDOQL) to support
e.g projections, aggregates, or named queries.

The JDO specification defines two packages: The JDO
Application Programming Interface (API) allows applica-
tion developers to access and manage persistent objects.
The classes and interfaces of the Service Providers Inter-
face (SPI) are intended to be used exclusively by a JDO
implementation.

The interfaces and classes of the JDO API are located
in the package javax.jdo [6, 7]. The Transaction in-
terface provides methods for initiation and management
of transactions under user control. The Query interface
allows obtaining persistent instances from the data store
by providing a Java-oriented query language called JDO
Query Language (JDOQL). The PersistenceManager

serves as primary application interface and provides
methods to control the life cycle of persistent ob-
jects. An instance implementing this interface could
be constructed by calling the getPersistenceManager()

method of a PersistenceManagerFactory instance.
Since PersistenceManagerFactory itself is just an-
other interface, constructing an instance prior to
this type becomes necessary. It usually could be
constructed by calling the static JDOHelper method
getPersistenceManagerFactory(Properties props). The
class JDOHelper is also part of the JDO API and enables
an easy replacement of the currently preferred JDO imple-
mentation without source code modifications in context of
an application. The information about the currently used
JDO implementation and data store specific parameters
has to be passed to this method by a Properties object.
A user identification and a password in order to access
the underlying data store are also part of the Properties

object. In order to prevent misunderstandings, the JDO
persistence approach does not distinguish between different
user identifications or individual permissions. With the
construction of a PersistenceManager instance, the con-
nection to the data store will be established and users are
able to access the resource without further restrictions.

Every instance that should be managed by a JDO imple-
mentation has to implement the PersistenceCapable

interface. As part of the JDO SPI package, the
PersistenceCapable interface does not have to be im-
plemented explicitly by an application developer. In-
stead, the JDO specification prefers a post-processor
tool (JDO-Enhancer) that automatically implements the
PersistenceCapable interface. It transforms regular Java
classes into persistent classes by adding the code to handle
persistence. An XML-based persistence descriptor has to
be configured previously. The JDO-Enhancer evaluates this
information and modifies the Java bytecode of these classes
adequately. The JDO specification assures the compatibility

of the generated bytecode for the use within different JDO
implementations. The StateManager interface as part of
the JDO SPI provides the management of persistent fields
and controls the object lifecycle of persistent instances.

Although JDO provides a standardized, transparent
and data store independent persistence solution including
tremendous benefits to Java application developers, the
JDO specification has also been critized in the Java com-
munity. Besides technical details like the JDO enhancement
process [15], the substantial overlaps between the Enter-
prise JavaBeans specification [5] and JDO [8], as well as
the conceptual design as a lightweight persistence approach
has been criticized. Some experts even argue that shift-
ing JDO to a more comprehensive approach including dis-
tributed access functions and multi-address-space commu-
nication [14] is necessary. As a result of it’s lightweight
nature, JDO does not provide a role-based security archi-
tecture, e.g. to restrict the access of individual users to
the data store. Consequently, the JDO persistence layer
does not provide any methods for user authentication or au-
thorization. Every user has full access privileges to store,
query, update and delete persistent objects without fur-
ther restrictions. For example, using the getObjectById()

method allows him to receive any persistent object whereas
the deletePersistent() method enables a user to delete
objects from the data store.

At first glance, a slight improvement could be achieved
by setting up individual user identifications at the level of
the data store. This would allow the construction of dif-
ferent and user dependent PersistenceManagerFactory in-
stances. If, however, all users should have access to a com-
mon database, individual user identifications and appropri-
ate permissions have to be defined inside the data store.
However, configuring user permissions to restrict the access
to certain objects is quite complex. For example, when using
a relational database management system, the permissions
would have to be configured, based on the object-relational
mapping scheme and the structure of the database tables.
Thus, it leads to the disadvantage of causing a strong de-
pendency between the user application and the specific data
store. In addition to that, a later replacement of the data
store preferred currently leads to a time-consuming and ex-
pensive migration. It is obvious that the strong binding of
security permissions to a specific data store contradicts the
intention of JDO, which is providing application program-
mers a data-store-independent persistence abstraction layer.

As JDOSecure is based on the Java Authentication and
Authorization Service, the following section will give a brief
overview to this approach.

2.2 The Java Authentication and Authoriza-
tion Service

The Java security architecture is based on three compo-
nents: Bytecode verifier, class loader and security manager
(cf. [13] and [4]). The bytecode verifier checks the cor-
rectness of the bytecode and prevents stack overflows. The
class loader locates and loads classes into the Java Vir-
tual Machine (JVM) and defines a unique namespace for
each class. The security manager or, more accurately, the
AccessController instance checks the invocation of opera-
tions relevant to security e.g. local file system access, the
setup of system properties or the use of network sockets (cf.
figure 1).

86

Remote Class Files

Signed Class Files

Local Class Files

Bytecode Verifier

Class Loader

Core Java API

SecurityManager / AccessController

Operating System

Remote Class Files

Signed Class Files

Local Class Files

Bytecode Verifier

Class Loader

Core Java API

SecurityManager / AccessController

Operating System

Figure 1: Java 2 Security Architecture, according
to [11]

The code-centric authorization approach in Java allows
to restrict the access to system resources depending on the
source and the author/signer of the bytecode. It was in-
tended to ensure that a malicious Java program could not
damage the user’s system. With the introduction of the
Java Authentication and Authorization Service (JAAS) in
Java 1.4 it is also possible to restrict the access to resources
depending on the currently authenticated user (user-centric
authorization). During the authentication process, a user is
identified by the system e.g. with the help of user identifica-
tion and password. In Java, this mechanism is implemented
by the SecurityManager which delegates access-requests to
the AccessController. This instance validates the permis-
sions and allows or disallows the access to the resources.

Figure 2 and 3 outlines the authentication and autho-
rization process for JAAS. Starting with the authentication
process, the application first creates a LoginContext and in-
vokes the login() method of this instance. As defined in the
login configuration file, the LoginContext delegates the au-
thentication to one or several LoginModules. A LoginModule

could use a CallbackHandler for communication with the
application, the environment or the user e.g. to prompt for a
password. JAAS implements the PAM (Pluggable Authen-
tication Modules) standard to integrate further authentica-
tion services, like Kerberos, Radius or LDAP. If an authen-
tication attempt finally fails, a SecurityException will be
thrown.

By calling the getSubject() method of the
LoginContext, referring to the Subject instance becomes
possible. This represents an authenticated user that is
associated with one or several Principals (a concrete user
role). An application can perform a PrivilegedAction con-
sidering individual user permissions by invoking the static
Subject.doAs(subject, action) method. Therefore, the
AccessController determines if a Subject is associated
with at least one Principal, that provides the permissions

JAAS-Authentication
Login
Context

Login
KConfiguration

Login
Module
Login
Module
Login
ModuleCallback

Handler

Application

Login
Context

Login
Configuration

Login
Module
Login
Module
Login
ModuleCallback

Handler

Figure 2: JAAS-Authentication

JAAS-Authorization
Login
Context Subject

LoginLoginPrincipalPrivileged
Action

Application

Login
Context Subject

LoginLoginPrincipalPrivileged
Action

Figure 3: JAAS-Authorization

necessary to perform this action. If a user or application
does not have the permission necessary to perform this
PrivilegedAction, a SecurityException will be thrown.
The relationship between permissions on the one hand and
Principals on the other is defined in a separate policy-file
(cf. section 3.4).

3. THE ARCHITECTURE OF JDOSECURE
This section outlines the system architecture of JDOSe-

cure. The basic authentication and authorization concepts
will be introduced and subsequently, the integration of
JDOSecure with a JDO implementation is covered.

3.1 JDOSecure Preface
As already noted, JDOSecure will introduce a role-based

permission system to the JDO persistence layer based on
the Java Authentication and Authorization Service.

Presentation
Layer

Application
Layer

Database
Layer

JDO-Ressource

GUI Web-
Browser

Application

JDOSecure

JDO

Figure 4: Interposition of JDOSecure between an
Application and a JDO Implementation

87

As pictured in Figure 4, JDOSecure is intended to be in-
terposed between an application and a JDO implementation.
Thus, the architecture of the application domain could con-
sist of user-interface, application, JDOSecure, JDO imple-
mentation and a JDO resource to store the persistent objects
of the application domain. If e.g. a user was connected to a
Java application by using a graphical user interface (GUI)
or a web browser, the user will not even be aware of the
interception.

3.2 The Authentication Process
As described in section 2.1, a PersistenceManager-

Factory instance can be invoked by calling the static
getPersistenceManagerFactory(Properties props)

method of the JDOHelper class. JDOSecure extends
this concept in order to facilitate the collaboration between
JDOSecure and any JDO implementation. Hence, JDOSe-
cure provides a JDOSecureHelper class which is derived
from JDOHelper. The JDOSecureHelper class overrides
the getPersistenceManagerFactory(Properties props)

method and serves as an entry-point for JDO applications.
The Properties object passed to the JDOHelper class

contains amongst others user identification and password
to access a JDO resource. As mentioned in section 2.1
the JDO architecture does not distinguish between differ-
ent users. Therefore, the JDOSecureHelper analyzes the
passed Properties object to authenticate a user at the level
of the JDO persistence layer. Once a user has authen-
ticated successfully, the JDOSecureHelper class constructs
a new PersistenceManagerFactory instance. The basic
idea in this context is to replace username and password in
the Properties object, before the JDOSecureHelper class
invokes the getPersistenceManagerFactory(Properties

props) method of the original JDOHelper class. The inten-
tion of this replacement is to prevent a direct connection be-
tween user and JDO resource by using the JDOHelper class
instead of the JDOSecureHelper class as a ”workaround”.
The replaced password is unknown to the user and has to
be configured by a security-administrator for the JDOSecure
implementation and the JDO resource previously.

Class
JDOSecureHelper

Class
LoginContext

Class
JDOLoginModule

Interface
PersistenceManagerFactory

Class
JDOHelper

forwards

Interface
PersistenceManager

Class
JDOCallbackHandler

interacts

Class
JDOUser

Class
JDOSecureHelper

Class
LoginContext

Class
JDOLoginModule

Interface
PersistenceManagerFactory

Class
JDOHelper

creates

0..*

creates

1

Interface
PersistenceManager

manages

0..*

1

Class
JDOCallbackHandler

1

Class
JDOUserget

1

1

1

Figure 5: Using JAAS to Implement User Authen-
tication in JDOSecure

As illustrated in Figure 5, a LoginContext

instance will be constructed by invoking the
getPersistenceManagerFactory() method of the
JDOSecureHelper class. The LoginContext instance
forwards the authentication-request to the JDOLoginModule

and JDOCallbackHandler. The JDOCallbackHandler

instance validates the ConnectionUserName and the
ConnectionPassword property to authenticate the
user. If this process completes without throw-
ing a SecurityException the LoginContext in-
stance is associated with a JDOUser instance and a
PersistenceManagerFactory instance is constructed.
As described in the next section, the JDOSecureHelper

instance does not return a PersistenceManagerFactory

instance, but a proxy instance to implement the access
control mechanism instead.

3.3 JDOSecure and the Dynamic Proxy Ap-
proach

There are two prerequisite conditions that could affect the
acceptance of JDOSecure. First, JDOSecure should be inde-
pendent from a concrete JDO implementation to ensure an
ongoing portability between different JDO implementations.
And secondly, an overall approach should not contradict the
JDO specification. In an attempt to meet these require-
ments, the presented security architecture implements the
dynamic proxy pattern [1]. As it will be described in the
following, this concept enables the collaboration between
JDOSecure and a standard JDO implementation, without
an extensive adaptation.

A proxy instance implements the interfaces of a specific
object and allows one to control access to it [3]. Gen-
erally, the creation of a proxy has to be done at com-
pile time. Moreover, the dynamic proxy concept allows
the dynamic construction of a proxy instance at run-
time [1]. Dynamic proxy instances are always associ-
ated with an InvocationHandler and could be created
e.g. by using the static newProxyInstance() method of
the java.lang.reflect.Proxy class. Any method invo-
cation directed to proxy instance will be redirected to
the InvocationHandler.invoke() method. The invoke()

method allows to intercept method calls before they are for-
warded to the original object.

The JDOSecure architecture implements the dynamic
proxy concept as shown in Figure 6. The basic idea is to
interpose a proxy between PersistenceManager and a JDO
user or application. This would allow to validate specific
user permissions at the PMInvocationHandler instance, be-
fore a method call is forwarded to the PersistenceManager.
The following paragraph will explain the architecture more
in detail.

As mentioned above, the JDOSecureHelper.get-

PersistenceManagerFactory() method returns a dy-
namic proxy instance of the PersistenceManagerFactory

class. Thus, the JDOSecure architecture avoids a direct
interaction with the original PersistenceManagerFactory-
instance and allows to manipulate method calls which
are directed to the PersistenceManagerFactory. In-
voking the getPersistenceManager() method, the
PMFInvocationHandler returns a second proxy, in this
case a proxy of the PersistenceManager instance.
JDOSecure uses the associated InvocationHandler

(PMInvocationHandler) to manipulate method calls
directed to the PersistenceManager. Thus, the
PMInvocationHandler represents the entry-point in or-
der to implement the authorization function and allows one
to determine whether or not a user is allowed to invoke a
PersistenceManager method.

88

Class
JDOSecureHelper

Class
PMFProxy

Class
PMFInvocation

Handler
Class

PMProxy

Class
PMInvocation

Handler

Interface
PersistenceManagerFactory

Class
JDOHelper creates

 creates

forwards

Class
JDOUser

Interface
Permission

Class
JDOMakePersistent

Permission

Class
JDOQuery

Permission

Class
JDODeletePersistence

Permission

Class
JDOSecureHelper

Class
PMFProxy

Class
PMFInvocation

Handler
Class

PMProxy

Class
PMInvocation

Handler

Interface
PersistenceManagerFactoryClass

JDOHelper

0..*

0..*

Interface
 PersistenceManager

 0..*

 0..*

 forwards

Class
JDOUserhas

1

Interface
Permission checks

Class
JDOMakePersistent

Permission

Class
JDOQuery

Permission

Class
JDODeletePersistence

Permission

Class
JDOSecurity

Action
run

11

1

1

manages

manages

Figure 6: Using the Dynamic Proxy Approach to Implement User Authorization

3.4 The Authorization Process
JDOSecure enables the set-up of user specific per-

missions in order to allow or disallow the invocation of
PersistenceManager methods. As already mentioned, a
user receives a proxy of a PersistenceManager instance
(PMProxy) by invoking the getPersistenceManager()

method. Thus, JDOSecure is able to use the assigned
PMInvocationHandler to validate, if an authenticated
JDOUser has the permission to make a specific method invo-
cation. The permissions are located in a separate policy-file
and can be individually defined for any user. Currently,
JDOSecure distinguishes between different permissions
(Table 1) in order to restrict the access to the different
PersistenceManager methods. JDOSecure also enables
the limitation of user permissions to a certain package or a
specific class.

For instance, the permission to invoke the
makePersistent() method could be defined for a pack-
age org.test.sample and a single user ”sampleuser” as
following:

grant Principal JDOUser "sampleuser"{

permission JDOMakePersistentPermission

"org.test.sample.*";

}

In order to validate if a user has the permission
to invoke a specific PersistenceManager method, a
JDOSecurityAction instance will be constructed and
passed to the static doAs(subject, action) method of
the Subject class. Consequently, the validation of a
user permission is delegated to the AccessController

as part of the Java 2 Security Architecture. If a user
has the appropriate permission to invoke a specific
PersistenceManager method, the method call is for-
warded to the original PersistenceManager instance. If
not, a Java SecurityException is thrown and the access to
the JDO resource is rejected.

Even this approach allows one to restrict the creation,
query and deletion of PersistentCapable instances, it is
not suitable for the JDO update process. This problem is
addressed in the next section.

3.5 JDOSecure and the Update of Object At-
tributes

JDO introduces the concept of transparent persistence
and consequently JDO doesn’t provide any additional meth-
ods to update object attributes or flushing instances to the
data store. The security mechanism as described above, to
verify user permissions when invoking methods of the JDO
API, does not work in case of JDO updates.

As already mentioned, the JDO enhancer modifies regular
Java classes in order to implement the PersistentCapable

interface. Additionally, all setter methods are modified, that
they do not change attributes directly. Instead, by invok-
ing a setter method, an associated StateManager instance
will be notified. This StateManager is responsible to update
the attributes in the corresponding PersistentCapable in-
stance as well as to propagate these updates to the database.

The idea in this context is to replace the StateManager

by another proxy and to validate the user permissions
in the corresponding InvocationHandler instance. As
defined in the JDO specification, a StateManager in-
stance will be created by the JDO implementation
with the invocation of the PersistenceManager meth-
ods makePersistent(...), makePersistentAll(...),
getExtent(...), getObjectById(...) as well as the
execute(...) method of the Query instance. With
the use of JDOSecure, the user does not interact
with the PersistenceManager directly, but with the
PMInvocationHandler instance. Before JDOSecure returns
a PersistentCapable instance to the user, replacing the
corresponding StateManager by a proxy becomes possible.

In order to implement this approach in JDOSe-
cure, the PMInvocationHandler accesses the private
jdoStateManager field by using the java.lang.reflection

API to construct a dynamic proxy for the StateManager.
In a second step, the PMInvocationHandler replaces the
reference to the StateManager in the PersistentCapable

instance with the proxy. The technical details like se-
curity issues when accessing private fields by using the
java.lang.reflection API and other complications
(e.g. the jdoReplaceStateManager(...) method of a
StateManager) have been disregarded in order to improve

89

Methods of a PersistenceManager, that Necessary permission to invoke the according
require specific permissions to be method for a specific class or package:
executed in the context of JDOSecure:

makePersistent(..) JDOMakePersistentPermission < Class >
makePersistentAll(..)

deletePersistent(..) JDODeletePersistentPermission < Class >
deletePersistentAll(..)

getExtent(..) JDOQueryPermission < Class >
Query.execute(..)

- JDOUpdatePermission < Class >

Table 1: JDOSecure Permissions

clarity. However, JDOSecure enables the access control of
the JDO update mechanism by introducing another proxy
and a JDOUpdatePermission. As all other JDOSecure
permissions, the JDOUpdatePermission could be specified
individually for every user and a specific package or class.

4. THE MANAGEMENT OF USERS,
ROLES, AND PERMISSIONS IN JDOSE-
CURE

This section focusses on the management of users, roles,
and permissions in JDOSecure. At first, the interaction be-
tween the users, roles, and permissions management system
and JDOSecure will be described. Subsequently, the do-
main model of the users, roles and permissions management
system will be outlined and the application to maintain the
appropriate information will be introduced.

4.1 Interaction between the Users, Roles,
and Permissions Management System and
JDOSecure

The JDOSecure users, roles, and permissions manage-
ment system allows to store the information which is nec-
essary for authentication and authorization in a separate
JDO resource. The interaction between the management
component and JDOSecure on level of the application layer
is illustrated in Figure 7. The left part of this illustra-
tion corresponds to Figure 4. The right part describes the
schematic architecture of the users, roles, and permissions
management system consisting of the administration utility,
a users, roles, and permission management component, a
JDO-Implementation and a separated JDO resource in or-
der to store the administration-data.

The UML Component diagram in Figure 8 repre-
sents the interaction more in detail. Since JDOSe-
cure uses JAAS, the abstract Java class Policy

and the JAAS interface LoginModule are used as
interfaces. The JDOLoginModule class implements
the interface javax.security.auth.spi.LoginModule

and the class JDOPolicy extends the abstract class
java.security.Policy. The class JDOLoginModule im-
plements the PAM standard and enables the access to
the necessary data like user name and password for the
authentication process. In order to enable JAAS to use the
JDOLoginModule to authenticate users at runtime, the JAAS
Login Configuration file has to be adapted previously [12].
The instance of LoginContext, which will be constructed
by the JDOSecureHelper, analyzes the configuration file

AnwendungApplication

AnwendungJDOSecure

AnwendungJDO

Application and JDOSecure Management of Users, Roles,
and Permissions

JDO-Ressource
(Users, Roles,

and Permissions)

AnwendungAdministration
Utility

Users, Roles, and
Permissions
Management

Primary
JDO-Ressource

AnwendungJDO

Presentation
Layer

Application
Layer

Web-
BrowserGUI

Database
Layer

Figure 7: Binding between the Users, Roles, and
Permissions Management System and JDOSecure

and determines, which Login-Modul has to be used for the
authentication process.

As mentioned in Figure 5, the JDOCallbackHandler passes
the parameters user identification and password to the
JDOLoginModule. If a Credential object in the JDO re-
source matches the same user identification and password,
the authentication process completed successful. In this case
the JDOLoginModule passes all Principal objects that are
associated with the Credential object to the LoginContext.
Finally, JAAS adds these Principal objects to the current
session (Subject). The class JDOPolicy extends the default
Java Policy implementation and grants access to the data
for authorizing the users (Principal objects, permissions).
In order to enable the JDOPolicy class to perform the au-
thorization process, an instance of this class has to be con-
structed and activated for the entire JVM at run-time.

In order to manage the authorization process, the
JDOPolicy instance detects the permissions of all Principal
objects assigned to the current session as well as the permis-
sions granted to a CodeSource2 object. In order to achieve
data store independency, the permissions are mapped into
a JDO resource and could be directly accessed from the

2A CodeSource object encapsulates a code-base
(java.net.URL) and public key certificates of the classes
being loaded.

90

Application
<<component>>

JDOSecure
<<component>>

JDO Implementation
<<component>>

JDO API

JDO API

Users, Roles and Permissions Management System
<<component>>

Policy

LoginModule

JDO Implementation
<<component>>

JDO API

JDOPolicy

JDOLoginModule

JDOAdmin

Figure 8: UML Component Diagram Identifying the Components with regard to JDOSecure

JDOPolicy instance. The JDOAdmin class represents an ad-
ministration utility including a graphical user interface that
will simplify the management of users, roles and permissions
for JDOSecure. More details will be discussed in section 4.3.
The underlying domain model of the users, roles, and per-
missions management system will be presented in the fol-
lowing section.

4.2 Modelling the Users, Roles, and Permis-
sions Management Domain

The domain model of the users, roles, and permissions
management system was designed to be as flexible as pos-
sible. Therefore, the classes Principal, CodeSource and
Permission are widely independent from the methods to
mange the corresponding objects. This allows to add fur-
ther management methods in the Java-based administration
utility without any changes to the domain model.

In Figure 9, the domain model is represented. The authen-
tication and the authorization part are highlighted each by
a dotted line. The linking element between this two parts is
the class Principal. Since a user can be identified in several
ways, the class Credential represents the information that
is required to authenticate a user e.g. by using a user iden-
tification and password. The user himself is not explicitly
represented in JAAS. However, the user is implicitly repre-
sented by the references between the Credential and the
Principal objects.

The set of allowed actions is concatenated by an instance
of the AuthorizationEntry class. In detail, the permissions
of a specific user could easily be determined by aggregat-
ing all permissions that are assigned to all user’s identities
and the assigned CodeSource instances. The CodeSource

class enables an administrator to bind permissions to a URL,
which defines from where a Java class is being loaded. The
next section will introduce the Java-based administration
utility to mange users, roles and permissions.

4.3 Administration Utility to Mange Users,
Roles, and Permissions

The Java-based administration utility with the function
of maintaining users, roles, and permissions is introduced to
simplify the management of the information which is nec-
essary for authentication and authorization. It is designed
to be used by a security administrator, even from a remote
computer by using a direct JDO connection. In order to pro-
vide a very comfortable solution, the graphical user interface
possess two different management modes:

The first management mode enables an administrator to
operate directly on the presented domain model. Thus, the
AuthorizationEntry objects could be directly constructed
and bound to a Principal, Permission and CodeSource

objects. Even this mode is highly effective in granting per-
mission to a specific CodeSource and a Principal, it also
has the disadvantage of a very complex handling.

Therefore, a second management mode is geared to
the Role-Based Access Control (RBAC) standard [2]. In
the so-called RBAC mode, the permission management of
Principals is separated from the permission management
of CodeSource objects. Thus, the RBAC mode has the ad-
vantage of an easier handling, but on the other hand, it is
e.g. not possible to grant permissions to set of of a sin-
gle user/role and a specific CodeSource object. Also per-
missions can only be defined for a single user role (not for
collection of user roles), which could lead to the definition
of new roles. Figure 10 outlines the assignment of permis-
sions and roles using the RBAC management mode. More-
over, as can be seen, the Java-based administration util-
ity also allows to define Java permissions, e.g like a Java
FilePermission. Even these permissions are not directly
related to JDO; they are generally required, due to the ac-
tivated SecurityManager.

91

Datenmodell abstrahiert 2006/03/17

Credential Principal

AuthorizationEntry Permission

Authorization

Authentification

CodeSource

e. g. username
and password

user role,
e. g. administrator

e. g. to read a file

e. g. URL of a JAR-file

Figure 9: UML Class Model of the Users, Roles, and Permissions Management Domain

5. CONCLUSION
In this article, the JDOSecure architecture is introduced

and the main advantages are highlighted. JDOSecure intro-
duces a fine-grained access control mechanism to the JDO
persistence layer and allows the definition of role-based per-
missions. The permissions could be defined individually for
every user/role with regards to certain operations (create,
delete, update, and query) and a specific class/package. In
order to authenticate and authorize users accessing a JDO
resource, JDOSecure implements the Java Authentication
and Authorization Service. As it turns out, defining ap-
propriate permissions using JAAS policy files becomes more
complex and error-prone with an increasing number of dif-
ferent users and roles. Therefore, JDOSecure comprises a
management solution for users, roles, and permissions. This
approach allows to map the information which is neces-
sary for authentication and authorization in any arbitrary
JDO resource. A Java-based administration utility with a
graphical user interface simplifies the maintenance of secu-
rity privileges and permissions. Based on the dynamic proxy
approach, JDOSecure is able to collaborate with any JDO
implementation without source code modification or recom-
pilation.

Even JDOSecure could improve the security of JDO ap-
plications, one potential shortcoming of JDOSecure should
also be mentioned. Since JDOSecure provides a fine-grained
access control mechanism, it becomes obvious that the man-
agement of permissions and the access control mechanism
has negative performance affects. Even worse, the dynamic
proxy approach including a huge number of indirections be-
tween the constructed instances and their proxies leads to a
further deterioration of performance. In order to get a first
impression of the performance behavior, we have suggested
a test-scenario that covers the measurement of CRUD op-
erations. Each test case has been executed several times
with a set of different number of persistent objects. It turns
out that JDOSecure reduces the performance in this test

scenario at about 15-20% on an average. In the future, we
aim to extend our performance tests and are confident of
achieving a slightly better performance for JDOSecure.

Acknowledgments
I thankfully acknowledge the fruitful discussions with my
colleagues from the department of Information Systems III.
Especially, I would like to thank Prof. Dr. Martin Schader
and Dr. Markus Aleksy for reading this paper thoroughly
and for their helpful comments and advice regarding its con-
tents. I appreciate and also thank my colleagues from the
University of Mannheim IT Center for their kind and con-
tinuous support.

6. REFERENCES
[1] J. Blosser. Explore the Dynamic Proxy API.

http://java.sun.com/developer/technicalArticles/
DataTypes/proxy/, 2000.

[2] Ferraiolo, David F., Sandhu, Ravi, Gavrila, Serban,
Kuhn, D. Richard, and Chandramouli, Ramaswamy.
Proposed NIST Standard for Role-Based Access
Control. ACM Transactions on Information and
System Security, vol. 4 no. 3:p. 224–274, 2001.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns, Elements of Reusable
Object-Oriented Software. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1st edition,
1995.

[4] L. Gong. Java 2 Platform Security Architecture,
http://java.sun.com/j2se/1.4.2/docs/guide/security/
spec/security-spec.doc.html, 2002.

[5] Java Community Process. JSR-153: Enterprise
JavaBeans, Final Release, Version 2.1, http://www.
jcp.org/en/jsr/detail?id=153, 2003.

[6] Java Community Process. JSR-012: Java Data
Objects (JDO) Specification, Maintenance Release,

92

Figure 10: Assignment of Permissions and Roles using the RBAC Management Mode

Version 1.0.1, http://www.jcp.org/en/jsr/detail?id=
12, 2004.

[7] Java Community Process. JSR-243: Java Data
Objects 2.0 - An Extension to the JDO specification,
Final Release, Version 2.0, http://www.jcp.org/en/
jsr/detail?id=243, 2006.

[8] A. Korthaus and M. Merz. A Critical Analysis of JDO
in the Context of J2EE. In A.-A. Ban, H. Arabnia,
and M. Youngsong, editors, International Conference
on Software Engineering Research and Practice
(SERP ’03), volume I, pages 34–40. CSREA, 2003.

[9] M. Merz. JDOSecure: A Security Architecture for the
Java Data Objects-Specification. 15th International
Conference on Software Engineering and Data
Engineering (SEDE-2006), 6.-8. July, Los Angeles,
California, USA, 2006.

[10] M. Merz. Using the Dynamic Proxy Approach to
Introduce Role-Based Security to Java Data Objects.
18th International Conference on Software
Engineering and Knowledge Engineering (SEKE’06),
5.-7. July, San Francisco, California, USA, 2006.

[11] S. Oaks. Java Security. The Java Series. O’Reilly &
Associates, Inc., Sebastopol, CA, USA, second edition,
2001.

[12] Sun Microsystems. JAAS Login Configuration File.
http://java.sun.com/j2se/1.4.2/docs/guide/security/
jaas/tutorials/LoginConfigFile.html, 2002.

[13] Sun Microsystems. The Java Language Specification.
Addison-Wesley Professional, 3rd edition, 2005.

[14] TheServerSide.COM. Craig Russell Responds to
Roger Sessions’ Critique of JDO.
http://www.theserverside.com/articles/article.tss?l=

RusselvsSessions, 2001.

[15] TheServerSide.COM. A Criticism of Java Data
Objects (JDO). http://www.theserverside.com/news/
thread.tss?thread id=8571, 2003.

93

 An Extensible Mechanism for Long-Term Persistence of
JavaBeans Components

Chien-Min Wang1, Shun-Te Wang1, Hsi-Min Chen2 and Chi-Chang Huang1
1 Institute of Information, Academia Sinica

Nankang 115, Taipei, Taiwan, R.O.C.
2 Department of Computer Science and Information Engineering

National Central University, Taoyuan, Taiwan, R.O.C.

{cmwang, wangsd, seeme, hunter}@iis.sinica.edu.tw

ABSTRACT
Long Term Persistence for JavaBeans (LTP) is an API that supports
a general mechanism for serializing JavaBeans into an XML-based
text format and vice versa. As Java programming language does not
currently support orthogonal persistence, a programmer can choose
to convert the internal state of an application into a permanent
storage and vice versa using the LTP API. In this paper, we propose
a mechanism that is extensible and optional for LTP, without
modifying the LTP specification, to maximize the flexibility and
extendibility of Java applications. Our approach embeds scripts in
an encoded XML text in order to reconstruct missing objects, or to
create some additional helper objects during the subsequent
decoding process. Moreover, as the decoding process may take too
much time to instantiate certain heavyweight objects, the proposed
mechanism also supports an optional cache pool to speed it up.

Categories and Subject Descriptors
I.7.2 [XML]: Document Preparation – format and notation,
languages and systems, scripting languages. D.3.2 [Java]:
Language Classifications – extensible languages, object-oriented
languages

General Terms
Algorithms, Performance, Design, Experimentation, Languages.

Keywords
Persistence, JavaBeans, LTP, Java, XML, scripting, cache,
serialization.

1. INTRODUCTION
Object persistence has become an important requirement of modern
object-oriented programming languages like C# and Java [11].
JavaBeans are reusable software components written in Java, and
designed to be manipulated visually by an integrated development
environment (IDE) for building applications [20]. Long Term
Persistence for JavaBeans (LTP) is a persistence model for
JavaBeans components [16]. The LTP specification was developed

through the Java Community Process, and has been included in
Java 2 Standard Edition since release 1.4. The LTP persistence
scheme can convert a tree or graph of JavaBeans objects into an
XML-based text format and vice versa.

Currently, the Java programming language does not support
orthogonal persistence [14][17], which would preserve the states of
any objects independent of their classes. Hence, a programmer can
choose to convert the internal state of an application into a
permanent storage and vice versa using the LTP API.

The LTP API provides two critical classes for JavaBeans
persistence: the XMLEncoder and the XMLDecoder. An instance of
the XMLEncoder class is used to write text files representing
JavaBeans components. The XMLEncoder clones the object graphs
and records the steps taken so that the clone can be recreated at a
later time. The XMLDecoder can read the XML documents created
by the XMLEncoder, parse all the XML data of the given input
stream, rebuild the object graphs, and place all the objects in a
queue. When the readObject() method is called, an object is simply
popped off the queue and returned.

The use of the LTP API implies that any object can be made
persistence dependent on its data type when encoded. For this
purpose, the current implementation of the LTP API contains a set
of PersistenceDelegates, organized according to the class of object.
If there is no PersistenceDelegate for a given class, an instance of
the DefaultPersistenceDelegate class is used to provide a default
encoding strategy. However, exceptions may occur because, in this
case, an object is assumed to be a JavaBean that follows the idioms
laid out in the JavaBeans specification. In addition, the current LTP
encoder cannot handle the persistence of anonymous inner classes,
which results in object reference losses. This may lead to problems
because the object graph is incomplete.

Another interesting issue occurs when a class is implemented using
the Singleton design pattern [10]. The current
XMLEncoder/XMLDecoder paradigm cannot guarantee that a
Singleton object will remain a true Singleton, i.e., not two distinct
objects, during the decoding process. The reason is that a properly
created Singleton cannot be saved using the XMLEncoder due to
the absence of a public constructor for the Singleton. In other words,
the current XMLEncoder/XMLDecoder paradigm is designed to
save JavaBeans that are not meant to be Singletons.

In this paper, we propose a mechanism that is extensible and
optional for LTP, without modifying the LTP specification, the Java

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
PPPJ 2006 , August 30 – September 1, 2006, Mannheim, Germany.
Copyright 2006 ACM …$5.00.

94

run-time system, or the Java language itself, to maximize the
flexibility and extendibility of Java applications. Our approach
embeds scripts in the encoded XML text in order to recover missing
object references during the subsequent decoding process. Any
Singleton object can be created in this manner. Moreover, as the
decoding process may take too much time to instantiate certain
heavyweight objects, the proposed mechanism supports an optional
cache pool to speed it up.

The remainder of this paper is organized as follows. Section 2
describes related work. The design concept of the mechanism is
proposed in Section 3. Section 4 presents the API implementation
of the proposed mechanism, which is followed by a case study in
section 5. We then present our conclusions in Section 6.

2. RELATED WORK
Software developers using object-oriented languages sometimes
need to make their objects persistent, e.g., software agents [5]. The
definition of persistence is a little vague in different application and
research areas. In general, serialization, i.e., Object Persistence,
means that an object graph is regarded as open data that can be
converted into bits of code and vice versa [11]. Serialization also
means that an object’s life cycle is not restricted to the program or
session that created it. In the Java programming language,
serialization in a binary format is used for lightweight persistence,
or for marshalling arguments of Remote Method Invocation (RMI)
calls [6][15][19]. On the other hand, serialization in XML format
can be used in Web services.

A comparative study of both binary and XML object persistence for
Java and .NET platforms can be found in [11]. From a performance
perspective, binary persistence outperforms XML persistence in
terms of memory space and processing time. XML persistence,
however, is readable by humans and more portable than binary
persistence. Because XML uses Unicode, UTF-8 or ASCII as the
presentation format for data, a SOAP-based Web service may suffer
from severe performance degradation when sending scientific data.
A technique called differential serialization that helps alleviate the
SOAP performance problem is described in [1].

In [14], the authors propose a systematic method for developing a
multi-language system with orthogonal persistence, in which the
necessary data conversion between languages is transparent to users.
Meanwhile, the authors of [12] investigate how reachability-based
orthogonal persistence can be supported without modification of
the compiler.

Binary serialization in Java was initially used to support RMI,
which allows arguments to be passed between two virtual machines.
RMI works well when two virtual machines contain compatible
class versions. In [15] and [19], the authors study approaches that
improve the performance of RMI, while the authors of [6] discuss
how binary serialization can be used to marshal general
communication data in Java parallel programming. The authors of
[4] implement their object serialization protocol with the Java
Native Interface to obtain higher throughput of parallel applications
using RMI. In addition, [18] proposes a serialization algorithm that
reduces the size of serialized objects, which is useful in many
distributed applications to prevent a significant degradation in
performance.

To support transactions and general-purpose persistence, a Java

virtual machine called Jest is proposed in [9]. In [2], the authors
describe a standard, called ODMG Java binding, which considers
fundamental database capabilities such as transactions and queries
for robust applications that need object persistence.

Our work focuses on XML object persistence in Java, and follows
the standard LTP specification without modifying the Java run-time
system or the Java language. We propose and implement an
extensible mechanism that allows users to write scripts and use
cached objects. The mechanism is functionally compatible with the
standard LTP, and enhances the flexibility and extendibility of Java
applications.

3. DESIGN CONCEPT
This section describes the design concept of the extensible
mechanism, which comprises three parts. The first is the provision
of a script capability to enhance the original XMLEncoder of LTP
API, so that users should be able to define additional variables and
add scripts to the XML text when necessary during the encoding
process. The second part is the provision of a script-running
environment, and the third part provides a cacheable object pool for
the decoding process.

3.1 Provision of a script capability for the
XMLEncoder

The current XMLEncoder cannot handle the persistence of
anonymous classes or certain inner classes, which results in the loss
of object references. For example, if an instance of the
javax.swing.JFrame class has a WindowListener object
implemented using an anonymous class, then, when being encoded,
a java.lang.IllegalAccessException will be thrown because the
XMLEncoder cannot access anonymous members of a given class.
In this scenario, the XMLEncoder just discards the object and
continues to encode the other object instances in the object graph.

To deal with this problem, users can recover a missing event
listener for a javax.swing.JFrame object referred by a variable
frame1, for example, during the decoding process by running a
script like the following:

//<SCRIPT LANGUAGE="Java"
//<!---------------------------------
 import java.awt.*;
 import java.awt.event.*;
import javax.swing.*;

 frame1.addWindowListener(new WindowAdapter(){
 public void windowIconified(WindowEvent e){
 // do something
 }
 });

//---------------------------------->
//</SCRIPT>

The script is encoded and embedded in the runScript method, as
shown in Figure 1. Note that, in this script, the WindowAdapter
class implements the WindowListener interface. Furthermore, in the
encoding process, this script must be embedded in the XML text
immediately after the instance of the javax.swing.JFrame class is
written by the writeObject() method of the XMLEncoder.

To embed scripts in the encoded XML text for the recovery of

95

missing object references in the decoding process, a Java source
interpreter can be applied. In fact, the interpreters of any scripting
language that can interact with Java virtual machine are suitable for
this task. The BeanShell Scripting Language [3], DynamicJava
pure Java source interpreter [8] and Jython [13] are examples.

Note that if a script-embedded XML text is used for argument
passing of Web services or remote procedure calls, classes defined
in the script do not need to be compiled and deployed in the
classpath at both the client side and the server side. This makes
applications more dynamic and flexible at runtime.

Every object written by the XMLEncoder uses a standard XML
schema. According to the schema, when an object graph contains
cycles or multiple references to the same object, a name, i.e., an
identifier is given to the object so that it can be referred to later. An
identifier is created using the id attribute, which binds a name to an
object instance. A reference is made to a named instance by using
an idref attribute in an element with the <object> tag. In other
words, the XMLEncoder has its own name space.

However, users cannot know which identifier will be assigned to a
given object instance before the object instance is written by the
writeObject() method of the XMLEncoder. Hence, users cannot
write scripts to access the object instance in advance. Moreover, a
Java source interpreter has its own name space to maintain its object
pool. So, our mechanism provides a name mapping table to link the
two name spaces.

For example, when an object instance of the javax.swing.JFrame
class is written, our mechanism first looks for the name of the
instance in the name spaces of the XMLEncoder and the Java
interpreter and appends a Hashtable to map the two name spaces. It
then writes the script for the XML text, as shown in Figure 1. In this
way, users may write the following Java codes to persist a
javax.swing.JFrame instance referred by the variable f0:

… f0 = new JFrame(); …
encoder.getInterpreter().defineVariable

("frame1", f0);
encoder.writeObject(f0, script); ….

Thus, users do not need to know the assigned identifier of an object
instance before they write scripts.

3.2 Provision of a script-running capability for
the XMLDecoder

The standard XMLDecoder class is used in the same way as the
ObjectInputStream. When being instantiated, the XMLDecoder
simply reads the XML documents created by the XMLEncoder, and
parses the XML text to reconstruct the whole object tree. The API
document of the XMLDecoder describes that the readObject()
method can be used to read the next object from the underlying
input stream; however the description is not very precise. After
carefully reviewing the source code of the XMLDecoder class
provided in J2SE 1.4 or 1.5, we found that the readObject() method
just dequeues an object for a method call. Therefore, after the
constructor of the XMLDecoder class has been called and returned,
all object instances of the whole object tree have already been
created and initialized. That is, if users write the Java code

Object f = decoder.readObject();

to read an object, this method just returns a created object instance
from the front of the queue.

Note that, in the decoding process, a PersistenceDelegate cannot be
used because it is designed to control all aspects of an object’s
persistence for the XMLEncoder in the encoding process. In
addition, since the XMLDecoder parses the whole XML text
immediately after its constructor has been called, all additional
embedded methods, such as the linkLocalPool and runScript
methods depicted in Figure 1, will be executed during the
constructor’s running time. This, however, may cause a problem in
that, when a user wants to read an object instance from the
XMLDecoder, the decoding process actually runs the
corresponding script for the object beforehand.

To deal with this problem, our mechanism prohibits script-running
during decoding and records the object-script map in a hash table
for the Java source interpreter to enable script-running. Therefore,
the corresponding script is only executed when an object instance is
read by the user. In addition, the proposed mechanism also
establishes and maintains an object pool when decoding. As shown
in Figure 1, this is done when the linkLocalPool method is
executed.

…
<object id="JFrame0" class="javax.swing.JFrame"/>
…
<void method="linkLocalPool">
 <object class="java.util.Hashtable">
 <void method="put">
 <string>frame1</string>
 <object idref="JFrame0"/>
 </void>
 </object>
</void>

<void method="runScript">
<string>
//<SCRIPT LANGUAGE="Java">
//<!---------------------------------
 import java.awt.*;
 import java.awt.event.*;
 import javax.swing.*;

 frame1.addWindowListener(new WindowAdapter(){
 public void windowIconified(WindowEvent e){
 // do something
 } });
//---------------------------------->
//</SCRIPT>
</string>
</void> ….

Figure 1. Linking object pool.

3.3 Provision of a cache pool for the
XMLDecoder

The decoding process may take too long to instantiate certain
heavyweight objects, but providing a caching system for Java
applications is usually a feasible way to speed up the process. In
addition, for some special applications, a certain class may be
implemented as a Singleton design pattern. Nevertheless, the
current XMLEncoder/XMLDecoder paradigm cannot ensure that
an object will remain a true Singleton, i.e., two or more distinct
objects will not be allowed during the decoding process. To deal
with these problems, our mechanism supports an optional cache
pool to allow the XMLDecoder not to instantiate a new object, but

Mapping of
Name Spaces

96

to use an existing object instance instead. For example, users of
our mechanism can write the following Java codes to persist a
UserClass object:

UserClass s = new UserClass();
encoder.setPersistenceDelegate(UserClass.class,

new UserClassDelegate());
encoder.getInterpreter().defineVariable

("myUserClass", s);
encoder.setCacheEnabled(true);
encoder.writeObject(s, "// execute script here"); ….

The result is shown in Figure 2. Note that the decision about using a
cached object is made in the encoding process. If the
setCacheEnabled(true) method is called by the encoder, the
decoder must call the corresponding readObject(true) method to
use the cached object in the decoding process.

...
 <object class="java.util.Hashtable">
 <void method="put">
 <string>UserClass0</string>
 <string>myUserClass </string>
 </void>
 </object>

 <object id="UserClass0" class="myApp.UserClass">
 <void property= … >
 …
 </void>
 </object>
 ...
 <void method="linkLocalPool">
 <object class="java.util.Hashtable">
 <void method="put">
 <string>myUserClass</string>
 <object idref="UserClass0"/>
 </void>
 </object>
 </void>

 <void method="runScript">
 <string>// put script here</string>
 </void>

Figure 2. Enabling cache pool.

Before the encoder writes all the properties of the UserClass in the
XML text file, a hash table must be written. In the decoding stage,
the XMLDecoder will use this table to decide which object should
not be instantiated. It will then use an existing object instance from
the interpreter’s object pool instead, and reset all the properties of
the UserClass object. For users to get the UserClass object with new
properties in the decoding process, the Java codes may look like
this:

UserClass s = new UserClass();
decoder.getInterpreter().defineVariable

("myUserClass", s);
…
UserClass s1 = (UserClass)

decoder.readObject(true); ….

Here, the readObject(true) method is used to notify the

XMLDecoder that the object is cached and therefore it should not
try to instantiate a new object. In this manner, new properties
recorded in the XML text for this cached object will be set up, and
then returned. In the above example, the variables s and s1 refer to
the same object.

Note that because a Singleton object does not have a public
constructor, its instance cannot be persisted using the
XMLEncoder’s writeObject() method. On the other hand, users
cannot write a PersistenceDelegate class for a Singleton because in
order to let a PersistenceDelegate work, more than one instance of
the class must be created, which violate the nature of a Singleton.
Our mechanism can be used to solve this problem.

Users can write a wrapper class to access the Singleton object. The
wrapper object is used to hold all the properties of the Singleton
object in the encoding process so that the wrapper object is
persisted. In the decoding process, users can instantiate a wrapper
object bound to the Singleton, and cache it in the object pool.
Hence, all properties stored in the wrapper object can be retrieved
from the XML text and set for the Singleton object via running the
script (if any) along with the wrapper object. This process is
suitable for argument passing of Web services or remote procedure
calls. It can also be applied when an undo/redo function is added to
Java applications or Java integrated development environments.

4. API IMPLEMENTATION
This section presents the API implementation of the extensible
mechanism. The key features of the implementation are (1) an
interpreter is integrated with the XMLEncoder and the
XMLDecoder; (2) the name spaces of the XMLEncoder and the
interpreter are mapped; and (3) cached objects can be used, instead
of instantiating new objects.

The result of the implemented mechanism is a Java API package,
which is available for download publicly from the web site
http://sml-109.iis.sinica.edu.tw/eLTP/ .

4.1 Integration of a Java source interpreter
In order to run scripts in the decoding process, a Java source code
interpreter must be utilized. Any interpreters that can interact with a
Java virtual machine are suitable; therefore we have designed an
interface XMLScriptInterpreter for these interpreters, as shown in
Figure 3. A concrete class that implements this interface is regarded
as a proxy of the practical interpreter.

The XMLScriptInterpreter interface defines five methods. The
interpret() method is used to run the script, the two defineVariable()
methods are used to define variables in the interpreter environment,
the setVariable() method is used to set the value of a variable, and
the getVariable() method is used to get the value of a specified
variable.

interface XMLScriptInterpreter
{
 void interpret(String script);
 void defineVariable(String var, Object obj);
 void defineVariable(String var, Object obj, Class c);
 void setVariable(String name, Object value);
 Object getVariable(String name);
}

Figure 3. The XMLScriptInterpreter interface.

Name of the
Cached Object

Properties of the
Cached Object

Mapping of
Name Spaces

97

4.2 Mapping the name spaces of the encoder
and interpreter

Integrating an interpreter into the current XMLEncoder
implementation is necessary for the persistence of an object
instance. However, trying to extend the XMLEncoder class
provided by J2SE is impractical, because some inner classes of the
XMLEncoder can not be accessed by its subclasses or by any
classes outside the core java.beans package.

To solve this issue, it is not necessary to extend the XMLEncoder.
Instead, it seems feasible to create a separate tool that reads the
XML text produced by the XMLEncoder, and attach the script code
from that. In other words, the first tool can write the XML text to
the standard output using the XMLEncoder, and the second tool
can read the XML text from the standard input. Users may even
combine the tools on a single command line. Nevertheless, these
tools must work in their respective Java virtual machines, which is
not very convenient for programmers of Java applications.

Referring to the Java source code for the whole XMLEncoder
package, we implement another new encoder class, called the
ExtensibleXMLEncoder, which is functionally compatible with the
XMLEncoder. Therefore, all public methods in the latter also work
in the former. In addition, the following methods are added:

XMLScriptInterpreter getInterpreter();
void setInterpreter(XMLScriptInterpreter i);
void setCacheEnabled(boolean b);
void writeObject(Object o, String script);
void writeObject(Object o, String script,

boolean ifUseCache);

The getInterpreter() and setInterpreter() methods are used to get
and assign an interpreter implementation, respectively. The
setCacheEnabled() method indicates whether or not an existing
object instance cached in the object pool can be used in the
decoding process. The two writeObject() methods are used to
persist an object instance along with a script. Note that all the above
methods are optional. If none of them are used, the
ExtensibleXMLEncoder will behave exactly the same as the
XMLEncoder.

Figure 4 shows the procedure for conducting the persistence of a
given object with its corresponding attached script. A user of the
ExtensibleXMLEncoder first creates a UserObject that will be
persisted, and declares a variable name for the object in the
interpreter using the interpreter’s defineVariable() method. The
user then writes a ScriptStringObject to accompany the object. Next,
the writeObject() method is used to persist the object and the script.
From a programmer’s perspective, the encoding process is finished
after this method has been called.

To map the name spaces of the encoder and interpreter, a wrapper
class called the XMLHashPool is designed as a JavaBean to hold
the references of the object, the script and the interpreter. In fact,
after the user writes the object and the script, the
ExtensibleXMLEncoder wraps them using an XMLHashPool object
and then calls the writeObject() method of the standard
XMLEncoder to persist the XMLHashPool object. Because the
XMLHashPool object is a JavaBean, the XMLEncoder will archive
graphs of the JavaBean as textual representations of the JavaBean’s

public properties. Note that the XMLEncoder uses a delegation
model to have its behavior controlled independently of itself. Any
class that extends the PersistenceDelegate abstract class takes
responsibility for expressing the state of an instance of a given class
in terms of the methods in the class's public API. For the
XMLHashPool, hence, we implement an
XMLHashPool_PersistenceDelegate class, which can establish
name space mapping, and output expressions and statements, e.g.,
the body of the linkLocalPool method, in XML format, as depicted
in Figure 1.

Note that technically it is possible to obtain the name of an instance
existing in the XMLEncoder, although the XMLEncoder does not
provide a public method for users to do so. In our mechanism, we
use the following codes to obtain the name of a given instance:

s = new XMLCachedExpression(obj, obj, null,

null).toString();
i = s.indexOf("=");
if (i != -1) s = s.substring(0, i);

Here, the XMLCachedExpression class that works with the
ExtensibleXMLEncoder is a clone of the standard Expression class
in J2SE. The toString() method returns a string in the form of
name=name.method(). We just take the element on the left of the
equal sign. The resulting substring s is the name of the obj object in
the XMLEncoder. This is the identifier, i.e., the id attribute or idref
attribute noted in the XML text.

aExtensibleXMLEncoder

aXMLHashPool_PersistenceDelegate

aXMLHashPool
aUserObject

aScriptStringObject

User 3. Call method writeObject(aUserObject, aScriptStringObject)

0. Create
user object 2. Write script

5. Wrap up user object

4. Assign user object, script

6. Wrap up script

7.2 Use aXMLHashPool_PersistenceDelegate
to make persistence of aXMLHashPool

aInterpreter

1. Declare
variable

8. Establish name
spaces mapping

9. Output expressions
and statements in
XML format into text file

Refer to Uses

XML

7.1 writeObject
(aXMLHashpool)

Figure 4. Procedure for persistence and name space mapping.

4.3 Object caching, decoding, and script
running

Based on the Java source code for the whole XMLDecoder package
in J2SE, we implement another new decoder class called the
ExtensibleXMLDecoder, which is functionally compatible with the
XMLDecoder. In other words, all public methods found in the latter
also work in the former. Moreover, the following methods are
added:

98

XMLScriptInterpreter getInterpreter();
void setInterpreter(XMLScriptInterpreter i);
Object readObject(boolean ifUseCache);

These methods are also optional. If none of them are applied, the
ExtensibleXMLDecoder will operate in exactly the same way as the
XMLDecoder. Here, users can get and assign an interpreter
implementation using the getInterpreter() and setInterpreter()
methods, respectively. The readObject() method is used to read
back a persisted object.

As shown in Figure 2, after decoding the XML text, the
ExtensibleXMLDecoder knows from the recorded hash table that
the object, identified by the id attribute, does not need to be
instantiated, provided that the argument value passed to the
readObject() method is true. If this is so, the properties of the
object recovered from the XML text will be set for the existing
object cached in the interpreter’s object pool, instead of a new
object instance. Once the ExtensibleXMLDecoder determines the
instance to be used, it runs the corresponding script using the
interpreter.

Note that name mapping for the interpreter is done by the
linkLocalPool method during decoding. In addition, assignment of
the corresponding script for an object is done by the runScript
method, as shown in Figure 2.

The default design of the XMLDecoder instantiates a new object
instance every time the object’s expression, represented by the
element with the <object> tag, is processed. However, the current
standard XMLDecoder does not provide any public methods that
enable users to prevent the creation of new objects. Technically, it
is feasible to let the decoder use a cached object. To do so, in our
mechanism, we implement a class called the
XMLCachedMutableExpression that extends a clone of the
MutableExpression class in J2SE to work for the
ExtensibleXMLDecoder.

After carefully reviewing the source code of the MutableExpression
class, we found that the method named invoke() is used by the
decoder to instantiate an object instance of a given class. Therefore,
the invoke() method of the MutableExpression class is enhanced to
provide the option of returning a cached object instance. Its
algorithm is as follows:

Object invoke() {
 if ("new".equals(getMethodName())){
 String s0 = getBoundName();
 String s1 =

find_Name_Mapping_in_Interpreter(s0);
 return interpreter.getVariable(s1);
 }
 return super.invoke();
}

If the getMethodName() method returns “new”, then an object
instance has to be returned. However, in this case we try to find the
identifier of the given object using the getBoundName() method.
According to the identifier, the given object’s corresponding
cached object instance can be found in the object pool of the
interpreter, and then returned. If no cached object exists in the pool,
the invoke() method returns null, and a new object is instantiated.

5. CASE STUDY
In this section, we present an example to show how JavaBeans can
be persisted using our extensible mechanism. Without loss of
generality, we choose the LogoAnimator2 and ColorSliderPanel
JavaBeans from the book Advanced Java 2 Platform: How to
Program [7].

Because users of an application may make mistakes, as
programmers it is important that we help them recover gracefully by
including support for the Undo/Redo functionality in the user
interfaces of the application. The following case study demonstrates
how to add Undo/Redo capabilities to an existing Java application.
As shown in Figure 5, a user can determine the RGB values for
various colors using the ColorSliderPanel JavaBean, and see the
resulting color immediately in the LogoAnimator2 JavaBean. The
user can save the current state of the application, i.e., the current
color, as depicted in Figure 5(a), and then, choose or test another
color if necessary, as shown in Figure 5(b). The application can go
back to the previous saved state if the user loads the persisted state,
as shown in Figure 5(c).

Note that, when performing the load operation, the persisted state
stored in an XML text file will be decoded. However, current object
instances of the LogoAnimator2 and ColorSliderPanel JavaBeans
are still working, so there is no need to instantiate new object
instances. The LogoAnimator2 and ColorSliderPanel JavaBeans
can be cached to let the ExtensibleXMLDecoder recover their states
and properties. The script embedded in the XML text is used to
synchronize the LogoAnimator2 and ColorSliderPanel JavaBeans.
A snapshot of the XML file is shown in Figure 6, and the main
program is given in Figure 7.

In addition to this example, the Java software package that
implements the proposed mechanism, as well as other examples of
its usage can be downloaded free-of-charge from
http://sml-109.iis.sinica.edu.tw/eLTP/.

6. CONCLUSIONS
In this paper, we have focused on serializing Java objects into the
XML format. In order to obtain more flexibility and extendibility of
Java applications using the LTP API, we propose a mechanism that
follows the standard LTP specification without modifying the Java
run-time system or the Java language. Our approach allows scripts
to be embedded in an XML text for the reconstruction of certain
missing objects, or for the creation of some additional helper
objects in the decoding process. In addition, as the decoding
process may take too much time to instantiate certain heavyweight
objects, the proposed mechanism also supports an optional cache
pool to speed up the process.

The proposed mechanism is compatible with the interpreters of any
current scripting language that can interact with Java virtual
machine. Moreover, the mechanism can make applications more
dynamic and flexible at runtime. That is, if the script-embedded
XML text is used for argument passing of Web services or remote
procedure calls, classes defined in the script do not need to be
compiled and deployed in the classpath at both client side and
server side.

7. ACKNOWLEDGMENTS
This work was supported by National Science Council under
Contract No. NSC94-2213-E-001-023.

99

(a)

(b)

(c)

Figure 5. The Undo/Redo model.

<?xml version="1.0" encoding="UTF-8"?>
<java version="1.4.1_02" class="java.beans.XMLDecoder">
 <object class="java.util.Hashtable">
 <void method="put">
 <string>ColorSliderPanel0</string>
 <string>colorpane</string>
 </void>
 </object>
 <object id="ColorSliderPanel0"
class="com.deitel.advjhtp1.beans.ColorSliderPanel">
 <void property="redGreenBlue">
 <void index="0">
 <int>87</int>
 </void>
 <void index="1">
 <int>141</int>
 </void>
 <void index="2">
 <int>199</int>
 </void>
 </void>
 </object>
 <object class="sharetone.LTP.ScriptLTP.XMLHashPool">
 <void method="linkLocalPool">
 <object class="java.util.Hashtable">
 <void method="put">
 <string>colorpane</string>
 <object idref="ColorSliderPanel0"/>
 </void>
 </object>
 </void>
 <void method="runScript">
 <string>
//<SCRIPT LANGUAGE="DynamicJava">
//<!---------------------------------
import com.deitel.advjhtp1.beans.SliderFieldPanel;
import javax.swing.JPanel;

System.out.print("@Script: Load Color(" +
colorpane.getRedGreenBlue(0) + ", ");
System.out.print(colorpane.getRedGreenBlue(1) + ",
");
System.out.println(colorpane.getRedGreenBlue(2) +
")");
Object[] o = colorpane.getComponents();
Object[] o2 = ((JPanel) o[1]).getComponents();

for(int i = 0; i < o2.length; i++)
 ((SliderFieldPanel)
o2[i]).setCurrentValue(colorpane.getRedGreenBlue(i));

System.out.println("@Script: Color set back ̂ ^. \n
");
//---------------------------------->
//</SCRIPT>
</string>
 </void>
 </object>
</java>

Figure 6. A snapshot of the XML file.

100

…
import sharetone.LTP.ExtensibleXMLDecoder;
import sharetone.LTP.ExtensibleXMLEncoder;
import com.deitel.advjhtp1.beans.ColorSliderPanel;
import com.deitel.advjhtp1.beans.LogoAnimator2;
…
public class GuiMain implements ExceptionListener, ColorListener, ActionListener {
 public static void main(String[] args) throws Exception{ … }

 public void exceptionThrown(Exception e){} // implement ExceptionListener
 public void colorChanged(ColorEvent colorEvent){ … } // implement ColorListener
 public void actionPerformed(ActionEvent evt){ … } // implement ActionListener

 private ColorSliderPanel cpane = null;
 private LogoAnimator2 logo = null;
 private ExceptionListener lis = null;
 private JFrame frame = null;

 public GuiMain(ColorSliderPanel cpane, LogoAnimator2 logo, JFrame frame) { … }

private void save(ColorSliderPanel cpane, LogoAnimator2 logo, ExceptionListener lis) throws Exception {
 OutputStream os = new BufferedOutputStream(new FileOutputStream("XMLtext.xml"));
 ExtensibleXMLEncoder encoder = new ExtensibleXMLEncoder(os);
 encoder.setExceptionListener(lis);
 encoder.getInterpreter().defineVariable("colorpane", cpane);
 encoder.setCacheEnabled(true); // use cached object in future decoding process
 System.out.println("Debug: Save Color(" + cpane.getRedGreenBlue(0)+ ", "
 + cpane.getRedGreenBlue(1)+ ", " + cpane.getRedGreenBlue(2) + ")\n");

 String script = "\n//<SCRIPT LANGUAGE=\"DynamicJava\"> \n";
 script = script + "//<!--------------------------------- \n";
 script = script + "import com.deitel.advjhtp1.beans.SliderFieldPanel; \n";
 script = script + "import javax.swing.JPanel; \n";
 script = script + " \n";
 script = script + "System.out.print(\"@Script: Load Color(\" + colorpane.getRedGreenBlue(0) + \", \"); \n";
 script = script + "System.out.print(colorpane.getRedGreenBlue(1) + \", \"); \n";
 script = script + "System.out.println(colorpane.getRedGreenBlue(2) + \")\"); \n";
 script = script + " \n";
 script = script + "Object[] o = colorpane.getComponents(); \n";
 script = script + "Object[] o2 = ((JPanel) o[1]).getComponents(); \n";
 script = script + " \n";
 script = script + "for(int i = 0; i < o2.length; i++) \n";
 script = script + " ((SliderFieldPanel) o2[i]).setCurrentValue(colorpane.getRedGreenBlue(i)); \n";
 script = script + " \n";
 script = script + "System.out.println(\"@Script: Color set back ^^. \\n \"); \n";
 script = script + "//----------------------------------> \n";
 script = script + "//</SCRIPT> \n";
 encoder.writeObject(cpane, script);
 encoder.flush();
 encoder.close();
 }

 private void load() throws Exception {
 InputStream is = new BufferedInputStream(new FileInputStream(" XMLtext.xml"));
 ExtensibleXMLDecoder decoder = new ExtensibleXMLDecoder(is);
 System.out.println("Debug: Hash Code of Cached Object: " + this.cpane.hashCode() + "\n");

 decoder.getInterpreter().defineVariable("colorpane", this.cpane); // to cache this object
 ColorSliderPanel cpane1 = (ColorSliderPanel) decoder.readObject(true); // use cached object instance
 System.out.println("Debug: Hash Code of Loaded Object: " + cpane1.hashCode() + "\n");
 }

}

Figure 7. The main program.

101

8. REFERENCES
[1] Abu-Ghazaleh, N., Lewis, M. J., and Govindaraju, M.,

Differential serialization for optimized SOAP performance, In
Proceedings of the 13th IEEE International Symposium on
High Performance Distributed Computing (HPDC'04) (June
4-6, 2004), 55-64.

[2] Barry, D., and Stanienda, T., Solving the Java object storage
problem, IEEE Computer Magazine, 31, 11 (November 1998),
33-40.

[3] BeanShell - Lightweight Scripting for Java.
http://www.beanshell.org/

[4] Breg, F., and Polychronopoulos, C. D., Java virtual machine
support for object serialization, In Proceedings of the 2001
Joint ACM-ISCOPE Conference on Java Grande (Palo Alto,
California, USA, 2001), 173-180.

[5] Buhler, P. A., and Huhns, M. N., Trust and persistence
[software agents], IEEE Internet Computing Magazine, 5, 2
(March-April, 2001), pp. 85-87.

[6] Carpenter, B., Fox, G., Ko, S. H., and Lim, S., Object
serialization for marshalling data in a Java interface to MPI, In
Proceedings of the ACM 1999 conference on Java Grande
(San Francisco, California, USA, 1999), 66-71.

[7] Deitel, H. M., Deitel, P. J., and Santry, S. E., Advanced Java 2
Platform: How to Program, Prentice-Hall Inc., 2002,
340-379.

[8] DynamicJava - Java source interpreter.
http://koala.ilog.fr/djava/

[9] Garthwaite, A., and Nettles, S., Transactions for Java, In
Proceedings of the International Conference on Computer
Languages (ICCL'98) (Chicago, IL, USA, May 14-16, 1998),
16-27.

[10] Grand, M., Patterns in Java Volume 1: A Catalog of Reusable
Design Patterns Illustrated with UML, 2nd Edition, John
Wiley & Sons, 2002, ISBN: 0471227293.

[11] Hericko, M., Juric, M. B., Rozman, I., Beloglavec, S., and
Zivkovic, A., Object serialization analysis and comparison in
Java and .NET, ACM SIGPLAN Notices, 38, 8 (Aug. 2003),
44-54.

[12] Hosking, A. L., and Chen, J., Mostly-copying
reachability-based orthogonal persistence, In Proceedings of
the 14th ACM SIGPLAN Conference on Object Oriented
Programming, Systems, Languages and Applications
(OOPSLA'99) (Denver, Colorado, USA, November 1-5, 1999),
382-398.

[13] Jython - Python language written in Java.
http://www.jython.org/

[14] Kato, K., and Ohori, A., An approach to multilanguage
persistent type system, In Proceedings of the 25h Hawaii
International Conference on System Sciences, Vol. II (Kauai,
Hawaii, USA, January 7-10, 1992), 810-819.

[15] Kono, K., and Masuda, T., Efficient RMI: dynamic
specialization of object serialization, In Proceedings of the
20th International Conference on Distributed Computing
Systems (ICDCS 2000) (Taipei, Taiwan, April 10-13, 2000),
308-315.

[16] Long Term Persistence of JavaBeans Components: XML
Schema.
http://java.sun.com/products/jfc/tsc/articles/persistence3/

[17] Nettles S., and O'Toole, J., Implementing orthogonal
persistence: a simple optimization using replicating collection,
In Proceedings of the 3rd International Workshop on Object
Orientation in Operating Systems (IWOOOS'93) (Asheville,
NC, USA , December 9-10, 1993), 177-181.

[18] Opyrchal, L., and Prakash, A., Efficient object serialization in
Java, In Proceedings of the 19th IEEE International
Conference on Distributed Computing Systems Workshops on
Electronic Commerce and Web-based Applications/
Middleware (Austin, TX, USA, May 31-June 4, 1999),
96-101.

[19] Park, J. G., and Lee, A. H., Specializing the Java object
serialization using partial evaluation for a faster RMI [remote
method invocation], In Proceedings of the Eighth
International Conference on Parallel and Distributed Systems
(ICPADS 2001) (June 26-29, 2001), 451-458.

[20] The Bean Builder.
https://bean-builder.dev.java.net/

102

Heap protection for Java virtual machines

Yuji Chiba
Systems Development Laboratory, Hitachi, Ltd.

1099 Ozenji, Asao, Kawasaki,
Kanagawa, Japan

yuji@sdl.hitachi.co.jp

ABSTRACT
Java virtual machine (JVM) crashes are often due to an in-
valid memory reference to the JVM heap. Before the bug
that caused the invalid reference can be fixed, its location
must be identified. It can be in either the JVM implementa-
tion or the native library written in C language invoked from
Java applications. To help system engineers identify the lo-
cation, we implemented a feature using page protection that
prevents threads executing native methods from referring to
the JVM heap. This feature protects the JVM heap during
native method execution, and when native method execu-
tion refers to the JVM heap invalidly, it interrupts the exe-
cution by generating a page-fault exception and then reports
the location where the page-fault exception was generated.
This helps the system engineer to identify the location of
the bug in the native library. The runtime overhead for us-
ing this feature averaged 4.4% based on an estimation using
the SPECjvm98, SPECjbb2000, and JFCMark benchmark
suites.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—memory

management

General Terms
Reliability, Languages

1. INTRODUCTION
Servers are being equipped with more and more memory,

and some server applications, such as application servers,
now use several gigabytes of memory for the heap. There-
fore, if a server application is executed on a 32-bit operating
system (OS) that provides a 4-Gigabyte (GByte) logical ad-
dress space for its processes, the server application commits
tens of percent of its logical address space as its heap. This
reduces the use of page protection, which has long been used

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPPJ 2006, August 30 – September 1, 2006 Mannheim, Germany
Copyright 2006 ACM$5.00.

to detect invalid memory references, because most of the log-
ical address space is committed as heap and is thus valid for
reference.

Developers of JavaTM1 runtime environments (JREs) of-
ten face this problem because server applications running
on them sometimes crash due to corrupted heap. If the en-
gineer trying to debug the problem does find that the heap
is corrupted, he or she will likely ask the JRE developer to
perform the debugging, simply because the heap has been
allocated by the JRE. The engineer will not suspect that
the bug is in a server application if the application is imple-
mented in Java, because Java does not permit invalid mem-
ory references. While the bug may be in native libraries
used by the server applications, the engineer may not ask a
native library developer to perform the debugging because
it is often not easy for an engineer to tell which native li-
brary contains the bug. This is because JRE may crash long
after the bug corrupted the heap, so all that the engineer
can tell from the core file of the crashed JRE process is that
the heap is corrupted and that it had been allocated by the
JRE.

To cope with this problem, we implemented a JRE that
uses page protection to protect its heap from invalid refer-
ences due to bugs in the native libraries. The JRE protects
its heap during native method execution, and when the na-
tive method execution refers to the heap invalidly2, it inter-
rupts the execution by generating a page-fault exception and
then reports the location where the page-fault exception was
generated. This helps the engineer to identify which native
library contains the bug.

This heap protection feature permits a thread to write to
the heap only when the thread is executing a Java method.
When the thread calls a native method through the Java Na-
tive Interface[21] (JNI), it is not granted permission to write
to the heap because our JNI implementation deprives the
thread of this permission. This protection feature controls
permission to write to the heap by thread, while mainstream
operating systems such as WindowsR©3 and LinuxR©4 control

1Java and HotSpot are trademarks of Sun Microsystems,
Inc. in the United States and other countries.
2Basically, native methods should refer to the JRE heap
via the Java Native Interface (JNI). Any direct reference is
invalid if the JNI implementation does not permit native
methods to refer directly to the body of a Java array, as
that of HotSpot VM (jdk1.5.0 06) does not.
3Windows is a registered trademark of Microsoft Corpora-
tion in the United States and other countries.
4Linux is a trademark or a registered trademark of Linus
Torvalds in the United States and other countries.

103

permission by process. In other words, they provide only
one protection domain5 to each process, not to each thread.
Thus the protection domain supported by these operating
systems is not appropriate for implementing our heap pro-
tection feature. We thus modified Linux and implemented a
per-thread protection domain for heap. We call it the ’heap
protection domain’. It is used as follows.

1. If a program component (a set of procedures) uses its
local heap, that is accessed only by the program com-
ponent if there is no bug, the program component asks
the OS to create a heap protection domain for the pro-
gram component. This is usually done during the pro-
gram component initialization, before the allocation of
the local heap.

2. The program component then allocates the local heap,
and asks the OS to give its heap protection domain
permission to reference the heap.

• A heap protection domain is a property of a pro-
cess. Every thread in a process belongs to one
of the process’ heap protection domains. The OS
permits a thread to reference memory based on
the heap protection domain to which it belongs.

3. At every entry to the program component, the devel-
oper of the program component adds code asking the
OS to modify the heap protection domain, so that a
thread that executes the code acquires permission to
refer to the heap for the program component. The code
asks the OS to let the thread belong to the protection
domain for the program component. The entries to the
program component reside in the prologs to the public
procedures of the program component and after the
external procedure calls.

4. At every exit from the program component, the de-
veloper of the program component adds code asking
the OS to modify the heap protection domain, so that
the thread that executed the code gives up the permis-
sion to refer to the heap for the program component.
The exits from the program component reside in the
epilogs of the public procedures of the program com-
ponent and before the external procedure calls.

Our JVM product supports a wide range of platforms
(processors and operating systems), thus we want to pro-
tect the JVM heap on as many platforms as possible. Since
we implemented our approach on IA32/Linux platform in
April 2006, we have encountered one case of a JVM crash
that we could have easily debugged using our work, but we
couldn’t, because the crash happened on the IA64/Linux
platform. In order to prevent such crashes, operating sys-
tems have to support the heap protection domain, and this
limits the practicality of our work. However, since our heap
protection domain implementation requires only a conven-
tional page protection feature provided by most processors,
it can be implemented on most operating systems. We hope

5A protection domain is a row of an access matrix. Ev-
ery subject belongs to one of protection domains at a time,
and operating systems permits a subject to access each of
their resource based on the protection domain to which the
subject belongs.

operating systems provide a feature like our heap protection
domain in the future.

Using the heap protection domain, we implemented this
heap protection feature on a JVM and estimated the runtime
overhead. The result of this evaluation, i.e. whether the
heap protection feature is practical or not, is the main contri-
bution of this paper. To ensure that the results are reliable,
we implemented the heap protection feature on a practical
JVM and OS (HotSpotTMvirtual machine[24] (HotSpot VM)
and Linux) and evaluated the runtime overhead using three
benchmark suites (SPECjvm98[27], SPECjbb2000[28], and
JFCMarkTM6[11]) consisting of practical Java applications.
To the best of our knowledge, such evaluation data has not
been previously presented.

This paper is organized as follows. In section 2 we explore
previous related work. In section 3 we describe our imple-
mentation of the heap protection domain, and in section 4
we describe our implementation of the heap protection fea-
ture. In section 5 we discuss the implementation of setpd(),
which is a system call to modify the protection domain to
which a thread belongs (and generates most of the runtime
overhead related to using the heap protection feature), and
in section 6 we evaluate the runtime overhead. In section 7
we summarize the key points.

2. RELATED WORK
Invalid memory references have plagued program develop-

ers since the dawn of computing, and many attempts have
been made to eliminate them, mainly by people working in
four fields: programming languages, virtual machines, hard-
ware and operating systems.

In this section, we survey their contributions and compare
them with the heap protection domain.

2.1 Programming Languages
Programming in traditional languages such as C language

and assembly language enable a programmer to cast any
value to a pointer and then refer to memory through the
pointer, but this often results in an invalid memory refer-
ence. Modern programming languages such as Java[2] and
C#[22] thus do not provide pointers. They provide refer-
ences instead. References differ from pointers in that a ref-
erence may not be a raw memory address. They also provide
such features as array index checking, which prevents invalid
memory accesses through references. Programs written in
these modern programming languages thus cannot cause in-
valid memory accesses.

While the modern programming languages are an effec-
tive way to avoid invalid memory accesses, not all programs
that can be easily written in the modern languages, and
there is vast number of existing written in traditional lan-
guages. SafeC[3] and CCured[23] insert range checks to pre-
vent legacy C code from making invalid memory accesses,
but their practicality is limited because of the runtime over-
head for range checks and because their pointer implemen-
tation (a fat pointer) is not compatible with the conven-
tional one (address only).CCured suffers less runtime over-
head (30% to 150%) than SafeC (130% to 540%) because
it statically verifies pointer operations and inserts a range
check only if one is needed. Both SafeC and CCured im-
plement range checks using fat pointers, thus their pointer

6JFCMark is a trademark of Excelsior, LLC.

104

implementations are not compatible with the conventional
one. This means that legacy C programs that expect conven-
tional pointer implementation do not work correctly when
compiled using them. Jones and Kelly proposed a backward-
compatible range check implementation, but it has even
higher runtime overhead[18]. Even when pointer format
compatibility is a problem, we cannot ignore the fact that
recompilation itself adds costs, such as that for quality as-
surance.

2.2 Virtual Machines
Virtual machines[26, 9, 19] detect invalid memory accesses

by monitoring the execution of memory access instructions
as they interpret the machine instructions for executing the
target program. While virtual machines are useful for de-
bugging, they may not be appropriate for monitoring pro-
grams in practical use because of their large runtime over-
head. Koju[19] reports that the performance of a virtual
machine is 231.2 times lower than that of the machine on
which it is running if the virtual machine monitors all store
instructions and is implemented as an interpreter. A vir-
tual machine implementation using dynamic translation im-
proves performance so that it is 11.7 times lower than that
of the actual machine.

Because our final goal is to monitor application server pro-
cesses in practical use, approaches that significantly degrade
performance are not appropriate. The heap protection do-
main suffers much less performance loss (up to two times
lower than that of the actual machine, as described in sec-
tion 6).

2.3 Hardware
Practical multiprogramming environments should provide

features that prevent a program execution from invalidly ac-
cessing resources assigned to other program executions[10],
and hardware and operating systems have been designed to
prevent this. Most modern processors have been designed
to provide address translation and page protection features.

Address translation maps logical addresses to physical
addresses. This feature ensures that each program ex-
ecution is given a virtually isolated address space so
that it cannot access memory assigned to another pro-
gram execution.

Page protection divides the address space into fixed-length
spaces, or pages, and sets permissions for page access.
The heap protection domain is implemented using this
feature.

While most modern processors support protection by page,
Mondrian Memory Protection[31] supports it by word. Such
fine-grained protection should be useful for protecting fine-
grained memory areas, such as words for global variables.

Hardware-level detection against bugs which misuse non-
pointer values as pointers has also been investigated so far.
System/38TM7 [12] assigns a tag bit to each memory word and
sets the tag bit value to 1 if the value in the corresponding
memory word is a pointer, so as to permit a value in a
memory word to be used as a pointer to reference memory
only if the tag bit value is 1.

7PowerPC, System/38 and i5/OS are trademarks or regis-
tered trademarks of International Business Machines Cor-
poration in the United States and other countries.

2.4 Operating Systems
An operating system implements virtual memory and mem-

ory access control by using the address translation and the
page protection features provided by hardware.

Mainstream operating systems such as Windows and Linux
divide program executions into processes and assign a logical
address space to each process. Because they provide mem-
ory access control to each process, not to each thread, every
thread in a process has the same memory access permission.
This means that the heap protection feature presented here
cannot be simply implemented in these operating systems.
One implementation of JVM on such an OS, MVM[8, 7],
protects its heap from native method execution by dividing
execution of the JVM into two processes: one executes Java
applications and the other executes native methods. MVM
protects a wider range of memory than our heap protection
feature does, because MVM protects stacks, global variables,
and heap allocated using malloc()8. However, MVM suf-
fers large runtime overhead from JNI calls, which are im-
plemented using inter-process communication (IPC). Cza-
jkowski estimated that the execution time of SPECjvm98 is
approximately ten times longer at most[8], if all JNI calls
are implemented using IPC.

Hydra[6, 20, 32], Opal[4], and i5/OSR©[15] provide mem-
ory access control features like the heap protection domain
described here. i5/OS is a commercial OS currently in use,
and JVMs for i5/OS[16] can easily support heap protection.
However, to the best of our knowledge, there have been no
reports like that presented here on the runtime overhead
incurred in protecting the heap.

3. IMPLEMENTATIONOFTHEHEAPPRO-
TECTION DOMAIN

We implemented the heap protection domain on Linux for
IA32 processors using a page global directory (PGD), which
is one of the address translation tables IA32 processors use
to implement paging and page protection. This section first
describes implementation of virtual memory on IA32 pro-
cessors and then describes the implementation of the heap
protection domain using PGD.

3.1 Virtual memory on IA32 processors
IA32 processors implement virtual memory using both

segmentation and paging[13]. They first translate each log-
ical address into a linear address using segmentation and
then translate the linear address into a physical address us-
ing paging.

IA32 processors translate the linear address into a physical
address as follows9 .

1. To translate linear address L, the processor first looks
at its CR3 register because it holds the PGD address.

8Our seven years of JVM maintenance experience has shown
that many of hard-to-analyze crashes came from invalid ac-
cess to the heap for Java instances or dynamically compiled
codes. We thus designed our heap protection feature to pro-
tect only the heap. Our heap protection feature does not
protect the other memory areas to avoid runtime overhead.
9IA32 processors provide two paging implementations. One
uses two-level address-translation tables, and the other uses
three-level address-translation tables. We describe only the
former because we used it to implement the heap protection
domain.

105

The processor then refers to the entry in the PGD for
L. An entry in the PGD is called a directory entry.
The processor gets the address of the directory entry
for L by adding the highest ten bits of L as an offset
to the PGD address.

2. The processor looks at the bit in the directory entry
that indicates to what the directory entry points.

(a) If the value of the bit is 0, the directory entry
points to a page table, which is an address trans-
lation table whose entry points to a 4-KByte page.
In this case, the processor translates L into the
physical address as illustrated in figure 1 (a). The
processor assembles the physical address from the
page table entry and the lowest 12 bits of L. The
processor also looks at bits in the page table entry
for access control to the page.

(b) If the value of the bit is 1, the directory entry
points to a 4 MByte page (a large page). In this
case, the processor translates L into the physi-
cal address, as illustrated in figure 1 (b). The
processor assembles the physical address from the
directory entry and the lowest 22 bits of L.

3.2 Implementationof heapprotectiondomain
using PGD

The directory entry for a large page contains bits that
indicate reading or writing permission, and the processor
permits reference to the page based on these bits. We im-
plemented the heap protection domain using these bits as
follows.

1. In the system call to create a heap protection domain,
createpd(), the OS creates a PGD. For simplicity,
our implementation allocates only one PGD and shares
page tables among heap protection domains. There-
fore, our heap protection domain can set permissions
for large pages only10. To set permissions for 4-KByte
pages, page tables should be created for each protec-
tion domain.

2. In the system call to set permissions for the large
pages, mprotect(), the OS sets the bits in the direc-
tory entries that indicate reading or writing permis-
sion.

3. In the system call to set the protection domain for the
current thread, setpd(), the OS looks up the pointer
to the PGD for the target heap protection domain, and
loads the pointer into the CR3 register.

4. During task switching, the OS looks up the pointer
to the PGD for the protection domain to which the
next task belongs and loads the pointer into the CR3

register.

4. HEAP PROTECTION IN HOTSPOT VM
In our implementation of the heap protection for HotSpot

VM, we protect two heaps that HotSpot VM uses.

10Linux maps large pages only to address space that pro-
grams committed specially for large pages.

Heap for Java: HotSpot VM uses this heap to allocate the
data structures Java applications allocate, such as Java
instances.

Heap for dynamically compiled code: HotSpot VM’s
dynamic compiler uses this heap for storing dynami-
cally compiled code.

We protect both heaps from being modified by threads
executing native methods, and protect the heap for dynam-
ically compiled code from being modified by threads execut-
ing Java methods (including the runtime routines HotSpot
VM provides). We permit only the threads for dynamic
compilation to write to the heap for dynamically compiled
code11. This HotSpot VM is thus secured because dynam-
ically compiled code is protected against threads executing
Java methods that have received malicious inputs that try
to take control of the HotSpot VM by using bugs in the
HotSpot VM to overwrite the dynamically compiled code
with malicious code.

The heap protection feature we implemented works as fol-
lows.

1. At start-up, HotSpot VM creates two heap protection
domains. It uses one, PDjava, for Java method exe-
cution, and the other, PDcompiler, for dynamic com-
pilation. HotSpot VM sets permissions for its heap
as illustrated in figure 2 by using mprotect(). It per-
mits both heap protection domains to write to the Java
heap and PDcompiler to write to the heap for dynam-
ically compiled code.

HotSpot VM does not allow PDdefault to write to both
heaps. PDdefault is a heap protection domain created
by default, and HotSpot VM uses it to execute C func-
tions. HotSpot VM permits PDdefault to read from
the Java heap, so that JNI calls from C functions that
cannot modify the heap can be executed without in-
voking setpd().

2. At JNI invocation, HotSpot VM causes each thread to
call setpd() to set its heap protection domain.

When a thread executing a Java method calls a C
function through JNI, HotSpot VM causes the thread
to call setpd() to set its heap protection domain to
PDdefault, and it causes the thread to call setpd()

again at the end of the C function execution to set
its heap protection domain to PDjava. HotSpot VM
does the opposite when a thread executing a C func-
tion calls a Java method through JNI.

3. When an invalid memory access is detected, HotSpot
VM aborts immediately and dumps the core file to
show where the invalid memory access has been de-
tected.

5. IMPLEMENTATION OF SETPD()
Because setpd() is called twice for every JNI invocation

that may modify the Java heap, its efficiency is important.
Figure 3 shows a canonical implementation of setpd().

11We temporarily permit threads running Java methods to
write to the heap for dynamically compiled code when they
patch the dynamically compiled code.

106

(a) Translation for 4-KByte pages (b) Translation for 4-MByte pages

Figure 1: Linear address translation on IA32 processors

Process

Memory

Heap
for

dynamically
compiled

code

Heap
for

Java

C function

Hotspot VM

Java application

R Only…

…

R Only…

…

JNI setpd()

PGD for PDdefault

R/W…

…

R Only…

…

PGD for PDjava

R/W…

…

R/W…

…

PGD for PDcompiler

Dynamic compiler

Figure 2: PGDs used by HotSpot VM

In figure 3, setpd() acquires a lock to traverse the protec-
tion domain at line 37, looks up pd struct for its argument
new pdid at line 38, maintains the number of threads belong-
ing to the new and old protection domains at lines 40–47,
loads a pointers to the PGD for the new protection domain
to the CR3 register at line 48, and releases the lock at line
54.

To improve setpd() performance, we can refrain from
supporting deletepd()12 and free heap protection domains
only when the process terminates. This enables the follow-
ing code supporting deletepd() to be omitted.

Code on lines 38 and 54: The codes on these lines ac-
quires and releases the lock for traversing the binary
tree of pd cluster struct pointed to by member field
pd tree of mm struct, but the lock is not needed if
deletepd() is not supported. createpd() also modi-
fies the binary tree as deletepd() does, but it can be
executed in parallel with setpd() without the lock if
it is carefully implemented: createpd() should initial-
ize the PGD and pd cluster struct before connecting
them to the binary tree. Otherwise, another processor
executing setpd() in parallel with createpd() may
refer to an uninitialized PGD or pd cluster struct,
resulting in an invalid memory reference.

Code on lines 40–47: These code on these lines maintains
the number of threads belonging to each protection
domain so that deletepd() cannot delete a protec-
tion domain to which any thread belongs. There is no
reason to maintain the number if deletepd() is not
supported.

6. EVALUATION
To evaluate the runtime overhead of protecting HotSpot

VM heaps, we implemented a heap protection domain on
Linux (kernel 2.6.14) and heap protection for HotSpot VM

12Otherwise, we can implement deletepd() using techniques
like read-copy update[?].

107

1: // Protection domain
2: struct pd struct{
4: pgd t* pgd; // reference to PGD
3: // number of threads belonging to
5: atomic t users;
6: };
7: // Cluster of pd struct (a binary tree node)
8: struct pd cluster struct{
9: struct pd struct pd[PD PER CLUSTER];
10: struct pd cluster struct* left;
11: struct pd cluster struct* right;
12: }
13: // Memory manager for a process
14: struct mm struct{
15: · · ·
16: // root of protection domain cluster tree
17: struct pd cluster struct* pd tree;
18: // lock to be acquired on reference to
19: the protection domain cluster tree
20: rw lock t pd lock;
21: };
22: // Data structure for a thread
23: struct task struct{
24: struct mm struct* mm;
25: · · ·
26: // protection domain this thread belongs to
27: int pdid;
28: };
29: // current thread
30: extern struct task struct* current;
31:
32: long setpd(unsigned int new pdid){
33: long result = current->pdid;
34: if (new pdid != current->pdid){
35: struct pd struct *new pd;
36: pgd t *new pgd;
37: read lock(&(current->mm->pd lock));
38: if (new pd = find pd(new pdid)){
39: new pgd = new pd->pgd;
40: if (new pdid){
41: atomic inc(&(new pd->users));
42: }
43: if (current->pdid){
44: struct pd struct *old pd =
45: find pd(current->pdid);
46: atomic dec(&(old pd->users));
47: }
48: load cr3(new pgd);
49: current->pdid = new pdid;
50: }
51: else{
52: result = -EINVAL;
53: }
54: read unlock(&(current->mm->pd lock));
55: }
56: return (result);
57: }

Figure 3: Canonical implementation of setpd()

Table 1: Benchmark items in SPECjvm98

Benchmark item Description
201 compress Compression/Decompression of text files
202 jess Expert system
209 db Database
213 javac Compiler for Java source code
222 mpegaudio Decompression of MP3
227 mtrt Ray tracing using multiple threads
228 jack Parser generator

Table 2: Benchmark items in JFCMark
Benchmark item Description
ButtonLAF Look-and-feel modification
ButtonSelect Button clicks
IntFrame100 Opening/closing internal frames
IntFrameDrag Dragging an internal frame
IntFrameLAF Look-and-feel modification
IntFrameSelect Selecting internal frames
BoxLayout BoxLayout manager test
FlowLayout FlowLayout manager test
GridLayout GridLayout manager test
OverlayLayout OverlayLayout manager test
SrcFineScroll Fine scrolling an HTML text
SrcLoad Loading text files into JEditorPane
SrcRowScroll Row scrolling an HTML text
TableFineScroll Fine scrolling a table
TableRowScroll Row scrolling a table
TableScale Scaling a table
TreeAddRem Adding/Removing tree nodes
TreeExpCollDeep Expanding/Collapsing a deep tree
TreeExpCollWide Expanding/Collapsing a wide tree

(jdk1.5.0 06) and then ran benchmarks both on the original
platform (Linux and HotSpot VM) and on a platform with
heap protection to compare their performance. The bench-
marks were run on a PC (CPU: Intel XeonR©13 1.6GHz ×

2, video: RadeonR©14 9600 (resolution: 1280 × 1024, color
depth: 32bit), memory: 2GByte). The benchmark suites we
used were SPECjvm98, SPECjbb2000, and JFCMark ver-
sion 1.0. SPECjvm98 is a suite of client-side Java applica-
tions, as summarized in table 1. SPECjbb2000 is generally
used to evaluate performance of server-side business logic.
JFCMark is a suite of GUI performance tests, as summa-
rized in table 2.

The runtime options for HotSpot VM, listed below, were
used with and without the heap protection.

-Xmx -Xms These options specify the maximum and initial
heap sizes. Both were set to 512 MByte for SPECjvm98
and to 1024 MByte for SPECjbb2000. For JFCMark,
the maximum heap size was set to be 40 MByte by
default.

-server This option specifies use of the server compiler,
one of HotSpot VM’s two dynamic compilers. While
it takes longer to compile, the compiled code is better
optimized.

-XX:+UseLargePages This specifies that Java instances and
dynamically compiled code are to be placed on large
pages.15

The other runtime options are set to the default settings.
We killed services not required for the benchmark run, such

13Intel Xeon and Itanium are registered trademarks of Intel
Corporation and its subsidiaries in the United States and
other countries.

14Radeon is a registered trademark of ATI Technologies Inc.
15Original HotSpot VM (jdk1.5.0 06 for Linux) does not
place dynamically compiled code on large pages even when
-XX:+UseLargePages is specified. We modified HotSpot VM
to place dynamically compiled code on large pages when the
option is specified. The modified version was used with and
without heap protection.

108

20

50

60

Benchmarked item

P
e
r
fo
r
m
a
c
e
lo
ss
n
o
p
r
o
te
c
ti
o
n
d
o
m
a
in
=
0
%
)

10

Canonical implementation

30

av
er
ag
e

40

No support for deletepd()

B
ut
to
nL
A
F

B
ut
to
nS
el
ec
t

In
tF
ra
m
e1
00

In
tF
ra
m
eD
ra
g

In
tF
ra
m
eL
A
F

In
tF
ra
m
eS
el
ec
t

B
ox
L
ay
ou
t

F
lo
w
L
ay
ou
t

G
ri
dL
ay
ou
t

O
ve
rl
ay
L
ay
ou
t

Sr
cF
in
eS
cr
ol
l

Sr
cL
oa
d

Sr
cR
ow
Sc
ro
ll

T
ab
le
F
in
eS
cr
ol
l

T
ab
le
R
ow
Sc
ro
ll

T
ab
le
Sc
al
e

T
re
eA
dd
R
em

T
re
eE
xp
C
ol
lD
ee
p

T
re
eE
xp
C
ol
lW
id
e

D
ra
w
Im
ag
e

L
oa
dI
m
ag
e

T
ra
ns
fo
rm
Im
ag
e

0

_2
01
_c
om
pr
es
s

_2
02
_j
es
s

_2
09
_d
b

_2
13
_j
av
ac

_2
22
_m
pe
ga
ud
io

_2
27
_m
tr
t

_2
28
_j
ac
k

SP
E
C
jb
b2
00
0

-10

Figure 4: Runtime overhead of using the heap protection

as the networking service, as they would cause noise in the
benchmark score. We executed each benchmark item 20
times and calculated the average (arithmetical mean) bench-
mark score to be used to calculate the performance loss due
to using the heap protection. We calculated the performance
loss as follows.

• If the benchmark score is the elapsed time (shorter
is better), we calculated the performance loss using
the following expression, where Ton is the elapsed time
when the heap protection is used and Toff is the elapsed
time on the original platform on which the heap pro-
tection is neither used nor implemented.

1 −

Ton

Toff

• If the benchmark score is the number of operations
processed per second (bigger is better), we calculated
the performance loss using the following expression,
where Non is the benchmark score when the heap pro-
tection is used and Noff is the benchmark score on
the original platform on which the heap protection is
neither used nor implemented.

1 −

Noff

Non

The results of our evaluation are shown in figure 4. The
vertical axis represents the performance loss, and the hori-
zontal axis shows the benchmarked items. Figure 4 shows
that the canonical implementation of setpd() resulted in an
average performance loss of 5.4% (geometrical mean) and a
maximum loss of 58.3%; removing support for deletepd()

reduced the average loss to 4.4%, and the maximum loss to
52.4%. We calculated the average loss by subtracting the
geometrical mean relative performance from 1, where the

relative performance is Ton

Toff
or

Noff

Non
.

Most JFCMark items suffered a bigger performance loss
than the SPEC one because GUI operations result in JNI
calls that require setpd(), and the IntFrameDrag item suf-
fered the biggest performance loss because it makes JNI calls
the most frequently, as shown in table 3. Table 3 shows the
frequency of JNI calls when they are executed without using
heap protection 16.

6.1 Analysis of runtime overhead
To investigate ways to reduce the runtime overhead, we

analyzed the source of runtime overhead for the four bench-
marked items, 213 javac, 228 jack, IntFrame100, and
IntFrameDrag that imposed the most runtime overhead in
each of SPECjvm98 and JFCMark. We estimated the over-
head originating from two sources.

DEL Runtime overhead to support deletepd() came from
code in the implementation of setpd() (lines 37, 40–
47, and 54 in figure 3).

CR3 Runtime overhead to rewrite the CR3 register.

The cost of rewriting the CR3 register is much greater than
the cost of simply executing the machine instruction that
rewrites the CR3 register because execution of the machine
instruction flushes the translation look-aside buffer (TLB),
which is the processor resource used to accelerate address
translation. When a process uses the heap protection do-
main, the OS rewrites the CR3 register when it does one of
two actions.

1. Execution of setpd(). The code that rewrites the CR3

register is at line 48 in figure 3.

16Only JNI calls that invoke setpd() when executed using
heap protection were counted. JNI calls from C functions
that cannot modify the Java heap do not invoke setpd(),
as described in section 4.

109

Table 3: Frequency of JNI calls that invoke setpd()

Benchmarked Frequency
item (times/sec)
201 compress 473
202 jess 7491
209 db 1440
213 javac 34429
222 mpegaudio 754
227 mtrt 3930
228 jack 45434
ButtonLAF 57514
ButtonSelect 5791
DrawImage 40253
LoadImage 5912
TransformImage 380
IntFrame100 74408
IntFrameDrag 202444
IntFrameLAF 66039
IntFrameSelect 75157
BoxLayout 45094
FlowLayout 56277
GridLayout 56291
OverlayLayout 64047
SrcFineScroll 35385
SrcLoad 33217
SrcRowScroll 26445
TableFineScroll 34967
TableRowScroll 32739
TableScale 49793
TreeAddRem 21514
TreeExpCollDeep 37797
TreeExpCollWide 15667

2. Context switch from a thread that belongs to a heap
protection domain to a thread that belongs to another
protection domain.

The former accounted for most of the runtime overhead
associated with the four benchmark items because these
benchmark items call setpd() very frequently, as table 3
shows, while the OS does not switch contexts so often.

Using the canonical implementation of setpd() shown in
figure 3, we estimated the runtime overhead from DEL and
CR3 as follows.

1. For each of the benchmark items, we measured the
execution time for four cases.

Toriginal Neither the heap protection domain nor the
heap protection feature was implemented.

Tprotect The heap protection domain was implemented
and used to protect the HotSpot VM heap.

TnoDEL The heap protection domain was implemented
and used to protect the HotSpot VM heap, but
the code supporting deletepd() was omitted.

TnoCR3 The heap protection domain was implemented
and used to protect the heap for HotSpot VM,
but the code to rewrite the CR3 register for the
protection domain was omitted.

2. The share of total runtime overhead for DEL and CR3
when using the heap protection was calculated using
following expressions.

Table 4: Source of performance loss and execu

cost ofsetpd()

Benchmarked Performance loss(%) Executio
item ODEL OCR3 others cost(μs

213 javac 19.8 53.2 27.0 1.9
228 jack 22.8 60.8 16.4 2.8
IntFrame100 17.4 51.0 31.6 1.9
IntFrameDrag 22.2 56.8 21.0 3.3

ODEL =
Tprotect−TnoDEL

Tprotect−Toriginal

OCR3 =
Tprotect−TnoCR3

Tprotect−Toriginal

Because the execution time was not consistent bet
the runs, the estimation accuracy was not good, how
the estimations should be roughly approximate. The r
of the estimation is shown in table 4.

As shown in table 4, ODEL and OCR3 differed amon
four benchmarked items, possibly due to inconsistenci
runtime overhead to rewrite the CR3 register. The run
overhead to rewrite the CR3 register includes the run
overhead due to TLB flush, which is affected by the me
access pattern and flush timing. The average cost of flu
TLB drops when flushing is done continually and a
part of TLB is reloaded between flushing. The cost to
setpd() measured using a program that continually
setpd() was 1.17μs, which is smaller than the cost sh
in table 4 17. This is because, in practical applications,
of TLB is reloaded between flushes.

As shown in table 4, over half the runtime overhead
from CR3, so we must reduce this overhead to improve
formance. However, it is not easy to reduce the overhea
improving the implementation of setpd().

• Shinagawa[25] used segmentation provided by
processors to avoid TLB flushing on a protection
main switch. But this method may not be approp
for server-side Java applications that consume
bytes of heap, because it reduces the available lo
address space as the number of protection domai
the process grows. However, Shinagawa’s imple
tation can be practical for PowerPC processor
Both IA32 and PowerPC processors implement
tual memory using segmentation and paging.
first translate each logical address into an inte
diate address using segmentation, and then tran
the intermediate address into a physical addres
ing paging. While the intermediate (linear) ad
space is 32-bit in IA32 processors, it is 52-bit in
bit PowerPC processors. Shinagawa’s implement
reduces the available logical address space becau
divides the 32-bit linear address space of IA32
cessors among the protection domains and then
the logical address space to the fragment of the l
address space, but PowerPC processors can divid
large-enough (52-bit) intermediate address space
32-bit pieces and give one to each protection dom

17We estimated the cost of setpd() for each benchma
item by simply dividing total overhead of using the
protection (Tprotect − Toriginal) by the execution cou
setpd(). This estimation neglects runtime overhead th
not due to setpd().

110

In this case, each protection domain can fully access
the 32-bit logical address space.

• Palladium[5] also used segmentation to implement a
memory protection scheme like our heap protection do-
main. Palladium does not suffer the problem that Shi-
nagawa’s implementation does. It classifies programs
into core programs and their extension programs. It
prevents an invalid memory access by the extension
programs to the memory area for their core program.
It can protect memory more efficiently than our heap
protection domain does, because it requires neither
TLB flushing nor a system call on a protection do-
main switch. However, Palladium cannot prevent an
extension program from invalidly accessing the mem-
ory for another extension program, and it cannot be
implemented on platforms without segmentation. In
contrast, our heap protection domain allows each sub-
program to have its own protected heap and can be
portably implemented.

• Processor support for the protection domain can re-
duce the frequency of TLB flushing. The processor
can use reserved (unused) bits in the directory entry to
add access control bits for multiple protection domains
in one directory entry. This reduces not only the num-
ber of PGDs but also the frequency of TLB flushes,
because a TLB flush is not needed with setpd() if old
and new protection domains to which the thread be-
longs share a PGD. Unfortunately, there is not yet a
processor that supports this capability.

Another processor support for the protection domain
is a tagged TLB[1, 14, 29]. A tagged TLB is a TLB
that can hold address transformation information for
multiple address spaces. With this feature, there is no
need to flush the TLB on an address space switch, and
this enables an efficient implementation of a protection
domain, which is implemented as an address space[30].

The runtime overhead due to DEL can be eliminated by
not supporting deletepd() as described in section 5. There
is little room for runtime overhead from other than CR3 or
DEL to be reduced, as most of it is due to code executed in
common for every system call, such as interrupt instructions.

Runtime overhead can also be reduced by eliminating setpd()

calls. It is possible to omit most setpd() calls in SPECjvm98
and SPECjbb2000 if the HotSpot VM eliminates calls to
setpd() in JNI calls to the native methods provided by
the JRE. It may not be important for HotSpot VM to call
setpd() in JNI calls to the native methods provided by the
JRE, because HotSpot VM and the native method are to-
gether in one program product, the JRE, and engineers an-
alyzing crashed Java applications generally ask the JRE de-
veloper to debug the problem whether the bug is in the JVM
or in the native method provided by the JRE. This elimi-
nates most setpd() calls for pure Java applications, such
as SPECjvm98, SPECjbb2000 and JFCMark, but this is of
no help for Java applications that frequently call their own
native methods.

7. CONCLUSION
We have described a feature that protects the heap for

Java virtual machines using the heap protection domain.

We modified Linux and HotSpot VM to implement this heap
protection and evaluated the performance loss using three
benchmarks suites, SPECjvm98, SPECjbb2000, and JFC-
Mark. The evaluation showed that the average performance
loss was 4.4% and the maximum loss was 52.4%.

8. ACKNOWLEDGMENTS
We would like to thank Shingo Takada for his helpful com-

ments. We also want to thank the referees of this paper for
their useful suggestions.

9. REFERENCES
[1] The Alpha Architecture Committee. Alpha AXP

architecture reference manual, third edition. Digital
Press, Boston, Massachusetts, 1998.

[2] K. Arnold, J. Gosling, and D. Holmes. The Java

Programming Language, Fourth Edition.
Addison-Wesley Publishing Company, Reading,
Massachusetts, 2005.

[3] T. M. Austin, S. E. Breach, and G. S. Sohi. Efficient
detection of all pointer and array access errors. In
Proceedings of the ACM SIGPLAN 1994 Conference

on Programming Language Design and

Implementation, pages 290–301. June 1994.

[4] J. S. Chase, H. M. Levy, M. J. Feeley, and E. D.
Lazowska. Sharing and protection in a
single-address-space operating system. ACM

Transactions on Computer System, 12(4):271–307,
November 1994.

[5] T. Chiueh, G. Venkitachalam, and P. Pradhan.
Integrating segmentation and paging protection for
safe, efficient and transparent software extensions. In
Proceedings of the seventeenth ACM Symposium on

Operating System Principles, pages 140–153.
December 1999.

[6] E. Cohen and D. Jefferson. Protection in the hydra
operating system. In Proceedings of the fifth ACM

Symposium on Operating System Principles, pages
141–160. November 1975.

[7] G. Czajkowski, L. Danyés, and N. Nystrom. Code
sharing among virtual machines. In Proceedings of the

16th European Conference on Object-Oriented

Programming, pages 155–177, June 2002.

[8] G. Czajkowski, L. Danyés, and M. Wolczko.
Automated and portable native code isolation. In
Proceedings of 12th IEEE International Symposium on

Software Reliability Engineering, pages 298–307.
November 2001.

[9] C. Demetrescu and I. Finocchi. A portable virtual
machine for program debugging and directing. In
Proceedings of the 2004 ACM Symposium on Applied

Computing, pages 1524–1530. March 2004.

[10] J. B. Dennis and E. C. V. Horn. Programming
semantics for multiprogrammed computations.
Communications of the ACM, 9(3):143–155, March
1966.

[11] Excelsior, Limited Liability Company. JFCMark,
2003. http://www.excelsior-usa.com/jfcmark.html

[12] M. E. Houdek, F. G. Soltis, and R. L. Hoffman. IBM
system/38 support for capability-based addressing. In
Proceedings of the 8th Annual Symposium on

Computer Architecture, pages 341–348. May 1981.

111

[13] Intel Corporation. IA-32 Intel Architecture Software

Developer’s Manual. Intel Corporation, 2006.
http://www.intel.com/design/Pentium4/
documentation.htm

[14] Intel Corporation. Intel Itanium Architecture Software

Developer’s Manual. Intel Corporation, 2006.
http://www.intel.com/design/itanium/
manuals/iiasdmanual.htm

[15] International Business Machines Corporation. ILE

Concepts. International Business Machines
Corporation, 2002.
http://publib.boulder.ibm.com/iseries/v5r2/ic2924/
books/c4156066.pdf

[16] International Business Machines Corporation. Java

and WebSphere Performance on IBM iSeries Servers.
International Business Machines Corporation, 2002.
http://www.redbooks.ibm.com/redbooks/pdfs/
sg246256.pdf,

[17] International Business Machines Corporation.
PowerPC Architecture Book. International Business
Machines Corporation, 2003.
http://www-128.ibm.com/developerworks/eserver/
articles/archguide.html

[18] R. W.M. Jones and P. H.J. Kelly.
Backwards-compatible bounds checking for arrays and
pointers in C programs. In Proceedings of the Third

International Workshop on Automated and

Algorithmic Debugging, pages 13–26. May 1997.

[19] T. Koju, S. Takada, and N. Doi. An Efficient
Directing Platform Compatible with Existing
Development Environments IPSJ Journal,
46(12):3040–3053, December 2005.

[20] R. Levin, E. Cohen, W. Corwin, F. Pollack, and
W. Wulf. Policy/mechanism separation in hydra. In
Proceedings of the fifth ACM Symposium on Operating

System Principles, pages 132–140. November 1975.

[21] S. Liang. The Java Native Interface: Programmer’s

Guide and Specification. Addison-Wesley Publishing
Company, Reading, Massachusetts, 1999.

[22] Microsoft Corporation. Microsoft C# Language

Specifications. Microsoft Press, Redmond,
Washington, 2001.

[23] G. Necula, S. McPeak, and W. Weimer. CCured:
Type-safe retrofitting of legacy code. In Proceedings of

the 29th ACM Symposium on Principles of

Programming Languages, pages 128–139. January
1997.

[24] M. Paleczny, C. Vick, and C. Click. The Java Hotspot
server compiler. In Proceedings of Java Virtual

Machine Research and Technology Symposium, pages
1–12. April 2001.

[25] T. Shinagawa, K. Kono, and T. Masuda. Flexible and
efficient sandboxing based on fine-grained protection
domains. In Proceedings of the International

Symposium on Software Security, pages 172–184,
February 2003.

[26] R. Sosič. Dynascope: a tool for program directing. In
Proceedings of the ACM SIGPLAN 1992 Conference

on Programming Language Design and

Implementation, pages 12–21. July 1992.

[27] Standard Performance Evaluation Corporation.
SPECjvm98 benchmarks, 1998.

http://www.spec.org/osg/jvm98/

[28] Standard Performance Evaluation Corporation.
SPECjbb2000, 2000.
http://www.spec.org/osg/jbb2000/

[29] SPARC International, Incorporated. SPARC

Architecture Manual, Version 9. SPARC International,
Incorporated, 2000. http://developer.sun.com/solaris/
articles/sparcv9.html

[30] M. Takahashi, K. Kono, and T, Masuda. Efficient
kernel support of fine-grained protection domains for
mobile code, In Proceedings of the 19th IEEE

International Conference on Distributed Computing

Systems, pages 64–73. May 1999.

[31] E. Witchel, J. Cates, and K. Asanović. Mondrian
Memory Protection. In Proceedings of the 10th

International Conference on Architectural Support for

Programming Languages and Operating Systems ,
pages 304–316. October 2002.

[32] W. Wulf, R. Levin, and C. Pierson. Overview of the
hydra operating system development. In Proceedings

of the fifth ACM Symposium on Operating System

Principles, pages 122–131. November 1975.

112

A Framework for Unified Resource Management in Java
Derek A. Park

The University of Mississippi
Global Technical Systems

9 Industrial Park Drive, Suite 105
Oxford, MS 38655 USA

+1 (662) 236-6200

dpark@olemiss.edu

Stephen V. Rice
The University of Mississippi

P.O. Box 1848
University, MS 38677-1848 USA

+1 (662) 915-5359

rice@cs.olemiss.edu

ABSTRACT
Although Java automates the deallocation of memory through
garbage collection, a Java program must explicitly free other
resources, such as sockets and database connections, to prevent
resource leaks. Correct and complete resource deallocation may
be complex, requiring nested try-catch-finally blocks. The
Framework for Unified Resource Management (Furm) is a Java
library designed with the goal of simplifying resource
management in single- and multi-threaded programs. Allocated
resources are represented by nodes in “resource trees” and
resource dependencies are modeled as parent-child relationships.
A hierarchy of resources is easily and correctly deallocated by a
single call of Furm’s release method. Resource trees permit
“resource reflection” in which a program monitors its own
resource usage. A special WatchDog object detects when a thread
dies and takes care of releasing its resources. Furm reduces code
complexity while guaranteeing resource cleanup in the face of
exceptions and thread termination.

Categories and Subject Descriptors
D.1.5 [Programming Techniques]: Object-Oriented
Programming. D.2.3 [Software Engineering]: Coding Tools and
Techniques – object-oriented programming.

General Terms
Languages, Reliability, Management.

Keywords
Resource monitoring and deallocation, Exception handling.

1. INTRODUCTION
Resource management is a concern which reaches all programs.
At the operating system level, heap and stack memory are granted
to programs and system handles are allocated. At the program
level, memory is allocated and freed; sockets and files are opened
and closed. Even the most trivial program performs resource

management, or has resource management performed on its
behalf. An empty program still has a stack which the operating
system must free.

Allocating resources is simple enough. The complexities arise
from the need to deallocate resources. Memory must be freed.
Sockets must be closed. File handles must be released. When
resources are not freed, resource leaks inevitably occur. The
more complex a program becomes, the more likely such a leak is
to occur. In Java and other exception-handling languages,
resource deallocation is made even more difficult by the
complexities of exception-handling.

It has been noted that the exception-handling model is in fact
more complex and difficult to use correctly than the more
traditional error-code model, in which functions signal errors by
returning special values [14][5][1]. The difficulty in correctly
handling exceptions often leads to incorrect handling. When
concurrency issues are introduced, the problem grows further.

1.1 Exception-Handling Complexity
Why does exception handling complicate resource management?
It makes the code flow unpredictable. In a language like C, it is
possible to allocate resources, confirm successful allocation, use
those resources, and then free them. The flow of code is very
straightforward. In Java however, virtually any statement may
throw an exception. It is therefore impossible to simply allocate
resources and then free them. If an exception is thrown while
allocating, using, or freeing resources, any resources allocated but
not yet freed will be leaked when the exception unwinds the
stack, moving the flow of control in a potentially unexpected
pattern.
As an illustrative example, take the following code which
attempts to close three resources, a socket, a database connection,
and an input stream:

In a language without exceptions, each of these resources would
be guaranteed cleanup. In Java, however, if the socket fails to
close in line 1, it will throw an exception, and the other resources
will never be released.
Because guaranteed cleanup is necessary, Java has the try-finally
block. Java guarantees that if the flow of code reaches a try
block, the associated finally block is guaranteed to be executed,
even if an exception is thrown inside the try block. Using try-
finally blocks, we might revise our code as follows:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
PPPJ 2006, August 30 – September 1, 2006, Mannheim, Germany.
Copyright 2006 ACM … $5.00.

01 socket.close();
02 connection.close();
03 input.close();

113

While this code will now correctly release our three resources,
even in exceptional cases, it has ballooned from a simple three
lines to a much more bulky thirteen. The extra overhead is
necessary to guarantee that each resource will be released.

Note that there are three nested try-finally blocks to release three
resources. If there were four resources, we would require an
additional nested try-finally block. In fact, correctly releasing N
resources requires N try-finally blocks [17].

Finally, it is worth pointing out that even catching exceptions will
not necessarily guarantee correct resource cleanup. The Java
language has two kinds of exceptions: checked and unchecked.
Java requires that a method either catch all possible checked
exceptions or explicitly declare that it may throw them.
Unchecked exceptions, the subclasses of Error and
RuntimeException, are not required to be declared or caught. Any
method may throw an unchecked exception at any time. This
means that catching only declared exceptions is not sufficient to
guarantee cleanup, as illustrated in the following code:

The Socket.close() method only declares that it might throw
IOException, so it might seem reasonable to assume that catching
IOException in line 3 will be enough to guarantee that the flow of
control will reach line 5. If, however, line 2 were to throw an
unchecked exception, such as NullPointerException, then it would
go uncaught, and so the database connection would remain open.

1.2 A Motivating Example
While exception-handling clearly imposes a burden when
releasing resources, it is worth asking whether that burden is
really a problem. Figure 1-1 is an example taken from The Java
Tutorial [4]. The code is intended to show, along with use of
sockets, that resources opened must be also closed. However, this
code has some of the same flaws already discussed.

If any unchecked exceptions are thrown in lines 8-14, they will
not be caught by the catch blocks on lines 15 and 17. The rest of
the method would not execute, leaking any of the successfully
opened resources. Another likely issue is that if the connection
fails while writing to or reading from the streams (lines 27-31), an
exception will be thrown. The socket and streams are guaranteed
to be leaked if this occurs. No catch or finally blocks are present
to guard against this.

1.3 Garbage Collection and Finalization
Because memory is the most commonly allocated resource, it
follows that it is also the most commonly mismanaged resource.
The concept of automatic garbage collection was introduced to
eliminate the possibility of memory leaks. Garbage collection has
done an admirable job of eliminating memory leaks. It has often
been asserted that programmers using garbage-collected
languages are more productive, specifically because the need to
deal with memory deallocation is absent [13].

Unfortunately, no such solution has been presented to eliminate
the complexities of the more general case of resource
management. C++ introduced the awkwardly-named Resource
Acquisition Is Initialization (RAII) paradigm, which involves
using automatically-destructed, scope-bound objects to release
resources [1][15]. However, such a feature is not available in
Java, because automatically-destructed objects are not available.
In Java, all non-memory resource deallocation must be done
manually [4][3].

Java’s analog for C++ destructors is finalization. Rather than
deleting an object manually and implicitly calling its destructor
(as in C++), when an object in Java is garbage collected, its
finalize() method is called [8]. In theory, this is an excellent time
to free resources. Since the object is being garbage collected, its
resources are clearly no longer needed. Unfortunately, this model
is flawed. The Java specification does not guarantee that objects
will be garbage collected quickly. It is accepted, however, that
most non-memory resources need to be freed quickly. Examples
include network sockets, file handles, and database connections

01 try {
02 ...
03 } finally {
04 try {
05 socket.close();
06 } finally {
07 try {
08 connection.close();
09 } finally {
10 input.close();
11 }
12 }
13 }

01 try {
02 socket.close();
03 } catch (IOException exc) {
04 }
05 connection.close();

01 public static void main(String[] args)
02 throws IOException {
03 Socket echoSocket = null;
04 PrintWriter out = null;
05 BufferedReader in = null;
06
07 try {
08 echoSocket = new Socket("taranis", 7);
09 out = new PrintWriter(
10 echoSocket.getOutputStream(),
11 true);
12 in = new BufferedReader(
13 new InputStreamReader(
14 echoSocket.getInputStream()));
15 } catch (UnknownHostException e) {
16 // ...
17 } catch (IOException e) {
18 // ...
19 }
20
21 BufferedReader stdIn =
22 new BufferedReader(
23 new InputStreamReader(
24 System.in));
25
26 String str;
27 while ((str = stdIn.readLine()) != null) {
28 out.println(str);
29 System.out.println(“echo: " +
30 in.readLine());
31 }
32
33 out.close();
34 in.close();
35 stdIn.close();
36 echoSocket.close();
37 }
Figure 1-1. An example from The Java Tutorial [4]

114

[4]. The fact that the Java framework has no way of explicitly
releasing memory1, but has numerous ways of closing other
resources explicitly2, supports this view.

The fact that Java’s finalizers are not guaranteed to be run in a
timely fashion would seem to limit their usefulness. Even more
limiting, however, is that finalizers are in fact not guaranteed to
be run at all [9][3]. An object’s finalizer is only guaranteed to be
run if the object is garbage collected, and garbage collection is not
guaranteed to happen [4]. It is entirely possible for a program to
exit without any of its objects being garbage collected or
finalized. Java does provide a way to force objects to be finalized
on exit3, but the functionality has been deprecated since Java 1.2,
as it has been deemed unsafe. Without any accepted way to
guarantee finalization, exactly how finalization is at all useful
becomes a valid question.

Because finalization’s usefulness is limited, Java code must
manually release all scarce resources. Java does not make this job
simple. While releasing a resource typically boils down to a
single method call, the exact call is not standardized across the
Java libraries. Most resources provide a close() method,
including Socket, InputStream, Connection, etc. However, a few
resources stray from that pattern, such as the AWT Window class,
which provides the dispose() method. Even those classes which
do provide a close() method are not truly consistent, because Java
does not have a single, unified interface for closing resources.
The closest the library comes to a unified interface is Closeable.
The Closeable interface is implemented by all resources in the
java.io package. However, outside the java.io package, few
resources implement the Closeable interface, and so many
resources cannot be treated as instances of Closeable. The net
effect of what are in fact fairly minor inconsistencies is that there
is no straightforward way to release all resources in an identical
manner, which complicates any attempt at automated resource
deallocation.

1.4 Releasing Resources
Dependencies are inherent in the very nature of resources. A
JDBC PreparedStatement object has no logical meaning in the
absence of an associated Connection object. Similarly, the input
and output streams associated with a network socket have no
further meaning once the socket they are built upon closes. Upon
inspection, it becomes clear that there are many such
dependencies, and they are applicable to all sorts of resources.

While at first it might seem logical that when a resource closes,
any resources which depend on that resource will also close
automatically, this cannot be safely assumed in the general case.
Any behavior which is not defined is undefined, axiomatically.
Undefined behavior cannot be trusted to act consistently, and the
Java documentation is usually quiet when it comes to automatic
resource closure. One might assume that when a database
connection closes, any statements tied to that connection will also

1 Java does provide a way to request that the garbage collector be

immediately run, but this practice is discouraged, and is not
guaranteed to free any memory, only to make an attempt.

2 Various calls are used to close resources, including
Closeable.close(), Window.dispose(), Connection.close(), etc.

3 Runtime.runFinalizersOnExit()

close. However, the Java 1.5 API documentation makes no such
claim [16].4 Accordingly, it falls on the programmer to explicitly
close any open statements along with the database connection.
Likewise, the API documentation does not state that closing a
socket automatically closes its associated streams, which leaves
this task to the programmer. In fact, the recommended method of
closing multiple dependent resources is to close them manually,
one at a time [4].

Whenever the documentation is silent about whether a resource
closing will cause any dependent resources to close, it is best to
assume nothing, and treat the dependent resources as potentially
unusable. In such a case, the only logical thing to do with the
dependent resources is to close them as well. When a socket is
closed, the programmer should immediately close the associated
input and output streams. In fact, this should be done before the
socket is closed [4]. It is interesting to note that in the Java 1.5
implementation provided by Sun, closing a stream associated with
a socket actually will close the socket [10], but this behavior is
unreliable. It is not guaranteed between Java versions – in fact it
is a recent change – and it is undocumented, which means other
Java implementations may not exhibit the same behavior.

1.5 Related Work
Finalizers were introduced into Java as a way to guarantee
cleanup [8], but it has been shown that finalizers fail in their task.
Stack-bound objects with destructors have been given thorough
attention in C++ [15], but such approaches are not applicable to
Java, due to its lack of stack-bound objects.

C# and .NET introduced the IDisposable interface, which is used
throughout the .NET framework. This provides the unifying
interface missing from Java. C# also introduced the using
keyword (coupled with the IDisposable interface) to simplify
resource management [7]. The using construct eliminates the
need for try-finally blocks when releasing resources, and even
automates the resource release. One drawback to applying this
technique to Java is that it requires language-level support, and so
requires a language extension. The second issue is that it requires
IDisposable, or an equivalent unified interface, to work.

Czajkowski provided a thorough treatment of the area of resource
allocation and usage monitoring [6]. However, the methods
presented are not applicable to releasing resources. The methods
do not eliminate the need for nested try-finally blocks when
releasing resources.

Weimer delved deeply into the issue of releasing resources [17]
using compensations, arbitrary pieces of code that are executed to
restore invariants. The framework presented by Weimer stores
these compensations on a stack, and the entire stack is typically
executed at once. However, compensations require changes to the
Java language itself, to add closures and an extended syntax.
Compensation stacks are also less flexible than the resource tree
model we will introduce in the next section.

4 The JDBC spec states that closing a Connection object closes

the associated Statement objects, although this is not reflected in
the more general Java 1.5 API documentation. The JDBC spec
states, however, that Statement and ResultSet objects should be
explicitly closed as soon as possible, implying that the
automatic closure is a fallback mechanism only.

115

2. FRAMEWORK
The Framework for Unified Resource Management (Furm)
represents dependencies among resources using trees [12]. In a
resource tree, given a parent resource P and a child resource C, C
is dependent on P. That is, once P is closed, C has no further use.
By extension, given any two resources X and Y where X is an
ancestor of Y, Y is dependent on X, either directly or indirectly.
All resources are therefore dependent on the tree’s root resource.

This resource tree abstraction is primarily useful in two ways.
First, the tree provides a unified way to manage resources. This
fills the gap left by Java’s Closeable interface. The resource tree
provides a consistent way to view resources, and makes it
possible for all resources to be released in an identical manner.

Second, the resource tree materializes resource dependencies in
an explicit fashion. While an input stream might be associated
with a socket, it may not be evident to any code using the stream
that this is the case. However, if the socket and its streams are
part of the same resource tree, the relationship becomes clear.
The connection in the tree ties a parent and child together
logically and simply.

Furm models two types of dependencies: substantive
dependencies and logical dependencies. Figures 2-1 and 2-2
illustrate substantive and logical dependencies, respectively.
Substantive dependencies are those dependencies that might be
described as concrete, physical, or real dependencies. These are
forced dependencies, or dependencies in which the child resource
truly has no meaning in the absence of the parent resource. The
resource dependency examples used so far have all been
substantive dependencies.

Logical dependencies are semantic dependencies, or groupings of
resources. For example, the input and output streams used by a
block of code may not have any true, enforced dependencies, but
they may still be logically dependent, in that without both,

execution cannot successfully proceed. It is therefore useful to
represent them as siblings with a common parent. Neither the
input stream nor the output stream has a substantive dependency
on the other, but they are logically connected. Having a common
parent materializes this relationship. In logical dependencies, the
parent will often be a pseudo-resource, i.e., the parent represents a
group of resources, and does not itself represent a particular
resource. It exists to support the semantic relationship of its
children. A common use of logical dependencies is to group all
the resources of a segment of a program. This might be a code
block, a specific object, or a thread of execution. Figure 2-3
shows a resource group associated with a thread, which contains a
database connection and a socket, each with its own
dependencies.

It has been shown that the resource tree can represent
dependencies among resources. In addition, Furm propagates
resource releases from ancestors to descendents. If a resource in
the tree is released, then all of its children will be released, and in
turn the children’s children, etc. Rather than releasing a number
of individual resources, only the parent resource needs to be
explicitly released. Entire subtrees of resources can be released
with a single call. This has the immediate effect that cleanup
code, with its large code overhead, is greatly reduced.

2.1 Using Furm
Here we present a simple method fetch(), with the job of
connecting to a server, sending a message, and returning the
response to the caller. (See Figure 2-4.) In the event of failure,
the response is null.

This method is implemented correctly, with respect to resource
management. The three resources used are a Socket, an
InputStream, and an OutputStream. The ByteArrayOutputStream
is not considered a resource here, because it does not need to be
closed.

While the task of this code is simple, the decision to correctly
close resources and handle all checked exceptions – as opposed to
discarding them or allowing them to propagate to the caller – has
caused massive code expansion. If exceptions could be safely
ignored, this method could be reduced from 44 lines to only 18.
Note especially how the nested try-finally blocks turn cleanup, a
conceptually minor detail, into the most dominant detail.

Statement Socket Input Stream Socket Output Stream

Resource Group

Database
Connection Socket

Figure 2-3. An example resource tree

Socket

Socket Input Stream Socket Output Stream

Figure 2-1. Substantive dependencies

Resource Group

File Input Stream File Output Stream

Figure 2-2. Logical dependencies

116

By representing resources as trees, and releasing entire trees at
once, this method can be simplified, as shown in Figure 2-5. The
try-catch-finally complexity has been reduced to a single try-
catch-finally block. The previous close() calls have been replaced
by a single release() call, on line 27. Exceptions during the
resource release phase are now passed to the ExceptionLogger,
described in Section 2.3, to avoid cluttering up the code.
Additionally, it is no longer necessary to declare most of the
resources outside the try block (e.g., the Socket, InputStream, and
OutputStream). Because the resources are accessible through the
tree, they do not need to be directly accessible by the finally
block. This allows more variables to be kept in smaller scopes,
where they are relevant. By using Furm, the number of lines has
been significantly cut. More importantly, communicating with
the server is now the focus of the code. The resource
management code has been pushed into the background, where it
belongs.

In this example, a ResourceGroup is the root of the tree, and the
ManagedSocket is its only child. When getInputStream() and
getOutputStream() are called, the ManagedSocket automatically
creates a ManagedInputStream and a ManagedOutputStream as
its children. Figure 2-6 shows the tree immediately before

release() is called.

For another example, let us borrow a method from Apache
Tomcat, an open source Java Servlet container, produced by the
Apache Software Foundation. Tomcat is the official Reference
Implementation for the Java Servlet and JavaServer Pages
technologies [2].

The copy() method in Figure 2-7 is from the StandardContext
class, part of the Java engine (Catalina) built into Tomcat. Its task
is to copy from one file to another. A significant amount of effort
has gone into handling resources in exceptional situations in this
code. All resource releases are nicely wrapped in try-catch
blocks, which are in turn in a finally block. The method is well
thought out, carefully coded, and flawed. If the close() operation
on line 19 throws an Error, then the close() operation on line 22
will never occur, despite all the careful exception handling. This
is unlikely, but not impossible. This may have slipped by the
developers because the cleanup code is difficult to follow.

Note that the close() calls are duplicated. Lines 13 and 14 close
the resources in the normal conditions, while lines 19 and 22
close the resources in exceptional conditions. Such duplication
leads to less maintainable code. Note also that exceptions are
completely discarded, losing potentially useful information.

Figure 2-8 displays the code rewritten to use Furm. This code
correctly closes resources in both normal and exceptional
situations. The basic functionality is retained. However, the
cleanup code is completely different. Instead of nested try-catch
blocks, a single try-catch-finally block suffices. Rather than two
different close() calls (or four, counting the duplicates), a single
release() call is responsible for releasing the input and output
streams correctly in both normal and exceptional cases. The
return value of the release() call is checked on line 19 to
determine whether the cleanup was successful. A return value of

01 static byte [] fetchAgain(InetAddress addr,
02 int port,
04 byte [] msg) {
05 ResourceGroup tree = new ResourceGroup(
06 new ExceptionLogger());
07 ByteArrayOutputStream response =
08 new ByteArrayOutputStream();
09 boolean success = false;
11 try {
12 Socket s = new ManagedSocket(
13 addr,port,tree);
14 OutputStream out = s.getOutputStream();
15 out.write(msg)
16 out.flush();
17 InputStream in = s.getInputStream();
18 int i;
19 while ((i = in.read()) != -1) {
20 response.write(i);
21 }
22 success = true;
23 } catch (IOException exc) {
24 tree.getListener().
25 exceptionThrown(null,exc);
26 } finally {
27 tree.release();
28 }
29 if (!success) return null;
30 return response.toByteArray();
31 }

Figure 2-5. Connecting to a server using Furm

01 static byte [] fetch(InetAddress addr,
02 int port,
03 byte [] msg) {
04 Socket s = null;
05 InputStream in = null;
06 OutputStream out = null;
07 ByteArrayOutputStream response =
08 new ByteArrayOutputStream();
09 boolean success = false;
10 try {
11 s = new Socket(addr,port);
12 out = s.getOutputStream();
13 out.write(msg);
14 out.flush();
15 in = s.getInputStream();
16 int i;
17 while ((i = in.read()) != -1) {
18 response.write(i);
19 }
20 success = true;
21 } catch (IOException exc) {
22 // log exception
23 } finally {
24 try {
25 if (out != null) out.close();
26 } catch (IOException exc) {
27 // log exception
28 } finally {
29 try {
30 if (in != null) in.close();
31 } catch (IOException exc) {
32 // log exception
33 } finally {
34 try {
35 if (s != null) s.close();
36 } catch (IOException exc) {
37 // log exception
38 }
39 }
40 }
41 }
42 if (!success) return null;
43 return response.toByteArray();
44 }

Figure 2-4. Connecting to a server to send a message

117

zero indicates that no exceptions occurred.

Among the most obvious differences is the reduction in cleanup
code. The release and exception-handling code has been reduced
by almost half. The nested try-catch blocks are no longer needed
because that functionality is now encapsulated in the release()
call. Additionally, exceptions are no longer discarded silently.
Instead they are passed to an ExceptionListener. The overall
method is shorter as well, even with the overhead of creating the
ResourceGroup. Compared to the original, use of Furm reduced
the amount of code, eliminated the resource cleanup error, and
minimized the loss of information related to exceptions.

2.2 Creating Managed Resources
Adding new resources to Furm is straightforward. The most
difficult issue with using Furm is that each type of resource to be
added to the tree must be wrapped in a new class to produce the
equivalent managed resource. For example, to add an

InputStream to the tree, a new wrapper class,
ManagedInputStream, must be defined. Additionally, each
managed resource must define its own subclass of ResourceNode,
described in Section 2.3, to override the cleanup() method. In
practice, these requirements pose little problem.

Figure 2-9 shows one possible implementation of the
ManagedInputStream class. This class extends FilterInputStream
to wrap an underlying InputStream. ManagedInputStream uses
an anonymous inner class [8] to subclass ResourceNode and
override its cleanup() method. Use of an anonymous inner class
is not necessary. A named class would be sufficient, but less
succinct. The close() method is also overridden to call the
release() method of ResourceNode. This will automatically
release any child resources and call the cleanup() method of the
ResourceNode subclass, which in turn will call
ManagedInputStream’s superclass close() method.

ManagedInputStream exposes its ResourceNode instance variable
publicly to expose the ResourceNode functionality. This is the
recommended practice. Because forwarding all relevant calls to
the underlying ResourceNode would be a tedious task, the choice
was made to simply expose the ResourceNode directly, rather
than hide it. In practice, this means little except that to release the
resource, the correct call is stream.node.release() rather than
stream.release(). For the sake of consistency, the name node is
recommended, but not mandated by Furm. The node variable
should be declared final to protect it from modification.

It is recommended that managed resource classes extend (or
implement) the class they are intended to replace. In this
example, ManagedInputStream extends FilterInputStream (so that
it indirectly implements InputStream). This allows
ManagedInputStream to be passed to methods and constructors
which expect an InputStream. ManagedInputStream thus
becomes a drop-in replacement.

In cases where the original resource is a class, the constructors of
the original resource class will need to be duplicated in the
managed subclass. In cases where a resource has a large number
of constructors, this could be tedious. However, a tool could
automate this task. In cases where the original resource is an

01 private boolean copy(File src, File dest) {
02 FileInputStream is = null;
03 FileOutputStream os = null;
04 try {
05 is = new FileInputStream(src);
06 os = new FileOutputStream(dest);
07 byte[] buf = new byte[4096];
08 while (true) {
09 int len = is.read(buf);
10 if (len < 0) break;
11 os.write(buf, 0, len);
12 }
13 is.close();
14 os.close();
15 } catch (IOException e) {
16 return false;
17 } finally {
18 try {
19 if (is != null) is.close();
20 } catch (Exception e) {/*Ignore*/}
21 try {
22 if (os != null) os.close();
23 } catch (Exception e) {/*Ignore*/}
24 }
25 return true;
26 }

Figure 2-7. The copy() method from Tomcat’s Java engine

01 private boolean copy(File src, File dest) {
02 ResourceGroup root = new ResourceGroup(…);
03 boolean success = false;
04 try {
05 InputStream is =
06 new ManagedFileInputStream(src,root);
07 OutputStream os =
08 new ManagedFileOutputStream(dest,root);
09 byte[] buf = new byte[4096];
10 int len;
11 while ((len = is.read(buf)) >= 0) {
12 os.write(buf, 0, len);
13 }
14 success = true;
15 } catch (IOException exc) {
16 root.getListener().
17 exceptionThrown(null, exc);
18 } finally {
19 if (root.release() != 0) success = false;
20 }
21 return success;
22 }

Figure 2-8. A version of the copy() method using Furm

ManagedInputStream ManagedOutputStream

ResourceGroup

ManagedSocket

Figure 2-6. A potential resource tree associated
with a Socket

118

interface rather than a class, method calls must be forwarded.
Again, this could largely be automated. For a few resources,
simple wrapper classes, such as FilterInputStream, are provided
by the Java framework. These classes provide no functionality of
their own, and are intended to be subclassed to create new
wrapper classes. In these cases, the constructor duplication and
method forwarding can be avoided almost entirely.

2.3 Core Classes
The primary class in Furm is ResourceNode. The ResourceNode
class encapsulates the complexities of adding resources to the
tree, removing resources from the tree, releasing resources,
synchronization, etc. The ResourceGroup class is a subclass of
ResourceNode used for representing logical dependencies, as
discussed in Section 2, and also as the root of the tree. The root
of a resource tree must always be a ResourceGroup.

During construction, a ResourceNode instance will automatically
add itself to the specified resource tree, and upon release, will
propagate the release() call to its children. When a ResourceNode
is released, it automatically removes itself from its parent. This
allows garbage collection to proceed.

Starting from the ResourceNode on which the original release()
call is made, the release() call propagates down the tree in post-
order fashion. The cleanup() calls are executed while traversing
back up to the root. The ResourceNode which has its release()
method called first is thus the last to have its cleanup() method
executed.

The fact that child resources are automatically released raises the
question of how to deal with potential exceptions during this
process. Java’s ubiquitous exceptions make resource
management more difficult, and a primary goal of Furm is to
minimize this complexity. Child resources can potentially throw
exceptions during release, but guaranteed cleanup is a necessity
for Furm to properly replace the alternative – nested try-finally
blocks – for releasing resources.

Furm gives the programmer a number of exception-handling
choices. The first choice is which exceptions should be handled.
Furm provides three ListenLevels: CHECKED, EXCEPTION, and
THROWABLE. If CHECKED is specified, then only checked

exceptions will be handled. Any other exceptions (instances of
Error and RuntimeException) will go unhandled. This is similar
to specifying IOException or SQLException in a try-catch block,
but less fine-grained. If the specified ListenLevel is EXCEPTION,
then all subclasses of Exception, both checked and unchecked,
will be handled. Only Errors will go uncaught. If the specified
ListenLevel is THROWABLE, then all subclasses of Throwable
will be handled, i.e., both Exception and Error. The programmer
has control over what level of exceptions to catch. The
framework does not force any particular level. If the programmer
chooses not to specify a ListenLevel, the default is CHECKED.

The second choice is what to do with the exceptions that need
handling. For this purpose, Furm provides the ExceptionListener
interface. Whenever a release() call is made on a ResourceNode,
any exceptions which match the ListenLevel will be passed to an
ExceptionListener. Any of the ExceptionListeners provided by
Furm can be used, and new ExceptionListeners can be created by
subclassing the ExceptionListener interface.

ExceptionListener is an interface with only one method,
exceptionThrown(). Whenever an exception is thrown that meets
the specified ListenLevel, it is passed to this method. The
ExceptionListener interface can be described with very few lines
of code, as shown here:

Creating a new ExceptionListener requires only one method to be
overridden. For example, suppose that when a SecurityException
occurs, we wish to log the system properties (Java version and
vendor, classpath, etc.) for debugging purposes. Creating an
ExceptionListener to do that requires only that a new subclass of
ExceptionListener be defined with the exceptionThrown() method
overridden. This new PropertiesLogger can be reused for
multiple ResourceNodes, multiple resource trees, and multiple
applications.

Three general-purpose ExceptionListener subclasses are provided
by Furm: ExceptionLogger, which logs exceptions to a specified
PrintStream or PrintWriter; ExceptionCollector, which builds a
list of exceptions; and ExceptionPasser, which maintains a list of
other ExceptionListeners and simply passes exceptions on to
them. ExceptionPasser allows composition of
ExceptionListeners.

Figure 2-10 illustrates the flow through a resource tree when
cleanup code throws exceptions. This example assumes the
default ListenLevel of CHECKED. Starting with a release() call
made to the root of the tree, N1, the release() call propagates
down the tree. After a node’s children have been released, its
resource-specific cleanup() method executes. Note that nodes N4
and N5 both throw exceptions during cleanup. The IOException
thrown by N4 is a checked exception, and so is passed to the
ExceptionListener for handling. The NullPointerException
thrown by N5 is an unchecked exception, and so is not passed to
the ExceptionListener. Instead it propagates up the tree to the
original caller. This does not affect the correct release of other
resources.

01 public class ManagedInputStream
02 extends FilterInputStream {
03 public final ResourceNode node;
04 public ManagedInputStream(
05 InputStream input,
06 ResourceNode parent)
07 throws NullPointerException {
08 super(input);
09 resource = new ResourceNode (this,
10 parent) {
11 public void cleanup()
12 throws Exception {
13 ManagedInputStream
14 .super.close();
15 }
16 };
17 }
18 public void close() {
19 node.release();
20 }
21 }

Figure 2-9. A ManagedInputStream implementation

01 public interface ExceptionListener {
02 public void exceptionThrown(ResourceNode n,
03 Throwable thr);
04 }

119

An ExceptionListener cannot rethrow any exceptions it receives,
nor throw any exceptions of its own. Any exceptions thrown by
ExceptionListeners are discarded.

Four release() methods in all are provided. The ListenLevel and
ExceptionListener can be independently specified or left to
defaults. This allows as little or as much control as a programmer
needs.

public final int release()
public final int release(ListenLevel level)
public final int release(ExceptionListener listener)
public final int release(ExceptionListener listener,
 ListenLevel level)

The release() methods return the number of handled exceptions
which occurred during release, including exceptions in child
resources. This total includes only those exceptions which were
passed to an ExceptionListener. Any exceptions that were not
handled – those which did not match the ListenLevel – are not
included in this total.

When a ListenLevel is provided as an argument to a release() call,
it will be propagated down the tree with the release() call. If it is
unspecified, the default will be used. Likewise, if an
ExceptionListener is provided, it will be propagated down the
tree. In the event that an ExceptionListener is not explicitly
provided as an argument, the default ExceptionListener will be
used. If the default has also not been set, then the ancestors of the
ResourceNode will be searched for a default ExceptionListener,
starting with the parent, and proceeding toward the root, where
the default is guaranteed to have been set by the constructor. The
closest ExceptionListener will be used.

2.4 Concurrency Concerns
The ResourceNode class is threadsafe. Any thread may create or
release resources in any resource tree without the need for explicit
synchronization. The ResourceNode class also provides a locking
object for times when manual synchronization is necessary. If,
for example, a need to explore the tree programmatically were to
arise, it would be simple to safely navigate the tree in a
synchronized block, as shown in Figure 2-11. The
synchronization object is retrieved by calling getMonitor() on a
ResourceNode. The monitor object is shared by the whole tree
(but not among all trees), so synchronizing on the monitor object
locks the entire tree. Such locking is safe, but inefficient. An
alternative is proposed in future work.

This thread safety allows resource trees to be shared among
threads. This has some resource profiling benefits. More
importantly, this allows the resource tree metaphor to extend to
complex, multi-threaded programs.

Suppose an application with multiple threads wishes to share a
single tree among many threads. Whereas this would typically
involve much manual synchronization, since concurrency is built
into the ResourceNode class, this becomes straightforward. The
shared tree can be partitioned into a number of logical subtrees.
Each thread can have its own subtree, with an additional subtree
shared by all threads. More complex schemes with subtrees
shared by a subset of threads are also possible.

Figure 2-10. Propagation of release() calls with guaranteed cleanup

01 void lookAtChildren(ResourceNode parent) {
02 synchronized (parent.getMonitor()) {
03 if (parent.isReleased()) return;
04 for (ResourceNode child : parent) {
05 // use/investigate child node
06 }
07 }
08 }

Figure 2-11. Navigating a ResourceNode’s children

N1

N2 N3

N4 N5

1. release

2.
rel

ea
se

3.
rel

ea
se

9. release

14. release

4.
cle

an
up

12
. c

lea
nu

p

8.
ret

urn

10. cleanup

11. throw ‡

13
. th

row
 ‡

16. return

15. cleanup

17. cleanup

18. throw ‡

ExceptionListener
5. throw †

6. handle †

7. return

† IOException
‡ NullPointerException

120

2.5 Automatic Resource Cleanup
When properly used, Furm opens up new possibilities for resource
auditing. Furm provides a WatchDog class for monitoring threads
for proper resource cleanup. A WatchDog is given a thread to
guard, and a reference to the root of the resource tree (or subtree)
being used by that thread. Whenever that thread dies, the
WatchDog can take some action on any resources abandoned by
that thread. This can be used as a safeguard to prevent resource
leaks at runtime. The WatchDog can also be used as a resource
profiler. If resource leaks are suspected or known to exist, every
thread in a program can be assigned a WatchDog for tracing
purposes. As threads die, any resources they leave open can be
inspected. Information about those resources can aid in tracking
down the leak.

There are two ways to control what action will take place when a
thread dies. The first is to provide a ThreadListener. When a
WatchDog observes that its thread has died, it will call the
threadDied() method on the ThreadListener, much the way a
ResourceNode calls exceptionThrown() on an ExceptionListener.
To specify a ThreadListener, simply pass it to the WatchDog
constructor. The second way to control what action the
WatchDog should take is to extend the WatchDog class and
override its threadDied() method. The WatchDog class itself
implements the ThreadListener interface, and so has the
threadDied() method.5

WatchDog has two WatchLevels. The WatchLevel determines
what forms of thread termination will be monitored. The two
WatchLevels are exceptional (declared as EXCEPTIONAL_END)
and general (declared as ANY_END). If the WatchLevel is
exceptional, then the threadDied() method will only be called if
the thread dies by throwing an uncaught exception. If the
WatchLevel is general, then the threadDied() method will be
called regardless of the circumstances of thread termination.

As an example of how to use the WatchDog class, we present a
small, “leaky” method which uses Furm. This method simply
creates a socket connection and sends a file to the output stream
of the socket. Figure 2-12 contains its full implementation.

5 This model follows that of the Thread class, which has a

constructor that accepts a Runnable object, but also implements
the Runnable interface.

Notice that the file transfer code is wrapped in a try-catch block
which catches IOException (lines 3-14). The release() call is
made on line 15. While this code will work in cases when no
errors occur or when an IOException is thrown, if the File
reference passed into the method is null, a NullPointerException
will occur on line 6, and the release() call will never be made.
The Socket and socket output stream will be leaked. The correct
solution is to add a finally handler, but here this has not been
done. If the code were part of a very large project, it may be
reasonable to assume that no one has discovered the bug.

Let us assume that the WatchDog class is being used to hunt for a
suspected bug, or that the WatchDog is simply being used as an
additional safeguard in development code. To this end, the
Examiner class (Figure 2-13) is added. Lines 21 and 22 create a
WatchDog to monitor the thread. A WatchDog can be created to
watch any thread. In this case, it is created to monitor the current
thread. The Examiner class used here implements ThreadListener
and performs two tasks in the threadDied() callback. First, it
traverses the tree to discover any unreleased resources and prints
that information. Second, it releases the tree.

An Examiner object is passed to the WatchDog constructor, and
the general WatchLevel is specified. When the current thread
dies, whether normally or as the result of an uncaught exception,
the Examiner object will inspect the thread’s resource tree. This
simple auditing may reveal the problem with the sendFile()
method. The WatchDog class is not a replacement for correct
resource management, but it can make it simpler to track down
cases of incorrect behavior.

One major benefit of the WatchDog class is that its use does not
require watched threads to be aware of its presence. In fact, it is
entirely possible for multiple WatchDogs to watch the same
thread, each oblivious to the others, and the thread itself blind to
them all. The main restriction on the use of the WatchDog class
is that it requires that any thread monitored by a WatchDog place
its resources in a resource tree. The WatchDog class cannot
monitor resources which are not in a resource tree. Watched
threads can ignore the WatchDogs, but must utilize Furm resource
trees.

01 class Examiner implements ThreadListener {
02 private void printRes(ResourceNode res) {
03 Class c = res.getResource().getClass()
04 System.out.println(c.getCanonicalName());
05 for (ResourceNode rn : res) {
06 printResource(rn);
07 }
08 }
09 public void threadDied(Thread t,
10 ResourceNode node,
11 Throwable e) {
12 synchronized(node.getMonitor()) {
13 if (!node.isReleased()) {
14 printRes(node);
15 node.release();
16 }
17 }
18 }
19 }
20 // ...
21 new WatchDog(Thread.currentThread(),group,
22 new Examiner(),WatchLevel.ANY_END);

Figure 2-13. Utilizing WatchDog

01 public void sendFile(ResourceNode parent,
02 File f) {
03 try {
04 ManagedSocket s = new //...
05 FileInputStream in =
06 new ManagedFileInputStream(f,g);
07 ManagedOutputStream out =
08 s.getOutputStream();
09 byte[] buf = new byte[4096];
10 int len;
11 while ((len = in.read(buf)) >= 0) {
12 out.write(buf, 0, len);
13 }
14 } catch (IOException exc) {}
15 parent.release();
16 }

Figure 2-12. A “leaky” method

121

3. FUTURE WORK
The ability to split and merge resource trees is currently lacking
in Furm. It might be useful to be able to split a resource tree
when spawning a worker thread. Likewise, it could be useful to
be able to merge resource trees when a thread finishes. Splitting
and merging resource trees, if done correctly, could be an
effective way to transfer resource management responsibility
around in a program. Tree merging, in combination with a
WatchDog, would allow a terminated thread’s resource tree to be
merged into the tree of a still-live thread. This would allow one
thread to take responsibility for another thread’s resources
without the need to maintain two separate trees, as is currently
required.
An additional area for future work involves optimization of the
tree locking protocol. The current locking scheme simply locks
the entire tree. This level of locking is conservative for
guaranteeing safe concurrent access. More efficient and finer-
grained locking protocols are known [11] which may be adaptable
to Furm.

4. CONCLUSION
Because garbage collection and finalization are poorly suited to
the task of releasing resources, the task falls on programmers to
manually manage resource releases. This, combined with the
complexities of exception-handling in Java, causes significant
difficulty in the production and maintenance of correct
applications. Any resource not guarded by a try-finally block can
potentially be leaked if an unchecked exception occurs. In cases
involving multiple resources, these try-finally blocks must be
nested, with one level of nesting introduced for each resource.
Complicating things further is that the Java API does not utilize a
consistent interface for releasing resources, instead leaving each
resource class to define its own methods for release.
The resource tree model introduced by Furm eliminates the
inconsistent interfaces presented by Java. All resources are
treated identically in the context of the tree, and so the method for
releasing resources is consistent. Resource trees also represent
resource dependencies, in which one resource is dependent on
another. It is possible to safely prune entire trees with a single
explicit release. It has been shown that Furm makes it possible to
safely and correctly propagate release calls downward through a
resource tree, while providing guarantees as strong as those of
nested try-finally blocks.
The code overhead of explicit resource management in Java is
high. When measured in lines-of-code using typical Java coding
conventions, that overhead has been shown to be five lines of
exception-handling to each line of resource cleanup. In programs
utilizing numerous resources, that overhead can easily dominate
the code, obscuring the primary purpose and logic of the
application. Utilizing Furm can minimize this complexity. A
single call can release an entire resource tree. By moving
exception-handling logic into dedicated ExceptionListener
objects, Furm also separates exception-handling code from the
normal flow of code, making good on one of exception-handling’s
original promises.

5. REFERENCES
[1] Alexandrescu, A., and Marginean, P. Simplify Your

Exception-Safe Code – Forever. C/C++ Users Journal,
October 2000. http://www.ddj.com/dept/cpp/184403758
(accessed April 2006).

[2] Apache Tomcat Project. http://tomcat.apache.org/
(accessed April 2006).

[3] Bloch, J. Effective Java. Addison-Wesley, 2001.
[4] Campione, M., Walrath, K., and Huml, A. The Java

Tutorial. 2005. http://java.sun.com/docs/books/tutorial/
networking/index.html (accessed April 2006).

[5] Chen, R. Cleaner, more elegant, and harder to
recognize. Jan. 14, 2005. http://blogs.msdn.com/
oldnewthing/archive/2005/01/14/352949.aspx (accessed
April 2006).

[6] Czajkowski, G., Hahn, S., Skinner, G., Soper, P., and
Bryce, C. A resource management interface for the Java
platform. Software: Practice and Experience, 2005, pp
123-157.

[7] ECMA. Standard ECMA-334: C# Language
Specification, 3rd Ed. December 2002.
http://www.ecma-international.org/publications/files/
ECMA-ST/Ecma-334.pdf (accessed April 2006).

[8] Gosling, J., Joy, B., Steele G., and Bracha, G. The Java
Language Specification, 3rd Ed. Addison-Wesley,
2005.

[9] Halloway, S. JDC Tech Tips: January 24, 2000.
http://java.sun.com/developer/TechTips/2000/tt0124.ht
ml (accessed April 2006).

[10] Java Bug: 4484411, stack overflow error closing a
socket input stream. 2001. http://bugs.sun.com/
bugdatabase/view_bug.do?bug_id=4484411 (accessed
April 2006).

[11] Lanin, V. and Shasha, D. Tree Locking on Changing
Trees. Technical Report 503, 1990, New York
University.

[12] Park, D. A. Simplifying Resource Management in Java.
Technical Report 2006-05. Master’s Thesis, University
of Mississippi, May 2006.

[13] Spolsky, J. How Microsoft Lost the API War. June 13,
2004. http://www.joelonsoftware.com/articles/
APIWar.html (accessed April 2006).

[14] Spolsky, J. Making Wrong Code Look Wrong. May 11,
2005. http://www.joelonsoftware.com/articles/
Wrong.html (accessed April 2006).

[15] Stroustrup, B. The C++ Programming Language, 3rd
Ed. Addison-Wesley, 1997.

[16] Sun Microsystems. Java 2 Platform Standard Edition
5.0 API Specification. 2004. http://java.sun.com/j2se/
1.5.0/docs/api/index.html (accessed April 2006).

[17] Weimer, W. and Necula, G. Finding and Preventing
Run-Time Error Handling Mistakes. Proc. of 19th ACM
OOPSLA, pp 419-431, Vancouver, British Columbia,
Canada, October 2004.

122

Session E
Software Engineering

123

124

Experiences with the Development of a Reverse
Engineering Tool for UML Sequence Diagrams:

A Case Study in Modern Java Development
Matthias Merdes

EML Research gGmbH
Villa Bosch

Schloss-Wolfsbrunnenweg 33
D-69118 Heidelberg, Germany

<firstname.lastname>@eml-
r.villa-bosch.de

 Dirk Dorsch
EML Research gGmbH

Villa Bosch
Schloss-Wolfsbrunnenweg 33
D-69118 Heidelberg, Germany

<firstname.lastname>@eml-
r.villa-bosch.de

ABSTRACT
The development of a tool for reconstructing UML sequence
diagrams from executing Java programs is a challenging task. We
implemented such a tool designed to analyze any kind of Java
program. Its implementation relies heavily on several advanced
features of the Java platform. Although there are a number of
research projects in this area usually little information on
implementation-related questions or the rationale behind
implementation decisions is provided. In this paper we present a
thorough study of technological options for the relevant concerns
in such a system. The various options are explained and the trade-
offs involved are analyzed. We focus on practical aspects of data
collection, data representation and meta-model, visualization,
editing, and export concerns. Apart from analyzing the available
options, we report our own experience in developing a prototype
of such a tool in this study. It is of special interest to investigate
systematically in what ways the Java platform facilitates (or
hinders) the construction of the described reverse engineering
tool.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques –
object-oriented design methods, D.2.7 [Software Engineering]:
Distribution, Maintenance, and Enhancement – reverse
engineering, documentation.

General Terms
Algorithms, Documentation, Design, Experimentation

Keywords
UML models, sequence diagrams, reverse engineering, Java
technology

1. INTRODUCTION
Due to the increasing size and complexity of software
applications the understanding of their structure and behavior has
become more and more important. Proper specification and
design activities are known to be important in producing
understandable software. If such specification and design artifacts
are unavailable or of poor quality reverse engineering
technologies can significantly improve understanding of the
design of an existing deployed software system and in general
support debugging and maintenance. While modern CASE tools
usually support the reconstruction of static structures, the reverse
engineering of dynamic behavior is still a topic of on-going
research [20], [25].

The development of a tool supporting the reconstruction of the
behavior of a running software system must address the major
areas of data collection from a (running) system, representation of
this data in a suitable meta-model, export of the meta-model’s
information or its graphical representation as well as post-
processing and visualization aspects. These core areas and their
mutual dependencies are shown in Figure 1. Clearly, all
conceptual components depend on the meta-model. In addition, a
visualization mechanism can be based on a suitable export format
as discussed in sections 4 and 5. While this figure illustrates the
main conceptual components of our sequence diagram
reengineering tool a symbolic view of its primary use can be seen
in Figure 2: The main purpose of such a tool is to provide a
mapping from a Java program to a UML sequence diagram. The
various relevant options will be discussed in detail in the
following sections. Recurrent technical topics include meta-model
engineering, aspect-oriented technologies, XML technologies –
especially in the areas of serialization and transformation – and
vector graphics.

Meta-Model

ExportData Collection Visualization

Meta-Model

ExportData Collection Visualization

Figure 1. Conceptual components with dependencies

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
PPPJ 2006, August 30 – September 1, 2006, Mannheim, Germany.
Copyright 2006 ACM …$5.00.

125

UML sequence diagrams are among the most widely used
diagrams of the Unified Model Language (UML) [32]. The UML
is now considered the lingua franca of software modeling
supporting both structural (static) and behavioral (dynamic)
models and their representation as diagrams. Behavioral diagrams
include activity, communication, and sequence diagrams. Such
sequence diagrams are a popular form to illustrate participants of
an interaction and the messages between these participants. They
are widely used in specification documents and testing activities
[24] as well as in the scientific and technical literature on software
engineering.

Sequence diagrams [32] are composed of a few basic and a
number of more advanced elements. The basic ingredients of a
sequence diagram are illustrated in a very simple example in the
right part of Figure 2 along with their respective counterparts in
the Java source code on the left-hand side. In such a diagram
participants are shown along the horizontal dimension of the
diagram as so-called ‘life-lines’. In the example, the two
participants are ‘Editor’ and ‘Diagram’. These life-lines are
connected by arrows symbolizing the messages exchanged
between participants. The messages are ordered chronologically
along the vertical dimension. In the example, two messages from
Editor to Diagram are depicted, namely the constructor message
‘new Diagram()’ and the ‘open()’ message. More advanced
concepts (not shown in the figure) such as modeling alternatives,
loops, and concurrent behavior, can be factored out into so-called
‘fragments’ for modularization and better readability.

Figure 2. Behavior as Java source code and sequence diagram

The reconstruction of the behavior of a software system has been
studied extensively both in the static case (from source or byte
code) [36], [37], [38] and in the dynamic case (from tracing
running systems) [6], [33], [34]. [42] and [7] focus more on

interaction with and understanding of sequence diagrams,
respectively. An overview of approaches is provided by [25] and
[20]. Despite this considerable amount of work there is often little
information on implementation-centric questions or the rationale
behind implementation decisions. Our study is intended to remedy
this lack of such a systematic investigation and is motivated by
our experiences in implementing our own sequence diagram
reengineering tool. This paper has two main purposes. Firstly, we
describe and analyze the possible technological options for the
required areas. We also report the lessons learned by our
implementation. In this way, the more abstract analysis based on
theoretical considerations and the technical and scientific
literature is verified and complemented by our own practical
experience.

The remainder of this paper is organized as follows. Section 2
explores methods to collect relevant data and section 3 describes
the choices for representation of this data using a suitable meta-
model. We describe options for visualization and model or
graphics export in section 4 and 5, respectively.

2. Data Collection
In this section we will discuss technologies for retrieving
information from Java software systems with the purpose of
generating instances of a meta-model for UML sequence
diagrams. We focus on dynamic (or execution-time) methods but
cover static (or development-time) methods as well for the sake of
completeness. Static methods gather information from a non-
running, (source or byte) code-represented system. Dynamic
methods on the other hand record the interaction by observing a
system in execution. Data collection requires a mechanism for
filtering relevant execution-time events which supports a fine-
grained selection of method invocations.

2.1 Development-time Methods

2.1.1 Source Code Based
Using the source code for collecting information about the
interaction within an application will have at least one
disadvantage: one must have access to the source code.
Nevertheless source code analysis is a common practice in the
reverse engineering of software systems and supported by most of
the available modeling tools. It should be mentioned that the
analysis of source code will provide satisfactory results for static
diagrams (e.g., class diagrams), but the suitability for the dynamic
behavior of an application is limited. If one is interested in a
sequence diagram in the form of a common forward engineered
diagram (i.e., a visualization of all possible branches of the
control flow in the so-called CombinedFragment [32] of the
UML), source code analysis will fulfill this requirement. In [37]
Rountev, Volgin, and Reddoch introduce an algorithm which
maps the control flow to these CombinedFragments. If the
intention of the reverse engineering is to visualize the actual
interaction any approach of static code analysis is doomed to fail,
since it is inherently not possible to completely deduce the state
of a system in execution by examining the source code only
without actually running the system. Obvious problems include
conditional behavior, late binding, and sensor or interactive user
input.

126

2.1.2 Byte Code Based
The static analysis of code can also be performed with compiled
code, i.e., byte code in the case of Java. Such an analysis of byte
code basically shares most of the (dis-) advantages of the source
code based approach, but it can be applied to compiled systems.
One advantage is the fact that processing the byte code must be
performed after compilation, separate from the source code, and
thus leaves the source code unchanged. This prevents mixing of
concerns (application logic and tracing concerns) in the source
code and connected maintenance problems.

2.2 Execution-time Methods
The purpose of the dynamic approaches is to record the effective
flow of control, or more precisely, the sequence of interactions, of
a (deployed) system’s execution. Any dynamic approach results
in a model that represents the actual branches of the application’s
control flow. In this section we will discuss technologies based on
a temporary interception of the program’s execution. Basically,
we differentiate between the instrumentation of the application
itself (i.e., its code) and the instrumentation of its runtime
environment.

An overview of the basic workflow from the Java sources to the
byte code and on to the UML model and its visualization can be
seen in Figure 3. This figure illustrates the more expressive
approach of generating the model from dynamic runtime trace
information, compared to the static approach described in section
2.1, which relies on source code only.

source code dynamic model

byte code

111000 100101 10

111000 100101 10

111000 100101 10

111000 100101 10

execution

source codesource code dynamic modeldynamic model

byte code

111000 100101 10

111000 100101 10

111000 100101 10

111000 100101 10

byte code

111000 100101 10

111000 100101 10

111000 100101 10

111000 100101 10

111000 100101 10

111000 100101 10

111000 100101 10

111000 100101 10

executionexecution

Figure 3. Symbolic steps from source code to sequence
diagram model for a Java program (dynamic analysis)

2.2.1 Program Instrumentation

2.2.1.1 Source Code Based
Assuming access to the source code is provided it can be
instrumented in a number of ways. Two obvious possibilities are:

1. Modify the source code manually; this is both
troublesome and error-prone.

2. Take advantage of aspect-orientation and compile the
code with suitable aspects.

Both will finally result in modified source code either explicitly
or transparently. Support for filtering can be achieved by a
(manual or automatic) manipulation of selected source code
fragments. Another related approach is the common logging
practice which can be seen as source code manipulation as well.
Such an analysis of log-files is discussed in [17].

2.2.1.2 Byte Code Based
Instrumenting the byte code instead of the source code has one
advantage: the source code is not manipulated in any way. Again,
one could take advantage of aspect-orientation and recompile the
byte code with some aspects [5]. In most cases one will have
access to the byte code in the form of Java archives (jar files) or
raw class files; otherwise this approach will fail. Again, as in the
development time case explained in section 2.1.2, byte code
manipulation is superior to source code manipulation because of
maintenance and versioning issues. In the following section
another aspect-oriented approach will be discussed.

2.2.2 Instrumentation of the Runtime Environment
For Java applications the instrumentation of the runtime
environment means the instrumentation of the Java Virtual
Machine (JVM). When discussing JVM instrumentation the
theoretical possibility to develop a customized JVM should be
mentioned. Due to the large effort of implementing a new or even
modifying an existing virtual machine we won’t discuss this
approach any further. We prefer to introduce technologies based
on virtual machine agents that could be applied to existing JVM
implementations. In principle, a custom agent could be developed
against the new Java Virtual Machine Tool Interface (JVMTI),
which is part of J2SE 5.0. Gadget [16] is an example using an
older version of this API for the purpose of extracting the
dynamic structure of Java applications. Using the AspectJ or
Java-Debug-Interface (JDI) agents as described below allows to
focus on a higher level of abstraction compared to the low-level
tool interface programming.

2.2.2.1 Java Debug Interface (JDI)
The JDI is part of the Java Platform Debugger Architecture
(JPDA) [45]. The JPDA defines three interfaces, namely the Java
Virtual Machine Tool Interface (JVMTI, formerly the Java
Virtual Machine Debug Interface, JVMDI) which defines the
services a virtual machine must provide for debugging purpose,
the Java Debug Wire Protocol (JDWP) which defines a protocol
allowing the use of different VM implementations and platforms
as well as remote debugging, and last but not least the JDI, the
Java interface implementation for accessing the JVMTI over
JDWP. The debuggee (in our case the observed program) is
launched with the JDWP agent, this allows the debugger (in our
case the observing application) to receive events from the
debuggee by using JDI. For the purpose of reengineering the
system’s behavior we are mainly interested in events of method
executions. As shown in JAVAVIS [33] the JPDA could be
successfully used for the purpose of dynamic reverse engineering.
One big advantage of the JPDA is the built-in remote accessibility
of the observed application. The event registration facility, which
can be seen as a filtering mechanism, appears to be too coarse
grained, since the class filter is the finest level of granularity.
Nevertheless, the JPDA permits the development of reverse
engineering tools for both, structural (static) models, such as class

127

diagrams, and behavioral (dynamic) models, such as sequence
diagrams.

2.2.2.2 AspectJ Load Time Weaving
Usually aspect-oriented programming is associated with
recompiling the source code or byte code with aspects (a.k.a.
weaving), as mentioned in section 2.2.1. Starting with version 1.1,
the AspectJ technology also offers the possibility of load-time-
weaving (LTW) where the defined aspects are woven into the
byte code at the time they are loaded by the class loader of the
Java virtual machine [12]. Hence AspectJ offers the possibility to
trace a deployed system without modifying either source code or
byte code.

An extensive discussion on how to use AspectJ for the purpose of
dynamic reverse engineering of system behavior can be found in
[5] and is beyond the scope of this paper. In this section we
therefore restrict ourselves to the discussion of the basic concepts
of AspectJ needed for this purpose. For detailed information about
aspect-orientation and especially AspectJ refer to [15], [23], and
[12]. Recent research results and directions can be found in [13].

Generally, aspect-oriented approaches support the modularization
of cross-cutting concerns with aspects and weaving specifications.
In the case of AspectJ, these concepts are realized by aspects
(comparable to classes), advice (comparable to methods) and
joinpoints specified by pointcut descriptors. An advice declares
what to do before (before advice), after (after advice) or instead
of (around advice) an existing behavior addressed by a specific
joinpoint. The joinpoint exactly defines a point within the code
execution. For retrieving the information needed to model a
sequence diagram it is sufficient to take advantage of the
predefined call joinpoints (representing a method call) and
execution joinpoints (representing a method execution).

The definition of a joinpoint also offers the possibility of filtering.
A joinpoint can address packages, classes, selected methods or
work in an even more fine-grained manner. So combining those
joinpoints and the arbitrary granularity of the filter mechanism
allows for a flexible extraction of the information on the
interactions in a running system.

2.3 Comparative Assessment
As presented in the preceding sections, there are numerous ways
to implement an execution-tracing data collection mechanism.
Discriminating dimensions include manual vs. automatic
instrumentation of source or byte code, static vs. dynamic
analysis, remote accessibility and performance issues.

If the target environment allows the combined use of version 5 of
the Java platform and the latest release of the AspectJ distribution
(AspectJ 5) the elegance and non-intrusiveness of the load-time-
weaving mechanism in combination with the low performance
impact and the expressiveness and flexibility of the join-point-
based filter mechanism make the aspect-oriented approach the
best solution. This approach is superior in all relevant dimensions,
especially compared to the manual integration of tracing and
application code due to associated maintenance problems, and
compared to a custom JVM or custom JVM agents due to their
inherent complexity and huge effort. Hence in our tool we use an
AspectJ-based data collection mechanism but we have also
implemented and evaluated a prototypical JDI-based data

collection mechanism. Such a solution, however, requires a
customized filtering extension to achieve an appropriate filtering
granularity and suffers from performance problems, especially in
the presence of graphical user interfaces.

3. Meta-Model and Data Representation
A central topic which influences other areas, e.g., visualization,
editing, or export, is the question of how the recorded data are
represented internally. This is best achieved by storing the data in
instances of a suitable meta-model. As a sequence diagram
generation tool collects information on the execution of a program
the meta-model must be capable of representing such run-time
trace data.

Of course, only a certain subset of a typical complete meta-model
will be needed for representing the relevant data. As the execution
of a program in an object-oriented language is realized by method
calls between sender and receiver with arguments, return types,
and possibly exceptions, these are the required meta-model
elements. Therefore a compatible meta-model must be employed
rather than the actual meta-model of the programming language.
Specifically, for an object-oriented programming language like
Java a generalized object-oriented meta-model can be used, such
as the OMG meta-model, the Meta-Object Facility (MOF) [30], to
which other languages than Java can be mapped as well. Meta-
models are at the core of recent research and standardization
activities in the area of the OMG’s Model Driven Architecture
(MDA) [28], [39] and, more generally, Model Driven
Development (MDD) which encompasses approaches beyond the
OMG standards, such as Domain Specific Languages (DSLs) [19]
and other non UML-based efforts.

3.1 Meta-Models from MDD Tools
MDD technologies usually generate executable software from
instances of meta-models [46]. That implies that tools for such
technologies need a representation of the respective meta-model.
An example is the free openArchitectureWare Framework (OAW)
[48] which includes a meta-model implementation in Java. One of
the advantages is that exporting the meta-model to various
formats is supported including a number of XMI dialects. The
decision for the use of such a meta-model is a trade-off between
the advantages of reusing a stable quality implementation and the
overhead involved with a much larger meta-model than needed
and a certain amount of inflexibility due to the external
dependency (e.g., reliance on third-party bug fixing or version
schedules).

3.2 UML2 Meta-Model
Since the UML2 specification [32] defines 13 types of diagrams
and a large number of classes it would be quite expensive to
implement the full UML2 meta-model from scratch. The
EclipseUML2 project [9] provides a complete implementation of
the UML2 meta-model. It is based on the Eclipse Modeling
Framework (EMF) and its meta-model Ecore [10]. While the
EMF was designed as a modeling framework and code generation
utility the objectives of EclipseUML2 are to provide an
implementation of the UML meta-model to support the
development of UML based modeling tools. EclipseUML2 and
the EMF also provide support for the XML Metadata Interchange
language (XMI) [31] export of the model. This built-in XMI

128

serialization is a big advantage for the model exchange as
described in section 5.1.1. Despite those advantages the usage of
the UML2 meta-model for representing only sequence diagrams
could cause some cognitive overhead as most parts of the UML
structure won’t be needed.

3.3 Custom Meta-Model
The overhead produced by using the complete UML2 meta-model
leads to the idea of developing a light-weight custom meta-model.
As mentioned in the introduction one can reduce the model to a
few basic components which will result in a very light-weight
design. However, one has to face the drawbacks of developing an
export mechanism in addition to persistence and visualization
mechanisms.

3.4 Comparative Assessment
As the central abstraction in a sequence diagram reverse
engineering tool is the data about the recorded sequences from
actual program runs, its representation in instances of a meta-
model is a crucial question. There are two basic options to choose
from: reusing an external meta-model or implementing a custom
meta-model. The reuse of an external meta-model offers the well-
known substantial advantages of software reuse [21], such as
implementation cost savings and proven implementation quality.
From a Java perspective both options are equally viable: Third-
party meta-model implementations are very often based on Java
technology and Java is also well suited for a custom
implementation. In the given situation where only a very small
subset of the meta-model is needed and the cost of a custom
implementation is low we opted for the simplicity and flexibility
of a custom implementation.

4. Visualization and Model Post-Processing
One central requirement for a UML2 sequence diagram reverse
engineering tool is the visualization of the recorded data, that is,
some form of transformation or mapping from the meta-model
instances to a visual representation. Indeed, as a human observer
interacts with such models primarily in their visual form the
graphical display as a sequence diagram can be considered the
main purpose of such a tool. In the following sections we will
discuss the possibilities of generating diagrams after recording the
tracing data and analyze a number of possible methods. We also
describe interactive rendering during the data recording.

4.1 Third-Party Batch Visualization
Methods based on third-party tools visualize the collected model
information by exporting to viewable formats or intermediate
stages of such formats. Generally, we can differentiate between
using common graphics formats (such as PNG, JPG etc.) and
displaying the result in third party UML modeling tools.

The main drawback of using static graphics formats is the lack of
adequate diagram interaction possibilities. As bitmap formats
offer the most simple export of a visualized diagram we will
briefly explain a lightweight technology for generating various
kinds of graphics output. The free tool UMLGraph is an example
of such a technology. It allows the specification of a sequence
diagram in a declarative way [40], [41] using pic macros. With
the GNU plotutils program pic2plot [18] these specifications can
be transformed into various graphics formats (such as PNG, SVG,

PostScript, and many more). An approach for integrating this
technology into a tool is the usage of a template engine (e.g.,
Apache Jakarta Velocity [2]) for transforming the instances of the
meta-model to the pic syntax and applying pic2plot to the result.
Main advantages include the implicit use of a high-quality layout
engine and the broad graphics format support. Generally, all
methods described in section 5.2 that lead to graphics export can
be used for such batch visualizations.

4.2 Real-Time Visualization
It is an interesting option to perform model visualization during
the data collection process. Especially for slower running or GUI
input driven programs this can be a useful way of observing the
behavior of the program in real time during the recording process.
In [33] a similar approach is taken and combined with explicit
means to trigger the steps in the program execution resulting in a
special kind of visual debugger.

A number of implementation choices exist, especially the
development of a custom viewer and an SVG-based solution.
Although SVG is better known as a vector format for static
graphics it also supports the visualization of time-dependent data
in the form of animations [50]. For this purpose it is possible to
programmatically add nodes to the SVG tree to reflect the
temporal evolution of the diagram. In principle, the same two
possible SVG-based approaches as those detailed in section 4.3.1
can be used.

4.3 Interactive Visualization and Editing
Viewing a non-modifiable diagram can already be useful. For
diagrams constructed manually with a design tool this may be
sufficient because these diagrams are usually not overly large as
the content is under direct and explicit control of the modeler. If,
however, the diagram is generated automatically by collecting
data from an executing program it can quickly become very large.
This may be caused by too many participants (lifelines) in the
diagram or by recording too many interactions over time or by
showing too much or unwanted detail. As pointed out by Sharp
and Rountev [42] such a large diagram quickly becomes useless
to a human user and thus a possibility to interactively explore the
diagram is needed. Such an interactive viewing can in principle be
extended to support the editing and modification of a diagram for
further export. We describe three possibilities for realizing an
interactive interface in the following sections.

4.3.1 SVG Based Solution
A viewer for the interactive exploration and possibly
manipulation of sequence diagrams can be realized with Scalable
Vector Graphics (SVG) [50]. We describe this W3C standard-
based vector graphics format in more detail in section 5.2.2. The
two principle possibilities are:

1. SVG combined with EcmaScript

2. Extension of an open source SVG viewer

In the first case the model is exported to an SVG image and
combined with an embedded EcmaScript program for interaction.
The scripting language EcmaScript [8] is the standardized version
of JavaScript. While the latter was originally introduced by
Netscape for client-side manipulation of web pages and the
browser, EcmaScript is a general-purpose scripting language. It is

129

the official scripting language for SVG viewers with standardized
language bindings [52]. EcmaScript provides mouse event
handling and enables the manipulation of SVG elements,
attributes, and text values through the SVG Document Object
Model (DOM). Nodes can be added and deleted and values
modified. As SVG elements can be grouped during the export
process and attributes can be inherited it becomes feasible to
manipulate a whole UML sequence diagram element with a single
attribute change in the parent group. It is beneficial that such an
EcmaScript-based interactive explorer can be embedded into (or
referenced from) the SVG file. Thus the image can be explored
interactively in every SVG-compatible viewer including web
browsers equipped with an SVG plug-in. Disadvantages of such a
scripting language compared to a high-level object-oriented
programming language like Java include limitations of the core
language libraries, as well as fewer third-party libraries and
generally comparatively poor (though slowly improving) tool
support for EcmaScript development.

As an alternative an interactive viewer can be based on a Java
implementation of an SVG library, such as the Apache Batik
Toolkit [3] which includes parser, viewer, and an implementation
of the Java language bindings according to the standard [51]. This
toolkit is an open-source product which can be extended to
support custom behavior either by modifying the existing viewer
or by adding event-handlers with DOM-manipulating custom
behavior to the view leaving the core viewer unmodified. While
the first possibility as described in the preceding section is more
powerful it requires changes to the original code which is a
potential source of maintenance problems. The second approach
is comparable to the one described for EcmaScript but with the
greater power of Java compared to EcmaScript. The required
manipulation of the DOM is possible but sometimes troublesome.
The main advantage of using the Java API of Batik is the
possibility to reuse a stable production-quality and free
implementation. This approach to extend the existing Batik SVG
viewer with custom interaction possibilities is described in [29]
for the display of interactive maps within the Geographic
Information Science (GIS) domain.

4.3.2 Custom Viewer
The most flexible approach is to build a custom viewer from
scratch in Java, or even based on diagramming libraries such as
the Graphical Editing Framework (GEF) [11] or JGraph [22]. The
advantage of this approach is that the structures in a sequence
diagram can be manipulated at the appropriate level of
abstraction. In the SVG implementation manipulation of sequence
diagram elements requires manipulation of the geometric
representation of these elements. In that case the programmatic
interaction is at the wrong level of abstraction, namely at the level
of the graphical presentation and not at the level of the model
itself. With a custom viewer, however, the display can be
modified as response to user input by manipulating instances of
the meta-model and their graphical representation. This can be
achieved by adhering to the well-known Model-View-Controller
(MVC) paradigm [26], a combination of the Observer, Composite,
and Strategy design patterns [14] which promotes better design
and maintainability. In this design changes can be applied to the
model and automatically reflected in the graphical representation.

The drawback to this approach is primarily the fact that the
rendering has to be implemented from scratch using only the
basic abstractions such as points, lines, and text provided by the
programming language, in this case Java or a suitable library. For
a more complex interactive viewer, which may support hiding,
folding, deleting of structures, or zooming and other
manipulations, the greater expressiveness and power of Java
(compared to SVG-viewer embedded EcmaScript) clearly
outweighs this disadvantage. Additionally, if the model storage
and diagram visualization concerns are handled within the same
technology the overhead for and complexity of interfacing
between technology layers (e.g., between Java and
SVG/EcmaScript) can be saved. This is especially important for
advanced interaction features which require semantic information
stored in the model.

4.4 Comparative Assessment
In this section we described various sequence diagram
visualization options and technologies. These include batch, real-
time, and interactive visualization. While the batch mode provides
basic visualization support, the usefulness of a sequence diagram
reengineering and visualization tool is greatly increased if real-
time and interactive visualization are supported. Thus, our tool
also supports these two advanced options. The described SVG-
based approaches have mainly the following advantages:

• Reuse of the base rendering mechanism of commercial
(SVG browser plugins) or open source viewers (e.g.,
Batik)

• Ubiquitous deployability in the case of an EcmaScript-
based viewer embedded within the SVG document due
to readily available web browser plugins

However, these advantages are reduced by the cost and effort of
bridging the technology gap between the recording and model
storage technology (Java) and the viewing/rendering technology
(EcmaScript/SVG). Especially for the advanced interaction
features of our tool the flexibility of a custom viewer is crucial.
We therefore decided to implement a custom viewer based solely
on Java without an SVG-based implementation.

5. Export
In a model reengineering tool the model information is
represented at different levels including an abstract non-visual
level for the core model information and a more concrete level for
the visual representation in a graphical user interface. The
information at both levels has a distinct value for its respective
purpose and therefore a tool should be able to export this
information at both levels. Additionally, a third possibility is to
export an animated version of the model. Such an animation
combines the graphical representation with a temporal dimension
thus capturing some of the actual dynamics encountered during
the recording phase.

5.1 Model Information Export
Models are exported for a number of reasons including:

1. Import into other UML tools

130

2. As source for transformations to other
representations, such as content-only (e.g., graphics) or
textual model descriptions (e.g., DSLs)

3. As a persistence mechanism for the modeling
application if it allows some form of editing or
manipulation the state of which might need to be
persisted

Options for such an export are XMI export, JavaBeans XML
export, or custom (possibly binary) file formats. We describe each
option briefly in the following.

5.1.1 XML Metadata Interchange (XMI)
UML models can be represented and shared between modeling
tools and repositories with the help of the XMI standard defined
by the OMG [31]. This standard is quite comprehensive and has
evolved considerably to the current version. However, the
existence of various dialects of the standards (as evidenced by the
different model import filters of some modeling tools), constitutes
a major problem for interoperability.

5.1.2 XML Data-Binding Based Serialization
An alternative export of model information can be accomplished
by using the default XML serialization mechanism of the Java
language. The initial Java Beans serialization mechanism was a
binary one (see next section), which was and still is useful as a
short-time serialization mechanism, e.g., for RMI remoting. It is
very sensitive to versioning problems and unsuited to processing
by non-Java technologies. Due to these problems and to the
general growing importance of XML technologies, and in order to
support long-term persistence a new XML-based serialization
mechanism for Java Beans was added to the language in version
1.4 [44].

In light of the XMI interoperability problems the robustness,
availability, and simplicity of this serialization mechanism can
outweigh its limitations, namely the missing import capabilities
into third-party modeling tools, especially in connection with a
custom meta-model. The advantages of this serialization
mechanism are limited to certain situations where (light-weight)
models are created for documentation or ad-hoc communication
purposes. This mechanism should not be used for creating
persistent software lifecycle artifacts where model interchange is
crucial.

5.1.3 Custom File Format
A binary custom (with respect to the contents not to the general
structure) file format can be realized easily. To this end, the
mentioned binary Java serialization mechanism is applied to
modeling information represented in memory as an instance of the
meta-model. The usefulness of such an export is quite limited,
however, and can mainly be used as a proprietary persistence
format for the application itself. It is not well suited for further
processing or exchange with other tools, mainly due to its non-
self-describing syntactic nature (i.e., binary Java persistence
format) and missing meta-model (i.e., the static design of the
stored objects).

5.2 Graphics Export
For many users and usage scenarios the export of modeling
information is not needed; the export of images is sufficient. As
mentioned earlier sequence diagrams play an important role in
software specification and documentation artifacts as well as a
basis for test coverage criteria [4], [24]. For the use within these
documents and activities a visual form is needed and therefore a
possibility to export diagram representations of the model both as
static graphics and as animated diagrams.

5.2.1 Bitmaps
Bitmaps are the most simple of graphics formats and a large
number of formats exist. The most popular formats include
uncompressed bitmaps like Windows bitmaps (BMP) or TIFF
bitmaps and compressed (lossy or lossless) formats like GIF,
PNG, and JPEG. The main advantages of these formats include
their wide-spread use, graphics tool and native browser support.
The most popular formats like GIF and JPEG are also directly
supported in programming languages like Java without third-party
libraries or filters. Due to the discrete nature of the information
encoding the contents of such an image cannot in general be
scaled (or rotated by arbitrary angles) without lowering the image
quality. This is especially true for drawings and text which are the
constituents of sequence diagrams. Thus, bitmaps are primarily
useful for direct processing between applications (e.g., via
screenshots and clipboards), general screen-based use or medium-
quality printed documentation but not necessarily for high-quality
printing, such as books etc.

5.2.2 Vector Graphics
Vector graphics do not suffer from the inherent limitations of
bitmaps with respect to image manipulations such as zooming.
The structures in vector graphics images are not rastered but
represented by a more abstract description on the level of lines for
general drawings and letters for text. This enables reproduction at
arbitrary resolutions and in many cases also leads to a smaller file
size. Vector graphics formats exist in proprietary versions such as
Adobe’s PostScript (PS), Encapsulated PostScript (EPS), and PDF
formats or open-standards based versions, notably the W3C’s
Scalable Vector Graphics (SVG) [50]. They also can be
differentiated by their binary (PDF) or textual representation
(SVG, PS). Of these formats SVG is the only XML-based format.

Although the Adobe family of formats is proprietary it is very
widely used for electronic documents (PDF) [1] with the free
Adobe Acrobat viewer, printers (PS), and within the printing
industry. So sequence diagrams exported to PDF are immediately
useful for sharing, viewing, and printing. Although free [27] as
well as commercial programming libraries [35] for the generation
of these formats exist the known disadvantages (e.g., legal as well
as technical issues) of a proprietary format are most relevant for
the creation process. Also the level of abstraction in these libraries
varies and the API itself is not standardized. In principle, PDF can
be generated directly at a high level of abstraction with the help of
XSL formatting objects (XSL-FO) [49]. These formatting objects
can be applied to a serialized form of an instance of the meta-
model. Interestingly, this part of the XSL specification has
enjoyed far less success than the XSL transformation part and is
not widely supported. However, there is a fairly advanced
implementation called FOP (Formatting Objects Processor) within

131

Apache's XML Graphics Project. A custom implementation of,
e.g., a PostScript export is not advisable as the complexity and
investment can be considerable.

The SVG standard [50] is a fairly recent development by the W3C
consortium. The current production version 1.1 includes rich
support for static vector graphics including text and bitmap
integration as well as support for animation. As an XML-based
format it is widely supported in the areas of generation (data-
binding), parsing and transformation technologies (XSLT, XSL-
FO) and provides very good editor, modeling tool, and persistence
support. While these are generic advantages of XML-based
formats special support for SVG is also growing in the area of
viewers (e.g., Apache Batik) and browser plug-ins (e.g., Adobe,
Corel) and as persistence format in many graphics tools. The
Apache Batik Project [3] also provides a Java API for SVG
parsing, generation, conversion, and a DOM implementation
compliant to the standard.

These properties make SVG a suitable format for the export of
models as diagrams. Additionally, SVG supports a generic
extension mechanism for handling metadata [50]. In principle,
this could be used to embed model information – possibly directly
in XMI format – or processing status and history into the diagram
representation. The SVG file could then be used as both an image
format and a persistence format for the modeling application
itself. An example of embedding domain knowledge at the level
of model information into SVG metadata is described in [29] for
the geographic domain. Additionally, SVG supports vector
graphics based animation, which we describe in the next section.

5.3 Animation
The usefulness of animation as a tool for improving the
understanding of sequence diagrams has been studied by Burd et
al. [7], who find that control flow comprehensibility can be
improved by using animated sequence diagrams compared to
static sequence diagrams. There also seems to be initial support
for such animated diagrams in commercial products [47].

The consideration between animated bitmaps (GIF) and vector
graphics (SVG) is similar to that for the case of static diagrams.
While the support of animated GIFs in browsers and, generally, in
tools is better, SVG animation offers the known advantages of
vector graphics, i.e., smaller file size, better quality, and
scalability for text and drawings. Additionally, SVG animations
are just XML files and could thus be easily post-processed by,
e.g., XSL transformations to generate different representations,
such as textual descriptions of the sequence or series of single
images.

5.4 Comparative Assessment
For a sequence diagram reengineering tool export possibilities are
very important. This includes export of both the semantic (model)
information as well as a visual description (image data). Despite
the well-known practical XMI interoperability problems support
for this model exchange format is mandatory for a modeling tool.
The built-in XML and binary serialization formats of the Java
language provide useful mechanisms for intermediate storage
(e.g., for model transformations) and for proprietary persistence
formats, respectively.

Graphics export support includes more widely-used bitmaps, such
as GIF with associated scaling and printing problems, and the less
common but more scalable vector graphics formats, such as SVG.
With this mix of advantages and drawbacks there is no single
solution but support of both kinds of formats is useful. Animation
export possibilities are a useful enhancement which can
contribute to the improvement of model and, hence, program
logic comprehension.

To support model information persistence for the application
itself, we opted to use the JavaBeans built-in XML format. This
also offers the possibility to easily extend the export to XML-
based standards, like XMI and SVG, by applying XSL
Transformations [53] to the serialized model. We will use this
approach to support at least one important XMI dialect as part of
our future work.

As with the other concerns, the mixture of features built into the
Java language and the availability of third-party libraries and
interfaces provide a strong foundation for the tool
implementation.

6. Conclusion and Future Work
In this paper we presented a detailed study of technological
choices for various implementation aspects of a dynamic UML
sequence diagram reengineering tool from a Java-centric
perspective. The implementation of such a tool presents a
considerable challenge and many important strategic and
technological decisions have to be made. Our study complements
the existing body of literature on the subject of sequence diagram
reengineering, or more generally, trace visualization, by adding
thorough technical advice for those interested in attempting the
implementation of such a system, especially in the Java language.
In many cases there is no one single correct technological solution
to a given implementation problem. By comparing the advantages
and drawbacks of each alternative and reporting experiences from
our own implementation this study provides assistance for
informed technological decisions within the domain of Java-based
sequence diagram reengineering, especially in the areas of data
collection, data representation with meta-model instances,
interactive model visualization and various export options.

We showed that Java is a very suitable language for the
development of such a tool in two respects: While the virtual
machine-based execution mechanism provides excellent support
for tracing mechanisms for data collection, the many advanced
features of Java discussed above as well as the rich set of existing
libraries for many aspects facilitate the development of the tool as
a whole. Thus Java is both: a technology that lends itself to a
number of elegant reengineering techiques as well as a powerful
means to implement a reengineering tool. The former provide
access to the necessary tracing information while the latter
processes this information.

The tool described in this paper is currently being integrated with
the MORABIT component runtime infrastructure, a middleware
for resource-aware runtime testing [43]. In the future we plan to
enhance our own prototype implementation to include advanced
features such as animation export, multithreading support and
plug-in-based IDE and API-based custom integrations.

132

7. ACKNOWLEDGMENTS
This work has been funded by the Klaus Tschira Foundation
(KTS) and the Landesstiftung Baden-Württemberg within the
MORABIT research project. We thank our colleagues Elad
Messing and Daniel Brenner for reviewing the manuscript and the
anonymous reviewers for providing helpful suggestions for
improvement.

8. REFERENCES
[1] Adobe Systems. PDF Reference Fifth Edition, Adobe

Portable Document Format Version 1.6. Adobe System Inc.,
partners.adobe.com, 2004.

[2] Apache. Velocity. The Apache Jakarta Project,
jakarta.apache.org/velocity/.

[3] Apache. Batik SVG Toolkit. The Apache XML Project,
xml.apache.org/batik/.

[4] Binder, R. Testing Object Oriented Systems. Models,
Patterns and Tools. Addison Wesley, 1999.

[5] Briand, L.C., Labiche, Y., and Leduc, J. Towards the
Reverse Engineering of UML Sequence Diagrams for
Distributed Real-Time Java Software. Technical Report
SCE-04-04, Carleton University, 2004.

[6] Briand, L. C., Labiche, Y., and Miao, Y. Towards the
Reverse Engineering of UML Sequence Diagrams. In
Proceedings of the 10th Working Conference on Reverse
Engineering (November 13 - 17, 2003). WCRE. IEEE
Computer Society, Washington, DC, 2003, 57.

[7] Burd, E., Overy, D., and Wheetman, A. Evaluating Using
Animation to Improve Understanding of Sequence Diagrams.
In Proceedings of the 10th international Workshop on
Program Comprehension (June 27 - 29, 2002). IWPC. IEEE
Computer Society, Washington, DC, 2002, 107.

[8] ECMA International: Standard ECMA-262 ECMAScript
Language Specification. ECMA International, www.ecma-
international.org, 1999.

[9] Eclipse Project: The EclipseUML2 project. Eclipse Project
Universal Tool Platform, www.eclipse.org/uml2/.

[10] Eclipse project. Eclipse Modeling Framework (EMF).
Eclipse Project Universal Tool Platform,
www.eclipse.org/emf/.

[11] Eclipse Project: Graphical Editing Framework (GEF).
Eclipse Project Universal Tool Platform,
www.eclipse.org/gef/.

[12] Eclipse Project: AspectJ project. eclipse.org,
www.eclipse.org/aspectj/.

[13] Filman, R. E., Elrad, T., Clarke, S. and Aksit, M. Aspect-
Oriented Software Development. Pearson Education, 2005.

[14] Gamma, E., Helm, R., Johnson, R. and Vlissides, J. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley Longman Publishing Co., Inc., 1995.

[15] Gradecki, J. and Lesiecki, N. Mastering AspectJ - Aspect
Oriented Programming in Java. Wiley Publishing Inc, 2003.

[16] Gargiulo, J. and Mancoridis, S. Gadget: A Tool for
Extracting the Dynamic Structure of Java Programs. In
Proceedings of the International Conference on Software

Engineering and Knowledge Engineering SEKE (June 2001).
2001.

[17] Gannod, G. and Murthy, S. Using Log Files to Reconstruct
State-Based Software Architectures. In Proceedings of the
Working Conference on Software Architecture
Reconstruction Workshop. IEEE, 2002, 5-7.

[18] GNU: The plotutils Package. Free Software Foundation Inc.,
www.gnu.org/software/plotutils/.

[19] Greenfield, J., Short, K., Cook, S. and Kent, S. Software
Factories: Assembling Applications with Patterns, Models,
Frameworks, and Tools. Wiley Publishing Inc, 2004.

[20] Hamou-Lhadj, A. and Lethbridge, T. C. A survey of trace
exploration tools and techniques. In Proceedings of the 2004
Conference of the Centre For Advanced Studies on
Collaborative Research (Markham, Ontario, Canada,
October 04 - 07, 2004). H. Lutfiyya, J. Singer, and D. A.
Stewart, Eds. IBM Centre for Advanced Studies Conference.
IBM Press, 2004, 42-55.

[21] Jacobsen, I., Griss, M. and Jonnson, P. Software Reuse:
Architecture, Process and Organization for Business
Success. Addison-Wesley Professional, 1997

[22] JGraph ltd. JGraph. www.jgraph.com/.

[23] Kiselev, I. Aspect-Oriented Programming with AspectJ.
Sams Publishing, 2003.

[24] Fraikin, F. and Leonhardt, T. SeDiTeC " Testing Based on
Sequence Diagrams. In Proceedings of the 17th IEEE
international Conference on Automated Software
Engineering (September 23 - 27, 2002). Automated Software
Engineering. IEEE Computer Society, Washington, DC,
2002, 261.

[25] Kollman, R., Selonen, P., Stroulia, E., Systä, T., and
Zundorf, A. A Study on the Current State of the Art in Tool-
Supported UML-Based Static Reverse Engineering. In
Proceedings of the Ninth Working Conference on Reverse
Engineering (Wcre'02) (October 29 - November 01, 2002).
WCRE. IEEE Computer Society, Washington, DC, 2002, 22.

[26] Krasner, G. E. and Pope, S. T. A Cookbook for Using the
Model-View-Controller User Interface Paradigm in
Smalltalk-80. SIGS Publications, 1988, pages 26-49.

[27] Lowagie, B. iText. www.lowagie.com/iText/.

[28] Mukerji, J. and Miller, J. MDA Guide Version 1.0.1. Object
Management Group, www.omg.org, 2003.

[29] Merdes, M., Häußler, J. and Zipf, A. GML2GML: Generic
and Interoperable Round-Trip Geodata Editing - Concepts
and Example. 8th AGILE Conference on GIScience, 2005.

[30] OMG: Meta Object Facility (MOF) Specification Version
1.4. Object Management Group, www.omg.org, 2002.

[31] OMG: XML Metadata Interchange (XMI) Specification
version 2.0. Object Management Group, www.omg.org,
2003.

[32] OMG: UML 2.0 Superstructure Specification. Object
Management Group, www.omg.org, 2004.

[33] Oechsle, R. and Schmitt, T. JAVAVIS: Automatic Program
Visualization with Object and Sequence Diagrams Using the

133

Java Debug Interface (JDI). In Revised Lectures on Software
Visualization, international Seminar (May 20 - 25, 2001). S.
Diehl, Ed. Lecture Notes In Computer Science, vol. 2269.
Springer-Verlag, London, 2002, 176-190.

[34] Pauw, W. D., Jensen, E., Mitchell, N., Sevitsky, G.,
Vlissides, J. M., and Yang, J. Visualizing the Execution of
Java Programs. In Revised Lectures on Software
Visualization, international Seminar (May 20 - 25, 2001). S.
Diehl, Ed. Lecture Notes In Computer Science, vol. 2269.
Springer-Verlag, London, 2002, 151-162.

[35] Qoppa. jPDFWriter. Qoppa Software,
www.qoppa.com/jpindex.html.

[36] PRESTO. RED Project. Presto Research Group Ohio State
University, nomad.cse.ohio-state.edu/red/.

[37] Rountev, A., Volgin, O., and Reddoch, M. Static control-
flow analysis for reverse engineering of UML sequence
diagrams. In the 6th ACM SIGPLAN-SIGSOFT Workshop on
Program Analysis for Software Tools and Engineering
(Lisbon, Portugal, September 05 - 06, 2005). M. Ernst and T.
Jensen, Eds. PASTE '05. ACM Press, New York, NY, 2005,
96-102.

[38] Systä, T., Koskimies, K., and Müller, H. 2001. Shimba—an
environment for reverse engineering Java software systems.
Softw. Pract. Exper. 31, 4 (Apr. 2001), 371-394.

[39] Soley, R. and Group, O. S. Model Driven Architecture.
Object Management Group, www.omg.org, 2000.

[40] Spinellis, D. UMLGraph. www.spinellis.gr/sw/umlgraph/.

[41] Spinnelis, D.: On the Declarative Specification of Models.
IEEE Software Volume 20 Issue 2. 2003, pages 94-96.

[42] Sharp, R. and Rountev, A. Interactive Exploration of UML
Sequence Diagrams. In Proceedings of the IEEE Workshop

on Visualizing Software for Understanding and Analysis
(VISSOFT'05). 2005, 8-13.

[43] Suliman, D., Paech, B., Borner, L., Atkinson, C., Brenner,
D., Merdes, M., Malaka, R. The MORABIT Approach to
Runtime Component Testing. In Proceedings of the Second
International Workshop on Testing and Quality Assurance
for Component-Based Systems. (TQACBS06). 2006

[44] Sun Microsystems. API Enhancements to the JavaBeans
Component API in v1.4. Sun Microsystems Inc,
java.sun.com/j2se/1.4.2/docs/guide/beans/changes14.html,
2002.

[45] Sun Microsystems. Java Platform Debugger Architecture
(JPDA). Sun Microsystems Inc.,
http://java.sun.com/products/jpda/index.jsp.

[46] Stahl, T. and Völter, M. Model-Driven Software
Development. Wiley, 2006.

[47] Sysoft. Animation of UML Sequence Diagrams" - Amarcos.
Sysoft, http://www.sysoft-fr.com/en/Amarcos/ams-uml.asp.

[48] Thoms, C. and Holzer, B. Codegenerierung mit dem
openArchitectureWare Generator 3.0 - The Next Generation.
javamagazin 07/2005, 2005.

[49] W3C. Extensible Stylesheet Language (XSL) Version 1.0.
W3C Recommendation, www.w3.org, 2001.

[50] W3C. Scalable Vector Graphics (SVG) Version 1.1
Specification, W3C Recommendation, www.w3.org, 2003

[51] W3C. Java Language Binding for the SVG Document Object
Model. W3C Recommendation, www.w3.org. 2003.

[52] W3C. ECMAScript Language Binding for SVG, W3C
Recommendation, www.w3.org, 2003.

[53] W3C. XSL Transformations (XSLT) Version 1.0
Specification. W3C Recommendation, www.w3.org, 1999

134

Propagation of JML non-null annotations in Java programs

Maciej Cielecki Jędrzej Fulara

Krzysztof Jakubczyk Łukasz Jancewicz

Institute of Informatics, Warsaw University, ul. Banacha 2, 02-097 Warszawa, Poland

{m.cielecki,j.fulara,k.jakubczyk,l.jancewicz}@students.mimuw.edu.pl

ABSTRACT
Development of high quality code is notably di�cult. Tools
that help maintaining the proper quality of code produced
by programmers can be very useful: they may increase the
quality of produced software and help managers to ensure
that the product is ready for the market. One of such tools
is ESC/Java2, a static checker of Java Modeling Language
annotations. These annotations can be used to ensure that
a certain assertion is satis�ed during the execution of the
program, among the others - to ensure that a certain vari-
able never has a null value. Unfortunately, using ESC/Java2
can be very troublesome and time-consuming for program-
mers, as it lacks a friendly user interface and a function that
propagates annotations.
We present CANAPA, a tool that can highly reduce time

and e�ort of eliminating null pointer exceptions in Java code.
This tool can automatically propagate JML non-null anno-
tations and comes with a handy Eclipse plug-in. We believe
that functionality of CANAPA will minimize the e�ort re-
quired to bene�t from using the JML non-null checking.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering�Software/Program
Veri�cation

General Terms
RELIABILITY, VERIFICATION

1. INTRODUCTION

1.1 Coding errors
Ensuring that a piece of software created within a com-

pany is free of coding bugs has always been a huge problem.
Company managers try to succeed in this area by applying
various coding policies and code-checking strategies. These
policies can include overnight bug checking (people are hired

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPPJ 2006 , August 30 – September 1, 2006, Mannheim, Germany.
Copyright 2006 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

to work at night and �nd errors in code that was created
during the day), enforcing coding standards, like consisting
naming convention or limiting length of methods, using au-
tomated tools to verify certain properties of the code either
by static code analysis or dynamic assertion checking. The
e�ciency of the tools of the latter category can usually be
improved by annotating the code with some meta informa-
tion, like pre- and post- condition of methods or invariants
of data structure implementations.
There are many languages created to annotate programs,

but none of them is actually very popular. For the Java pro-
gramming language the de facto standard is JML, the Java
Modeling Language [11, 3]. Recently Microsoft introduced
Spec# [2], the extension of C# targeted at specifying cor-
rectness properties of code. Some work has also been done
for low-level languages. In particular, the Java Bytecode
has its own speci�cation language, called BCSL or BML [4].
The motivation for the latter was ensuring the security of
Java applets on SmartCards.
In general, coding errors can be divided into two cate-

gories: those that result from a programmer's misunder-
standing of the algorithm (for example, adding two vari-
ables instead of multiplying) and those that result from a
programmer's carelessness (like leaving a variable uninitial-
ized).
Although it is very hard to detect the �rst kind of bugs,

there is a way to avoid a large majority of the second ones,
mainly by creating and using automated veri�cation soft-
ware. It is of course impossible to write a tool that auto-
matically checks the correctness of all programs, but there
is a way to check some of its features.

1.2 Avoiding null pointer exceptions in Java
The most common error found in pointer-based object-

oriented programming languages occurs when one tries to
access an object variable that has not been initialized. In
Java, it is the well-known null pointer exception. Null poin-
ter exceptions are a very serious threat to the safety of pro-
grams, because when they occur at run-time, they cause a
total software failure. That is why it is important to support
the programmer in detecting and eliminating these kinds of
problems. But �rst, the programmer has to express what
features he would expect from his or her software. For this
task we use JML, a behavioral interface speci�cation lan-
guage. One of the key features of JML is the possibility to
annotate certain variables as non-null, which means that it
was the programmer's intention not to allow to assign a null
value to that variable.

135

1.3 JML

1.3.1 Overview
JML, the Java Modeling Language, is useful for specify-

ing detailed design properties of Java classes and interfaces.
JML is a behavioral interface speci�cation language for Java.
The behavior of classes and method created by a program-
mer can be precisely documented in JML annotations. They
describe the intended way that programmers should use the
code. JML can, for example, list the preconditions and post-
conditions for methods as well as class invariants.
An important goal for the design of the JML speci�cation

language is that it should be easily understandable by Java
programmers. It is achieved by staying as close as possible
to Java syntax and semantics. Several groups worldwide are
now building tools that support the JML notation and are
involved with the ongoing design of JML. The open, coop-
erative nature of the JML e�ort is important both for tool
developers and users. For potential users, the fact that there
are several tools supporting the same notation is clearly an
advantage. For tool developers, using a common syntax and
semantics can make it much easier to get users interested,
because one of the biggest problem with starting to use a
new speci�cation tool is often the lack of familiarity with
the speci�cation language.

1.3.2 Non_null annotations
In this paper, we focus on annotating properties of meth-

ods, variables etc. which assure that the object under ques-
tion never has a null value.
In JML, there are two ways to make such an assertion. If

we want to make sure that a variable is never null (for ex-
ample, we would call its method in a moment and it could
produce a null pointer exception), we add the /*@ non_null
@*/ annotation (note the @ sign after the beginning and be-
fore the end of the comment):

/*@ non_null @*/ String s = "Hi there!";

A more interesting example is the method de�nition. If we
want a method argument to be non-null, we could write
something like this:

public void checkLength(/*@ non_null @*/String s);

or, we could add something like that:

//requires s != null
public void checkLength(String s);

Notice the subtle di�erence between those examples. In the
�rst one, if the method body would contain the line:

s = null;

we would get an error. In the second example, as long as
at entry point the non-null assertion is ful�lled, the state-
ment won't generate an error. By the way, we �nd it a bad
programming practice to change parameters that way, they
should be copied to another variable instead.

1.3.3 JML checking
An annotation language like JML would be quite useless

without a tool that can extract information from the anno-
tations and use it to verify some, if not all, of its required
features. In general, we divide the checkers into two cate-
gories:

• run-time checking tools, like JMLrac [5] � annotations
are converted into assertions that are veri�ed when the
code they describe is executed

• static checking tools, like ESC/Java and ESC/Java2 [9]
� do not require running the program; instead they
try to prove that annotations are ful�lled by statically
analysing possible execution paths.

Advantages and disadvantages of each method can be
clearly seen. Run-time checkers can check any assertion,
no matter how complicated, but if a method is never run,
its assertions will not be executed and veri�ed. Besides, the
execution time is longer due to additional instructions in
the code. Static checkers, on the other hand, are limited by
their reasoning capabilities. Hence they can sometimes show
nonexistent errors (false positives) or fail to �nd some exist-
ing ones (false negatives). The most popular static checker
for Java is ESC/Java2 [9].

1.4 ESC/Java2
ESC/Java tool, developed at Compaq Research, performs

what is called extended static checking, a compile-time check
that goes well beyond type checking. It can check relatively
simple assertions and can check for certain kinds of com-
mon errors in Java code, such as dereferencing null, index-
ing an array outside its bounds, or casting a reference to an
impermissible type. ESC/Java supports a subset of JML.
ESC/Java2 [9] is an extension to ESC/Java, whose develop-
ment has ended.
The user's interaction with ESC/Java2 is quite similar to

the interaction with the compiler's type checker: the user
includes JML annotations in the code and runs the tool,
and the tool responds with a list of possible errors in the
program. The use of JML annotations enables ESC/Java2
to produce warnings not at the source locations where errors
manifest themselves at run-time, but at the source locations
where the errors are committed.
The creators of ESC/Java2 wanted it to be as fast as

possible, even at the cost of soundness and completeness.
ESC/Java2 translates a given JML-annotated Java program
into veri�cation conditions, logical formulas that are valid if
and only if the program is free of the kinds of errors being an-
alyzed. The veri�cation conditions are fed to an automatic
�rst-order theorem prover Simplify [7], which tries to prove
them. Any veri�cation-condition counterexamples found by
Simplify are turned into programmer-sensible warning mes-
sages, including the kind and source location of each poten-
tial error.

2. ANNOTATING THE PROGRAM
The combined usage of JML non-null annotations and

ESC/Java2 allows software developers to eliminate all null
pointer exceptions from their programs. However, bene�ts
of doing so do not always compensate additional time spent
on manually adding the necessary assertions. Several add-on
tools were developed to make the process faster, such as the
ESCJava2 Eclipse plug-in that highlights places of possible
errors. Unfortunately, that is still not enough to convince
programmers to use JML.
Using ESC/Java2 to check null pointer exceptions is some-

what cumbersome, because the checker shows us the place
in the code where the error might occur, but it does not tell

136

us where to put the /*@ non_null @*/ annotation. Very
often the need of inserting another annotation is so obvious,
that we would expect it to be done for us.
Let's consider the following example:

class Class {
/*@non_null@*/ String attribute;
Class() {
attribute = "eLLo";
}
void set(String param) {
attribute = param;

//ESCJava2 will point to this line
}
}

ESC/Java2 will signal an error in the assignment inside the
method set(), so the programmer should add a non-null
annotation to the parameter param. Then one can discover
that, for example, one of set() method calls take a param-
eter which is not annotated non-null. The programmer is
forced to correct his or her code and run ESC/Java2 each
time he or she does it until all the errors are eliminated.
Other examples of cases when the annotation should and

should not be propagated can be found in Section5.
An obvious solution is to create a tool that supports the

programmer in annotating his or her code. We would expect
the following features from such a tool:

• it should propagate annotations inserted by the user
to avoid pointless ESC/Java2 warnings

• it should be fairly easy to use

• it should not require additional annotations in the code
to make it work

• it should propagate only those annotations for which
it is obvious that they should be propagated

• it should integrate into a popular Java development
platform

• its e�ects should be easily reversible

3. RELATED TOOLS
Our solution, CANAPA, is based on the Java Modeling

Language and ESC/Java2. There exist several other lan-
guages and systems that aim at statical enforcement of pro-
gram correctness.
In Visual Studio 2005, Microsoft introduced Code Analy-

sis tools [6]. Among other features, these tools can check the
program for potential null-pointer dereference errors. There
is no support for Java, but one can annotate C++ code or
write full speci�cations of C# programs in Spec#.
There are many static checkers for C language that can

check the NULL values to some extent. Many of those
are commercial, closed source software, therefore are not
broadly available. Nevertheless some of those checkers are
very powerful, designed for large codebases, support user de-
�ned properties, with very small number of false positives.
They are also usually bundled with an entire package of tools
that enforce code quality, see eg. [14].
There were many research about the subject of annota-

tions [4], [13]. There is considerable interest in automated

annotation propagation, but the approaches considered were
di�erent from ours.
There are various tools that were build around ESC/Java.

Two most interesting from our point of view are: The Daikon
Invariant Detector and The Houdini Tool.

3.1 Daikon Invariant Detector
Daikon [8] is an implementation of dynamic detection of

likely invariants; that is, the Daikon invariant detector re-
ports properties that hold at a certain point or points in
a program. Daikon runs a program, observes the values
that the program computes, and then reports properties that
were true over the observed executions. It can be used to
automatically generate JML annotations in Java Code.

3.2 Houdini
This tool was under development as a research project

at Compaq SRC. Houdini infers ESC/Java annotations for
a given program and then runs ESC/Java to obtain a set
of warnings. This set is considerably smaller, and more
interesting, than the set of mostly spurious warnings that
ESC/Java would have produced on the unannotated pro-
gram. Although this process does not provide the same
bene�t of documented programmer design decisions (it de-
tects the de facto design rather than enforcing de juro design
decisions), Houdini greatly reduces the cost of �nding com-
mon errors in a given program. Non-null annotations are
among the annotations generated by Houdini, but the ap-
proach taken by the creators of this software is di�erent from
ours and does not guarantee that full set of annotations will
be generated.

4. OUR SOLUTION
We present CANAPA, �Completely Automated Non-null

Annotation Propagating Application�, a tool to automat-
ically propagate JML annotations that concern being or
not being null by variables, method result etc. CANAPA
is a program that propagates the /*@ non_null @*/ anno-
tations inside the source code �bottom-up�. This greatly
reduces time and e�ort to correctly insert non-null annota-
tions into the code.

4.1 Overview
The main idea is that the programmer inserts a JML non-

null annotation inside the code, and CANAPA checks what
are the obvious implications of such an insertion and inserts
additional non-null annotations where ESC/Java2 would ex-
pect them. This way, the programmer sees the error in his
logic (if any) at its source, and does not have to manually
add each assertion to get to the mistake.
CANAPA has the following features:

• the program (CANAPA) is idempotent - the result of
running it once on a Java code should be the same as
running it twice

• from the preceding, it cannot add non-null annotations
to class attributes - this would lead to undesirable re-
sults - see Use cases

• it changes the code only when it's sure it was the pro-
grammer's intention

• it adds its own comment tag to the JML tag in case the
programmer wanted to remove the e�ects of its work

137

The Usage of CANAPA is fairly straightforward. You simply
put /*@ non_null @*/ annotations in the code where you
want them and then run our tool, which propagates those
assertions anywhere it is necessary.
CANAPA can be invoked from the command line with a

directory parameter, or executed from Eclipse development
platform via a plugin. During its work, CANAPA adds an-
notations to selected �les and creates their backups, notify-
ing the user which �les were modi�ed in the process.
Each annotation added by CANAPA is marked with a

/*CANAPA*/ pre�x. Annotations existing before running the
tool will not have this marker. This way, you can easily �nd
and, if necessary, remove the automatically added annota-
tions.
CANAPA comes with a handy Eclipse plug-in that allows

to run it within the Eclipse programming environment. The
tool simply adds annotations to the �le looked at by the
programmer and the text output can be seen in the Console
window.

4.2 Implementation Details
The tool consists of a number of elements: the interface

to ESC/Java2 (to �nd errors), a Java code parser to insert
needed annotations, a simple text user interface and the
Eclipse plug-in.
ESC/Java2 is invoked directly via its main method from

the JAR, that's why our software requires Java 1.4 to work.
The parser used in the tool is a slightly modi�ed free

JParse [12] tool, which itself is based on ANTLR [1], a free
parser generator.
The algorithm used in the tool is as follows: ESC/Java2 is

run on the code provided by the user. The errors returned by
ESC/Java2 are parsed, their solutions (if any) found and ap-
propriate annotations placed to remove ESC/Java2 errors.
Then ESC/Java2 is run again (this time it won't detect er-
rors where they were before). If any new errors are detected,
the procedure is repeated.
The number of iterations of the algorithm is limited by the

depth of the deepest variable and method call dependency
in the user's code. It must be noted that, with a "clean"
(unannotated) large piece of code running CANAPA for the
�rst time may take some time. However, the more anno-
tations are in the code, the faster our tool is. In the ideal
working example, when the programmer starts annotating
his or her code from the very beginning and runs the tool
each time he or she makes a signi�cant addition, CANAPA
will work very fast, with few iterations.
CANAPA tries to correct the following ESC/Java2 errors:

• assignment of a possibly null item to a non-null anno-
tated variable:

� assignment of a method parameter

� assignment of a local variable

� assignment of a function result

• dereferencing a possibly null item:

� invoking variable.someMethod()

� invoking oneMethod().anotherMethod()

The action taken by CANAPA di�ers depending on the type
of item in question:

• if the item is a local variable, annotate its declaration
with /*@ non_null @*/

• if the item is a formal method parameter, annotate it
in the method header with
/*@ non_null @*/

• if the item is a result of a method, annotate the re-
turn type of the method in the method header with
/*@ non_null @*/

• if the item is a class attribute, do not annotate it - this
probably would not be what the programmer wants,
as it could cause "top-down" propagation into other
methods

It is signi�cant that the tool does not modify the code
itself, but only the comments. So the compiler would still
work if something went wrong.
The tool does its best to propagate the annotations just

as the programmer would. There is, however, one situation
in which CANAPA fails to predict the right annotation. Let
us imagine that the programmer writes a method without
annotating its parameter and dereferences it in the method
body. It is impossible to know whether the intention of the
programmer was to never call this method with the null
argument or he simply forgot to put the if clause. Since
CANAPA cannot guess what to write in the else branch,
anyway, it annotates the parameter with non-null.
Fortunately, there is a way to deal with the situation.

The Eclipse plug-in provides an option to revert the e�ects
of the last CANAPA corrections within a few keystrokes.
To avoid programmer confusion about which changes were
added in the last CANAPA execution, a �commit� option is
added that eliminates the /*CANAPA*/ comments before /*@
non_null @*/ annotations.

5. USE CASES
In this chapter we will show several basic examples of

using CANAPA. Each example contains of a short piece of
incorrect code and the description how CANAPA deals with
it.

5.1 Example 1
This example shows how a /*@ non_null @*/ annotation

can be propagated to a method parameter.

class Class {
/*@non_null@*/ String attribute;
Class() {
attribute = "Attribute";
}
void set(String param) {
attribute = param;
}
}

The code presented above is not correct: ESC/Java2 will
point to the line attribute = param. Attribute is declared
as non-null, and we try to assign param to it, so param must
be declared as /*@ non_null @*/ too. The easiest way to
correct it is to add a /*@ non_null @*/ annotation to param
in the method header. Launching CANAPA will modify the
code as follows:

138

class Class {
/*@non_null@*/ String attribute;
Class() {
attribute = "Attribute";
}
void set(/*CANAPA*//*@non_null@*/ String param) {
attribute = param;
}
}

And that is exactly what our application does. There is
another possible way to correct this error - it involves en-
closing the assignment in if-else statement. However, it is
impossible for the tool to guess what to do if param is null.

5.2 Example 2
This example shows the inference of a /*@ non_null @*/

annotation to a variable or parameter, of which a program-
mer invokes a method. Let's consider the following piece of
code:

class ClassA {
public A(){}
public void methodA(){}
}
class ClassB {
public B(){}
public void methodB(ClassA a){
a.methodA();
}
}

This code is invalid, as the parameter a of methodB could be
null. So the method call a.methodA() may cause a null
pointer exception. To correct the error, one should add
a /*@ non_null @*/ annotation to the parameter in the
methodB header. After launching our application, the code
will be modi�ed as follows:

class ClassA {
public A(){}
public void methodA(){}
}
class ClassB {
public B(){}
public void

methodB(/*CANAPA*//*@non_null@*/ClassA a){
a.methodA();
}
}

Of course the problem concerns not only parameters, but
also variables:

class Class{
public Class(){}
public void method(){
String str;
str.substring(1);
}
}

The local variable str cannot be null, otherwise the method
call str.substring(1) would cause a null pointer excep-
tion. The solution is to declare str as /*@ non_null @*/.
CANAPA will add the appropriate annotation. Of course,

the problem persists (str is uninitialized), but this time,
ESC/Java2 error points the user exactly to the source of
the problem.

5.3 Example 3
This example shows how a /*@ non_null @*/ annotation

can be propagated to the method's result.

class Class{
/*@ non_null @*/ String attribute;
public Class(){
attribute = "Attribute";
}
private String getString(){
return "This is a string";
}
public void set(){
attribute = getString();
}
}

a
b
We assign the result of getString() to attribute, which

is declared as /*@ non_null @*/. Until we are not sure that
the method getString() cannot return a null, this code will
be incorrect. The easiest way to solve this problem is to add
/*@ non_null @*/ annotation to the result of getString().
The code modi�ed by CANAPA will be as follows:

class Class{
/*@ non_null @*/ String attribute;
public Class(){
attribute = "Attribute";
}
private /*@ non_null @*/ String getString(){
return "This is a string";
}
public void set(){
attribute = getString();
}
}

5.4 Example 4
This example shows that there are situations, when a

propagation should not be done, although one could think
that an annotation should be added. Consider following
piece of code:

class Class{
String attribute;
void doSomething(){
...
/*@non_null@*/String str = attribute;
}
void setNull(){
attribute = null;
}
}

One might expect that CANAPA will add an annotation to
the attribute, modifying the code as follows:

class Class{
/*@non_null@*/ String attribute;
void doSomething(){
...

139

/*@non_null@*/ String str = attribute;
}
void setNull(){
attribute = null;
}
}

After careful consideration of this code, we can see that
the added annotation causes an error in an other method.
Namely in the setNull() method (we will try to assign null
to an attribute that was declared as non-null). This def-
initely would not be acceptable for most of programmers.
Moreover, we claim that in such a situation it is impossible
to modify the code automatically in a reasonable way. So
we have decided not to add anything to class attributes.

6. SUMMARY
We created CANAPA, the tool that highly reduces time

and e�ort of eliminating null pointer exceptions in Java code.
This tool automatically propagates JML non-null annota-
tions, whenever this results from the programmer's inten-
sion. It also comes with a handy Eclipse plug-in to in-
crease productivity. CANAPA is distributed under the GNU
LESSER GENERAL PUBLIC LICENSE [10]. It is available
from http://www.mimuw.edu.pl/~chrzaszcz/Canapa/. It
requires a Java Runtime Environment (version 1.4) and the
ESC/Java2 checker. To run the CANAPA Eclipse plug-in,
version 3.1 or higher of the Eclipse environment is needed.

7. ACKNOWLEDGEMENT
This work was partly supported by the Information So-

ciety Technologies programme of the European Commis-
sion, under the IST-2005-015905 MOBIUS project and Sixth
Framework Marie-Curie Programme MEIF-CT-2005-024306
SOJOURN. This paper re�ects only the authors' views and
the Community is not liable for any use that may be made
of the information contained therein.

8. ADDITIONAL AUTHORS
Jacek Chrz¡szcz, Institute of Informatics, Warsaw Uni-

versity, email: chrzaszcz@mimuw.edu.pl.
Aleksy Schubert, Institute of Informatics, Warsaw Univer-

sity, Poland and SoS Group, Faculty of Science, University
of Nijmegen, email: alx@mimuw.edu.pl.
�ukasz Kami«ski, Comarch Research and Development

Center, email: Lukasz.Kaminski@comarch.pl.

9. REFERENCES
[1] Antlr parser generator. http://www.antlr.org/.

[2] Mike Barnett, K. Rustan M. Leino, and Wolfram
Schulte. The spec# programming system: An
overview. In CASSIS 2004, volume 3362 of LNCS.
Springer, 2004.

[3] L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry,
G. T. Leavens, K. R. M. Leino, and E. Poll. An
overview of jml tools and applications. In T. Arts and
W. Fokkink, editors, FMICS: Eighth International
Workshop on Formal Methods for Industrial Critical
Systems, volume 80 of Electronic Notes in Theoretical
Computer Science. Elsevier Publishing, June 5-7 2003.

[4] Lilian Burdy and Mariela Pavlova. Java bytecode
speci�cation and veri�cation. In 21st Annual ACM
Symposium on Applied Computing (SAC'06), Dijon,
Apr 2006. ACM Press.

[5] Yoonsik Cheon and Gary T. Leavens. A runtime
assertion checker for the Java Modeling Language
(JML). In Hamid R. Arabnia and Youngsong Mun,
editors, Proceedings of the International Conference
on Software Engineering Research and Practice
(SERP '02), Las Vegas, Nevada, USA, June 24-27,
2002, pages 322�328. CSREA Press, June 2002.

[6] Code analysis for C/C++ � overview.
http://msdn2.microsoft.com/en-
us/library/d3bbz7tz.aspx.

[7] David L. Detlefs, Greg Nelson, and James B. Saxe.
Simplify: A theorem prover for program checking.
Technical Report HPL-2003-148, HP Labs, 2003.

[8] Michael D. Ernst, Je� H. Perkins, Philip J. Guo,
Stephen McCamant, Carlos Pacheco, Matthew S.
Tschantz, and Chen Xiao. The Daikon system for
dynamic detection of likely invariants. Science of
Computer Programming, 2006.

[9] Extended Static Checker for Java version 2.
http://secure.ucd.ie/products/opensource/ESCJava2/.

[10] GNU LESSER GENERAL PUBLIC LICENSE.
http://www.gnu.org/copyleft/lesser.html.

[11] The Java Modeling Language (JML).
http://www.cs.iastate.edu/ leav-
ens/JML//index.shtml.

[12] JParse: a Java parser.
http://www.ittc.ku.edu/JParse/.

[13] M. Pavlova, G. Barthe, L. Burdy, M. Huisman, and
J.-L. Lanet. Enforcing high-level security properties
for applets. In P. Paradinas and J.-J. Quisquater,
editors, Proceedings of CARDIS'04, Toulouse, France,
August 2004. Kluwer Academic Publishers.

[14] Static source code analysis tools for C.
http://www.spinroot.com/static/.

140

Session F
Novel Uses of Java

141

142

On the Design of a Java Computer Algebra System

Heinz Kredel
IT-Center

University of Mannheim
Mannheim, Germany

kredel@rz.uni-mannheim.de

ABSTRACT
This paper considers Java as an implementation language for
a starting part of a computer algebra library. It describes a
design of basic arithmetic and multivariate polynomial in-
terfaces and classes which are then employed in advanced
parallel and distributed Groebner base algorithms and ap-
plications. The library is type-safe due to its design with
Java’s generic type parameters and thread-safe using Java’s
concurrent programming facilities.

Categories and Subject Descriptors
D.2.11 [Software Architectures]: Domain-specific archi-
tectures; G.4 [Mathematical Software]: Computer Alge-
bra; I.1 [Symbolic and Algebraic Manipulation]: Spe-
cialpurpose algebraic systems

General Terms
Design, Algorithms, Type-safe, Thread-safe

Keywords
computer algebra library, multivariate polynomials

1. INTRODUCTION
We describe an object oriented design of a Java Computer

Algebra System (called JAS in the following) as type safe
and thread safe approach to computer algebra. JAS pro-
vides a well designed software library using generic types
for algebraic computations implemented in the Java pro-
gramming language. The library can be used as any other
Java software package or it can be used interactively or in-
terpreted through an jython (Java Python) front end. The
focus of JAS is at the moment on commutative and solv-
able polynomials, Groebner bases and applications. By the
use of Java as implementation language JAS is 64-bit and
multi-core cpu ready. JAS is developed since 2000 (see the
weblog in [12]) and was partly described in [11].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPPJ 2006 August 30 – September 1, 2006, Mannheim, Germany
Copyright 2006 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Recall form mathematics that a multivariate polynomial
p is an element of a polynomial ring R in n variables over
some coefficient ring C, i.e. in formal notation p ∈ R =
C[x1, . . . , xn], e.g.

p = 3x2
1x

4
3 + 7x5

2 − 61 ∈ Z[x1, x2, x3]

is a polynomial in 3 variables over the integers. Note, that
the definition is recursive in the sense, that C can be an-
other polynomial ring. More formally a polynomial is a
mapping from a monoid T to a ring C, p = T −→ C where
only finitely many elements of T are mapped to non-zero
elements of C. In case R = C[x1, . . . , xn] the monoid T ,
is generated by terms, i.e. (commutative) products of the
variables xi, i = 1, . . . , n. In our example the map is p =

x2
1x

4
3 7→ 3, x5

2 7→ 7, x0
1x

0
2x

0
3 7→ −61, else xe1

1 xe2
2 xe3

3 7→ 0.

This view is used to implement a polynomial using a Map

from the Java collection framework. A computer represen-
tation of an element of T is used as key and the value is a
representation of a (non-zero) element of C, i.e. keys being
mapped to zero are not stored in the Map. Since some prop-
erties of multivariate polynomial rings depend on a certain
ordering <T on the monoid T we actually use a SortedMap

(with the TreeMap implementation). The ordering <T de-
termines e.g. which monoid in the polynomial is the highest,
just as the usual degree does for univariate polynomials. Ad-
dition and multiplication of polynomials is defined as usual,
the zero polynomial is the empty map and the one poly-
nomial is the map x0

1x
0
2 . . . x0

n 7→ 1, where 1 denotes the
representation of the one of C. We also consider solvable
polynomials which are multivariate polynomials with com-
mutative addition and a non-commutative multiplication ∗
with respect to relations

xj ∗ xi = cijxixj + pij ,

for 1 ≤ i < j ≤ n, 0 6= cij ∈ C, xixj >T pij ∈ R. The
(mathematical) class of solvable polynomial rings naturally
contains the class of polynomial rings. So a polynomial is
always a solvable polynomial with respect to commuting re-
lations. One may then think that a polynomial class (in
computer science sense) could extend a solvable polynomial
class but it is the other way round.

Based on this sketch of polynomial mathematics the pa-
per describes the basic arithmetic and multivariate polyno-
mial part of a bigger library, which consists of the follow-
ing additional packages. The package edu.jas.ring con-
tains classes for polynomial and solvable polynomial reduc-
tion, Groebner bases and ideal arithmetic as well as thread

143

parallel and distributed versions of Buchbergers algorithm
like ReductionSeq, GroebnerBaseAbstract, GroebnerBase-
Seq, GroebnerBaseParallel and GroebnerBaseDistributed.
The package edu.jas.module contains classes for module
Groebner bases and syzygies over polynomials and solvable
polynomials like ModGroebnerBase or SolvableSyzygy. Fi-
nally edu.jas.application contains classes with applica-
tions of Groebner bases such as ideal intersections and ideal
quotients implemented in Ideal or SolvableIdeal.

1.1 Related Work
An overview of computer algebra systems and also on de-

sign issues can by found in the “Computer Algebra Hand-
book” [8]. For the scope of this paper the following work
was most influential: Axiom [10] and Aldor [20] with their
comprehensive type library and category and domain con-
cepts. Sum-It [4] is a type safe library based on Axiom and
Weyl [22] presents a concept of an object oriented computer
algebra library in Common Lisp. Type systems for com-
puter algebra are proposed by Santas [19] and existing type
systems are analyzed by Poll and Thomson [18]. Other li-
brary implementations of computer algebra are e.g. LiDIA
[5] and Singular [9] in C++ and MAS [13] in Modula-2.

Java for symbolic computation is discussed in [3] with the
conclusion, that it fulfills most of the conceptional require-
ments defined by the authors, but is not suitable because
of performance issues (Java up to JDK 1.2 studied). In [1]
a package for symbolic integration in Java is presented. A
type unsafe algebraic system with Axiom like coercion fa-
cilities is presented in [6]. A computer algebra library with
maximal use of patterns (object creational patterns, storage
abstraction patterns and coercion patterns) are presented
by Niculescu [15, 16]. A Java API for univariate polyno-
mials employing a facade pattern to encapsulate different
implementations is discussed in [21]. An interesting project
is the Orbital library [17], which provides algorithms from
(mathematical) logic, polynomial arithmetic with Groebner
bases and genetic optimization.

Due to limited space we have not discussed the related
mathematical work on solvable polynomials and Groebner
base algorithms, see e.g. [2, 7] for some introduction.

1.2 Outline
In section 2 we present an overall view of the design of

the central interfaces and classes. We show how part of
the Axiom / Aldor basic type hierarchie can be realized.
We discuss the usage of creational patterns, such as fac-
tory, abstract factory, or prototype in the construction of
the library. We do currently not have an explicit storage
abstraction and a conversion abstraction to coerce elements
from one type to another. However the generic polynomial
class GenPolynomial applies the facade pattern to hide the
user form its complex internal workings. In section 3 we
take a closer look at the functionality, i.e. the methods and
attributes of the presented main classes. Section 4 treats
some aspects of the implementation and discusses the usage
of standard Java patterns to encapsulate different imple-
mentations of parallel Groebner base algorithms. Finally
section 5 draws some conclusions and shows missing parts
of the library.

2. DESIGN
One of the first things we have to decide is how we want

CextendsRingElem<C>RingElem

CextendsElement<C>Element
CextendsAbelianGroupElem<C>AbelianGroupElem CextendsMoniodElem<C>MonoidElem

CextendsGcdRingElem<C>GcdRingElem CextendsStarRingElem<C>StarRingElem
Figure 1: Overview of some algebraic types

to implement algebraic structures and elements of these al-
gebraic structures. Alternatives are i) elements are imple-
mented as (Java or C++) objects with data structure and
methods or ii) elements are simple C++ like structs or
records and algebraic structure functionality is implemented
as (static) methods of module like classes. The second alter-
native is more natural to mathematicians, as they perceive
algebraic structures as sets (of elements) and maps between
such sets. In this view an algebraic structure is a collection
of maps (or functions) and a natural implementation is as in
FORTRAN as bunches of functions with elements (integers
and floats) directly implemented by hardware types. How-
ever scientific function libraries implemented in this style
are horrible because of the endless parameter lists and the
endless repetitions of functions doing the same for other pa-
rameter types. The first alternative is the approach of com-
puter scientists and it leads to better data encapsulation,
context encapsulation and more modular and maintainable
code. Since the algebraic elements we are interested in have
sufficient internal structure (arbitrary precision integers and
multivariate polynomials) we opt for encapsulation with its
various software engineering advantages and so choose the
first alternative. This reasoning also implies using Java
as implementation language, since otherwise we could have
used FORTRAN.

2.1 Type structure
Using Java generic types (types as parameters) it is not

difficult to specify the interfaces for the most used algebraic
types. The interfaces define a type parameter C which is
required to extend the respective interface. The central
interface is RingElem (see figures 1 and 3) which extends
AbelianGroupElem with the additive methods and Monoid-

Elem with the multiplicative methods. Both extend Element

with methods needed by all types. RingElem is itself ex-
tended by GcdRingElem with greatest common divisor meth-
ods and StarRingElem with methods related to (complex)

144

conjugation. This exemplifies the suitability of Java to im-
plement Axiom / Aldor like type systems, although we do
not present such a comprehensive type hierarchy as they do.

2.2 Ring element creation
Figure 2 (see also figure 3) gives an overview of the cen-

tral classes. The interface RingElem defines a recursive type
which defines the functionality (see next section) of the poly-
nomial coefficients and is also implemented by the polyno-
mials itself. So polynomials can be taken as coefficients for
other polynomials, thus defining a recursive polynomial ring
structure.

Since the construction of constant ring elements (e.g. zero
and one) has been difficult in our previous designs, we sep-
arated the creational aspects of ring elements into ring fac-
tories with sufficient context information. The minimal fac-
tory functionality is defined by the interface RingFactory.
Constructors for polynomial rings will then require factories
for the coefficients so that the construction of polynomials
over these coefficient rings poses no problem. The ring fac-
tories are additionally required because of the Java generic
type design. I.e. if C is a generic type name it is not possible
to construct a new object with new C(). Even if this would
be possible, one can not specify constructor signatures in
Java interfaces, e.g. to construct a one or zero constant
ring element. Recursion is again achieved by using polyno-
mial factories as coefficient factories in recursive polynomial
rings. Constructors for polynomials will always require a
polynomial factory parameter which knows all details about
the polynomial ring under consideration.

2.3 Polynomials and coefficients
Basic coefficient classes, such as BigRational or Big-

Integer, implement both the RingElem and RingFactory

interfaces. This is convenient, since these classes do not
need further context information in the factory. In the im-
plementation of the interfaces the type parameter C extends

RingElem<C> is simultaneously bound to the respective class,
e.g. BigRational. Coefficient objects can in most cases be
created directly via the respective class constructors, but
also via the factory methods. E.g. the object represent-
ing the number 2 can be created by new BigRational(2)

or by fac = new BigRational(), fac.fromInteger(2) and
the object representing the rational number 1/2 can be cre-
ated by new BigRational(1,2) or by fac.parse("1/2").

Generic polynomials are implemented in class GenPoly-

nomial, which has a type parameter C which extends Ring-
Elem<C> for the coefficient type (see figures 2 and 3). So all
operations on coefficients required in polynomial arithmetic
and manipulation are guaranteed to exist by the RingElem

interface. The constructors of the polynomials always re-
quire a matching polynomial factory. The generic polyno-
mial factory is implemented in the class GenPolynomial-

Ring, again with type parameter C extends RingElem<C>

(not RingFactory). The polynomial factory however imple-
ments the interface RingFactory<C extends RingElem<C>>

so that it can also be used as coefficient factory. The con-
structors for GenPolynomialRing require at least parameters
for a coefficient factory and the number of variables of the
polynomial ring.

Having generic polynomial and elementary coefficient im-
plementations one can attempt to construct polynomial ob-
jects. The type is first created by binding the type parame-

ter C to the desired coefficient type, e.g. BigRational. So we
arrive at the type GenPolynomial<BigRational>. Polyno-
mial objects are then created via the respective polynomial
factory of type GenPolynomialRing<BigRational>, which
is created by binding the generic coefficient type of the
generic polynomial factory to the desired coefficient type,
e.g. BigRational. A polynomial factory object is created
from a coefficient factory object and the number of vari-
ables in the polynomial ring as usual with the new operator
via one of its constructors. Given an object coFac of type
BigRational, e.g. created with new BigRational(), a poly-
nomial factory object pf of the above described type could
be created by

new GenPolynomialRing<BigRational>(coFac,5).

I.e. we specify a polynomial ring with 5 variables over the
rational numbers. A polynomial object p of the above de-
scribed type can then be created by any method defined
in RingFactory, e.g. by pf.fromInteger(1), pf.getONE(),
pf.random(3) or pf.parse("1"). See also the example in
figure 4.

Since GenPolynomial itself implements the RingElem in-
terface, they can also be used recursively as coefficients. We
continue the polynomial example and are going to use poly-
nomials over the rational numbers as coefficients of a new
polynomial. The type is then

GenPolynomial<GenPolynomial<BigRational>>

and the polynomial factory has type

GenPolynomialRing<GenPolynomial<BigRational>>.

Using the polynomial coefficient factory pf from above a
recursive polynomial factory rfac could be created by new

GenPolynomialRing<GenPolynomial<BigRational>>(pf,3)

The creation of a recursive polynomial object r of the above
described type is then as a easy as before e.g. by rfac.get-

ONE(), rfac.fromInteger(1) or rfac.random(3).

2.4 Solvable polynomials
The generic polynomials are intended as super class for

further types of polynomial rings. As one example we take
solvable polynomials, which are like normal polynomials but
are equipped with a new non-commutative multiplication.
From mathematics one would expect that a polynomial class
would extend a solvable polynomial class, but it it is the
other way, since the multiplication method gets overwrit-
ten for non-commutative multiplication. The implementing
class GenSolvablePolynomial extends GenPolynomial (see
figures 2 and 3) and inherits all methods except clone() and
multiply(). The class also has a type parameter C which
extends RingElem<C> for the coefficient type. Note, that the
inherited methods are in fact creating solvable polynomials
since they employ the solvable polynomial factory for the
creation of any new polynomials internally. Only the formal
method return type is that of GenPolynomial, the run-time
type is GenSolvablePolynomial to which they can be casted
as required. The factory for solvable polynomials is im-
plemented by the class GenSolvablePolynomialRing which
also extends the generic polynomial factory. So this factory
can also be used in the constructors of GenPolynomial to
produce in fact solvable polynomials internally. The data

145

CextendsRingElem<C>RingElem CextendsRingElem<C>RingFactory

CextendsRingElem<C>GenPolynomial

GenSolvablePolynomial<BigRational>GenSolvablePolynomialRing<Bigational>

BigRational
CextendsRingElem<C>GenPolynomialRing

CextendsRingElem<C>GenSolvablePolynomial <CextendsRingElem<C>>GenSolvablePolynomialRing

GenPolynomial<BigRational>

GenPolynomial<GenPolynomial<BigRational>>

GenPolynomialRing<Bigational>

GenPolynomialRing<GenPolynomial<BigRational>>

<<bind>>C2>BigRational
<<bind>>C2>BigRational

<<bind>>C2>BigRational<<bind>>C2>BigRational

<<bind>>C2>GenPolynomial<BigRational>

<<bind>>C2>BigRational

<<bind>>C2>GenPolynomial<BigRational>

<<bind>>C2>BigRational

Figure 2: Overview of polynomial types

146

structure is enhanced by a table of non-commutative rela-
tions, called RelationTable, defining the new multiplica-
tion. The constructors delegate most things to the corre-
sponding super class constructors and additionally have a
parameter for the RelationTable to be used. Also the meth-
ods delegate the work to the respective super class methods
where possible and then handle the non-commutative mul-
tiplication relations separately.

The construction of solvable polynomial objects follows
directly that of polynomial objects. The type is created
by binding the type parameter C to the desired coefficient
type, e.g. BigRational. So we have the type GenSolvable-

Polynomial<BigRational>. Solvable polynomial objects are
then created via the respective solvable polynomial factory
of type

GenSolvablePolynomialRing<BigRational>,

which is created by binding the generic coefficient type of the
generic polynomial factory to the desired coefficient type,
e.g. BigRational. A solvable polynomial factory object is
created as usual from a coefficient factory object, the num-
ber of variables in the polynomial ring and a table containing
the defining non-commutative relations with the new opera-
tor via one of its constructors. Given an object coFac of type
BigRational as before, a polynomial factory object spfac

of the above described type could be created by new

GenSolvablePolynomialRing<BigRational>(coFac,5).

This defines a solvable polynomial ring with 5 variables
over the rational numbers with no commutator relations.
A solvable polynomial object of the above described type
can then be created by any method defined in RingFactory,
e.g. by spfac.getONE(), spfac.fromInteger(1), spfac.-

parse("1") or spfac.random(3). Some care is needed to
create RelationTable objects since its constructor requires
the solvable polynomial ring which is under construction as
parameter (see section 3.3).

3. FUNCTIONALITY OF MAIN CLASSES
In this section we present the methods defined by the

interfaces and classes from the proceeding sections. An
overview is given in figure 3.

3.1 Ring elements
The RingElem interface (with type parameter C) defines

the usual methods required for ring arithmetic such as C

sum(C S), C subtract(C S), C negate(), C abs(), C mul-

tiply(C s), C divide(C s), C remainder(C s). C inver-

se(). Although the actual ring may not have inverses for
every element or some division algorithm we have included
these methods in the definition. In a case where there is no
such function, the implementation may deliberately throw a
RuntimeException or choose some other meaningful element
to return. The method isUnit() can be used to check if an
element is invertible.

Besides the arithmetic methods there are the following
testing methods boolean isZERO(), isONE(), isUnit() and
int signum(). The first three test if the element is 0, 1 or
a unit in the respective ring. The signum() method defines
the sign of the element (in case of an ordered ring). It is
also employed in toString() to determine which sign to
‘print’. The methods equals(Object b), int hashCode()

and int compareTo(C b) are required to keep Java’s object
machinery working in our sense. They are used when an
element is put into a Java collection class, e.g. Set, Map

or SortedMap. The last method C clone() can be used to
obtain a copy of the actual element. As creational method
one should better use the method C copy(C a) from the ring
factory, but in Java it is more convenient to use the clone()
method.

As mentioned before, the creational aspects of rings are
separated into a ring factory. A ring factory is intended to
store all context information known or required for a specific
ring. Every ring element should also know its ring factory,
so all constructors of ring element implementations require
a parameter for the corresponding ring factory. Unfortu-
nately constructors and their signature can not be specified
in a Java interface. The RingFactory interface also has a
generic type parameter C which is constrained to a type
with the ring element functionality (see figure 3). The de-
fined methods are C getZERO(), C getONE(), which create
0 and 1 of the ring. The creation of the 1 is most difficult,
since for a polynomial it implies the creation of the 1 from
the coefficient ring, i.e. we need a factory for coefficients
at this point. Then there are methods to embed a natural
number into the ring and create the corresponding ring ele-
ment C fromInteger(long a) and C fromInteger(java.-

math.BigInteger a). The others are C random (int n),
C copy(C c), C parse (String s), and C parse (Reader

r). The copy() method was intended as the main means
to obtain a copy of a ring element, but it is now seldom
used in our implementation. Instead the clone() method
is used from the ring element interface. The random(int

n) method creates a random element of the respective ring.
The parameter n specifies an appropriate maximal size for
the created element. In case of coefficients it usually means
the maximal bit-length of the element, in case of polyno-
mials it influences the coefficient size and the degrees. For
polynomials there are random() methods with more parame-
ters. The two methods parse(String s) and parse(Reader

r) create a ring element from some external string represen-
tation. For coefficients this is mostly implemented directly
and for polynomials the class GenPolynomialTokenizer is
employed internally. In the current implementation the ex-
ternal representation of coefficients may never contain white
space and must always start with a digit. In the future the
ring factory will be enhanced by methods that test if the
ring is commutative, associative or has some other impor-
tant property or the value of a property, e.g. is an euclidian
ring, is a field, an integral domain, a unique factorization
domain, its characteristic or if it is Noetherian.

3.2 Polynomials
The GenPolynomialRing class has a generic type param-

eter C as already explained (see figure 3). Further the class
implements a RingFactory over GenPolynomial<C> so that
it can be used as coefficient factory of a different polynomial
ring. The constructors require at least a factory for the co-
efficients as first parameter of type RingFactory<C> and the
number of variables in the second parameter. A third pa-
rameter can optionally specify a TermOrder and a fourth pa-
rameter can specify the names for the variables of the poly-
nomial ring. Via TermOrder objects the required compara-
tors for the SortedMap are produced. Besides the methods
required by the RingFactory interface there are additional

147

CextendsRingElem<C>RingElem+isZERO():boolean+isONE():boolean+isUnit():boolean+equals(o:Object):boolean+hashCode():int+compareTo(a:C):int+clone():C+negate():C+sum(a:C):C+subtract(a:C):C+multiply(a:C):C+inverse():C+divide(q:C):C+remainder(q:C):C
CextendsRingElem<C>GenPolynomial+GenPolynomial(r:GenPolynomialRing)+GenPolynomial(r:GenSolvablePolynomialRing,c:C,e:ExpVector)#GenPolynomial(r:GenPolynomialRing,m:SortedMap)+leadingBaseCoefficient():C+leadingExpVector():ExpVector+leadingMonomial()+length():int+extend(r:GenPolynomialRing,j:int,k:long):GenPolynomial+contract(r:GenPolynomialRing):GenPolynomial+toString():String+toString(v:String[]):String+gcd(a:GenPolynomial):GenPolynomial+modInverse(m:GenPolynomial):GenPolynomial

CextendsRingElem<C>GenSolvablePolynomial+GenSolvablePolynomial(r:GenSolvablePolynomialRing)+GenSolvablePolynomial(r:GenSolvablePolynomialRing,c:C,e:ExpVector)#GenSolvablePolynomial(r:GenSolvablePolynomialRing,m:SortedMap)+multiply(a:GenSolvablePolynomial):GenSolvablePolynomial+multiplyLeft(c:C):GenPolynomial+multiplyLeft(e:ExpVector):GenSolvablePolynomial+multiplyLeft(c:C,e:ExpVector):GenSolvablePolynomial

CextendsRingElem<C>RingFactory+getZERO():C+getONE():C+fromInteger(i:long):C+random(n:int):C+copy(a:C):C+parse(s:String):C

<CextendsRingElem<C>>GenSolvablePolynomialRing+GenSolvablePolynomialRing(coFac:RingFactory,n:int)+GenSolvablePolynomialRing(coFac:RingFactory,n:int,to:TermOrder)+GenSolvablePolynomialRing(coFac:RingFactory,n:int,to:TermOrder,rel:RelationTable)+extend(i:int):GenSolvablePolynomialRing+contract(i:int):GenSolvablePolynomialRing+toString():String+isAssociative():boolean

CextendsRingElem<C>GenPolynomialRing+GenPolynomialRing(coFac:RingFactory,n:int)+GenPolynomialRing(coFac:RingFactory,n:int,to:TermOrder)+GenPolynomialRing(coFac:RingFactory,n:int,to:TermOrder,v:String[])+contract(i:int):GenPolynomialRing+extend(i:int):GenPolynomialRing+toString():String+random(k:int,l:int,d:int,q:float):GenPolynomial

For better readability not all type parameters C are shown.

Figure 3: Overview of class functionality

148

In this example we show some computations with the poly-
nomial 3x2

1x
4
3 + 7x5

2 − 61 from the introduction.

BigInteger z = new BigInteger();

TermOrder to = new TermOrder();

String[] vars = new String[] { "x1", "x2", "x3" };

GenPolynomialRing<BigInteger> ring

= new GenPolynomialRing<BigInteger>(z,3,to,vars);

GenPolynomial<BigInteger> pol

= ring.parse("3 x1^2 x3^4 + 7 x2^5 - 61");

With toString() or toString(ring.getVars()) the fol-
lowing output is produced. IGRLEX is a name for the default
term order.

ring = BigInteger(x1, x2, x3) IGRLEX

pol = GenPolynomial[

3 (4,0,2), 7 (0,5,0), -61 (0,0,0)]

pol = 3 x1^2 * x3^4 + 7 x2^5 - 61

Subtraction and multiplication of polynomials is e.g.

p1 = pol.subtract(pol);

p2 = pol.multiply(pol);

with the following output.

p1 = GenPolynomial[]

p1 = 0

p2 = 9 x1^4 * x3^8 + 42 x1^2 * x2^5 * x3^4

+ 49 x2^10

- 366 x1^2 * x3^4 - 854 x2^5 + 3721

Figure 4: Example from the introduction

random() methods which provide more control over the cre-
ation of random polynomials. They have the following pa-
rameters: the bit-size of random coefficients to be used in
the random() method of the coefficient factory, the number
of terms (i.e. the length of the polynomial), the maximal de-
gree in each variable and the density of non-zero exponents,
i.e. the ratio of non-zero to zero exponents. The toString()
method creates a string representation of the polynomial
ring consisting of the coefficient factory string representa-
tion, the tuple of variable names and the string representa-
tion of the term order. The extend() and contract() meth-
ods create ’bigger’ respectively ’smaller’ polynomial rings.
Both methods take a parameter of how many variables are
to be added or removed form the actual polynomial ring.
extend() will setup an elimination term order consisting of
two times the actual term order when ever possible.

The GenPolynomial class has a generic type parameter C

as explained above (see figure 3). Further the class imple-
ments a RingElem over itself RingElem<GenPolynomial<C>>
so that it can be used for the coefficients of an other poly-
nomial ring. The functionality of the ring element methods
has already been explained in the previous section. There
are two public and one protected constructors, each requires
at least a ring factory parameter GenPolynomialRing<C> r.
The first creates a zero polynomial GenPolynomial(r), the
second creates a polynomial of one monomial with given co-
efficient and exponent tuple GenPolynomial(r, C c, Exp-

Vector e), the third is protected for internal use only and
creates a polynomial from the internal sorted map of an

other polynomial GenPolynomial(r, SortedMap< ExpVec-

tor, C > v). There is no heavy weight contructor accept-
ing a Map< ExpVector, C > parameter. Further there are
methods to access parts of the polynomial like leading term,
leading coefficient (still called leading base coefficient from
some old tradition) and leading monomial. The toString()

method creates as usual a string representation of the poly-
nomials consisting of exponent tuples and coefficients. One
variant of it takes an array of variable names and creates
a string consisting of coefficients and products of powers of
variables. See the example from the introduction in figure
4. The method extend() is used to embed the polynomial
into the ‘bigger’ polynomial ring specified in the first pa-
rameter. The embedded polynomial can also be multiplied
by a power of a variable. The contract() method returns a
Map of exponents and coefficients. The coefficients are poly-
nomials belonging to the ‘smaller’ polynomial ring specified
in the first parameter. If the polynomial actually belongs to
the smaller polynomial ring the map will contain only one
pair, mapping the zero exponent vector to the polynomial
with variables removed. A last group of methods computes
(extended) greatest common divisors. They work correct
for univariate polynomials over a field but not for arbitrary
multivariate polynomials. These methods will be moved to
a new separate class together with a correct implementation
for the multivariate case if I find some time.

3.3 Solvable polynomials
The GenSolvablePolynomial class also has a generic type

parameter C as explained above. The class extends the Gen-

Polynomial class (see figure 3). It inherits all additive func-
tionality and overwrites the multiplicative functionality with
a new non-commutative multiplication method. Unfortu-
nately it cannot implement a RingElem over itself

RingElem<GenSolvablePolynomial<C>>

but can only inherit the implementation of

RingElem<GenPolynomial<C>>

from its super class. By this limitation a solvable poly-
nomial can still be used as coefficient in another polyno-
mial, but only with the type of its super class. The lim-
itation comes form the erasure of template parameters in
RingElem<...> to RingElem for the code generated. I.e.
the generic interfaces become the same after type erasure
and it is not allowed to implement the same interface twice.
There are two public and one protected constructors as in
the super class. Each requires at least a ring factory param-
eter GenSolvablePolynomialRing<C> r which is stored in a
variable of type GenPolynomialRing<C> shadowing the vari-
able with the same name of the super factory type. Via this
mechanism also the super class methods will create solvable
polynomials. The rest of the initialization work is delegated
to the super class constructor.

The GenSolvablePolynomialRing class also has a generic
type parameter C. It extends GenPolynomialRing and over-
writes most methods to implement the handling of the Re-

lationTable. However it cannot implement a RingFactory

over GenSolvablePolynomial<C> but only a RingFactory

over GenPolynomial<C> by inheritance due to the same rea-
son of type erasure as above. But it can be used as coefficient
factory with the type of its super class for a different polyno-
mial ring. One part of the constructors just restate the super

149

class constructors with the actual solvable type. A solvable
polynomial ring however must know how to perform the
non-commutative multiplication. To this end a data struc-
ture with the respective commutator relations is required. It
is implemented in the RelationTable class. The other part
of the constructors additionally takes a parameter of type
RelationTable to set the initial commutator relation table.
Some care is needed to create relation tables and solvable
polynomial factories since the relation table requires a solv-
able polynomial factory as parameter in the constructor. So
it is most advisable to create a solvable polynomial factory
object with empty relation table and to fill it with commu-
tator relations after the constructor is completed but before
the factory will be used. In the above example where spfac

is a factory for solvable polynomials the relations for a Weyl
algebra could be generated as follows

WeylRelations<BigRational> wl

= new WeylRelations<BigRational>(spfac);

wl.generate();

There is also a new method isAssociative() which tries to
check if the commutator relations indeed define an associa-
tive algebra. This method should be extracted to the Ring-

Factory interface together with a method isCommutative(),
since both are of general importance and not always fulfilled
in our rings. E.g. BigQuaternion is not commutative and
so a polynomial ring over these coefficients can not be com-
mutative. The same applies to associativity and the class
BigOctonion.

4. IMPLEMENTATION
Today the implementation consists of about 100 classes

and interfaces plus about 50 JUnit classes with unit tests.
Logging is provided by the Apache Log4j package. More-
over there are some Jython classes for a more convenient
interactive interface.

Basic data types, such as rational numbers, can directly
implement both interfaces RingElem and RingFactory to
avoid the separate implementation of factory classes. More
complex data types, such as polynomials implement the in-
terfaces in two different classes. Constructors for basic data
types can be implemented in any appropriate way. Con-
structors for more complex data types with separate factory
classes should always require one parameter to be of the
respective factory type. This is to avoid the creation of el-
ements with no knowledge of is corresponding ring factory.
Constructors which require more preconditions, which are
only provided by type (internal) methods should not be de-
clared public. It seems best to declare them as protected.

The implementation of basic arithmetic is based on the
java.math.BigInteger class, which is itself implemented
like GnuMP. Multiplication performance was in 2000 ap-
proximately 10 to 15 times faster than that of the respective
SACI module of MAS [13] (see e.g. the the weblog in [12]).
Since we require our big integers to implement the RingElem
interface, we employ the facade pattern for our BigInteger
class. Beside this, at the moment the following classes are
implemented BigRational, ModInteger, BigComplex, Big-
Quaternion and BigOctonion. Using (univariate) generic
polynomials we provide an AlgebraicNumber class, which
can be used over BigRational or ModInteger, i.e. it imple-
ments algebraic number rings with zero or finite character-
istic.

GroebnerBaseAbstract+GrobnerBaseAbstract(red:Reduction)+isGB(F:List<GenPolynomial>):boolean+isGB(modv:int,F:List<GenPolynomial>):boolean+GB(F:List<GenPolynomial>):List<GenPolynomial>+GB(modv:int,F:List<GenPolynomial>):List<GenPolynomial>+extGB(F:List<GenPolynomial>):ExtendedGB+extGB(modv:int,F:List<GenPolynomial>):ExtendedGB+minimalGB(G:List<GenPolynomial>):List<GenPolynomial>

GroebnerBaseSeq+GroebnerBaseSeq(red:Reduction)+GB(modv:int,F:List<GenPolynomial>):List<GenPolynomial>

GroebnerBaseParallel+GroebnerBaseParallel(threads:int,red:Reduction)+GB(modv:int,F:List<GenPolynomial>):List<GenPolynomial>GroebnerBaseDistributed+GroebnerBaseDistributed(threads:int,red:Reduction,port:int)+GB(modv:int,F:List<GenPolynomial>):List<GenPolynomial>

Reduction+normalform(F:List<GenPolynomial>,p:GenPolynomial):GenPolynomial

GroebnerBase+isGB(F:List<GenPolynomial>):boolean+isGB(modv:int,F:List<GenPolynomial>):boolean+GB(F:List<GenPolynomial>):List<GenPolynomial>+GB(modv:int,F:List<GenPolynomial>):List<GenPolynomial>+extGB(F:List<GenPolynomial>):ExtendedGB+extGB(modv:int,F:ExtendedGB):ExtendedGB+minimalGB(G:List<GenPolynomial>):List<GenPolynomial>

Figure 5: Groebner Base classes

Generic polynomials are implemented as sorted maps from
exponent vectors to coefficients. Helper classes are taken
from the Java collections framework, i.e. from the pack-
age java.util. For the implementation of the sorted map
the Java class TreeMap is taken. An older alternative imple-
mentation using Map, implemented with LinkedHashMap, has
been abandoned due to inferior performance. The monoid of
terms consists exponent vectors, i.e. the keys of the Map are
implemented by the class ExpVector. There is only one im-
plementation of exponent vectors ExpVector as dense Java
array of longs. Other implementations, e.g. sparse repre-
sentation or bigger numbers or ints are not considered at the
moment. The comparators for SortedMap<ExpVector,C>

are created from a TermOrder class, e.g. by method get-

DescendComparator(). TermOrder provides Comparators for
most term orders used in practice: lexicographical, graded
and term orders defined by weight matrices. The polynomial
objects are intended to be immutable. I.e. the object vari-
ables are declared final and the map is never modified once
it is created. One could also wrap it with unmodifiable-

SortedMap() if desired. This design avoids further synchro-
nization on polynomial methods in parallel algorithms.

As explained above non-commutative polynomials defined
with respect to certain commutator relations are extended
from GenPolynomial respectively GenPolynomialRing. The
commutator relations are stored in RelationTable objects,
which are intended to be internal to the GenSolvablePoly-

nomialRing since they contain polynomials generated from
this factory. The RelationTable is optimized for a fast de-
tection of commutative multiplication, i.e. relations of the
form xj ∗ xi = xixj for some i, j. The overhead of comput-
ing commutative polynomials with GenSolvablePolynomial

objects is approximately 20%. The relation table is eventu-
ally modified in synchronized methods if new relations be-

150

 0
 2e+06
 4e+06
 6e+06
 8e+06
 1e+07

 1.2e+07
 1.4e+07
 1.6e+07
 1.8e+07

 0 2 4 6 8 10 12 14 16

m
ill

is
ec

on
ds

#CPUs

GBs of Katsuras example on compute

Thu Jul 21 22:28:37 2005

kat_7 computing time
kat_7 ideal

 0
 2
 4
 6
 8

 10
 12
 14
 16

 0 2 4 6 8 10 12 14 16

sp
ee

du
p

#CPUs

GBs of Katsuras example on compute

Thu Jul 21 22:28:37 2005

kat_7 speedup
kat_7 ideal

Figure 6: Katsura 7 parallel Groebner base, 16 CPU
JDK 1.4, 32 bit JVM, option UseParallelGC, Intel XEON
2.7 GHz, 1GB JVM memory, 0 CPUs means sequential

 1e+06
 2e+06
 3e+06
 4e+06
 5e+06
 6e+06
 7e+06
 8e+06
 9e+06
 1e+07

 1.1e+07

 0 1 2 3 4 5 6 7 8

m
ill

is
ec

on
ds

#CPUs

GBs of Katsuras example on rumtest7

Thu Feb 02 11:04:29 2006

katsura_7 computing time
katsura_7 ideal

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0 1 2 3 4 5 6 7 8

sp
ee

du
p

#CPUs

GBs of Katsuras example on rumtest7

Thu Feb 02 11:04:29 2006

katsura_7 speedup
katsura_7 ideal

Figure 7: Katsura 7 parallel Groebner base, 8 CPU
JDK 1.5, 64 bit JVM, AMD Opteron 2.2 GHz, 1GB JVM

memory, 0 CPUs means sequential version

tween powers of variables are computed, e.g. x
ej

j ∗ xei
i =

ci′j′xei
i x

ej

j +pi′j′ for some i, j. These new relations are then
used to speedup future non commutative multiplications.
GenSolvablePolynomial implements the non commutative
multiplication and uses the additive commutative methods
from its super class. As mentioned before, casts are required
for the super class methods, e.g.

(GenSolvablePolynomial<C>) p.sum(q).

The respective objects are however correctly build using the
methods from the solvable ring factory.

The class design allows solvable polynomial objects to be
used in all algorithms where GenPolynomials can be used as
parameters as long as no distinction between left and right
multiplication is required.

4.1 Groebner bases
As an application of the generic polynomials we have im-

plemented some more advanced algorithms. E.g. polyno-
mial reduction (a kind of multivariate polynomial division

 0
 10000
 20000
 30000
 40000
 50000
 60000
 70000
 80000
 90000

 0 2 4 6 8 10 12 14 16

m
ill

is
ec

on
ds

#CPUs

GBs of Katsuras example on compute

Sat Dec 31 19:47:11 2005

kat_6 computing time
kat_6-old computing time

kat_6 ideal

 0
 2
 4
 6
 8

 10
 12
 14
 16

 0 2 4 6 8 10 12 14 16

sp
ee

du
p

#CPUs

GBs of Katsuras example on compute

Sat Dec 31 19:47:11 2005

kat_6 speedup
kat_6-old speedup

kat_6 ideal

Figure 8: Katsura 6 parallel Groebner base, 16 CPU
JDK 1.4, 32 bit JVM, option UseParallelGC, Intel XEON
2.7 GHz, 1GB JVM memory, 0 CPUs means sequential

algorithm) or Buchbergers algorithm to compute Groeb-
ner bases (a kind of a Gaussian elimination for multivari-
ate polynomials). The algorithms are also implemented for
solvable polynomial rings (with left, right and two-sided
variants) and modules over these rings. These algorithms
are implemented following standard object oriented patterns
(see figure 5). There is an interface, e.g. GroebnerBase,
which specifies the desirable functionality, like isGB(), GB()
or extGB(). Then there is an abstract class, e.g. Groebner-
BaseAbstr, which implements as much methods as possible.
It further defines the desirable constructor parameters, e.g.
a Reduction parameter which sets a polynomial reduction
engine with suitable properties. Finally there are concrete
classes which extend the abstract class and implement differ-
ent algorithmic details. E.g. GroebnerBaseSeq implements
a sequential, GroebnerBaseParallel implements a thread
parallel and GroebnerBaseDistributed implements a net-
work distributed version of the core Groebner base algo-
rithm. In 2003 we compared the Groebner base algorithm
to a similar version and implementation of MAS [13]. For
the big Trinks example the Java implementation was 8 times
faster.

4.2 Parallelism
During the work on [14] we developed the ideas for de-

sign of parallel and distributed implementation of core algo-
rithms. The Groebner base computation is done by a variant
of the classical Buchberger algorithm. It maintains a data
structure, called pair list, for book keeping of the compu-
tations (forming S-polynomials and doing reductions). This
data structure is implemented by CriticalPairList and
OrderedPairList. Both have synchronized methods put()

and getNext() respectively removeNext() to update the
data structure. In this way the pair list is used as work
queue in the parallel and distributed implementations. The
parallel implementations scales well for up to 8 CPUs, for a
well structured problem (figures 6 and 7) and up to 4 CPUs
on a smaller problem (figure 8). Since the polynomials are
implemented as immutable classes no further synchroniza-
tion is required for the polynomial methods. The distributed
implementation makes further use of a distributed list (im-

151

plemented via a distributed hash table DHT) for the com-
munication of the reduction bases and a distributed thread
pool for running the reduction engines in different comput-
ers. Java object serialization is used to encode polynomials
for network transport. Polynomials are only transfered once
to or from a computing node, critical pairs are only trans-
fered using indexes of polynomials in the DHT.

5. CONCLUSIONS
We have provided a sound object oriented design and

implementation of a library for algebraic computations in
Java. For the first time we have produced a type safe li-
brary using generic type parameters. The proposed inter-
faces and classes are as expressive as the category and do-
main constructs of Axiom or Aldor, although we have not
jet implemented all possible structures. The library pro-
vides multivariate polynomials and multiprecision base co-
efficients which are used for a large collection of Groebner
base algorithms. For the first time we have presented an ob-
ject oriented implementation of non-commutative solvable
polynomials and many non-commutative Groebner base al-
gorithms. The library employs various design patterns, e.g.
creational patterns (factory and abstract factory) for alge-
braic element creation. For the main working structures
we use the Java collection framework. The parallel and dis-
tributed implementation of Groebner base algorithms draws
heavily on the Java packages for concurrent programming
and internet working. The suitability of the design is ex-
emplified by the successful implementation of a large part
of ‘additive ideal theory’, e.g. different Groebner base and
syzygy algorithms. With the Jython wrapper the library
can also be used interactively.

We hope that the problems with type erasure in generic
interfaces could be solved in some future version of the Java
language. It would also be helpful if there was some way to
impose restrictions on constructors in interface definitions.

In the future we will implement more of ‘multiplicative
ideal theory’, i.e. multivariate polynomial greatest common
divisors and factorization.

Acknowledgments
I thank Thomas Becker (who is working or thinking about
a C++ implementation of a polynomial template library)
for discussions on the subject. Further I thank Aki Yoshida
from whom I learned much about object oriented program-
ming and design. Thanks also to the anonymous referees for
the suggestions to improve the paper.

6. REFERENCES
[1] M. Y. Becker. Symbolic Integration in Java. PhD

thesis, Trinity College, University of Cambridge, 2001.

[2] T. Becker and V. Weispfenning. Gröbner Bases - A
Computational Approach to Commutative Algebra.
Springer, Graduate Texts in Mathematics, 1993.

[3] L. Bernardin, B. Char, and E. Kaltofen. Symbolic
computation in Java: an appraisement. In S. Dooley,
editor, Proc. ISSAC 1999, pages 237–244. ACM Press,
1999.

[4] M. Bronstein. Sigmait - a strongly-typed embeddable
computer algebra library. In J. Calmet and
C. Limongelli, editors, Proc. DISCO 1996, volume

1128 of Lecture Notes in Computer Science, pages
22–33. Springer, 1996.

[5] J. Buchmann and T. Pfahler. LiDIA, pages 403–408.
in Computer Algebra Handbook, Springer, 2003.

[6] M. Conrad. The Java class package com.perisic.ring.
Technical report, http://ring.perisic.com/, 2002-2004.

[7] D. Cox, J. Little, and D. O’Shea. Ideals, Varieties and
Algorithms. Springer, Undergraduate Texts in
Mathematics, 1992.

[8] J. Grabmaier, E. Kaltofen, and V. Weispfenning,
editors. Computer Algebra Handbook. Springer, 2003.

[9] G.-M. Greuel, G. Pfister, and H. Schönemann.
Singular - A Computer Algebra System for Polynomial
Computations, pages 445–450. in Computer Algebra
Handbook, Springer, 2003.

[10] R. Jenks and R. Sutor, editors. axiom The Scientific
Computation System. Springer, 1992.

[11] H. Kredel. A systems perspective on A3L. In Proc.
A3L: Algorithmic Algebra and Logic 2005, pages
141–146. University of Passau, April 2005.

[12] H. Kredel. The Java algebra system. Technical report,
http://krum.rz.uni-mannheim.de/jas/, since 2000.

[13] H. Kredel and M. Pesch. MAS: The Modula-2 Algebra
System, pages 421–428. in Computer Algebra
Handbook, Springer, 2003.

[14] H. Kredel and A. Yoshida. Thread- und Netzwerk-
Programmierung mit Java. dpunkt, 2nd edition, 2002.

[15] V. Niculescu. A design proposal for an object oriented
algebraic library. Technical report, Studia
Universitatis ”Babes-Bolyai”, 2003.

[16] V. Niculescu. OOLACA: an object oriented library for
abstract and computational algebra. In J. M. Vlissides
and D. C. Schmidt, editors, OOPSLA Companion,
pages 160–161. ACM, 2004.

[17] A. Platzer. The Orbital library. Technical report,
University of Karlsruhe,
http://www.functologic.com/, 2005.

[18] E. Poll and S. Thomson. The type system of Aldor.
Technical report, Computing Science Institute
Nijmegen, 1999.

[19] P. S. Santas. A type system for computer algebra. J.
Symb. Comput., 19(1-3):79–109, 1995.

[20] S. Watt. Aldor, pages 265–270. in Computer Algebra
Handbook, Springer, 2003.

[21] C. Whelan, A. Duffy, A. Burnett, and T. Dowling. A
Java API for polynomial arithmetic. In PPPJ ’03:
Proceedings of the 2nd international conference on
Principles and practice of programming in Java, pages
139–144, New York, NY, USA, 2003. Computer
Science Press, Inc.

[22] R. Zippel. Weyl computer algebra substrate. In Proc.
DISCO ’93, pages 303–318. Springer-Verlag Lecture
Notes in Computer Science 722, 2001.

152

Components: A valuable investment for Financial
Engineering

Why derivative contracts should be Active Documents

Markus Reitz
∗

University of Kaiserslautern
Software Technology Group

P.O. Box 3049
67653 Kaiserslautern, Germany

reitz@informatik.uni-kl.de

Ulrich Nögel∗
Fraunhofer ITWM

Department of Financial Mathematics
Fraunhoferplatz 1

67663 Kaiserslautern, Germany

noegel@itwm.fhg.de

ABSTRACT
Although component-oriented thinking is quite common to
software developers, the paradigm’s impact beyond its “na-
tive” domain is limited. Financial Engineering, a fast-grow-
ing discipline that combines finance, applied mathematics
and computer science, often uses inflexible straightforward
implementations for the underlying mathematical descrip-
tions and models. Missing the benefits of modern software
technology, even small variations in the financial products
portfolio usually induce huge reimplementation efforts. In-
stead of concentrating on the creative aspects of contract de-
velopment, financial engineers have to struggle with hard-to-
modify implementations that decrease overall productivity.
By providing concepts and techniques that improve and op-
timise the design and valuation methodology for derivative
contracts, ComDeCo1 transfers the principle of thinking in
components to this discipline. Using an explorative com-
position style, problems caused by nearly unbounded flex-
ibility, decreasing time to market periods and shortening
product life cycles are tackled effectively. This paper intro-
duces Active Documents as the theoretical background
constituting ComDeCo’s conceptual foundation. Reasons
for the decision to base ComDeCo’s domain-specific frame-
work on them and the resulting advantages are discussed.
The current state of ComDeCo’s Java-based implementa-
tion is presented and potential next steps towards the goal of
component-oriented financial engineering are sketched. Fi-
nally, possible future directions and novel scenarios of appli-
cation for ComDeCo’s results are illustrated.

∗Supported by the cluster of excellence Dependable Adap-
tive Systems and Mathematical Modeling (DASMOD) of
Rhineland-Palatinate, Germany.
1Composable Derivative Contracts, a subproject of DAS-
MOD (http://www.dasmod.de).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPPJ 2006, August 30 - September 1, 2006, Mannheim, Germany.
Copyright 2006 ACM ...$5.00.

Keywords
Active Documents, Financial Engineering, Derivative Con-
tracts, Component-Orientation, Java, XML, Web 2.0

1. INTRODUCTION
Albeit being proposed by McIllroy [1] about 40 years ago,

the principle of component-oriented software design is still
in its early stages. Component markets as envisioned by
Cox [2] do not exist (yet), but current software projects are
often based on component-oriented frameworks, especially
fostering the reuse aspect of iteratively evolving component
repositories. Unfortunately, the primary audience of state
of the practice technologies is limited to experienced devel-
opers. However, software engineers can base their software
development efforts on a firm footing of well-tested building
blocks by using component-orientation. End-user oriented
techniques are rare and often only provide rudimentary func-
tionality.

Transferring component-oriented principles to the end-
user domain is not as easy as it may seem at first glance.
When targeting end-users who do not possess in-depth tech-
nical expertise, composition environments have to be simple
and intuitive. The necessity to write glue code as a last re-
sort in case of composition mismatches has to be avoided
under all circumstances, because end-users can not be ex-
pected to be experienced software developers.

Active Documents, a component-oriented approach
which is based on extensions of the well-known metaphor
of a document, provide techniques and methodologies that
enable end-user centered component-orientation. The con-
cept of a conventional document is augmented with the bells
and whistles of modern software technology, e.g. visual com-
position and component-orientation. Moving from physical
sheets of paper to computer-based realisations (Hyperdocu-
ments) results in tremendous capability extensions: dynam-
icity replaces inflexible static representations. Nevertheless,
users are not overstrained, because fundamental concepts
remain the same.

Transitioning from the common application-centric to a
task-oriented point of view embodied by Active Docu-
ments let application boundaries diminish, eventually dis-
appear completely. End-users are able to customise their
working environment according to individual requirements
without being forced to follow monolithic upgrade paths

153

which are common nowadays. The reuse aspect being em-
phasised by current mainstream component technologies like
.NET or the Java platform is not of primary interest for end-
users. Instead, aspects such as

Adaptability to slight changes and variations of require-
ments,

Personalisability according to user-specific preferences,
usage patterns and habits,

Flexibility to cope with (potentially completely) changing
requirements during lifetime,

Openness to handle increasing complexity, changing mod-
els of abstraction and usage contexts, and

Simplicity to guarantee hassle-free configuration and tai-
loring without the necessity of having experts at hand,

are expected to be provided by software. Component-ori-
entation offers the necessary foundation, but to support
component-orientation beyond reuse, the existing developer-
centric approaches have to be augmented by additional con-
cepts and techniques that pave the way for end-user friendly
software systems.

2. RELATED WORK
Active Documents represent an evolutionary refinement

of compound document concepts which initially appeared
in the context of Microsoft’s Object Linking and Embed-
ding (OLE) technology. Enhancements of OLE led to the
developer-centric COM [3] component model which is of
great importance today. Apple’s OpenDoc [4] was an un-
successful attempt to establish a multi-platform compound
document framework. By dropping support in Mac OS X,
OpenDoc’s practical relevance has diminished completely.
Nevertheless, compound document techniques did not to-
tally disappear. Platform specific support with varying de-
grees of functionality is typically available. GNOME’s Bo-
nobo is one of the few approaches that aims at providing an
at least cross UNIX foundation for compound documents.

Minerva [5] introduced the notion of an Active Doc-
ument in context of e-Learning applications, but did not
provide a general-purpose framework. In contrast to com-
pound document technologies which solely focus on geomet-
rical constraints, a component of an Active Document is
packed with structural and semantical constraints that re-
strict composition, reducing the probability of mismatches.

3. FINANCIAL ENGINEERING
Trading of derivative contracts forms a higher-than-aver-

age growing segment of local as well as world-wide financial
markets. Financial engineers design and manage derivative
contracts whose complexity arbitrarily varies between sim-
ple put options represented by the payoff formula

P (T) = max(K − S(T), 0)

and complicated options, e.g. cliquets having a set of differ-
ent upper and lower bounds

P (T) =

NX

i=1

max

„
min

„
S(ti)− S(ti−1)

S(ti)
, Fi

«
, Ci

«!+

Simply speaking, a financial contract is an agreement be-
tween a vendor and a vendee to buy and sell certain “goods”
at specified points in time for a certain amount of monetary
units. In fact, traded goods do not have to be physical, e.g.
a vendor and a vendee could agree that the vendor receives
1000 ¿ for a contract which gives its holder, i.e. the vendee,
the right to receive 1500 ¿ when temperature in August ’06
falls below the freezing point.

In general, a derivative contract’s value somehow depends
on the performance of its underlyings, i.e. its value is de-
rived from other values. Due to this tremendous degree of
flexibility2, a vendor’s creativity concerning contract design
is (almost) unlimited. However, derivatives like the afore-
mentioned contract are quite exotic. A typical derivative
contract is usually based on the performance of e.g. stocks,
bonds, or resources like e.g. oil, gold, or coffee beans.

Example 1. A vendee expects an improvement of the dol-
lar-euro parity from the dollar perspective within the next six
months. He wants to take advantage of this market trend,
but in case of false estimation losses should be limited, i.e.
the contract should offer some kind of loss protection mech-
anism.

In order to trade, i.e. buy or sell, this and any other deriva-
tive contract, the fair price has to be determined using ap-
propriate algorithms.

3.1 Excel based spreadsheet prototypes
Rapid prototyping based on Microsoft Excel is a typical

approach in financial engineering or quantitative research at
financial institutions (see Figure 1). As any other kind of
software, prototypes evolve. The initial solution based on
pure spreadsheets is extended by Visual Basic for Applica-
tions (VBA) macros when the need for more sophisticated
calculations and applications arises. Increasing performance
demands because of numerical burdensome calculations (e.g.
Monte Carlo simulations) or intellectual property protection
aspects lead to external dynamic link libraries (DLLs) whose
provided functions are called from the spreadsheet skeleton
(see e.g. [6])3. A typical prototype in financial engineering
uses a three-tiered architecture:

1. An Excel sheet providing the graphical frontend and
the platform for rich client applications.

2. VBA code fragments acting as glue code extracting and
adapting data between the sheet and its lower level
layer.

3. A problem specific layer that provides the necessary
implementations, subsumed in one or more DLLs.

In practice, separation into completely independent layers is
uncommon. Intertwinement dominates, creating high cohe-
sion and strong coupling.

2“With derivatives you can have almost any payoff pattern
you want. If you can draw it on paper, or describe it in
words, someone can design a derivative that gives you that
payoff.” (Fischer Black, 1995)
3There exist more sophisticated techniques to extend Excel,
e.g. by using XLL, COM or the .NET framework. How-
ever, the general problems in conjunction with the associ-
ated drawbacks remain the same.

154

Glue Code

Provided Services

Market Data

Payment Dates

Start Macro

Product-specific Parameters

Figure 1: An Excel-based pricing sheet for defaultable zero coupon bonds (ZCB) and credit default swaps
(CDS). The sheet’s embedded buttons trigger VBA code execution.

3.2 Prototypes as final products
The pressure of short release cycles hand in hand with

monetary constraints favour the acceptance of prototypes
instead of mature implementations. What first started as a
prototype often becomes an everyday solution4. Prototype-
inherent problems continue to exist for the whole life cycle.

Inflexibility reduces productivity – Prototypes are al-
most always inflexible, hard-wired implementations of
the underlying mathematical description and models.
Missing the benefits of modern software technology,
even small variations in the financial products portfo-
lio induce huge reimplementation efforts. Instead of
concentrating on the creative aspects of contract de-
sign and supporting trading & sales, financial engi-
neers have to struggle with hard-to-modify implemen-
tations that decrease overall productivity.

Maintainability, extensions and debugging – Because
of high cohesion and strong coupling caused by inter-
woven layers, the maintenance effort is huge. Local
modifications trigger changes in the sheet, the glue
code and in the underlying DLLs. Proprietary APIs
and complex architectures cause time consuming de-
bugging cycles.

Archaic Design – In the past, spreadsheet solutions were
tied to plain C/C++ DLL functions. Besides design is-
sues, a large amount of time was spent on low level pro-
gramming aspects like pointers, arrays, and garbage
collection. While the underlying C++ code may obey
the concepts of object-orientation, most implementa-
tions stayed close to an inflexible procedural design
because of limitations in the wrapper code. Even to-
day, design patterns (see e.g. [8]), modular design, and
component-orientation are still uncommon.

Captured in proprietary solutions – Even without us-
ing COM or .NET, typical spreadsheet solutions are in-
trinsically tied to the Excel application platform. Mi-
gration or cross platform usage is at least limited and
often illusory. Although many financial institutions
are using the Windows platform, there is a tendency

4Exceptions of this rule exist, e.g. [7].

towards open systems like Linux in combination with
OpenOffice. The importance of cross platform solu-
tions will grow in the future, making a closed-source
ecosystem more and more uninviting.

4. COMDECO
Decreasing time to market cycles and the permanent de-

mand for all new products increases the pressure on finan-
cial engineers. To assure a company’s market position, de-
sign and valuation of derivative contracts have to be carried
out as optimal as possible. A newcomer’s market share is
enlarged when using improved workflows and already estab-
lished market players are able to strengthen their share of
the market. In fact, financial engineers have to face simi-
lar problems as their colleagues in the software development
domain.

ComDeCo [9] aims at providing techniques and concepts
which offer a high degree of scalability, so the increasing
complexity of contract design and valuation can be tackled
efficiently. Albeit not being a silver bullet for all kinds of
problems in this domain, component-orientation is able to
provide the foundation for optimised design and valuation
frameworks. A derivative contract is modeled as an Ac-
tive Document which is manipulable by using visual com-
position gestures, e.g. drag and drop. The domain-specific
framework of ComDeCo provides end-user compatible com-
position facilities tailored to the demands of financial engi-
neering and an adaptable valuation architecture that is able
to price almost arbitrary contracts. In ComDeCo’s context,
the term “active”5 refers to

• the ability to check and enforce consistency constraints
for derivative contracts, i.e. avoid meaningless design
attempts.

• the ability to automatically perform context-specific
adaptations, e.g. selection of the best-fitting valuation
algorithm and model.

The possibility to describe derivative contracts using func-
tional programming languages [10] is a hint indicating the
5However, in the context of the generic general-purpose Ac-
tive Document framework Omnia, dynamicity is discussed
in a more abstract way based on the component and com-
position model.

155

Silver price as
lower bound

Removing the constant
lower bound

Component
Repository

Derivative
Contract

Figure 2: Starting from a simple contract already available in the contract repository, the constant lower
bound is substituted by a protection whose value is the silver market price. Consistent states are indicated
by a green background, whereas transitional states are signaled by a yellow background color.

applicability of hierarchical description techniques. Com-
DeCo uses a domain-specific adaptation that models deriva-
tive contracts as a special variant: Hierarchical Active
Documents (see Figure 2). Being hierarchical, a XML
based representation is easily derived (see Figure 3). Besides
being an alternative to a pure visual composition process,
a XML-based representation allows for further manipula-
tion operations by third parties (e.g. XSL or XML Schema
tools) and is an excellent foundation for an open, i.e. non-
proprietary, design workflow.

4.1 Building blocks
ComDeCo provides a set of typical financial components

that can be used to create almost arbitrary contracts. The
derivative component is one of those core entities. Having a
sell and an acquire component as its children, the simplest of
all derivative contracts is represented by a virtual sale and a
virtual purchase, whose execution conditions are represented
by appropriate components. By performing composition op-
erations that are based on the decorator pattern, the user
has the choice to either augment already available contracts
with desired properties or start from scratch. The initial
contract in Figure 3 consists of a derivative component dec-
orated with an upper bound performance participation limit
property represented by the encapsulating cap component.

The flexibility of an Active Document system stems
from its variable component repository, which is filled ac-
cording to specific user requirements. Adding components
to the repository makes all other parts of the system, e.g.
composition and valuation facilities, automatically aware of
the supplemental functionality.

4.2 Separation of concerns
In case of fair price calculations, there is at least one ad-

ditional Active Document that is necessary to perform
proper contract valuation: the market specification. Ob-
servable components of the derivative contract express de-
pendencies to other (potentially external) components ref-
ered to by their model parameter. These hooks6 are bound
by partially merging the derivative contract and its corre-

6The concept of a hook resembles similarities to the notions
and techniques of [11].

sponding market specification (see Figure 3). Separation
of these two aspects introduces an additional degree of free-
dom: Having the opportunity to choose from a set of market
specifications, the financial engineer is able to run through
several case scenarios just by combining appropriate docu-
ments. After having designed an individual contract (see
Section 6.1), a potential customer is able to get an impres-
sion of a derivative’s performance in different scenarios, e.g.
bullish or bearish markets.

4.3 Component-oriented pricing engine
When determining the fair price of a given derivative con-

tract, available common mathematical approaches may be
categorised into three groups

Closed-form solutions require limited computational re-
sources, but the set of available formulae is restricted
and can by no means keep pace with the permanently
growing plethora of derivative contracts.

Monte Carlo simulation provides an almost general-pur-
pose, but computationally intensive solution. Unfortu-
nately, pricing american style derivatives is not straight-
forward.

Tree-based algorithms are able to price european as well
as american style derivatives and usually show up fast
convergence. However, the memory footprint may im-
pose limitations on usage in multi-dimensional set-
tings.

As the ComDeCo framework allows for the construction of
arbitrary contracts, a categorisation scheme supporting the
determination of the best-fitting approach has to be devel-
oped. None of the above-mentioned standard approaches is
a panacea, as applicability depends on certain properties of
the derivative contract to be valuated. For that reason, the
pricing engine has to obey a strategy that takes closed-form
solutions into account whenever possible, uses tree-based
algorithms as the default approach and offers Monte Carlo
simulation on demand.

Although being a de facto market standard, the Black
& Scholes model [12] reaches its limits in case of complex
derivative contracts. To cope with the flexibility imposed

156

<cont rac t>
<cap us ing=”upperBound”>

<constant id=”upperBound” value=” 20 .0 ”/>
<d e r i v a t i v e>

< s e l l>
<cond i t i on />
<obse rvab l e id=” foo ” model=”FOO”/>

</ s e l l>
<acqu i r e>

<cond i t i on />
<constant id=” s t r i k e ” value=” 3 .5 ”/>

</ acqu i r e>
</ d e r i v a t i v e>

</ f l o o r>
</ cont rac t>

cap

constant

derivative

observable

...

Co
nt

ra
ct

M
ar

ke
t C

ha
ra

ct
er

isa
tio

n

Environment partially
merging two distinct
documents

FOO
volatility

interest
rate

Figure 3: The XML representation of a derivative contract modeled by a hierarchical Active Document.
Boxes and geometric objects of grey colour represent environments. Using local messages only environments,
the sketched message propagation scheme is enforced by the runtime system.

by the composition frontend, additional approaches have to
be taken into account, e.g. local and stochastic volatility
models.

The pricing engine has to solve an assigment problem
which associates each given contract with the best-fitting
algorithm whereas the decision is based on an appropriate
categorisation scheme. Additionally, a repository of valu-
ation models has to be managed, allowing for both: auto-
matic model selection based on the categorisation results
and manual selection triggered by user interaction.

Component-orientation guarantees the required flexibil-
ity. Valuation algorithms as well as models are realised as
plugins, a light-weight component model which allows for
easy extensions of the pricing engine. New algorithms and
models may be loaded during system startup without the
need to recompile parts or even the whole system. Depend-
ing on additional meta-information, the pricing engine is
able to detect algorithm-model mismatches, providing error
messages or even reject the corresponding valuation attempt
at all. The meta-information gained by querying the con-
tract’s Active Document representation is used to drive
the categorisation mechanism of the pricing engine.

4.4 Backtesting
Besides valuation of designs using the services of the pric-

ing engine, testing based on real world data, so-called back-
testing, is another method to get an impression of a con-
tract’s real world suitability. Making use of historic per-
formance data, a contract may be stepwise executed in a
fashion similar to debug sessions common in software devel-
opment. In the end, ComDeCo’s backtesting engine (Retro)
will be able to integrate data from various sources made
available via web services or proprietary APIs. Currently,
Yahoo! Finance data is useable for rudimentary backtesting
purposes.

Aside from this virtual post mortem analysis, data made
available by Retro may be used for pricing engine calibra-
tion. Parameters like the market volatility σ could be calcu-
lated from available data instead of being entered manually
by the user. Additionally, real-time market data may be
used by the valuation engine (see Figure 4).

4.5 Advantages
Financial engineers have used pure mathematical repre-

sentations for decades, so why should they switch to Active

Documents instead?

Visual Composition allows for a simplified yet powerful
design process. Instead of fiddling with hard-coded
solutions, financial engineers are able to concentrate
on the creative part, i.e. design, not bug hunting.

Domain Specific Modeling provides a solution to the
impedance mismatch financial engineers are usually
confronted with when using general-purpose program-
ming languages for derivative contract design and valu-
ation. ComDeCo’s components represent a high-level
vocabulary financial engineers can make use of when
designing contracts. Due to the available supplemental
meta-information, the valuation process is significantly
simplified.

Constraint Checking decreases the number of potential
composition errors by letting only valid composition
attempts become effective. For example, accidently
mixing an upper bound C and a lower bound F , so F
is taken as the upper bound and C as the lower bound
results in a broken contract7. This and similar defects
are automatically detected because of constraints that
operate on the component level (e.g. cap and floor) as
opposed to the level of mathematical expressions (e.g.
max and min).

Flexibility allows for system enhancements without the
need to reinvent the wheel again and again. Additional
building blocks are deployed by adding the compo-
nents to the repository, making them available for all
composition attempts. For example, adding smooth-
ing operators to the set of contract building blocks is
just a matter of developing and deploying appropri-
ate arithmetic mean, geometric mean, and harmonic
mean components. The composition facilities and the
valuation engine are automatically able to handle the
additional functionality without any user interaction.
Customer-dependent configurations of the component
repository are easily created and managed.

7The corresponding payoff formula would be something sim-
ilar to P = min(max(X, F), C), which is independent from
the value of X in case of F ≥ C.

157

Model
Repository

Algorithm
Repository

Backtesting
Engine Historic Performance

Valuation
Engine

Active Document Framework

Co
m

po
sit

io
n

Fa
cil

itie
s

Constraint
Engine

XML
Validation

ComDeCo

Document
Repository

Component
Repository

Derivative Contract

calibrate

query

create

query

stepwise execution

Market Data

Figure 4: A conceptual overview of the overall sys-
tem architecture of ComDeCo as discussed in this
paper.

5. ACTIVE DOCUMENTS
After having sketched the overall purpose of project Com-

DeCo, the following sections give a brief overview of gen-
eral concepts and principles obeyed by the end-user oriented
component technology of Active Documents [13]. Tech-
nically, ComDeCo uses Omnia as its foundation, adding
domain-specific features as the need arises. The Java-based
Omnia system, which is a general-purpose framework for
the creation and management of arbitrary types of Active
Documents, is developed in parallel during the ComDeCo
project. The next sections focus on its general properties8.

5.1 Component Model
According to the definition brought up during the Work-

shop on Component-Oriented Programming in 1996

“A component is a unit of composition with
contractually specified interfaces and explicit con-
text dependencies only. Components can be de-
ployed independently and are subject to compo-
sition by third parties.”

Omnia’s component model is based on this foundation, but
the rather unspecific definition is further refined, leading to
the following component properties:

1. A component subsumes three kinds of information

(a) Implementation information based on Java-VM
bytecode to guarantee cross-platform usage.

(b) Provided and required services specification using
XML-based description schemes.

(c) Structural and semantical composition constraints
which are defined using appropriate XML tech-
niques and declarative rule based specifications.

2. A component may be subject to composition opera-
tions only if its structural and semantical composition
constraints are satisfied or will be satisfied by further
additive composition operations in the future.

8Note that the document metaphor as perceived by the end-
user is not explicitly enforced by the general concepts and
principles. Using the Omnia framework, it is possible to sup-
port completely different metaphors, too. “Active Docu-
ments” that do not even have visual representations are
imaginable.

3. The set of services provided by the component is de-
pendent on its neighbourhood9 and may be subject to
changes during runtime.

4. The employed communication model is based on the
principle of partial anonymity and enforces loose cou-
pling of involved entities.

5.2 Environments
Environments act as containers that are able to embed

components and other environments, therefore allowing for
arbitrarily nested structures. Besides structuring aspects,
environments control message propagation of their embed-
ded entities. Two kinds of messages are distinguished:

Intra-environmental messages are exchanged between en-
tities being embedded in the same environment.

Inter-environmental messages pass environmental
borders, i.e. if an intra-environmental message is inter-
cepted by another embedded environment, it becomes
an inter-environmental one.

Only inter-environmental messages are manipulable by the
controlling environment, e.g. the controlling environment
may block message propagation or modify the message be-
fore it is multicasted to its embedded entities. Besides gen-
eral-purpose environments which may be arbitrarily config-
ured according to specific needs, the framework currently
provides special variants:

Local Messages Only environments block all but intra-
environmental messages. This category of environ-
ment is heavily used in case of hierarchical Active
Documents with ComDeCo being one example.

Fallback environments react to messages only if there is no
other responding entity available. As a consequence,
at most one fallback environment is embedded into
another environment. This category of environment
is useful when modeling inheritance-like message pro-
cessing behaviour.

Example 2. GUI frameworks such as SWING pro-
vide simple (e.g. JButton) and complex (e.g. JFile-

Chooser) widgets. Unfortunately, complex widgets are
usually instantiated using hard-wired simple widget con-
structor calls. If, for instance, a developer enhances
the JButton class, instances of JFileChooser still use
JButton instead of the enhanced version. The factory
design pattern provides a solution, but even in this
case, source code has to be altered each time a substi-
tution occurs. As Figure 5 illustrates, Omnia allows
for the realisation of a dynamic factory mechanism,
making manual source code changes obsolete.

Directory-based environments are used in case of filesys-
tem-based composition descriptions. Directories rep-
resent environments and the embeds-relation is ex-
pressed by the directory tree structure. This environ-
ment category is especially useful for rapid prototyping
purposes. For example, ComDeCo’s market specifica-
tion is currently realised in that way.

9The neighbourhood is the set of entities that are able to
receive messages from a component and / or send messages
to it.

158

Button

List
Textfield

FileChooser

createButton
createList

createTextfield

Extended
Button

Button

List
Textfield

FileChooser

createList

createTextfield

createButton
Extension environment

Figure 5: A GUI is extended by putting substitution
components into the extension environment. Due to
the fallback environment surrounding the core build-
ing blocks, substitutes dominate native components.
Higher level widgets such as a file chooser automat-
ically use the substitutes in case of framework evo-
lutions.

These types of environments may be mixed arbitrarily, pro-
viding the building blocks to resemble to the requirements
of the specific domain of application.

5.3 Communication Model
Interaction with an Active Document occurs by trig-

gering message sending. Messages are propagated to the
entities according to the propagation constraints defined by
environments. Communication is based on the following as-
sumptions.

Partial anonymity – A sending entity is unable to deter-
mine the set of entities that are able to react to a
message. On the other hand, a receiving entity is able
to distinguish senders.

Ship and pray – It is possible (and not unusual) that a
message being sent is not processed by any entity in the
neighbourhood. A sending entity may not make any
assumptions about the number of entities responding
to a service request.

No Message Monotonicity – The reaction / response
pattern showing up as a consequence of a message be-
ing sent to the neighbourhood may change over time.

Contextual polymorphism – A component may be em-
bedded into more than one environment. Its reaction
to messages depends on the target environment the
incoming message was received from.

Example 3. An Active Document may be ren-
dered to a static representation, e.g. HTML or PDF
by sending an appropriate render message. Embedding
each component constituting the Active Document
into several special render environments, e.g. a HTML
and a PDF rendering environment, allows for differ-
ent output just by injecting the render message into
the proper environment.

Obeying these rules, Omnia’s runtime system is able to
guarantee loose coupling of entities constituting an Active
Document. From a component’s point of view, its neigh-
bourhood is a black box from which messages are received
and to which it sends messages. A component is unaware of
its neighbours and the overall system structure.

5.3.1 Implementation details
A consequence of these assumptions is the fact that an

environment’s interface, i.e. the set of messages its embed-
ded entities are able to react to, may change during runtime
- it is dynamic10.

Example 4. Suppose having a set of components provid-
ing graphic conversion services transforming an application’s
internal representation to one of a plethora of formats, e.g.
JPEG, PNG, or GIF. Depending on the embedded entities,
the corresponding environment is able to provide conversion
services by forwarding incoming messages. Adding compo-
nents to the environment during runtime increases the num-
ber of available services, enlarging the environment’s inter-
face.

Although being influenced by the programming language
Objective-C, Java does not support arbitrary method invo-
cations. Any method being called on an object has to be
declared in advance, i.e. statically. Being a moving target,
an environment’s interface is not easily expressed. By in-
troducing message objects which represent messages being
exchanged between entities of an Active Document, Om-
nia provides an adequate solution to this problem. Java’s
reflection capabilities provide the necessary infrastructure
to perform on-demand mapping of message objects to ap-
propriate method invocations. Besides solving the dynamic
interface problem, making messages first class citizens of the
runtime system provides additional advantages, a simplified
message filtering and manipulation facility being just one
example.

Bytecode inspection. We are currently investigating the
capabilities of the ASM framework [14] to extract the com-
ponent’s required interface upon loading and instantiation
by the runtime system. Although not being able to pro-
vide an answer in the general case, bytecode inspection may
also be used to detect defunct components, i.e. components
whose required interface can not even be partially satisfied
by the neighbourhood it is injected into. Bytecode inspec-
tion should be regarded as a supplemental mechanism that
is able to check conformance of a component’s explicit re-
quired interface specification with the actual implementa-
tion, avoiding runtime errors upon service invocation.

5.4 Composition
After having introduced the building blocks of any Ac-

tive Document, namely components and environments,
the following sections discuss the overall composition prin-
ciples. Generally speaking, the creation of an Active Doc-
ument adheres to the following steps:

1. Definition of the overall structure by grouping and
nesting environments.

2. Deployment of components into environments, creat-
ing appropriate neighbourhood relations.

To guarantee only valid compositions, each component pro-
vides specifications describing structural and semantical con-
ditions that have to be met during and after composition.

10Although there is no constraint that forbids components
having changing services, i.e. varying interfaces, it is not
the common case.

159

5.4.1 Structural Constraints
Structural constraints control composition by restricting

valid neighbourhood configurations for each component. As
stated earlier, a XML-based representation is easily derived
in case of hierarchical Active Documents. The Omnia
framework offers a high level API to express structural con-
straints, resembling the capabilities of Relax NG [15], XML
Schema [16] and Schematron [17], operating on the Java
platform’s XML APIs in conjunction with third party li-
brary usage.

Example 5. The following code excerpt sketches the struc-
tural constraint specification for a floor component.

. . .
spec . b e g i n S p e c i f i c a t i o nFo r (spec . getTypeFor (t h i s)) ;

spec . addEntry (spec . getGroupFor (o b s e r v a b l e . c l a s s)) ;
spec . beg inCho ice () ;

spec . addEntry (spec . getTypeFor (d e r i v a t i v e . c l a s s)) ;
spec . addEntry (spec . getTypeFor (cap . c l a s s)) ;

spec . endSmart () ;
spec . endTypeSpec i f i c a t i on () ;
. . .

The component’s lower bound may be represented by ob-
servable-like components, i.e. components that belong to the
same group as the observable. Either derivative or cap com-
ponents are encapsulated.

This description is rendered back to a functional equivalent
XML Schema11 or Relax NG representation, possibly com-
plemented by Schematron directives.

Example 6. The code snippet representing the structural
constraint specification for a floor component is rendered to
the following XML Schema fragment.

. . .
<complexType name=” f l o o r ”>

<cho i c e>
<sequence>

<group maxOccurs=”1”
minOccurs=”1”
r e f=”ConstantOrObservab le ”/>

<cho i c e>
<e lement maxOccurs=”1”

minOccurs=”1”
name=” d e r i v a t i v e ”
type=” d e r i v a t i v e ”/>

<e lement maxOccurs=”1”
minOccurs=”1”
name=”cap”
type=”cap”/>

</ cho i c e>
</ sequence>
<sequence>

<cho i c e>
<e lement maxOccurs=”1”

minOccurs=”1”
name=” d e r i v a t i v e ”
type=” d e r i v a t i v e ”/>

<e lement maxOccurs=”1”
minOccurs=”1”
name=”cap”
type=”cap”/>

</ cho i c e>
<group maxOccurs=”1”

minOccurs=”1”
r e f=”ConstantOrObservab le ”/>

</ sequence>
</ cho i c e>
<a t t r i b u t e name=” us ing ”

type=” x s : s t r i n g ”
use=” r e qu i r e d ”/>

</complexType>
. . .

Further types of specifications, e.g. transitional or attribute-
reduced ones, may be derived to support certain aspects of
the composition process.

11Note that due to the Unique Particle Attribution Rule of
XML Schema, the necessity to render the high level descrip-
tion into several different XML Schema descriptions may
occur. Nevertheless, this behaviour is transparent for the
user.

Validating structural consistency therefore means validat-
ing a hierarchical Active Document’s XML representa-
tion against schema descriptions generated from specifica-
tion fragments provided by each component managed by the
runtime system. Specification fragments are retrieved dur-
ing class loading using Java’s reflection capabilities, utilising
specialised class loader variants.

5.4.2 Semantical Constraints
Semantical constraints control composition behaviour be-

yond pure structural aspects. For this purpose, a rule en-
gine is used, achieving a clear separation between imple-
mentation and logic. Based on a declarative programming
style, the component developer is able to specify what should
be checked without being forced to think about how these
checks are performed, further improving the loose coupling
characteristics of Active Document components.

In principle, two categories of rule engines are potential
candidates when implementing the semantic checking layer
of an Active Document system:

Backward Chaining engines react to requests which they
receive from their clients - they are demand driven.
The programming language PROLOG is a typical mem-
ber of this category.

Forward Chaining engines follow an event-based ap-
proach, i.e. rule execution is triggered by changes in
the engine’s entity universe without the need for ex-
plicit rule base queries. Engines based on this principle
typically use RETE [18] or LEAPS [19] algorithms to
perform efficient rule selections and executions.

Omnia uses the Java-based open source engine Drools [20]
which implements a variant of RETE (ReteOO) as well as
the LEAPS algorithm, therefore following the forward chain-
ing approach. Using the Drools API, an impedance mis-
match free integration of rule based programming principles
into the Java-based Omnia framework is possible. Each en-
tity constituting an Active Document is also represented
in the document’s working memory managed by the Drools
engine, automatically triggering rule execution in case of
changes.

5.4.3 End-users’ point of view
End-users are unaware of all these technical details hap-

pening in the background. For them, a component is just
a smart building block which is able to provide the neces-
sary information to the runtime system, making any com-
position attempt supervisable by the runtime environment.
The component model advocated by Omnia strictly sep-
arates the roles of developers and end-users, so significant
programming skills are not required when using components
provided by component developers.

Explorative Composition Style. Depending on the con-
straints that are derived from the contents of the component
repository, a given Active Document may be in one of the
following states.

Inconsistent States represent all circumstances in which
a constraint violation occurs that can not be corrected
by adding further components to the document.

160

Transitional States represent all circumstances with con-
straint violations that can be corrected additively, i.e.
by letting further components join the document.

Consistent States represent all circumstances in which all
constraints are satisfied.

In contrast to usually two-valued offline composition ap-
proaches, typical in case of developer-centric component mod-
els, Active Documents follow the above-mentioned three-
valued online composition scheme. ComDeCo’s SWING-
based derivative editor utilises a colour pattern based on an
intuitive traffic light analogon: red colour indicates incon-
sistent, yellow colour indicates transitional and green colour
indicates consistent states (see Figure 2).

6. OUTLOOK & FUTURE WORK
This section sketches possible usage scenarios of Active

Documents beyond ComDeCo’s (primary) goals. Besides
financial engineers as main audience, new opportunities open
up due to the end-user orientation of Active Documents.
Additionally, further directions the ongoing project Com-
DeCo may investigate in future working packages are dis-
cussed.

6.1 Derivative contracts for the masses
Small and medium-scale financial investors are currently

not targeted by OTC12 products, because of large fixed costs
and administrative efforts. Only a large-scale investor’s13

financial and assets position is sufficient to make OTC a vi-
able option. Nevertheless, small-investor’s demand for alter-
natives to traditional investments like bonds and stocks has
permanently grown, further accelerated by the new economy
crisis. Semi-individual products like index, bonus or basket
certificates provide alternatives, but they only partially sat-
isfy customer demands.

With online banking being a mainstream service nowa-
days, adding a derivative contract construction tool kit to
the set of portfolio management features could be a next
step. Customers would be able to design derivatives accord-
ing to individual preferences and market sentiments in a web
based online portal. Using the tool chain provided by Com-
DeCo, the service provider is able to valuate, and depend-
ing on the results, accept or reject the customer’s contract
proposal instantaneously. Upon acceptance, the contract is
added to the customer’s portfolio in real time followed by
an automatic account charge based on the results of the val-
uation process.

6.2 e-Learning
The Minerva framework already demonstrated general ap-

plicability of Active Document concepts in case of the e-
Learning domain. Using a light-weight component model,
Minerva’s components are specifically tied to the domain-
specific application framework, therefore lacking properties
of a general-purpose Active Document system. Merging
the insights of the EU-funded Easycomp project [21] with
the experiences gained during ComDeCo will lead to an
unification of principles that are incorporated back into the
general-purpose Omnia framework.

12Over The Counter, i.e. financial products specifically tai-
lored according to individual customer needs.

13For example, hedgefonds or insurance companies.

6.3 Vanishing application boundaries
Although component-orientation is one of the dominating

principles in software development these days, the end-user
often does not profit from this paradigm switch. Applica-
tions are still monolithic and instead of task-oriented us-
age patterns, application-centric views are enforced. Rather
than fair and flexible upgrade policies, customers are con-
fronted with the choice of “All or nothing” and inter-vendor
interoperability is often illusory.

Active Documents provide a transition from application-
centric to task-oriented man-machine interaction. Software
systems adapt to the user’s needs and not vice versa. Per-
sonalising the system is done by providing an appropriate
set of components. With emerging demands, the component
repository is adapted, offering a well-tailored solution for the
tasks to be solved. Taking this approach, application bound-
aries tend to fade away, eventually vanishing completely. As
components may be used by any Active Document aware
application, there exists no locally bounded area of impact
when adding or removing components. Going one step fur-
ther, i.e. thinking in terms of documents instead of appli-
cations, concludes the transformation, letting applications
completely disappear as all functionality is spread over the
whole system. This point of view shares conceptual similar-
ities with the ideas brought up by Raskin [22].

6.4 Bridging old and new
Termsheet implementations based on Microsoft Excel in

conjunction with the necessary additional functionality pro-
vided by DLLs represent common practice. Because of their
similarity to physical paper sheets, the spreadsheet meta-
phor is easily understood by users. Solutions based on this
principle do not scale up well in case of increasing complex-
ity and the limited composition support often causes rein-
ventions of the wheel. Development expertise is needed to
create appropriate spreadsheet(s) according to mathemati-
cal formulae developed by a financial engineer. As a personal
union of software developer and financial engineer is not a
common case, there is almost always a time gap between
design and implementation. Despite these disadvantages, it
would be starry-eyed to expect an immediate switch over to
the principles advocated by ComDeCo. A large amount of
knowledge conglomerated in many spreadsheets exists, mak-
ing legacy support a critical aspect. A legacy bridge based
on the OpenOffice suite framework is one possibility. Be-
cause Java belongs to OpenOffice’s default SDK languages,
a (nearly) toll-free bridging between the office legacy layer
and the Omnia framework is an option.

Besides that, using the OpenOffice framework as an al-
ternative presentation layer for specific variants of Active
Documents is a promising way to go, future developments
of the Omnia framework may concentrate on.

6.5 Web 2.0
Although being in permanent flux, the notion Web 2.0

subsumes principles and concepts that have the potential
to supersede the predominantly static web of these days.
AJAX14-driven web applications in conjunction with the se-
mantic web’s conceptual framework lead to significant im-
provements. Integrating the Active Document framework

14AJAX is an abbreviation for Asynchronous JavaScript And
XML, see [23] for more details.

161

into the conceptual foundation of next generation web tech-
nologies is a future research target. To name just two out
of a large collection of questions arising in this context:

1. How could principles and practices of Web 2.0 be in-
tegrated into the existing Active Document frame-
work, providing an all-embracing conceptual approach?

2. To what extend could Web 2.0 benefit from component-
oriented principles in general and from Active Doc-
ument technology in particular?

Active Document technology might provide extensions for
existing web-engineering frameworks with respect to end-
user compatible technologies. As a consequence, future web
browsers might serve as runtime environments for Active
Documents.

7. CONCLUSIONS
Active Documents provide end-user compatible com-

ponent orientation. Using this technology, adaptation tasks
are autonomously performed by the user without the need
to have an expert at hand and without being bound to spe-
cific applications. Composition is controlled by the run-
time system using specification fragments each component
is shipped with, resulting in a guided and explorative com-
position style.

ComDeCo uses Omnia as its foundation, adding domain-
specific functionality as needed. Derivative contracts of in-
creasing complexity are designed by using the document
metaphor advocated by Active Documents. Besides a
scalable design workflow, meta-data provided by Active
Documents supports design and implementation of efficient
and automatically adapting valuation and composition fa-
cilities.

Among other things, Omnia’s component model makes
use of Java’s reflection capabilities to implement flexible
runtime loading mechanisms and a communication scheme
which supports loosely coupled component interaction by
making messages first class citizens. The Java platform’s
rich set of APIs and the large pool of actively evolving (open
source) libraries provide the necessary ingredients to sig-
nificantly decrease Omnia’s overall development time. For
example, the platform’s built-in XML support eases devel-
opment of structural constraint checking facilities and the
availability of different rule engines simplifies the implemen-
tation of the semantical constraint checking layer. Moreover,
language & platform maturity and cross-system availability
make Java a good choice for academic as well as industrial
applications.

8. REFERENCES
[1] M. D. McIllroy. Mass produced software components.

In P. Naur and B. Randell, editors, Report of a
conference sponsored by the NATO Science Committee
(Garmisch, Germany - October 7-11, 1968). NATO,
Scientific Affairs Division, 1969.

[2] B. J. Cox and A. J. Novobilski. Object-Oriented
Programming - An evolutionary approach.
Addison-Wesley Publishing Company Inc., second
edition, 1991.

[3] D. Box. Essential COM. Addison Wesley Publishing
Company Inc., 1999.

[4] Apple Computers Inc. Inside Macintosh: OpenDoc
Programmer’s Guide. Addison Wesley Publishing
Company Inc., 1996.

[5] M. Reitz and C. Stenzel. Minerva: A component-based
framework for Active Documents. In Aßmann et al.,
editor, Proceedings of the Software Composition
Workshop (SC 04), number 114 in Electronic Notes in
Theoretical Computer Science. Elsevier, 2005.

[6] S. Dalton. Excel Add-In Development in C/C++:
Applications in Finance. Wiley, 2005.

[7] Deutsche Bank. Microsoft E2A Programm.
Quantessence, 2(1):17–37, 2001.

[8] M. Joshi. C++ Design Patterns and Derivatives
Pricing. Cambridge University Press, 2005.

[9] M. Reitz and U. Nögel. Derivative Contracts as Active
Documents - Component-Orientation meets Financial
Modeling. In Proceedings of the 7th WSEAS
International Conference on Mathematics and
Computers in Business and Economics (MCBE 06),
2006.

[10] S.L. Peyton Jones and J.-M. Eber. How to write a
financial contract, volume Fun Of Programming of
Cornerstones of Computing. Palgrave Macmillan,
2005.

[11] U. Aßmann. Invasive Software Composition. Springer
Verlag, first edition, 2003.

[12] F. Black and M. Scholes. The pricing of options and
corporate liabilities. Journal of Political Economy,
81:637–659, 1973.

[13] M. Reitz. Active Documents - Taking advantage of
component-orientation beyond pure reuse. In
Proceedings of the Workshop on Component-Oriented
Programming (WCOP 06), 2006.

[14] E. Bruenton, R. Lenglet, and T. Coupaye. ASM - a
code manipulation tool to implement adaptable
systems. 2002.

[15] International Organization for Standardization.
ISO/IEC 19757-2: Document Schema Definition
Languages (DSDL) - Part 2: Regular-grammar-based
validation - RELAX NG.

[16] World Wide Web Consortium (W3C). XML Schema -
W3C Recommendation.

[17] International Organization for Standardization.
ISO/IEC 19757-3: Document Schema Definition
Languages (DSDL) - Part 3: Rule-based validation -
Schematron.

[18] C. Forgy. Rete: A fast algorithm for the many pattern
/ many object pattern match problem. Artificial
Intelligence, (19):17–37, 1982.

[19] D. Batory. The LEAPS algorithm. Technical Report
CS-TR-94-28, 1994.

[20] Drools. http://labs.jboss.com/portal/jbossrules.

[21] EASYCOMP (IST Project 1999-14191) - Easy
Composition in Future Generation Component
Systems. http://www.easycomp.org.

[22] J. Raskin. The humane interface: new directions for
designing interactive systems. Addison-Wesley Pearson
Education, 2004.

[23] J. J. Garrett. Ajax: A New Approach to Web
Applications. http://www.adaptivepath.com/
publications/essays/archives/000385.php, 2005.

162

Aranea—Web Framework Construction and Integration Kit

Oleg Mürk
Dept. of Computer Science and Engineering,

Chalmers University of Technology,
SE-412 96 Göteborg, Sweden

oleg.myrk@gmail.com

Jevgeni Kabanov
Dept. of Computer Science,

University of Tartu,
J. Liivi 2, EE-50409 Tartu, Estonia

ekabanov@gmail.com

ABSTRACT
Currently there exist dozens of web controller frameworks
that are incompatible, but at the same time have large por-
tions of overlapping functionality that is implemented over
and over again. Web programmers are facing limitations on
code reuse, application and framework integration, extensi-
bility, expressiveness of programming model and productiv-
ity.

In this paper we propose a minimalistic component model
Aranea that is aimed at constructing and integrating server-
side web controller frameworks in Java. It allows assembling
most of available web programming models out of reusable
components and patterns. We also show how to integrate
different existing frameworks using Aranea as a common
protocol. In its default configuration Aranea supports both
developing sophisticated user interfaces using stateful com-
ponents and nested processes as well as high-performance
stateless components.

We propose to use this model as a platform for frame-
work development, integration and research. This would
allow combining different ideas and avoid reimplementing
the same features repeatedly. An open source implementa-
tion of Aranea framework together with reusable controls,
such as input forms and data lists, and a rendering engine
are ready for real-life applications.

1. INTRODUCTION
During the last 10 years we have witnessed immense ac-

tivity in the area of web framework design. Currently,
there are more than 30 actively developed open source web
frameworks in Java [10], let alone commercial products or
other platforms like .NET and numerous dynamic languages.
Not to mention in-house corporate frameworks that never
saw public light. Many different and incompatible design
philosophies are used, but even within one approach there
are multiple frameworks that have small implementation dif-
ferences and are consequently incompatible with each other.

The advantage of such a situation is that different ap-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPPJ 2006, August 30–September 1, 2006, Mannheim, Germany.
Copyright 2006 ACM ...$5.00.

proaches and ideas are tried out. Indeed, many very good
ideas have been proposed during these years, many of which
we will describe later in this paper. On a longer time-
scale the stronger (or better marketed) frameworks and ap-
proaches will survive, the weaker will diminish. However, in
our opinion, such situation also has a lot of disadvantages.

1.1 Problem Description
First of all let’s consider the problems of the web frame-

work ecosystem from the viewpoint of application develop-
ment. Framework user population is very fragmented as a
result of having many incompatible frameworks with simi-
lar programming models. Each company or even project, is
using a different web framework, which requires learning a
different skill set. As a result, it is hard to find qualified
work force for a given web framework. For the same reason
it is even harder to reuse previously developed application
code.

Moreover, it is sometimes useful to write different parts
of the same application using different approaches, which
might prove impossible, as the supporting frameworks are
incompatible. Portal solutions that should facilitate in-
tegrating disparate applications provide very limited ways
for components to communicate with each other. Finally,
frameworks are often poorly designed, limiting expressive-
ness, productivity and quality.

System programmers face additional challenges. Creators
of reusable components have to target one particular frame-
work, consequently their market shrinks. Framework de-
signers implement overlapping features over and over again,
with each new feature added to each framework separately.
Many useful ideas cannot be used together because they
have been implemented in different frameworks.

We think that web framework market would win a lot if
there were two or three popular platforms with orthogonal
philosophies that would consolidate proponents of their ap-
proach. Application programmers would not have to learn a
new web framework at the beginning of each project. Writ-
ing reusable components and application integration would
be easier and more rewarding. Framework designers could
try out new ideas much easier by writing extensions to the
platform and targeting a large potential user-base.

1.2 Contributions
In this paper we will describe a component framework

that we named Aranea. Aranea is written in Java and al-
lows assembling server-side controller web frameworks out
of reusable components and patterns. Aranea applications
are pure Java and can be written without any static con-

1

163

Figure 1: A sketch of a rich user interface.

figuration files. In Section 2 we describe our approach and
motivation. We find that one of the strengths of this frame-
work is its conceptual integrity—it has very few core con-
cepts that are applied uniformly throughout the framework.
The number of core interfaces is small, as is the number of
methods in the interfaces. Components are easy to reuse, ex-
tend and test, because all external dependencies are injected
into them. The details of the Aranea core abstractions are
explained in Section 3.

In different configurations of Aranea components we can
mimic principles and patterns of most existing server-side
web controller frameworks as well as combine them arbitrar-
ily. Possible configurations are described in Section 4. We
concentrate on implementation of server-side controllers, but
we also intend to support programming model where most
of UI is implemented on the client-side and server-side con-
tains only coarse-grained stateful components corresponding
roughly to active use-cases.

Of particular interest is the configuration supporting pro-
gramming model that allows expressing a rich user interface
as a dynamic hierarchical composition of components that
maintain call stacks of nested processes (we refer to such
processes as flows further on). As an example of rich user
interface at extreme, consider Figure 1: multiple interact-
ing windows per user session, each window contains a stack
of flows, flows can call nested flows that after completing
return values, flows can display additional UI (side-menu,
context information) even when a nested flow is executing,
flows can contain tabbed areas, wizards, input forms, lists,
other controls and even other flows.

Further, the framework facilitates both event-based and
sequential programming (using continuations). The pro-
gramming model is quite similar to the one used in the
Smalltalk web framework Seaside [21], but has completely

different implementation and is more general in terms of
where sequential programming can be applied. This topic is
discussed in Section 7.1 as one of extensions.

All web frameworks have to handle such aspects as con-
figuration, security, error handling and concurrency. We
explain how Aranea handles these issues in Section 5.

One of the most important differentiating factors of
Aranea, is in our mind its ability to serve as a vehicle for
integration of existing frameworks due to its orthogonal de-
sign. We discuss this topic in Section 6.

Finally, we see Aranea as a research platform. It it very
easy to try out a new feature without having to write an
entire web framework. A framework is assembled out of
independent reusable components, so essentially everything
can be reconfigured, extended or replaced. If Aranea be-
comes popular, writing a new component for Aranea would
also mean a large potential user base.

Naturally, there are still numerous framework extensions
to be made and further directions to be pursued. These are
described in Section 7. Last, but not least, Aranea is based
on great ideas originating from prior work of many people.
When possible, we reference the original source of idea at
the time of introducing it. In Section 8 we compare Aranea
with some of the existing frameworks.

2. BACKGROUND
As we mentioned in the introduction, our aim is to sup-

port most of programming models and patterns available
in the existing controller frameworks. We present here, un-
avoidably incomplete and subjective, list of profound ideas
used in contemporary web controller frameworks.

The first important alternative is using stateless or reen-
trant components for high performance and low memory
footprint, available in such frameworks as Struts [3] and
WebWork [19].

Another important approach is using hierarchical com-
position of stateful non-reentrant components with event-
based programming model, available in such frameworks as
JSF [8], ASP.NET [4], Seaside [21], Wicket [20], Tapestry
[5]. This model is often used for developing rich UI, but
generally poses higher demands on server’s CPU and mem-
ory.

The next abstraction useful especially for developing rich
UI is nested processes, often referred to as modal processes,
present for instance in such web frameworks as WASH
[26], Cocoon [2], Spring Web Flow [18] and RIFE [14].
They are often referred to by the name of implementation
mechanism—continuations. The original idea comes from
Scheme [25], [22].

All of these continuation frameworks provide one top-level
call-stack—essentially flows are like function calls spanning
multiple web requests. A significant innovation can be found
in framework Seaside [21], where continuations are combined
with component model and call stack can be present at any
level of component hierarchy.

Yet another important model is using asynchronous re-
quests and partial page updates, coined Ajax [1]. This allows
decreasing server-side state representation demands and in-
creases responsiveness of UI. At the extreme, this allows cre-
ating essentially fat client applications with a sophisticated
UI within browser.

We would also like to support different forms of metapro-
gramming such as domain specific language for describing

2

164

UI as a state machine in Spring Web Flow [18] and domain-
driven design as implemented in Ruby on Rails [16] or
RIFE/Crud [15]. This often requires framework support
for dynamic composition and component run-time configu-
ration.

3. CORE ABSTRACTIONS
Aranea framework is based on the abstraction of compo-

nents arranged in a dynamic hierarchy and two component
subtypes: services that model reentrant controllers and wid-
gets that model non-reentrant stateful controllers. In this
section we examine their interfaces and core implementation
ideas. We omit some non-essential details for brevity.

3.1 Components
At the core of Aranea lies a notion of components arranged

into a dynamic hierarchy that follows the Composite pattern
extended with certain mechanisms for communication. This
abstraction is captured by the following interface:

interface Component {

void init(Environment env);

void enable();

void disable();

void propagate(Message msg);

void destroy();

}

A component is an entity that

• Has a life-cycle that begins with an init() call and
ends with a destroy() call.

• Can be signaled to be disabled and then enabled again.

• Has an Environment that is passed to it by its parent
or creator during initialization.

• Can propagate Messages to its children.

We imply here that a component will have a parent and may
have children. Aranea actually implies that the component
would realize a certain flavor of the Composite pattern that
requires each child to have a unique identifier in relation to
its parent. These identifiers can then be combined to create
a full identifier that allows finding the component starting
from the hierarchy root. Note that the hierarchy is not static
and can be modified at any time by any parent.

The hierarchy we have arranged from our components so
far is inert. To allow some communication between differ-
ent components we need to examine in detail the notions of
Environment and Message.
Environment is captured by the following interface:

interface Environment {GUI abstractions

Object getEntry(Object key);

}

Environment is a discovery mechanism allowing children to
discover services (named contexts) provided by their par-
ents without actually knowing, which parent has provided
it. Looking up a context is done by calling the environment
getEntry() method passing some well-known context name
as the key. By a convention this well-known name is the in-
terface class realized by the context. The following example
illustrates how environment can be used:

L10nContext locCtx = (L10nContext)

getEnvironment().getEntry(L10nContext.class);

String message = locCtx.localize("message.key");

Environment may contain entries added by any of the cur-
rent component ancestors, however the current component
direct parent has complete control over the exact entries
that the current component can discover. It can add new
entries, override old ones as well as remove (or rather filter
out) entries it does not want the child component to access.
This is done by wrapping the grandparent Environment into
a proxy that will allow only specific entries to be looked up
from the grandparent.
Message is captured in the following interface:

interface Message {

void send(Object key, Component comp);

}

While the environment allows communicating with the com-
ponent parents, messages allow communicating with the
component descendants (indirect children). Message is ba-
sically an adaptation of the Visitor pattern to our flavor
of Composite. The idea is that a component propagate(m)

method will just call message m.send(...) method for each
of its children passing the message both their instances and
identifiers. The message can then propagate itself further or
call any other component methods.

It is easy to see that messages allow constructing both
broadcasting (just sending the message to all of the compo-
nents under the current component) and routed messages
that receive a relative “path” from the current component
and route the message to the intended one. The following
example illustrates a component broadcasting some message
to all its descendants (BroadcastMessage will call execute
for all component under current):

Message myEvent = new BroadcastMessage() {

public void execute(Component comp) {

if (comp instanceof MyDataListener)

((MyDataListener) comp).setMyData(data);

}

}

myEvent.send(null, rootComponent);

3.2 Services
Although component hierarchy is a very powerful concept

and messaging is enough to do most of the communication,
it is comfortable to define a specialized component type that
is closer to the Controller pattern. We call this component
Service and it is captured by the following interface:

interface Service extends Component {

void action(

Path path,

InputData input,

OutputData output

);

}

Service is basically an abstraction of a reentrant con-
troller in our hierarchy of components. The InputData

and OutputData are simple generic abstractions over, corre-
spondingly, a request and a response, which allow the con-
troller to process request data and generate the response.
The Path is an abstracted representation of the full path to

3

165

the service from the root. It allows services to route the
request to the one service it is intended for. Since service is
also a component it can enrich the environment with addi-
tional contexts that can be used by its children.

3.3 Widgets
Although services are very flexible, they are not too com-

fortable for programming stateful non-reentrant components
(GUI abstractions often being such). To do that we intro-
duce the notion of a Widget, which is captured by the fol-
lowing interface:

interface Widget extends Service {

void update(InputData data);

void event(Path path, InputData input);

void process();

void render(OutputData output);

}

Widgets extend services, but unlike them widgets are usu-
ally stateful and are always assumed to be non-reentrant.
The widget methods form a request-response cycle that
should proceed in the following order:

1. update() is called on all the widgets in the hierarchy
allowing them to read data intended for them from the
request.

2. event() call is routed to a single widget in the hierar-
chy using the supplied Path. It allows widgets to react
to specific user events.

3. process() is also called on all the widgets in the hier-
archy allowing them to prepare for rendering whether
or not the widget has received an event.

4. render() calls are not guided by any conventions. If
called, widget should render itself (though it may del-
egate the rendering to e.g. template). The render()

method should be idempotent, as it can be called ar-
bitrary number of times after a process() call before
an update() call.

Although widgets also inherit an action() method, it may
not be called during the widget request-response cycle. The
only time it is allowed is after a process() call, but before
an update() call. It may be used to interact with a single
widget, e.g. for the purposes of making an asynchronous
request through Ajax [1].

Standard widget implementation allows setting event
listeners that enable further discrimination between
action()/event() calls to the same widget.

So far we called our components stateful or non-stateful
without discussing the persistence of this state. A typical
framework would introduce predefined scopes of persistence,
however in Aranea we have very natural scopes for all our
components—their lifetime. In Aranea one can just use the
component object fields and assume that they will persist
until the component is destroyed. If the session router is
used, then the root component under it will live as long as
the user session. This means that in Aranea state manage-
ment is invisible to the programmer, as most components
live as long as they are needed.

3.4 Flows
To support flows (nested processes) we construct a flow

container widget that essentially hosts a stack of widgets
(where only the top widget is active at any time) and en-
riches their environment with the following context:

interface FlowContext {

void start(Widget flow, Handler handler);

void replace(Widget flow);

void finish(Object result);

void cancel();

}

This context is available in standard widget implementation
by calling getFlowCtx(). Its methods are used as follows:

• Flow A running in a flow container can start a nested
flow B by calling start(new B(...), null). The data
passed to the flow B constructor can be thought as
incoming parameters to the nested process. The flow
A then becomes inactive and flow B gets initialized.

• When flow B is finished interacting with the user,
it calls finish(...) passing the return value to the
method. Alternatively flow B can call the cancel()

method if the flow was terminated by user without
completing its task and thus without a return value.
In both cases flow B is destroyed and flow A is reacti-
vated.

• Instead of finishing or canceling, flow B can also replace
itself by a flow C calling replace(new C(...)). In
such a case flow B gets destroyed, flow C gets initialized
and activated, while flow A continues to be inactive.
When flow C will finish flow A will get reactivated.

Handler callback interface is used when the calling flow
needs to somehow react to the called flow finishing or can-
celing:

interface Handler {

void onFinish(Object returnValue);

void onCancel();

}

It is possible to use continuations to realize synchronous
(blocking) semantics of flow invocation, as shown in the sec-
tion 7, in which case the Handler interface is redundant.

4. FRAMEWORK ASSEMBLY
Now that we are familiar with the core abstractions we

can examine how the actual web framework is assembled.
First of all it is comfortable to enumerate the component
types that repeatedly occur in the framework:

Filter A component that contains one child and chooses
depending on the request parameters whether to route
calls to it or not.

Router A component that contains many children, but
routes calls to only one of them depending on the re-
quest parameters.

Broadcaster A component that has many children and
routes calls to all of them.

4

166

Adapter A component that translates calls from one pro-
tocol to another (e.g. from service to a widget or from
Servlet [6] to a service).

Container A component that allows some type of children
to function by enabling some particular protocol or
functionality.

Of course of all of these component types also enrich the
environment and send messages when needed.

Aranea framework is nothing, but a hierarchy (often look-
ing like a chain) of components fulfilling independent tasks.
There is no predefined way of assembling it. Instead we show
how to assemble frameworks that can host a flat names-
pace of reentrant controllers (á la Struts [3] actions), a flat
namespace of non-reentrant stateful controllers (á la JSF
[8] components) and nested stateful flows (á la Spring Web
Flow [18]). Finally we also consider how to merge all these
approaches in one assembly.

4.1 Reentrant Controllers
The first model is easy to implement by arranging the

framework in a chain by containment (similar to pattern
Chain-of-Responsibility), which starting from the root looks
as follows:

1. Servlet [6] adapter component that translates the
servlet doPost() and doGet() to Aranea service
action() calls.

2. HTTP filter service that sets the correct headers (in-
cluding caching) and character encoding. Generally
this step consists of a chain of multiple filters.

3. URL path router service that routes the request to one
of the child services using the URL path after servlet.
One path will be marked as default.

4. A number of custom application services, each regis-
tered under a specific URL to the URL path router
service that correspond to the reentrant controllers.
We call these services actions.

The idea is that the first component object actually con-
tains the second as a field, the second actually contains
the third and so on. Routers keep their children in a
Map. When action() calls arrive each component propa-
gates them down the chain.

The execution model of this framework will look as fol-
lows:

• The request coming to the root URL will be routed to
the default service.

• When custom services are invoked they can render an
HTML response (optionally delegating it to a tem-
plate) and insert into it URL paths of other custom
services, allowing to route next request to them.

• A custom service may also issue an HTTP redirect di-
rectly sending the user to another custom service. This
is useful when the former service performs some action
that should not be repeated (e.g. money transfer).

Note that in this assembly Path is not used at all and actions
are routed by the request URL.

Both filter and router services are stateful and reentrant.
Router services could either create a new stateless action
for each request (like WebWork [19] does) or route request
to existing reentrant actions (like Struts [3] does). Router
services could allow adding and removing (or enabling and
disabling) child actions at runtime, although care must be
taken to avoid destroying action that can be active on an-
other thread.

We have shown above how analogues of Struts and Web-
Work actions fit into this architecture. WebWork intercep-
tors could be implemented as a chain of filter services that
decide based on InputData and OutputData whether to en-
rich them and then delegate work to the child service. There
could be filter services both before action router and after.
The former would be shared between all actions while the
latter would be private for each action instance.

4.2 Stateful Non-Reentrant Controllers
To emulate the stateful non-reentrant controllers we will

need to host widgets in the user session. To do that we
assemble the framework as follows:

1. Servlet [6] adapter component.

2. Session router that creates a new service for each new
session and passes the action() call to the associated
service.

3. Synchronizing filter service that let’s only one request
proceed at a time.

4. HTTP filter service.

5. Widget adapter service that translates
a service action() call into a widget
update()/event()/process()/render() request-
response cycle.

6. Widget container widget that will read from request
the path to the widget that the event should be routed
to and call event() with the correct path.

7. Page container widget that will allow the current child
widget to replace itself with a new one.

8. Application root widget which in many cases is the
login widget.

This setup is illustrated on Figure 2.
A real custom application would most probably have lo-

gin widget as the application root. After authenticating
login widget would replace itself with the actual root wid-
get, which in most cases would be the application menu
(which would also contain another page container widget as
its child).

The menu would contain a mapping of menu items to
widget classes (or more generally factories) and would start
the appropriate widget in the child page container when the
user clicks a menu item. The custom application widgets
would be able to navigate among each other using the page
context added by the page container to their environment.

The execution model of this framework will look as fol-
lows:

• The request coming to the root URL will be routed
to the application root widget. If this is a new user
session, a new session service will be created by the
session router.

5

167

Figure 2: Framework assembly for hosting pages

• Only one request will be processed at once (due to syn-
chronizing filter). This means that widget developers
should never worry about concurrency.

• The widget may render a response, however it has no
way of directly referencing other widgets by URLs.
Therefore it must send all events from HTML to it-
self.

• Upon receiving an event the widget might replace it-
self with another widget (optionally passing it data as
a constructor parameter) using the context provided
by the page container widget. Generally all modifica-
tions of the widget hierarchy (e.g. adding/removing
children) can only be done during event part of the
request-response cycle.

• The hierarchy of widgets under the application root
widget (e.g. GUI elements like forms or tabs) may be
arranged using usual Composite widget implementa-
tions as no special routing is needed anymore.

In the real setup page container widget may be emulated
using flow container widget that allows replacing the current
flow with a new one.

Such an execution model is very similar to that of Wicket
[20], JSF [8] or Tapestry [5] although these frameworks sep-
arate the pages from the rest of components (by declaring a
special subclass) and add special support for markup com-
ponents that compose the actual presentation of the page.

4.3 Stateful Non-Reentrant Controllers with
Flows

To add nested processes we basically need only to replace
the page container with a flow container in the previous

model:

1. Servlet [6] adapter component.

2. Session router service.

3. Synchronizing filter service.

4. HTTP filter service.

5. Widget adapter service.

6. Widget container widget.

7. Flow container widget that will allow to run nested
processes.

8. Application root flow widget which in many cases is
the login flow.

The execution model here is very similar to the one out-
lined in Subsection 4.2. The only difference is that the appli-
cation root flow may start a new subflow instead of replacing
itself with another widget.

This model is similar to that of Spring WebFlow [18], al-
though Spring WebFlow uses Push-Down Finite State Au-
tomaton to simulate the same navigation pattern and con-
sequently it has only one top-level call stack. In our model
call stacks can appear at any level of widget composition hi-
erarchy, which makes our model considerably more flexible.

4.4 Combining the Models
It is also relatively easy to combine these models, modify-

ing the model shown on figure 2 by putting a URL path
router service before the session router, map the session
router to a particular URL path and put a flow container in
the end.

The combined model is useful, since reentrant stateless
services allow to download files from database and send
other semi-static data comfortably to the user. They can
also be used to serve parts of the application that has the
highest demand and thus load.

5. FRAMEWORK ASPECTS
Next we examine some typical web framework aspects and

how they are realized in Aranea.

5.1 Configuration
The first aspect that we want to examine is configuration.

We have repeated throughout the paper that the compo-
nents should form a dynamic hierarchy, however it is com-
fortable to use a static configuration to wire the parts of the
hierarchy that form the framework core.

To do that one can use just plain Java combining a hier-
archy of objects using setter methods and constructors. But
in reality it is more comfortable to use some configuration
mechanism, like an IoC container. We use in our config-
uration examples Spring [17] IoC container and wire the
components together as beans. Note that even such static
configuration contains elements of dynamicity, since some
components (á la root user session service) are wired not as
instances, but via a factory that returns a new service for
each session.

6

168

5.2 Security
The most common aspect of security that frameworks

have to deal with is authorization. A common task is to
determine, whether or not the current user has enough priv-
ileges to see a given page, component or GUI element. In
many frameworks the pages or components are mapped to a
particular URL, which can also be accessed directly by send-
ing an HTTP request. In such cases it is also important to
restrict the URLs accessible by the user to only those he is
authorized to see.

When programming in Aranea using stateless re-entrant
services they might also be mapped to particular URLs that
need to be protected. But when programming in Aranea us-
ing widgets and flows (a stateful programming model) there
is no general way to start flows by sending HTTP requests.
Thus the only things that need protection are usually the
menu (which can be assigned privileges per every menu item)
and the active flow and widgets (which can only receive the
events they subscribe to).

This simplifies the authorization model to checking
whether you have enough privileges to start the flow before
starting it. Since most use-cases should have enough privi-
leges to start all their subflows it is usually enough to assign
coarse-grained privileges to use-cases that can be started
from the menu as well as fine-grained privileges for some
particular actions (like editing instead of viewing).

5.3 Error Handling
When an exception occurs the framework must give the

user (or the programmer) an informative message and also
provide some recovery possibilities. Aranea peculiarity is
that since an exception can occur at any level of hierarchy
the informing and recovery may be specific to this place
in the hierarchy. Default behavior for Aranea components
is just to propagate the error up the hierarchy to the first
exception handler component

For example it might be required to be able to cancel a
flow that has thrown an exception and return back to the
flow that invoked the faulty flow. A logical solution is to let
the flow container (and other similar components) to handle
their children’s exceptions by rendering an informative error
subpage instead in place of the flow. The error page can then
allow canceling flows by sending events to the flow container.

With such approach when we have several flow containers
on one HTML page, then if two or more flows under different
containers fail, they will independently show error subpages
allowing to cancel the particular faulty flows. Note also
that such approach will leave the usual navigation elements
like menus intact, which will allow the user to navigate the
application as usual.

5.4 Concurrency
Execution model of Aranea is such that each web request

is processed on one Java thread, which makes system consid-
erably easier to debug. By default Aranea does not synchro-
nize component calls. It does, however, protect from trying
to destroy a working component. If a service or widget cur-
rently in the middle of some method call will be destroyed,
the destroyer will wait until it returns from the call. To
protect from deadlock and livelock, after some time the lock
will be released with a warning.

When we want to synchronize the actual calls (as we need
for example with widgets) we can use the synchronizing ser-

vice that allows only one action() call to take place simul-
taneously. This service can be used when configuring the
Aranea framework to synchronize calls on e.g. browser win-
dow threads. This allows to program assuming that only
one request per browser window is processed at any mo-
ment of time. Note that widgets should always be behind a
synchronizing filter and cannot process concurrent calls.

6. INTEGRATION SCENARIOS
In this section we describe our vision of how web controller

frameworks could be integrated with Aranea or among each
other. In practice, we have so far integrated Aranea only
with one internal framework with stateful Portlet-like [12]
components, where Aranea components were hosted within
the latter framework, but we are considering integrating
with such frameworks as Wicket [20], JSF [8], Tapestry [5],
Spring WebFlow [18], Struts [3], and WebWork [19].

Integration is notorious for being hard to create general-
izations about. Each integration scenario has its own set of
specialized problems and we find that this article is not the
right place to write about them. For this reason we keep this
section intentionally very abstract and high-level and try to
describe general principles of web controller framework in-
tegration without drowning in implementation details.

In the following we assume that depending on their nature
it is possible to model components of frameworks we want
to integrate as one of:

• service-like—reentrant and/or stateless component1,

• widget-like—non-reentrant stateful component.

Note that both notions consist of two contracts: interface of
component and contract of the container of the component.

In our abstraction we have essentially the following inte-
gration scenarios:

• service-service,

• service-widget,

• widget-service,

• widget-widget.

Here, for instance, ”service-widget” should be read as: ”ser-
vice-like component of framework X containing widget-like
component of framework Y”. In homogeneous (i.e. service-
service and widget-widget) integration scenarios one has to
find a mapping between service (resp. widget) interface
methods invocations of two frameworks. Although we do
not find this mapping trivial, there is little we can say with-
out considering specialized details of particular frameworks.
However, our experience shows that, thanks to minimalis-
tic and orthogonal interfaces and extensibility of Aranea,
the task becomes more tractable than with other monolithic
frameworks. We now concentrate on heterogeneous cases of
server-widget and widget-service integration. They can also
occur within Aranea framework itself, but are more typi-
cal when disparate frameworks using different programming
models are integrated.

In service-widget scenario, generally, each web request is
processed by some service and then the response is rendered

1Note that Servlets [6] are, for instance, service-like compo-
nents.

7

169

by possibly different service, whereas both services can be
reentrant and/or stateless. As a result, such services cannot
host themselves the widgets whose life-time spans multiple
requests handled by different services. Consequently, widget
instances should be maintained in stateful widget container
service(s) with longer life-span. At each request such ser-
vices would call update() and event() methods of the con-
tained widgets. Widgets would be instantiated by services
processing the request and rendered using render() method
by services generating the response. Each service processing
a request should explicitly decide which widgets are to be
kept further, all the rest are to be destroyed (within current
session). As the services are generally reentrant, it is impor-
tant to exclude concurrent access to the widgets belonging
to the same session. The simplest solution is to synchronize
on session at each web request that accesses widgets.

In widget-service scenario, services should be contained in
service container widgets in the position within widget hi-
erarchy most suitable for rendering the service. On widget
update(), the data entitled for the contained service should
be memorized. On widget render() the memorized data
should be passed to the action() method of contained ser-
vice to render the response. If the service responds with
redirection, which means that the request should not be re-
run, the service should be replaced with the service to which
the redirection points. After that and on all subsequent ren-
derings the action() method of the new service should be
called with redirection parameters.

Coming back to not-so-abstract reality, when integrating
frameworks the following issues should be handled with care:

• How data is represented in the web request and how
output of multiple components coexists in the gener-
ated web response.

• Namespaces (e.g. field identifiers in web request) of
contained components should not mix with the names-
pace of container components, which in general means
appending to the names a prefix representing location
of contained component within the container.

• State management, especially session state history
management (browser’s back, forward, refresh and new
window navigation commands) and keeping part of the
state on the client, should match between integrated
components. We explore this topic further in Subsec-
tion 7.2.

• A related issue to consider is view integration. Many
web frameworks support web components that are
tightly integrated with some variant of templating.
Consequently it is important that these templating
technologies could be intermixed easily.

Incompatibilities in these aspects lead to a lot of mundane
protocol conversion code, or even force modifying integrated
components and/or frameworks.

Generalized solutions to these issues could be standard-
ized as Aranea Protocol. As compared to such proto-
col, current Aranea Java interfaces are relatively loose—
i.e. functionality can be considerably customized by using
Message protocol and extending core interfaces (InputData,
OutputData, Component) with new subintefaces.

Altogether, we envision the following integration scenarios
with respect to Aranea:

Guest Aranea components (resp. services or widgets) are
hosted within components of framework X that comply
to the Aranea component (resp. service or widget)
container contract.

Host Aranea components host components (resp. service-
like or widget-like) of framework X through an adapter
component that wraps framework X components into
Aranea component (resp. service or widget) interface.

Protocol Framework X components provide Aranea com-
ponent (resp. service or widget) container contract
that hosts framework Y components wrapped into
Aranea component (resp. service or widget) interface
using an adapter component.

7. EXTENSIONS AND FUTURE WORK
In this section we discuss important functionality that is

not yet implemented in Aranea. In some cases we have very
clear idea how to do it, in other cases our understanding is
more vague.

7.1 Blocking Calls and Continuations
Consider the following very simple scenario:

1. When user clicks a button, we start a new subflow.

2. When this subflow eventually completes we want to
assign its return value to some text field.

In event-driven programming model the following code
would be typical:

OnClickListener listener = new OnClickListener() {

void onClick() {

Handler handler = new Handler() {

void onFinish(Object result) {

field.setText((String)result);

}

}

getFlowCtx().

start(new SubFlow(), handler);

}

}

button.addOnClickListener(listener);

What strikes here is the need to use multiple event listeners,
and as a result writing multiple anonymous classes that are
clumsy Java equivalent of syntactical closures. What we
would like to write is:

OnClickListener listener = new OnClickListener() {

void onClick() {

String result = (String)getFlowCtx().

call(new SubFlow());

label.setText(result);

}

}

button.addOnClickListener(listener);

What happens here is that flow is now called using blocking
semantics.

Typically blocking behavior is implemented by suspend-
ing executed thread and waiting on some concurrency prim-
itive like semaphore or monitor. The disadvantage of such
solution is that operating system threads are expensive, so

8

170

using an extra thread for each user session would be a ma-
jor overkill—most application servers use a limited pool of
worker threads that would be exhausted very fast. Besides,
threads cannot be serialized and migrated to other cluster
nodes. A more conceptual problem is that suspended thread
contains information regarding processing of the whole web
request, whereas it can be woken up by a different web re-
quest. Also, in Java blocking threads would retain ownership
of all monitors.

In [25] and [22] continuations were proposed to solve
the blocking problem in web applications, described above.
Continuation can be thought of as a lightweight snapshot
of thread’s call stack that can be resumed multiple times.
There still remains the problem that both thread and con-
tinuation contain information regarding processing of the
whole request, but can be woken up by a different web re-
quest.

To solve this problem partial continuations [23] can be
used. Essentially, the difference is that the snapshot of call
stack is taken not from the root, but starting from some
stack frame that we will call boundary. In case of Aranea, the
boundary will be the stack frame of event handler invocation
that may contain blocking statements. So in case of our
previous example the boundary will be invocation of method
onClick(). When we need to wait for an event, the following
should be executed:

1. Take current partial continuation,

2. Register it as an event handler,

3. Escape to the boundary.

Similar approach can be also applied to services though
mimicking such frameworks as Cocoon [2] and RIFE [14].
We’d like to stress that by applying continuations to widget
event handlers we can create a more powerful programming
model because there can be simultaneous linear flows at dif-
ferent places of the same widget hierarchy, e.g. in each flow
container. This programming model is similar to that of
Smalltalk web framework Seaside [21] that uses continua-
tions to provide analogous blocking call semantics of flows,
but not event handlers in general.

Java does not have native support for continuations, but
luckily there exists experimental library [7] that allows sus-
pending current partial continuation and later resuming it.
Aranea currently does not have implementation of this ap-
proach, however, it should be relatively easy to do that.
Event handlers containing blocking statements should be
instrumented with additional logic denoting continuation
boundaries. We could use e.g. AspectJ [24] to do that.

Altogether we view blocking calls as a rather easily im-
plementable syntactic sugar above the core framework. At
the same time we find that combining event-based and se-
quential programming in a component framework is a very
powerful idea because different parts of application logic can
be expressed using the most suitable tool.

7.2 State Management
We have also solutions to the following problems related

to state management:

• Optimizing memory consumption—in high perfor-
mance applications low memory consumption of ses-
sion state representation is essential. The interface

of Component has methods disable() and enable()

that allow releasing all unnecessary resources when dis-
abled.

• Client-side state—part of session state can be kept
within web response that later becomes web request or
within a cookie [13]. This also allows reducing server-
side memory consumption.

• Navigation history—supporting (or sensibly ignoring)
browser’s back, forward, refresh and new window nav-
igation commands. This can be useful both for us-
ability, decreasing server-side state representation or
for integrating with other frameworks that rely on
browser’s navigation commands as the only navigation
mechanism.

7.3 Integration and Portals
It is important to note that so far we have described only

applications that are configured before deployment and work
within one Java virtual machine (or homogeneous cluster).
There are portal applications that would benefit from dy-
namic reconfiguration and using widgets or flows deployed
to another environment. The latter could happen for mul-
tiple reasons such as using a different platform (like .NET),
co-location of web application with database or just admin-
istrative reasons.

One possible approach is to integrate with Portlet [12]
specification together with remote integration protocol
WSRP [9]. Unfortunately portlets cannot be composed into
hierarchies and have many limitations on how they can com-
municate with each other. There is also no notion of nested
process in portlets. Finally, portal implementations that we
are aware of allow reconfiguring portals only by redeploy-
ment.

It should be easy to assemble out of Aranea components a
portal application that would contain multiple pre-packaged
applications, communicating with each other, but the con-
figuration would have to be read on deployment. One fur-
ther direction is to integrate Aranea with some component
framework allowing dynamic reconfiguration, such as OSGi
[11].

Another related direction is to develop a remote integra-
tion protocol that would allow creating a widget that would
be a proxy to a widget located in another environment. One
important issue would be minimizing the number of round-
trips.

7.4 Fat Client
Lately, more and more web applications started using

asynchronous requests to update parts of the page without
resubmitting and refreshing the whole page. Some appli-
cations even implement most of UI logic on the client-side
and use web server essentially as a container for the busi-
ness layer. The enabling technology is called Ajax [1] and
is essentially a small API that allows sending web requests
to the server. We think that this trend will continue and in
future most application will use this approach to a varying
extent.

The first option is when UI logic is still implemented on
the server-side, but in order to make web pages more re-
sponsive sometimes ad-hoc asynchronous requests are used
to update page structure without refreshing the whole page.
This can be accomplished in Aranea using either messages

9

171

or the fact that widgets extend services and consequently
have action(input,output) method. Within widget, some
kind of simple event handling logic could be implemented.

Another option is when all UI implemented on the client-
side within browser and server-side controller acts essentially
as a business layer. Although business layer is often state-
less, we find that Aranea could be used to create a coarse-
grained server-side representation of UI state, essentially
representing activated use-cases, modeled most naturally as
flows. Client-side UI would we able to only execute com-
mands making sense in the context of current server-side UI
state. Such approach is very convenient for enforcing com-
plex stateful authorization rules and data validation would
have to be performed on the server-side in any case.

8. RELATED WORK
As it was mentioned before, Aranea draws its ideas from

multiple frameworks such as Struts [3], WebWork [19],
JavaServer Faces [8], ASP.NET [4], Wicket [20], Tapestry
[5], WASH [26], Cocoon [2], Seaside [21], Spring Web Flow
[18], and RIFE [14]. When possible we have referenced the
original source of idea at the moment of introducing it.

Although we were not aware of Seaside [21] when devel-
oping this framework, we have to acknowledge that rich UI
programming interface of widgets and flows is almost iden-
tical with programming interface of Seaside, but the design
of Seaside differs a lot and it is not intended as a component
model for web framework construction and integration.

9. ACKNOWLEDGEMENTS
Development of Aranea implementation has been sup-

ported by Webmedia, Ltd. We are grateful to Maksim
Boiko, who prototyped the implementation in his bache-
lor thesis and Konstantin Tretyakov, who provided valuable
input as well as help with developing the presentation mod-
ule. This work was partially supported by Estonian Science
Foundation grant No. 6713.

10. SUMMARY
In this paper we have motivated and described a compo-

nent model for assembling web controller frameworks. We
see it as a platform for framework development, integration
and research.

There exists an open source implementation of Aranea
framework available at http://araneaframework.org/. It
is bundled together with reusable controls, such as input
forms and data lists and advanced JSP-based rendering en-
gine. This framework has been used in real projects and we
find it ready for production use. Interested reader can also
find at this address an extended version of this article with
many details that had to be omitted here.

11. REFERENCES
[1] Ajax. Wikipedia encyclopedia article available at

http://en.wikipedia.org/wiki/AJAX.

[2] Apache Cocoon project. Available at
http://cocoon.apache.org/.

[3] Apache Struts project. Available at
http://struts.apache.org/.

[4] ASP.NET. Available at http://asp.net/.

[5] Jakarta Tapestry. Available at
http://jakarta.apache.org/tapestry/.

[6] Java Servlet 2.4 Specification (JSR-000154). Available
at http://www.jcp.org/aboutJava/

communityprocess/final/jsr154/index.html.

[7] The Javaflow component, Jakarta Commons project.
Available at http://jakarta.apache.org/commons/

sandbox/javaflow/index.html.

[8] JavaServer Faces technology. Available at
http://java.sun.com/javaee/javaserverfaces/.

[9] OASIS Web Services for Remote Portlets. Available at
www.oasis-open.org/committees/wsrp/.

[10] Open source web frameworks in Java. Available at
http://java-source.net/open-source/

web-frameworks.

[11] OSGi Service Platform. Available at
http://www.osgi.org/.

[12] Portlet Specification (JSR-000168). Available at
http://www.jcp.org/aboutJava/communityprocess/

final/jsr168/.

[13] RFC 2109 - HTTP State Management Mechanism.
Available at
http://www.faqs.org/rfcs/rfc2109.html.

[14] RIFE. Available at http://rifers.org/.

[15] RIFE/Crud. Available at
http://rifers.org/wiki/display/rifecrud/.

[16] Ruby on Rails. Available at
http://www.rubyonrails.org/.

[17] Spring. Available at http://springframework.org.

[18] Spring Web Flow. Available at
http://opensource.atlassian.com/confluence/

spring/display/WEBFLOW/.

[19] WebWork, OpenSymphony project. Available at
http://struts.apache.org/.

[20] Wicket. Available at
http://wicket.sourceforge.net/.

[21] S. Ducasse, A. Lienhard and L. Renggli. Seaside — a
multiple control flow web application framework.
ESUG 2004 Research Track, pages 231–257,
September 2004.

[22] P. T. Graunke, S. Krishnamurthi, V. der Hoeven and
M. Felleisen. Programming the web with high-level
programming languages. In European Symposium on
Programming (ESOP 2001), 2001.

[23] R. Hieb, K. Dybvig and C. W. Anderson, III.
Subcontinuations. Lisp and Symbolic Computation,
7(1):83–110, 1994.

[24] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm and W. G. Griswold. An overview of AspectJ.
Lecture Notes in Computer Science, 2072:327–355,
2001. Project web site:
http://www.eclipse.org/aspectj/.

[25] C. Queinnec. The influence of browsers on evaluators
or, continuations to program web servers. ICFP ’00:
Proceedings of the fifth ACM SIGPLAN international
conference on Functional programming, pages 23–33,
2000.

[26] P. Thiemann. An embedded domain-specific language
for type-safe server-side web-scripting. Available at
http://www.informatik.uni-freiburg.de/
∼thiemann/haskell/WASH/.

10

172

Session G
Short Papers

173

174

Typeless programming in Java 5.0

Martin Plümicke
University of Cooperative Education Stuttgart

Department of Information Technology
Florianstraße 15, D–72160 Horb
m.pluemicke@ba-horb.de

Jörg Bäuerle
AWM Media

International IT Department
P.O. Box 4006, Worthing BN13 1AP, UK

Joerg.Baeuerle@gmx.net

ABSTRACT
With the introduction of Java 5.0 [9] the type system has
been extended by parameterized types, type variables, type
terms, and wildcards. As a result very complex types can
arise. The term

Vector<Vector<AbstractList<Integer>>>

is for example a correct type in Java 5.0.
Considering all that, it is often rather difficult for a pro-

grammer to recognize whether such a complex type is the
correct one for a given method or not. Furthermore there are
methods whose principle types would be intersection types.
But intersection types are not implemented in Java 5.0. This
means that Java 5.0 methods often don’t have the principle
type which is contradictive to the OOP-Principle of writing
re-usable code.

This has caused us to develop a Java 5.0 type inference
system which assists the programmer by calculating types
automatically. This type inference system allows us, to de-
clare method parameters and local variables without type
annotations. The type inference algorithm calculates the
appropriate and principle types.

We implement the algorithm in Java using the observer
design pattern.

Categories and Subject Descriptors
D.1.5 [Programming Techniques]: Object-oriented Pro-
gramming; D.2.2 [Software Engineering]: Design Tools
and Techniques—modules and interfaces; D.3.3 [Program-
ming Languages]: Language Constructs and Features—
data types and structures

General Terms
Algorithms, Theory

Keywords
Code generation, language design, program design and im-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPPJ 2006 August 30 - September 1, 2006, Mannheim, Germany.
Copyright 2006 ACM ...$5.00.

class Matrix extends Vector<Vector<Integer>> {
Matrix mul(Matrix m){

Matrix ret = new Matrix();

int i = 0;

while(i <size()) {
Vector<Integer> v1 = this.elementAt(i);

Vector<Integer> v2 = new Vector<Integer>();

int j = 0;

while(j < v1.size()) {
int erg = 0;

int k = 0;

while(k < v1.size()) {
erg = erg + v1.elementAt(k)

* m.elementAt(k).elementAt(j);

k++; }
v2.addElement(new Integer(erg));

j++; }
ret.addElement(v2);

i++; }
return ret; }

}

Figure 1: The class Matrix

plementation, type inference, type system

1. INTRODUCTION
In this paper we present a type inference algorithm for a

core language of Java 5.0. Type inference means that we can
implement Java 5.0 programs without type annotations of
method parameters and return types and of local variables.
The type inference system calculates them automatically.

Let us consider an example. The class Matrix (fig. 1) ex-
tends Vector<Vector<Integer>>. Matrix has the method
mul, which implements the multiplication of matrices. The
parameters, the return type, and the local variables are ex-
plictly typed (underlined in fig. 1). If we consider the
type annotations more accurately, we will observe that there
is more than one possibility to give correct type annota-
tions. The return type, the type annotation of m, and the
type annotation of ret are not unambiguous. The type
Vector<Vector<Integer>> would also be a correct type an-
notation. This means, considering the type of the method
mul, that it has beside the type Matrix→ Matrix, the type
Vector<Vector<Integer>> → Vector<Vector<Integer>>,
and all mixtures. The fact that a method has more than
one type is called intersection type. In Java 5.0 no annota-
tions of intersection types are allowed.

175

The idea of Java 5.0 type inference is to omit these type
annotations. The system automatically calculates the prin-
ciple intersection type of the methods.

The type inference discipline arose in functional program-
ming languages (e.g. Haskell [10] or SML [14]). A basic paper
for type inference including an algorithm and the definition
of principle types is given by [3]. A method’s principle type
is a type, where all correct types of the method are derivable
from. In section 4.3 we give a detailed definition.

Many papers on type inference have been published. Some
papers consider type inference in object–oriented languages.
In [15, 11] type inference systems for a language oriented
at Smalltalk [8] are given. In this approach the idea is to
collect type constraints, build a uniform set, and solve them
by a fixed point derivation. In [5] similar as in [1] types are
defined as a pair of a conventional type and a set of type
constraints. Finally, the constraints are satisfied, if possible.
These type systems differ from the Java 5.0 type system.

In [4] and [6] a refactoring is presented that replaces raw
references to generic library classes with parametrized refer-
ences. For this the type parameters of the raw type annota-
tions must be inferred. The main difference to our approach
is, that in our approach no type annotation, must be given
and the algorithm infers the whole type.

The type system of polymorphically order-sorted types,
which is considered for a logical language [18] and for a func-
tional object–oriented language OBJ–P [16], is very similar
to the Java 5.0 type system. Therefore our approach is ori-
ented at polymorphically order-sorted types.

The paper is organized as follows. In the second section
we formally describe the Java 5.0 type system. In the third
section, we give a unification algorithm for a subset of the
Java 5.0 types. The unification algorithm is the base of the
type inference algorithm. In the fourth section we present
the type inference algorithm itself, illustrate the algorithm
by an example, and consider the properties of the algorithm.
Finally in the sixth section we present the implementation.
We have done the implementation in Java using the observer
design pattern. We close the paper with a conclusion and
an outlook.

2. JAVA 5.0 TYPE SYSTEM
As a base for the type inference algorithm we have to

give a formal definition of the Java 5.0 type system. First
we introduce the simple types. Fields, method parameters,
return types of methods, and local variables are annotated
by simple types. Then, from the extends relation we derive
the subtyping relation. Furthermore, we define a relation fi-
nite closure, which is necessary for the unification algorithm
(section 3). Finally, we introduce function types, which rep-
resent the types of methods.

The simple types are built as a set of terms over a fi-
nite rank alphabet of the class/interface names, a set of
unbounded respectively bounded type variables, and un-
bounded respectively bounded wildcards.

Definition 1. Let JC be a set of declared Java 5.0 classes
and Θ = (Θ(n))n∈N the finite rank alphabet of class/interface
names indexed by its respective number of parameters. Let
TV be a set of unbounded type variables. Furthermore, let
TΘ(TV) be the set of (type) terms over Θ and TV .

Then, the set of simple types STypeΘ(BTV) is the small-
est set satisfying the following conditions:

• TΘ(TV) ⊆ STypeΘ(BTV)

• For each intersection of simple types ty = ty1& . . . &tyn

BTV (ty) ⊆ STypeΘ(BTV)

where BTV (ty) contains all type variables, bounded
by ty. A bounded type variable is denoted by a|ty.

• For θi ∈ STypeΘ(BTV)
∪{ ? }
∪ { ? extends τ | τ ∈ STypeΘ(BTV) }
∪ { ? super τ | τ ∈ STypeΘ(BTV) }

and C ∈ Θ(n) : C<θ1, . . . , θn> ∈ STypeΘ(BTV).

The inheritance hierarchy consists of two different rela-
tions: The “extends relation” (in sign <) is explicitly de-
fined in Java 5.0 programs by the extends respectively the
implements declarations. The “subtyping relation” is then
built as the reflexive, transitive, and instantiating closure of
the extends relation.

Definition 2. Let JC be a set of declared Java 5.0 classes,
STypeΘ(BTV) the corresponding set of simple types, and
≤ the corresponding extends relation. The subtyping re-
lation ≤∗ is given as the smallest ordering satisfying the
following conditions:

• if (θ, θ′) ∈ STypeΘ(BTV)× STypeΘ(BTV) is an ele-
ment of the reflexive and transitive closure of ≤ then
θ≤∗ θ′.

• if θ1≤∗ θ2 then σ1(θ1)≤∗ σ2(θ2) for all substitutions
σ1, σ2, which satisfy for each type variable a of θ2 one
of the following conditions:

– σ1(a) = σ2(a)

– σ1(a) = θ and σ2(a) = ?

– σ1(a) = θ and σ2(a) = ? extends θ′ and θ≤∗ θ′

– σ1(a) = ? super θ and σ2(a) = θ′ and θ≤∗ θ′

• a≤∗ θ′ for a ∈ BTV (θ1&...&θn) where ∃θi : θi ≤∗ θ′.

It is surprising that the condition for σ1 and σ2 in the first
subitem is not σ1(a)≤∗ σ2(a), but σ1(a) = σ2(a). This
is necessary to get a sound type system (cp. [9]).

Furthermore, we declare an ordering on the set of type
terms which we call the finite closure of the extends relation.
This ordering is necessary for the type unification algorithm
(section 3).

Definition 3. The finite closure FC(≤) is the reflexive
and transitive closure of pairs in the extends relation
C(a1 . . . an)≤D(θ1, . . . , θm), where the ai are type vari-
ables and the θi are real type terms.

Now we give an example to illustrate the abstract defini-
tions.

Example 1. Let the following Java 5.0 program be given.

abstract class AbstractList<a> implements List<a>{. . . }

class Vector<a> extends AbstractList<a> {. . . }

class Matrix<a> extends Vector<Vector<a>> {. . . }

176

(reduce1)
Eq ∪ {C<θ1, . . . , θn> l D<θ′1, . . . , θ′n> }
Eq ∪ { θπ(1)

.
= θ′1, . . . , θπ(n)

.
= θ′n }

where
• C<a1, . . . , an>≤∗ D<aπ(1), . . . , aπ(n)>

• { a1, . . . , an } ⊆ TV

• π is a permutation

(reduce2)
Eq ∪ {C<θ1, . . . , θn>

.
= C<θ′1, . . . , θ′n> }

Eq ∪ { θ1
.
= θ′1, . . . , θn

.
= θ′n }

(erase)
Eq ∪ { θ

.
= θ′ }

Eq
θ = θ′

(swap)
Eq ∪ { θ

.
= a }

Eq ∪ { a
.
= θ } θ 6∈ TV, a ∈ TV

(adapt)
Eq ∪ {D<θ1, . . . , θn> l D′<θ′1, . . . , θ′m> }
Eq ∪ {D′<θ

′
1, . . . , θ

′
m>[ai 7→ θi | 16 i6n] l D′<θ′1, . . . , θ′m> }

where there are θ
′
1, . . . , θ

′
m with

• (D<a1, . . . , an>≤∗ D′<θ
′
1, . . . , θ

′
m>) ∈ FC(≤)

(subst)
Eq ∪ { a

.
= θ }

Eq[a 7→ θ] ∪ { a
.
= θ }

where
• a occurs in Eq but not in θ

Figure 2: Java 5.0 type unification

The following type term pairs are elements of the subtyp-
ing relation ≤∗ :

Vector<Vector<a>>≤∗ Vector<Vector<a>>,
Vector<Vector<a>>≤∗ AbstractList<Vector<a>>,

Matrix<a>≤∗ Vector<Vector<a>>,
Matrix<a>≤∗ AbstractList<Vector<a>>.

But Vector<Vector<a>> 6≤∗ Vector<AbstractList<a>> which
follows from the soundness of the Java 5.0 type system.

The finite closure FC(≤) is given as the reflexive and
transitive closure of { Matrix<a> ≤∗ Vector<Vector<a>>

≤∗ AbstractList<Vector<a>> ≤∗ List<Vector<a>> }.

We complete the Java 5.0 type system with the following
definition.

Definition 4. Let STypeΘ(BTV) be a set of simple types
of given Java 5.0 classes. The respective set of Java 5.0 types
Type(STypeΘ(BTV)) is the smallest set with the following
properties:

1. For the considered base types holds

{ Integer, Boolean, Char } ⊆ Type(STypeΘ(BTV)).

2. STypeΘ(BTV) ⊆ Type(STypeΘ(BTV))
(simple type).

3. If for 06 i6n: θi ∈ (STypeΘ(BTV) ∪ basetype) then
θ1 × . . .× θn → θ0 ∈ Type(STypeΘ(BTV)) (function
type).

4. If ty1, ty2 ∈ Type(STypeΘ(BTV)), then ty1&ty2 ∈
Type(STypeΘ(BTV)) (intersection type).

The base types and the simple types describe types of
fields, types of methods’ parameters, return types of meth-
ods, and types of local variables. Finally the types of the
methods are given as intersections of function types. The
intersections are necessary to describe the principle type of
a method. If a method has an intersection type, this means
that more than one type is inferable for the code.

We do not consider raw types as they are only necessary
to use older Java programs (Version ≤ 1.4). The behavior
of raw types can be simulated by using the corresponding
parameterized types, where all arguments are instantiated
by Object.

3. TYPE UNIFICATION
The basis of the type inference algorithm is the type uni-

fication. The type unification problem is given as: For two
type terms θ1, θ2 a substitution is demanded, such that

σ(θ1)≤∗ σ(θ2).

σ is called a unifier of θ1 and θ2. In the following we denote
θ l θ′ for two type terms, which should be type unified.

Our type unification algorithm is based on the unifica-
tion algorithm of Martelli and Montanari [13]. The main
difference is, that in the original unification a unifier is de-
manded, such that σ(θ1) = σ(θ2). This means that a pair
a

.
= θ determines that the unifier substitutes a by the term

θ. In contrast a pair a l θ respectively θ l a leads to multi-
ple correct substitutions. All type terms smaller than θ and
greater than θ respectively are correct substitutions for a.
This means that there are multiple unifiers.

Now, we give the type unification algorithm. We re-
strict the type terms to terms without bounded type vari-
ables and without wildcards. We denoted this subset of
STypeΘ(BTV) in definition 1 by TΘ(TV).

The algorithm itself is given in seven steps:

1. For each pair alθ a set of pairs is built, which contains
for all substypes θ of θ the pair a

.
= θ.

2. For each pair θla a set of pairs is built, which contains
for all supertypes θ′ of θ the pair a

.
= θ′.

3. The cartesian product of the sets from step 1 and 2 is
built.

4. Repeated application of the rules reduce1, reduce2, erase,
swap, and adapt (fig. 2) to each set of type term pairs.

5. Application of the rule subst (fig. 2) to each set of type
term pairs.

6. For all changed sets of type terms start again with step
1.

7. Summerize all results

For more details about the Java 5.0 type unification see
in [17].

Example 2. Let the subtyping relation and the finite clo-
sure be given as in example 1.

177

Source := (class | interface)∗
class := Class(stype, [extends(stype),] [implements(stype+),]IVarDecl∗,Method∗)
interface := interface(stype, [extends(stype),]MHeader∗)
IVarDecl := InstVarDecl(stype, var)
MHeader := MethodHeader(mname, stype, (var , stype)∗)
Method := Method(mname, [stype], (var [, stype])∗, block)

block := Block(stmt∗)
stmt := block | Return(expr) | while(expr , block) | LocalVarDecl(var [, stype]) | If(expr , block [, block])

| stmtexpr
stmtexpr := Assign(var, expr) | New(stype, expr∗) | NewArray(stype, expr) | MethodCall([expr ,]f, expr∗)
expr := stmtexpr | this | super | LocalOrFieldVar(var) | InstVar(expr , var) | ArrayAcc(expr , expr)

| Add(expr, expr) | Minus(expr, expr) | Mul(expr, expr) | Div(expr, expr) | Mod(expr, expr)
| Not(expr) | And(expr, expr) | Or(expr, expr)

Figure 3: The Java 5.0 core language

We apply the unification algorithm to

{ Matrix l Vector<Vector<List<Object>>>,
a l b }

In the first three steps nothing happens.
In step 4 we get by the adapt rule

{ { Vector<Vector>
.
= Vector<Vector<List<Object>>>,

a l b } },

as (Matrix<a>≤∗ Vector<Vector<a>>) ∈ FC(≤). Then the
reduce2 rule leads to: { { b .

= List<Object>, alb } }. In step
5 the subst rule leads to

{ { b .
= List<Object>,

a l List<Object> } }

With the again application of the first three steps we get
finally:

{ { b .
= List<Object>, a

.
= List<Object> },

{ b .
= List<Object>, a

.
= AbstractList<Object> },

{ b .
= List<Object>, a

.
= Vector<Object> } }

This means that this type unification has three unifiers as
its results.

4. TYPE INFERENCE
The language for our type inference algorithm is given in

figure 3. It is an abstract representation of a core of Java 5.0.
The input of the type inference algorithm is a set of abstract
syntax trees representing Java 5.0 classes, where the param-
eters, return types, and local variables of the methods are
not necessarily type annotated (underlined in figure 3). The
type inference algorithm infers the absent type annotations.
The result of the algorithm contains for each method an in-
tersection of function types and the corresponding typings
for the local variables. The intersection of function types of
the methods describes the different possible typings of its
parameters and its return types.

4.1 The Algorithm
The basic idea of the algorithm is that each expression,

each statement and each block is typed by simple types and
that each method is typed by function types. These types
are determined step by step during the run of the algorithm.

Type assumptions: First, we assume for each expression,
for each statement, and for each block a type variable
as a type–placeholder. The types of the methods are
assumed as function types, which consists also of type–
placeholders for each argument and the return type.

Run over the abstract syntax tree: During a run over
the abstract syntax tree, the types of each expression,
each statement, and each block are determined. This is
done step by step. At each position of the abstract syn-
tax tree there are type assumptions of the expressions,
the statements, and the blocks, respectively, and there
are conditions for these types given by the Java 5.0
type system. The type assumptions are unified by type
unification as the respective type–conditions define.

For example if we determine the type of Assign(a, expr)
(a = expr), we have type assumptions tya and tyexpr

for a respective expr. The type–condition for Assign
defines, that it holds tyexpr ≤∗ tya. This means that
the type unification algorithm is applied to { tyexpr l
tya }. After that the resulting unifiers are applied to
the respective type assumptions.

There are rules for each Java 5.0 construct, which de-
fine the type–conditions for the corresponding types.

Multiplying the assumptions: In two cases the set of
type assumptions is multiplied:

• If the result of the type unification contains more
than one unifier, for each unifier a new set of type
assumptions is generated.

• If during a method call there are different re-
ceivers, which can invoke the method, for each
receiver a new set of type assumptions is gener-
ated.

In both cases the algorithm is continued on both sets
of type assumptions.

Erase type assumptions: If the type unification fails, the
corresponding set of type assumptions is erased.

New method type parameters: If at the end, there are
type–placeholders contained in type assumptions, these
type–placeholders are replaced by new introduced me-
thod type parameters.

178

Intersection types: If at the end, there is more than one
set of type assumptions for a method, this method has
an intersection type, which is then generated.

4.2 Type Inference Example
We consider again the matrices example from the intro-

duction. We apply the algorithm to the corresponding ab-
stract syntax tree of the class Matrix (fig. 1), where the un-
derlined type annotations are erased. In the first step type
assumptions all expressions, statements, and the block are
typed by type–placeholders. In the following we consider
some steps of the run over the abstract syntax tree.

First, the New–statement New(Matrix, ()) (in concrete
syntax: new Matrix();) gets the type Matrix as its type
assumption.

Then, the statement Assign(ret, New(Matrix, ())) (ret
= new Matrix();) should be typed. For this the type as-
sumption of ret is also necessary. The type assumption of
ret is the type–placeholder β. The type–condition for As-
sign–statements, leads to the condition Matrix l β. The
type unification gives two unifiers: {β 7→ Matrix } and
{β 7→ Vector<Vector<Integer>> }. This means that the
algorithm’s step, multiplying the assumptions, is ap-
plied and we get two sets of type assumptions. In the first
one the type of ret is assumed as Matrix and in the second
one it is assumed as Vector<Vector<Integer>>.

Next, we consider the type calculation of the statement
MethodCall(MethodCall(m, elementAt, k), elementAt, j)
(m.elementAt(k).elementAt(j)) in the innermost while–
loop. First, the type of MethodCall(m, elementAt, k) is de-
termined. The type assumption of m is the type–placeholder
α. Now all types are considered, which can invoke a method
elementAt. In our context it is Vector<T> with elementAt :
Vector<T> → T. The type–condition of the methodcall–
rule defines that for a new type–placeholder δ, it holds α l
Vector<δ>. There are two unifiers: {α 7→ Vector<δ> } and
{α 7→ Matrix, δ 7→ Vector<Integer> }. This means that
we get, by the algorithm’s step multiplying the assump-
tions, two different type assumptions δ and Vector<Integer>

for MethodCall(m, elementAt, k). This expression is simulta-
neously the receiver of the second method call. This means
that on the one hand for δ all types are considered, which
can invoke a method elementAt. This is again Vector<T>.
On the other hand it is determined wether Vector<Integer>
can invoke elementAt. This is also possible. This means fol-
lowing the type–condition of the methodcall–rule, that for a
new type–placeholder ε it must hold δlVector<ε> and for a
further type–placeholder ε′ it must hold Vector<Integer>l
Vector<ε′>. The first unification again gives the unifiers
{ δ 7→ Vector<ε> } and { δ 7→ Matrix, ε 7→ Vector<Integer> }.
The second unification gives { ε′ 7→ Integer }. This means,
that we get for MethodCall(MethodCall(m, elementAt, k),
elementAt, j) =: (*) three type assumptions Integer, ε,
and Vector<Integer> and for the parameter m we get the
type assumptions Vector<Vector<ε>>, Vector<Matrix>, and
Matrix.

Then the type for Add(. . . , (*)) is determined. The
type–condition for the addition demands that its arguments
are subtypes of Integer. The means, that it must holds
Integer l Integer, ε l Integer, and Vector<Integer> l
Integer. It is obvious, that the last unification fails. This
means that the algorithm’s step erase type assumptions
is applied and the corresponding set of type assumptions is

erased. From this, it follows, that for m there remains two
adapted type assumptions Vector<Vector<Integer>> and
Matrix.

During the rest of the running nothing happens to the
type assumptions of the parameter m.

The statement Return(ret) (return ret;) determines the
return type of this presently considered method mul. As the
type assumptions of the local variable ret are Matrix and
Vector<Vector<Integer>>, these two are the type assump-
tions for the return type.

In the last step of the algorithm, intersection types,
this leads to the following inferred type for mul:

mul : Vector<Vector<Integer>>→ Matrix

& Matrix→ Matrix

& Vector<Vector<Integer>>

7→ Vector<Vector<Integer>>

& Matrix 7→ Vector<Vector<Integer>> .

This is the result which we expected in the first section.

4.3 Principle Type Property
First, we will give a definition of a principle Java 5.0 type.

The definition is a generalization of the corresponding defi-
nition in functional programming languages [3].

Definition 5. An intersection type of a method m in a class
C

m : (θ1,1 × . . .× θ1,n → θ1)
& . . . &
(θm,1 × . . .× θm,n,→ θm)

is called principle if for any type annotated method decla-
ration

rty m(ty1 a1 , . . . , tyn an) { . . . }

there is an element (θi,1 × . . .× θi,n,→ θi) of the intersec-
tion type and there is a substitution σ, such that

σ(θi) = rty , σ(θi,1) = ty1 , . . . , σ(θi,n) = tyn

Theorem 1. If we consider only simple types with un-
bounded type variables and without wildcards, the type infer-
ence algorithm calculates a principle type.

4.4 Resolving Intersection Types
In conventional Java no intersection types for methods

are allowed. This means that the compiler cannot trans-
late them. Therefore, we need an approach to deal with
intersection types after they are inferred. There are three
possibilities.

The first one is to present the user with all inferred types
and the user has to select one of them. Subsequently code
is generated for that type. At the moment we have imple-
mented this approach.

Another approach would be to generate code for each ele-
ment of the intersection type. This approach would have the
advantage, that later on all inferred types for the method
would be usable. The disadvantage is, that the same code
appears several times in the byte–code file.

The third idea is to generate the code for each method
only once. However, for each type of the intersection type
an entry in the constant–pool is built. This means that the
same executable code is referenced by different entries in
the constant–pool. For this approach we have to do further
investigations.

179

5. IMPLEMENTATION
In order to present a proof of concept, we have integrated

the type inference system in a Java compiler. The compiler
itself has been implemented in Java by using the tools JLex
[2] and jay [12].

In its analysis phase the compiler parses a Java program
and creates an Abstract Syntax Tree (subsequently called
AST). This AST forms, together with some other basic data
structures, the input data for the Type Inference Algorithm
(subsequently called TIA) described in section 4. The TIA
calculates the missing type annotations and performs a gen-
eral type checking. In doing so, it replaces the common
semantic check.

5.1 Basic Data Structures

5.1.1 TypePlaceholder
All the types of the Java program to be compiled are rep-

resented in the AST by instances of subclasses of the ab-
stract class Type. In order to allow programmers to omit
type annotations for method declarations and local variable
declarations, we have to extend the type hierarchy by intro-
ducing another subclass of Type.
This subclass is an auxiliary data structure for the TIA. Its
instances act as placeholders for the individual declaration
types. The class is therefore called TypePlaceholder.

5.1.2 TypeAssumption
The implementation of the type assumptions described in

section 4 is realized by the abstract class TypeAssumption.
This class is, besides the AST, the main data structure for
the TIA. It basically maps an identifier onto an assumed
type by storing a String instance and a Type instance.

At the beginning of the TIA an initial set of TypeAssump-
tion instances is created for all field declarations (field vari-
ables and methods). During the processing of the TIA when
more and more knowledge about the types is gained, this set
is extended by adding new TypeAssumption instances or by
modifying old ones.

5.1.3 Substitution
While TypeAssumption is the implementation for map-

ping an identifier onto a type, the class Substitution maps
a type placeholder onto a calculated type. A Substitution
instance stores a TypePlaceholder reference and the corre-
sponding Type instance which the placeholder will be re-
placed with. Normally for each unifier provided by the uni-
fication algorithm (see section 3) a Substitution instance is
created.

Through the method Substitution.execute() the type re-
placement for this particular placeholder in the AST can be
invoked (see section 5.2).

5.2 Substitution Based Approach
The TIA theoretically described in section 4 follows an

approach which is mainly based on type assumptions. The
algorithm cyclically collects type information and unifica-
tion results in order to extend and specify existing sets of
type assumptions.

Type substitutions however play a minor role in this ap-
proach and are only used as an auxiliary means. The unifiers
provided by the unification algorithm are usually discarded
after their type substitution has been applied on the sets of

type assumptions.
The TIA’s output data structure consists of multiple sets

of type assumptions which represent a theoretical image of
the Java program’s type configuration. Type unifiers or type
substitutions are not part of the output data structure.

This assumption based approach is very difficult to imple-
ment as such a set of type assumptions as a whole cannot be
applied to the AST. The type information must be broken
down into small, executable instructions. These instructions
are identical to the type substitutions, though. For the im-
plementation it is crucial to add all type substitutions as
Substitution instances to the TIA’s output data!

The implementation still uses, according to the TIA’s
specification, type assumptions for calculating types, but
in terms of modifying the AST, type substitutions are more
important.

Therefore the implemented TIA returns a data structure
consisting of multiple tuples of TypeAssumption sets and
Substitution sets. Each tuple represents a possible type con-
figuration for the Java program.

5.3 Applying the Output Data
The question facing our implementation is, how to apply

such a set of type substitutions returned by the TIA to the
AST.

The most obvious solution would be to use the set of type
substitutions as input data for a second algorithm which
is responsible for applying them to the AST. Considering
that the whole AST would have to be traversed again, the
performance of this solution would not be very good.

Therefore we choose a totally different approach which
is based on the Observer Design Pattern [7]. According to
this design pattern, many observers (also called listeners)
register themselves at an object they are interested in, so
that they can be notified about its state changes.

In our case the observers are all the AST components
which store a TypePlaceholder object. Such a component
registers itself as an observer at the TypePlaceholder whose
state changes it is interested in. The state changes are
the type replacements and substitutions respectively. Such
an observer is represented by the interface ITypeReplace-
mentListener and is notified by a method call to its interface
method replaceType(ReplaceTypeEvent e). The observer can
then replace its TypePlaceholder with the new type it re-
ceives via the ReplaceTypeEvent.

Each TypePlaceholder stores its ITypeReplacementListen-
ers in a Vector called m ReplacementListeners and notifies
all registered observers when the method fireReplaceType-
Event() is called (see figure 4).

As all observers are stored in a field variable of TypePlace-
holder, it is important that all observers who are interested
in a type placeholder A register at the same TypePlaceholder
instance representing A. This means that within the AST
there must not be more than one instance for the type place-
holder A.

In order to achieve this, we prohibit the creation of Type-
Placeholder objects by defining its constructor private. In-
stead we provide the static Factory Method [7] TypePlace-
holder.fresh() which creates a new TypePlaceholder object
and stores it in a central registry. An existing TypePlace-
holder can be retrieved from the registry by the static method
TypePlaceholder.getInstance(String name).

So the following happens after the TIA has finished. The

180

Figure 4: Implemented Observer Pattern

programmer has to choose between the possible type config-
uration returned by the TIA. On each Substitution object
of the selected configurations the method execute() is called.
This method requests the unique TypePlaceholder instance
of its type placeholder from the registry and passes its cal-
culated type to TypePlaceholder.replaceWith(Type newType)
which triggers TypePlaceholder.fireReplaceTypeEvent(). Sub-
sequently all registered ITypeReplacementListeners are no-
tified and replace their TypePlaceholder with the calculated
type.

6. CONCLUSION AND OUTLOOK
We gave a type inference algorithm for Java 5.0. The algo-

rithm calculates a method’s parameter types and its return
type. For type terms without bounded type variables and
without wildcards a principle type is inferred. The type in-
ference algorithm is based on the type unification algorithm.
It is possible to consider the type inference algorithm as
a generic algorithm parameterized by the type unification
algorithm. At the moment we gave a type unification al-
gorithm, which calculates unifiers for type terms without
bounded type variables and without wildcards.

For the introduction of bounded type variables step 4 of
the type unification algorithm (section 3) must be extended.
The pairs of the form a l ty1 and a l ty2, where the types
ty1 and ty2 are not unifiable, should be transformed to a l
ty1&ty2. Furthermore we aim to discover wether such a
strategy leads to a principle type or not.

The introduction of wildcards leads to a problem if the
type unification is computable. This is marked as open in
[18]. There is an idea to solve this problem by extending
our type unification algorithm.

Furthermore, we are working at a translation function for
the byte–code to integrate intersection types as discussed in
section 4.4.

7. REFERENCES
[1] A. Aiken and E. L. Wimmers. Type inclusion

constraints and type inference. In Functional
Programming Languages and Computer Architecture,

pages 31–41, 1993.

[2] E. Berk. JLex: A lexical analyzer generator for
Java(TM). http://www.cs.princeton.edu/ ap-
pel/modern/java/JLex, 1.2 edition, October
1997.

[3] L. Damas and R. Milner. Principal type-schemes for
functional programs. Proc. 9th Symposium on
Principles of Programming Languages, 1982.

[4] A. Donovan, A. Kieżun, M. S. Tschantz, and M. D.
Ernst. Converting java programs to use generic
libraries. In OOPSLA ’04: Proceedings of the 19th
annual ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications,
pages 15–34, New York, NY, USA, 2004. ACM Press.

[5] J. Eifrig, S. Smith, and V. Trifonov. Type Inference
for Recursively Constrained Types and its Application
to Object Oriented Programming. Electronic Notes in
Theoretical Computer Science, 1, 1995.

[6] R. Fuhrer, F. Tip, A. Kieżun, J. Dolby, and M. Keller.
Efficiently refactoring Java applications to use generic
libraries. In ECOOP 2005 — Object-Oriented
Programming, 19th European Conference, Glasgow,
Scotland, July 27–29, 2005.

[7] Gang of Four. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

[8] A. Goldberg and D. Robson. Smalltalk–80: The
Language and Its Implementation. Addison-Wesley,
1983.

[9] J. Gosling, B. Joy, G. Steele, and G. Bracha. The
JavaTM Language Specification. The Java series.
Addison-Wesley, 3rd edition, 2005.

[10] S. P. Jones, editor. Haskell 98 Language and Libraries,
The Revised Report. Cambridge University Press,
2003.

[11] D. Kozen, J. Palsberg, and M. I. Schwartzbach.
Efficient inference of partial types. Journal of
Computer and System Sciences, 49(2):306–324, 1994.

[12] B. Kühl and A.-T. Schreiner. jay – Compiler bauen
mit Yacc und Java. iX, 1999. (in german).

[13] A. Martelli and U. Montanari. An efficient unification
algorithm. ACM Transactions on Programming
Languages and Systems, 4:258–282, 1982.

[14] R. Milner. The definition of Standard ML (Revised).
MIT Press, Cambridge, Mass., 1997.

[15] N. Oxhoj, J. Palsberg, and M. I. Schwartzbach.
Making type inference practical. Proceedings of
ECOOP’92, Sixth European Conference on
Object-Oriented Programming, LNCS 615:329–349,
July 1992.

[16] M. Plümicke. OBJ–P The Polymorphic Extension of
OBJ–3. PhD thesis, University of Tuebingen,
WSI-99-4, 1999.

[17] M. Plümicke. Type unification in Generic–Java. In
M. Kohlhase, editor, Proceedings of 18th International
Workshop on Unification (UNIF’04), July 2004.

[18] G. Smolka. Logic Programming over Polymorphically
Order-Sorted Types. PhD thesis, Department
Informatik, University of Kaiserslautern,
Kaiserslautern, Germany, May 1989.

181

Infinite Streams in Java

Dominik Gruntz
Institute for Mobile and Distributed Systems

University of Applied Sciences, Northwestern Switzerland
Steinackerstrasse 5, CH-5210 Windisch, Switzerland

dominik.gruntz@fhnw.ch

ABSTRACT
Programming languages which support lazy evaluation allow
the definition of infinite streams as for example the stream
of natural numbers or of prime numbers. Such streams are
infinite in the sense that arbitrary many elements can be
accessed as these elements are computed “on demand”.

This paper describes how infinite streams can be imple-
mented in Java, a language which does not support lazy eval-
uation directly. Two possible implementations are described
and compared. Furthermore it is shown how streams can be
defined as fixed points of maps on infinite streams and how
formal power series can be defined using infinite streams. As
user interface to work with such streams Groovy is used.

1. INTRODUCTION
Infinite streams are streams which conceptionally contain

infinitely many objects. Such streams can be represented
using lazy evaluation, a strategy where expressions are only
evaluated when needed. Infinite streams can for example
be used to represent the stream of all prime numbers or
the stream of the coefficients of a power series. Infinite
streams are useful in applications where the number of ele-
ments which need to be accessed is not known in advance.

Lazy evaluation became popular in the context of func-
tional languages [1]. Examples of functional languages which
support lazy evaluation as default evaluation strategy are
Haskell and Miranda. Some languages provide library func-
tions which allow to emulate lazy evaluation (e.g. Scheme
defines the two functions delay and force in its standard
library).

The Java language does not support lazy evaluation di-
rectly, but it can be simulated with a functor object defi-
nition (as e.g. provided by the Jakarta Commons Functor
library [2] or by JGA [3]). Such a functor is usually defined
by a method signature in an interface and is implemented in
an inner class. Implementations of infinite streams for Java
have been proposed in [4, 5].

In Sections 2 and 3 we present two implementations to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPPJ2006, August 30 – September 1, Mannheim, Germany
Copyright 2006 ACM X-XXXXX-XX-X/XX/XX ... $5.00.

represent infinite streams in Java. These implementations
correspond to the linked list and array list implementations
of finite lists provided by the Java collection framework. Ex-
isting stream implementations for Java follow the linked list
model.

Infinite streams are often recursively defined, i.e. the lazily
evaluated part of the stream contains a reference to the de-
fined stream itself. This property can be used to define infi-
nite streams as fixed points of functions on infinite streams.
In Section 4 we show, how fixed point definitions can be im-
plemented in Java and which properties a stream implemen-
tation must meet so that it can be used in such definitions.

We use this technology to define infinite power series in
Section 5 and close the article with Section 6 demonstrating
how Groovy can be used as user interface.

2. LINKED STREAMS
We start the implementation with the definition of the

interface Stream to represent immutable infinite streams.
This interface contains nested interfaces for selectors and
functors which are used to define filters and maps on infinite
streams.

public interface Stream<E> {

interface Selector<T> { boolean select(T x); }
interface UnaryFunctor<T,R> { R eval(T x); }
interface BinaryFunctor<T1,T2,R> {

R eval(T1 x, T2 y);
}

E getHead();
E get(int index);
Stream<E> getTail();

java.util.Iterator<E> iterator();
String toString(int order);

// add an element in front
Stream<E> prepend(E x);

// select elements
Stream<E> select(Selector<? super E> s);

// map a function onto the stream
<R> Stream<R> map(UnaryFunctor<? super E, R> f);

// combine two streams
<T,R> Stream<R> zip(

BinaryFunctor<? super E, ? super T, R> f,
Stream<T> stream);

}

182

The first implementation follows the idea of linked lists,
where the evaluation of the remainder is delayed until it is
accessed. For that purpose we define an interface LazyTail

whose method eval returns another (lazily evaluated) in-
finite stream when evaluated. This implementation corre-
sponds to the implementations presented in [4, 5]. To keep
the code simple we only show the necessary methods and
discuss further methods below.

public class LinkedStream<E> implements Stream<E> {

public interface LazyTail<E> {
LinkedStream<E> eval();

}

private E head;
private LinkedStream<E> tail; //assigned on demand
private LazyTail<E> lazyTail; //delayed tail rule
public LinkedStream(E head, LazyTail<E> tail) {

this.head = head;
this.lazyTail = tail;

}

public E getHead(){ return head; }
public LinkedStream<E> getTail(){

if(tail == null) {
tail = lazyTail.eval(); lazyTail = null;

}
return tail;

}
...

}

Method getHead returns the head element of the stream,
and getTail computes and returns the tail of the stream.
Since the remainder of a stream should only be evaluated
once, we store the result in the field tail and free the ref-
erence to the computation procedure so that the garbage
collector can reclaim it.

As an example we define the infinite stream of integers:

public class StreamTest {
static LinkedStream<Integer> integersFrom(

final int start) {
return new LinkedStream<Integer>(start,

new LinkedStream.LazyTail<Integer>(){
public LinkedStream<Integer> eval(){

return integersFrom(start+1);
}

}
);

}

public static void main(String[] args) {
Stream<Integer> integers = integersFrom(0);

Stream<Integer> s = integers;
for(int i=0; i<20; i++){

System.out.print(s.getHead() + " ");
s = s.getTail();

}
System.out.println("...");

}
}

When this program is executed the following result is printed
on the console:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 ...

The get method allows accessing an element at a specified
position. To do that, the stream is traversed and, if neces-
sary, built up to the specified position. This method could

also be defined in an abstract base class available for all
stream implementations as it does not use implementation
specific aspects.

public E get(int index) {
if (index < 0) throw

new IndexOutOfBoundsException("negative index");
Stream<E> stream = this;
while (index-- > 0) stream = stream.getTail();
return stream.getHead();

}

For the map method a new stream is generated where the
given function is mapped on each element. The implemen-
tation defines an inner class for the lazy tail. Fields accessed
in the outer scope are copied and have to be declared final.
The zip and select functions are defined similarly.

public <R> LinkedStream<R> map(
final UnaryFunctor<? super E, R> f) {

return new LinkedStream<R>(
f.eval(getHead()),
new LazyTail<R>(){

public LinkedStream<R> eval(){
return getTail().map(f);

}
}

);
}

The prepend method adds a new head element. This
method is problematic as it is strict on the stream it is
called. In particular, the head element of the stream to
which a new element is prepended is evaluated as only the
tail of the series is lazily defined.

public Stream<E> prepend(E head){
return new LinkedStream<E>(

head,
new LazyTail<E>(){

public LinkedStream<E> eval(){
return LinkedStream.this;

}
}

);
}

The evaluation of a stream s to which a new head element
e is added could be avoided, if the construct

new LinkedStream<E>(e, new LazyTail<E>(){
public LinkedStream<E> eval(){ return s; }

})

were used.
We close this section with the definition of the streams

of integers, squares and fibonacci numbers. Both methods
integersFrom and fibonacci are recursive and contain calls
to itself in the eval method defined in the anonymous class.

public class StreamTest2 {

public static LinkedStream<Integer> integersFrom(
final int start) {

return new LinkedStream<Integer>(
start,
new LinkedStream.LazyTail<Integer>(){

public LinkedStream<Integer> eval(){
return integersFrom(start+1);

}
}

);
}

183

private static LinkedStream<Integer> fibonacci(
final int a, final int b){

return new LinkedStream<Integer>(
a,
new LinkedStream.LazyTail<Integer> () {

public LinkedStream<Integer> eval(){
return fibonacci(b, a+b);

}
}

);
}

public static void main(String[] args) {
Stream<Integer> integers = integersFrom(0);
System.out.println(integers);

Stream<Integer> squares = integers.map(
new Stream.UnaryFunctor<Integer, Integer>(){

public Integer eval(Integer x){
return x*x;

}
}

);
System.out.println(squares);

Stream fibonaccy = fibonacci(0, 1);
System.out.println(fibonaccy);

}
}

This program generates the following output:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ...
0 1 4 9 16 25 36 49 64 81 100 121 144 169 196 ...
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 ...

3. ARRAY STREAMS
In class LinkedStream an infinite stream is represented

as a linked list. Accessing the nth element requires O(n)
operations. An alternative would be to store the stream ele-
ments in an array or a hash table where they can be accessed
in constant time. This is how array lists are implemented
in the Java collection framework. This strategy can also
be applied to infinite streams. Instead of a functor for the
computation of the remainder of a stream a functor for the
computation of the nth term of the stream is provided.

We present a simple implementation of this approach.
Class ArrayStream contains only a minimal set of methods;
additional methods of the Stream interface are discussed be-
low.

import java.util.HashMap;
public class ArrayStream<E> implements Stream<E> {

public interface Coefficients<E> {
E get(int index);

}

private Coefficients<E> lazyCoeff;
private HashMap<Integer,E> coeff =

new HashMap<Integer,E>();

public ArrayStream(Coefficients<E> lazyCoeff){
if(lazyCoeff == null) throw

new IllegalArgumentException();
this.lazyCoeff = lazyCoeff;

}

public E get(int index){
if (index < 0) yhrow new

IndexOutOfBoundsException("negative index");
Integer n = index;

if(!coeff.containsKey(n))
coeff.put(n, lazyCoeff.get(index));

return coeff.get(n);
}

public E getHead(){ return get(0); }

public ArrayStream<E> getTail(){
return new ArrayStream<E>(

new Coefficients<E>(){
public E get(int index){

return ArrayStream.this.get(index+1);
}

}
);

}
}

Method get first checks whether the requested term of the
stream has already be computed. If not, it is computed with
the provided coefficient method. getHead simply returns the
first term, and getTail constructs a new ArrayStream which
returns the terms shifted by one. Note, that the terms of
the tail stream are stored in that stream’s coefficient map
as well. This waste of storage could be avoided (at the cost
of an additional method call) with a no-cache flag added to
class ArrayStream.

We present the implementation of two additional methods
of the Stream interface. The prepend method defines a new
coefficient method which returns the new head element and
the terms of the original stream shifted by one. In contrast
to the prepend method of LinkedStream the evaluation of
the head element of the this stream is not forced.

public Stream<E> prepend(final E head){
return new ArrayStream<E>(

new Coefficients<E>(){
public E get(int index){

if(index == 0) return head;
else return ArrayStream.this.get(index-1);

}
}

);
}

The select function is more tricky for array streams than
for linked streams. If the kth element is accessed, the ele-
ments with index 0 up to k − 1 already have to be known.
This is ensured in the implementation below by accessing
the directly preceding element which is either taken out of
the hash map or computed. Moreover, the coefficient pro-
cedure has to maintain an index into the original stream.

public Stream<E> select(final Selector<? super E> s){
final ArrayStream<E> stream = new ArrayStream<E>();
stream.lazyCoeff = new Coefficients<E>(){

int pos = 0;
public E get(int index){

if(index > 0) stream.get(index-1);
E x = null;
do {x = ArrayStream.this.get(pos++);}
while(!s.select(x));
return x;

}
};
return stream;

}

Unfortunately, the use of select operations leads to deeper
recursion levels with this stream representation and may end
earlier in a StackOverflowError. Moreover, random access
is not used in typical stream applications.

184

4. FIXED POINT DEFINITIONS
A stream often depends on itself as e.g. the stream of

integers or fibonacci numbers shown above. This self re-
cursion is revealed in the lazily evaluated recursive calls of
the methods integersFrom or fibonacci. This recursion
property can also be made more visible and be used to de-
fine a stream as a fixed point of a map on the domain of
streams [6].

Such maps are defined with method map of the interface
StreamMap (defined in the interface Stream)

interface StreamMap<T> {
Stream<T> map(Stream<T> stream);

}

and new streams are constructed with the static generic
method fixedpoint

static <T> Stream<T> fixedPoint(StreamMap<T> map){..}

which constructs a stream which is a fixed point of the given
map.

In particular, we think of maps which do not perform
operations on their argument but rather simply include it
in a new stream which is returned as result. In particular,
the head element of the defined stream must not depend on
the argument. This way bootstrapping of the construction
of the stream is possible.

As an example we show the definition of the stream of
ones with a fixed point. This stream is the fixed point of a
map which prepends the element one to its argument.

Stream<Integer> ones = fixedPoint(
new StreamMap<Integer>(){

public Stream<Integer> map(Stream<Integer> s){
return s.prepend(1);

}
}

);

We now discuss how the fixedPoint method is imple-
mented for LinkedStreams and ArrayStreams. In both cases
a new stream is constructed and passed to the given map.
The result is another stream of the same type. The fields
of this stream are copied to the initially generated stream.
This way the fixed point of the map is constructed. The
resulting code looks similar for both classes.

public class LinkedStream<E> implements Stream<E> {
private LinkedStream(){}
public static <T> Stream<T> fixedPoint(

StreamMap<T> map){
LinkedStream<T> s1 = new LinkedStream<T>();
LinkedStream<T> s2 = (LinkedStream<T>)map.map(s1);
s1.head = s2.head;
s1.lazyTail = s2.lazyTail;
return s2;

} ...
}

public class ArrayStream<E> implements Stream<E> {
private ArrayStream(){}
public static <T> Stream<T> fixedPoint(

StreamMap<T> map){
ArrayStream<T> s1 = new ArrayStream<T>();
ArrayStream<T> s2 = (ArrayStream<T>)map.map(s1);
s1.lazyCoeff = s2.lazyCoeff;
return s2;

} ...
}

Let us now define some streams as fixed points of stream
maps. The first example is the periodic sequence [A, B, C,
A, B, C, A, B, C, . . .]. This stream is simply the fixed point
of a map which pretends the strings “A”, “B” and “C” to
its argument. The statement

System.out.println(
fixedPoint(

new StreamMap<String>(){
public Stream<String> map(Stream<String> s){

return s.prepend("C").prepend("B").
prepend("A");

}
}

)
);

generates the output

A B C A B C A B C A B C A B C ...

Next we define the stream of integers as fixed point of a
map which takes a stream, adds one to each element and
prepends zero.

integers = fixedPoint(
new StreamMap<Integer>(){

public Stream<Integer> map(Stream<Integer> s){
return s.map(

new UnaryFunctor<Integer, Integer>(){
public Integer eval(Integer x){

return x+1;
}

}
).prepend(0);

}
}

);

This example only works if the prepend method does not
evaluate the stream to which a new head element is prepend-
ed. Otherwise the call s.map is evaluated which results in
a NullPointerException as the head element of the stream
to be constructed by this fixed point definition is not yet
defined. As a consequence, this definition only works with
the fixed point method of class ArrayStream.

Fibonacci numbers can be expressed as the fixed point of
the map

f ibs → 0 : (+ f ibs (1 : f ibs))

which leads to the following definition:

class Add implements
Stream.BinaryFunctor<Integer, Integer, Integer> {
public Integer eval(Integer x, Integer y){

return x+y;
}

};

Stream<Integer> fibonacci = fixedPoint(
new StreamMap<Integer>() {

public Stream<Integer> map(Stream<Integer> f){
return f.zip(new Add(),

f.prepend(1)).prepend(0);
}

}
);

Again, this definition only works with class ArrayStream.
In this example the zip function accesses the head element

185

of the f stream in order to compute the head element of the
resulting stream.

With the alternative map

f ibs → (+ (0 : f ibs) (0 : (1 : f ibs)))

the fixed point can be computed with both implementations.
The two head elements which are accessed in the zip func-
tion within class LinkedStream are defined.

Stream<Integer> fibonacci = fixedPoint(
new StreamMap<Integer>() {

public Stream<Integer> map(Stream<Integer> f){
return f.prepend(0).zip(new Add(),

f.prepend(1).prepend(0));
}

}
);

If we print out the stream fibonacci we receive the follow-
ing result:

0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 ...

One advantage of fixed point definitions is that the recur-
sively referenced data structure is not reevaluated (in con-
trast to the definition with methods which are recursively
called in the lazily evaluated part as shown in sections 2 and
3). This leads to more efficient programs than those where
a stream is reconstructed by a method call [7].

5. INFINITE POWER SERIES
In order to apply the streams derived in this article we de-

fine infinite power series, i.e. power series where any number
of terms can be asked. This is useful because the number of
terms required is often not known in advance.

Infinite power series use a stream to store their coeffi-
cients. It turns out, that many series operations have ex-
tremely simple implementations when using lazy evaluation
and fixed point definitions.

The interface of class PowerSeries is shown below. The
rational coefficients are implemented in class Rational. With
the methods diff and integrate a series can be differenti-
ated and integrated. The integration constant can be pro-
vided as an optional parameter. The shift method allows
to multiply a power series with the factor x (and to add a
constant term).

public interface PowerSeries {

public Rational coeff(int index);

public PowerSeries add(PowerSeries value);
public PowerSeries subtract(PowerSeries value);
public PowerSeries negate();
public PowerSeries multiply(Rational value);
public PowerSeries multiply(PowerSeries value);
public PowerSeries divide(PowerSeries value);

public PowerSeries diff();
public PowerSeries integrate();
public PowerSeries integrate(Rational c);
public PowerSeries shift(Rational c);

}

In the implementing class the coefficients are stored in the
field coefficients of type ArrayStream<Rational>. As an
example we show the method integrate which integrates a
power series term by term.

public PowerSeries integrate(final Rational c){
return new PowerSeries(

new ArrayStream<Rational>(
new ArrayStream.Coefficients<Rational>(){

public Rational get(int k){
if(k==0) return c;
else return coeff(k-1).divide(

new Rational(k)
);

}
}

)
);

}

Moreover, the power series class also defines a fixedpoint

method which allows to define power series as fixed points
of a power series map.

interface PowerSeriesMap {
PowerSeries map(PowerSeries series);

}

public PowerSeries fixedpoint(PowerSeriesMap map){
PowerSeries s1 = new PowerSeries();
PowerSeries s2 = map.map(s1);
s1.coefficients = s2.coefficients;
return s2;

}

The fixedpoint method works as long as all methods
used in the power series map do not access the coefficients
field in an eagerly evaluated part. For example, the multiply
method which scales a power series which a rational number
must not call the map function on the coefficients but rather
has to define a new coefficient function.

As an example we define the power series for exp(x). The
equation

exp(x) =

Z
exp(x) dx + exp(0)

can directly be used to define the exponential series at x = 0
using a fixed point:

PowerSeries exp = PowerSeries.fixedpoint(
new PowerSeriesMap(){

public PowerSeries map(PowerSeries exp){
return exp.integrate(Rational.ONE);

}
}

);

System.out.println(exp);
=> 1 + x + 1/2 x^2 + 1/6 x^3 + 1/24 x^4 + O(x^5)

As another example we show the definition of the power
series for tan(x) which is the fixed point of the map

tan(x) →
Z �

1 + tan(x)2
�

dx

which leads to the following definition in Java:

PowerSeries tan = fixedpoint(
new PowerSeriesMap(){

public PowerSeries map(PowerSeries tan){
return tan.multiply(tan)

.add(new PowerSeries(Rational.ONE))

.integrate();
}

}
);

System.out.println(tan.toString(9));
=> x + 1/3 x^3 + 2/15 x^5 + 17/315 x^7 + O(x^9)

186

6. GROOVY
Groovy [8] is a scripting language for the Java platform

whith is specified under JSR 241. Groovy provides a more
natural notation for closures than Java and therefore could
be used to define infinite streams. Groovy scripts can be
compiled straight to Java byte-code and can be used by
regular Java applications.

Since we already have infinite stream implementations in
Java we use the Groovy feature that existing Java classes
and libraries can be used directly in scripts. Groovy thus can
be seen as an interactive shell to work with infinite streams.
In order to support the definition of infinite streams with
Groovy closures, we have defined a Groovy specific stream
mapper classes for array-streams over integers and for power
series over rationals. These classes implement the Groovy
specific operator methods

import groovy.lang.*;
public class ArrayStream {

private lazy.Stream<Integer> s;

public ArrayStream(final Closure c){
s = new lazy.ArrayStream<Integer>(

new lazy.ArrayStream.Coefficients<Integer>(){
public Integer get(int index){

return (Integer)c.call(index);
}

}
);

}

Integer getAt(int index){
return s.get(index);

}
}

Besides the methods shown above we implemented meth-
ods to map a boolean closure on a stream, to select elements
based on a predicate or to add two streams.

groovy> import groovy.*;
groovy> integers = new ArrayStream({n -> n})
Result: 0 1 2 3 4 5 6 7 8 9 10 11 ...

groovy> squares = integers.map({n -> n*n})
Result: 0 1 4 9 16 25 36 49 64 81 100 121 ...

groovy> evens = integers.select({ x -> x%2==0 })
Result: 0 2 4 6 8 10 12 14 16 18 20 22 ...

groovy> integers+squares
Result: 0 2 6 12 20 30 42 56 72 90 110 132 ...

We also provided a method to define streams as fixedpoint
of a map on streams expressed as a Groovy closure:

groovy> import groovy.*;
groovy> fibs = ArrayStream.fixedpoint(

{n -> n.prepend(0) + n.prepend(1).prepend(0)})
Result: 0 1 1 2 3 5 8 13 21 34 55 89 ...

Compared with the definition in section 4 the Groovy def-
inition above is more readable and demonstrates the useful-
ness of Groovy as an interactive shell.

groovy> import groovy.*;
groovy> one = new PowerSeries(1);
Result: 1 + O(x^5)

groovy> one.exp()

Result: 1 + x + 1/2 x^2 + 1/6 x^3 + 1/24 x^4 + O(x^5)

groovy> exp = PowerSeries.fixedpoint({e->e.inte()+1})
Result: 1 + x + 1/2 x^2 + 1/6 x^3 + 1/24 x^4 + O(x^5)

groovy> cos = PowerSeries.fixedpoint(
{c->c.inte().inte()+1})

Result: 1 + 1/2 x^2 + 1/24 x^4 + O(x^5)

groovy> cos[36]
Result: 1/371993326789901217467999448150835200000000

7. CONCLUSION
We have presented two approaches to implement infinite

structures in Java which correspond to a linked list and array
list implementation. The array stream approach is more
efficient when stream elements have to be accessed several
times, whereas the linked stream implementation is more
natural for typical applications.

The implementation of the prepend method differs in the
two implementatons as in one case the head element of the
stream to which an element is prepended is evaluated. The
exact behaviour of this method is not specified in the Java
interface, and additional information has to be provided.

We have also shown how the definition of streams can be
expressed using fixed points using both stream implementa-
tions. Fixed point definitions however require that the fixed
point argument is never evaluated.

Since Java does not support lazy evaluation as a lan-
guage feature, this feature has to be emulated. This leads
to rather complicated class definitions which make use of
(anonymous) inner classes and which require fields in outer
scopes to be declared final. But once the basic abstractions
have been implemented, working with these classes is rather
elegant as we have seen in the section on infinite power series.
And making these classes accessible from Groovy simplifies
working with infinite streams and power series even more.

The sources presented in ths article are available at
http://www.gruntz.ch/papers/infinitestreams/

8. REFERENCES
[1] H. Abelson and G. Sussman, Structure and Interpreta-

tion of Computer Programs, 2nd ed., MIT Press, 1996.

[2] Commons Functor: Function Objects for Java,
http://jakarta.apache.org/commons/sandbox/func-

tor/ {accessed May 2006}
[3] JGA: Generic Algorithms for Java,

http://jga.sourceforge.net/ {accessed May 2006}
[4] D. Nguyen and S. Wong, Design Patterns for Lazy

Evaluation, SIGCSE 2000, Technical Symposium on
Computer Science Education, Austin, Texas.

[5] U. Schreiner, Infinite Streams in Java,
http://www.innuendo.de/documentation/papers/in-

finiteStreams {accessed May 2006}
[6] W.H. Burge and S.M. Watt, Infinite Structures in

Scratchpad II, EUROCAL’87, Lecture Notes in
Computer Science, Vol. 378, pp. 138–148, 1989.

[7] S.M. Watt, A Fixed Point Method for Power Series
Computations, ISSAC’88, Lecture Notes in Computer
Science, Vol. 358, pp. 206–216, 1989.

[8] Groovy Project Home, http://groovy.codehaus.org/
{accessed May 2006}

187

Interaction among Objects via Roles

Sessions and Affordances in Java

Matteo Baldoni
Dipartimento di Informatica
Università di Torino - Italy

baldoni@di.unito.it

Guido Boella
Dipartimento di Informatica
Università di Torino - Italy

guido@di.unito.it

Leendert van der Torre
University of Luxembourg

Luxembourg

leendert@vandertorre.com

ABSTRACT
In this paper we present a new vision in object oriented program-
ming languages where the objects’ attributes and operations depend
on who is interacting with them. This vision is based on a new def-
inition of the notion of role, which is inspired to the concept of
affordance as developed in cognitive science. The current vision of
objects considers attributes and operations as being objective and
independent from the interaction. In contrast, in our model interac-
tion with an object always passes through a role played by another
object manipulating it. The advantage is that roles allow to define
operations whose behavior changes depending on the role and the
requirements it imposes, and to define session aware interaction,
where the role maintains the state of the interaction with an object.
Finally, we discuss how roles as affordances can be introduced in
Java, building on our language powerJava.

1. INTRODUCTION
Object orientation is a leading paradigm in programming languages,
knowledge representation, modelling and, more recently, also in
databases. The basic idea is that the attributes and operations of an
object should be associated with it. The interaction with the object
is made via its public attributes and via its public operations. The
implementation of an operation is specific of the class and can ac-
cess the private state of it. This allows to fulfill the data abstraction
principle: the public attributes and operations are the only possibil-
ity to manipulate an object and their implementation is not visible
from the other objects manipulating it; thus, the implementation
can be changed without changing the interaction capabilities of the
object.

This view can be likened with the way we interact with objects
in the world: the same operation of switching a device on is im-
plemented in different manners inside different kinds of devices,
depending on their functioning. The philosophy behind object ori-
entation, however, views reality in a naive way. It rests on the as-
sumption that the attributes and operations of objects are objective,
in the sense that they are the same whatever is the object interacting
with them.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPPJ 2006, August 30 – September 1, 2006, Mannheim, Germany.
Copyright 2006 ACM . . .$5.00.

This view limits sometime the usefulness of object orientation:

1. Every object can access all the public attributes and invoke
all the public operations of every other object. Hence, it is
not possible to distinguish which attributes and operations
are visible for which classes of interacting objects.

2. The object invoking an operation (caller) of another object
(callee) is not taken into account for the execution of the
method associated with the operation. Hence, when an oper-
ation is invoked it has the same meaning whatever the caller’s
class is.

3. The values of the private and public attributes of an object
are the same for all other objects interacting with it. Hence,
the object has always only one state.

4. The interaction with an object is session-less since the invo-
cation of an operation does not depend on the caller. Hence,
the value of private and public attributes and, consequently,
the meaning of operations cannot depend on the preceding
interactions with the object.

The first three limitations hinder modularity, since it would be use-
ful to keep distinct the core behavior of an object from the different
interaction possibilities that it offers to different kinds of objects.
Some programming languages offer ways to give multiple imple-
mentations of interfaces, but the dependance from the caller can-
not be taken into account, unless the caller is explicitly passed as
a parameter of each method. The last limitation complicates the
modelling of distributed scenarios where communication follows
protocols.

Programming languages like Fickle [9] address the second and third
problem by means of dynamic reclassification: an object can change
class dynamically, and its operations change their meaning accord-
ingly. However, Fickle does not represent the dependence of at-
tributes and operations from the interaction. Aspect programming
focuses too on the second and third issue, while it is less clear how
it addresses the other ones.

Sessions are considered with more attention in the agent oriented
paradigm, which bases communication on protocols ([10, 13]). A
protocol is the specification of the possible sequences of messages
exchanged between two agents. Since not all sequences of mes-
sages are legal, the state of the interaction between two agents must
be maintained in a session. Moreover, not all agents can interact
with other ones using whatever protocol. Rather the interaction is

188

allowed only by agents playing certain roles. However, the notion
of role in multi-agents systems is rarely related with the notion of
session of interaction. Moreover, it is often related with the notion
of organization rather than with the notion of interaction.

Roles in object oriented programming, instead, aim at modelling
the properties and behaviors of entities which evolve over time,
while the interaction among objects is mostly disregarded [7, 14,
18]. Hence, they adopt the opposite perspective.

In this paper, we address the four problems above in object ori-
ented programming languages by using a new notion of role we
introduced in [4] . This is inspired to research in cognitive science,
where the naive vision of objects is overcome by the so called eco-
logical view of interaction in the environment. In this view, the
properties (attributes and operations) of an object are not indepen-
dent from whom is interacting with it. An object “affords” different
ways of interaction to different kinds of objects.

The structure of this paper is as follows. In Section 2 we discuss
the cognitive foundations of our view of objects. In Section 3 we
define roles in terms of affordances. In Section 4 we show how
our approach to roles impact on the design of a new object oriented
programming language, powerJava. Related work and conclusion
end the paper.

2. ROLES AS AFFORDANCES
The naive view of objects assignes them objective attributes and
operations which are independent from the observer or other ob-
jects interacting with them. Instead, recent developments in cogni-
tive science show that attributes and operations, calledaffordances,
emerge only at the moment of the interaction and change according
to what kind of object is interacting with another one.

The notion of affordance has been developed by a cognitive sci-
entist, James Gibson, in a completely different context, the one of
visual perception [11] (p. 127):

“The affordances of the environment are what it
offers the animal, what it provides or furnishes, either
for good or ill. The verb to afford is found in the dic-
tionary, but the noun affordance is not. I have made
it up. I mean by it something that refers to both the
environment and the animal in a way that no existing
term does. It implies the complementarity of the an-
imal and the environment... If a terrestrial surface is
nearly horizontal (instead of slanted), nearly flat (in-
stead of convex or concave), and sufficiently extended
(relative to the size of the animal) and if its substance
is rigid (relative to the weight of the animal), then the
surface affords support... Note that the four properties
listed - horizontal, flat, extended, and rigid - would be
physical properties of a surface if they were measured
with the scales and standard units used in physics. As
an affordance of support for a species of animal, how-
ever, they have to be measured relative to the animal.
They are unique for that animal. They are not just ab-
stract physical properties.

The same layout will have different affordances for
different animals, of course, insofar as each animal has
a different repertory of acts. Different animals will
perceive different sets of affordances therefore.”

Gibson refers to an ecological perspective, where animals and the
environment are complementary. But the same vision can be trans-
ferred to objects. By “environment” we intend a set of objects and
by “animal of a given specie” we intend another object of a given
class which manipulates them. Besides physical objective proper-
ties objects have affordances when they are considered relative to
an object managing them. Thus, we have that the properties which
characterize an object in the environment depend on the properties
of the interactant. Thus, the interaction possibilities of an object in
the environment depend on the properties of the object manipulat-
ing it.

How can we use this vision to introduce new modelling concepts in
object oriented programming? Different sets of affordances of an
object are associated with each different way of interaction with the
objects of a given class. We will call arole typethe different sets
of affordances of an object. A role type represents the interaction
possibilities which depend on the class of the interactant manipu-
lating the object: theplayer of the role. To manipulate an object
the caller of a method has to specify the role in which the interac-
tion is made. But an ecological perspective cannot be satisfied by
considering only occasional interactions between objects. Rather
it should also be possible to consider the continuity of the interac-
tion for each object, i.e., the state of the interaction. In terms of
a distributed scenario, a session. Thus a given role type can be in-
stantiated, depending on a certain player of a role (which must have
the required properties), and therole instancerepresents the state
of the interaction with that role player.

3. ROLES AND SESSIONS
The idea behind affordances is that the interaction with an object
does not happen directly with it by accessing its public attributes
and invoking its public operations. Rather, the interaction with an
object happens via a role: to invoke an operation, it is necessary
first to be the player of a role offered by the object the operation
belongs to, and second to specify in which role the method is in-
voked. The roles which can be played depend on the properties
of the player of the role (therequirements), since the affordances
depend on the “different repertories of acts”.

Thus, a class is seen as a cluster of classes gathered around a central
class. The central class represents the core state and behavior of the
object. The other classes, the role types, are the containers of the
operations specific of the interaction with a given class, and of the
attributes characterizing the state of the interaction. Not only the
kind of attributes and methods depend on the class of the interacting
object and on the role in which it is interacting, but also the values
of these attributes may vary according to a specific interactant: they
are memorized in a role instance. A role instance, thus, models the
session of the interaction between two objects and can be used for
defining protocols.

Since a role represents the possibilities offered by an object to in-
teract with it, the methods of a role must be able to affect the core
state of the objects they are roles of and to access their operations;
otherwise, no effect could be made by the player of the role on the
object the role belongs to. So a role, even if it can be modelled as
an object, is, instead different: a role depends both on its player and
on the object the role belongs to and it can access the state of the
object the role belongs to.

Many objects can play the same role as well as the same object can
play different roles. In Figure 1 we depict the different possibil-

189

(b) (c) (d) (e)(a)

Figure 1: The possible uses of roles as affordances.

ities. Boxesrepresent objects and role instances (included in ex-
ternal boxes).Arrows represent the relations between players and
their roles,dashed arrowsthe access relation between objects.

• Drawing (a) illustrates the situation where an object interacts
with another one by means of the role offered by it.

• Drawing (b) illustrates an object interacting in two different
roles with another one. This situation is used when an ob-
ject implements two different interfaces for interacting with
it, which have methods with the same signature but with dif-
ferent meanings. In our model the methods of the interfaces
are implemented in the roles offered by the object to inter-
act with it. Moreover, the two role instances represent the
two different states of the two interactions between the two
objects.

• Drawing (c) illustrates the case of two objects which interact
with each other by means of the two roles of another ob-
ject (the two role instances may be of the same class). This
object can be considered as the context of interaction. This
achieves the separation of concerns between the core behav-
ior of an object and the interaction possibilities in a given
context. The meaning of this scenario for coordination has
been discussed in [5]; in this paper, we used as a running ex-
ample the well-known philosophers scenario. The institution
is the table, at which philosophers are sitting and coordinate
to take the chopsticks and eat since they can access the state
of each other. The coordinated objects are the players of the
role chopstick andphilosopher . The former role is
played by objects which produce information, the latter by
objects which consume them. None of the players contains
the code necessary to coordinate with the others, which is
supplied by the roles.

• In drawing (d) a degenerated but still useful situation is de-
picted: a role does not represent the individual state of the
interaction with an object, but the collective state of the in-
teraction of two (or more) objects playing the same role in-
stance. This scenario is useful when it is not necessary to
have a session for each interaction.

• In drawing (e) two objects interact with each other, each one
playing a role offered by the other. This is often the case
of interaction protocols: e.g., an object can play the role of
initiator in the Contract Net Protocol if and only if the other
object plays the role ofparticipant [3]. The symmetry of
roles is closer to the traditional vision of roles as ends of a
relation.

4. AFFORDANCES IN POWERJAVA
Baldoniet al. [3] introduce roles as affordances in powerJava, an
extension of the object oriented programming language Java. Java
is extended with:

1. A construct defining the role with its name, the requirements
and the signatures of the operations which represent the af-
fordances of the interaction with an object by playing the
role.

2. The implementation of a role, inside an object and according
to its definition.

3. A construct for playing a role and invoking the operations of
the role.

We illustrate powerJava by means of an example. Let us suppose
to have a printer which supplies two different ways of accessing to
it: one as a normal user, and the other as a superuser. Normal users
can print their jobs and the number of printable pages is limited to
a given maximum. Superusers can print any number of pages and
can query for the total number of prints done so far. In order to be a
user one must have an account, which is printed on the pages. The
role specification for the user and superuser is the following:

role User playedby AccountedPerson {
int print(Job job);
int getPrintedPages();}

role SuperUser playedby AccountedPerson {
int print(Job job);
int getTotalPages();}

Requirements must be implemented by the objects which act as
players.

class Person implements AccountedPerson {
Login login; // ...
Login getLogin() {return login;}

}

interface AccountedPerson {
Login getLogin();}

190

Instead, affordances are implemented in the class in which the role
itself is defined. To implement roles inside it we revise the notion of
Java inner class, by introducing the new keyworddefinerole
instead ofclass followed the name of the role definition that the
class is implementing (see the classPrinter in Figure 2). Role
specifications cannot be implemented in different ways in the same
class and we do not consider the possibility of extending role im-
plementations (which is, instead, possible with inner classes), see
[4] for a deeper discussion.

As a Java inner class, a role implementation has access to the pri-
vate fields and methods of the outer class (in the above example the
private methodprint of Printer used both in roleUser and in
roleSuperUser) and of the other roles defined in the outer class.
This possibility does not disrupt the encapsulation principle since
all roles of a class are defined by the same programmer who defines
the class itself. In other words, an object that has assumed a given
role, by means of the role’s methods, has access and can change
the state of the object the role belongs to and of the sibling roles.
In this way, we realize the affordances envisaged by our analysis of
the notion of role.

The class implementing the role is instantiated by passing to the
constructor an instance of an object satisfying the requirements.
The behavior of a role instance depends on the player instance
of the role, so in the method implementation the player instance
can be retrieved via a new reserved keyword:that , which is
used only in the role implementation. In the example of Figure 2
that.getLogin() is parameter of the methodprint .

All the constructors of all roles have an implicit first parameter
which must be passed as value the player of the role. The reason is
that to construct a role we need both the object the role belongs to
(the object the constructnew is invoked on) and the player of the
role (the first implicit parameter). This parameter has as its type the
requirements of the role an dit is assigned to the keywordthat . A
role instance is created by means of the constructnew and by spec-
ifying the name of the “inner class” implementing the role which
we want to instantiate. This is like it is done in Java for inner class
instance creation. Differently than other objects, role instances do
not exist by themselves and are always associated to their players
and to the object the role belongs to.

The following instructions create a printer objectlaser1 and two
person objects,chris and sergio . chris is a normal user
while sergio is a superuser. Indeed, instructions four and five
define the roles of these two objects w.r.t. the created printer.

Printer hp8100 = new Printer();
//players are created Person
chris = new Person();
Person sergio = new Person();
//roles are created
hp8100.new User(chris);
hp8100.new SuperUser(sergio);

An object has different (or additional) properties when it plays a
certain role, and it can perform new activities, as specified by the
role definition. Moreover, a role represents a specific state which
is different from the player’s one, which can evolve with time by
invoking methods on the roles. The relation between the object
and the role must be transparent to the programmer: it is the object
which has to maintain a reference to its roles.

Methods can be invoked from the players, given that the player is
seen in its role. To do this, we introduce the new construct:

receiver <-(role) sender

This operation allows thesender (the player of the role) to use the
affordances given byrole when it interacts with thereceiver
the role belongs to. It is similar torole cast as introduced in
[1, 4, 5] but it stresses more strongly the interaction aspect of the
two involved objects: the sender uses the role defined by the re-
ceiver for interacting with it. Let us see how to use this construct in
our running example.

In the example the two users invoke methodprint on hp8100 .
They can do this because they have been empowered of printing by
their roles. The act of printing is carried on by the private method
print . Nevertheless, the two roles ofUser and SuperUser
offer two different way to interact with it:User counts the printed
pages and allows a user to print a job if the number of pages printed
so far is less than a given maximum;SuperUser does not have
such a limitation. Moreover,SuperUser is empowered also for
viewing the total number of printed pages. Notice that the page
counter is maintained in the role state and persists through different
calls to methods performed by a same sender/player towards the
same receiver as long as it plays the role.

(hp8100 <-(User) chris).print(job1);
(hp8100 <-(SuperUser) sergio).print(job2);
(hp8100 <-(User) chris).print(job3);
System.out.println("Chris printed "+

(hp8100 <-(User) chris).getPrintedPages());
System.out.println("The printer printed" +

(hp8100 <-(SuperUser) sergio).getTotalPages());

By maintaining a state, a role can be seen as realizing asession-
aware interactionbetween objects, in a way that is analogous to
what done by cookies on the WWW or Java sessions for JSP and
Servlet. So in our example, it is possible to visualize the number of
currently printed pages, as in the above example. Note that, when
we talk about playing a role we always mean playing a role instance
(or qua individual[17] or role enacting agent[8]) which maintains
the properties of the role.

Since an object can play multiple roles, the same method will have
a different behavior, depending on the role which the object is play-
ing when it is invoked. It is sufficient to specify which is the role of
a given object, we are referring to. In the examplechris can be-
come alsoSuperUser of hp8100 , besides being a normaluser

hp8100.new SuperUser(chris);
(hp8100 <-(SuperUser) chris).print(job4);
(hp8100 <-(User) chris).print(job5);

Notice that in this case two different sessions will be kept: one for
chris as normalUser and the other forchris asSuperUser .
Only when it prints its jobs as a normalUser the page counter is
incremented.

191

class Printer {
private int totalPrintedPages = 0;
private void print(Job job, Login login) {

totalPrintedPages += job.getNumberPages(); ... // performs printing
}
definerole User {

int counter = 0;
public int print(Job job) {

if (counter > MAX_PAGES_USER) throws new IllegalPrintException();
counter += job.getNumberPages();
Printer.this.print(job, that.getLogin());
return counter;}

public int getPrintedPages(){ return counter; }
}
definerole SuperUser {

public int print(Job job) {
Printer.this.print(job, that.getLogin());
return totalPrintedPages;}

public int getTotalpages() { return totalPrintedPages; }
}

}

Figure 2: The Printer class and its affordances

5. RELATED WORK
There is a huge amount of literature concerning roles in program-
ming languages, knowledge representation, multiagent systems and
databases. Thus we can compare our approach only with a limited
number of other approaches.

First of all, our approach is consistent with the definition of roles in
ontologies given by Masoloet al. [17], as we discuss in [4].

The term of role is already used also in Object Oriented modelling
languages like UML and it is related to the notion of collabora-
tion: “while a classifier is a complete description of instances, a
classifier role is a description of the features required in a particu-
lar collaboration, i.e. a classifier role is a projection of, or a view
of, a classifier.” This notion has several problems, thus Steimann
[19] proposes a revision of this concept merging it with the notion
of interface. However, by role we mean something different from
what is called role in UML. UML is inspired by the relation view
of roles: roles come always within a relation. In this view, which
is also shared by, e.g., [15, 16], roles come in pairs: buyer-seller,
client-server, employer-employee,etc.. In contrast, we show, first,
that the notion of role is more basic and involves the interaction of
one object with another one using one single role, rather than an
association. Second, we highlight that roles have a state and add
properties to their players besides requiring the conformance to an
interface which shadows the properties of the player.

A leading approach to roles in programming languages is the one
of Kristensen and Osterbye [14]. A role of an object is “a set of
properties which are important for an object to be able to behave in
a certain way expected by a set of other objects”. Even if at first
sight this definition seems related to ours, it is the opposite of our
approach. By “a role of an object” they mean the role played by an
object, we mean, instead, the role offered by an object to interact
with it. They say a role is an integral part of the object and at the
same time other objects need to see the object in a certain restricted
way by means of roles. A person can have the role of bank em-
ployee, and thus its properties are extended with the properties of
employee. In our approach, instead, by a role of an object we mean
the role offered by an object to interact with it by playing the role:
roles allow objects which can interact in different ways with play-

ers of different roles. We focus on the fact that to interact with a
bank an object must play a role defined by the bank, e.g., employee,
and to play a role some requirements must be satisfied.

Roles based on inner classes have been proposed also by [12, 20].
However, their aim is to model the interaction among different ob-
jects in a context, where the objects interact only via the roles they
play. This was the original view of our approach [1], too. But in this
paper and in [3] we extend our approach to the case of roles used to
interact with a single object to express the fact that the interaction
possibilities change according to the properties of the interactants.

Aspect programming addresses some of the concerns we listed in
the Introduction. In particular, aspect weaving allows to change the
meaning of methods. Sometimes aspects are packed into classes
to form roles which have their own state [12]. However, the aim
of our proposal is different from modelling crosscutting concerns.
Our aim is to model the interaction possibilities of an object by
offering different sets of methods (with a corresponding state) to
different objects by means of roles. Roles are explicitly expressed
in the method call and specify the affordances of an object: it is
not only the meaning of methods which changes but the possible
methods that can be invoked. If one would like to integrate the
aspect paradigm within our view of object oriented programming,
the natural place would be use aspects to model the environment
where the interaction between objects happens. In this way, not
only the interaction possibilities offered by an object would depend
on the caller of a method, but they would also depend on the en-
vironment where the interaction happens. Consider thewithin
construct in Object Teams/Java [12] which specifies aspects as the
context in which a block of statements has to be executed. Since,
when defining the interaction possibilities of an object it is not pos-
sible to foresee all possible contexts, the effect of the environment
can be better modelled as a crosscutting concern. Thus aspect pro-
gramming is a complementary approach with respect to our one.

Some patterns partially address the same problems of this paper.
For example, the strategy design pattern allows to dynamically
change the implementation of a method. However, it is complex
to implement and it does not address the problem of having differ-
ent methods offered to different types of callers and of maintaining

192

the state of the interaction between caller and callee.

Baumeret al. [6] propose the role object pattern to solve the prob-
lem of providing context specific views of the key abstractions of
a system. They argue that different context-specific views cannot
be integrated in the same class, otherwise the class would have a
bloated interface, and unanticipated changes would result in recom-
pilations. Moreover, it is not possible either to consider two views
on an object as an object belonging to two different classes, or else
the object would not have a single identity. They propose to model
context-specific views as role objects which are dynamically at-
tached to a core object, thus forming what they call a subject. This
adjunct instance should share the same interface as the core object.
Our proposal is distinguished by the fact that roles are always roles
of an institution. As a consequence they do not consider the addi-
tional methods of the roles as powers which are implemented using
also the requirements of the role. Finally, in their model, since the
role and its player share the same interface, it is not possible to
express roles as partial views on the player object.

6. CONCLUSION
In this paper we introduce the notion of affordance developed in
cognitive science to extend the notion of object in the object ori-
entation paradigm. In our model objects have attributes and opera-
tions which depend on the interaction with other objects, according
to their properties. Sets of affordances form role types whose in-
stances are associated with players which satisfy the requirements
associated with roles. Since role instances have attributes they pro-
vide the state of the interaction with an object.

In [1] we present a different albeit related notion of role, with a dif-
ferent aim: representing the organizational structure of institutions
which is composed of roles. The organization represents the con-
text where objects interact only via the roles they play by means of
the powers offered by their roles (what we call here affordances).
E.g., a class representing a university offers the roles of student and
professor. The role student offers the power of giving exams to
players enrolled in the university. In [5] we explain how roles can
be used for coordination purposes. In [4] we investigate the onto-
logical foundations of roles. In [2] we describe the preprocessor
translating powerJava into Java. In this paper, instead, we use roles
to articulate the possibility of interaction provided by an object.

Future work concerns modelling the symmetry of roles. In par-
ticular, the last diagram of Figure 1 deserves more attention. For
example, the requirements to play a role must include the fact that
the player must offer the symmetric role (e.g., initiator and partici-
pant in a negotiation). Moreover, in that diagram the two roles are
independent, while they should be related. Finally, the fact that the
two roles are part of a same process (e.g., a negotiation) should be
represented, in the same way we represent that student and profes-
sor are part of the same institution.

7. REFERENCES
[1] M. Baldoni, G. Boella, and L. van der Torre. Bridging agent

theory and object orientation: Importing social roles in
object oriented languages. InLNCS 3862: Procs. of
PROMAS’05 workshop at AAMAS’05, pages 57–75, Berlin,
2005. Springer.

[2] M. Baldoni, G. Boella, and L. van der Torre. Social roles,
from agents back to objects. InProcs. of WOA’05 Workshop,
Bologna, 2005. Pitagora.

[3] M. Baldoni, G. Boella, and L. van der Torre. Bridging agent
theory and object orientation: Interaction among objects. In
Procs. of PROMAS’06 workshop at AAMAS’06, 2006.

[4] M. Baldoni, G. Boella, and L. van der Torre. Powerjava:
ontologically founded roles in object oriented programming
language. InProcs. of OOOPS Track of ACM SAC’06, pages
1414–1418. ACM, 2006.

[5] M. Baldoni, G. Boella, and L. van der Torre. Roles as a
coordination construct: Introducing powerJava.Electronic
Notes in Theoretical Computer Science, 150(1):9–29, 2006.

[6] D. Baumer, D. Riehle, W. Siberski, and M. Wulf. The role
object pattern. InProcs. of PLOP’02, 2002.

[7] J. Cabot and R. Raventos. Conceptual modelling patterns for
roles. InLNCS 3870: Journal on Data Semantics V, pages
158–184, Berlin, 2006. Springer.

[8] M. Dastani, V. Dignum, and F. Dignum. Role-assignment in
open agent societies. InProcs. of AAMAS’03, pages
489–496, New York (NJ), 2003. ACM Press.

[9] S. Drossopoulou, F. Damiani, M. Dezani-Ciancaglini, and
P. Giannini. More dynamic object re-classification: FickleII .
ACM Transactions On Programming Languages and
Systems, 24(2):153–191, 2002.

[10] J. Ferber, O. Gutknecht, and F. Michel. From agents to
organizations: an organizational view of multiagent systems.
In LNCS 2935: Procs. of AOSE’03, pages 214–230, Berlin,
2003. Springer.

[11] J. Gibson.The Ecological Approach to Visual Perception.
Lawrence Erlabum Associates, New Jersey, 1979.

[12] S. Herrmann. Roles in a context. InProcs. of AAAI Fall
Symposium Roles’05. AAAI Press, 2005.

[13] T. Juan, A. Pearce, and L. Sterling. Roadmap: extending the
gaia methodology for complex open system. InProcs. of
AAMAS’04, pages 3–10, 2002.

[14] B. Kristensen and K. Osterbye. Roles: conceptual abstraction
theory and practical language issues.Theor. Pract. Object
Syst., 2(3):143–160, 1996.

[15] F. Loebe. Abstract vs. social roles - a refined top-level
ontological analysis. InProcs. of AAAI Fall Symposium
Roles’05, pages 93–100. AAAI Press, 2005.

[16] C. Masolo, G. Guizzardi, L. Vieu, E. Bottazzi, and
R. Ferrario. Relational roles and qua-individuals. InProcs. of
AAAI Fall Symposium Roles’05. AAAI Press, 2005.

[17] C. Masolo, L. Vieu, E. Bottazzi, C. Catenacci, R. Ferrario,
A. Gangemi, and N. Guarino. Social roles and their
descriptions. InProcs. of KR’04, pages 267–277. AAAI
Press, 2004.

[18] M. Papazoglou and B. Kramer. A database model for object
dynamics.The VLDB Journal, 6(2):73–96, 1997.

[19] F. Steimann. A radical revision of UML’s role concept. In
Procs. of UML2000, pages 194–209, 2000.

[20] T. Tamai. Evolvable programming based on
collaboration-field and role model. InProcs. of IWPSE’02,
pages 1–5. ACM, 2002.

193

Experiences of using the Dagstuhl Middle Metamodel
for defining software metrics

Jacqueline A. McQuillan
Department of Computer Science

National University of Ireland, Maynooth
Co. Kildare, Ireland

jmcq@cs.nuim.ie

James F. Power
Department of Computer Science

National University of Ireland, Maynooth
Co. Kildare, Ireland

jpower@cs.nuim.ie

ABSTRACT
In this paper we report on our experiences of using the
Dagstuhl Middle Metamodel as a basis for defining a set
of software metrics. This approach involves expressing the
metrics as Object Constraint Language queries over the meta-
model. We provide details of a system for specifying Java-
based software metrics through a tool that instantiates the
metamodel from Java class files and a tool that automati-
cally generates a program to calculate the expressed metrics.
We present details of an exploratory data analysis of some
cohesion metrics to illustrate the use of our approach.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics; D.2.7 [Distribution,
Maintenance, and Enhancement]: [Restructuring, re-
verse engineering, and re-engineering]

General Terms
Design, Measurement, Standardization

1. INTRODUCTION
Software plays a pivotal role in many important aspects of

modern daily life. In many cases, if software fails it can have
catastrophic consequences such as economic damage or loss
of human life. Therefore, it is important to be able to assess
the quality of software. Software metrics have been proposed
as a means of determining software quality. For example,
studies have demonstrated a correlation between software
metrics and quality attributes such as fault-proneness [2]
and maintenance effort [12].

Many software metrics have been proposed in the litera-
ture [5, 13, 9]. In order for these metrics to be widely ac-
cepted, empirical studies of the use of these metrics as qual-
ity indicators are required. However, there is no standard
terminology or formalism for defining software metrics and
consequently many of the metrics proposed are incomplete,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPPJ2006 , August 30 - September 1, 2006, Mannheim, Germany
Copyright 2006 ACM X-XXXXX-XX-X/XX/XX ... $5.00.

ambiguous and open to a variety of different interpretations
[4]. For example, Churcher and Shepperd have identified
ambiguities in the suite of metrics proposed by Chidamber
and Kemerer [5, 6]. This makes it difficult for researchers
to replicate experiments and compare existing experimen-
tal results and it hampers the empirical validation of these
metrics.

Several authors have proposed various approaches for spec-
ifying software metrics. Briand et al. propose two extensive
frameworks for software measurement, one for measuring
coupling and the other for measuring cohesion in object ori-
ented systems [3, 4]. Other approaches include the proposal
of formal models on which to base metric definitions and the
proposal of existing languages such as XQuery and SQL as
metric definition languages [16, 8, 18]. Baroni et al. propose
the use of the Object Constraint Language (OCL) and the
Unified Modelling Language (UML) metamodel as a mech-
anism for defining UML-based metrics [1].

In this paper we present details of an approach for spec-
ifying Java-based software metrics. This approach is based
on one previously proposed by Baroni et al. and involves
expressing the metrics as OCL queries over a Java meta-
model. We have chosen the Dagstuhl Middle Metamodel
as our Java metamodel, and we describe the specification
of software metrics over this model using OCL. We have
implemented a system that supports this approach which
provides a flexible and reusable environment for the speci-
fication and calculation of software metrics. The system is
capable of automatically generating a program to calculate
the specified metrics. We have performed a study of several
cohesion measures to demonstrate its use.

The remainder of this paper is organised as follows. Sec-
tion 2 gives details of the approach for specifying software
metrics. Details of a system that implements this approach
are presented in Section 3. In Section 4, we present an ex-
ploratory data analysis of some cohesion metrics. Section 5
gives conclusions and discusses future work.

2. DEFINING METRICS
In this section, we give details of an approach for specify-

ing Java based software metrics that is based on the use of
metamodels and the OCL.

As the name suggests, a metamodel is a model that de-
scribes other models. Typically, we think of a model of a
software system as being a design model, such as UML class
or sequence diagrams, or an implementation model, such
as an actual program. A metamodel then would describe

194

-- Returns the RFC value for the Class c
context ckmetricset::RFC(c:DMM::Class) : Real
body: self.implementedMethods(c)->union(self.methodsDirectlyInvoked(c))->asSet()->size()

-- Returns a set containing all methods directly invoked by all the implemented methods of Class c
def: methodsDirectlyInvoked(c:DMM::Class) : Set(DMM::Method)

= self.implementedMethods(c)->collect(m:DMM::Method | self.methodsDirectlyInvoked(m))
->flatten()->asSet()

-- Returns a set containing all methods directly invoked by the Method m
def: methodsDirectlyInvoked(m:DMM::Method) : Set(DMM::Method)

= m.invokes->select(be:DMM::BehaviouralElement | self.isKindOfMethod(be))
->collect(belem:DMM::BehaviouralElement | belem.oclAsType(DMM::Method))->asSet()

Figure 1: RFC Metric Definition using the DMM. This OCL specification defines an operation to calculate the
RFC metric for a class, as well as two auxiliary operations. The entities used in the definition are from the
DMM.

the allowable constructs in these models and the allowable
relationships between these constructs.

OCL is a standard language that allows constraints and
queries over object oriented models to be written in a clear
and unambiguous manner [17]. It offers the ability to nav-
igate over instances of object oriented models, allowing for
the collection of information about the navigated model.
Baroni et al. propose expressing design metrics as OCL
queries over the UML 1.3 metamodel [1]. Their approach
involves modifying the metamodel by creating the metrics
as additional operations in the metamodel and expressing
them as OCL conditions.

We have already extended the approach of Baroni et al.
to the UML 2.0 metamodel in a manner specifically designed
to be reusable for other metamodels [14]. Our extension in-
volves decoupling the metric definitions from the metamodel
by creating a metrics package at the meta level. Defining a
new metrics set is then a three step process. First a class is
created in the metrics package corresponding to the metric
set. Then, for each metric, an operation in the class is de-
clared, parameterised by the appropriate elements from the
metamodel. Finally the metrics are defined by expressing
them as OCL queries using the OCL body expression.

2.1 Selecting a metamodel
In order to adapt this approach to specify Java based met-

rics, it is necessary to have a model of Java programs i.e.
a Java metamodel. There is no standardised Java meta-
model, but a number of task-specific metamodels have been
proposed for various purposes. In order to maximise the re-
usability of our metrics, we have chosen to use the Dagstuhl
Middle Metamodel (DMM) as a basis for defining our met-
rics [11]. The DMM was designed as a schema for reverse en-
gineering that would facilitate interoperability between tools
as an agreed exchange format. It is a “middle” metamodel
in so far as it seeks to be more abstract than a syntax graph,
but less abstract than a high-level architectural description.

The DMM itself is language independent, but contains
many features commonly found in languages such as C,
C++, Java and Fortran. We do not have space here to repro-
duce the elements of the model, necessary for a full under-
standing of our metrics, but details can be found in [11]. We
have used the Chidamber and Kemerer (CK) metrics suite
[5] to illustrate the approach outlined in this paper. We have
successfully expressed the CK metrics as OCL queries over

classes from the ModelObject hierarchy of version 0.007 of
the DMM. This required approximately 29 OCL queries in
total.

As an example of a metric definition, Figure 1 presents the
definition of the response set for a class (RFC) metric. The
response set for a class is the set of all implemented methods
of this class and all methods invoked by this class. The defi-
nition is parameterised by a single Class from the DMM hi-
erarchy, and the body of the definition returns the size of the
response set for this class. The auxiliary operation methods-

DirectlyInvoked(DMM::Class c) gathers all methods in-
voked by each of the implemented methods in the class.
The operation methodsDirectlyInvoked (DMM::Method m)

traverses the invokes association in the DMM to gather all
BehaviouralElements invoked by the method m and then
selects all elements from this set that are Methods.

3. IMPLEMENTATION
In this section we describe the implementation of our sys-

tem to calculate metrics for Java programs based on the
DMM. This was a three step process:

Step 1: Create a representation of the classes and associa-
tions of the DMM in Java

Step 2: Develop a tool to convert Java programs to in-
stances of the DMM

Step 3: Develop a tool that can apply metrics defined in
OCL to the instance of the DMM produced in step 2.

Step 1 is easily achieved by depicting the DMM as a UML
class diagram, and then using the Octopus [10] tool to gen-
erate the corresponding Java classes. We implemented the
19 classes from the DMM ModelObject hierarchy directly,
and chose to implement the relationships using attributes
of these classes, rather than association classes. This im-
plementation decision was made as the explicit relationship
classes were not required by our tool. For similar reasons,
we did not implement the classes in the SourceObject hier-
archy that represent details about the code as it appears in
the original program. This does not preclude these classes
being added later.

The combination of the tools used in our approach is
shown in Figure 2. The figure is divided into two layers: the
upper layer represents the metric definition process, which

195

BCEL

Java
.class

files

Instance
of

DMM

Metric

Values

Middle
Metamodel

Metric

Octopus
Eclipse

Definition
Metric

Definitions

to

Calculator
Metrics

Calculation
Metric

in OCL

DMM
Java

dMML
Dagstuhl

Figure 2: The use of dMML to define and calculate
metrics for Java programs. dMML is part of a tool-
chain that calculates metric values from Java .class
files.

is done once for each metric set. The lower layer represents
the metric calculation process, where the metrics are applied
to a set of Java programs. The main tools we developed are
shown as green ovals: dMML for metric definitions, and Java
to DMM for converting class files to instances of the DMM.
The Metrics Calculator, also shown as a green oval, is a
Java program automatically generated by dMML for each
metric set. The third-party software used in our metric def-
inition system is shown by yellow boxes in Figure 2. BCEL
is used by the Java to DMM tool, and the Octopus plug-in
for Eclipse is used in defining the metrics, as described in
the following two sub-sections. The definition of the DMM is
represented as a UML class diagram, and the corresponding
Java representation is forward-engineered using Octopus.

The blue dashed line in Figure 2 delimits the system, and
shows that its inputs are a set of metric definitions in OCL
and a set of Java programs. The output of the system is
the set of metric values calculated by applying the metrics
to the Java programs.

3.1 Converting Java programs to an instance
of the DMM

In order to complete Step 2, it is necessary to read in Java
programs and to instantiate the DMM classes produced in
Step 1. We chose to process a compiled .class file directly
as the contents of the .class file most closely resembled
the information needed to instantiate the DMM implemen-
tation. In particular, access relationships between classes
arising from the use of fields and variables in a method are
easy to identify at the bytecode level, since they are trans-
lated into a single bytecode instruction.

Our implementation uses the Apache Bytecode Engineer-
ing Library (BCEL) to read in and traverse the contents of
the .class file. The BCEL API provides classes represent-
ing the contents of the .class file, and methods to access
classes, fields, methods and bytecode instructions. Using the
BCEL it was relatively easy to traverse these structures and
instantiate the DMM, and required less than 600 (non-blank,
non-comment) lines of Java code. It should be noted that
using BCEL would not be suitable for a more detailed rep-
resentation than the DMM ModelObject hierarchy. Source
level details such as Java statements (e.g. while and for

loops) are not represented in the bytecode, and tables giv-
ing local variable names and mappings to lines of Java code
are optional at the .class file level.

3.2 Implementing the metric definitions
To complete step 3, we extended a prototype tool dMML

(for Defining Metrics at the Meta Level) that was first ap-
plied to the UML 2.0 metamodel [14]. Our tool is imple-
mented as a plug-in for the integrated development environ-
ment Eclipse.

In step 3, a set of metrics are created and defined for
the language under consideration which in this case is Java.
To achieve this, the language metamodel, DMM is provided
along with the metric definitions expressed as OCL queries
over this metamodel. dMML uses the Octopus plug-in to
perform syntactic and semantic checks on these OCL ex-
pressions.

The dMML tool uses the Octopus plug-in to translate the
OCL metric definitions into Java code. A Java program,
Metrics Calculator, is automatically generated by dMML
that will calculate the defined metrics for any instance of
the Java metamodel (i.e. Java programs). To perform the
metric calculations dMML uses the Java to DMM tool devel-
oped in step 2 to convert the Java programs to an instance
of the DMM. The Java code corresponding to the metric
definitions is executed and the results from the metric cal-
culations are exported in text format.

The parameterisation of the dMML tool by both the lan-
guage metamodel and the definition of the metrics set is an
important feature of our approach. To extend our system
to work with other language metamodels only step 2 of this
process needs to be changed. That is, a new tool would
need to be developed to create instances of the language
metamodel.

4. EXPLORATORY DATA ANALYSIS
In this section we present an exploratory data analysis of

cohesion measures in order to demonstrate the feasibility of
our approach to defining and implementing software metrics.

Using the procedure described in previous sections we
have implemented several cohesion measures from [3] and
applied them to programs from the DaCapo benchmark
suite, version beta051009 [7]. This benchmark suite is de-
signed for memory management research, and consists of 10
open-source real-world programs.

In order to provide a meaningful comparison, we have
chosen the four cohesion metrics that do not involve in-
direct comparisons, namely LCOM1, LCOM2, LCOM5
and ICH [3]. We have included constructors, finalisers
and accessor methods as ordinary methods, but excluded
attributes and methods that are inherited but not defined
in a class. Since metric LCOM5 involves division, we have
excluded those classes that cause a divide-by-zero error,
namely classes that contain no attributes, or classes that
contain exactly one method definition. A total of 4836
classes in the DaCapo benchmark suite meet these condi-
tions.

Table 1 gives a summary of the values of the four metrics
over these 4836 classes. The values of LCOM1 and LCOM2
are all positive integers, whereas LCOM5 is normalised to
a real number between 0.0 and 2.0. The measure ICH has
been negated to facilitate comparison since it measures the
degree of cohesion, rather than the lack of cohesion measured

196

LCOM1 LCOM2 LCOM5 ICH
Min. 0.0 0.0 0.0000 -3887.0
1st Qu. 2.0 0.0 0.5000 -10.0
Median 11.0 6.0 0.8000 -2.0
Mean 185.5 135.5 0.7063 -20.5
3rd Qu. 52.0 34.0 0.9444 0.0
Max. 110902.0 94039.0 2.0000 0.0

Table 1: Summary of the values for the metrics ap-
plied to 4836 of the classes from the DaCapo suite.
This table shows the minimum, maximum and mean
data values, as well as those at the first, second (me-
dian) and third quartiles.

LCOM1 LCOM2 LCOM5 ICH
LCOM1 1.0 0.8597 0.5305 -0.7439
LCOM2 0.8597 1.0 0.6453 -0.6463
LCOM5 0.5305 0.6453 1.0 -0.3739

ICH -0.7439 -0.6463 -0.3739 1.0

Table 2: Spearman’s ρ statistic for each pairing of
the four metrics. This statistic compares data sets on
a rank basis, with values near 1.0 or -1.0 indicating
a strong positive or negative correlation.

by the LCOM metrics. The values of ICH are thus all
negative integers. That the values shown in Table 1 all fall
within these theoretical bounds provides a coarse-grained
validation of our implementation.

Figure 3 shows a histogram of the distribution of values
for each of the four metrics. In this figure, we have removed
the last 5% of data values, including some extreme outliers,
in order to better visualise the distribution. The values for
LCOM1, LCOM2 and ICH are all heavily skewed towards
zero, while the normalised values for LCOM5 reflect a some-
what more even distribution. The distribution of the metric
values is consistent with previous work, which showed a sim-
ilar preponderance of low values for the SPEC JVM98 and
JavaGrande benchmark suite [15], and reflects known lim-
itations of these cohesion metrics [2]. The percentage of
classes giving a value of zero was 16% for LCOM1, 31% for
LCOM2, 11% for LCOM5, and 39% for ICH.

In order to check for a relationship between the metric
values, the pairwise scatter plots were examined and Spear-
man’s ρ statistic was used to estimate the level of associa-
tion. We have omitted the scatter plots to save space, but
the results for Spearman’s ρ are shown in Table 2. This
statistic compares data sets on a rank basis: thus, values
close to 1.0 (or -1.0) indicate that the metrics are ranking
the classes in the same (or opposite) order. The results in
Table 2 confirm the most obvious relationships, i.e. that
there is a strong positive correlation between the measures
LCOM1 and LCOM2, which have similar definitions, and
that each of the LCOM measures have a negative corre-
lation with ICH, although this is weak for LCOM2 and
LCOM5. The strong (negative) association between the
values for LCOM1 and ICH is interesting, since these met-
rics are based on quite different definitions. Further investi-
gation would be required to see if this is a general property
of these metrics.

The results presented in this section are exploratory in
nature, and only provide a preliminary coarse-grained de-

LCOM1 (up to 95% percentile)

P
e
r
c
e
n
t

o
f

T
o
t
a
l

0

20

40

60

0 100 200 300 400 500

LCOM2 (up to 95% percentile)
P
e
r
c
e
n
t

o
f

T
o
t
a
l

0

20

40

60

0 100 200 300 400

LCOM5 (up to 95% percentile)

P
e
r
c
e
n
t

o
f

T
o
t
a
l

0

5

10

15

0.0 0.2 0.4 0.6 0.8 1.0

ICH (down to 95% percentile)

P
e
r
c
e
n
t

o
f

T
o
t
a
l

0

20

40

60

−80 −60 −40 −20 0

Figure 3: Histograms showing the distribution of
values for the four cohesion metrics. For clarity,
only the first 95% of the values are shown in order to
remove extreme outliers.

197

scription of the metric values. Nonetheless, we believe that
providing such data is important in order to demonstrate the
robustness of the metric calculation tool, and as a “smoke
test” to ensure that the values are within reasonable bound-
aries. The design of the dMML tool facilitates the definition
of multiple metrics suites, and we hope to exploit this in or-
der to assemble a substantial database of descriptive statis-
tics of object-oriented metrics for benchmark programs.

5. CONCLUSIONS AND FUTURE WORK
In this paper we have harnessed the OCL as a language

to specify metric definitions over the Dagstuhl Middle Meta-
model . We have implemented a system that uses the Octo-
pus tool to translate OCL metric definitions into Java code
and then calculates the metrics for a Java program. To
demonstrate the feasibility of our approach, we have spec-
ified four of the alternative definitions of cohesion in OCL
and used our system to calculate the metrics for a suite of
10 real-world programs.

In previous work we have applied this approach to defining
outline metrics over class diagrams from the standardised
UML metamodel [14]. However, metrics defined at the class
diagram level cannot evaluate features internal to methods,
such as number of method calls etc. A key tenet of our ap-
proach is that the range and variance among metric defini-
tions requires a flexible and reusable definition environment.

While developing and implementing the metric definitions
and the associated dMML tool, a number of issues arose
which we hope to deal with in future work.

• First, despite the formal definition of metrics in [3],
there are still some ambiguities for trivial and extreme
cases of the metrics, such as when there are no at-
tributes or no methods in a class.

• Second, the correctness of the metric definitions hinges
on assumptions made while constructing the meta-
model. For example, our tool to translate a class file
to an instance of the DMM does not include inher-
ited methods in a class definition. Therefore, it is
important that such assumptions would be a known,
expressed feature of any metric definition framework.

• Third, the correctness of the program to translate classes
to instances of the DMM has not been verified. Errors
or omissions at this stage would have a fundamental
impact on the correctness of the calculated metrics.

We intend to continue our work by developing a full set of
coupling and cohesion metrics, applied to both a Java and
the UML metamodel, and to investigate the full potential of
modularity and re-usability associated with defining metrics
at the meta level.

6. REFERENCES
[1] A. Baroni, S. Braz, and F. Brito e Abreu. Using OCL

to formalize object-oriented design metrics definitions.
In ECOOP Workshop on Quantative Approaches in
Object-Oriented Software Engineering, Malaga, Spain,
June 2002.

[2] V. Basili, L. Briand, and W. L. Melo. A validation of
object-oriented design metrics as quality indicators.
IEEE Transactions on Software Engineering,
22(10):751–761, 1996.

[3] L. C. Briand, J. W. Daly, and J. K. Wuest. A unified
framework for cohesion measurement in
object-oriented systems. Empirical Software
Engineering, 3(1):65–117, 1998.

[4] L. C. Briand, J. W. Daly, and J. K. Wuest. A unified
framework for coupling measurement in
object-oriented systems. IEEE Transactions on
Software Engineering, 25(1):91–121, 1999.

[5] S. Chidamber and C. Kemerer. A metrics suite for
object oriented design. IEEE Transactions on
Software Engineering, 20(6):476–493, 1994.

[6] N. Churcher and M. Shepperd. Comments on ‘A
metrics suite for object-oriented design’. IEEE
Transactions on Software Engineering, 21(3):263–265,
1995.

[7] A. Diwan, S. Guyer, C. Hoffmann, A. L. Hosking,
K. S. McKinley, J. E. B. Moss, D. Stefanovic, and
C. C. Weems. The DaCapo project.
http://www-ali.cs.umass.edu/DaCapo/, Last accessed
July 17, 2006.

[8] M. El-Wakil, A. El-Bastawisi, M. Riad, and A. Fahmy.
A novel approach to formalize object-oriented design
metrics. In Evaluation and Assessment in Software
Engineering, Keele, UK, April 2005.

[9] N. Fenton and S. Lawrence Pfleeger. Software Metrics:
A Rigorous and Practical Approach. International
Thompson Computer Press, 1996.

[10] Klasse Objecten. Octopus: OCL tool for precise UML
specifications. Available from
http://www.klasse.nl/octopus/, Last accessed July 17,
2006.

[11] T. C. Lethbridge, S. Tichelaar, and E. Ploedereder.
The Dagstuhl Middle Metamodel: A schema for
reverse engineering. Electronic Notes in Theoretical
Computer Science, 94:7–18, May 10 2004.

[12] W. Li and S. Henry. Object-oriented metrics that
predict maintainability. Journal of Systems and
Software, 23(2):111–122, 1993.

[13] M. Lorenz and J. Kidd. Object-Oriented Software
Metrics. Prentice Hall Object-Oriented Series, 1994.

[14] J. A. McQuillan and J. F. Power. Towards re-usable
metric definitions at the meta-level. In PhD Workshop
of the 20th European Conference on Object-Oriented
Programming, Nantes, France, July 2006.

[15] Á. Mitchell and J. F. Power. Run-time cohesion
metrics for the analysis of Java programs - preliminary
results from the SPEC and Grande suites. Technical
Report NUIM-CS-TR2003-08, Dept. of Computer
Science, NUI Maynooth, April 2003.

[16] R. Reißing. Towards a model for object-oriented
design measurement. In ECOOP Workshop on
Quantative Approaches in Object-Oriented Software
Engineering, Budapest, Hungary, June 2001.

[17] J. Warmer and A. Kleppe. The Object Constraint
Language. Addison-Wesley, 2003.

[18] F. Wilkie and T. Harmer. Tool support for measuring
complexity in heterogeneous object-oriented software.
In IEEE International Conference on Software
Maintenance, Montréal, Canada, October 2002.

198

Reducing Java Internet project risks: a case study of
public measurement of client component functionality in

the user community

Tomas Hruz
Institute for Theoretical Computer Science

ETH Zurich
8092 Zurich, Switzerland

tomas.hruz@inf.ethz.ch

Matthias Hirsch-Hoffmann
Institute of Plant Sciences

ETH Zurich
8092 Zurich, Switzerland

Wilhelm Gruissem
Institute of Plant Sciences

ETH Zurich
8092 Zurich, Switzerland

Philip Zimmermann
Institute of Plant Sciences

ETH Zurich
8092 Zurich, Switzerland

ABSTRACT
A major risk for Internet software projects which have server
and client components are decisions related to availability
and features on client computers in the user community.
Specifically, bioinformatics software developers intending to
use Java face critical decisions about which Java version
to implement, but few statistics are available about Java
presence on user machines. To obtain this information, we
implemented a measurement system to detect the presence,
functionality and version of Java Virtual Machines on client
computers of a large base of users from the biology commu-
nity. We show that our system effectively collects the nec-
essary information and provides decision-relevant statistics.
Measurements performed on 1753 client computers showed
that Java presence is high and dominated by the most re-
cent Java versions. The proposed empirical approach can
be used to reduce decision risks in any type of Internet soft-
ware project with low level of control on client equipment
and high demands on client interaction and performance.
More details together with source code and measurement
results can be obtained from the J-vestigator survey page
(https://www.genevestigator.ethz.ch/index.php?page=
jvestigator)

1. INTRODUCTION
Most Internet software projects which have a client soft-

ware component face critical decisions in the early project
phase when assumptions about client computers in the user
community have to be taken. A distinctive feature of Inter-
net software projects compared to other industrial software

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPPJ 2006August 30 - September 1, 2006, Mannheim, Germany
Copyright 2006 ACM X-XXXXX-XX-X/XX/XX ... $5.00.

productions is that the platforms and features installed on
the user computers are not centrally controllable and soft-
ware project decision makers can influence the user commu-
nity only in a very limited way.

The present case study illustrates a method about how
to reduce the above-mentioned risk using a measurement
system which provides systematic data about components
installed on user computers in the community where the
new software is supposed to be used. Once the structure of
components installed on these computers is known, a fact-
based decision concerning client software technologies can
be made. Moreover, our method classifies user computers
to well defined groups of potential problems that users will
encounter when using the client software product. The prod-
uct penetration and functionality can therefore be increased
with a targeted information campaign for such user groups,
providing detailed explanations and procedures how to in-
stall or upgrade necessary components on their computers.

More specifically, the problem of deciding about a client
software technology in a distributed client/server system has
three important parameters leading to a three dimensional
decision space. The first parameter represents the complex-
ity of interaction on the client side of the application. If
a very complex interaction is projected, a more powerful
programming platform like Java compared to Web browser
is necessary. The second parameter is the server load. A
powerful programming language on the client side is needed
if users repeat with high frequency cpu intensive comput-
ing. In such cases, a lack of possibility to compute on the
client side leads to intractable load on the servers. The third
important parameter is the user environment controllabil-
ity. This describes to what extent the application provider
can control which platform features, and which versions are
installed on user computers. In large companies with ho-
mogeneous configuration control, application providers can
prescribe the environment and therefore possess a very high
client computer environment controllability. In Internet,
however, the controllability is almost null. Normally, it is
advised to use a platform like Java only in situations where
complex interactivity and/or high server load are combined

199

Figure 1: Results from the J-vestigator survey as of December 2005.

with high user computer environment controllability.
The presented method is directed to exactly the oppo-

site situation, where low user environment controllability is
combined with high server load and/or complex interactiv-
ity of the application. The correct measurement of software
parameters on client computers can improve software devel-
opment decisions, resulting in optimal choices for platforms
and versions and to powerful applications increasing user
satisfaction in the Internet community.

The method described in our article can be seen as an es-
sential step on the path towards advanced and functionally
rich Internet software applications. In our specific case, the
correct identification of the future technology required the
presence of a more simple web interface application. Gen-
erally, if we consider the development of an Internet appli-
cation in a wider frame it has analogies with the ”boot-
strapping” process as known in the Unix development par-
adigm. One way how to incorporate the method proposed
in this article in a technology bootstrapping is as follows:
1) An application version based on lower level technology
(e.g. html, web interface) is used. This application version
defines the user community and allows to measure the more
advanced technology (e.g. Java). 2) The higher level tech-
nology features are identified with a measurement step. 3)
The application version is replaced/enhanced with a version
containing the new technology identified in step 2 and the
steps starting at 1. are repeated.

2. JAVA TECHNOLOGY DECISIONS IN
BIOINFORMATICS

The challenge of bioinformatics developers is to create
widely distributable, highly performant and rapidly evolv-
ing tools that meet the needs of research biologists. Java
[3] is emerging as a key player in bioinformatics due to its
platform independence and its object-oriented programming

nature, allowing to model highly complex biological informa-
tion. Although traditionally the language of choice for many
bioinformaticians has been Perl, more and more applications
are being developed using Java technology, frequently con-
nected to a relational database (e.g. [2, 1]).

The environment on user computers is highly heteroge-
neous. First, large variations occur with respect to hard-
ware, software platform, operating system, and installed ap-
plications. Second, Java usage is strongly related to the in-
stalled browser technology, resulting in a panoply of environ-
ments in which the application must run (see the measure-
ment results). Despite its many advantages, web-based Java
applications request compatible versions of Java on client
computers.

Furthermore, as Internet-based bioinformatics applications
grow in complexity and in the number of users, resources
required from servers may outgrow the capacities of many
server infrastructures. A reasonable solution is to translo-
cate parts of the data processing to the client computers.
For this, Java technology can provide a powerful solution if
it is correctly running on the client computers.

With respect to the high investment in resources for soft-
ware development and the low level of control over client
computers from the Internet, initial technological decisions
represent a major risk factor for software developers. Knowl-
edge about Java penetration and functionality in the biology
community represents a considerable benefit in terms of in-
vestment, strategic planning, and software distribution for
bioinformatics projects using Java.

While designing a new version of Genevestigator ([4]) with
the goal of optimal performance and maximum compatibil-
ity, we faced the decision about whether to use JAVA, and if
yes, which version would be most suitable. In this respect,
two options are available: a) to program for Java 1.1.X,
with which programs will run for a larger group of users.

200

Figure 2: Evolution of the relative abundances of Java versions during the period of measurement (cumula-
tive).

However, more difficulties occur at all levels of the product
development cycle (programming, debugging, deployment
etc.) because Java 1.1.X has less powerful libraries and a
less efficient Virtual Machine, or b) to program for Java
1.3 or higher (referred to here as Java 2), with which the
graphics and GUI elements are more powerful, the Virtual
Machine is very fast, and the development tools are better
integrated.

Currently, there are no public reliable statistics about
Java presence, version and functionality on user computers
in the biology community. To address this problem, we de-
signed a system to measure such statistics built on Geneves-
tigator, which has a large and world-wide user community
from bioinformatics and biological research.

3. MEASUREMENT METHOD AND
RESULTS

The Java measurement system consists of several layers.
First, a MySQL database instance is required to store the
data. Second, PHP scripts generate the appropriate Javascript
code, the HTML code and a simple Java Applet to read
and save the Java version of client computers. The Ap-
plet code is kept as simple as possible to be executable
on all possible Java versions, and it only reports informa-
tion if it runs correctly on the client machine. Therefore,
to obtain information also for those cases in which Java is
non-functional or absent, and to ensure that measurements
can be obtained from most user computers, we developed
and tested a combination of PHP, HTML, Javascript, and

Java. More details about the code fragments and implemen-
tation can be obtained from the J-vestigator survey page
(https://www.genevestigator.ethz.ch/index.php?page=
jvestigator).

The results from the analysis of 1753 user computers re-
veal multiple interesting aspects. First, the complexity of
the application landscape on user computers was surprising,
with 371 different browser and operating system variations
in the test data. This means that on average only about 5
computers share the same configuration in the pool of 1753
computers. Second, with respect to Java, the results can be
grouped into four categories (see Fig. 1): A and B) no Java
is available (17% and 10%, respectively), C) a functional,
lower version of Java (1.1.X) is available (18%), and D) a
functional, higher version of Java (Java 2) is available (55%)

Altogether, Java was present and functional on 73% of
client computers (see Fig. 1, groups C and D). Considering
different Java versions, Java 2 had a larger penetration than
Java 1.1.X versions (55% versus 18%). In most of the lat-
ter cases, this reflects a per default implementation of Java
1.1.X in the Microsoft IE browser. As compared to Java 2,
programming for Java 1.1.X would therefore add only 18%
to the set of user computers for which the users must not
take any action to run a Java application. Alternatively, the
availability of free Java software and good manuals can help
to achieve a smooth transition of such users to Java 2.

Group A (17%) represents computers in which the <ap-
plet>tag implementation does not allow Javascript to be
executed inside the tag if Java is not present. In this case,

201

an error is subsequently generated in Javascript code; how-
ever, we catch this effect and store the correct information in
the database. This group contains mainly IE 6 browsers on
Windows and IE 5 on Mac, both without any Java installed.

Group B (10%) represents computers in which the <ap-
plet>tag does allow Javascript but Java was not available
to the browser. This can occur for the following three rea-
sons: i) there is no Java installed on the computer, ii) the
Java installation is not integrated into the browser or iii) it
is deactivated by the browser configuration. For reason i)
there are two major cases. First, some MS Windows versions
are not provided per default with Microsoft Java Run-time.
Second, Firefox browsers come per default without any Java
Run-time.

To assess the robustness of our statistics, the relative
abundances of each category during the period of measure-
ment is plotted against time (see Fig. 2). After some minor
initial fluctuation, the proportions tend to become stable
after two weeks of measurements. More recent and longer-
term robust statistics can be obtained from the J-vestigator
web site.

4. CONCLUSIONS
From our case study we can draw several conclusions.

Specifically, for the bioinformatics user community we con-
clude that Java is a good option for programming of more
advanced bioinformatics applications because of its wide
presence, modern design and powerful network concept. Prob-
ably the most interesting fact is the big penetration of the
recent versions of Java (1.4. and 1.5) in the biology commu-
nity. The decision problem (between Java 1.1.X and Java 2)
which led us to the presented work is not specific for bioin-
formatics, however the decision result itself depends very
much on the Java versions structure for this particular com-
munity.

From the general software development point of view the
proposed method has brought more predictability in the de-
cision process in the early phases of our project. We know
much more about our users and about the environment
where the application will be running. This knowledge gives
us also a possibility to address the specific user groups with
tailored help procedures. Therefore we propose to include a
similar measurement step in every Internet software project
where nontrivial client functionality is needed.

Moreover, with today’s possibility to build similar mea-
surement systems as shared platforms, where users share
their data and know-how, crystallization kernels of a larger
distributed measurement system can be provided, which
would collect and share various characteristics of the In-
ternet software environment on the client computers. Such
knowledge (or even control) would reduce development risk
and improve the functionality of Internet applications.

To start the work on the above idea we provide software
developers and users with up-to-date statistics about Java
running on client machines in a public survey which will
serve as a continuous Java statistics exchange platform. De-
velopers using the proposed measurement system in other
communities are welcome to share their results through J-
vestigator. Measured data are free to download over the
Internet at the J-vestigator Web page.

5. REFERENCES
[1] B. Dysvik and I. Jonassen. J-express: exploring gene

expression data using java. Bioinformatics,
17(4):369–370, 2001.

[2] J. e. a. Johnson. Tableview: portable genomic data
visualization. Bioinformatics, 19(10):1292–1293, 2003.

[3] S. Microsystems. Java.sun.com: The source for java
developers. http://java.sun.com, December 2005.

[4] P. e. a. Zimmermann. Gene-expression analysis and
network discovery using genevestigator. Bioinformatics,
10(9):407–409, 2005.

202

Teaching Inheritance Concepts with Java
 Axel Schmolitzky

University of Hamburg, Germany
Vogt-Koelln-Str. 30
D-22527 Hamburg
+49.40.42883 2302

schmolitzky@acm.org

ABSTRACT
In teaching object-oriented programming, teaching inheritance is
the most challenging and at the same time the most crucial aspect.
The interplay of dynamic binding, late-bound self-reference,
subtype polymorphism and method redefinition is so complex that
it is difficult for instructors to design a gentle, step-by-step
introduction. Should polymorphism be introduced first? Or is
code reuse better suited as an introductory motivation? The Java
Programming Language adds a further aspect to this discussion:
when should named interfaces be introduced? Most textbooks
follow the historical development of the mechanism and cover
interfaces after the discussion of abstract classes. In this paper a
different approach is described: interfaces are introduced long
before and in isolation from inheritance; and the discussion of
inheritance is explicitly split into its two major constituents,
namely subtype polymorphism and implementation inheritance.
We applied this novel approach in the two introductory courses
on software development (SD1 and SD2) in the newly created
Bachelor of Science in Informatics curriculum at the University of
Hamburg, Germany. This experience report reflects on the design
rationale behind this new approach.

Categories and Subject Descriptors
K.3.2 [Computers & Education]: Computer & Information
Science Education - Computer Science Education

D.1.5 [Programming Techniques]: Object-Oriented
Programming.

D.3.3 [Programming Languages]: Language Constructs and
Features – Interfaces, Polymorphism, Inheritance.

General Terms
Languages

Keywords
Pedagogy

1. INTRODUCTION
Teaching inheritance is challenging. The (commonly assumed)
basic principle, hierarchies of terms building taxonomies, is easy
to explain. But when it comes to the details of the underlying
programming language concepts, things are getting harder. One
reason for the difficulties lies in the nature of inheritance: it is a
powerful mechanism that can be used for several and quite
diverse purposes. It is not easy to say which of these is more
important and should be taught first (following the pedagogical
pattern Early Bird, see [1]).
In the research literature on object-oriented programming
languages and principles, the distinction between hierarchies of
types (supporting inclusion polymorphism and subtyping) and
hierarchies of implementations (aka inheritance, supporting reuse
of code and guaranteeing common behavior) is well-established
since the early 1990s [5, 7, 12, 15]. But in most textbooks on
object-oriented programming in Java, this distinction is still not
well covered (see, for example, [4, 10, 21]). The few textbooks
that do distinguish the two concepts (e.g. [2]) still treat interfaces
in Java according to their historical and technical roots: as fully
abstract classes, after the discussion of abstract classes and
abstract methods. One notable exception is the textbook by
Horstmann [9]; it covers interfaces before inheritance, but it is
targeted at advanced courses in the second or third semester.
In [16] we pointed out that it is reasonable to cover interfaces
before inheritance, but with only little constructive advice how to
do it; in this paper we provide more background on this reasoning
and describe the structure of a CS1 course that exemplifies it. We
further show how type and implementation hierarchies can be
taught in strict sequence, again backed up by a description of a
course structure that realizes it.

2. BACKGROUND
The Software Engineering Group (SWT) at the University of
Hamburg is currently responsible for the first two programming
modules (covering imperative and object-oriented programming)
in the newly created Bachelor of Science in Informatics
curriculum. These modules are called Softwareentwicklung
(Software Development) I and II. We refer to them as SD1 (first
semester) and SD2 (second semester), respectively. SD1 primarily
covers programming (and unit testing), whereas SD2 extends to
object-oriented modeling and software development processes.
SD1 and parts of SD2 roughly compare to CS1 and CS2 in the
North American curriculum. Both modules currently use Java as
the programming language, as the SWT group has several years
of experience in using this language for undergraduate and
graduate education.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
PPPJ 2006 , August 30 – September 1, 2006, Mannheim, Germany.
Copyright 2006 ACM 1-58113-000-0/00/0004…$5.00.

203

3. BASIC TERMINOLOGY
As object-oriented programming has no formal grounding (as
compared to functional programming with the lambda calculus),
we first define our understanding of some important terms for the
following discussion.

3.1 Language Concepts and Mechanisms
We distinguish programming language concepts from
programming language mechanisms, as exemplified in [6] for
inheritance concepts and mechanisms. Language concepts are
language-independent notions of programming; they are valid for
all programming languages or at least for a family of languages
and they abstract from specific details in different languages.
Language mechanisms, on the other hand, are concrete mechanics
in specific languages with formal syntax and (hopefully) exact
semantics. The same concept can be supported by different
mechanisms in different languages. Take the imperative loop as a
simple example of a concept; it can be described as “a sequence
of statements being repeated as long as some condition is true”.
The while- and repeat-loops in Pascal and the while- and
for-loops in Java are examples of mechanisms or constructs
implementing this concept.

One mechanism in one language can support several concepts; the
mechanism is then overloaded. If the concepts that a mechanism
is overloaded with are too diverse, maintaining programs written
in that language can become difficult; one can not tell directly
from looking at a specific usage of the mechanism which concept
is meant to be supported. The inheritance mechanism in Eiffel is a
good example of a mechanism that is overloaded with several
concepts: type hierarchies, code inheritance, type abstraction,
sometimes even simple use of services (as described in the
shopping list approach in [14], the first edition of Meyer’s
classic). While computer science often tends to seek for
generalization and unification (“everything is a function” or
“everything is an object”) to simplify languages, software
engineering typically advocates language mechanisms that clearly
transport their intended meaning for pragmatic reasons: to
simplify programming and maintenance.

3.2 Interfaces and Interfaces
In the following we distinguish the concept interface from the
mechanism interface by setting the terms in different fonts:

 The concept interface (set in italics in the following)
denotes the conceptual interface of a class, i.e. all the
methods that are public and thus available for (regular)
clients of the class. The interface of a class should describe
what instances of the class can do, not how they do it.

 The mechanism interface (set in typewriter font in the
following) is a construct of Java (and of other languages as
well) that allows to describe just the signatures of the
operations of a type. An interface can be used to
explicitly describe the complete interface of a class or it can
be used to partially describe a role that a class can play in
certain contexts [17].

Note that we do not consider yet another meaning of the term
interface in this discussion: that of a graphical user interface.

3.3 Types and Classes
Classically, as described by Hoare in [8], a type is a set of values
plus operations on these. In object-oriented programming, the
notion of a value set is abstracted to a set of elements (either
values or instances). A class then defines a type in the sense that
the instances of the class form its (open) set of elements, and the
public methods of the class (its interface) are the operations on
these elements.
A type is a more abstract notion that can be extracted from an
existing class; vice versa, a formal or informal description of a
type can be taken as a specification for the implementation of a
class. We set type names in italics in the following and class
names in typewriter font whenever we want to stress the
difference between the abstract notion of a type and the concrete
implementation in the form of a class.

3.4 Operations and Methods
As soon as the concept of a type is introduced explicitly,
operations and methods can be distinguished systematically.
Operations are part of a type and describe the abstract notion of
operations on the elements of a type’s domain. Ideally, operations
describe what can be done with the objects of a type, not how it is
done. Methods on the other hand are structural parts of classes
and contain code. The public methods of a class form the
operations of the type the class defines, thus private methods are
not operations in this sense. In the following we use italics for
naming operations and typewriter font for naming methods.
The advantages of these distinctions become evident in
connection with inheritance. Consider the method equals of the
Java class Object. The type Object defines the operation equals,
the class Object also supplies an implementing method of this
operation. Subclasses of Object that redefine equals do not
offer an additional operation, they just offer alternative methods
for still the same operation.

3.5 Consuming and Producing
Not all concepts that have to be used by the students can be fully
explained at first encounter. It is often a good pedagogical
strategy to present just one aspect of a new concept, let the
students make their own experiences and turn back later to fill the
gaps. The Pedagogical Pattern Project identified this as the Spiral
pattern [1]. We use this pattern systematically by distinguishing
between consuming and producing a concept. Consuming
typically comes before producing. Before a writer can write a
good book, she should have read a lot of books. Before a
carpenter can design a good table, he should have used several
tables. Typically consuming is also easier than producing, e.g.
reading a book is easier than writing a book.

We observed that this principle can be applied well to
programming concepts, e.g.:

 Students consume the concept of packages when importing
classes or interfaces from other packages (e.g. List from
package java.util for Java). They need not know
much about packages in Java, just that they are bundles of
library code. When they produce packages through dividing
larger systems into several packages, they need to know all
details about package visibility and the like.

204

 Students consume genericity when they first use collections
from the Java Collection Framework, which may be
relatively early on. Defining the element type of a
collection is quite straightforward once the concept of a
type is understood. Producing a generic class, on the other
hand, requires much more knowledge about genericity; this
can be taught much later.

We applied this principle in these and in several more situations
in SD1. We will now turn to this course in more detail.

4. TEACHING INTERFACES BEFORE
INHERITANCE

In this section we describe the structure of SD1 in as much detail
as is necessary to point out our objective: to demonstrate that
teaching interfaces before inheritance can be done
systematically.
We follow an Objects First approach in SD1, as described for
example in [2]. Using BlueJ [11], students work with objects from
day one. BlueJ is a free IDE tailored for teaching object-oriented
programming that we have been using in introductory
programming courses for several years now. Instances of classes
can be created interactively; any of their methods can be called
interactively and their states can be inspected easily. The classes
of a project are visible all the time in an interactive class diagram.

4.1 Interfaces Early
In their first programming tasks, students just create objects of
provided classes. They interact with these objects, calling the
public methods defined by the given classes. For our discussion,
the class editor’s ability to show two different views of a class
definition is an important feature of BlueJ: the implementation
and the interface of the class (generated on the fly using javadoc).
During preparation of the exercises, we save the class definitions
of the provided classes in interface view. When students want to
find out about the services a class offers, they just double-click on
the class symbol and the interface view is presented. Later,
students start to extend the given class definitions and switch to
the implementation view then.
While interactively exploring and extending the services of
provided classes in the first weeks, students get an intuitive
feeling for the interface of a class early on. During this time we
do not make the distinction between methods and operations, as
this would hinder more than help the learning process. The
vocabulary in use thus contains primarily the words class, object,
instance, method, and field. The field types of the classes in use
are primitive types only in the first four weeks.
In week 5 we explicitly introduce the concept of reference types.
We set reference types in relation to the primitive types and
explain the notion of a general type as described in section 3.3,
primarily to explain static type checking in Java.

4.2 Interfaces Next
In week 7 we introduce interfaces together with unit testing.
We explain that a black box test should just test the interface of a
class. We then show how they can use the Java mechanism
interface to explicitly describe the interface of a class. If a
test class is just using this interface it can be expected that
the test cases will treat the object at test really as a black box. In

the test class, any variable should be declared of the interface
type, not of the concrete class type. The object to test is passed in
as a constructor parameter, even this parameter can be of the
interface type. As BlueJ allows passing objects interactively, the
object to test can be created interactively and passed interactively
to a test class object.
This introduction of interfaces automatically leads to the
distinction of the static and the dynamic type of a variable. The
static type of the variables should be of the interface type, the
dynamic type is the concrete class type. This way, students
consume dynamic binding without the necessity to understand the
mechanics behind the scenes.
After writing the black box test class, we introduce JUnit as a
framework for better test support. Using JUnit, students also
consume inheritance (they passively inherit methods of the JUnit
class TestCase that they can use for assertions), but they need
not produce an inheritance relationship (provide an abstraction
that can be reused).

4.3 Collection Interfaces
The second half of the semester is arranged around a central
theme: collections of objects. Again we take a different approach
than most text books: we introduce two basic collection
interfaces of the Java Collection Framework (JCF), namely
Set and List, before we introduce arrays (see [20] for
supporting arguments for this approach). We explain the
interfaces and let the students consume these types (and their
implementations) to solve simple tasks with collections. At this
point we explicitly do not talk about the type hierarchy of the
JCF. As mentioned in section 3.5, students have to consume
genericity without a full introduction of the concept.
For the rest of the semester we “open the hood” of the collection
abstractions and show how lists can be implemented with linked
lists and “growing” arrays, and how sets can be implemented
efficiently with hashing. In the exercises, the students have to
build these implementations for simple (non-generic)
interfaces such as ShortList (for short lists in the sense
of Nick Hornby’s “High Fidelity”) and Vocabulary (a set of
strings for analyzing the corpus of a digital text). Arrays are
described as a (very necessary) low-level construct only that is
used to implement more user-friendly collections.
In summary, we use collection types as prime examples for type
abstraction (section 5.3), without mentioning the term explicitly.

4.4 Students Feedback
SD1 was very well received by the students. In the “official”
informal surveys conducted by the student union, the module got
excellent marks, especially for its clear structure (over 80% voted
“very good” or “good”). Students were quite aware of the fact that
a different path was being taken with respect to interfaces,
some were even excited about the novel approach. No student
complained about the fact that inheritance was not taught and no
student had problems with using interfaces the way we proposed.

5. ADVANCED TERMINOLOGY
The inheritance mechanisms in programming languages support
several inheritance concepts. For first year teaching, the most
important concepts are:

205

 subtyping
 (implementation) inheritance
 type abstraction

Basically, the first two concepts subsume hierarchies at the type
level and at the implementation level, respectively, whereas type
abstraction covers the relation between them.

5.1 Subtyping
Subtyping allows one to build hierarchies of types that support the
notion of substitutability – (instances of) subtypes are allowed
where supertypes are expected. Substitutability requires dynamic
binding, as the compiler cannot decide at compile-time which
method should be chosen for the invocation of an operation.
Subtyping is a very strict concept. It puts certain restrictions on
the way inherited operations can be changed in a subtype. The
folklore results from object-oriented type theory are that result
types of operations can be adapted covariantly and that parameter
types can be adapted contravariantly. In connection with
genericity, subtyping rules tend to become bulky.

5.2 Inheritance
According to [22] and [19], inheritance is an incremental
modification mechanism. This applies primarily to code, as the
modification of signatures (e.g. covariant changes of parameter
types) is very restricted, at least as long as substitutability is
desired.
The most important underlying concept for implementation
inheritance is method redefinition: the ability of a subclass to
adapt inherited methods. We distinguish three forms:

 method definition: providing a concrete method for an
abstract method.

 method replacement: overriding an inherited method
without calling it from the new method body.

 method extension: overriding an inherited method, but
calling it from the new method body.

A prerequisite for method redefinition is some kind of late-bound
self-reference: Inside a class hierarchy, older code in a superclass
can call newer code from a subclass, because calls can be targeted
to the special object reference this. This seems to be quite
similar to dynamic binding, but there is an important difference
between late-bound self-reference and substitutability: If the
source code of a superclass is available, late-bound self-reference
can be resolved at compile time, simply by copying. This solution
was chosen, for example, for Sather [18]. But the most common
solution is indeed to implement late-bound self-reference with
dynamic binding as well, and this is also the case in Java.

5.3 Type Abstraction
With type abstraction we denote the concept that an abstract data
type can be implemented in several ways. The abstract data type
list (user-defined order, duplicates allowed) can be implemented
as a linked list or with growing arrays (see the classes
LinkedList and ArrayList in the JCF). Correct
implementations only differ in their runtime efficiency, not in
their semantics. The abstract data type set (no visible order,
duplicates not allowed) can be implemented with a simple linked
list or, more sophisticated, with hashing.

We took the term type abstraction from [3], but the concept is also
known as data abstraction, as described by Liskov in [13]. The
latter paper is also the reason why we distinguish type abstraction
from type hierarchies: the paper argues quite convincingly that
the “implements” relation should be distinguished from the “is a”
relation.

6. TEACHING SUBTYPING BEFORE
INHERITANCE

As SD1 is a prerequisite for SD2, we expect that the distinction
between interface/type and implementation/class is well received
by all students at the beginning of SD2.
We believe that knowledge about the distinction and the
differences between subtyping and inheritance is important for
any well-educated software engineer. But the problem with most
object-oriented programming languages is that classes are both
types and implementations and that the inheritance relationship
between classes typically implies both subtyping and code
inheritance. So we cover the two topics in strict sequence and try
to make the differences as clear as possible. We expect most of
the students never to encounter such a sharp distinction again in
their professional life.

6.1 Teaching Subtyping
This leaves the question of what to cover first. We decided to start
with subtyping, as this seems to be the natural next step after the
introduction of interfaces in SD1. If interfaces can be used to
model abstract data types, then modeling a type hierarchy for
substitutability is straightforward. One example that we discuss in
the lecture is the interface Collection as a supertype for
the already known types List and Set.

In the exercises, students then have to model a database of media
items with CDs, DVDs and video games. Provided is an interface
Medium that models the general properties of a multimedia item
in a video store. When students implement the classes CD, DVD
and VideoGame no inheritance of code is involved. We further
provide a class AbstractMedium that implements the handling
of properties common to all media and let the students use this
class via forwarding (aka delegation).
In the following week, students then have to implement generic
versions of their collection implementations from SD1. Both
genericity and type hierarchies in Java are concepts on the type
level. Up to this point, students still had no explicit contact with
method redefinition (technically, they consumed method
definition by implementing abstract methods from interfaces, but
we avoid this terminology to this point). In the lecture we focus
on the several features of types: subtyping, co- and contravariance
(both for method parameters and for type parameters in generics),
constrained genericity.

6.2 Teaching Inheritance
Only in the following week, we finally reveal everything about
inheritance in Java in the lecture: we introduce the different types
of method redefinition, late-bound self-reference and the concept
of template methods; we discuss the keyword protected and
the resulting heir interface. In the exercises the students then have
to change their delegation implementation of the media database
into an inheriting one, as we provide a new class

206

AbstractMedium with a template method. This method
calculates the price depending on a hook method the subclasses
have to implement.
The next week is dedicated to graphical user interfaces. In the
introduction of AWT and Swing, the students need to have a
sound understanding of both subtyping and inheritance.

6.3 Students Feedback
At the end of SE2, we conducted a survey in which the students
could select between given answers to statements about the way
we taught interfaces, subtyping and inheritance in SD1 and
SD2. In the answers, 90% supported the statement that inheritance
concepts are a crucial aspect of object-oriented programming.
62% fully supported that the distinction between subtyping and
inheritance should be taught, 38% voted at least for “weak
support”. 86% preferred the presented order of topics, whereas
14% would have preferred inheritance to be covered before
subtyping. 90% supported the statement that it is good design to
cover interfaces in SD1 without a full explanation of inheritance.

7. CONCLUSION
In this paper, we presented our design rationale for two
consecutive introductory courses on object-oriented
programming. We focused on our novel way of introducing
inheritance concepts: introducing type abstraction with interfaces
(both the concept and the mechanism) before inheritance and
explicitly separating subtyping from (implementation)
inheritance. This approach is feasible only because Java offers a
dedicated mechanism for modeling type information without any
code burden: interfaces. We believe that interfaces in
Java are a much more fundamental concept than their technical
roots make them appear. They are, considered as fully abstract
classes, not just some special case of the important notion of
abstract classes; they allow to model the interface of a class
explicitly and they allow to model multiple type hierarchies. An
extensive use of interfaces typically improves the structure
of object-oriented systems, whereas the extensive use of
inheritance typically leads to code that is more difficult to
maintain. Following the Early Bird pattern, any software
engineering curriculum should try to cover interfaces as
early as possible. If covered in isolation in semester 1, a smooth
transition to inheritance via subtyping is possible in semester 2, as
we pointed out in this paper.

8. REFERENCES
[1] The Pedagogical Patterns Project,

http://www.pedagogicalpatterns.org, (last visited May 23,
2006).

[2] Barnes, D. and Kölling, M. Objects First with Java - A
Practical Introduction Using BlueJ (3rd Edition). Pearson
Education, UK, 2006.

[3] Baumgartner, G. and Russo, V.F. Signatures: A Language
Extension for Improving Type Abstraction and Subtype
Polymorphism in C++. Software - Practice and Experience,
25 (8), 1995. 863-889.

[4] Bishop, J., Bishop, J.M. and Bishop, N. Java Gently for
Engineers and Scientists. Addison Wesley, 2000.

[5] Cook, W., Hill, W. and Canning, P., Inheritance is Not
Subtyping. In Proc. 17th ACM Symposium on Principles of
Programming Languages, (1990), 125-135.

[6] Evered, M., Keedy, J.L., Schmolitzky, A. and Menger, G.,
How Well Do Inheritance Mechanisms support Inheritance
Concepts? In Proc. Joint Modular Languages Conference
(JMLC) '97, (Linz, Austria, 1997), Lecture Notes in
Computer Science 1204, 252-266.

[7] Halbert, D.C. and O'Brien, P.D., Using Types and
Inheritance in Object-Oriented Languages. In Proc. ECOOP
'87, (Paris, France, 1987), Lecture Notes in Computer
Science 276, 20-31.

[8] Hoare, C.A.R. Proofs of Correctness of Data Representation.
Acta Informatica, 1 (4), 1972. 271-281.

[9] Horstmann, C.S. Object-Oriented Design and Patterns. John
Wiley & Sons, 2006.

[10] Jia, X. Object Oriented Software Development using Java.
Addison Wesley, 2002.

[11] Kölling, M., Quig, B., Patterson, A. and Rosenberg, J. The
BlueJ system and its pedagogy. Journal of Computer
Science Education, Special issue on Learning and Teaching
Object Technology, 13 (4), 2003. 249-268.

[12] LaLonde, W. and Pugh, J. Subclassing != subtyping != Is-a.
Journal of Object-oriented Programming (January), 1991.
57-62.

[13] Liskov, B., Data Abstraction and Hierarchy. In Proc.
OOPSLA '87 (Addendum), (Orlando, Florida, 1988), ACM
SIGPLAN Notices.

[14] Meyer, B. Object-oriented Software Construction. Prentice-
Hall, New York, 1988.

[15] Porter, I., H. H. Separating the Subtype Hierarchy from the
Inheritance of Implementation Journal of Object-Oriented
Programming, 1992, 28-34.

[16] Schmolitzky, A., "Objects First, Interfaces Next" or
Interfaces Before Inheritance. In Proc. OOPSLA '04
(Companion: Educators' Symposium), (Vancouver, BC,
Canada, 2004), ACM Press.

[17] Steimann, F., Siberski, W. and Kühne, T., Towards the
Systematic Use of Interfaces in Java Programming. In Proc.
Proc. of the 2nd Int. Conf. on the Principles and Practice of
Programming in Java PPPJ, (Kilkenny, Ireland, 2003), 13-
17.

[18] Szypersky, C., Omohundro, S. and Murer, S. Engineering a
Programming Language: The Type and Class System of
Sather. in Gutknecht, J. ed. Programming Languages and
System Architectures, Springer-Verlag, 1993, 208-227.

[19] Taivalsaari, A. On the Notion of Inheritance. ACM
Computing Surveys, 28 (3), 1996. 438-479.

[20] Ventura, P., Egert, C. and Decker, A., Ancestor worship in
{CS1}: on the primacy of arrays. In Proc. OOPSLA '04
(Companion: Educators' Symposium), (Vancouver, BC,
Canada, 2004), ACM Press.

[21] Wampler, B.E. The Essence of Object-Oriented
Programming with Java and UML. Addison Wesley, 2001.

[22] Wegner, P. and Zdonik, S.B., Inheritance as an Incremental
Modification Mechanism or What Like Is and Isn't Like. In
Proc. ECOOP '88, (Oslo, Norway, 1988), Lecture Notes in
Computer Science 322.

207

Improving the Quality of Programming Education
by Online Assessment

Gregor Fischer
University of Würzburg

Am Hubland
97074 Würzburg

+49 / 931 / 888 – 66 11

fischer@informatik.uni-wuerzburg.de

Jürgen Wolff von Gudenberg
University of Würzburg

Am Hubland
97074 Würzburg

+49 / 931 / 888 – 66 02

wolff@informatik.uni-wuerzburg.de

ABSTRACT
The paper presents an online Java course consisting of a tutorial
that provides a high level of interaction and an assessment tool
that analyses the code and enables the students to run a suite of
predefined tests.
The hypertext tutorial contains a lot of interactive, editable
examples and many exercises to check the student’s progress.
In the assessment tool various electronic evaluators check for the
conformance of uploaded student programs to coding
conventions, proper documentation, compliance with the
specification and, last but not least, the correct execution of
supplied functional tests.
The tool not only provides a tremendous help for the correctors by
reducing the manual assessment time by a factor of about 4, but
also is appreciated by the students for its immediate reaction,
because development times (especially during debugging) can be
shortened considerably and students can gain a much higher
confidence in the quality of their own program.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging – Code
inspections and walk-throughs, Testing tools.

K.3.1 [Computers and Education]: Computer Uses in Education
– Computer-assisted instruction (CAI), Computer-managed
instruction (CMI), Distance learning.

K.3.2 [Computers and Education]: Computer and Information
Science Education – Computer science education.

General Terms
Measurement, Reliability.

Keywords
Assessment, Programming Education, Quality of Programs,
Teaching, Testing.

1. OBJECTIVES
A sound and thorough education in programming is one of the
key qualifications a student of computer science has to have and it
is further a mandatory requirement for most jobs in IT,
networking, etc. A clear and pleasing representation of the
concepts of a programming paradigm and its realisation in a
specific language as well as the opportunity for many practical
exercises are crucial for the success of a course [3].
Since more than 25 years, we have made a lot of experience in
running programming courses for different languages and
paradigms. The lectures always included assignments for
programming exercises, which were mostly handed in as
handwritten programs via e-mail or WWW, in former times even
as print-outs. These solutions were then manually inspected and
evaluated.
It is our educational objective to advice the students to write good
programs and not only to learn the syntax of the language.
Programming is a creative process, it can only be learned by
reading and, first of all, writing programs. In a more detailed
study in [1] five steps of learning are distinguished: following,
coding, understanding and integrating, problem solving, and
participating. In this terminology we emphasize the first 3 layers.
For all these steps we provide an immediate response. All sample
programs are executable and can be modified easily, hence, the
reading or following task is supported. For the coding step we do
not only rely on the error messages generated by a compiler, but
also enforce several coding and documenting conventions. Our
main focus, however is the provision of immediate, automatic
checks for the written program. Hence the students learn to
understand the meaning of the language constructs. The
instantaneous feedback increases the motivation quite
considerably.
Assignments of programming courses, hence, have to cover more
than the syntax of the used language. We want to see and assess
complete programs. Multiple choice questions are not appropriate,
since they turn to focus on very particular or peculiar properties
instead of supporting a good, solid programming style. That can
be achieved by formal or structural tests (see below). The proper
functionality of a given program may be assessed by checking its
output (e.g. as a free form text). Again care must be taken in
order to avoid problems with irrelevant details like whitespaces or
formatting.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
PPPJ 2006, August 30 – September 1, 2006, Mannheim, Germany.
Copyright 2006 ACM … $5.00.

More sophisticated tests are necessary to judge the quality and
functionality of uploaded programming exercises, such as the
style of writing and formatting and the correctness of results. In

208

traditional courses these properties should be - and were actually -
assessed by looking into the source code and documentation of
the student’s solution. Hence, the assessment of programming
assignments usually took a lot of human corrector time.
The automation of these reviews and quality assurance tests by
our tool is described in the following section.

2. AUTOMATIC ASSESSMENT OF JAVA
PROGRAMS
In recent years we have developed an online Java course
consisting of a tutorial that provides a high level of interaction
and an assessment tool that analyses the code and enables the
students to run a suite of predefined tests [2].

The hypertext tutorial can be navigated via a predefined learning
path or by freely following the hyperlinks. It contains a lot of
editable and executable examples and many exercises (from
multiple choice and free text to programming exercises) to check
the student’s progress.

The solutions for the programming exercises, small or medium-
sized programs, are uploaded to the assessment tool [4]. Thence,
various electronic evaluators perform:

• Formal tests
We check if the program compiles, conforms to coding and
naming conventions, and if appropriate comments are present
such as Javadoc comments.

• Structural tests
The recommended usage of structured statements or data
types is checked. Violation of these conventions may lead to
hidden mistakes. It is e.g. possible to enforce that the
statement following a loop or branch statement is a block or
that case clauses are terminated by a break or a return
statement.

• Specification tests
The specification requires that classes with predefined names
or methods with given signatures are expected. Classes have
to extend other classes or implement given interfaces. In a
teaching environment it may be interesting to prohibit the
usage of packages or classes.

• Functional tests
Comparison with a master solution or a set of JUnit tests are
performed.

2.1 Functional Tests
The common practice for functional tests is black box testing,
using e.g. the JUnit framework. These tests check the solution for
well known test cases and their expected results. Therefore these
results must be known in advance, what might be problematic, if
the way to compute the results is rather complex.
Whereas the development of black box tests is or at least should
be standard in a development team we also provide the
opportunity to compare the results of the student solution with a
master solution.
The comparator provides a set of classes and methods that mirrors
the structure of both solutions. The implementation then calls the
respective constructs from the student’s and the master’s
implementation, and compares the results. The comparison is

done on the real objects, taking into account the internal structure
of arrays and collections. Special methods for comparison can be
provided such as a possible equality relation for floating-point
numbers that only checks, is the student’s solution lies within a
given interval.
This simplifies the writing of tests tremendously, as (seemingly)
standard manipulation of objects can be used, and no explicit
checking needs to be done. Of course explicit checking is also
possible, in case the implicit is not sufficient.

2.2 Combining Tests
The tests can be configured and individually tuned for each
specific exercise. The combination of different tests makes sense
especially in a teaching environment where we are interested in
more than results. We also want to know or prescribe the manner
these results are produced. A method may have to be called
recursively, another must not use a while loop and a third method
has to advance an iterator of a data structure properly. The results
have to be the same. Such conditions or requirements can easily
be imposed by our tool by combining the appropriate (e.g. the
structural and functional) tests.
All tests may be mandatory, optional or even secret. A program is
only accepted, if it passes the required checks. Since the
automatic assessment is carried out immediately, the students do
not need to wait for feedback and can fix problems and upload
corrected versions immediately. The number of turn in tries
usually is not limited, there is only a general submission deadline
for an exercise.
Having optional tests is especially important in courses, where
programming is not the major objective. Here compliance to e.g.
formal tests is often not enforced in order to allow students to
concentrate on different matters. Often even some or all
functional tests are configured as optional, so that partially
incomplete solutions can be turned in, because rejecting those
completely would be too strict. Yet, those tests are usually
included, so that students remember, that their programs can still
be improved.

3. EXAMPLE
Let us illustrate the work of our tool by a simple exercise:
Write a class StringReverse containing a method reverse(String)
that reverses a string without using the method reverse() from the
class java.lang.StringBuffer.
In the following we mimic the upload and assessment of several
attempts to solve this exercise.

1.Attempt:
Uploaded program (shortened):

public static String reverse(String s) {
 return new StringBuffer(s).reverse().toString();
}
public static void main(String[] args) {
 for (int i=0; i<args.length; ++i) {
 System.out.println(reverse(args[i]));
 }
}

209

Results of online checks (shortened, translated from German):

Check 1: compilation: passed
Check 2: coding conventions: passed
Check 3: signature and hierarchy: failed
 Invocation test checks whether prohibited classes
 or methods are used; call of method reverse from
 the prohibited class java.lang.StringBuffer

2. Attempt:
Uploaded program (shortened):

public static String reverse(String s) {
 if (s == null) return null;
 if (s.length() <= 1) return s;
 char first = s.charAt(1);
 String rest = s.substring(1);
 return reverse(rest) + first;
}

Results of online checks (shortened, translated from German):

Check 1: compilation : passed
Check 2: coding conventions: passed
Check 3: signature and hierarchy: passed
Check 4: dynamic grey box test: failed
 StringReverse.reverse(java.lang.String)
 yields „llebe“ instead of „leben“

3. Attempt:
Uploaded program (shortened):

public static String reverse(String s) {
 if (s == null) return null;
 if (s.length() <= 1) return s;
 char first = s.charAt(0);
 String rest = s.substring(1);
 return reverse(rest) + first;
}

Results of online checks (shortened, translated from German):

Check 1: compilation: passed
Check 2: coding conventions: passed
Check 3: signature and hierarchy: passed
Check 4: dynamic grey box test: passed

4. TWO VERSIONS
Currently there are two versions (note that both are in German) of
the tool available. A server based variant (at http://
jop.informatik.uni-wuerzburg.de/), hosted by the University of
Würzburg on behalf of the Virtual University of Bavaria (vhb). A
demo version of the tutorial including assessment of exercises is
available at http://jop.informatik.uni-wuerzburg.de/tutorial/demo/.
The system is called Praktomat [6], it organizes the download of
exercises and upload of solutions, it controls submission date and
time, automatically runs the prepared checkers, manages the
manual reviews, and supports e-mail communication with the
students.

The second version is published as a book [5] and a CD, including
the newly developed evaluation tool Java Exercise Evaluation
Environment. JEEE allows editing, running and testing of
examples and exercises in a secure and interactive environment,
embedded in an easy to use graphical client. It integrates formal,
structural, specification and functional tests, and can therefore be
used as a replacement for the server based testing in offline use. It
can also be used to further support human correctors, as it allows
for an interactive evaluation of even modified student solutions.
Nevertheless the server based system is still required at least for
turn in and other management purposes.
Due to the high level of interactivity and automatic responses we
expect for the new version that the support of the human
correctors will be increased. Since it can be used without an
internet connection, the flexibility of the students will be
enlarged. This is particularly important in continuing education
that is one of the main goals of the second version. We are
convinced that the coaching time, i.e. the time of personal
presence of the trainer can be reduced by a factor of at least 2.
Individual schedules for each participant will be possible.

5. EVALUATION
The system has been used in various different lectures
(“Algorithms and Datastructures”, “Software Engineering”,
“Introduction to Computer Science for non CS Majors”,
“Advanced Training for Teachers”, …) or practical courses
(“Programming in Java” and “Software Development”) at the
University of Würzburg or for the Virtual University of Bavaria
(vhb). During these courses a total of more then 1000 subscribed
students handed in more then 3000 programs (solutions) with an
average size of about 1000 lines, which passed the required tests
for over 80 different problems. More then one hundred thousand
attempts were rejected because they did not fulfil all
requirements. The high number of attempts can be explained by
the fact that the students use the online assessment as convenient
test tool during program development.

Table 1. Application of Online Assessment

Category

N
um

be
r

of

C
ou

rs
es

T
ot

al

N
um

be
r

of

St
ud

en
ts

T
ot

al

N
um

be
r

of

A
tt

em
pt

s

T
ot

al

N
um

be
r

of

So
lu

tio
ns

Programming Lab 6 870 ~121 000 2 933

Online Course 4 150 ~13 000 442

Lectures for CS
Majors 3 ~350 ~7 300 -

Lectures for non
CS Majors 7 ~500 ~15 300 -

The tests and the immediate responses of the system helped the
students very much. Indeed, they made it possible to cope with
more advanced problems. Test configuration varied from only

210

enforcing the solutions to be compilable to requiring full
compliance with coding standards and an extensive functional test
suite.
The reliability of the tests is proven by the fact that less than 2%
of the programs that passed all tests were not accepted by a
human inspector. Despite the higher quality the rate of successful
participants has not changed in comparison with former courses.

Table 2. Programming lab breakdown
(note that different assessment policies were used)

Sp
rin

g
20

06

(P
ro

gr
am

m
in

g
la

b)

Fa
ll

20
05

/0
6

(P
ro

gr
am

m
in

g
la

b)

Sp
rin

g
20

05

(P
ro

gr
am

m
in

g
la

b)

Fa
ll

20
04

/0
5

(O
nl

in
e

co
ur

se
)

Enrolled
Students 145 32 195 74

Participating
Students

106
(73%)

24
(75%)

140
(72%)

25
(34%)

Successful
Students

55
(52%)

17
(71%)

57
(41%)

13
(52%)

Exercises 16 15 11 8

Attempts 15 970 11 511 33 185 3 261

Solutions 1015 301 990 105

Excellent
Solutions 41.2% 81.8% 64.5% 48.2%

Average
Solutions 53.4% 15.9% 32.8% 49.5%

Bad
Solutions 4.9% 0.5% 1.5% 1.4%

Manually
Rejected
Solutions

0.5% 1.8% 1.3% 0.9%

The readability and the quality of the accepted programs have
increased tremendously. The solution of more comprehensive and
more complicated exercises can be required. This goes hand in
hand with the reduction of the assessment time for a human
corrector by a factor of 3 to 4. A more thorough code inspection
has been made possible. Of course, this final inspection is
necessary, because we cannot proof correctness of programs
online.

6. FUTURE WORK & CONCLUSION
While other systems like Maven [7] or CruiseControl [8] can also
perform automatic program checking, they do not integrate well
in a teaching environment, where students usually do not work as
a team. They also lack the necessary resource constraint checks
along with review- and grading support.
We therefore consider our system as necessary for our purpose.
Because of architectural limitations in the current implementation
a complete rewrite of the system is underway that focuses on:

• Service Oriented Architecture
• Maintainability
• Internationalization
• Tight integration with IDE
• Faster feedback times
• Improved support for correctors and advisors
• Cooperative and competitive programming

Yet, even with the current system we have shown that automatic
assessment of programming exercises is possible. The supplied
structural and functional test can reach a level of confidence that
is high enough to reject false solutions. For the acceptance of
seemingly correct solutions the precision is very high (more than
98%). For two reasons, however, we did not stop the human
supervision, first it is an administrative legal problem, and second
many programs that passed the tests could still be optimized and
corresponding advice was given by the program inspectors.
Altogether for programming courses we have achieved a higher
quality of programs hand in hand with a more reliable and faster
assessment.

7. REFERENCES
[1] Bruce et al: Ways of Experiencing the Act of Learning to

Program: A Phenomenographic Study of Introductory
Programming Students at University. Journal of Information
Technology Education Volume 3, 2004.

[2] H. Eichelberger et al: Programmierausbildung Online.
DeLFI 2003, A.Bode,J.Desel,S.Rathmayer,M.Wessner (eds),
Lecture Notes in Informatics, GI, p.134-143.

[3] G. Fischer, J. Wolff v. Gudenberg: Java Online Pedagogy.
ECOOP'03 Workshop on Pedagogies and Tools for Learning
Object-Oriented Concepts.

[4] G. Fischer, J. Wolff v. Gudenberg: Online Assessment of
Programming Exercises. ECOOP 2004 Eighth Workshop on
Pedagogies and Tools for the Teaching and Learning of
Object Oriented Concepts.

[5] G. Fischer, J. Wolff von Gudenberg: Programmieren in Java
1.5. Springer-Verlag, Berlin, 2005.

[6] J. Krinke, M. Störzer, A. Zeller: Web-basierte
Programmierpraktika mit Praktomat. Softwaretechnik-
Trends 22:3, S.51-53, 2002.

[7] Maven - A software project management and comprehension
tool. http://maven.apache.org/

[8] CruiseControl - A framework for a continuous build process.
http://cruisecontrol.sourceforge.net/

211

212

Invited Workshop on

Java-based Distributed Systems and
Middleware

Mannheim, Germany. August 30, 2006

Edited by: Axel Korthaus

213

214

Message from the Workshop Organizer

Most of today’s complex software systems, e.g. enterprise, internet, peer-to-peer, grid, or mobile
applications, are distributed in nature. In distributed architectures, middleware software layers are
typically used to facilitate the separation of business logic and infrastructure components. Aspects
such as diverse platforms, remote communication over networks, concurrency, distribution, persis-
tence, and others make the development, deployment and monitoring of distributed systems rather
difficult.

Java technology has become one of the predominant platforms for such applications. Numerous
Java APIs exist to provide a secure, robust, and scalable environment for building, deploying, and
managing distributed applications while delivering a high level of code portability and reusability.
However, researchers and developers alike still contend with questions regarding how to build Java-
based distributed systems effectively and efficiently and how to improve existing Java technologies
for that purpose.

This workshop aims at providing a forum for the exchange of know-how on all aspects of the archi-
tecture, design, implementation, and management of Java-based distributed applications and mid-
dleware layers using the latest Java technologies and APIs.

The objectives of the workshop are to:

• provide a forum for the exchange of research ideas and results in the area of Java-based distrib-
uted systems and middleware;

• bring together experts from academia and industry;
• disseminate recent developments and stimulate exchange on future challenges;
• provide an overview of the current state-of-the-art and work-in-progress.

The workshop covers a wide range of different aspects of the general topic. In the first contribution,
Gitzel and Schwind address the problem of generating code for J2EE-based Web applications using
the OMEGA approach, a variant of Model-Driven Development that builds on the concepts pro-
moted by Executable UML. The second paper, authored by Barolli, focuses on the domain of Java-
based Peer-to-Peer Systems built on the JXTA technology. The proposed system, M3PS, is a multi-
platform P2P system with a pure P2P architecture. The last two contributions take a SOA- and busi-
ness process-centric view and describe experience with J2EE-based middleware gained in industrial
settings at the Deutsche Post AG (Jobst and Preissler) and the norisbank AG (Greiner, Düster,
Pouatcha, v. Ammon, Brandl, and Guschakowski). Business process management, business activity
monitoring, SOA monitoring and management, and (complex) event processing are the predominant
objects of investigation in those reports. Thus, the papers cover the dimensions of both research and
practical experience. I hope that the workshop will provide an interesting cross-section of the sub-
ject matter.

I would like to thank the authors of the workshop submissions for their valuable contributions and
interest in the workshop. Last but not least, I would like to thank Holger Bär (CAS Software AG),
Stefan Kuhlins (UAS Heilbronn, Germany), Karsten Meinders (Q-Labs GmbH), Mark-Oliver Reiser (TU
Berlin, Germany), and Jan Wiesenberger (FZI Karlsruhe, Germany), the members of the workshop’s
program committee, for their professional reviews and overall support.

Dr. Axel Korthaus
(Workshop Organizer)

University of Mannheim
Department of Information Systems

Schloss, L 5,5
68131 Mannheim (Germany)

Fax: +49 (621) 181-1643
Email: korthaus@uni-mannheim.de

215

Experiences With Hierarchy-Based Code Generation in the
J2EE Context

Ralf Gitzel
University of Mannheim

Schloss
68131 Mannheim, Germany

+49(0)621/181-1645

gitzel@wifo3.uni-mannheim.de

Michael Schwind
University of Mannheim

Schloss
68131 Mannheim, Germany

+49(0)621/181-1622

schwind@wifo3.uni-mannheim.de

ABSTRACT
OMEGA is a model-driven code generation approach based on
Executable UML enhanced with extension information provided
by metamodel hierarchies. It is domain-specific but can easily
incorporate new or related domains. In this experience report, we
describe the challenges encountered during the implementation of
a code-generation facility for the J2EE platform.

Categories and Subject Descriptors
D 2.2 [Design Tools and Techniques]: Computer-Aided
Software Engineering (CASE), State Diagrams – Model-Driven
Development, Domain-Specific Modeling, OMEGA

D 2.6 [Programming Environments]: Graphical Environments –
Eclipse Plugin

General Terms
Design

Keywords
Code Generation, Model-Driven Development, MDD, Executable
UML

1. INTRODUCTION
The goal of this paper is the description of our experience with
designing and implementing a Java code generation facility for the
OMEGA modeling approach. The emphasis of the paper is on the
description of the code generation process and the Java-related
challenges we have faced during the generator’s implementation.
Therefore, we provide a high-level simplified overview on the
hierarchical nature of the approach and provide pointers to more
detailed descriptions where appropriate. Our target audience are
practitioners and researchers interested in the generation of
runnable systems from class and state chart diagrams in a
translationist approach (cf. [1]).

The paper is structured as follows: after a brief introduction to the
basic principles of model-driven development (MDD), we
introduce the hierarchical OMEGA approach and present those of
its features that are relevant for the further discussion of the code
generation process and the Java-related issues that we have
experienced during the creation of the code generator. The
presentation of the OMEGA approach is followed by a description
of the steps necessary to transform a set of static and dynamic
OMEGA models into executable Java code. The paper concludes
with an overview of selected problems we had to solve during the

implementation of the code generator and a summary of the
experience we have gained in the process.

2. MODEL-DRIVEN DEVELOPMENT
Model-Driven Development (MDD), the successor to Computer
Aided Software Engineering (CASE), is a relatively new idea
aimed at putting abstract models at the center of the development
effort, making them the most important artifacts for the whole
software lifecycle. With the help of code generators applied to
these models, software engineering takes a step away from
programming. The focus on models is meant to increase the level
of abstraction involved in the creation and alteration of software
and to reduce a product’s vulnerability to change during its whole
lifecycle.

Several factors distinguish MDD from its predecessors. First of
all, MDD is based on standards such as XMI, MOF and UML,
reducing the effort required for infrastructural developments [2].
Also, without such standards, there is a risk when creating a
model or visual program, because a proprietary solution might not
be supported in the long run ([3], pg. 118, [4], and [2]).
Furthermore, MDD is deliberately kept free from ties to a specific
design methodology ([3], pg. 118). Like compilers, MDD tools
should be usable in many different contexts instead of
constraining its users to a specific, possibly sub-optimal design
method. Without these two factors, MDD would be little more
than a renaissance of past concepts.

The most well-known MDD outgrowth is the OMG’s Model-
Driven Architecture (MDA) [5]. However, there are also MDD
concepts such as Executable UML [6] that are largely unrelated to
MDA. For a good discussion of the essentials of MDD see [2],
[4], or – for a more critical view – [7].

3. THE OMEGA APPROACH
The MDD approach presented in this paper is based on the
Ontological Metamodel Extension for Generative Architectures
(OMEGA), a non-linear extension to the MOF metamodel (cf.
[8]). In principle, the OMEGA approach is similar to Executable

Figure 1 - OMEGA Principle

216

UML [6]; class and statechart diagrams are used to model a
system and serve as input for a code generator.

Figure 3 shows a simplified conceptual presentation of the
OMEGA code generation process. OMEGA extends Executable
UML by introducing a hierarchical extension mechanism that
holds more meaning than UML Stereotypes ([9], pp. 164-178)
and encodes domain-specific extensions but is in principle
“backwards compatible” to the Stereotype concept. Effectively,
each element in the model (static or dynamic) has one or more
metaelements, which convey additional information useful for
code generation. All information about the static models (class
diagrams) is used to generate the basic classes of the final
program and all information about the behavior, presented by
statecharts, is used to add the code responsible for the dynamic
aspects. It is not possible to give all the details of the approach in
this paper, especially the formal aspects of the metamodel, for
which we refer you to [10]. Instead, we provide a very usage-
oriented description of the theory and focus on the description of
the Java code generation issues in section 6.

3.1 General Structure
The hierarchical extension mechanism of OMEGA is realized as a
multi-level hierarchy, giving each element up to two additional
levels of abstraction using metaelements. Thus, each element is
categorized twice based both on technical and on business
aspects. In this paper’s examples, we will use Web Applications
as technical domain and Content Management Systems as
business domain.

The different static and dynamic metaelements are described in
sections 3.2 and 3.3. The full example hierarchy is described in
section 4.

3.2 Metaelements in Static Models
The most important metaelements in the static models are the
metaclasses and the metaattributes (see Figure 2). Typically, a
class (shown in dark grey) will have two metaclasses and each
attribute up to two metaattributes. The metaclass determines
which kinds of attributes a class may have by providing a list of
metaattributes. The class, which is instance of the metaclass may
only contain attributes that are instances of the metaattributes. The
metaattributes in turn limit the set of allowed attribute types,
visibilities, and multiciplicities for their attribute.

As an example, consider a class ScientificPaper as shown in
Figure 10. It is an instance of the business metaclass Article (in
the domain of content management systems as shown in Figure 6),
which in turn is an instance of the technical metaclass DataSet (of
the Web application domain, Figure 5).

Without any metadata, a code generation tool has no information
about the concept of ScientificPaper. However, using the
information provided by the metaclasses, the tool can combine
business-specific and technology-specific knowledge to generate
appropriate code. For example, as an instance of DataSet,
ScientificArticle requires a persistence mechanism and as an
instance of Article, it requires code for processes such as reviews
or editorial change. An attribute of ScientificPaper called Time
can be identified as the primary key of an entry if it is an instance
of the technical metaattribute Key and as describing the time when
the paper was submitted if known to be an instance of the
business metaattribute Timestamp.

The associations in the class diagram also have metaelements that
serve a similar purpose. An OMEGA association consists of two
ends, both of which contain information on the end’s allowed
class, multiplicity, navigability, and possibly aggregation type.
Similarly to attributes in a class the values allowed for an
association end are controlled by metaassociation ends. Again, the
introduction of metaelements allows a code generator to reason
about classes in the domain.

For example, the Class ScientificPaper introduced above might be
connected to a class LibraryView representing a Web page for
displaying the paper. Papers, the association defined for this
purpose has a multiplicity of 0..n and a navigability of true on the
ScientificPaper side, as defined by one of its association ends.
These values are from the set of allowed values provided by the
business metaassociation ShowsArticle, which allows
multiplicities from the set {0..n, 1..n} and a navigability from the
set {true}. These sets in turn are subsets of the allowed values
given by the technical metaassociation Data, which allows its leaf

Figure 2 - Static Metaelements

Figure 3 - Overview of the code generation process

Condition

True False

Condition

True False

DataEntry
A B

A

B B

SUBMIT

TRUE FALSE

Figure 4 - Substate Replacement Pattern [10]

217

instances to have a multiplicity from the set {0..n, 1..n, 1..1} and a
navigability from the set {true}.

The principal benefit of OMEGA for code generation is that a lot
of possible domain violations are automatically excluded. For
example, only a navigability of true makes sense, since the Web
page must be able to access the data it is supposed to display.

3.3 Metaelements in Dynamic Models
While the class diagram gives a good idea about the purpose of
the application, dynamic models in the form of statechart
diagrams are needed to adequately describe the application’s
behavior. As a subset of UML’s statechart diagrams, the OMEGA
dynamic diagrams allow the modeling of states, transitions, and
entry code in the states. Again, these diagrams are extended with
metaelements that describe typical domain-specific behavior.

Unlike static elements, states only have a single metaelement or
even none at all. However, this metaelement may be from either
the technical or the business domain. There are two different
kinds of metastates on both layers: implicit and explicit
metastates.

An implicit metastate does not require a definition of entry code.
Instead, its behavior is implicitly defined by the metamodel. For
example, a state called SubmitPaper, that is instance of the
implicit metastate CreateArticle, would not need to contain any
entry code, as the code generator understands the process of
creating a new article based on user input (by first providing a
HTML form with input fields for all attributes of type Content and
assigning the current system time to all attributes of type
Timestamp).

Explicit metastates, on the other hand, require their instances to
contain entry code. These instances are used as parts of a pattern
as shown on the left side of Figure 4, where Condition is an
instance of an implicit metastate and True and False are instances
of an explicit one. As shown on the right side, the states are fitted
into a more complex state machine that automatically handles the
condition and leads to the right code as defined in True or False,
respectively.

4. CONTENT MANAGEMENT AS
EXAMPLE DOMAIN
It has been stated already, that in this paper we use the technical
domain of Web applications and the business domain of Content
Management Systems as examples. We will briefly describe key
aspects of the metamodels, which will be used to illustrate not
only the code generation theory but also the challenges caused by
the use of J2EE as output target.

The business metamodel (here: Content Management) elements
are the direct metaelements of the elements in the application
models and they are in turn instances of the technical metamodels
(here: Web applications), influenced by their respective structures.
Thus, we will start our discussion with a description of key
elements from Figure 5 and Figure 7, which show the technical
layer. Next, it will be explained how these are used to model the
business domain, which is shown in Figure 6 and Figure 9. The
business metamodels are the ones directly used for the actual
models of the applications. Figure 10 and Figure 8 will serve as
an example model to further illustrate the use of the hierarchy. In
all diagrams, an element’s type1 (e.g., class or attribute) is shown
in guillemets. Its metaelement from the technical or business
domain2 is shown in brackets.

4.1 General Structure
Figure 5 can be roughly divided into three kinds of elements.
Those shown in light gray represent Web elements loosely based
concepts introduced by OOHDM’s Web modeling language (cf.
[12]). Each View added to another one via the Child association
will be part of that navigational context, creating the typical tree-
like navigational structure favored by most sites.

The classes in white represent persistent data, their potential
metaattributes are shown in dark gray. Instances of DataSet
contain any kind of data such as customer information or virtual

1 For those familiar with our work such as [10]: more precisely,

this should be called the linguistic type
2 More precisely: its ontological type

<<MetaClass>>
View

<<MetaClass>>
StaticView

<<MetaClass>>
DynamicView

ChildSub

<<MetaClass>>
DataSet

Data

Reference

<<MetaAttribute>>
DataField

<<MetaAttribute>>
Key

0..n

1..n

Field

1..n

1

KeyField

<<MetaClass>>
SessionInfo

0..n

0..n

SpecificInfo

<<MetaClass>>
SDataSet

<<MetaAttribute>>
SecurityRole

1..n

1
KeyField

<<MetaAttribute>>
Access

0..1

0..n
Access

<<MetaClass>>
SessionDataView

InfoAspect

Figure 5 - The Static Technical Metamodel

218

products. A DataSet consists of a Key, allowing its unique
identification, and several DataFields, describing its data. SData
is used with the security mechanism and is explained in section
4.3.

The same division can be seen in Figure 6, which is the instance
of Figure 5. We will use the example of the DataSet-instance
Article to better explain this relationship in the next section.

Figure 7 shows the dynamic technical metamodel for Web
applications. At the technical level there are only two kinds of
statecharts (shown in gray), one for views on data and a special
one to display and use session information. Both will be explained
in the next two sections.

Figure 9 shows an excerpt of the dynamic business metamodel.
Some of the statechart types here are extensions of the general
types defined in Figure 7, others are new.

4.2 Articles and Reviews

In order to better illustrate the J2EE code generation mechanism
in section 5, a small selection of elements will be discussed in
detail. For the purpose of illustration a closer look will be taken at
the Article metaclass, the associated ArticleView, and their
behavior.

The relevant metaclasses at the top of the static hierarchy (in the
upper right quarter of Figure 5) are DynamicView, DataSet,
DataField, and Key. The DynamicView represents a Web page or
part of a Web page that displays the content of a DataSet or
provides the user with means to alter its contents. The exact
behavior depends on the associated statechart. DynamicView
contains a single metaattribute called Access that is used for
security purposes, defining which roles may access this web page.

The DataSet contains exactly one Key (due to the multiplicity of
the association Key) and zero or more DataFields. The
metaattributes DataField and Key define which kinds of attributes
are allowed in instances of DataSet. A DataField allows the
inclusion of attributes that have an arbitrary multiplicity and data
type, the attribute allowed by Key must be of type String, Double,
Long, or int and have a multiplicity of 1..1.

For a DynamicView’s associated statechart, several metastates
exist at the technical level as shown in Figure 7. These include all
kinds of typical behavior expected from a view on a data element.
For example, SingleView shows an element with a specific key
value and MultiView shows a list of all instances of the DataSet
associated with the DynamicView. Creation presents a fill-out
form, which allows the user to enter the data for a new DataSet
instance.

The elements presented so far maintain a purely technical view on
the system under study. The business level now adds the new
perspective of the content management domain. Figure 6 contains
Article, along with its metaattributes such as Title and TimeStamp,
and ArticleView. All of these are instances of the afore-mentioned

Access (Access)[0..n] :String

StartPage
(StaticView)

Access (Access)[0..n] :String

GroupView
(DynamicView)

Access (Access)[0..n] :String

UserView
(SessionDataView)

ListsGroups (Child)

ListsUsers (Child) Access (Access)[0..n] :String

ArticleView
(DynamicView)

ListsArticles (Child)

Access (Access)[0..n] :String

InfoPage
(StaticView)ListsInfo (Child)

ChildInfo (Child)

Article
(DataSet)

ShowsArticle
(Data)

<<MetaAttribute>>
Content (DataField)

Contains (Field)

<<MetaAttribute>>
Title (DataField)

IsTitled (Field)

<<MetaAttribute>>
Timestamp (Key)

CreatedOn (KeyField)

User
(SDataSet)

<<MetaAttribute>>
Login (Key)

ID (KeyField)

<<MetaAttribute>>
PublicProperty

(DataField)

PublicP (Field)

<<MetaAttribute>>
PrivateProperty

(DataField)

PrivateP (Field)

ShowsUser
(SpecificInfo)

<<MetaAttribute>>
Role (SecurityRole)

Role (Field)

Group
(SDataSet)

PartOf
(Reference)

<<MetaAttribute>>
GroupID (Key)

GID
(Key-
Field)

GRole (Field)

SpecialView
(Child)ShowGroup (Data)

<<MetaClass>>
SessionInfo

(SessionInfo)

User
(InfoAspect)

Figure 6 - Static Business Metamodel

<<MetaStateChart>>
DynamicViewBehavior

Implicit = true

<<MetaState>>
SingleView

Implicit = true

<<MetaState>>
MultiView

Implicit = true

<<MetaState>>
Creation

<<ActionFragment>>
createSelectInput

<<ActionFragment>>
createTextInput

<<MetaStateChart>>
SessionDataViewBehavior

Implicit = true

<<MetaState>>
SingleActiveView <<ActionFragment>>

getActiveObject

…...

…...

Figure 7 - The Dynamic Technical Metamodel (Excerpt)

219

elements of the technical view, as indicated by the names in
brackets.

An Article is an instance of DataSet that adds additional
semantics, i.e. is the specification of a document in a content
management system that can be reviewed, accepted, or rejected.
Similarly, the metaattributes are semantically enriched.

For example, TimeStamp has all the limitations of its metaelement
Key but is further restricted, as only Long is allowed as data type.
The attribute value is interpreted to be the date of submission.
Thus, it is possible to automatically assign a key value during
creation as there are concise rules on how to determine it. Title is
an instance of Content that is limited to String values. When
creating code for the application, the generator is able to use an
instance of Title as the short form for the Article.

The behavior of an ArticleView and its Article is determined by all
elements of ArticleViewBehavior and ArticleBehavior in Figure 9.
The metastate CreateArticle for example is similar to Creation but
has more knowledge about the nature of the data entered. It will
automatically set the value for TimeStamp and can chose to
provide a smaller text field for the Title than for the Content.

Of special interest are the metastate ReviewArticle and its
“substates” Approved and NotApproved. Their instances form part
of a pattern (see Figure 4). ReviewArticle is an implicit metastate.
Depending on whether the Article is accepted or not, either the
state marked as Approved or the one called NotApproved will be
entered next. Both are explicit metastates, which means that they
contain user-defined action code. Thus, the modeler is able to
specify custom behavior for acceptance and rejection of submitted
papers.

Figure 10 shows the actual static model for a digital library. There
are two different ArticleViews called LibraryView and
AdminView. Both are connected to the same Article type called
ScientificPaper but have different statecharts and thus offer
different functionality. ScientificPaper has several attributes, all
of which conform to one of the metaattributes in Article.

The statechart associated with AdminView (see Figure 8, middle)
provides a good example of how OMEGA handles dynamic

aspects of a model. Each of the states has a metastate that is either
technical (such as SingleView) or business-oriented (such as
ShowUnapprovedArticles). Most of these states use implicit
metastates and therefore do not require action code, automatically
providing the functionality needed.

 If “Approve” is chosen, the statechart changes to the state
Approved and executes that state’s entry code3:
Long key =
 (Long)loadFromSession("CurrentArticleKey");
ScientificPaper paper =
 Papers.findByPrimaryKey(key);
paper.setApproved(new Boolean(true));
Papers.update(paper);

Otherwise, the state NotApproved is entered and the entry code is
executed:
Long key =
 (Long)loadFromSession("CurrentArticleKey");
Papers.remove(key);

As you can see, the policy regarding rejected papers is harsh,
leading to their immediate deletion. An interesting aspect is that a
number of standardized methods are provided such as
loadFromSession, which allows access to information stored by
the previous state.

4.3 Security and Session Information
The second example used to illustrate the code generation
mechanism is based on the classes representing security and
session information. Similarly to the previous section, the
technical metaelements are discussed first, followed by the
business and model levels.

The metaclass View in Figure 5 has a metattribute Access that
allows attributes of data type String and of multiplicity 0..n.
However, unlike the metaattributes encountered so far, it turns
into an attribute at the business level instead of at the actual model
level. This means, that it will be an attribute slot to be filled with
values at the actual model level.

3 At the current state, the action language used is a subset of Java.

Figure 8 - Actual State Charts

220

Therefore, in Figure 6, all views have an Access attribute, which is
used to store, which roles are allowed to access that particular
view. In Figure 10, LibraryView and AdminView make use of the
Access attribute to provide access information. For example,
LibraryView may only be accessed by those who have either the
role Subscriber or the role Admin, because only these roles are
specified as string values in the Access attribute.

The role of a user is stored in the session information. Instances of
the metaelement SessionInfo represent an access point to all
elements containing session data. For this purpose, at the
technical level, a reference to zero or more DataSets is allowed. If
any of these is an SDataSet, the SecurityRoles associated with it
are available to the user whose SessionInfo contains the SDataSet.

In our example model (Figure 10), the only SDataSet associated
with the SessionInfo instance is User. It contains two attributes
that are instance of Role: IsSubscriber and IsAdmin. If the value
of either of these is true, that user belongs to the respective group.
As you can see, a subscriber would be able to access the
LibraryView but not the AdminView.

5. CODE GENERATION PROCESS
So far we have described the basic principles of the OMEGA
approach and the metamodel hierarchies used to illustrate it. In
this section we will provide an overview of the architecture of the
code generator.

The code generator backend is intended to perform a
transformation of a set of static and dynamic OMEGA models into
the resources constituting the modeled system, such as source
code files and deployment descriptors. In comparison with open
source tools for model-to-code transformation, such as
OpenArchitectureWare4 or AndroMDA5, the OMEGA generator
is able to leverage the advantages provided by the hierarchical
nature of the underlying metamodels. For our implementation we
have chosen a template-based model-to-code approach (cf. [13]).
The generator uses source code templates that contain the target
text and code to access the input models, therefore the templates
closely resemble the target source code. Errors in the output of the
generator can easily be traced back and be fixed at the template
level. Additionally, due to the similarity between source code
templates and the output in the target language, templates can be

4 http://www.openarchitectureware.org
5 http://www.andromda.org

derived from a reference implementation, a prototypical example
representing all relevant architectural aspects of a target system
(cf. [13]).

The template engine that has been used in the implementation,
Apache Velocity, provides an untyped, interpreted language that
contains basic control structures and the means to access Java
objects but lacks advanced language features such as exception
handling.

An overview of the steps of the code generation process is shown
in Figure 3. In the OMEGA editor plugin, UML-compatible input
models are designed by the modeler (see upper left corner). These
class and statechart diagrams are passed to the code generation
plugin.

As a first step, these models are transformed into the generator
model, which has a format more suited to a template-based code
generator (as shown in the upper right corner). Problematic
aspects of the source model include the non-existence of optional

Figure 9 - The Dynamic Business Metamodel (Excerpt)

Figure 10 - Actual Static Model

221

associations, which may result in references containing a null
value, and the fact that not all information is aggregated and
organized in a way suitable for the generation process.

After the initial processing of the models has been performed,
domain-specific transformations of the static and dynamic models
are carried out, leading to a modified generator model M’. In the
case of the static models this means that additional domain-
specific attributes are woven into the model. The transformation is
controlled via an XML definition of the attributes that are
supposed to be added to classes of a particular metaclass. For
example, all classes of type Article receive a new attribute called
Approved, which is used for the review process.

Additionally, in this processing step patterns are resolved, i.e., the
state-substate pattern in the dynamic model (see section 3.3). The
transformations required for this step are also defined in XML,
and offer options such as the introduction of new states to a
dynamic model and the rerouting of transitions to incorporate
these new states.

The final step in the generation process is the actual model-to-
code transformation performed by the Velocity template engine
(represented by the last arrow in Figure 3). For each node in the
static models a set of templates is invoked according to an XML
mapping associating metaclass names with output templates. A
reference to this node is then passed to each of the invoked
templates, which query the node object for its relevant properties
such as name, attributes and associations with other nodes. For
example, information about attributes provides the basis for
attributes and/or getter and setter methods in a Java source file.

It is important to note that each input node from M’ can result in
any number of output resources, e.g., a node with the metaclass
DataSet can be transformed into an EJB bean class and the
various interfaces required. Conversely, a single output resource
can also be generated from the extent of all classes instantiating
the same metaclass, i.e., the XML deployment descriptor in an
EJB environment.

Static nodes that are associated with dynamic models are subject
to further processing. The generator applies the state pattern (cf.
[14], [15]) to create the implementation of a state machine for
every dynamic model.

All these artifacts are written to a prepared skeleton eclipse
project that contains required libraries and a build script that
creates a deployable, ready-to-run binary file of the modeled
system.

While the process described above uses established code
generation techniques, it allows for accessing the metainformation
provided by the hierarchy. For example, domain-specific
attributes and methods can be woven into classes based on their
metaclasses. The separation of templates for the different layers
(i.e., technical and business) has been implemented using basic
model-to-model transformations and facilitates the rapid creation
of additional business domain templates.

6. JAVA-SPECIFIC CODE GENERATION
PROBLEMS
In the previous section we have provided an overview of the code
generation process. In this section we will discuss some selected
issues we have experienced during the implementation and
evaluation of the code generation plugin.

For the purpose of evaluation we have created several examples
targeted at J2EE/EJB2.x compliant application servers. This
choice was made due to the multitude of services provided by a
J2EE environment, such as persistence, transaction management,
declarative, role-based security, etc. that were needed for the
realization of the examples.

J2EE as a target platform has generally proven beneficial;
however, some inherent characteristics of the platform
complicated the development of the source code templates. The
amount of classes and interfaces required to implement an EJB
entity bean for example has been somewhat hindering during the
initial creation of the source code templates, due to the fact that
even simple changes required adapting various templates. We
expect this situation to improve by adopting the Java Persistence
API that simplifies the development of persistence-capable,
transaction-safe classes.

Initial proof-of-concept implementations of our examples were
closely tied to the EJB technology, because they were focused on
demonstrating the applicability of our own Web framework
COBANA rather than on efficient implementation. The basis for
using alternative technologies, such as Hibernate, was created by
refactoring our reference implementation, separating EJB-specific
from other system aspects by introducing patterns such as
Business Delegate or Data Transfer Object (cf. [16]).

In section 3.3 the notion of the explicit metastate was introduced
as a state containing entry code supplied by the modeler for
situations where none of the implicit metastates contained in the
hierarchy is applicable. As the modeler is relatively free as to what
kind of code to insert, the problem of gracefully handling
potential exceptions arises. Due to the lack of a Java metamodel in
the Velocity template engine, it is not possible to wrap critical
parts of the code with the required specific exception handling
code. The only way to ensure the correctness of the generated
code is to wrap all modeler-defined entry code passages with
generic exception handling. This situation was improved by the
definition of technology-independent but meaningful exception
types, i.e. for exceptions occurring during data access.

For the access control example described in section 4.3 the use of
declarative servlet security mechanisms was planned. In order to
be able to specify access restrictions for URL patterns, the passing
of View names (cf. section 4.1) via query strings was replaced by
a mechanism based on URL rewriting, a mechanism that enables a
Web server to programmatically manipulate the URLs of
incoming requests. In our case it allows for the representation of
query strings in an URL-like fashion, e.g.,
http://localhost/Controller?View=Library can be expressed as
http://localhost/Controller/Library. As URL patterns in the
servlet specification are not supposed to be specified via regular
expressions, all possible combinations of Views and ChildViews
have to be declared in the security configuration.

On a more general level, the lack of an equivalent for UML-style
bidirectional associations in the Java programming language
requires representation as two unidirectional references causing
some overhead and loss of semantics.

222

7. CONCLUSIONS
In this paper we have presented the OMEGA approach for the
model-driven development of J2EE applications, which builds on
the concepts promoted by Executable UML, i.e. the use of class
and state chart diagrams for modeling executable systems. We
have presented the experience we’ve gained from implementing a
code generation facility using Java. Using examples from the
domain of content management systems we have provided an
overview on the code generation process. We have also presented
an overview of some of the difficulties we have experienced in the
prototypical implementation of the code generator and the
solutions we have chosen to overcome these difficulties.

Our personal experience with the code generator has led to several
interesting insights. First, it is very helpful to use a reference
implementation as a basis for template design, which is
subsequently parameterized to source code templates.

VTL has proven to be a good choice due to its simple syntax.
While there are more powerful scripting languages, readability of
the templates is absolutely essential and for this among other
reasons, we have abandoned more complex approaches such as
XSLT or code injectors such as InjectJ8.

In the future we are planning to provide source code templates for
additional target platforms, such as EJB3 or Hibernate and
broaden the basis for a thorough evaluation of the approach by
modeling and generating more examples. We are currently
working on the introduction of a component specification facility
that provides the means to specify and generate black box
components.

8. ACKNOWLEDGMENTS
This work was supported by a grant from the Landesstiftung
Baden-Wuerttemberg foundation to Michael Schwind.

9. REFERENCES
1. Haywood, D.: MDA: Nice Idea, Shame Abou the.: The

ServerSide (2005)
2. Selic, B.: The Pragmatics of Model-Driven

Development. IEEE Software 20 (2003) 19-25
3. Greenfield, J., Short, K., Cook, S., and Kent, S.:

Software Factories – Assembling Applications with
Patterns, Models, Frameworks, and Tools (2004)

4. Booch, G., Brown, A., Iyengar, S., and Selic, B.: An
MDA Manifesto. MDA Journal (2004)

5. Miller, J.a.M., J.: MDA Guide Version 1.0.1, OMG
Document Number: omg/2003-06-01. (2003)

6. Mellor, S., Balcer, M.: Executable UML – A
Foundation for Model-Driven Architecture. Addison-
Wesley, Hoboken (2002)

7. Haywood, D.: MDA: Nice Idea, Shame about the….
The Server Side (2004)

8. Gitzel, R., Hildenbrandt, T.: A Taxonomy of
Metamodel Hierachies - Working Paper 1-05.
http://www.wifo.uni-mannheim.de/
~gitzel/publications/taxonomy.pdf. (2005)

9. UML 2.0 Infrastructure Specification, ptc/03-09-15.
(2003)

8 http://injectj.fzi.de

10. Gitzel, R.: Model-Driven Software Development Using
a Metamodel-Based Extension Mechanism for UML,
Vol. 28. Peter Lang Verlag, Frankfurt a.M. (2006)

11. Gitzel, R., Merz, M.: How a Relaxation of the Strictness
Definition Can Benefit MDD Approaches With Meta
Model Hierarchies. 8th World Multi-Conference on
Systemics, Cybernetics and Informatics (SCI2004). SCI,
Orlando, USA (2004)

12. Schwabe, D., Rossi, G.: An Object-Oriented Approach
to Web-based Application Design. Theory and Practice
of Object Systems 4 (1998)

13. Czarnecki, K., Helsen, S.: Classification of Model
Transformation Approaches. 2nd OOPSLA Workshop
on Generative Techniques in the Context of Model-
Driven Architecture, Anaheim, CA (2003)

14. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design
Patterns. Elements of Reusable Object-Oriented
Software. Addison-Wesley (1995)

15. Niaz, I.A., Tanaka, J.: Code Generation From UML
Statecharts. 7th IASTED International Conference on
Software Engineering and Applications (SEA 2003),
Marina Del Rey, USA (2003)

16. Alur, D., Malks, D., Crupi, J.: Core J2EE Patterns. Best
Practices and Design. Sun Microsystems, Inc.,
Mountain View, CA., USA (2003)

223

M3PS: A Multi-Platform P2P System Based on JXTA and
Java

Leonard Barolli
Department of Information and Communication Engineering

Fukuoka Institute of Technology (FIT)
3-30-1 Wajiro-Higashi, Higashi-Ku, Fukuoka 811-0295, Japan

Tel.: +81-92-606-4970

E-mail: barolli@fit.ac.jp

ABSTRACT
Peer-to-Peer computing offers many attractive features, such as
collaboration, self-organization, load balancing, availability, fault
tolerance and anonymity. In our previous work, we implemented a
synchronous P2P collaboration platform called TOMSCOP.
However, the TOMSCOP was implemented only in Windows XP
OS. In this work, we extend our previous work and present a
multi-platform Peer-to-Peer system. The proposed system
operates very smoothly in UNIX Solaris 9 OS, LINUX Suse 9.1
OS, Mac OSX, and Windows XP. In this paper, we present the
design of proposed system and four application tools: info, joint
draw pad, shared web browser and subaru avatar.

Categories and Subject Descriptors
H.5.3 [Information Interfaces and Presentation]: Group and
Organization of Interfaces ñ collaborative computing, computer-
supported cooperative work, synchronous interaction, web-based
interaction.

General Terms
Management, Design, Experimentation, Languages.

Keywords
JXTA, Java, Java Applications, P2P Systems, Multi-platform.

1. INTRODUCTION
Peer-to-Peer (P2P) computing offers many attractive features,
such as collaboration, self-organization, load balancing,
availability, fault tolerance and anonymity. Collaborative
computing, usually known as groupware or Computer Supported
Collaborative Work (CSCW), refers to technologies and systems
that support a group of people engaged in a common task or goal
and provide an interface to a shared environment. Grudin [1]
defined a time/location matrix to categorize collaborative systems
as four types, among which one called distributed synchronous
collaborative system can support a group of people in different
locations to conduct a common task or activity at the same time.

The fundamental element in a synchronous collaborative system is
the shared application, where multi-users can synchronously view
and manipulate with the mode of what you see is what I see
(WYSIWIS) [2].

The shared applications fall into two categories, screen-copy
system and event-aware system [3]. The former allows many
existing single-user applications to be used by multi-users in
cooperative fashion via capturing an application window and
sending it as image data similar as a video camera. Typical
collaboration-transparent systems are Sun ShowMe, Microsoft
NetMeeting, and Intel ProShare.

There are generally three types of connection and message passing
topologies between multiple usersí computers/devices used for
their collaborations. One is called a centralized topology in which
there is no direct connection between computers and all messages
are mediated by an inter-mediator generally known as a group
server. VCR [4], Habanero [5], Worlds [6], TANGO [7],
TeamWave [8] adopted this topology. Such connection topology
follows the ordinary client/server model. In these systems, the
server is the system bottleneck, thus the whole system may be
down when the server has some troubles. The P2P model is used
for hybrid topology and decentralized topology [9,10]. In hybrid
topology a peer needs to connect to both a group server and other
peers. In decentralized topology every peer is able to directly
connect to all other peers and messages are sent without
intermediation of a server. Groove [11] and Endeavorsí Magi [12]
have adopted the hybrid topology. Even they overcome some
drawbacks of client/server-based systems, a peer has yet to go to
the server and strictly follows the procedures defined by a
particular system.

In our previous works [13, 14, 15], we proposed and built some
P2P collaborative systems. TOMSCOP system [13] is based on
JXTA framework that consists of the virtual JXTA network and
basic peer group services [16, 17]. JXTA is a general framework
able to support a broad range of P2P computing such as
distributed computation, storage, agent, content distribution, and
system test. On the JXTA open source web site [18] there are
many JXTA-based projects. On the top of JXTA framework,
TOMSCOP provides four types of services: synchronous message
transportation, peer room administration, peer communication
support and application space management for development of
shared applications and creation of collaborative communities.
However, the TOMSCOP was implemented only in Windows XP.

In this paper, we extend our previous works and present the
implementation of a Multi-Platform P2P System (M3PS). In order

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
PPPJ 2006 , August 30 ñ September 1, 2006, Mannheim, Germany.
Copyright 2004 ACM Ö $5.00.

224

that M3PS operates in multiplatform, we designed and
implemented three new functions: look and feel, mouse button
and room information. The proposed system operates very
smoothly in UNIX Solaris 9 OS, LINUX Suse 9.1 OS, Mac OSX,
and Windows XP OS. We present four application tools: INFO,
Join Draw Pad (JDP), Shared Web Browser (SWB) and Subaru
Avatar (SA). The M3PS system can be used also for other
applications [19].

This paper is organized as follows. In Section 2, we give a brief
description of TOMSCOP. In Section 3, we introduce our
proposed M3PS system. In Section 4, we present some
application tools of M3PS. Finally, we conclude the paper in
Section 5.

2. TOMSCOP OVERVIEW
The TOMSCOP is a event-aware system but with a complete
different connection topology and other special features. To
provide necessary services, the TOMSCOP platform is developed
as a bridge between JXTA framework, shared applications and
collaborative communities as shown in Fig. 1.

TOMSCOP is designed using the metaphor of center-room-
facility. Users or peers gather in a virtual community center to
meet each other, enter some rooms corresponding to specific
groups of interests, and work together using available facilities,
i.e., shared applications. As shown in Fig. 2, the platform provides
four kinds of services:

 Synchronous Message Transportation to transport all
messages between peers in the center and inside rooms
based on the JXTA pipe service.

 PeerRoom Administration to administrate peers and rooms
in the center, and promptly shows the core awareness
information of peers and rooms via using presence control
and identity control.

 PeerCommunication Support to provide a set of
communication channels for different media. The JMF (Java
Media Framework) technology is used for audio and video
communications.

 ApplicationSpace Management to manage usages of
virtual center space and common shared applications in
order to maintain good harmonization in collaboration
among multi-users in a virtual room but physically in
different places.

Physical Networks
Internet, Intranet, Wireless Net

JXTA Framework
JXTA Virtual Network and Basic PeerGroup Services

TOMSCOP Platform
Synchronous PeerCollaboration Services

Collaborative
Communities

Shared
Applications

Other JXTA
Applications

Distributed
Computation,

Storage, Agent, etc.

Figure 1. TOMSCOP platform.

Synchronous Message Transportation (SMT)

Collaborative Community Center

PeerCommunication
Support

ApplicationSpace
Management

Space
Manager

Application
Manager

Medium Processor

Text Audio Video

Shared
Applications

PeerRoom
Administration

Presence
Control

Security
Control

Awareness Monitor

Indentity
Control

Figure 2. TOMSCOP architecture.

3. PROPOSED SYSTEM
We have implemented M3PS in our lab in four OS. The M3PS
environment includes two Workstations Sun Blade 1500 (OS:
Solaris 9; CPU: 1.062 GHz UltraSPARC IIIi, HD: 80GB,
Memory: 512 MB), three note book PCs (OS: Windows XP;
CPU: Pentium M 1.5GHz, HD: 40GB; Memory: 768 MB), one
note book PowerBook G4 PC (OS: MacOSX Ver.10.3.4; CPU:
PowerPC G4 867 MHz; HD: 40GB; Memory: 256 MB) and two
Desktop computers (OS: SUSE Linux 9.1; CPU: Pentium 4
2.60GHz; HD: 80GB; Memory: 1GB).

For the system implementation, we used Java language. The P2P
was implemented based on JXTA framework. We changed the
following three functions (shown in Fig. 3) in order to make the
system operates in multiplatform: Look and Feel function; Mouse
Button function; and Room Information function.

 Look and Feel Function

In TOMSCOP, this function was implemented only for Windows
XP OS, we changed it to adapt for different systems in dynamic
way.

 Mouse Button Function

In TOMSCOP, this function was implemented for double button,
because it was for Windows XP OS. In M3PS, we changed in
single button for Mac OS and triple button for UNIX and Linux.
In order to operate in multiplatform the mouse button function
should have single and multiple modes.

 Room Information Function

In TOMSCOP, the room information and community were the
same. In M3PS, we separated the room information and
community.

Functions Systems TOMSCOP M3PS

Look & Feel Windows XP Multiplatform

Mouse Button > Single ≥Single

Room and Community Single Frame Different Frames

Figure 3. M3PS improved functions.

225

In following, we will explain in detail the architecture of the
proposed M3PS. The M3PS provides four services: Synchronous
Message Transportation (SMT); PeerRoom Administration
(PRA); PeerCommunication Support (PCS) and ApplicationSpace
Management (ASM).

3.1 Synchronous Message Transportation
The SMT of M3PS consists of two modules: a message sender
and a message receiver, as shown in Fig. 4. The message sender
includes three main functional components: a data collector, a
message encoder and a message pusher. The message receiver
includes three correspondent components, a data distributor, a
message decoder and a message listener. The pipes are
abstractions of JXTA data transmission route on the JXTA virtual
network. There are three basic pipes: insecure unicast, secure
unicast and propagate types. The propagate pipe is used in SMT
for multicasting. In addition to the pipes used for group
communication inside rooms, a peer is able to exchange messages
with any individual peer and all peers in a collaborative
community, which is a collection of peers and rooms. Therefore
SMT provides three categorized transmission modes:

 Room mode: for group message multicasting among shared
applications in a room;

 Community mode: for message broadcasting to all peers in a
community;

 One-to-One mode: for one-to-one private message exchange
between any two peers in a community.

Thus, we have built three kinds of propagate pipes corresponding
to these modes. When receiving attribute data and/or primitive
data from the service modules or shared applications, the
messages will be formed based on the format shown in Fig. 5. The
Coding ID (CID) is used to extract the primitive data as well as
other data from a message. The Application ID (AID) is used for
uniquely identifying an application for correct data dispatch. The
Object ID (OID) and the source peer name elements are optional
for being used by shared application developers according to their
actual requirements.
The following four methods to send primitive data to all peers in a
room have been provided.

Type A: sendMsg(dest., source, CID, AID, OID)
ñ to send attribute data related to an application

Type B: sendMsg(dest., source, CID, AID, OID, string[])
ñ to send a string array used for chat text

Type C: sendMsg(dest., source, CID, AID, OID, integer[])
ñ to send integer array like mouse coordinates

Type D: sendMsg(dest., source, CID, AID, OID, byte[])
ñ to send binary file, audio and video data

3.2 PeerRoom Administration
Due to no server in our system, each peer is able to administrate
groups. This is a distinctive characteristic of M3PS compared
with others centralized and hybrid collaborative systems. In our
system, such work is done by the services of PRA, which is
responsible for room creation, publication and searching under
supported by the JXTA. Any room created by a peer must have a
unique name and ID number, and its associated group
advertisement should be generated and published on the JXTA
network so that other peers can find the room by searching the
room advertisement.

M essage Encoder

PeersPeers

Pipe_out(M)

Sender Receiver

Pipe_in(M)

M (M essage)M

E (Elem ents)E

Data D istributorData Collector

Message Decoder

Message ListenerM essage Pusher

D D (Data)

SMT

Shared
Applications

ApplicationSpace
Management

PeerComm unication
Support

PeerRoom
Administration

Figure 4. Message sender and receiver.

Field Name

Destination

Source

Coding ID (CID)

Application ID (AID)

Object ID (OID)

Element

Transmission
Mode

Room Community One-to-One

Room/Peer

Peer Peer

" Community " Peer

Peer

Integer

Integer

IntegerInteger Integer

String, integer, byte String, integer, byte String, integer, byte

Value

Integer Integer

Figure 5. Message formats.

Figure 6. Presence control.

It is very important and necessary to provide prompt and
correction awareness information of peers and rooms as well as
their dynamic changes. This function is provided by the awareness
monitor, which automatically and periodically collects status
information of peers and rooms in the community using presence
control and identity control. The presence control shows the
peerís presence information. As mentioned above, it is difficult to
administrate peersí presence in real-time only using
advertisements provided by JXTA core service. To provide
correct presence information, the ping-pong detection approach is
used to manage peersí presence in real-time as shown in Fig. 6.

226

Peersí normal login and logout messages are sent using the
method of Type-A sendMsg(). In the same way a community
ping-pong message is sent using community message mode. A
peer who logins to or logouts from the JXTA network sends a
message to all other peers to inform its existence or absence. In
addition, the peer sends a ping message to all other peers in the
same room and community every 2 minutes. If a peer does not
reply for several requests, it will be automatically excluded from
the community/room.

A peer in a room can be assigned some roles such as a group
leader or member for synchronous collaborative work. Peersí
roles are managed by the identity control as follows.

 Chair to control the identities of other peers and also play a
coordinative role in a room.

 Player to be able to control shared space and manipulate
shared applications, such as a game player or meeting
presenter in the real world.

 Observer to only watch the shared space and applications
but have no right to manipulate the space and applications.

3.3 PeerCommunication Support
The PCS provides built-in communication tools to collaborative
processes for administrating rooms and using shared applications.
The SMT offers three transmission service modes: community,
room and one-to-one to send a message to all peers, room peers,
and an individual peer, respectively. Each mode uses its own pipe
corresponding to a related pipe advertisement.

3.4 ApplicationSpace Management
ASM consists of a space manager to control the shared space, and
an application manager to control operations on shared
applications. Both managers are related to peersí identities (chair,
player and observer) in a room as shown in Fig. 7. A presenter
peer in a room has initiative to operate a virtual space or shared
applications, but others can only see what he/she has done. A
chair is able to change other peersí identities.

4. M3PS APPLICATION TOOLS
In this section, we present four application tools of M3PS: INFO,
JDP, SWB and SA.

4.1 INFO
The INFO application tool gives the information of the peers in
M3PS community. So, if a peer is logged in the system, the other
peers can get the information and communicate together. In the
top of main window of INFO tool are shown also other tools such
as JDP, SWB and SA. Therefore, if a peer wants to shift to other
applications, he can use this panel to change his mode to other
tools. In the center of INFO window are shown: Room Name,
Room Description, Room ID, Chair Peer and Presentation Peer.
On the top in left side frame are shown: Peer Name, Room Name,
Collaboration Mode and Peer Identity. In the middle frame (left
side) is shown Conference Room and in the bottom frame
Community information. The display captures of INFO for Linux,
and UNIX are shown in Fig.8 and Fig. 9, respectively.

TOMSCOP
Space

Shared
Applications

Application
Manager

Space
Manager

SM
T

C
ha

ir
Pe

er

E: Event

D: Data

M: Message

D

D

E

E

Id
en

tit
y

C
on

tro
l

M
TOMSCOP

Space

Shared
Applications

Application
Manager

Space
Manager

SM
T

D

D

E

E

TOMSCOP
Space

Shared
Applications

Application
Manager

Space
Manager

SM
T

D

D

E

E

O
bs

er
ve

r P
ee

r
Pr

es
en

te
r P

ee
r

Figure 7. ApplicationSpace management.

Figure 8. INFO in Linux.

Figure 9. INFO in UNIX.

227

Figure 10. JDP in Windows XP.

Figure 11. JDP in Mac.

Figure 12. SWB in Windows XP.

Figure 13. SWB in UNIX.

Figure 14. SA in Linux.

Figure 15. SA in Mac.

228

4.2 Joint Draw Pad
The JDP is a tool for making joint figures or designs. The users
may be in different locations but they can draw or make a design
in the same pad. For the sake of space, we show in Fig. 10 and Fig.
11 the display for Windows XP and Mac. In fact, in Fig. 10
(Windows XP) is drawn the circle and this circle is shown at the
same time in other environments. The heart is drawn in Linux, the
rectangular shape is drawn in Mac, and the triangular shape is
drawn in UNIX. This tool also can be used for collaboration
research from different sites.

4.3 Shared Web Browser
The SWB application tool is shown in Fig. 12 and Fig. 13 for
Windows XP and UNIX, respectively. Using this application, the
peers in the same room can see the same URL. In these figures is
shown the homepage of Fukuoka Institute of Technology (FIT),
Japan. This tool is very useful application and can be used for
collaboration research. For example if one peer finds an
interesting homepage with good papers and research work, he can
send this information to other peers. Thus, they can work
efficiently together.

4.4 Subaru Avatar
Another application tool is SA. For using this tool, the peer
prepares a room, then changes from Mode to Discussion. Next, he
pushes the Login button. Then, when the user moves the mouse in
the direction he wants, the avatar follows the mouse movement. In
this application, there is a text field. If the peer writes something
in the text field, the information will be shown in the peerís avatar.
In this way, the peers can communicate and exchange the
information with each other. The capture display for Linux and
Mac are shown in Fig. 14 and Fig. 15, respectively. The SA can
be used as a chat application between peers for communication in
real time.

5. CONCLUSIONS
In this paper, we improved our previous platform TOMSCOP and
implemented a multiplatform P2P system called M3PS. Different
from many other similar platforms, it has adopted a pure P2P
architecture and each peer has to administrate collaborative rooms.
To demonstrate the platform effectiveness, we showed four
application tools: INFO, JDP, SWB and SA. By many
experiments, we found that proposed M3PS operates smoothly in
the four environments.
 As the future work, we will deal with following issues:
 secure room administration in P2P communication;
 audio and video communications;
 efficient pipe advertisement creation to avoid creating

duplicated pipe advertisement for a room;
 development of new shared applications.

6. REFERENCES
[1] Grudin, B. Computer-Supported Cooperative Work, IEEE

Computer, 1994.
[2] Steinmetz, R., and Nahrsted, K. Multimedia: Computing,

Communications and Applications. Prentice Hall PTR,
Upper Saddle River, NJ 07458, 1995.

[3] Begole, J.B. Usability Problems and Causes in Conventional
Application-Sharing Systems. Available on line at http://
simon.cs.vt.edu/begolej/Papers/, 1999.

[4] Ma, J., Huang, R., and Nakatani, R. Towards a natural
internet-based collaborative environment with support of
object physical and social characteristics. International
Journal of Software Engineering and Knowledge
Engineering, World Scientific, 11, 2 (2001), 37-53.

[5] Chabert, A., et. al. Java object-sharing in Habanero.
Communications of ACM, 41, 6 (1998), 69-76.

[6] Mansfield, T., et al. Evolving orbit: a progress report on
building locales. In Proc. of the Group'97 International
Conference. ACM Press, 1997, 241-250.

[7] Beca, L., et al. TANGO - a collaborative environment for
the World-Wide Web. Available on line at http://trurl.npac.
syr.edu/tango/.

[8] Greenberg, S., and Roseman, M. Using a room metaphor to
ease transitions in groupware. Technical Report 98/611/02,
Department of Computer Science, University of Calgary,
Calgary, Alberta, Canada, January 1998.

[9] Barkai, D. Peer-to-peer computing: technologies for sharing
and collaborating on the net. Intel Press, 2001.

[10] Leuf, B. Peer-to-Peer: Collaboration and Sharing over the
Internet. Addison-Wesley, 2002.

[11] Edwards, J. Peer-to-Peer Programming on Groove.
Addison-Wesley, 2002.

[12] Magi, Available on line at http://www.endeavors.com/.
[13] Kawashima, T., Ma, J. TOMSCOP-A synchronous P2P

collaboration platform over JXTA. In Proc. of IEEE
ICDCS-2004/MNSA-2004, 2004, 85-90.

[14] Ma, J., Barolli, L., Shizuka, M., and Huang, R. A pure P2P
synchronous collaborative system. Journal of Applied System
Studies (JASS), 5, 2 (July 2004), 133-145.

[15] Takata, K., Ma, J. GRAM - a P2P system of group revision
assistance management. In Proc of IEEE AINA-2004,
Fukuoka, Japan, March 2004, 587-592.

[16] Project JXTA, Available on line at http://www.jxta.org/.
[17] Gradecki, J.D. Mastering JXTA: Building Java Peer-to-Peer

Applications. Wiley Pub., 2002.
[18] Traversat, B., et al. Project JXTA 2.0 Super-Peer Virtual

Network, Sun Microsystems, Inc, 2003. Available on line at
http://www. jxta.org/servlets/DomainProjects.

[19] Ma, J., Yang, L.T., Apduhan, B.O., Huang, R., Barolli, L.,
Takizawa, M. Towards a smart world and ubiquitous
intelligence: a walkthrough from smart things to smart
hyperspaces and UbicKids. Journal of Pervasive Computing
and Communications, 1, 1 (March 2005), 53-68.

229

Mapping Clouds of SOA- and Business-related Events for
an Enterprise Cockpit in a Java-based Environment

Daniel Jobst
TietoEnator Deutschland GmbH

Digital Innovations
80335 München, Germany

Daniel.Jobst@tietoenator.com

Gerald Preissler
Deutsche Post AG
SOPSOLUTIONS®

53250 Bonn, Germany
G.Preissler@deutschepost.de

ABSTRACT
This paper is about business process management (BPM) and
business activity monitoring (BAM) using event processing. We
will show why the management of business processes is important
for all further steps towards an event-driven and real time
enterprise. That is process automation using workflow engines
and standards like the Web Service Business Process Execution
Language (BPEL). As an underlying middleware platform we use
the service oriented platform SOPware of Deutsche Post AG.

Events are emitted from all layers, the middleware platform layer
and the business process layer, and figuratively build “event
clouds”. Event processing functionalities will correlate both
“event clouds” and feed business activity monitoring. There,
enterprise performance cockpits and dashboards depict the
performance of the enterprise and of its processes.

Categories and Subject Descriptors
D.2.11 [Software Architectures]: patterns – service oriented
architecture, event processing. D.2.8 [Metrics]: Process metrics –
business activity monitoring, enterprise cockpit. D.3.2 [Language
Classifications]: Object-oriented languages – Java, J2EE.

General Terms
Management, Measurement, Performance, Design,
Standardization.

Keywords
Service oriented architecture, event processing, business activity
monitoring.

1. TECHNOLOGIES AND
ARCHITECTURE
In the following chapters we will concentrate on how to do
monitoring better rather than the question what it is for. We will
take into account recent developments in IT architecture and event
processing technology.

1.1 Business process management (BPM)
According to the latest Gartner research paper on process
management, today BPM is more than a collection of software
tools. BPM is a management discipline with modeled business
processes as its fulcrum. It aims to improve enterprise agility and
the operational performance. Decisive BPM technologies are
process modeling, process execution, a BPM suite, and accessing
underlying resources using service orientated technologies. [1]

As modeling tool and modeling environment we are using the
ARIS toolset in our use case. Processes in their finest granularity
will be denoted in the Event-driven Process Chain (EPC) .

According to [2] and the monitoring and event processing
approach we are discussing in this paper, focusing on processes
and explicit process models are vital for further process
measurement and monitoring.

1.2 Process automation and service
orientation
According to the approach we are introducing in this paper,
process automation needs some preconditions.

First of all, it needs process models in the right granularity for
SOA. The modeled process steps have to match the appropriate
service calls or sub processes in the later automated processes.

Then it needs a service oriented platform with concepts providing
for services like authorization, authentication, user management,
data management, logging, exception handling, monitoring, and
security. SOPware is a Java-based infrastructure that allows the
easy integration of J2EE and J2SE-based applications in an SOA
environment.

Thirdly, process automation needs a standardized process
language which can be executed by a workflow engine much like
a programming language. The Business Process Execution
Language is such a language which is designed to orchestrate web
services. For the current version 1.1 (BPEL4WS) and version 2.0
(WSBPEL) see [4].

1.3 Business activity monitoring (BAM)
BAM as a technology gives access to key business metrics. It is
used to monitor business objectives, to evaluate operational risk,
and to reduce the action time between an event happening and the
actions taken [5].

According to [6], BAM incorporates the different technologies
like BPM, BPEL, event processing, and SOA. It links events,
services, and processes with rules, notifications, and human
interaction.

Results of BAM are needed for controlling an enterprise and are
important for other methodologies like the balanced scorecard
(BSC) and Six Sigma or for compliance with regulations like the
Sarbanes Oxley Act (SOX) or Basel II.

1.4 Event processing (EP)
Each enterprise has to deal with a huge number of events. These
events can be low level network events or high level business
events. All of them have some kind of representations in the IT
system. In order to deal in real time with a huge number of events,
EP provides different technologies and methodologies. One is to
classify events in different hierarchical layers, to look for patterns
of events within a layer, and propagate new complex events to

230

higher layers as introduced by [7]. Another way is to arrange
events into streams and monitor, analyze, and act upon events as
they appear in the stream [8].

EP is not a new technology. But with increasing hardware and
network capacities and evolving standards and tools it gets a new
momentum [9].

2. USE CASE
An abridged business process from the banking domain will be
the consistent process example in this paper. It is a simple version
of a credit application process. Once a credit application is
received, a data validation service will be called. Then, depending
on the amount of the application, either the scoring and approval
will be done automatically or manually by an employee. After that
the customer will be sent an email.

new credit
application

received

data validation

credit
application

>= 50,000 €

credit
application
< 50,000 €

manual approval
automatic

scoring and
approval

manual
approval
finished

automatic
scoring and

approval
finished

send email to
customer

process
finished

Figure 1. Process in EPC notation

Figure 2. BPEL Process

Figure 1 shows the process in the EPC notation, Figure 2 is the
process translated into BPEL. For our services “data validation”,
“automatic scoring and approval”, “automatic approval”, and
“send email to customer” in the example BPEL process in Figure

2 there is a service implementation within SOPware which will be
called by the BPEL workflow engine.

The BPEL process will be published as a service itself. In terms of
multi channeling this is important because independent of a
channel (e.g. portal, call center, self service devices) always the
same process is used. And it is important for the monitoring. The
different channels will be a dimension which will be monitored
and analyzed in the BAM environment.

The basic concepts of a service-oriented architecture as well as the
SOA implementation chosen for our studies are described in
chapter 3.

The overall architecture of the approach we introduce in this paper
is shown in Figure 3.

Figure 3. Our architecture

The workflow system, the SOA framework, and the enterprise
service bus are based on a J2EE application server environment.
The workflow system runs the BPEL processes and publishes
business and process events. The SOA framework is Java based
too and publishes the lower level SOA events. The enterprise
service bus (ESB) is responsible for event transportation and
format transformations through the different layers.

Here we have to understand the problem: BAM tools monitor and
analyze events from an high level “event cloud” whereas technical
monitoring processes events form an “event cloud” of lower level
events. Figure 4 shows the two different monitoring views with
their layers and typical vendors and tools. With EP both views can
be mapped in order to reach a consistency in terms of monitoring
completely end-to-end without replacing existing installations by
mapping instances.

Figure 4. Technical and business monitoring layers and views

The event processing layer will correlate the actual business and
process events (from the business instance) with the events from

231

the technical SOA events (from the implementation layer). This
we will describe in chapter 5.

As BAM tool we use the ARIS Process Performance Manager
(PPM) to build personalized views of a performance dashboard to
visualize key performance indicators (KPI) such as “average
process runtime“. The event processing layer will deliver the
events and metrics needed for the dashboard and to be able to drill
down to aggregated process views or to single process instances.

3. SOP SERVICE ORIENTED
ARCHITECTURE MODEL
To discuss the events generated in a service oriented architecture
(SOA), an understanding of the components of a SOA and their
interactions is necessary. As of the time of writing, there are no
standard or established definitions for this. The following
paragraphs will try to define the characteristics of a SOA that are
relevant for the topic of this paper. This is not intended to be a
discussion of SOAs in general – which would be beyond the
scope of the document – but to foster a common understanding of
the problem domain under discussion.

Service

ServiceOperation

1..*

ServiceParticipant

*

*

ServiceRole

Message MessageExchange *

represents call to

1..*

belongs to

MessageRole
participates in

QoSParameters

*

Figure 5. Elements of a SOA

Figure 5 shows an overview of the entities that are relevant for
management purposes.

A service is the encapsulation of a defined unit of business logic.
From a management point of view, a service is a set of service
operations. Further functional properties such as the exact syntax
of individual operations or their semantics are not considered
here.

An entity acting within a SOA is called service participant.
Each service participant can act as service provider or
service consumer for one or more services.

The basic mechanism for service usage is the exchange of
XML-encoded service messages between a service
consumer and a service provider.

A message exchange groups one or more transmissions of
individual messages that together complete one invocation
of a service operation. The pattern of messages exchanged
between consumer and provider during an exchange is a
property of the operation. A number of such exchange
patterns are defined in [17].

For each message exchange, a number of quality of service
properties (QoS) can be defined. A common example for a
QoS property is the maximum response time for an In-Out
type operation. These properties can be defined in multiple
ways, e.g. for all calls to a service operation or by
individual negotiation between service provider and
consumer. At runtime, a concrete set of QoS properties
applies to an individual message exchange. The adherence
to the parameters defined for each exchange should be
monitored.

For studying the actual integration of a SOA implementation into
a business activity monitoring solution, the service-oriented
platform SOPware, provided by the SOPSOLUTIONS department
of Deutsche Post AG, has been chosen. This platform provides a
distributed component called SBB library that each service
participant uses to consume or provide services. This component
provides management and monitoring capabilities based on the
Java Management Extensions. Part of these facilities is the
generation of SOA-releted events as described below. In addition
to the SOPware internal processing and reporting capabilities, this
information can be propagated to existing monitoring or event-
processing environments.

This paper focuses on a small detail of SOPware, for further
information about the platform as a whole, please see [18].

4. EVENTS IN A SERVICE ORIENTED
AND PROCESS ENVIRONMENT

4.1 Events
“An event is an object that is a record of an activity in a
system.”[7] This can be both a more technical event like “service
response is five seconds overdue” and an event of a higher
business level, e.g. “new credit application received”.

What are common to all events are three aspects: form,
significance, and relativity to other events (by time, causality, and
aggregation). Form means that it is an object with significance
meaning that this object is a representation of an activity that
happened. In order to specify the activity, the object does consist
of attributes describing the activity. Events relate to other events,
this can be by time (event A happened after event B), causality
(events referring to the same customer ID) or aggregation (event
A was caused by the occurrence of events B and C). [7]

A first step towards standardization of events is the common base
event (CBE) format. With the standardization of Web Services
Distributed Management (WSDM) [10] this standard does specify
a WSDM event format. The WSDM event format was
implemented within the common event infrastructure (CBI)1 and
is known as the CBE [11]. The CBE does at least require a unique
identifier (globalInstanceId), a creation timestamp
(creationTime), an ID of a component which caused the event

1 “The Common Event Infrastructure (CEI) is IBM's

implementation of a consistent, unified set of APIs and
infrastructure for the creation, transmission, persistence and
distribution of a wide range of business, system and network
Common Base Event formatted events.” [11]

232

(sourceComponentId), and data structure identifying the
situation that happened (situation) [12].

Now with a basic definition of events and the minimal
requirements, the following two paragraphs define the events in
the respective “event clouds”.

4.2 SOA events
Based on the model described in chapter 3, a number of events
can be defined that can be useful in monitoring the operation of a
SOA.

The first class of events describes the lifecycle of service
participants at runtime. Whenever a service participant is started
or stopped, a corresponding message can be generated. Further
events can be generated when a participant registers itself as
provider or consumer for a particular service or service operation.

The second class of events provides insight into the usage of
service operations. Each service participant can generate events
that provide information about calls to service operations and their
results. The level of detail provided by these events can range
from aggregated data about a large number of service calls to fine-
grained tracking data that allows the monitoring of individual
message exchanges as they propagate through the messaging
infrastructure. The following levels have been proven to provide
practical information:

- An aggregation of statistical data (number of calls,
successful completions, and response times) about
calls to a particular service operation made or
served by a service participant during a defined
period of time.

- Information about the result of each individual
message exchange.

- Tracking information that details each step of
processing of an individual message exchange.

While the first level of detail is mainly useful for accounting
purposes and capacity planning, the more fine-grained
information provided by the other levels can be correlated with
information about business events as detailed below.

The third class of events is concerned with quality of service
parameters. Whenever a violation of a QoS parameter defined for
a message exchange is noticed by the integration infrastructure, a
corresponding event is generated.

Instances of the events discussed above are automatically
generated by the SBB library and collected at a central location.
Therefore, integration into a corresponding business activity
monitoring becomes feasibly without any side-effects for the
implementation of business applications using the service
infrastructure.

The information contained in the events provides information
about the event type, event source (service participant or message
exchange), and data specific to the event type. This allows
correlation of events within the context of the integration
infrastructure. To use this information in the context of business
activity monitoring, a correlation between SOA-based identifiers
(namely message exchange identifiers) and business activity
related identifiers (e.g. a business process identifier) needs to be
established. The integration infrastructure provided by SOPware
supports this in two ways:

An application using the SBB library to access services can
specify an arbitrary identifier as an optional parameter to the API
call to invoke a service operation. This identifier is observable in
all tracking events that are generated for the message exchange
that realizes the invocation.

If this is not possible, e.g. if legacy systems are integrated into the
execution of a business process, a correlation message can be
generated that connects the message exchange identifier with any
business identifier that is part of the message payload and that can
be specified by XPath [19] statements.

It is our goal to set the SOA-level events described here in relation
to high-level events generated by the business process to get a
better understanding of the operation of the whole infrastructure.

4.3 Business and process events
The workflow environment of the use case described in chapter 2
does provide the following CBE events for each invoke or receive
in a BPEL process2: Entry, Exit, Expired, Failed, Completion
forced, Retry forced, Skipped, Stopped, and Terminated.

The events above are possible activities during the BPEL process
execution and are CBE. They will be called process events in this
paper.

Business events are specified by the messages or events either a
business service receives or produces such as “new credit
application received”.

Because the processes are modeled in BPEL and because they
resemble the business process, the process events can indicate
business events. In order to denote an event for “new credit
application received” the CBE process event “Entry” of the
receive process node can be used.

Another way to raise business events is with sensors in BPEL
processes as explicit service calls. This was introduced in [16].

5. MONITORING WITH EVENTS

5.1 Use case scenarios
The essential idea behind existing monitoring tools (both business
and technical) is to alert when single events happen and then to
act upon them [13]. But the humblest low level event can have
impact on high level processes and the overall performance of the
enterprise as well as high level events can have future impact on
IT assets. In this chapter we want to show on simplified examples
bases that both “event clouds” can be mapped in order to extract
useful information and monitoring results.

2 IBM WebSphere Integration Developer (WID) 6.0.1 and IBM

WebSphere Process Server 6.0

233

Figure 6. Examples of business and technical incidents and
their effects

Figure 6 shows a matrix of four scenarios with business and
technical incidents (horizontal) and business and technical effects
(vertical). Incidents with an effect on the same level are easy to
handle and are state-of-the-art (scenarios 1 and 4).

Scenarios 2 and 3 exceed the scope of the respective monitoring
environment and the connections between them are hard to trace.

5.2 Event correlations and patterns
With event correlations and event patterns we will concentrate on
scenarios two and three.

Scenario 2: Here we have to detect different activities. 1. That a
service component went down or that it is not responding as
agreed upon in a service level agreement (SLA). 2. What process
instances were using the service component? 3. Which process
template are affected, who are the customers, and other details?

For the purpose of illustrating how to write event patterns we will
use the straw man event pattern language STRAW-EPL as
introduced by [7].

Element Declarations
Variables MessageExchange mex, Time timeAt, Operation op,

Time timeAgreed, Time actualTime, Correlation c,
MessageId mid, CorrelationId cid, BusinessId bid, String
processInstanceId, String processTemplateId, Customer
cust

Event types RESPONSETIME_EXCEEDED (mex, op, timeAgreed,
actualTime)
CORRELATION(c, mid, cid, bid)
new_credit_application.Entry(processInstanceId,
processTemplateId, cust)

Rel. operators and
Pattern RESPONSETIME_EXCEEDED and CORRELATION

and new credit application.Entry
Context test mex.getId=mid and bid=processInstanceId
Action create BamScenario2Event(“Scenario 2”, …)
Figure 7. Event pattern for scenario 2 in STRAW-EPL

Here, two SOA events are correlated with a business event. Once
the response time of a component is exceeded we take the
correlation event which holds both the link to the service

component and the business process instance data and correlate
them. If the pattern matches a new event will be created.

We suggest the BamScenario2Event and BamScenario3Event
to be a CBE and to be sent via the ESB to the BAM tool. The ESB
can then transform it to proprietary event formats (e.g. “ARIS
PPM Event Format”) or pass it on to other CBE consumers. With
this approach BAM tools could be loosely coupled just like
services in a SOA.

Scenario 3: In scenario 3 we receive more credit applications than
normal. If the credit amount is above 50,000 Euros, the process
does start a human task and waits for the task to be finished before
proceeding (which according to the BPEL is a service call).
Before completing the manual tasks, no preceding service call is
made, meaning that the SOA framework has no way of knowing
about the imminent increase in service calls. Therefore, no pro-
active measures, like the deployment of additional service
providers, can be taken.

In order to measure the number of credit applications with events
over a period of time we have to extend the STRAW-EPL with a
sequence of events (identifier “sequence”) with an index i and an
identifier for a time window (“within”).

Element Declarations
Variables String ProcessInstanceId(i), String ProcessTemplateId(i),

Customer cust(i)
Event types new_credit_application.Entry (processInstanceId(i),

processTemplateId(i), cust(i))
Rel. operators and
Pattern sequence (new credit application.Entry(i)) within last 8

h
Context test processTemplateId(i)=processTemplateId(i+1)
Action create BamScenario3Event(…)
Figure 8. STRAW-EPL for scenario 3

With the creation of Scenario3Event and the business process
knowledge the proceeding service calls (and thus the IT assets
affected) are automatically identified.

Again, the event patterns above do not claim to be real world
patterns. They do only demonstrate that with event patterns and
EP a technical event cloud can be matched with a business event
cloud.

5.3 BAM
Although the ARIS PPM tool does only meet the first two features
of the BAM event processing checklist in [14] (i.e. real time event
data computation and single event triggering), it is widely used
and does use the EPC process notation. This does mean that a
business process lifecycle can be reached from process modeling
and process automation to monitoring and process re-design and
so forth with only one business process notation.

234

Figure 9. Different ARIS PPM BAM views

The functionality of the remaining three features of the BAM
event processing checklist (event streams processing, event
pattern triggering, and event pattern abstraction) would be met by
implementing scenarios 2 and 3. What is still missing is a
monitoring user interface to visualize the results of our EP
scenarios.

The possibility we suggest is to use an existing BAM tool such as
ARIS PPM. Since those tools are at least capable of single event
processing and the visualization of single events such as
BamScenario2Event or BamScenario3Event.

Figure 10. Scenario 2 visualization

Figure 10 shows a list of process instances where the pattern (see
Figure 7) matched. Every process instance can be shown in the
appropriate EPC process model exactly as it was executed. The
single process nodes contain the business data monitored. This is
where further information about the process, customer, or other
details can be retrieved as shown in Figure 11.

Figure 11. Details of a process node in ARIS PPM

The visualization of scenario 3 shows a speedometer like diagram
with the number of process instances within a time window.
Figure 12 shows that the number of running processes has reached
a critical area. Due to the coupling of the BAM EPC view with the
EPC process models all following activities and service calls of a
process template or instance can be identified.

Figure 12. Scenario 3 visualization

6. CONCLUSION
EP as a very young discipline has not yet reached a level of
agreed standards, wide spread tools, or good market penetration. It
is our belief that it holds the potential to leverage synergies
between the areas of BPM (management, modeling, and
automation of processes), BAM (monitoring of processes) and
SOA monitoring and management, among others.

Our study shows one possible way of utilizing the capabilities
present in the technologies mentioned above to achieve this goal.
We showed links between events (both business-events and events
in an SOA), information processing, and processes in order to
leverage modern application and monitoring platforms such as
SOPware and ARIS PPM. As theoretically introduced in [20] our
study shows furthermore that monitoring using EP in combination
with BPEL processes provides a comprehensive and agile
foundation for business process optimization that ensures efficient
and flexible business processes.

235

Figure 13. “Business Value of Data Freshness” [15]

To illustrate a business value behind our study we want to refer to
the time-value curve of [15] where the author shows the
connection between “data freshness” and the “business value”.
This “data freshness”3 we can provide by applying EP in order to
map the clouds of events and to complete functionalities today’s
BAM environments are not yet able to provide.

7. REFERENCES
[1] J.B. Hill, J. Sinur, D. Flint, M.J. Melenovsky, Gartner’s

Position on Business Process Management, 2006, Gartner
Research, 16 February 2006, pp. 5-8.

[2] P. Küng, C. Hagen, M. Rodel, S. Seifert, Business Process
Monitoring & Measurement in a Large Bank: Challenges and
selected Approaches, Proceedings of the 16th International
Workshop on Database and Expert Systems Applications,
IEEE Publications, 2005.

[3] R. Davis, Business Process Modelling with ARIS. A
Practical Guide, Springer, London, 2001.

[4] OASIS Web Services Business Process Execution Language
(WSBPEL) TC, Organization for the Advancement of
Structured Information Standards (OASIS),
http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wsbpel,
accessed on 17 April 2006.

[5] B. Gassman, Who’s Who in Business Activity Monitoring,
4Q05, Gartner Research, 12 April 2006, p. 3.

[6] J. Deeb, F. Knifsend, Using BAM to Empower the
Organization: Unifying Events and Processes,
http://www.BIJOnline.com/index.cfm?section=article&aid=1
30, 2005.

[7] D.C. Luckham, The Power of Events, An Introduction to
Complex Event Processing in Distributed Enterprise
Systems, Addison-Wesley, Boston, 2002.

[8] Event Stream Processing: A New Computing Model,
http://www.eventstreamprocessing.com, accessed on 15
April 2006.

[9] R.W. Schulte, The Growing Role of Events in Enterprise
Applications, Gartner Research, 9 July 2003, pp. 2-3.

3 According to the latest Gartner research today’s latency

requirements between business events and notification is less
than 15 minutes. This is likely to decrease to less than 60
seconds over the next 6 years [21].

[10] Web Services Distributed Management: Management Using
Web Services (MUWS 1.0) Part 1, OASIS, 9 March 2005,
http://docs.oasis-open.org/wsdm/2004/12/wsdm-muws-part1-
1.0.pdf, accessed on 19 April 2006.

[11] Common Event Infrastructure, Intelligent automation that
saves time and improves resource utilization, IBM,
http://www-306.ibm.com/software/tivoli/features/cei,
accessed on 19 April 2006.

[12] Autonomic Computing Toolkit, Developer’s Guide, IBM,
August 2004, http://www-
128.ibm.com/developerworks/autonomic/books/fpy0mst.htm
#HDRAPPA, accessed on 19 April 2006.

[13] D.C. Luckham, Why Business Activity Monitoring Must Use
CEP, 21 July 2004, http://complexevents.com/?p=23,
accessed on 20 April 2006.

[14] D.C. Luckham, Can We Bring Some Order to the Business
Activity Monitoring Space?, 16 June 2005,
http://complexevents.com/?p=5, accessed on 20 April 2006.

[15] R. Hackathorn, Current Practices in Active Data
Warehousing, November 2002,
http://www.dmreview.com/whitepaper/WID489.pdf, pp. 23-
24, accessed on 21 April 2006.

[16] D. Jobst, T. Greiner, Modern Process Management With
SOA, BAM und CEP, From static process models to
executable workflows and monitoring on business level, 1st
Event Processing Symposium, Hawthorn NY, March 2006,
http://complexevents.com/wordpress/slides/CITT_CEPSymp
osium_Jobst_Greiner.pdf, accessed on 21 April 2006.

[17] World Wide Web Consortium, Web Services Description
Language (WSDL) Version 2.0 Part 2: Adjuncts, March
2006, http://www.w3.org/TR/2006/CR-wsdl20-adjuncts-
20060327/, accessed on 24 April 2006.

[18] J. Belger, Die service-orientierte Platform der Deutschen
Post, JavaSPEKTRUM 1/06, p. 22.

[19] XML Path Language (XPath) Version 1.0, W3C
Recommendation, 16 November 1999,
http://www.w3.org/TR/xpath, accessed on 24 April 2006.

[20] J. Deeb, What Does Complex Event Processing Do for BPM,
13 June 2005,
http://www.bpm.com/FeaturePrint.asp?FeatureId=171,
accessed on 24 April 2006.

[21] B. Gassman, Gartner Study Reveals Business Activity
Monitoring’s Growing Value, Gartner Research, 18 April
2006

236

Business Activity Monitoring of norisbank
Taking the Example of the Application easyCredit and the

Future Adoption of Complex Event Processing (CEP)
Torsten Greiner, Willy Düster,

Francis Pouatcha
norisbank AG

Rathenauplatz 12-18

D-90489 Nürnberg

torsten.greiner@norisbank.de

Rainer von Ammon, Hans-Martin Brandl,
David Guschakowski

CITT GmbH / TietoEnator GmbH

Konrad-Adenauer-Allee 30

D-93051 Regensburg

rainer.ammon@citt-online.com

ABSTRACT
The kernel business process of easyCredit of the norisbank as a
German Online Credit System is described with all its detailed
process steps. Business Activity Monitoring is a basic condition
for the successful operation of the system. The As Is-solution is
faced with the future concept based on CEP/ESP. For that reason
the process has to be redesigned in the sense of SOA and flexibly
implemented by means of a BPEL-based Workflow Engine. In
this connection the events of a BPEL-engine are differentiated
from the events, which are being processed in a so called “event
cloud” by a CEP system for a real time BAM. The possibilities
and advantages of a real time able BAM are being shown taking
the example of the easyCredit.

Categories and Subject Descriptors
D.2.11 [Software Architectures]: languages

General Terms
Performance, Design, Standardization, Languages, Theory

Keywords
Business Activity Monitoring, Complex Event Processing, Event
Stream Processing, Business Process Management, Service
Oriented Architecture, online instant credit system

1. INTRODUCTION
Business processes as a whole realize the business strategy of an
enterprise in a save, correct and economic way. Thereby IT
systems support and optimize the performance of the business
processes. In the example of the browser based easyCredit
application (rated credit with online instant confirmation on the
Internet) of the norisbank AG is described a potential business

process monitoring from an economic view based on key figures.
This economical monitoring of the business processes on the base
of key figures is called Business Activity Monitoring (BAM)
[10][11].

The norisbank has realized BAM by a pipeline model. This model
assumes that each credit application runs through several
processing steps within its entire life cycle. The single steps can
be imagined as a production line or a pipeline. In this pipeline
model we can trace how many contracts respectively applications
are located on which position of the pipeline. The actually traced
values of a pipeline section can be compared with threshold
ranges, so that in the case of significant deviations indicating a
technical fault in the process an alarm can be raised.

In the following the essential basics for the realization of the
business process monitoring of the rated credit application
easyCredit with BAM is introduced. After that the real system is
described, how it has successfully been implemented in the
norisbank AG. At last it is shown, how new paradigms of
Complex Event Processing (CEP) [9] will be used in the next
generation of the easyCredit for realizing an intelligent, real time
able BAM platform.

2. SOME REMARKS ABOUT THE
BACKGROUND OF EASYCREDIT
The norisbank AG - a 100% affiliate of the DZ-Bank AG since
October 1st, 2003 – runs about 100 branches in Germany. Their
kernel business is the allocation of consumer credits. In April
2000 norisbank was the first bank in Germany to offer a rated
credit application on the Internet with online instant confirmation.
This application was certified by the TÜV (Technical Controlling
Association, MoT) in 2003 as the world wide first bank product.

Due to the change of the ownerships at the norisbank AG it
became necessary to develop a new fully automated and mass
business capable rated credit application (easyCredit1). A
technical relaunch, as well as an economical further development
of the old application was accomplished.

In 2002 the norisbank introduced a new technical platform as a
basis for a modern Internet branch bank [7]. The technical
architecture of this platform was realized by the operation system

1 http://www.easycredit.de

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

237

Solaris of SUN. This platform provides a scalable architecture,
based on the standard of Java Enterprise Edition (Java EE). The
Java EE model defines the standard for the implementation,
configuration and for operating distributed applications.
Furthermore Java EE is web-based, i.e. it is assumed that the
clients (webbrowser capable systems) are interacting with the
application via the protocol http or https. Thus redevelopment of
the easyCredit application was made by the Java EE technology
as well. This redevelopment, too, was certified in 2004 by MoT.

Meanwhile about 900 partner banks, with about 12.000
distribution agencies and about 32.000 branch users are using this
application, but also the same amount of external customers from
the Internet.

From the view of the end users (partner bank, Internet) it’s not
only of interest, whether the application and the process are
available, but the cycle time of a contract within the norisbank is
essential, too. The cycle time is here defined by the total
processing time from the reception of the credit application until
the payment onto the account of the customer. For this reason it is
especially important to know, which contract has which actual
status.

It is the aim of business process monitoring within a pipeline
model to define traffic light status for each pipeline section which
has to be controlled:

Green = amount of contracts in a pipeline section are in the
defined interval

Yellow = amount of contracts in a pipeline section are
approaching the defined interval limits

Red = amount of contracts in a pipeline section are outside
the defined interval

Only in the case of an alert in time the throughput of the contracts
can be constantly maintained with added effort of personal
resources.

3. BUSINESS ACTIVITY MONITORING
For the realization of Business Activity Monitoring the
understanding of the business processes are indispensable. In this
connection the kernel business process of the easyCredit is to be
understood in the way that the process is being started by the
credit application of an external or internal customer and only
ends with the delivery of an agreed result to the customer (end
user). In the following only the business process steps, which are
relevant for the monitoring of the application way “Internet
guest”, are shown and after that the realization of the BAM on the
basis of the pipeline model are explained.

In this process a customer uses the Internet to get a credit offer.
At first the customer gets to the “mini calculator” page. There he
can choose diverse credit parameters like the amount of credit,
duration, and optionally an insurance product. After that he will
automatically be given the adequate interest rate as well as the
monthly amount of interests. Has the customer decided to
continue with these conditions, he has to enter his household data
in the next step. These data include the monthly income and
expenses as well as credit contracts, which may have to be repaid.

In the following the customer has to enter his personal data
inclusive his address. After that the employment data form has to
be processed. As a next step the customer has to enter in the
account data page, whereto the money shall be transferred and
from which account the monthly rates shall be collected. All the
entered data are checked by appropriate procedures for pausibility
which will not be explained here in detail.

Does the customer continue with the application process, the
credit application with all its data entered so far will be stored in
the system. From this point the control of this application within
the monitoring system is possible (see section B.1 in fig. 1). Only
now an inquiry at the credit agencies Infoscore and Schufa will be
made. According to the results the decision on the credit (CD)
will be met. The result of the CD will be arranged as follows:

CD red: The customer will be briefly indicated that he cannot get
a credit offer (e.g. because of insufficient creditworthiness). For
the customer it is the end of the offer process. In the background
however a further process automatically produces a letter of
denial in the form of a PDF-document. Another process provides
the generated PDF-document as a print job. All print jobs are
being gathered, printed and sent off in a cyclic way in another
process.

CD grey: The customer gets a non-binding offer on the screen
assuming a averaged good creditworthiness, as there are no
informations of the Schufa in this case. The customer will be
informed that he can expect a written offer within short time.
Parallel to this the resubmission “reviewing” is set in the
background. That means that the further processing of the credit
application will be continued by an employee of the norisbank.

CD green: In this case it is differentiated, whether the customer
has entered the credit contracts, which will have to be repaid to
norisbank. In this case an offer is shown to the customer on the
screen and he will be informed that he will get the offer
documents by post. In addition the resubmission “reviewing” is
set.

The result of this description is the simplified shown life cycle
model of the application way “Internet guest” (see fig. 1).

4. REALIZATION OF THE PIPELINE
MODEL
A pipeline model is used for the technical monitoring of the
business processes by norisbank. This model assumes that every
credit application within its total lifecycle runs through several
processing steps, like in a production line or in a pipeline. In this
pipeline model we can trace how many contracts respectively
applications are located on which position of the pipeline.

Precondition for this is that each change of a status of an
application is recorded with a corresponding time stamp in a
database. The actually traced values of a pipeline section are then
compared with the defined threshold ranges, so that in case of
significant deviations indicating a technical fault in the process an
alarm can be raised.

In order to check any faults in the business processes the
following monitoring principles within the pipeline model will be
used:

238

final contract
to be printed

final contract
to be printed

contracts with
no need for a

postproduction

CD red

contracts to be
postproducted

stored contracts
with a CD

stored contracts
without a CD yet

CD
green

or grey

CD grey

CD red

final contract
to be printed

final contract
to be printed

contracts with
no need for a

postproduction

CD red

contracts to be
postproducted

stored contracts
with a CD

stored contracts
without a CD yet

CD
green

or grey

CD grey

CD red

final contract
to be printed
final contract
to be printed

final contract
to be printed
final contract
to be printed

contracts with
no need for a

postproduction

contracts with
no need for a

postproduction

CD redCD red

contracts to be
postproducted
contracts to be
postproducted

stored contracts
with a CD

stored contracts
without a CD yet

stored contracts
with a CD

stored contracts
with a CD

stored contracts
without a CD yet
stored contracts
without a CD yet

CD
green

or grey

CD
green

or grey

CD greyCD grey

CD redCD red

Legend:
B.1: stored applications, for which no credit decision (CD) was made yet.
B.2: stored applications, for which a credit decision was made already.
B.3: applications, for which the last credit decision was red.
B.4: applications, with CD green, which don’t have to go into reviewing.
B.5: applications, with CD green, which don’t have to go into reviewing,
 the contract of which is ready for printing.
B.6: applications, with CD green, which are being reviewed, for which however there hasn’t been done any CD in

 the reviewing yet.
B.7: applications with CD grey in the reviewing.
B.8: applications with CD red in the reviewing.
B.9: agreed applications, the contract for which is ready for printing.

Figure 1: Simplified shown life cycle model of the application way “Internet guest”

• Finding the amounts in the single pipeline sections,

• Monitoring, whether the applications are moving
forward in the pipeline,

• Checking, whether all applications/contracts within a
certain time frame have reached a final status.

For this the following monitoring variants are used in detail:

Pipeline-snapshot: Establishing the absolute amount of
applications within the single pipeline sections at defined times
(e.g. each hour).

Pipeline-progress: Establishing, which application objects have
newly reached the corresponding pipeline section within a defined
time interval (e.g. each 15 minutes). The absolute amount of
applications is established.

Application specific finalising: Here it is checked, whether all
applications within a certain time interval have reached the
defined final status (e.g. one working day per each application).
Defined final states are the sections B.3, B.5, B.8, B.9.

Wait time-monitoring: Establishing, how much time it takes for
an application from one pipeline section to the next respectively
whether an application stays for too long in a certain pipeline
section. Critical pipeline sections are: B.2, B.5, B.6, B.7, B.9.

The monitoring of the single application states is done by cyclical
database requests. Hereby the time stamp of the corresponding
status entry in the database serves as a reference. E.g. if the
Schufa credit agency is not available, it is easily possible to
recognize through evaluating the pipeline progress that the
amount of applications with status CD grey have been raised
significantly.

5. FURTHER DEVELOPMENT OF THE
MONITORING PROCEDURE WITH
CEP/ESP
The so far described approach assumes that each credit
application with its total life cycle runs through several processing
steps, like in a production line or within a pipeline. Precondition
for a corresponding technical monitoring is however that each

239

status change of an application is recorded with a corresponding
time stamp in a database. Only in this way a simple database
request can establish, how many contracts are located in which
place within the pipeline. The advantage of this procedure is the
simple realization.

The disadvantage of this approach however is that only a frozen
state of an existing constellation at time point t of the data base
request can be seen. A real time monitoring of the economical
states of the application is only possible, if status changes of
applications are requested in the data base permanently. This
means: if the answer for a request is wanted each second, the
request has to be entered each second as well. This solution
cannot be realized for hundreds of different requests. Therefore
the database is a bottleneck in the case of complex status changes,
which shall be monitored in real time. Also the triggers, which
were integrated later in traditional databases, don’t solve the
problem, as these don’t scale.

Event Stream Processing (ESP) or Complex Event Processing
(CEP) are paradigms, which are helpful to react in real time to
changes of states by corresponding informations [9]. With
CEP/ESP messages, informations or data are correlated,
aggregated, analyzed and evaluated in real time. These newly
generated informations then provide the base for further
decisions. Thus a CEP/ESP-platform becomes an intelligent
BAM-tool, which also offers the possibility of dynamic
visualization. In a next step this pipeline model shall be realized
with methods of CEP/ESP.

5.1 Redesign as SOA and Use of a BPEL-
based Workflow Engine
For the new approach of easyCredit it is necessary to redesign the
architecture of the system in the sense of a SOA [3][16]. As a

principal difference to EAI [12] a SOA is based on the business
processes (see fig. 2). At each process step another enterprise
internal or external process or a service respectively a software
component can be called and eventually a change in a database or
in a legacy system, e.g. in an ERP-system like R/3 or in a CRM-
system like Siebel, can be caused. Fig. 2 shows the example of an
online-credit-system that this architecture could arbitrarily
cascade [1]. All software-components respectively services are
defined e.g. by the Web-Service-Definition-Language (WSDL)
and are bound as web-service to a process step.

However hereby it has to be guaranteed that for the aim of a real
time BAM no performance problems will be caused by still
relatively heavy and slow XML-based protocols like SOAP [15]
because of longer latency times.

This also goes for the use of a BPEL-based workflow engine [13].
Though the business process can be standardized and flexibly
implemented in this way and even be modified at run time of the
system on a high level, i.e. by the means of workflow design tools
by non-IT-experts, if applicable even directly by a business
department, for the realization of new business and marketing
strategies. On the other hand numerous, concurrent business
process instances could cause performance and scalability
problems of the BPEL-engine. This has to be considered in time
towards the required real time performance of the BAM at the
dimensioning of the system and the resource planning (sizing-
project).

5.2 Events for the Workflow Engine Versus
Events for CEP/ESP
The business process is controlled e.g. in the sense of an eEPC-
notation [5] of events, like “credit application received”, “credit
application checked for completeness”, “Schufa-information

In an SOA, the process is controlled by the
service consumer.

Data is accessed via
the service provider.

Service
Consumer

Service
Provider

Service
Provider Accouting

System ... Reporting

Consultation
System

Credit
Reporting
Agency

Costing
System

Loan
Consulting

Credit
Investigation

Loan
Awarded

Value Date /
Payment

Securities
Management Reporting

Credit
Processing

Service providers can
implement processes
and also call services.

Figure 2: The SOA Challenge - design horizontal and vertical coupling of services

240

received” and so on. These events are manually caused by men,
e.g. by an employee or by actions of the system. These events are
needed by the workflow engine for flow controlling. These
events, however, are no events, which are filtered from the event
cloud or from an event stream by a CEP- or ESP-system and
processed, e.g. for the visualization in a BAM. It is the job of a
business process modeler to design the process model by
interviewing the process-owner or the business department as a
chain of events and actions in such a way that the process model
can be executed by a BPEL-based workflow-engine (see fig. 3).
These thousands and presently archived eEPC-models at banks
and other users are at present not designed as “executable
workflows” and have to be redesigned more fine grained – also
under SOA-prospects.

The Business Process Management System (BPMS) (see [14])
generates at executing the business process instances partly
autonomously BAM- respectively CEP-relevant informations, e.g.
time stamps for each single process step, whereby in the BAM
throughput times can be monitored and analyzed. Additionally
specific events can be generated through appropriate
implementation of actions, e.g. for those in chapter 4 mentioned
monitoring-views “establishing the absolute amount of
applications within the single pipeline sections at defined times”,
“establishing, which application objects have newly reached the
corresponding pipeline section within a defined time interval”, or

the calculation of a credit sum or of the interest rate. This can be
realized in the Java EE environment via JMS as the Publish-
/Subscribe-method or with CORBA analogically via the
“notification service” and so on.

Altogether there can be on the network level a very large amount
of events of different types in a certain time window (1 minute, 1
hour, 1 day and so on) – metaphorically as an unordered “event
cloud” or transformed as a chronologically ordered “event
stream”.

The event modeler (see fig. 3) decides, which of these events
have to be filtered for which BAM-view from one or more
streams, if necessary have to be aggregated and correlated as
higher business level events (see chap. 4, e.g. pipeline progress,
wait time monitoring) and in which time window these events
have to be held and stored (see in detail [9]). According to
CEP/ESP-systems, just entering the market, those event scenarios
again can be generated very quickly and modifiable at any time
by means of special high level tools without IT experts.

There are special, often already prebuilt adapters for the filtering
of each event type (see. fig. 3). Examples are SNMP-, email- and
log file-adapters for searching for specified strings. The
aggregation and correlation take place according to the event
scenarios through the used CEP/ESP-system by means of their
Event-Processing Language (EPL). The CEP-discipline, just

AppServer

Monitor / Analyze / Act

Workflow
Modeler

Event
Modeler

Enterprise cockpit

Event
Store

realize scenario
process instances

set parameters

analyse
history…

Low Level
Event Streams

Adapters
e.g. RFID, topics of
Pub/Sub, …

Build business level
events

Workflow Engine
based on BPEL

Rules Engine

„special“ SQL
resp. other languages

IF …
AND …
FOLLOWED BY…
WITHIN…
ACTION

Model ^=
Scenario

e.g. credit offers (completed)
e.g. payments

workflows

AppServer

Monitor / Analyze / Act

Workflow
Modeler

Event
Modeler

Enterprise cockpit

Event
Store

realize scenario
process instances

set parameters

analyse
history…

Low Level
Event Streams

Adapters
e.g. RFID, topics of
Pub/Sub, …

Build business level
events

Workflow Engine
based on BPEL

Rules Engine

„special“ SQL
resp. other languages

IF …
AND …
FOLLOWED BY…
WITHIN…
ACTION

Model ^=
Scenario

e.g. credit offers (completed)
e.g. payments

workflows

Figure 3: The technology challenge and the principle of BPM/BAM/CEP, e.g. for “Next Generation Instant easyCredit
System”

241

coming up, is presently discussing - still controversial -, how an
appropriate language or an appropriate user interface for this task
shall be designed. At present the first CEP-platforms offer SQL-
like languages, which, however, are extensively enhanced, and
process events - precompiled and “in memory” – in a highly
performing way (e.g. the “Event Query Language” (EQL) of the
Open Source Platform Esper [6] or the “Continous Computational
Language” (CCL) of Coral8 [4]). Other systems provide an user
interface without any programming as far as possible (e.g.
APAMA [2]).

In the future an important, new task will be the modeling of
appropriate event patterns by the new role of the event modeler.

6. Conclusion
Though from the perspective of the next generation easyCredit the
BAM-views have to be defined first, which are to be monitored –
if necessary in real time –, as well as all required actions and
alerts have to be determined. After that the necessary event types
on the network level (in the event stream) have to be decided and
aggregated or correlated in appropriate models. Furthermore it
will be evaluated, which BPEL-engine shall be used and which
events of which actions in the credit process will have to be
generated. For the event management and processing in real time
diverse CEP-/ESP-systems are being evaluated.

7. REFERENCES
[1] Ammon, R.v., Pausch, W. and Schimmer, M. Realisation of

Service-Oriented Architecture (SOA) using Enterprise Portal
Plattforms taking the Example of Multi-Channel Sales in
Banking Domains, Wirtschaftsinformatik 2005. Ferstl et al.
(Publ.), Heidelberg, Physica-Verlag 2005, 1503-1518.

[2] Apama,
http://www.progress.com/realtime/products/apama/apama_te
chnology/index.ssp.

[3] Brandner, M. et al., Web services-oriented architecture in
production in the finance industry, Informatik Spektrum,
Volume 27, No. 2, 2004, 136-145.

[4] Coral8, http://www.coral8.com/, downloaded 2006-04-24.

[5] eEPK – erweiterte Ereignisgesteuerte Prozesskette,
http://de.wikipedia.org/wiki/Erweiterte_ereignisgesteuerte_
Prozesskette, downloaded 2006-04-24

[6] Esper, http://esper.sourceforge.net, downloaded 2006-04-24.
[7] Greiner, T. Lachenmayer, P. Bereitstellung einer neuen

technischen Plattform als Grundlage für eine moderne
Internetfilialbank, Banking and Information Technology,
Institut für Bankinformatik und Bankstrategie an der
Universität Regensburg, Regensburg, 2002, 53-61.

[8] Greiner, T., Düster, W. Monitoring von Geschäftsprozessen
mit OpenSource Produkten aus Endkundensicht, Banking
and Information Technology, Institut für Bankinformatik und
Bankstrategie an der Universität Regensburg, Regensburg,
2005, 49-61.

[9] Luckham, D., The power of events, Addison Wesley ,
Boston, San Francisco, New York et al., 2002.

[10] Luckham, D. The Beginnings of IT Insight: Business
Activity Monitoring
http://www.ebizq.net/topics/bam/features/4689.html, 2004,
downloaded 2006-04-24

[11] Kochar, H. Business Activity Monitoring and Business
Intelligence
http://www.ebizq.net/topics/bam/features/6596.html,
2005, downloaded 2006-04-24

[12] Meinhold, G. EAI und SOA: Die Komponenten fallen nicht
vom Himmel, Objektspektrum, No. 2, 2004, 33-36.

[13] OASIS, Web Services Business Process Execution Language
Version 2.0, Draft, Dec. 2005,
http://www.oasis-open.org/committees/download.php/16024/
wsbpel-specification-draft-Dec-22-2005.htm,
downloaded 2006-04-24.

[14] SixSigma, BPMS,
http://www.isixsigma.com/dictionary/BPMS-536.htm,
downloaded 2006-04-24.

[15] SOAP, http://de.wikipedia.org/wiki/SOAP, downloaded
2006-04-24.

[16] Woods, D., Enterprise Services Architecture, O’Reilly,
Gravenstein, 2003.

242

Ammon, Rainer von ____________ 237
Baeuerle, Jörg _________________ 175
Baldoni, Matteo________________ 188
Barolli, Leonard _______________ 224
Boella, Guido _________________ 188
Brandl, Hans-Martin ____________ 237
Cabri, Giacomo _________________ 62
Cervelle, Julien _________________ 13
Chang, Yu-Hao _________________ 53
Chen, Chung-Kai________________ 53
Chen, Hsi-Min__________________ 94
Chiba, Yuji ___________________ 103
Chrząszcz, Jacek _______________ 135
Chung, Kai-Hsin ________________ 53
Cielecki, Maciej _______________ 135
Dorsch, Dirk __________________ 125
Düster, Willy __________________ 237
Fischer, Gregor ________________ 208
Forax, Rémi____________________ 13
Forster, Florian _________________ 23
Fulara, Jędrzej _________________ 135
Gitzel, Ralf ___________________ 216
Greiner, Torsten _______________ 237
Gruissem, Willhelm ____________ 199
Gruntz, Dominik _______________ 182
Gudenberg, Jürgen Wolff von_____ 208
Guschakowski, David ___________ 237
Hirsch-Hoffmann, Matthias ______ 199
Hruz, Tomas __________________ 199
Huang, Chi-Chang_______________ 94
Jakubczyk, Krzysztof ___________ 135
Jancewicz, Łukasz______________ 135
Jiang, Hong ____________________ 40
Jobst, Daniel __________________ 230
Kabanov, Jevgeni ______________ 163
Kamiński, Łukasz ______________ 135
Kirkham, Chris _________________ 31
Kredel, Heinz _________________ 143
Lee, Jenq-Kuen _________________ 53
Leonardi, Letizia ________________ 62
Mathiske, Bernd _________________ 3
McQuillan, Jacqueline A. ________ 194
Merdes, Matthias_______________ 125
Merz , Matthias _________________ 85
Mürk, Oleg ___________________ 163
Nögel, Ulrich__________________ 153
Park, Derek A._________________ 113

Plümicke, Martin _______________ 175
Pouatcha, Francis_______________ 237
Power, James __________________ 194
Preissler, Gerald________________ 230
Quitadamo, Raffaele _____________ 62
Reitz, Markus__________________ 153
Riasol, Joan Esteve ______________ 72
Rice, Stephen V. _______________ 113
Roussel, Gilles __________________ 13
Schmolitzky, Axel ______________ 203
Schubert, Aleksy _______________ 135
Schwind, Michael ______________ 216
Simon, Doug ____________________ 3
Singer, Jeremy __________________ 31
Srisa-an, Witawas _______________ 40
Torre, Leendert van der __________ 188
Ungar, Dave_____________________ 3
Wang, Chien-Min _______________ 94
Wang, Shun-Te _________________ 94
Xhafa, Fatos____________________ 72
Xian, Feng _____________________ 40
Yang, Chih-Chieh _______________ 53
Zimmermann, Phillip____________ 199

Author Index

Edited by:
Ralf Gitzel, Markus Aleksy, Martin Schader, Chandra Krintz

4th International Conference on Principles
and Practices of Programming in Java

Ed
it

ed
 b

y:
 R

al
f

G
it

ze
l,

M
ar

ku
s

Al
ek

sy
, M

ar
ti

n
Sc

ha
de

r,
Ch

an
dr

a
Kr

in
tz

4t
h

In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 P

ri
nc

ip
le

s
an

d
Pr

ac
ti

ce
s

of
 P

ro
gr

am
m

in
g

in
 J

av
a

ISBN: 3-939352-05-5
ISBN: 978-3-939352-05-1

Unbenannt-2 1Unbenannt-2 1 28.08.2006 15:50:02 Uhr28.08.2006 15:50:02 Uhr

	canapa.pdf
	Introduction
	Coding errors
	Avoiding null pointer exceptions in Java
	JML
	Overview
	Non_null annotations
	JML checking

	ESC/Java2

	Annotating the program
	Related tools
	Daikon Invariant Detector
	Houdini

	Our solution
	Overview
	Implementation Details

	Use cases
	Example 1
	Example 2
	Example 3
	Example 4

	Summary
	Acknowledgement
	Additional Authors
	References

	TeachingInheritanceWithJava.pdf
	1. INTRODUCTION
	2. BACKGROUND
	3. BASIC TERMINOLOGY
	3.1 Language Concepts and Mechanisms
	3.2 Interfaces and Interfaces
	3.3 Types and Classes
	3.4 Operations and Methods
	3.5 Consuming and Producing

	4. TEACHING INTERFACES BEFORE INHERITANCE
	4.1 Interfaces Early
	4.2 Interfaces Next
	4.3 Collection Interfaces
	4.4 Students Feedback

	5. ADVANCED TERMINOLOGY
	5.1 Subtyping
	5.2 Inheritance
	5.3 Type Abstraction

	6. TEACHING SUBTYPING BEFORE INHERITANCE
	6.1 Teaching Subtyping
	6.2 Teaching Inheritance
	6.3 Students Feedback

	7. CONCLUSION
	8. REFERENCES

	PPPJ06-ImprovingQualityOfProgrammingEducationByOnlineAssessment.pdf
	OBJECTIVES
	AUTOMATIC ASSESSMENT OF JAVA PROGRAMS
	Functional Tests
	Combining Tests

	EXAMPLE
	TWO VERSIONS
	EVALUATION
	FUTURE WORK & CONCLUSION
	REFERENCES

