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Abstract

The elliptic sinh-Gordon equation arises in the context of particular surfaces of constant
mean curvature. With the help of differential geometric considerations the space of peri-
odic solutions is parametrized by means of spectral data consisting of a Riemann surface
Y and a divisor D. It is investigated if the space Mp

g of real periodic finite type solutions
with fixed period p can be considered as a completely integrable system (Mp

g ,Ω, H2)
with a symplectic form Ω and a series of commuting Hamiltonians (Hn)n∈N0 . In partic-
ular we relate the gradients of these Hamiltonians to the Jacobi fields (ωn)n∈N0 from the
Pinkall-Sterling iteration. Moreover, a connection between the symplectic form Ω and
Serre duality is established.

Zusammenfassung

Die elliptische sinh-Gordon-Gleichung steht im Zusammenhang zu bestimmten Flächen
konstanter mittlerer Krümmung. Mithilfe differentialgeometrischer Überlegungen lässt
sich der Raum der periodischen Lösungen durch Spektraldaten, bestehend aus einer Rie-
mannschen Fläche Y und einem Divisor D, parametrisieren. Es wird untersucht, ob der
Raum Mp

g der reellen periodischen Lösungen von endlichem Typ mit festgehaltener Peri-
ode p als ein vollständig integrables System (Mp

g ,Ω, H2) mit einer symplektischen Form Ω
und einer Folge kommutierender Hamiltonfunktionen (Hn)n∈N0 aufgefasst werden kann.
Insbesondere werden die Gradienten dieser Hamiltonfunktionen mit den Jacobifeldern
(ωn)n∈N0 aus der Pinkall-Sterling-Iteration in Beziehung gebracht. Außerdem wird eine
Verbindung zwischen der symplektischen Form Ω und der Serre-Dualität hergestellt.
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1 Introduction

1.1 The sinh-Gordon equation and spectral data

The elliptic sinh-Gordon equation is given by

∆u+ 2 sinh(2u) = 0, (1.1.1)

where ∆ is the Laplacian of R2 with respect to the Euclidean metric and u : R2 → R is a
twice partially differentiable function which we assume to be real.

The sinh-Gordon equation arises in the context of particular surfaces of constant mean
curvature (CMC) since the function u can be extracted from the conformal factor e2u of a
conformally parameterized CMC surface. The study of CMC tori in 3-dimensional space
forms was strongly influenced by algebro-geometric methods (as described in [5]) that
led to a complete classification by Pinkall and Sterling [45] for CMC-tori in R3. More-
over, Bobenko [8, 9] gave explicit formulas for CMC tori in R3, S3 and H3 in terms of
theta-functions and introduced a description of such tori by means of spectral data. We
also refer the interested reader to [10, 11]. Every CMC torus yields a doubly periodic
solution u : R2 → R of the sinh-Gordon equation. With the help of differential geometric
considerations one can associate to every CMC torus a hyperelliptic Riemann surface Y ,
the so-called spectral curve, and a holomorphic line bundle E on Y (the so-called eigenline
bundle) that is represented by a certain divisor D. Hitchin [30], and Pinkall and Sterling
[45] independently proved that all doubly periodic solutions of the sinh-Gordon equation
correspond to spectral curves of finite genus. We say that solutions of (1.1.1) that corre-
spond to spectral curves of finite genus are of finite type.

In the present setting we will relax the condition on the periodicity and demand that u is
only simply periodic with a fixed period. After rotating the domain of definition we can
assume that this period is real. This enables us to introduce simply periodic Cauchy data
with fixed period p ∈ R consisting of a pair (u, uy) ∈ C∞(R/p) × C∞(R/p). Moreover,
we demand that the corresponding solution u of the sinh-Gordon equation is of finite type.

In the following we will see that a finite type solution of the sinh-Gordon equation is
uniquely determined by its spectral data (Y,D) and investigate how Y and D fit into the
description of the sinh-Gordon equation as a completely integrable system. In order to
understand the features that are provided by completely integrable system we introduce
a simple example of such a system in the following section.
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Chapter 1. Introduction

1.2 An example of a completely integrable system

We want to treat the sinh-Gordon equation (1.1.1) as a completely integrable system
(compare with [23]) and illustrate its features by introducing the simplest example, i.e.
the symplectic manifold (R2n,Ω) with coordinates (q, p) = (q1, . . . , qn, p1, . . . , pn) (see
[3]). The coordinates q and p are often called positions and moments. The corresponding
symplectic form Ω is

Ω =
n∑
i=1

dqi ∧ dpi,

i.e. for v, w ∈ R2n ' TpR2n (with p ∈ R2n) one has

Ω(v, w) = 〈v, Jw〉R2n with J =
(

0 1

−1 0

)
.

For a smooth map H : R2n → R, the so-called Hamiltonian, one can consider its gradient
∇H and define the Hamiltonian vector field as

XH := J∇H.

Given H : R2n → R we study the equations of motion given by

d

dt

(
q
p

)
= XH(q, p) = J∇H(q, p)

or written out in coordinates

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
.

We immediately note that H is constant along the integral curves (q(t), p(t)) for the
Hamiltonian vector field XH since there holds

d

dt
H(q(t), p(t)) = 〈∇H(q, p), ddt(q, p)〉R2n = 〈∇H(q, p), J∇H(q, p)〉R2n = 0

due to the skew-symmetry of J . A function f : R2n → R is called integral of motion for the
Hamiltonian system (R2n,Ω, H) if f is preserved under the flow ΦXH of the Hamiltonian
vector field XH . Expanding this condition leads to

ḟ = 〈∇f, ddt(q, p)〉R2n = 〈∇f, J∇H〉R2n
!= 0.

In particular the HamiltonianH is an integral of motion. We define {f, g} := 〈∇f, J∇g〉R2n

as the Poisson bracket of two smooth functions f, g : U ⊂ R2n → R and say that f and
g are in involution if {f, g} = 0 holds. Thus a function f is an integral of motion if and
only if f and H are in involution, i.e. {f,H} = 0.

The Hamiltonian system (R2n,Ω, H) is called completely integrable in the sense of Liouville
if there exist functions f1 = H, f2, . . . , fn such that
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1.3 What is done in this work

(i) the functions f1, . . . , fn are pairwise in involution, i.e. {fi, fj} = 0 for 1 ≤ i, j ≤ n,

(ii) their gradients ∇f1, . . . ,∇fn are linearly independent and

(iii) their Hamiltonian vector fields Xf1 , . . . , Xfn are complete.

Considering the map f := (f1, . . . , fn) : U → Rn for an open neighborhood U ⊂ R2n one
can show that f is a submersion. Moreover, every value is a regular value and thus every
non-empty leaf

M c := f−1[c] = {(q, p) ∈ U | f(q, p) = c}

is a smooth manifold of dimension n. Therefore U ⊂ R2n is foliated into these leaves.
Now we arrive at the following

Theorem 1.1 (Liouville). Let U ⊂ R2n be an open subset, x0 ∈ U a point and f :=
(f1, . . . , fn) : U → Rn a smooth map such that

(i) the functions f1, . . . , fn are pairwise in involution, i.e. {fi, fj} = 0 for 1 ≤ i, j ≤ n,

(ii) their gradients ∇f1, . . . ,∇fn are linearly independent on N := f−1[f(x0)] and

(iii) their Hamiltonian vector fields Xf1 , . . . , Xfn restricted to N are complete.

Then the connected components of N are homeomorphic to Rn/Γ, where Γ is a discrete
subgroup of Rn.

If the rank of Γ equals n we see that the connected components of N are homeomorphic
to

Rn/Γ ' Rn/Zn ' (R/Z)n ' (S1)n,

i.e. in that case they correspond to (compact) n-dimensional tori. If in addition N is
connected we get N ' (S1)n.

Thus we see that a completely integrable system around a compact connected leaf is
foliated into an n-paramater family of invariant tori.

1.3 What is done in this work

The main goal of this thesis is to work out the details that help us to identify the sinh-
Gordon equation as a completely integrable system. In particular we will recognize the
features that appeared in the simplest example (R2n,Ω, H). We now give a short overview
of the content of the various chapters.

In the second chapter we are going through some notational conventions as well as the
basic concepts of differential geometry such as the first and second fundamental form or
equivalently the three quantities u, Q and H, that is the conformal factor u, the Hopf
differential Q and the mean curvature H.

3



Chapter 1. Introduction

Since the hyperelliptic spectral curve Y can be compactified in the finite type setting
this chapter also deals with compact Riemann surfaces and describes the Riemann-Roch
Theorem in terms of divisors and sheafs. We also consider Lie groups and mainly reduce
our attention to the Lie group SU(2) ' S3 and its Lie algebra su(2). Moreover, the concept
of moving frames and Lax pairs is elucidated and the relationship between solutions F of
the system

Fz = FU, Fz̄ = FV

with the compatibility condition Uz̄ − Vz − [U, V ] = 0 and solutions u to the Gauss and
Codazzi equations

2uzz̄ + 2e2u(1 +H2)− 1
2
QQe−2u = 0, Qz̄ = 2Hze

2u

for given Q and H ≡ const is investigated. This leads to the introduction of a C∗-family
of flat connections d + αλ and the question how the connection form αλ behaves under
certain parameter transformations.

The third chapter introduces spectral data (Y,D) for periodic finite type solutions of the
sinh-Gordon equation consisting of a spectral curve Y and a divisor D. To do so we study
the monodromy Mλ of the λ-dependent frame Fλ and consider its asymptotic expansion
around the points λ = 0 and λ = ∞. At these points Mλ has essential singularities and
it turns out that this expansion carries a lot of information concerning the solution of the
sinh-Gordon equation.
Instead of taking a periodic u defined on R2 we will study a pair (u, uy) ∈ C∞(R/p) ×
C∞(R/p) with fixed period p ∈ R that corresponds to u if one considers the coordinate
y as a flow parameter. Setting y = 0 in αλ(x, y) one obtains the matrix Uλ(x). Now it is
possible to define finite type Cauchy data (u, uy) ∈ C∞(R/p)×C∞(R/p) by introducing
polynomial Killing fields and the appropriate space of potentials Pg. These potentials will
be used to parameterize the finite type solutions.
Since the monodromy Mλ and the initial value ξλ ∈ Pg of the corresponding polynomial
Killing field ζλ commute, one can introduce two equivalent definitions of the spectral
curve Y (u, uy) that encodes the eigenvalues µ of Mλ and ν of ξλ as functions on Y . In
order to describe Mλ or ξλ completely one also has to encode the λ-dependent eigenlines
of Mλ and ξλ. Since [Mλ, ξλ] = 0 one can find eigenlines that diagonalize Mλ and ξλ
simultaneously. This will lead to the definition of the holomorphic eigenline bundle or
equivalently to the divisor D(u, uy) on Y (u, uy).

In the fourth chapter we will focus on the inverse problem that yields a bijective map
(u, uy) 7→ (Y (u, uy), D(u, uy)). In a first step we recall the Krichever construction that
leads to linear flows on the Jacobi variety Jac(Y ) of a spectral curve Y . It will be
investigated how one can obtain periodic (isospectral) flows and if there exists a suitable
basis of H1(Y,O), the Lie algebra of Jac(Y ). Moreover, we will see which condition arises
if one translates the reality condition on Mλ or equivalently on ξλ to this setting.
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1.3 What is done in this work

We will also investigate the Baker-Akhiezer function and its analytic properties in order
to reconstruct the x-dependent eigenvectors of Mλ(x) = F−1

λ (x)MλFλ(x) and ζλ(x).
With this tool at hand we are able to reconstruct the Cauchy data (u, uy) from the spectral
data (Y (u, uy), D(u, uy)) and thus arrive at the bijective map

(u, uy) 7→ (Y (u, uy), D(u, uy))

that establishes a one-to-one correspondence between Cauchy data (u, uy) and spectral
data (Y,D).

The fifth chapter deals with isospectral and non-isospectral deformations of the spectral
data (Y,D). On the one hand we study non-isospectral (but isoperiodic) deformations
of spectral curves Y of genus g and will show that the space of such curves is a smooth
g-dimensional manifold. This will lead to the conclusion that the space of Cauchy data
(u, uy) that leads to such smooth spectral curves Y is a smooth 2g-dimensional manifold.
Moreover, we will identify the space of such deformations with holomorphic one-forms on
the spectral curve Y .
Since the map (u, uy) 7→ (Y (u, uy), D(u, uy)) is bijective we can fix Y and ask for Cauchy
data (u, uy) with Y (u, uy) = Y . This leads to the isospectral set Iso(Y ). By introducing
an isospectral group action one can show that Iso(Y ) is parameterized by a g-dimensional
torus. This degree of freedom corresponds to the degree of freedom for the movement of
the divisor D in the Jacobi variety Jac(Y ). Moreover, the infinitesimal deformations of
ξλ and Uλ that result from that isospectral group action are investigated.

The sixth chapter combines the third, fourth and fifth chapter and deals with the symplec-
tic form Ω on the 2g-dimensional phase space Mp

g as well as the Hamiltonian formalism
for the sinh-Gordon hierarchy, that is induced by a Hamiltonian H2 : Mp

g → R.
As a first step we introduce the notion of a completely integrable Hamiltonian sys-
tem and define the phase space Mp

g as the set of finite type Cauchy data (u, uy) ∈
C∞(R/p)×C∞(R/p) such that the resulting spectral curve Y (u, uy) obeys some special
conditions. Moreover, we define a series of functions (Hn)n∈N0 (compare with [44]) on
the phase space that also contains the Hamiltonian H2 : Mp

g → R. We will relate this
series to the series (ωn)n∈N0 of solutions of the linearized sinh-Gordon equation that are
obtained via the Pinkall-Sterling iteration (see [45] and [36]) and show that (Hn)n∈N0 are
involutive integrals of motion for the Hamiltonian system (Mp

g ,Ω, H2).
Moreover, we introduce an inner product on the loop Lie algebra Λrsl2(C) and use this
inner product to establish a connection between the symplectic form Ω and Serre duality
as it was done in [47] for the non-linear Schrödinger operator. This part contains the
main results of the thesis.

Chapter seven summarizes the most important results of this thesis and gives an outlook
on possible interesting further research.
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2 Preliminaries

2.1 Surface theory in S3

We want to recall some basic facts from surface theory and follow the terminology intro-
duced in [22]. In the following, we will consider 2-dimensional submanifolds of

S3 = {x ∈ R4 | ‖x‖ = 1},

where S3 is equipped with the metric defined by restricting the metric 〈·, ·〉R4 of R4 to the
3-dimensional tangent spaces of S3. We will investigate conformal immersions

f : M → S3,

where M is an arbitrary Riemann surface. The smooth function f will for now be con-
sidered as R4-valued with ‖f‖2 = 1.

Definition 2.1. A Riemann surface is a pair (M,Σ), consisting of a connected two-
dimensional manifold M with a complex structure Σ, that is an equivalence class of bi-
holomorphic equivalent collections of charts, that cover M .

In the following we will describe the intrinsic geometry of a surface by its first fundamental
form and the extrinsic geometry of an immersed surface by its second fundamental form
respectively.

Definition 2.2. Let f : M → S3 be an immersion. The induced metric g : TpM×TpM →
R is defined by

g(v, w) = 〈df(v), df(w)〉R4

and is called the first fundamental form. Both g and ds2 are commonly used notations.

If (x, y) is a coordinate for M and f is an immersion, a basis for TpM can be chosen as

fx =
(
∂f

∂x

)
p

, fy =
(
∂f

∂y

)
p

.

Then the metric g is represented by the matrix

gp =
(
g11 g12

g21 g22

)
=
(
〈fx, fx〉 〈fx, fy〉
〈fy, fx〉 〈fy, fy〉

)
and one has with the identification TpM ' R2 via the basis (fx, fy)

gp(v, w) = vt
(
〈fx, fx〉 〈fx, fy〉
〈fy, fx〉 〈fy, fy〉

)
w.

7



Chapter 2. Preliminaries

Remark 2.3. The map f : M → S3 is an immersion ⇔ the matrix gp has positive
determinant for all p.

Definition 2.4. An immersion f : M → S3 is conformal if there exists a function
u : M → R, called the conformal factor, such that

g(v, w) = vt
(
e2u 0
0 e2u

)
w = e2u〈v, w〉R2 , v, w ∈ TpM.

Now we turn to the extrinsic geometry of the immersed surface. The unit normal vector
field to the surface is N := eN

‖ eN‖ , where Ñ is given by

Ñ :=
4∑
i=1

det(ei, f, fx, fy) · ei with an orthonormal basis e1, . . . , e4 of R4,

i.e. Ñ is the vector in R4 that is perpendicular to f, fx and fy at every point of the surface.
Note that N is a globally defined object because M and S3 are orientable manifolds.

Definition 2.5. The symmetric bilinear map b : TpM × TpM → R defined by

b(v, w) = 〈d2f(v, w), N〉R4

is called the second fundamental form.

Due to the definition of N we get 〈df,N〉 = 0 and therefore by Leibniz’s rule

b = 〈d2f,N〉 = −〈df, dN〉.

Again the map b can locally be represented by a matrix

bp =
(
b11 b12

b21 b22

)
=
(
〈fxx, N〉 〈fxy, N〉
〈fyx, N〉 〈fyy, N〉

)
= −

(
〈fx, Nx〉 〈fx, Ny〉
〈fy, Nx〉 〈fy, Ny〉

)
Now let z = x+ iy and z̄ = x− iy be local complex coordinates on M and define

∂
∂z := 1

2( ∂
∂x − i

∂
∂y ) and ∂

∂z̄ := 1
2( ∂
∂x + i ∂∂y ).

Let us rephrase the above objects with respect to these complex coordinates. In case of
a conformal immersion f , one can write the first fundamental form as

g = e2udzdz̄ = 2〈fz, fz̄〉dzdz̄

and for the second fundamental form one obtains (in general)

b = Qdz2 + H̃dzdz̄ +Qdz̄2,

where Q is the complex-valued function

Q :=
1
4

(b11 − b22 − ib12 − ib21) = 〈fzz, N〉

and H̃ is the real valued function

H̃ :=
1
2

(b11 + b22) = 2〈fzz̄, N〉.

8



2.1 Surface theory in S3

Definition 2.6. The quadratic differential Qdz2 is called the Hopf differential of the
immersion f .

Definition 2.7. The linear map S : TpM → TpM given by

S := g−1
p · bp

is called the shape operator of the immersion f .

The eigenvalues k1, k2 and corresponding eigenvectors of the shape operator S are the
principal curvatures and principal curvature directions of the surface f(M) at f(p). We
can now define the Gauss and mean curvature using the objects introduced above.

Definition 2.8. Let f : M → S3 be an immersion and S = g−1b the corresponding shape
operator. The determinant K := det(S) of the shape operator S is the Gauss curvature
and H := 1

2 tr(S) is the mean curvature of the immersion. The immersion f is CMC
(i.e. of constant mean curvature) if H is constant, i.e. H ≡ const.

Remark 2.9. In case of a conformal immersion one gets H = e−2uH̃.

Definition 2.10. Let M be a 2-dimensional manifold. The umbilic points of an im-
mersion f : M → S3 are the points where the two principal curvatures are equal.

The Hopf differential Qdz2 encodes some important information. Besides the fact that
the investigated surface will be CMC if and only if Q is holomorphic, the Hopf differential
can also be used to characterize the umbilic points of that surface.

Proposition 2.11. If M is a Riemann surface and f : M → S3 is a conformal immersion,
then p ∈M is an umbilic point if and only if Qp = 0.

Proof. Omitting the subscript p the shape operator corresponding to the conformal im-
mersion f is given by

S = g−1b =
1
e2u

(
H +Q+ Q̄ i(Q− Q̄)
i(Q− Q̄) H −Q− Q̄

)
with respect to the basis fx and fy of each tangent space of f(M). The two principal
curvatures are then the two eigenvalues of this self-adjoint operator, i.e. the solutions of

e4u det(S − k1) = (H +Q+ Q̄− k)(H −Q− Q̄− k) + (Q− Q̄)2

= ((H − k) + (Q+ Q̄))((H − k)− (Q+ Q̄))− (Q− Q̄)2

= (H − k)2 − (Q+ Q̄)2 − (Q− Q̄)2

= (H − k)2 − 4|Q|2 = 0,

and thus one obtains
k1 = H + 2|Q|, k2 = H − 2|Q|.

Finally one gets k1 = k2 ⇔ |Q| = 0⇔ Q = 0 and the result follows.
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Chapter 2. Preliminaries

2.2 Compact Riemann surfaces

In this section we will focus on divisors and the Riemann-Roch Theorem for compact
Riemann surfaces that will be useful tools in the following chapters. Most results and
terminology are taken from [20] and [21].

Definition 2.12. Let Y be a Riemann surface. A divisor on Y is a map

D : Y → Z

such that for every compact subset K ⊂ Y there are only finitely many points y ∈ K
with D(y) 6= 0. With respect to addition the set of all divisors on Y is an abelian group,
denoted by Div(Y ).
For D,D′ ∈ Div(Y ) we say D ≤ D′ if D(y) ≤ D′(y) for every y ∈ Y .

For a Riemann surface Y letM(Y ) denote the field of meromorphic functions on Y . Now
suppose that U is an open subset of Y . For a meromorphic function f ∈M(U) and x ∈ U
define

ordx(f) :=


0, if f is holomorphic and non-zero at x,
k, if f has a zero of order k at x,
−k, if f has a pole of order k at x,
∞, if f is identically zero in a neighborhood of x.

Thus for any meromorphic function f ∈M(Y )\{0}, the mapping y 7→ ordy(f) is a divisor
on Y . It is called the divisor of f and will be denoted by (f).

The function f is said to be a multiple of the divisor D if (f) ≥ D. Then f is holomorphic
if and only if (f) ≥ 0.

For a meromorphic 1-form ω one can define its order at a point x ∈ U as follows. Choose
a coordinate neighborhood (V, z) of x. Then on V ∩ U one has ω = fdz, where f is a
meromorphic function. Set ordx(ω) = ordx(f), this is independent of the choice of (V, z).
Again the mapping y 7→ ordy(ω) is a divisor on Y , denoted by (ω).

A divisor D ∈ Div(Y ) is called a principal divisor if there exists a function f ∈M(Y )\{0}
such that D = (f). Two divisors D,D′ ∈ Div(Y ) are said to be equivalent if their
difference D−D′ is a principal divisor. A canonical divisor is the divisor of a meromorphic
1-form ω.

Definition 2.13. For a compact Riemann surface Y let

deg : Div(Y )→ Z, D 7→
∑
y∈Y

D(y).

For D ∈ Div(Y ) the integer deg(D) is called the degree of the divisor D.
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The map deg : Div(Y ) → Z is a group homomorphism and deg(f) = 0 for any principal
divisor (f) on a compact Riemann surface since a meromorphic function has as many
zeros as poles.

Before we can state the Riemann-Roch Theorem we have to introduce the notion of a
sheaf and of its corresponding cohomology.

Definition 2.14. Suppose Y is a topological space and I is the system of open sets in Y .
A presheaf of abelian groups on Y is a pair (F , ρ) consisting of

1. a family F = (F(U))U∈I of abelian groups,

2. a family ρ = (ρUV )U,V ∈I,V⊂U of group homomorphisms (called restriction homomor-
phisms)

ρUV : F(U)→ F(V ), where V is open in U,

with the following properties:

ρUU = idF(U) for every U ∈ I,
ρVW ◦ ρUV = ρUW for W ⊂ V ⊂ U.

Instead of ρUV (f) for f ∈ F(U) one writes f |V . We can now define a sheaf.

Definition 2.15. A presheaf F on a topological space Y is called a sheaf if for every
open set U ⊂ Y and every family of open subsets Ui ⊂ U, i ∈ I, with U =

⋃
i∈I Ui, the

following conditions are satisfied:

(S1) If f, g ∈ F(U) are elements such that f |Ui = g|Ui for every i ∈ I, then f = g.

(S2) Given elements fi ∈ F(Ui), i ∈ I, obeying

fi|Ui ∩ Uj = fj |Ui ∩ Uj for all i, j ∈ I,

then there exists f ∈ F(U) such that f |Ui = fi for every i ∈ I.

(S1) and (S2) are called the sheaf axioms.

Definition 2.16. Let Y be a topological space and F a sheaf of abelian groups on Y . Let
U be an open covering of Y , i.e. a family U = (Ui)i∈I of open subsets of Y such that⋃
i∈I Ui = Y . For q = 0, 1, 2, . . . define the qth cochain group of F , with respect to U ,

as
Cq(U ,F) :=

∏
(i0,...,iq)∈Iq+1

F(Ui0 ∩ · · · ∩ Uiq).

The elements of Cq(U ,F) are called q-cochains.
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Chapter 2. Preliminaries

Now define coboundary operators

δ : C0(U ,F)→ C1(U ,F)
δ : C1(U ,F)→ C2(U ,F)

as follows:

1. For (fi)i∈I ∈ C0(U ,F) let δ((fi)i∈I) = (gij)i,j∈I where

gij := fj − fi ∈ F(Ui ∩ Uj).

2. For (fij)i,j∈I ∈ C1(U ,F) let δ((fij)i,j∈I) = (gijk) where

gijk := fjk − fik + fij ∈ F(Ui ∩ Uj ∩ Uk).

These coboundary operators are group homomorphisms. Thus we arrive at

Definition 2.17. Let

Z1(U ,F) := Ker(C1(U ,F) δ−→ C2(U ,F)),

B1(U ,F) := Im(C0(U ,F) δ−→ C1(U ,F)).

The elements of Z1(U ,F) are called 1-cocycles and those of B1(U ,F) are called 1-
coboundaries.

Definition 2.18. The quotient group

H1(U ,F) := Z1(U ,F)/B1(U ,F)

is called the first cohomology group with coefficients in F and with respect to the
covering U .

An open covering B = (Vk)k∈K is finer with respect to the covering U = (Ui)i∈I , denoted
by B < U , if every Vk is contained in at least one Ui. Thus there is a mapping τ : K → I
such that

Vk ⊂ Uτ(k) for every k ∈ K.

We can now define a mapping

tUB : Z1(U ,F)→ Z1(B,F)

in the following way. For (fij) ∈ Z1(U ,F) let tUB((fij)) = (gkl) where

gkl := fτ(k),τ(l)|Vk ∩ Vl for every k, l ∈ K.

This mapping induces a homomorphism of the cohomology groups (also denoted by tUB)
and we are finally ready to define H1(Y,F).
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2.2 Compact Riemann surfaces

Definition 2.19. Given three open coverings such that W < B < U , one has

tBW ◦ tUB = tUW .

Now define the following equivalence relation ∼ on the disjoint union of the H1(U ,F),
where U runs through all open coverings of Y , for two cohomology classes ξ ∈ H1(U ,F),
η ∈ H1(U ′,F) by

ξ ∼ η :⇔ ∃ open covering B with B < U and
B < U ′ such that tUB(ξ) = tU

′
B (η).

The set of equivalence classes is called the first cohomology group of Y with coefficients
in the sheaf F :

H1(Y,F) =

(⋃
U
H1(U ,F)

)
/ ∼ .

The following theorem shows how one obtains H1(Y,F) by using a single open covering
of Y .

Theorem 2.20 (Leray, [21], Theorem 12.8). Let F be a sheaf of abelian groups on a
topological space Y and let U = (Ui)i∈I be an open covering of Y such that H1(Ui,F) = 0
for all i ∈ I. Then one has

H1(Y,F) ' H1(U ,F).

Such an open covering U is called a Leray covering with respect to F .

Now suppose D is a divisor on the Riemann surface Y . For any open set U ⊂ Y define
OD(U) to be the set of all meromorphic functions on U which are multiples of the divisor
−D, i.e.

OD(U) := {f ∈M(U) | ordx(f) ≥ −D(x) for every x ∈ U}.
Together with the natural restriction mappings, OD is a sheaf. In the special case of
the zero divisor D ≡ 0 one has O0 =: O, the sheaf of holomorphic functions. Note that
H1(Y,OD) and H0(Y,OD) := OD(Y ) are vector spaces.

We recall the definition of the genus of a compact Riemann surface before we state the
theorem that is central in the theory of compact Riemann surfaces.

Definition 2.21. For a compact Riemann surface Y ,

g := dimH1(Y,O)

is called the genus of Y .

Theorem 2.22 (The Riemann-Roch Theorem, [21], Theorem 16.9). Suppose D is a
divisor on a compact Riemann surface Y of genus g. Then H0(Y,OD) and H1(Y,OD)
are finite dimensional vector spaces and

dimH0(Y,OD)− dimH1(Y,OD) = 1− g + degD.
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Definition 2.23. The non-negative integer

i(D) := dimH1(Y,OD)

is called the index of speciality of the divisor D.

We can reformulate the Riemann-Roch Theorem in the following form

dimH0(Y,OD) = 1− g + degD + i(D).

We will now state the Serre Duality Theorem that permits a simpler interpretation of the
cohomology groups H1(Y,OD) in terms of differential forms.

For this purpose let Y be a compact Riemann surface. For any divisor D ∈ Div(Y ) we
denote by ΩD the sheaf of meromorphic 1-forms which are multiples of −D. Thus for
any open set U ⊂ Y the linear space ΩD(U) consists of all differential forms ω such that
ordx(ω) ≥ −D(x) for every x ∈ U .

Theorem 2.24 (The Duality Theorem of Serre, [21], Theorem 17.9). For any divisor D
on a compact Riemann surface Y the map

iD : H0(Y,Ω−D)→ H1(Y,OD)∗, ω 7→ iD(ω)

with
iD(ω) : H1(Y,OD)→ C, ξ 7→ iD(ω)(ξ) = Res(ξω)

is an isomorphism of vector spaces, i.e. H0(Y,Ω−D) ' H1(Y,OD)∗.

Remark 2.25. From the Serre Duality Theorem one immediately obtains

dimH1(Y,OD) = dimH0(Y,Ω−D).

In particular for D = 0 one has

g = dimH1(Y,O) = dimH0(Y,Ω).

Thus the genus of a compact Riemann surface Y is equal to the maximum number of
linearly independent holomorphic 1-forms on Y . One can now reformulate the Riemann-
Roch Theorem as follows:

dimH0(Y,O−D)− dimH0(Y,ΩD) = 1− g − degD.

Theorem 2.26 ([21], Theorem 17.12). The divisor of a non-vanishing meromorphic 1-
form ω on a compact Riemann surface of genus g satisfies

deg(ω) = 2g − 2.

Thus the canonical divisor K satisfies deg(K) = deg(ω) = 2g − 2.
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2.3 Lie groups

2.3 Lie groups

In order to understand the concept of moving frames and the following considerations,
one has to recall some basic facts about Lie groups. We will also turn to the description
of S3 via the Lie group SU(2).

Definition 2.27. Let G be a Lie group. For g ∈ G we consider the maps of left and right
multiplication by g

Lg : G→ G, h 7→ gh,

Rg : G→ G, h 7→ hg.

A vector field X : G→ TG is called left-invariant, if

dLg ◦X = X ◦ Lg for all g ∈ G.

With the above definition it follows that left-invariant vector fields are uniquely deter-
mined through their values at the identity e, since

X(g) = deLgX(e).

Denoting the linear space of left-invariant vector fields by ΓL(G) one obtains the
following vector space isomorphism

ΓL(G) → TeG

X 7→ X(e)

with inverse map given by TeG 3 ve 7→ X ∈ ΓL(G), X(g) := deLg(ve).

Definition 2.28. The Lie algebra g associated with a Lie group G is the tangent space
of G at the identity e, i.e. g = TeG, together with the Lie bracket operation g × g → g

given by

[X,Y ](f) = X(Y (f))− Y (X(f)) for X,Y ∈ g and smooth f : G→ R.

Here the vector field X acts on the function f by X(f) := df(X).

Thus the left-invariant vector fields, equipped with the commutator [·, ·] correspond to g.
Moreover, the tangent bundle of a Lie group is trivial:

TG → G× g

vg 7→ (g, dgL−1
g (vg)),

where the inverse map of this isomorphism is given by (g, ve) 7→ deLg(ve). We can now
define the Maurer-Cartan form.

15



Chapter 2. Preliminaries

Definition 2.29. The (left) Maurer-Cartan form is the g-valued 1-form g 7→ θg with

θg : TG → g

vg 7→ dgL
−1
g (vg).

This is often written as θ = g−1dg.

For two g-valued 1-forms α, β we define the g-valued 2-form [α ∧ β] by

[α ∧ β](X,Y ) := [α(X), β(Y )]− [α(Y ), β(X)]

for vector fields X,Y . Now we arrive at the following well-known

Proposition 2.30. The Maurer-Cartan form satisfies the equation

2dθ + [θ ∧ θ] = 0.

It is called the structure equation of or the Maurer-Cartan equation on g.

Proof. First we note that
dθ = d(g−1) ∧ dg.

To compute d(g−1), consider the function e identically equal to the unit e ∈ G and note
that it equals the product of g and g−1. Then we have

0 = d(e) = d(g−1g) = d(g−1)g + g−1dg.

So, d(g−1) = −g−1(dg)g−1 and thus

dθ = −g−1(dg)g−1 ∧ dg = −(g−1dg) ∧ (g−1dg) = −θ ∧ θ =: −1
2

[θ ∧ θ].

We state the following proposition that will be useful later on.

Proposition 2.31. For a map f : M → G, the pullback ω := f?θ also satisfies the
Maurer-Cartan equation, i.e.

2dω + [ω ∧ ω] = 0.

Proof. A short calculation yields

2dω + [ω ∧ ω] = 2d(f?θ) + [f?θ ∧ f?θ] = 2f?dθ + f?[θ ∧ θ]
= f?(2dθ + [θ ∧ θ]) = 0

and thus the claim is proved.
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The Lie groups SL(2,C) and SU(2). Let us consider the Lie group SL(2,C) := {A ∈
M2×2(C) | det(A) = 1}. The Lie algebra sl2(C) := {B ∈M2×2(C) | tr(B) = 0} of SL(2,C)
is spanned by ε+, ε−, ε with

ε+ =
(

0 1
0 0

)
, ε− =

(
0 0
1 0

)
, ε =

(
i 0
0 −i

)
.

Remark 2.32. Another commonly used basis for sl2(C) is given by the Cartan-basis

e =
(

0 1
0 0

)
, f =

(
0 0
1 0

)
, h =

(
1 0
0 −1

)
.

It will be convenient to identify S3 with the Lie group

SU(2) = {A ∈M2×2(C) | det(A) = 1, Āt = A−1}

=
{(

z −w̄
w z̄

) ∣∣∣ z, w ∈ C with |z|2 + |w|2 = 1
}
' S3.

The Lie algebra corresponding to SU(2) is denoted by su(2) and a direct computation
shows that

su(2) = {B ∈M2×2(C) | tr(B) = 0, B̄t = −B}

=
{(

ix4 −x3 + ix2

x3 + ix2 −ix4

) ∣∣∣ x2, x3, x4 ∈ R
}
' R3.

The identification S3 ' SU(2) results from the following proposition (see [22], Chap. 5).

Proposition 2.33. The map Φ : R4 → R4
Mat given by

x 7→ Φ(x) =: X =
(
x1 + ix4 −x3 + ix2

x3 + ix2 x1 − ix4

)
is an isometry, i.e. 〈x, y〉R4 = 〈Φ(x),Φ(y)〉R4

Mat
for all x, y ∈ R4. Here the inner product

〈·, ·〉R4
Mat

on R4
Mat is given by

〈X,Y 〉R4
Mat

:= 1
2 tr(XY t), X, Y ∈ R4

Mat.

Remark 2.34. If we consider the complex bilinear extension of 〈·, ·〉R4 to C4 the inner
product 〈·, ·〉R4

Mat
is replaced by (compare [22], Chap. 5)

〈X,Y 〉 := 1
2 tr(Xσ2Y

tσ2) with σ2 =
(

0 −i
i 0

)
.

Proof. Consider x, y ∈ R4 and their images X = Φ(x), Y = Φ(y) ∈ R4
Mat. Then we get

〈Φ(x),Φ(y)〉R4
Mat

= 〈X,Y 〉R4
Mat

= 1
2tr(XY t)

=
1
2

tr
[(
x1 + ix4 −x3 + ix2

x3 + ix2 x1 − ix4

)(
y1 − iy4 y3 − iy2

−y3 − iy2 y1 + iy4

)]
= x1y1 + x2y2 + x3y3 + x4y4

= 〈x, y〉R4 .

This shows that Φ is an isometry and concludes the proof.
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Remark 2.35. Restricting Φ to the 3-sphere S3 one obtains the following commutative
diagram:

TS3

π1

��

dΦ // TSU(2)

π2

��
S3 Φ // SU(2)

Here π1, π2 denote the projections of the tangent bundle of S3 and SU(2) respectively.
Moreover, dΦ respects the metrics on TS3 and TSU(2) and there holds

〈v, w〉R4 = 〈dΦ(v), dΦ(w)〉R4
Mat

= 1
2 tr(α · βt) = −1

2 tr(α · β)

for v, w ∈ TxS3 and α := dΦ(v), β := dΦ(w) ∈ su(2).

2.4 The concept of moving frames and Lax pairs

Given a Riemann surface M with coordinates x, y we can introduce the so-called extended
frame for an immersion f : M → S3. Again, we follow the terminology introduced in [22].

Definition 2.36. Let f : M → S3 ⊂ R4 be an immersion of a Riemann surface M . The
map F̃ : M → SO(4) given by

p 7→ F̃(p) :=
(
f(p),

fx(p)
‖fx(p)‖

,
fy(p)
‖fy(p)‖

, N(p)
)

is called the (normalized) extended moving frame.

Given an immersion f : M → S3 ⊂ R4 of a Riemann surface with complex coordinates
z, z̄, we set F := (f, fz, fz̄, N) and can check that F satisfies the following integrability
conditions.

Proposition 2.37. Let f : M → S3 be a conformal immersion of a simply-connected
Riemann surface M and set F as the matrix F = (f, fz, fz̄, N). Then F is a solution of
the system

Fz = FU , Fz̄ = FV

with

U =


0 0 −1

2e
2u 0

1 2uz 0 −H
0 0 0 −2Qe−2u

0 Q 1
2He

2u 0

 , V =


0 −1

2e
2u 0 0

0 0 0 −2Qe−2u

1 0 2uz̄ −H
0 1

2He
2u Q 0

 .

The pair of matrices (U ,V) is called the Lax pair of the immersion f .
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Proof. The result is classical, but nevertheless we present a proof in order to fix notation.
Since f maps to S3 we have 〈f, f〉 = 1 and obtain 〈f, fz〉 = 0 = 〈f, fz̄〉 by Leibniz’s
rule. Moreover, the unit normal field N with 〈N,N〉 = 1 satisfies 〈f,N〉 = 0 as well as
〈fx, N〉 = 0 = 〈fy, N〉 due to its definition and thus 〈fz, N〉 = 0 = 〈fz̄, N〉. Since f is
conformal we have 〈fx, fy〉 = 0 and 〈fx, fx〉 = e2u = 〈fy, fy〉. This leads to 〈fz, fz〉 = 0 =
〈fz̄, fz̄〉 and 〈fz, fz̄〉 = 1

2e
2u. Moreover, we get

d
dz 〈f, fz〉 = 〈fz, fz〉+ 〈f, fzz〉 = 〈f, fzz〉

!= 0

as well as 〈fzz̄, fz〉 = 0 = 〈fz̄z, fz̄〉 and 〈fzz, fz〉 = 0 = 〈fz̄z̄, fz̄〉 by taking the corresponding
derivative of 〈fz, fz〉 = 0 = 〈fz̄, fz̄〉. Differentiation of 〈N, f〉 = 0 and 〈N,N〉 = 1 leads to

d
dz 〈N, f〉 = 〈Nz, f〉+ 〈N, fz〉 = 〈Nz, f〉

!= 0

and 〈Nz, N〉 = 0 = 〈Nz̄, N〉. Thus the derivatives of the entries of the extended frame
F = (f, fz, fz̄, N) with respect to z are given by

fz = 〈fz, f〉f + 〈fz, fz̄〉2
fz
e2u

+ 〈fz, fz〉2
fz̄
e2u

+ 〈fz, N〉N

= 〈fz, fz̄〉2
fz
e2u

,

fzz = 〈fzz, f〉f + 〈fzz, fz̄〉2
fz
e2u

+ 〈fzz, fz〉2
fz̄
e2u

+ 〈fzz, N〉N

= 〈fzz, fz̄〉2
fz
e2u

+ 〈fzz, N〉N,

fz̄z = 〈fzz̄, f〉f + 〈fzz̄, fz̄〉2
fz
e2u

+ 〈fzz̄, fz〉2
fz̄
e2u

+ 〈fzz̄, N〉N

= 〈fzz̄, f〉f + 〈fzz̄, N〉N,

Nz = 〈Nz, f〉f + 〈Nz, fz̄〉2
fz
e2u

+ 〈Nz, fz〉2
fz̄
e2u

+ 〈Nz, N〉N

= 〈Nz, fz̄〉2
fz
e2u

+ 〈Nz, fz〉2
fz̄
e2u

.

Note that fz̄, fz̄z̄ and Nz̄ are obtained by complex conjugation. Recall that the Hopf
differential Q and the mean curvature H are defined by

Q = 〈fzz, N〉, 1
2He

2u = 〈fzz̄, N〉.

If we differentiate 〈fz, f〉 = 0 with respect to z̄ we get 〈fzz̄, f〉 = −〈fz, fz̄〉 = −1
2e

2u and
differentiating the equation 〈fz, fz̄〉 = 1

2e
2u one obtains

〈fzz, fz̄〉 = e2uuz and 〈fz̄z̄, fz〉 = e2uuz̄.

Moreover, differentiation of the equations 〈N, fz〉 = 0 and 〈N, fz̄〉 = 0 leads to

〈Nz, fz〉 = −〈N, fzz〉 = −Q and 〈Nz, fz̄〉 = −〈N, fz̄z〉 = −1
2He

2u.

Equipped with all these equations one can directly check that the matrices U = F−1Fz
and V = F−1Fz̄ are of the form stated above.
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Lax pairs in terms of 2× 2 matrices. We will rework 4× 4 Lax pairs into 2× 2 Lax
pairs and make the following observation: Obviously the matrix F̃ ∈ SO(4) acts on R4.
Via the identification of R4 with R4

Mat (see Proposition 2.33) one obtains an identification
of F̃ with (F,G) ∈ SU(2)× SU(2)

x 7→ F̃x ←→ Φ(x) 7→ FΦ(x)G−1 = FXG−1 (2.4.1)

with
Fz = FU, Fz̄ = FV, Gz = GŨ, Gz̄ = GṼ (2.4.2)

or in a shorter form
dF = Fα, dG = Gβ

with
α = Udz + V dz̄ = F−1dF, β = Ũdz + Ṽ dz̄ = G−1dG.

With respect to the group action X 7→ FXG−1 the pair (F,G) is equivalent to the pair
(−F,−G) and therefore one obtains a double cover of SO(4) by the group SU(2)×SU(2).
This leads to the following commutative diagram:

SO(4)

φ1

��

// SU(2)× SU(2)/± (1,1)

φ2

��

R4 Φ // R4
Mat

Here φ1, φ2 denote the group actions as stated in (2.4.1). Finally the above identification
yields the map f via

f = F̃e1 ←→ f = FΦ(e1)G−1 = F1G−1 = FG−1.

We now calculate the new Lax pairs (U, V ) and (Ũ , Ṽ ) (compare with [22], Section 3.2).

Lemma 2.38. The double cover of SO(4) is SU(2)× SU(2) via the group action

X 7→ FXG−1

and the Lax pair (U ,V) is transformed to

U =
1
2

(
uz (H + i)eu

−2e−uQ −uz

)
, V =

1
2

(
−uz̄ 2e−uQ

−(H − i)eu uz̄

)
,

Ũ =
1
2

(
uz (H − i)eu

−2e−uQ −uz

)
, Ṽ =

1
2

(
−uz̄ 2e−uQ

−(H + i)eu uz̄

)
.
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Proof. Consider the Pauli matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

Let F, G ∈ SU(2) be the matrices that rotate Φ(e1) = 1,Φ(e2) = iσ1,Φ(e3) = −iσ2 and
Φ(e4) = iσ3 (see Proposition 2.33) to the (2 × 2)-matrix forms of f, fx|fx| ,

fy
|fy | and N via

the group action (2.4.1) of SU(2)× SU(2) on R4
Mat, i.e.

f = F1G−1,
fx
|fx|

= F (iσ1)G−1,
fy
|fy|

= F (−iσ2)G−1, N = F (iσ3)G−1.

We now define

U =
(
U11 U12

U21 U22

)
:= F−1Fz, V =

(
V11 V12

V21 V22

)
:= F−1Fz̄

Ũ =

(
Ũ11 Ũ12

Ũ21 Ũ22

)
:= G−1Gz, Ṽ =

(
Ṽ11 Ṽ12

Ṽ21 Ṽ22

)
:= G−1Gz̄

and can compute U, Ũ , V and Ṽ in terms of the conformal factor u, the mean curvature
H and the Hopf differential Q. Making use of

fx
|fx|

=
fx
eu

= F

(
0 i
i 0

)
G−1,

fy
|fy|

=
fy
eu

= F

(
0 −1
1 0

)
G−1

we get

fz = ieuF

(
0 1
0 0

)
G−1, fz̄ = ieuF

(
0 0
1 0

)
G−1.

The entries of the matrices U, V and Ũ , Ṽ will be derived in the following.

Differentiating fz̄ with respect to z leads to

fz̄z = uzfz̄ + ieu
(
Fz

(
0 0
1 0

)
G−1 + F

(
0 0
1 0

)
(G−1)z

)
= uzfz̄ + ieu

(
FU

(
0 0
1 0

)
G−1 − F

(
0 0
1 0

)
ŨG−1

)
= uzfz̄ + ieuF

(
U12 0

U22 − Ũ11 −Ũ12

)
G−1.

We now differentiate fz with respect to z̄:

fzz̄ = uz̄fz + ieu
(
Fz̄

(
0 1
0 0

)
G−1 + F

(
0 1
0 0

)
(G−1)z̄

)
= uz̄fz + ieu

(
FV

(
0 1
0 0

)
G−1 − F

(
0 1
0 0

)
Ṽ G−1

)
= uz̄fz + ieuF

(
−Ṽ21 V11 − Ṽ22

0 V21

)
G−1.
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Since fzz̄ = fz̄z we therefore obtain

uz̄fz + ieuF

(
−Ṽ21 V11 − Ṽ22

0 V21

)
G−1 = uzfz̄ + ieuF

(
U12 0

U22 − Ũ11 −Ũ12

)
G−1

and thus

uz̄fz − uzfz̄ = ieu
(
F

(
U12 0

U22 − Ũ11 −Ũ12

)
G−1 − F

(
−Ṽ21 V11 − Ṽ22

0 V21

)
G−1

)
,

implying

uz̄fz − uzfz̄ = ieuF

(
Ṽ21 + U12 −V11 + Ṽ22

U22 − Ũ11 −V21 − Ũ12

)
G−1.

Writing out the left part of the above equation yields

uz̄fz − uzfz̄ = ieuF

(
0 uz̄
−uz 0

)
G−1

= ieuF

(
Ṽ21 + U12 −V11 + Ṽ22

U22 − Ũ11 −V21 − Ũ12

)
G−1.

Hence we get

V11 − Ṽ22 + uz̄ = 0, U22 − Ũ11 + uz = 0, V21 = −Ũ12, Ṽ21 = −U12. (∗)

Computing fzz yields

fzz = uzfz + ieu
(
Fz

(
0 1
0 0

)
G−1 + F

(
0 1
0 0

)
(G−1)z

)
= uzfz + ieu

(
FU

(
0 1
0 0

)
G−1 − F

(
0 1
0 0

)
ŨG−1

)
= uzfz + ieuF

(
−Ũ21 U11 − Ũ22

0 U21

)
G−1.

There holds fzz = 2uzfz + QN (see Proposition 2.37) and with the formula N =
F (iσ3)G−1 we therefore obtain

2uzfz +QN = uzfz + ieuF

(
−Ũ21 U11 − Ũ22

0 U21

)
G−1,

thus

ieuF

(
−Ũ21 U11 − Ũ22

0 U21

)
G−1 = uzfz +QN

= ieuF

(
e−uQ uz

0 −e−uQ

)
G−1.
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This gives
U21 = Ũ21 = −e−uQ, U11 − Ũ22 − uz = 0. (∗∗)

We consider fz̄z again and obtain

fz̄z = uzfz̄ + ieuF

(
U12 0

U22 − Ũ11 −Ũ12

)
G−1

(∗)
= ieuF

(
U12 0
0 −Ũ12

)
G−1.

With N = F (iσ3)G−1 and fz̄z = −1
2e

2uf + 1
2He

2uN (compare Proposition 2.37) we get

fz̄z = −1
2e

2uf + 1
2He

2uN

= ieuF

(
1
2 ie

u 0
0 1

2 ie
u

)
G−1 + ieuF

(
1
2He

u 0
0 −1

2He
u

)
G−1

and thus U12 = 1
2(H + i)eu, Ũ12 = 1

2(H − i)eu. Considering fz̄z̄ one obtains

fz̄z̄ = 2uz̄fz̄ +QN

= uz̄fz̄ + ieuF

(
V12 0

V22 − Ṽ11 −Ṽ12

)
G−1

and therefore
V12 = Ṽ12 = e−uQ, V22 − Ṽ11 − uz̄ = 0. (∗ ∗ ∗)

From the equations (∗), (∗∗) and (∗ ∗ ∗) we deduce that the Lax pairs in terms of 2× 2-
matrices are of the form

U =
1
2

(
uz (H + i)eu

−2e−uQ −uz

)
, V =

1
2

(
−uz̄ 2e−uQ

−(H − i)eu uz̄

)
,

Ũ =
1
2

(
uz (H − i)eu

−2e−uQ −uz

)
, Ṽ =

1
2

(
−uz̄ 2e−uQ

−(H + i)eu uz̄

)
.

2.5 The integrability condition and a C∗-family of flat
connections

We want to introduce a λ-dependent sl2(C)-valued one-form αλ with λ ∈ C∗ following
the exposition of Hitchin in [30] to obtain a C∗-family of flat connections.

Assumption 2.39. From now on we will assume that H ≡ const. Thus the corresponding
surface will be of constant mean curvature (CMC).
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The equation dF = Fα can be solved if and only if α = Udz + V dz̄ satisfies a certain
integrability condition (see [22], Section 3.1).

Theorem 2.40. Let O ⊂ C be a convex open set containing 0. For U, V : O → sl2(C)
there exists a unique solution F : O → SL(2,C) of the Lax pair

Fz = FU, Fz̄ = FV (∗)

for an initial condition F (0) ∈ SL(2,C) if and only if

Uz̄ − Vz − [U, V ] = 0 with [U, V ] = UV − V U.

Each pair of solutions F, F̃ of (∗) differs only by multiplication with a constant matrix
G, i.e. F̃ = GF .

Proof. Suppose there exists an invertible solution F . Since Fzz̄ = Fz̄z one obtains

0 = Fzz̄ − Fz̄z = FUz̄ − FVz + Fz̄U − FzV

and therefore
0 = FUz̄ − FVz + FV U − FUV.

Thus Uz̄ − Vz − [U, V ] = 0 must hold.

Now suppose that Uz̄ − Vz − [U, V ] = 0 holds. Reworking this into the coordinates
(x, y) we get

Ux + iUy − Vx + iVy − 2[U, V ] = 0.

Then we can solve the ordinary differential equation

(F (x, 0))x = F (x, 0)(U + V )(x, 0)

with initial condition F (0, 0). For each fixed x0 it remains to solve

(F (x0, y))y = F (x0, y)i(U − V )(x0, y)

with initial condition F (x0, 0). Hence F (x, y) is defined and there holds Fy = Fi(U − V )
for all x, y. Since

(Fx − F (U + V ))(x, y) = 0

if y = 0 and Fxy = Fyx, we have

(Fx − F (U + V ))y = Fxy − Fy(U + V )− F (Uy + Vy)
= (Fi(U − V ))x − Fy(U + V )− F (Uy + Vy)
= Fxi(U − V ) + Fi(Ux − Vx)− Fy(U + V )− F (Uy + Vy)
= Fxi(U − V ) + Fi(2[U, V ])− Fy(U + V )
= Fxi(U − V ) + Fi(2[U, V ])− Fi(U − V )(U + V )
= (Fx − F (U + V ))i(U − V ).
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2.5 The integrability condition and a C∗-family of flat connections

Set G = Fx − F (U + V ). G is a solution of Gy = Gi(U − V ) with initial condition
G(0) = 0. By the uniqueness of the solution G ≡ 0 and therefore Fx − F (U + V ) ≡ 0.
Hence F is a solution to the Lax pair, since

Fz = 1
2 (Fx − iFy) = FU, Fz̄ = 1

2 (Fx + iFy) = FV.

Considering

det(F ) · tr(F−1Fz) = (det(F ))z and det(F ) · tr(F−1Fz̄) = (det(F ))z̄

with U, V ∈ sl2(C) we have

(det(F ))z = (det(F ))z̄ = 0

and it follows det(F ) = 1 since det(F (0)) = 1. Now assume that there exists another
solution F̃ of (∗) and consider

(F̃F−1)z = F̃UF−1 − F̃F−1FUF−1 = 0,
(F̃F−1)z̄ = F̃ V F−1 − F̃F−1FV F−1 = 0.

Thus G := F̃F−1 is constant and therefore F̃ = GF . If we fix the initial condition by
F (0) = F̃ (0) the matrix G must be the identity 1 and F = F̃ .

Corollary 2.41. The matrices U, V from Lemma 2.38 obey the compatibility condition

Uz̄ − Vz − [U, V ] = 0,

if and only if

2uzz̄ + 2e2u(1 +H2)− 1
2
QQe−2u = 0, Qz̄ = 2Hze

2u.

These are the Gauss and Codazzi equation respectively.

Remark 2.42. Since H ≡ const. due to Assumption 2.39, we get Qz̄ = 0 and thus Q is
holomorphic.

A zero-curvature condition for the connection form α. We want to take another
point of view and will treat the Gauss and Codazzi equations as a zero-curvature condition.
For this purpose recall that for a map F : R2 ' C → SL(2,C), the pullback α = F ∗θ of
the Mauer-Cartan form θ also satisfies the Mauer-Cartan equation

dα+
1
2

[α ∧ α] = 0

due to Proposition 2.31. Conversely, for every solution α = α′dz + α′′dz̄ ∈ Ω1(C, sl2(C))
of the Mauer-Cartan equation we have

dα+
1
2

[α ∧ α] = 0 ⇐⇒ α′z̄ − α′′z − [α′, α′′] = 0,
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and thus α integrates to a smooth map F : C→ SL(2,C) with α = F ∗θ due to Theorem
2.40. In particular one obtains the Gauss and Codazzi equations from the Maurer-Cartan
equation for α on sl2(C).

If one thinks of α as a connection form, dα+ α ∧ α = dα+ 1
2 [α ∧ α] is the corresponding

curvature form. Thus the Maurer-Cartan equation is a zero curvature condition and the
corresponding connection ∇ = d− α is flat.

A C∗-family of flat connections. We want to introduce the so-called spectral param-
eter λ ∈ C∗ that allows us to define a C∗-family of flat sl2(C)-connections ∇λ := d− ωλ.
In order to achieve this we need some preparation.

For ω ∈ Ω1(C, sl2(C)) we perform a splitting into the (1, 0)-part ω′ and the (0, 1)-part ω′′,
i.e.

ω = ω′ + ω′′,

according to the decomposition of the tangent bundle TC with d = ∂ + ∂̄. Setting the
∗-operator on Ω1(C, sl2(C)) to

∗ ω = −iω′ + iω′′

one obtains the following

Lemma 2.43 ([49], Lemma 2). Let f : C → SU(2) ' S3 be a conformal immersion and
ω = f−1df . The mean curvature H is given by

2d ∗ ω = H[ω ∧ ω].

The trivialiuations of TSU(2) that are induced by the left and right multiplication in
SU(2) lead to covariant derivatives ∇L and ∇R such that (SU(2),∇L) and (SU(2),∇R)
are flat. Moreover, the Levi-Civita connection for SU(2) is given by ∇ = 1

2(∇R +∇L).
In [30] Hitchin investigates harmonic maps f : M → S3 from the torus to the 3-sphere
and uses the equations

d∇(ω) = 0, d∇(∗ω) = 0

to construct a C∗-family of flat connections on M . Here ω = f−1df and d∇ is the exterior
derivative with respect to a connection ∇. In particular there holds d∇

L
= d. We will

now derive similar formulas with the help of Lemma 2.43 in order extend this ansatz to
the present situation.

Lemma 2.44. Let f : C → SU(2) ' S3 be a conformal immersion and set ω = f−1df .
Then we have

d∇(ω) = 0.
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2.5 The integrability condition and a C∗-family of flat connections

Beweis. Applying Cartan’s formula for the exterior derivative with respect to ∇ we get

d∇(ω)(X0, X1) = ∇X0ω(X1)−∇X1ω(X0)− ω([X0, X1])

= ∇LX0
ω(X1) +

1
2

[ω(X0), ω(X1)]

−∇LX1
ω(X0)− 1

2
[ω(X1), ω(X0)]− ω([X0, X1])

= d∇
L
(ω)(X0, X1) +

1
2

[ω ∧ ω](X0, X1)

= 0,

since ω satisfies the Maurer-Cartan equation.

Lemma 2.45. Let f : C → SU(2) ' S3 be a conformal immersion and set ω = f−1df .
Then we have

d∇(∗ω) =
1
2
H[ω ∧ ω].

In particular one obtains d∇(∗ω) = 0 in case of a minimal surface.

Proof. Setting ω = f−1df = G(α− β)G−1 one immediately obtains

∗ ω = Nω = −ωN with N = G

(
i 0
0 −i

)
G−1.

Applying Cartan’s formula for the exterior derivative with respect to ∇ we get

d∇(∗ω)(X0, X1) = ∇X0 ∗ ω(X1)−∇X1 ∗ ω(X0)− ∗ω([X0, X1])

= ∇LX0
∗ ω(X1) +

1
2

[ω(X0), ∗ω(X1)]

−∇LX1
∗ ω(X0)− 1

2
[ω(X1), ∗ω(X0)]− ∗ω([X0, X1])

= d∇
L
(∗ω)(X0, X1) +

1
2

[ω(X0), Nω(X1)]− 1
2

[ω(X0), Nω(X1)]

= d∇
L
(∗ω)(X0, X1)

=
1
2
H[ω ∧ ω](X0, X1)

due to Lemma 2.43. For a minimal surface one has H ≡ 0 and therefore d∇(∗ω) = 0.

The following result is based on an observation by Uhlenbeck [50] and the calculation
presented in [36], Section 1.1.

Lemma 2.46. Let f : C → SU(2) be a conformal immersion and ω = f−1df . For the
(1, 0)-part ω′ of ω = ω′ + ω′′ we have

d′′ω′ = −1
2

(1− iH)[ω′ ∧ ω′′]
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and for the (0, 1)-part ω′′ of ω there holds

d′ω′′ = −1
2

(1 + iH)[ω′ ∧ ω′′].

Proof. We know that ω satisfies the following equations

dω +
1
2

[ω ∧ ω] = 0,

d ∗ ω =
1
2
H[ω ∧ ω].

Combining these equations one obtains d ∗ ω +Hdω = 0, or after expanding ∗ω

(H − i)dω′ + (H + i)dω′′ = 0 and (H − i)d′′ω′ + (H + i)d′ω′′ = 0.

Moreover, one has

0 = dω +
1
2

[ω ∧ ω] = d′ω′′ + d′′ω′ + [ω′ ∧ ω′′]

⇔ d′′ω′ = −d′ω′′ + [ω′′ ∧ ω′]

and therefore obtains

d′′ω′ = −d′ω′′ + [ω′′ ∧ ω′] =
H − i
H + i

d′′ω′ + [ω′′ ∧ ω′],

i.e.
d′′ω′ =

1
2

(1− iH)[ω′′ ∧ ω′] = −1
2

(1− iH)[ω′ ∧ ω′′].

An analogous calculation shows the equation for the (0, 1)-part ω′′.

Proposition 2.47. Let ωλ be defined by

ωλ :=
1
2

(1 + λ−1)(1 + iH)ω′ +
1
2

(1 + λ)(1− iH)ω′′ for λ ∈ C∗.

Then there holds
dωλ +

1
2

[ωλ ∧ ωλ] = 0 ∀ λ ∈ C∗,

i.e. for every λ ∈ C∗ the form ωλ is the connection form of a flat connection.

Proof. By applying the results of Lemma 2.46 a straightforward calculation shows

dωλ +
1
2

[ωλ ∧ ωλ] = d′ω′′λ + d′′ω′λ + [ω′λ ∧ ω′′λ]

=
1
2

(1 + λ)(1− iH)d′ω′′ +
1
2

(1 + λ−1)(1 + iH)d′′ω′

+
1
4

(1 + λ−1)(1 + λ)(1 + iH)(1− iH)[ω′ ∧ ω′′]

=
1
4
(
−2− λ−1 − λ+ (1 + λ−1)(1 + λ)

)
· (1 + iH)(1− iH)[ω′ ∧ ω′′]

= 0

since (1 + λ−1)(1 + λ) = 2 + λ−1 + λ.
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Proposition 2.48. Let G ∈ SU(2) be the solution of dG = Gβ. By performing a gauge
transformation with G the sl2(C)-valued form

ωλ =
1
2

(1 + λ−1)(1 + iH)ω′ +
1
2

(1 + λ)(1− iH)ω′′

is transformed into

αλ =
1
2

(
uzdz − uz̄dz̄ iλ−1(1 + iH)eudz + 2e−uQdz̄

−2e−uQdz + iλ(1− iH)eudz̄ −uzdz + uz̄dz̄

)
.

Setting λ0 = −1 and λ1 = 1+iH
1−iH one obtains β, α ∈ Ω1(C, su2(C)) resulting from the Lax

pairs (Ũ , Ṽ ) and (U, V ) respectively, i.e. αλ0 = β and αλ1 = α.

Proof. By considering

ω = f−1df = G(α− β)G−1 =
1
2
G

(
0 2ieu dz

2ieu dz̄ 0

)
G−1,

we obtain for ωλ = 1
2(1 + λ−1)(1 + iH)ω′ + 1

2(1 + λ)(1− iH)ω′′

ωλ =
1
2
G

(
0 i(1 + λ−1)(1 + iH)eu dz

i(1 + λ)(1− iH)eu dz̄ 0

)
G−1.

Gauging ωλ with G leads to

αλ = G−1ωλG+G−1dG

=
1
2

(
0 i(1 + λ−1)(1 + iH)eu dz

i(1 + λ)(1− iH)eu dz̄ 0

)
+

1
2

(
uzdz − uz̄dz̄ −i(1 + iH)eudz + 2e−uQdz̄

−2e−uQdz − i(1− iH)eudz̄ −uzdz + uz̄dz̄

)
=

1
2

(
uzdz − uz̄dz̄ iλ−1(1 + iH)eudz + 2e−uQdz̄

−2e−uQdz + iλ(1− iH)eudz̄ −uzdz + uz̄dz̄

)
and the claim is proved.

Remark 2.49. Solving dFλ = Fλαλ yields G = Fλ0 and F = Fλ1 respectively and
therefore

f = FG−1 = Fλ1F
−1
λ0
.

A transformation of the form αλ. Finally, we want to relate the above αλ to the
representation that has been introduced in [35, 36]. Rescaling of the conformal factor eu

and the Hopf differential Q and after performing a Möbius transformation (with respect
to the spectral parameter λ) we obtain

v := eu
√
H2 + 1, Q̃ := 2iQ

√
H2 + 1
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and
λ 7→ λ̃ := λ

1− iH√
H2 + 1

, i.e. λ̃−1 = λ−1 1 + iH√
H2 + 1

,

and therefore

αλ 7→ α̃λ =
1
2

(
v−1vzdz − v−1vz̄dz̄ iλ̃−1vdz + iQ̃v−1dz̄

iQ̃v−1dz + iλ̃vdz̄ −v−1vzdz + v−1vz̄dz̄

)
.

The points λ0, λ1 ∈ S1 are transformed into λ̃0 = −1+iH√
H2+1

and λ̃1 = 1+iH√
H2+1

respectively.

The mean curvature H is now given in terms of λ̃0 and λ̃1, i.e. one has

H = i
λ̃0 + λ̃1

λ̃0 − λ̃1

.

In the following we return to the notation (eu, Q, λ) for the transformed quantities (v, Q̃, λ̃)
and consider the “inverse” situation. In this general case λ0 6= λ1 will not be symmetric
with respect to the imaginary axis as in the preceeding construction. We obtain the
following version of a result by Bobenko [9] (compare with [36], Theorem 1.1).

Theorem 2.50. Let u : C→ R and Q : C→ C be smooth functions and define

αλ =
1
2

(
uzdz − uz̄dz̄ iλ−1eudz + iQe−udz̄

iQe−udz + iλeudz̄ −uzdz + uz̄dz̄

)
.

Then 2dαλ + [αλ ∧ αλ] = 0 if and only if Q is holomorphic, i.e. Qz̄ = 0, and u is a
solution of the reduced Gauss equation

2uzz̄ +
1
2

(e2u −QQe−2u) = 0.

For any solution u of the above equation and corresponding extended frame Fλ, and
λ0, λ1 ∈ S1, λ0 6= λ1, i.e. λk = eitk the map defined by the Sym-Bobenko-formula

f = Fλ1F
−1
λ0

is a conformal immersion f : C→ SU(2) ' S3 with constant mean curvature

H = i
λ0 + λ1

λ0 − λ1
= cot(t0 − t1),

conformal factor v = eu/
√
H2 + 1, and Hopf differential Q̃dz2 with Q̃ = − i

4(λ−1
1 −λ

−1
0 )Q.

Proof. We adapt the proof of [35], Theorem 1.1. Decomposing αλ into the (1, 0)- and
(0, 1)-parts αλ = α′λdz + α′′λdz̄ we get

∂̄α′λ =
1
2

(
uzz̄ iλ−1uz̄e

u

−iuz̄e−uQ+ ie−uQz̄ −uzz̄

)
,

∂α′′λ =
1
2

(
−uzz̄ −iuze−uQ+ ie−uQz
iλuze

u uzz̄

)
,

[
α′λ, α

′′
λ

]
=

1
4

(
−e2u +QQe−2u 2iuz̄λ−1eu + 2iuze−uQ

−2iλuzeu − 2iuz̄e−uQ e2u −QQe−2u

)
.
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Since 2dαλ+ [αλ∧αλ] = 0 is equivalent to ∂̄α′λ−∂α′′λ = [α′λ, α
′′
λ] we see that u must fulfill

the reduced Gauss equation and Qz̄ = 0.

Now let u be a solution of the above equation and consider for λ0, λ1 ∈ S1, λ0 6= λ1 the
map f = Fλ1F

−1
λ0

defined by the Sym-Bobenko-formula. Setting ω = f−1df = Fλ0(αλ1 −
αλ0)F−1

λ0
one has

ω′ = f−1∂f = Fλ0F
−1
λ1

(
(∂Fλ1)F−1

λ0
+ Fλ1(∂F−1

λ0
)
)

= Fλ0F
−1
λ1

(
Fλ1α

′
λ1
F−1
λ0
− Fλ1F

−1
λ0

(∂Fλ0)F−1
λ0

)
= Fλ0

(
α′λ1
− α′λ0

)
F−1
λ0

and therefore
f−1∂f =

1
2
ieu(λ−1

1 − λ
−1
0 )Fλ0ε+F

−1
λ0
.

A similar calculation reveals f−1∂̄f = 1
2 ie

u(λ1 − λ0)Fλ0ε−F
−1
λ0

(recall that ε− = εt+ =
( 0 0

1 0 )) and it is clear that 〈f−1∂f, f−1∂f〉 = 〈f−1∂̄f, f−1∂̄f〉 = 0. For the conformal
factor one has to calculate

v2 = 2〈f−1∂f, f−1∂̄f〉 =
1
4
e2u(λ−1

1 − λ
−1
0 )(λ1 − λ0).

For ω = f−1df = Fλ0(αλ1 − αλ0)F−1
λ0

one has the splitting

ω =
1
2
iFλ0

(
(λ−1

1 − λ
−1
0 )euε+dz + (λ1 − λ0)euε−dz̄

)
F−1
λ0

=
1
2
iFλ0

(
(λ−1

1 − λ
−1
0 )ζ ′ + (λ1 − λ0)ζ ′′

)
F−1
λ0
,

where we set ζ ′ := euε+dz and ζ ′′ := euε−dz̄. Then another calculation shows

d ∗ ω =
1
4
i(λ1λ

−1
0 − λ0λ

−1
1 )Fλ0 [ζ ′ ∧ ζ ′′]F−1

λ0

and
[ω ∧ ω] =

1
2

(1− λ1λ
−1
0 )(1− λ0λ

−1
1 )Fλ0 [ζ ′ ∧ ζ ′′]F−1

λ0
,

and therefore H = iλ0+λ1
λ0−λ1

is the mean curvature for f . From this formula we obtain

(H2 + 1)(λ−1
1 − λ

−1
0 )(λ1 − λ0) = 4

and thus v2 = e2u/(H2 + 1). Finally we want to determine the Hopf differential and
consider the normal N = Fλ1εF

−1
λ0

with ε =
(
i 0
0 −i

)
. Similar to the above calculations one

obtains ∂N = Fλ1(α′λ1
ε− εα′λ0

)F−1
λ0

with

α′λ1
ε− εα′λ0

=
(

0 1
2e
u(λ−1

1 + λ−1
0 )

−Qe−u 0

)
.
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Thus one has

Q̃ = 〈∂∂f,N〉 = −〈∂f, ∂N〉 = −〈F−1
λ1
∂fFλ0 , F

−1
λ1
∂NFλ0〉

2.34= −1
2

tr
[(

0 i
2

(λ−1
1 −λ

−1
0 )eu

0 0

)
σ2

(
0 1

2
eu(λ−1

1 +λ−1
0 )

−Qe−u 0

)t
σ2

]
= −1

2
tr
[(

0 i
2

(λ−1
1 −λ

−1
0 )eu

0 0

)(
0 − 1

2
eu(λ−1

1 +λ−1
0 )

Qe−u 0

)]
= − i

4
(λ−1

1 − λ
−1
0 )Q

and the claim is proved.

Remark 2.51. Since λ0, λ1 are not symmetric with respect to the imaginary axis in
general the formula Q̃ = − i

2
√
H2+1

Q is not valid and one obtains the more general formula

Q̃ = − i
4(λ−1

1 − λ
−1
0 )Q from Theorem 2.50.

2.6 Transformation rules for αλ

We want to investigate how the connection form αλ behaves under certain parameter
transformations.

Lemma 2.52. Holomorphic transformations of the parameter z of the form z 7→ w = w(z)
leave the Gauss and Codazzi equations invariant away from the zeros of dw

dz .

Proof. The Gauss and Codazzi equations for S3 are given by

2uzz̄ + 2e2u(1 +H2)− 1
2
QQe−2u = 0, Qz̄ = 2Hze

2u.

Since H ≡ const we only have to consider the first equation and investigate the trans-
formation of the corresponding terms resulting from this mapping. First we observe that
from the equation

e2eu(w,w̄)dwdw̄ = e2u(z,z̄)dzdz̄

we get

e2u(z,z̄) = e2eu(w,w̄)

(
dw

dz

)(
dw

dz

)
and therefore

u(z, z̄) = ũ(w, w̄) + ln
(∣∣∣∣dwdz

∣∣∣∣) .
Differentiation yields

2u(z, z̄)zz̄ =
∣∣∣∣dwdz

∣∣∣∣2 2ũ(w, w̄)ww̄ + ln
(
dw

dz

)
zz̄

+ ln
(
dw̄

dz̄

)
zz̄

=
∣∣∣∣dwdz

∣∣∣∣2 2ũ(w, w̄)ww̄ +

(
1(
dw
dz

) · d2w

dz2

)
z̄

+

(
1(
dw̄
dz̄

) · d2w̄

dz̄dz

)
z̄

.
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Since w is holomorphic and w̄ anti-holomorphic we get

2u(z, z̄)zz̄ =
∣∣∣∣dwdz

∣∣∣∣2 2ũ(w, w̄)ww̄ −
1(
dw
dz

)2 · d2w
dzdz̄ ·

d2w
dzdz +

1(
dw
dz

) · d3w
dz2dz̄

+ 0

=
∣∣∣∣dwdz

∣∣∣∣2 2ũ(w, w̄)ww̄.

Now consider the quadratic Hopf differential and its transformation rule for a given map-
ping, namely

Qdz2 = Q̃dw2 ⇐⇒ Q = Q̃

(
dw

dz

)2

.

For a mapping of the above form the Gauss and Codazzi equations are transformed into∣∣∣∣dwdz
∣∣∣∣2 2ũww̄ +

∣∣∣∣dwdz
∣∣∣∣2 2e2eu(1 +H2)− 1

2

(
dw

dz

)2(dw
dz

)2

Q̃Q̃
1(

dw
dz

) (
dw
dz

)e−2eu

and therefore one obtains∣∣∣∣dwdz
∣∣∣∣2(2ũww̄ + 2e2eu(1 +H2)− 1

2
Q̃Q̃e−2eu) = 0.

From the above considerations we see that the Gauss and Codazzi equations are left
invariant away from the zeros of dw

dz and behave singular at these points.

Remark 2.53. Since

u(z, z̄) = ũ(w, w̄) + ln
(∣∣∣∣dwdz

∣∣∣∣)
we see that the conformal factor u has a singularity at the zeros of dw

dz .

We obtain the following version of a result by Bobenko (see [10], Section 2.3).

Theorem 2.54. The frame Fλ and the sl2(C)-valued 1-form αλ transform as follows
under a holomorphic mapping of the form z 7→ w(z):

Fλ 7→ Fλ ·Bw and αλ 7→ w∗αλ = B−1
w αλBw +B−1

w dBw

with

Bw =


4
q
dw̄
dz̄

4
q
dw
dz

0

0
4
q
dw
dz

4
q
dw̄
dz̄
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Proof. Considering

αλ =
1
2

(
uzdz − uz̄dz̄ iλ−1eudz + iQe−udz̄

iQe−udz + iλeudz̄ −uzdz + uz̄dz̄

)
one has to investigate the transformations of the quantities appearing in this matrix.
According to Lemma 2.52 one gets

Q =
(
dw
dz

)2
Q̃, Q =

(
dw̄
dz̄

)2
Q̃,

eu = eeu√dw

dz

√
dw̄

dz̄
, e−u = e−eu 1q

dw
dz

q
dw̄
dz̄

,

uz = ũw
dw

dz
+

1
2

1
dw
dz

· d
2w

dz2
, uz̄ = ũw̄

dw̄

dz̄
+

1
2

1
dw̄
dz̄

· d
2w̄

dz̄2
.

By first gauging with C =
(
e−u/2 0

0 e−u/2

)
one has

C−1dC = −1
2

(
eu/2 0

0 eu/2

)(
e−u/2(uzdz + uz̄dz̄) 0

0 e−u/2(uzdz + uz̄dz̄)

)
=

1
2

(
−uzdz − uz̄dz̄ 0

0 −uzdz − uz̄dz̄

)
and therefore

α̃λ := C−1αλC + C−1dC =
1
2

(
−2uz̄dz̄ iλ−1eudz + iQe−udz̄

iQe−udz + iλeudz̄ −2uzdz

)
.

By performing a gauge with D =

r
dw̄
dz̄ 0

0

r
dw
dz

 one obtains

D−1α̃λD =
1
2


−2uz̄dz̄ iλ−1eu

r
dw
dz ·

1r
dw̄
dz̄

dz+iQe−u

r
dw
dz ·

1r
dw̄
dz̄

dz̄

iQe−u

r
dw̄
dz̄ ·

1r
dw
dz

dz+iλeu

r
dw̄
dz̄ ·

1r
dw
dz

dz̄ −2uzdz


=

1
2

(
−2uz̄dz̄ iλ−1eeudw + iQ̃e−eudw̄

iQ̃e−eudw + iλeeudw̄ −2uzdz

)
and

D−1dD =
1
2


1q
dw̄
dz̄

0

0 1q
dw
dz

 ·


1q
dw̄
dz̄

d2w̄
dz̄2 dz̄ 0

0 1q
dw
dz

d2w
dz2 dz


=

1
2

 1
dw̄
dz̄

d2w̄
dz̄2 dz̄ 0

0 1
dw
dz

d2w
dz2 dz

 .
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2.6 Transformation rules for αλ

This yields

˜̃αλ = D−1α̃λD +D−1dD

=
1
2

−2uz̄dz̄ + 1
dw̄
dz̄

d2w̄
dz̄2 dz̄ iλ−1eeudw + iQ̃e−eudw̄

iQ̃e−eudw + iλeeudw̄ −2uzdz + 1
dw
dz

d2w
dz2 dz


=

1
2

(
−2ũw̄dw̄ iλ−1eeudw + iQ̃e−eudw̄

iQ̃e−eudw + iλeeudw̄ −2ũwdw

)
.

A similar calculation for the gauge with E =
(
eeu/2 0

0 eeu/2
)

transforms ˜̃αλ into

α̂λ =
1
2

(
ũwdw − ũw̄dw̄ iλ−1eeudw + iQ̃e−eudw̄

iQ̃e−eudw + iλeeudw̄ ũw̄dw̄ − ũwdw

)
,

thus

Bw := CDE =

e(eu−u)/2
√

dw̄
dz̄ 0

0 e(eu−u)/2
√

dw
dz


is the corresponding gauge for a mapping z 7→ w = w(z). Since

1
2(ũ− u) = −1

4 log(dwdz ·
dw̄
dz̄ ),

the gauge Bw is of the desired form. This concludes the proof.

Remark 2.55.

1. From Theorem 2.54 we get the formula e−u/2FλD = e−eu/2F̃λ for the transformed
frame F̃λ and therefore

e−u
(
eu/2Fλ

)
D = e−eu (eeu/2F̃λ) ⇐⇒ (

eu/2Fλ

)
D̂ =

(
eeu/2F̃λ)

with

D̂ = eeu−uD =


(√

dw
dz

)−1

0

0
(√

dw̄
dz̄

)−1

 .

In particular the modified frame F uλ := eu/2Fλ satisfies F̃ eu
λ = F uλ D̂, i.e. F uλ ( 1

0 )
defines the inverse S−1 of a spin-bundle S (compare with [10], Section 2.3).

2. Setting ∇ := d+αλ the inverse frame F−1
λ may be regarded as a ∇-horizontal section

of the trivial C2-bundle V := M × C2 → M for a compact Riemann surface M of
genus g, i.e. ∇F−1

λ = 0. We consider αλ as the gauged connection form for the
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associated family fλ starting from an immersion f : M → SU(2). Due to Hitchin
[30] the (1, 0)-part ω′ = f−1∂f = 1

2 ie
u(λ−1

1 −λ
−1
0 )Fλ0ε+F

−1
λ0

of ω = f−1df gives rise
to a line bundle

L := ker(ω′) with ker(ω′) = span{Fλ0 ( 1
0 )} = span{F uλ0

( 1
0 )}

of degree 1 − g. It turns out that L ⊗ L ' K−1, where K is the canonical bundle,
i.e. S := L−1 is a spin-bundle since L−1 =

√
K. Moreover, one obtains V = L⊕ L̄.

From the proof of Theorem 2.54 we see that the transformation of F uλ exactly reflects
this decomposition.
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3 Spectral data for periodic solutions of
the sinh-Gordon equation

We will now derive spectral data (Y,D) for periodic finite type solutions of the sinh-
Gordon equation.

3.1 The monodromy and its expansion

The central object for the forthcoming considerations is contained in

Definition 3.1. Let Fλ be an extended frame assume that αλ = F−1
λ dFλ has period τ ,

i.e. αλ(z+ τ) = αλ(z). Then the monodromy of the frame Fλ with respect to the period
τ is given by

M τ
λ := Fλ(z + τ)F−1

λ (z).

Note that we have

dM τ
λ = Fλ(z + τ)αλ(z + τ)F−1

λ (z)− Fλ(z + τ)αλ(z)F−1
λ (z)

= 0,

since αλ(z + τ) = αλ(z) and thus M τ
λ does not depend on z. Setting the period to p ∈ C

and Fλ(0) = 1 we get
Mλ := Mp

λ = Fλ(p)F−1
λ (0) = Fλ(p).

Assumption 3.2. Let us assume that the Hopf differential Q is constant with |Q| = 1.

We can rotate the coordinate z by the map z 7→ w(z) = eiϕz in such a way that we can
assume a real period p ∈ R due to Remark 2.53. Since

u(z) = ũ(eiϕz) + ln(| ddz (eiϕz)|) = ũ(eiϕz)

we get
ũ(eiϕz) = u(z) = u(z + p̃) = ũ(eiϕ(z + p̃)) = ũ(eiϕz + p)

for a suitable ϕ ∈ [0, 2π) and p = eiϕp̃. For the corresponding Bw (see Theorem 2.54)
there holds

Bw =
(
δ−1/2 0

0 δ1/2

)
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with δ = eiϕ ∈ S1. This corresponds to the isometric normalization described in [27],
Remark 1.5, and the corresponding gauged αλ is of the form

αλ =
1
2

(
uzdz − uz̄dz̄ iλ−1δeudz + iγe−udz̄

iγe−udz + iλδ̄eudz̄ −uzdz + uz̄dz̄

)
,

where the constant γ ∈ S1 is given by γ = δ−1Q = δ̄Q.

The sinh-Gordon equation. We can normalize the above parametrization with δ = 1
and |γ| = 1 by choosing the appropriate value for Q ∈ S1. Then we can consider the
system

dFλ = Fλαλ with Fλ(0) = 1

for
F (z, λ) : C× C∗ → SL(2,C)

and

αλ =
1
2

(
uzdz − uz̄dz̄ iλ−1eudz + iγe−udz̄

iγe−udz + iλeudz̄ −uzdz + uz̄dz̄

)
.

Since |γ| = 1, wee see that the compatibility condition 2dαλ+[αλ∧αλ] = 0 from Theorem
2.50 holds if and only if

2uzz̄ +
1
2

(e2u − γγe−2u) = 2uzz̄ + sinh(2u) = 0.

Thus the reduced Gauss equation turns into the sinh-Gordon equation in that situa-
tion. The monodromy of F is then Mλ = F (p, λ) for a period p of the solution u of the
sinh-Gordon equation. For the following we make the additional

Assumption 3.3. Let γ = δ = 1. This yields

αλ =
1
2

(
uzdz − uz̄dz̄ iλ−1eudz + ie−udz̄

ie−udz + iλeudz̄ −uzdz + uz̄dz̄

)
.

If we evaluate αλ along the vector fields ∂
∂x and ∂

∂y we obtain

Uλ := αλ( ∂
∂x), Vλ := αλ( ∂∂y ).

These matrices will be important for the upcoming considerations. In particular Uλ reads

Uλ =
1
2

(
−iuy iλ−1eu + ie−u

iλeu + ie−u iuy

)
.

Remark 3.4. Due to the one-to-one correspondence (u, uy) 7→ Uλ with

Uλ =
1
2

(
−iuy iλ−1eu + ie−u

iλeu + ie−u iuy

)
we can identify the tuple (u, uy) with the matrix Uλ.
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3.1 The monodromy and its expansion

We will now investigate the Lax operator Lλ(x) := d
dx +Uλ(x, 0) and take a closer look

at solutions Fλ : R→ SL(2,C) of d
dxFλ(x) = Fλ(x)Uλ(x, 0). Given such a solution there

holds

Lλ(x)F−1
λ (x) = d

dxF
−1
λ (x) + Uλ(x, 0)F−1

λ (x)

= −F−1
λ (x)( d

dxFλ(x))F−1
λ (x) + Uλ(x, 0)F−1

λ (x)
= −F−1

λ (x)Fλ(x)Uλ(x, 0)F−1
λ (x) + Uλ(x, 0)F−1

λ (x)
= 0,

i.e. one obtains a solution for the Lax operator Lλ(x). The next lemma shows how α can
be integrated to obtain a solution F .

Lemma 3.5. Let α : [0,p]→M2×2(C) be smooth. Then the map

x 7→ 1 +
∞∑
n=1

∫ x

0

∫ tn

0
· · ·
∫ t2

0
α(t1)α(t2) · · ·α(tn)dt1 · · · dtn

converges to the solution of d
dxF = Fα with F (0) = 1. The map F is the so-called

fundamental solution.

Proof. The series converges absolutely, since for each summand of the above sum one has∥∥∥∥∫ x

0

∫ tn

0
· · ·
∫ t2

0
α(t1)α(t2) · · ·α(tn)dt1 · · · dtn

∥∥∥∥
≤

∫ x

0

∫ tn

0
· · ·
∫ t2

0
‖α(t1)‖‖α(t2)‖ · · · ‖α(tn)‖dt1 · · · dtn

≤ 1
n!

∫ x

0

∫ x

0
· · ·
∫ x

0
‖α(t1)‖‖α(t2)‖ · · · ‖α(tn)‖dt1 · · · dtn

≤ 1
n!

(∫ x

0
‖α(t)‖dt

)n
.

Therefore exp(
∫ x

0 ‖α(t)‖dt) is a majorant for this series and the claim is proved.

Remark 3.6. Since Mλ = Fλ(p) we see that the map λ 7→Mλ is holomorphic for λ ∈ C∗
and has essential singularities at λ = 0 and λ =∞.

An asymptotic expansion of the monodromy Mλ. We seek an asymptotic expansion
of the monodromy Mλ corresponding to the frame Fλ. The following lemma will be useful
for the asymptotic analysis at λ = 0.

Lemma 3.7. By performing a gauge transformation with

gλ(z) =
1√
2

(
e
u
2 0

0
√
λe−

u
2

)(
1 −1
1 1

)
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the frame Fλ(z) is transformed into Fλ(z)gλ(z) and the map Gλ(z) := gλ(0)−1Fλ(z)gλ(z)
solves

dGλ = Gλβλ with βλ = g−1
λ αλgλ + g−1

λ dgλ and Gλ(0) = 1.

Evaluating the form βλ along the vector field ∂
∂x and setting y = 0 yields βλ( ∂

∂x) =
1√
λ
β−1 + β0 +

√
λβ1 with

β−1 =
(
i
2 0
0 − i

2

)
, β0 =

(
0 −uz
−uz 0

)
, β1 =

(
i
2 cosh(2u) − i

2 sinh(2u)
i
2 sinh(2u) − i

2 cosh(2u)

)
.

Proof. Considering

gλ(z) =
1√
2

(
e
u
2 0

0
√
λe−

u
2

)(
1 −1
1 1

)
one obtains for g−1

λ αλgλ the matrix

1
4

(
1 1
−1 1

)(
uzdz − uz̄dz̄ i 1√

λ
dz + ie−2u

√
λdz̄

i 1√
λ
dz + ie2u

√
λdz̄ −uzdz + uz̄dz̄

)(
1 −1
1 1

)
.

Moreover,

g−1
λ dgλ =

1
4

(
1 1
−1 1

)(
uzdz + uz̄dz̄ 0

0 −uzdz − uz̄dz̄

)(
1 −1
1 1

)
,

and thus

βλ = g−1
λ αλgλ + g−1

λ dgλ

=
1
4

(
1 1
−1 1

)( 2uzdz i 1√
λ
dz + ie−2u

√
λdz̄

i 1√
λ
dz + ie2u

√
λdz̄ −2uzdz

)(
1 −1
1 1

)

=
1
2

(
i 1√

λ
dz + i cosh(2u)

√
λdz̄ −2uzdz − i sinh(2u)

√
λdz̄

−2uzdz + i sinh(2u)
√
λdz̄ −i 1√

λ
dz − i cosh(2u)

√
λdz̄

)
= 1√

λ
β−1dz + β0dz +

√
λβ1dz̄

with

β−1 =
(
i
2 0
0 − i

2

)
, β0 =

(
0 −uz
−uz 0

)
, β1 =

(
i
2 cosh(2u) − i

2 sinh(2u)
i
2 sinh(2u) − i

2 cosh(2u)

)
.

Evaluating the form βλ along the vector field ∂
∂x and setting y = 0 yields βλ( ∂

∂x) =
1√
λ
β−1 + β0 +

√
λβ1 with β−1, β0 and β1 as given above.

Since Fλ solves d
dxFλ = FλUλ(·, 0) we assume that y is set to zero in the following consid-

erations. Let us consider the simplest case with u ≡ 0.
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Lemma 3.8. Setting u ≡ 0 in the Maurer-Cartan form αλ yields a frame Fλ,0(x) with
monodromy

Mλ,0 = gλ(0)

(
exp( ip2 ( 1√

λ
+
√
λ)) 0

0 exp( ip2 (−
√
λ− 1√

λ
))

)
gλ(0)−1.

Moreover, Mλ,0 = ±1 holds if and only if λ ∈ D0 with

D0 = {λ ∈ C∗ |Mλ,0 = ±1} = {λ = 2π2k2−p2

p2 ± 2πk
√
π2k2−p2

p2 | k ∈ N0}.

Proof. Obviously the solution of

d
dxGλ,0 = Gλ,0βλ with u ≡ 0 and Gλ,0(0) = 1

is given by

Gλ,0(x) =

(
exp(x i2( 1√

λ
+
√
λ)) 0

0 exp(x i2(−
√
λ− 1√

λ
))

)
.

Thus one obtains for x = p (recall that Gλ,0(x) = gλ(0)−1Fλ,0(x)gλ(x))

Mλ,0 = gλ(0)Gλ(p)gλ(p)−1 = gλ(0)Gλ(p)gλ(0)−1

= gλ(0)

(
exp( ip2 ( 1√

λ
+
√
λ)) 0

0 exp( ip2 (−
√
λ− 1√

λ
))

)
gλ(0)−1

and finally a direct calculation shows Mλ,0 = ±1⇐⇒
√
λ+ 1√

λ
∈ 2π

p Z⇐⇒ λ ∈ D0.

Remark 3.9. Denoting by (λ1(k))k∈N0 and (λ2(k))k∈N0 the sequences given by

λ1(k) = 2π2k2−p2+2πk
√
π2k2−p2

p2 , λ2(k) = 2π2k2−p2−2πk
√
π2k2−p2

p2

we have the following limits for k →∞

lim
k→∞

λ1(k) =∞, lim
k→∞

λ2(k) = 0,

i.e. D0 ⊂ R has the accumulation points 0 and ∞.

Let us relate the monodromy Mλ of the frame Fλ(x) to that of the “vacuum” monodromy
Mλ,0. Since β−1 does not depend on x we get from the theorem about variation of
parameters that the unique solution of

d

dx
Gλ(x) = Gλ(x)

(
1√
λ
β−1 + β0(x) +

√
λβ1(x)

)
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Chapter 3. Spectral data for periodic solutions of the sinh-Gordon equation

with Gλ(x) = gλ(0)−1Fλ(x)gλ(x) and Gλ(0) = 1 is given by

Gλ(x) =
∞∑
n=0

Ĝn(x) with Ĝ0(x) = exp( x√
λ
β−1) and

Ĝn+1(x) =
∫ x

0
Ĝn(t)(β0(t) +

√
λβ1(t)) exp(x−t√

λ
β−1) dt.

Following this ansatz a careful asymptotic analysis [37] shows that for every ε > 0 one
can choose an appropriate neighborhood around λ = 0 such that the inequality

‖gλ(0)−1Mλgλ − gλ(0)−1Mλ,0gλ(0)‖ ≤ ε‖gλ(0)−1Mλ,0gλ(0)‖

holds for |λ| small enough and a similar inequality also holds around λ = ∞. Moreover,
we can deduce from that inequality that the so-called double points D for a general u lie
very close to the points D0 from Remark 3.9 around λ = 0 and λ =∞.

A formal diagonalization of the monodromy Mλ. We want to diagonalize the mon-
odromy Mλ and therefore need to diagonalize αλ. A diagonalization for the Schrödinger-
operator is done in [47] based on a result from [26]. In order to adapt the techniques
applied there we search for a λ-dependent periodic formal power series ĝλ(x) such that

β̂λ = ĝ−1
λ αλĝλ + ĝ−1

λ
d
dx ĝλ

is a diagonal matrix, i.e.

β̂λ(x) =
(∑

m(
√
λ)mbm(x) 0
0 −

∑
m(
√
λ)mbm(x)

)

with m ≥ −1. Since Fλ(x) = ĝλ(0)Ĝλ(x)ĝλ(x)−1 (where Ĝλ solves d
dxĜλ(x) = Ĝλ(x)β̂λ(x)

with Ĝλ(0) = 1) we get

Mλ = Fλ(p) = ĝλ(0)Ĝλ(p)ĝλ(p)−1 = ĝλ(0)Ĝλ(p)ĝλ(0)−1

and due to

Ĝλ(x) =

exp
(∫ x

0

∑
m(
√
λ)mbm(t) dt

)
0

0 exp
(
−
∫ x

0

∑
m(
√
λ)mbm(t) dt

)
one has

Ĝλ(p) =

exp
(∫ p

0

∑
m(
√
λ)mbm(t) dt

)
0

0 exp
(
−
∫ p

0

∑
m(
√
λ)mbm(t) dt

) .
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3.1 The monodromy and its expansion

The conjugation with the matrix ĝλ(0) leaves the eigenvalues µ, 1
µ of Mλ invariant and

thus we obtain

µ = exp

(∫ p

0

∑
m

(
√
λ)mbm(t) dt

)
or equivalently

lnµ =
∑
m

(
√
λ)m

∫ p

0
bm(t) dt.

From the following theorem we obtain a periodic formal power series g̃λ(x) = 1 +∑
m≥1 am(x)(

√
λ)m such that ĝλ(x) := gλ(x)g̃λ(x) (with gλ(x) defined in Lemma 3.7)

yields the desired result around λ = 0.

Theorem 3.10. Let (u, uy) ∈ C∞(R) × C∞(R) be periodic with period p. Then there
exist two series

a1(x), a2(x), . . . ∈ span{ε+, ε−} of periodic off-diagonal matrices and
b1(x), b2(x), . . . ∈ span{ε} of periodic diagonal matrices, respectively

such that am+1(x) and bm(x) are differential polynomials in u and uy with derivatives of
order m at most and the following equality for formal power series holds asympotically
around λ = 0:

βλ(x)

1 +
∑
m≥1

am(x)(
√
λ)m

+
∑
m≥1

d

dx
am(x)(

√
λ)m =

1 +
∑
m≥1

am(x)(
√
λ)m

 ∑
m≥−1

bm(x)(
√
λ)m. (∗)

Here b−1(x) and b0(x) are given by b−1(x) ≡ β−1 = i
2

(
1 0
0 −1

)
and b0(x) ≡ ( 0 0

0 0 ).

Remark 3.11. Since we are interested in so-called finite type solutions we can guarantee
that the power series in (∗) indeed are convergent, see Theorem 4.35.

Proof. We start the iteration with b0(x) ≡ ( 0 0
0 0 ) and will inductively solve the given

ansatz in all powers of
√
λ:

1. (
√
λ)−1: β−1 = β−1. X

2. (
√
λ)0: β−1a1(x) + β0(x) = b0(x) = 0 and thus

a1(x) = −β−1
−1β0(x) =

(
0 −i∂u
i∂u 0

)
.
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Chapter 3. Spectral data for periodic solutions of the sinh-Gordon equation

3. (
√
λ)1: β−1a2(x) + β0(x)a1(x) + β1(x) + d

dxa1(x) = b1(x) + a2(x)β−1 + a1(x)b0(x).
Rearranging terms and sorting with respect to diagonal (d) and off-diagonal (off)
matrices we get two equations:

b1(x) = β0(x)a1(x) + β1,d(x)

=
(
−i(∂u)2 + i

2 cosh(2u) 0
0 i(∂u)2 − i

2 cosh(2u)

)
,

[β−1, a2(x)] = −β1,off(x)− d
dxa1(x).

In order to solve the second equation for a2(x) we make the following observation:
Since [ε, ε+] = 2iε+ and [ε, ε−] = −2iε− we get for a(x) = a+(x)ε+ + a−(x)ε−

φ(a(x)) := [β−1, a(x)] = [1
2ε, a(x)]

= ia+(x)ε+ − ia−(x)ε− ∈ span{ε+, ε−}.

This defines a linear map φ : span{ε+, ε−} → span{ε+, ε−}. Obviously ker(φ) =
{0} and thus φ is an isomorphism. Therefore we can uniquely solve the equation
[β−1, a2(x)] = −β1,off(x)− d

dxa1(x) and obtain a2(x).

We now proceed inductively for m ≥ 2 and assume that we already found am(x) and
bm−1(x). Consider the equation

β−1am+1(x) + β0(x)am(x) + β1(x)am−1(x) + d
dxam(x) =

bm(x) + am+1(x)β−1 +
m∑
i=1

ai(x)bm−i(x)

for the power (
√
λ)m. Rearranging terms and after decomposition in the diagonal (d) and

off-diagonal (off) part we get

bm(x) = β0(x)am(x) + β1,off(x)am−1(x),

[β−1, am+1(x)] = −β1,d(x)am−1(x)− d
dxam(x) +

m∑
i=1

ai(x)bm−i(x).

From the discussion above we see that these equations can uniquely be solved and one
obtains am+1(x) and bm(x). By induction one therefore obtains a unique formal solution
of (∗) with the desired properties.

With the help of Theorem 3.10 we can reproduce Proposition 3.6 presented in [36].

Corollary 3.12. The logarithm lnµ of the eigenvalue µ of the monodromy Mλ has the
following asymptotic expansions

lnµ = 1√
λ

ip
2 +
√
λ

∫ p

0

(
−i(∂u)2 + i

2 cosh(2u)
)
dt+O(λ) at λ = 0,

lnµ =
√
λ ip2 + 1√

λ

∫ p

0

(
−i(∂̄u)2 + i

2 cosh(2u)
)
dt+O(λ−1) at λ =∞.
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3.2 Polynomial Killing fields for finite type solutions

Proof. From Theorem 3.10 we know that at λ = 0 we have

lnµ = 1√
λ

ip
2 +
√
λ

∫ p

0
b1(t) dt+

∑
m≥2

(
√
λ)m

∫ p

0
bm(t) dt

= 1√
λ

ip
2 +
√
λ

∫ p

0

(
−i(∂u)2 + i

2 cosh(2u)
)
dt+O(λ).

The equation Mλ =
(
M

t
λ̄−1

)−1
implies µ(λ) = µ̄−1(λ̄−1). Thus the expansion of lnµ(λ)

at λ =∞ is equal to the expansion of −lnµ(λ̄−1) at λ = 0 and one obtains

lnµ =
√
λ ip2 + 1√

λ

∫ p

0

(
−i(∂̄u)2 + i

2 cosh(2u)
)
dt+O(λ−1) at λ =∞.

3.2 Polynomial Killing fields for finite type solutions

In the following we will consider the variable y as a flow paramater. Expanding the
matrices Uλ and Vλ with respect to this flow parameter y we get for Uλ

Uλ(x, y) = Uλ(x, 0) + yδUλ(x) +O(y2),
d
dxUλ(x, y) = d

dxUλ(x, 0) + y d
dxδUλ(x) +O(y2),

d
dyUλ(x, y) = δUλ(x) +O(y)

and for Vλ the equations

Vλ(x, y) = Vλ(x, 0) + yδVλ(x) +O(y2),
d
dxVλ(x, y) = d

dxVλ(x, 0) + y d
dxδVλ(x) +O(y2).

Plugging these equations into the zero-curvature condition

d
dyUλ −

d
dxVλ − [Uλ, Vλ] = 0

we obtain the following equation with respect to the constant term y = 0

δUλ(x)− d
dxVλ(x, 0)− [Uλ(x, 0), Vλ(x, 0)] = 0

and therefore with the Lax operator Lλ(x) := d
dx + Uλ(x, 0)

δLλ(x) = δUλ(x) = d
dxVλ(x, 0) + [Uλ(x, 0), Vλ(x, 0)] = [Lλ(x), Vλ(x, 0)].

If we replace Vλ(x, 0) by a map Wλ(x) solving d
dxWλ(x) = [Wλ(x), Uλ(x, 0)] we get for the

constant term

δLλ = δUλ(x, 0) = [Lλ,Wλ(x)] = d
dxWλ(x) + [Uλ(x, 0),Wλ(x)] ≡ 0,

i.e. the corresponding Lax equation δLλ = [Lλ,Wλ] is stationary. Let us adapt Definition
2.1 in [27] to obtain the following
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Chapter 3. Spectral data for periodic solutions of the sinh-Gordon equation

Definition 3.13. A pair (u, uy) ' Uλ(·, 0) corresponding to a periodic solution of the
sinh-Gordon equation is of finite type if there exists g ∈ N0 such that

Φλ(x) =
λ−1

2

(
0 ieu

0 0

)
+

g∑
n=0

λn
(
ωn euτn
euσn −ωn

)
is a solution of the Lax equation

d

dx
Φλ = [Φλ, Uλ(·, 0)]

for some periodic functions ωn, τn, σn : R/p→ C.

Given a map Φ̃λ of the form

Φ̃λ(z) =
λ−1

2

(
0 ieu

0 0

)
+

g∑
n=0

λn
(
ω̃n euτ̃n
euσ̃n −ω̃n

)
with expansion

Φ̃λ(x, y) = Φ̃λ(x, 0) + yδΦ̃λ(x) +O(y2)
d
dx Φ̃λ(x, y) = d

dx Φ̃λ(x, 0) + y d
dxδΦ̃λ(x) +O(y2)

d
dy Φ̃λ(x, y) = δΦ̃λ(x) +O(y)

that is a solution of the Lax equation

dΦ̃λ = [Φ̃λ, αλ]⇐⇒

{
d
dx Φ̃λ(x, y) = [Φ̃λ(x, y), Uλ(x, y)]
d
dy Φ̃λ(x, y) = [Φ̃λ(x, y), Vλ(x, y)]

we obtain a map Φλ as in Definition 3.13 by setting

Φλ(x) := Φ̃λ(x, 0).

In order to obtain a map Φ̃λ we recall the purely geometric approach discovered by Pinkall
and Sterling [45] and adapted to the case of S3 by Kilian and Schmidt [36].

The Pinkall-Sterling iteration for S3. We consider a normal variation of a conformal
CMC-immersion f : C→ SU(2) ' S3, i.e.

ḟ = d
dtf |t=0 = ω ·N, (∗)

where the smooth function ω : C → R represents the infinitesimal change of the surface
in the direction of the normal N . In general this variation will not lead to conformal
immersions, therefore we have to extend (∗) to

ḟ := τ∂f + σ∂̄f + ωN (∗∗)
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3.2 Polynomial Killing fields for finite type solutions

with smooth functions τ, σ : C → C obeying τ̄ = σ and some differential equations. By
differentiating the sinh-Gordon equation we obtain the linearized sinh-Gordon equation

∂̄∂u̇+ cosh(2u)u̇ =
(

1
4∆ + cosh(2u)

)
u̇ = 0. (3.2.1)

Equation (3.2.1) is called the homogeneous Jacobi equation and we see that u̇ is a
solution of this equation. The following proposition shows that the situation for the
function ω : C→ R is quite similar.

Proposition 3.14 ([36], Proposition 2.1). Every Jacobi field ωN along f can be supple-
mented by a tangential component τ∂f + σ∂̄f to yield a parametric Jacobi field. Further,
if τ∂f + σ∂̄f + ωN is a parametric Jacobi field, then ω solves the inhomogeneous Jacobi
equation

∂̄∂ω + cosh(2u)ω =
Ḣe2u

2(H2 + 1)
. (3.2.2)

We want to present a formula that comes up in the proof of the above proposition:

u̇ =
1
2
∂τ + τ∂u+

1
2
∂̄σ + σ∂̄u− ωH +

HḢ

H2 + 1
.

A parametric Jacobi field is called a Killing field, if it is induced by an infinitesimal
isometry of S3.

Proposition 3.15 ([36], Proposition 2.2). A parametric Jacobi field is a Killing field if
and only if u̇ = 0.

Remark 3.16. Since the derivative of αλ with respect to t is of the form

α̇λ =
1
2

(
u̇zdz − u̇z̄dz̄ iλ−1u̇eudz − iu̇e−udz̄

−iu̇e−udz + iλu̇eudz̄ −u̇zdz + u̇z̄dz̄

)
we see that u̇ = 0⇔ α̇λ = 0.

From the Sym-Bobenko formula we know that a conformal CMC-immersion f : C →
SU(2) can be written as f = F1F

−1
0 . Taking the derivative with respect to t we obtain

ḟ = ˙(F1F
−1
0 ) = F1(W1 −W0)F−1

0 = τ∂f + σ∂̄f + ωN,

where Wi are given by Wi := F−1
i Ḟi for i = 0, 1. In case ḟ is a Killing field, i.e. u̇ = 0,

these maps obey

dWi = d
(
F−1
i Ḟi

)
= −F−1

i (dFi)F−1
i Ḟi + F−1

i
˙dFi

= −αiWi + F−1
i Ḟiαi + F−1

i Fiα̇i

= [Wi, αi] + α̇i
u̇=0= [Wi, αi].

Now we search for a λ-dependent map Φ̃λ such that the equation dΦ̃λ = [Φ̃λ, αλ] holds
for all λ ∈ C∗. Let us omit the tilde in the following
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Chapter 3. Spectral data for periodic solutions of the sinh-Gordon equation

Proposition 3.17 ([27], Proposition 2.2). Suppose Φλ is of the form

Φλ(z) =
λ−1

2

(
0 ieu

0 0

)
+

g∑
n=0

λn
(
ωn euτn
euσn −ωn

)
for some u : C→ R, and that Φλ solves the Lax equation dΦλ = [Φλ, αλ]. Then:

(i) The function u is a solution of the sinh-Gordon equation, i.e. ∆u+ 2 sinh(2u) = 0.

(ii) The functions ωn are solutions of the homogeneous Jacobi equation (3.2.1).

(iii) The following iteration gives a formal solution of dΦλ = [Φλ, αλ]. Let ωn, σn, τn−1

with a solution ωn of (3.2.1) be given. Now solve the system

τn,z̄ = ie−2uωn, τn,z = 2iuzωn,z − iωn,zz

for τn,z and τn,z̄. Then define ωn+1 and σn+1 by

ωn+1 := −iτn,z − 2iuzτn, σn+1 := e2uτn + 2iωn+1,z̄.

(iv) Each τn is defined up to a complex constant cn, so ωn+1 is defined up to −2icnuz.

(v) ω0 = uz, ωg−1 = cuz̄ for some c ∈ C, and λgΦ1/λ̄
t also solves dΦλ = [Φλ, αλ].

Proof. Let us sketch some parts of the proof since we use different normalizations for αλ
and Φλ. Set Φλ =

(
Φ11 Φ12
Φ21 −Φ11

)
and consider the equation

dΦλ = [Φλ, αλ].

After decomposition into the (1, 0)- and (0, 1)-part we get

2∂
(

Φ11 Φ12

Φ21 −Φ11

)
=

[(
Φ11 Φ12

Φ21 −Φ11

)
,

(
∂u iλ−1eu

ie−u −∂u

)]
=

(
Φ12ie

−u − Φ21iλ
−1eu (Φ11 + Φ11)iλ−1eu − 2Φ12∂u

2Φ21∂u+ (−Φ11 − Φ11)ie−u Φ21iλ
−1eu − Φ12ie

−u

)
=

(
Φ12ie

−u − Φ21iλ
−1eu 2Φ11iλ

−1eu − 2Φ12∂u
2Φ21∂u− 2Φ11ie

−u Φ21iλ
−1eu − Φ12ie

−u

)
and

2∂̄
(

Φ11 Φ12

Φ21 −Φ11

)
=

[(
Φ11 Φ12

Φ21 −Φ11

)
,

(
−∂̄u ie−u

iλeu ∂̄u

)]
=

(
Φ12iλe

u − Φ21ie
−u (Φ11 + Φ11)ie−u + Φ12∂̄u

−2Φ21∂̄u+ (−Φ11 − Φ11)iλeu Φ21ie
−u − Φ12iλe

u

)
=

(
Φ12iλe

u − Φ21ie
−u 2Φ11ie

−u + 2Φ12∂̄u
−2Φ21∂̄u− 2Φ11iλe

u Φ21ie
−u − Φ12iλe

u

)
.
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Comparing coefficients we arrive at the equations

2ωn,z − iτn + ie2uσn+1 = 0, (3.2.3)
2ωn,z̄ + iσn − ie2uτn−1 = 0, (3.2.4)

2τnuz + τn,z − iωn+1 = 0, (3.2.5)
τn,z̄ − ie−2uωn = 0, (3.2.6)
σn,z + ie−2uωn = 0, (3.2.7)

2σnuz̄ + σn,z̄ + iωn−1 = 0. (3.2.8)

We only outline the proof of (iii), since this is the part where the different normalizations
for αλ and Φλ take effect. The equation for τn,z̄ is given by (3.2.6). Taking the z-derivative
of equation (3.2.3) we get

2ωn,zz − iτn,z + 2iuze2uσn+1 + ie2uσn+1,z = 0.

Rearranging terms and applying equations (3.2.5) and (3.2.7) leads to

τn,z = −2iωn,zz + 2uze2uσn+1 + e2uσn+1,z

(3.2.7)
= −2iωn,zz + 2uze2uσn+1 − iωn+1

(3.2.5)
= −2iωn,zz + 2uze2uσn+1 − 2τnuz − τn,z

and thus
τn,z = −iωn,zz + iuz(−ie2uσn+1 + iτn).

Now equation (3.2.3) gives
τn,z = 2iuzωn,z − iωn,zz.

The equations for ωn+1 and σn+1 are given by (3.2.5) and (3.2.4) respectively.

In [45] Pinkall-Sterling construct a series of solutions for the induction introduced in
Proposition 3.17, (iii). From this Pinkall-Sterling iteration we obtain for the first
terms of ω =

∑
n≥−1 λ

nωn

ω−1 = 0, ω0 = uz = 1
2(ux − iuy), ω1 = uzzz − 2(uz)3,

ω2 = uzzzzz − 10uzzz(uz)3 − 10(uzz)2uz + 6(uz)5, . . .

Potentials and polynomial Killing fields. We follow the exposition given in [27],
Section 2. For g ∈ N0 consider the 3g + 1-dimensional real vector space

Λg−1sl2(C) =
{
ξλ =

g∑
n=−1

λnξ̂n

∣∣∣∣ ξ̂−1 ∈ iRε+, ξ̂n = −ξ̂g−1−n
t
∈ sl2(C) for n = −1, . . . , g

}
and define an open subset of Λg−1sl2(C) by

Pg := {ξλ ∈ Λg−1sl2(C) | ξ̂−1 ∈ iR+ε+, tr(ξ̂−1ξ̂0) 6= 0}.

49



Chapter 3. Spectral data for periodic solutions of the sinh-Gordon equation

Every ξλ ∈ Pg satisfies the so-called reality condition

λg−1ξ1/λ̄
t = −ξλ.

Definition 3.18. A polynomial Killing field is a map ζλ : R→ Pg which solves

d

dx
ζλ = [ζλ, Uλ(·, 0)] with ζλ(0) = ξλ ∈ Pg.

For each initial value ξλ ∈ Pg, there exists a unique polynomial Killing field given by

ζλ(x) := F−1
λ (x)ξλFλ(x)

with d
dxFλ(x) = Fλ(x)Uλ(x, 0), since there holds

d
dxζλ = d

dx

(
F−1
λ ξλFλ

)
= −F−1

λ ( d
dxFλ)F−1

λ ξλFλ + F−1
λ ξλ( d

dxFλ)
= −Uλ(·, 0)F−1

λ ξλFλ + F−1
λ ξλFλUλ(·, 0)

= [ζλ, Uλ(·, 0)].

In order to obtain a periodic polynomial Killing field ζλ : R/p→ Pg from a pair (u, uy) '
Uλ(·, 0) of finite type we set

ζλ(x) := Φλ(x)− λg−1Φ1/λ̄
t(x) and ζλ(0) =: ξλ = Φλ(0)− λg−1Φ1/λ̄

t(0).

Suppose we have a polynomial Killing field

ζλ(x) =
(

0 β−1(x)
0 0

)
λ−1 +

(
α0(x) β0(x)
γ0(x) −α0(x)

)
λ0 + . . .+

(
αg(x) βg(x)
γg(x) −αg(x)

)
λg.

Then one can associate a matrix-valued form U(ζλ) to ζλ defined by

U(ζλ) =
(

α0(x)− α0(x) λ−1β−1(x)− γ0(x)
−λβ−1(x) + γ0(x) −α0(x) + α0(x)

)
dx.

Remark 3.19. One can show that for every ξλ ∈ Pg there exists a unique polynomial
Killing field ζλ : R→ Pg that solves

d

dx
ζλ = [ζλ, U(ζλ)] with ζλ(0) = ξλ.

3.3 The spectral curve

In this section we want to introduce the Riemann surface associated to the monodromy
matrix Mλ of the frame Fλ(x). We start with the following

Definition 3.20. Let Ŷ be defined by

Ŷ = {(λ, µ) ∈ C∗ × C∗ | R(λ, µ) = det(µ1−M(λ)) = 0}.

Ŷ is an open Riemann surface called multiplier curve.
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Considering the eigenvalue equation of the monodromy matrix we get Ŷ = {(λ, µ) ∈
C∗ × C∗ | R(λ, µ) = µ2 −∆(λ)µ + 1 = 0} and thus see that the eigenvalues of M(λ) are
given by

µ1,2 =
1
2

[
∆(λ)±

√
∆(λ)2 − 4

]
, ∆(λ) = tr(M(λ)).

The branch points of the 2-valued function µ : C∗ → C∗ are given by the zeros of odd
order of ∆(λ)2 − 4.

Assumption 3.21. In the following we will assume that the function λ 7→ ∆(λ)2− 4 has
only zeros up to order two and that there are only finitely many zeros of order one.

Due to Assumption 3.21 the function µ defines a hyperelliptic curve with branch points
at the simple zeros of ∆(λ)2 − 4.

Considering the differential of R(λ, µ) = 0 we get

(2µ−∆(λ)) dµ−∆′(λ)µdλ = 0

We say that Ŷ has an ordinary double point at (λ0, µ0) if and only if the above
differential vanishes at (λ0, µ0), i.e.

2µ0 −∆(λ0) = 0 and ∆′(λ0)µ0 = 0.

The first condition is equivalent to ∆(λ0)2−4 = 0 and therefore ∆(λ0) = ±2⇐⇒ µ0 = ±1.
Taking the derivative of ∆(λ)2 − 4 with respect to λ we get

d

dλ

(
∆(λ)2 − 4

)
= 2∆(λ)∆′(λ)

and therefore d
dλ

(
∆(λ)2 − 4

)
|λ=λ0 = 2∆(λ0)∆′(λ0) = 0. Thus the double points of Ŷ

correspond to the zeros of ∆(λ)2 − 4 of order two.

There are infinitely many double points (denoted by D) on the multiplier curve Ŷ (recall
that for u ≡ 0 the set of double points D0 is given by Remark 3.9). Nethertheless we can
consider its normalization, i.e. a covering π : Ỹ → Ŷ with a smooth Riemann surface Ỹ
such that π|eY \π−1(D)

: Ỹ \π−1(D)→ Ŷ \D is biholomorphic.

Definition 3.22. Consider the normalization π : Ỹ → Ŷ of the multiplier curve Ŷ . By
declaring λ = 0,∞ to be two additional branch points, one obtains a compact hyperelliptic
curve Y that is called the spectral curve. The simple zeros of ∂R(λ,µ)

dµ = 2µ − ∆(λ)
together with the points y0, y∞ corresponding to λ = 0 and λ =∞ define the branching
divisor b of Y .

We now want to derive some properties of Y and first study its involutions. These result
from the well-known transformation properties of the monodromy M(λ).
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Chapter 3. Spectral data for periodic solutions of the sinh-Gordon equation

Proposition 3.23. The monodromy satisfies

M(λ̄−1) = (M t(λ))−1.

Proof. First we have to show that αλ = −αt
λ̄−1 holds. Obviously one has

αλ =
1
2

(
uz̄dz̄ − uzdz −iλ̄−1eudz̄ − ie−udz

−ie−udz̄ − iλ̄eudz −uz̄dz̄ + uzdz

)
,

αtλ =
1
2

(
uz̄dz̄ − uzdz −ie−udz̄ − iλ̄eudz

−iλ̄−1eudz̄ − ie−udz −uz̄dz̄ + uzdz

)
.

Inserting λ̄−1 into αtλ one gets

αtλ̄−1 =
1
2

(
uz̄dz̄ − uzdz −ie−udz̄ − iλ−1eudz

−iλeudz̄ − ie−udz −uz̄dz̄ + uzdz

)
= −αλ.

Since dFλ = Fλαλ we have dF tλ̄−1 = αt
λ̄−1 · F

t
λ̄−1 and therefore

d
(
F
t
λ̄−1

)−1
= −

(
F
t
λ̄−1

)−1 (
dF

t
λ̄−1

)(
F
t
λ̄−1

)−1

=
(
F
t
λ̄−1

)−1
αλ · F

t
λ̄−1

(
F
t
λ̄−1

)−1

=
(
F
t
λ̄−1

)−1
αλ

with
(
F
t
λ̄−1

)−1
(z0) = 1. Since the initial value problem

dFλ = Fλαλ, Fλ(z0) = 1

has a unique solution, one has Fλ =
(
F
t
λ̄−1

)−1
and hence the result follows from the

definition of the monodromy.

Proposition 3.24. For the Pauli matrix σ2 =
(

0 −i
i 0

)
one has

(i) σ2M(λ)σ2 = (M t(λ))−1,

(ii) σ2M(λ̄−1)σ2 = M(λ).

Proof.

(ii) A short calculation yields
σ2αλ̄−1σ2 = αλ

and thus

d
(
σ2Fλ̄−1σ2

)
= σ2Fλ̄−1αλ̄−1σ2 = σ2Fλ̄−1σ2σ2αλ̄−1σ2

= σ2Fλ̄−1σ2αλ.

This gives Fλ = σ2Fλ̄−1σ2 and the claim follows.
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3.3 The spectral curve

(i) Again we are considering αλ and deduce from the previous proposition the equation

αtλ = −αλ̄−1

and thus

dσ2

(
F tλ
)−1

σ2 = σ2d
(
F tλ
)−1

σ2

= σ2

(
F tλ
)−1

αλ̄−1F tλ
(
F tλ
)−1

σ2

= σ2

(
F tλ
)−1

σ2 · σ2αλ̄−1σ2

(ii)
= σ2

(
F tλ
)−1

σ2αλ.

Summing up we get
Fλ = σ2

(
F tλ
)−1

σ2

by the same argument as in the preceeding proposition. This concludes the proof.

Lemma 3.25. There are three involutions on the spectral curve Y given by

σ : (λ, µ) 7→ (λ, 1/µ)
ρ : (λ, µ) 7→ (1/λ̄, 1/µ̄)
η : (λ, µ) 7→ (1/λ̄, µ̄)

and the involution η has no fixed points on the spectral curve Y .

Remark 3.26. Note that σ is the holomorphic hyperelliptic involution and ρ, η are anti-
holomorphic involutions that arise for real u.

Proof. With the help of Proposition 3.23 and 3.24 we compute

R(λ, µ−1) = det(µ−1
1−M(λ)) = det(µ−1

1− σ2(M t(λ))−1σ2)
= det(µ−1

1− (M t(λ))−1) = det(µ−1M t(λ)−1(µ1−M t(λ)))

=
det(µ1−M t(λ))
µ2 det(M t(λ))

=
R(λ, µ)
µ2

,

R(λ̄−1, µ̄−1) = det(µ̄−11−M(λ̄−1)) = det(µ−1
1−M(λ̄−1))

= det(µ−1
1− (M t(λ))−1) =

R(λ, µ)
µ2

,

R(λ̄−1, µ̄) = det(µ̄1−M(λ̄−1)) = det(µ1−M(λ̄−1))
= det(µ1− σ2M(λ)σ2) = R(µ, λ)

and therefore obtain the existence of the three involutions. To complete the proof we have
to check that η has no fixed points: If v(λ, µ) is an eigenvector of Mλ for the eigenvalue
µ then v̄(λ̄−1, µ̄) is an eigenvector of M λ̄−1 for the eigenvalue µ since

M λ̄−1 v̄(λ̄−1, µ̄) = Mλ̄−1v(λ̄−1, µ̄) = µ̄v(λ̄−1, µ̄) = µv̄(λ̄−1, µ̄).
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Chapter 3. Spectral data for periodic solutions of the sinh-Gordon equation

With M λ̄−1 = σ2Mλσ2 we get

M λ̄−1 v̄(λ̄−1, µ̄) = µv̄(λ̄−1, µ̄)
⇔ σ2Mλσ2v̄(λ̄−1, µ̄) = µv̄(λ̄−1, µ̄)
⇔ Mλσ2v̄(λ̄−1, µ̄) = µσ2v̄(λ̄−1, µ̄)

and therefore σ2v̄(λ̄−1, µ̄) is an eigenvector of Mλ for the eigenvalue µ. If η would have
fixed points, one would obtain the following identity

(λ, µ) != (1/λ̄, µ̄)

and the eigenvectors v(λ, µ) =: v and σ2v̄(λ̄−1, µ̄) != σ2v̄(λ, µ) = σ2v̄ of Mλ would linearly
depend on each other, i.e. σ2v̄ = γv. But this would imply

− v̄ = σ2σ2v̄ = γσ2v = γ(σ2v̄) = γγ̄v̄

and therefore γγ̄ = −1, which is a contradiction. Hence the eigenvectors are linearly
independent and η has no fixed points.

Spectral curves defined by ξλ ∈ Pg. Let us introduce an equivalent definition for the
spectral curve Y that results from a periodic polynomial Killing field. For this, following
the exposition of [27], let ζλ : R/p → Pg be a periodic polynomial Killing field, i.e.
ζλ(x + p) = ζλ(x) for all x ∈ R. Then Uλ(ζλ) is periodic as well with period p. For
Fλ : R→ SL(2,C) that is a solution of d

dxFλ = FλUλ(ζλ) with Fλ(0) = 1 we get

ξλ = ζλ(0) = ζλ(p) = F−1
λ (p)ξλFλ(p) = M−1

λ ξλMλ

and therefore
[Mλ, ξλ] = 0.

Since Mλ and ξλ commute it is possible to diagonalize them simultaneously away from
the branch points (see Proposition 3.31). Note that tr(ξλ) = 0 and thus the eigenvalues
of ξλ are given by ν2 = −det ξλ. Then one obtains

Mλ = f(λ)ξλ + g(λ)1⇐⇒
(
µ 0
0 µ−1

)
=
(
f(λ)ν+g(λ) 0

0 −f(λ)ν+g(λ)

)
for ν 6= 0, µ 6= ±1. In particular we get the equation

µ = f(λ)ν + g(λ) = 1
2(µ−σ

∗µ
ν )ν + 1

2 (µ+ σ∗µ) (∗)

with
f(λ) = 1

2(µ−σ
∗µ

ν ) = 1
2 and g(λ) = 1

2 (µ+ σ∗µ) = 1
2∆(λ).

Thus µ = 1
2 (∆(λ) + ν) with ν =

√
∆(λ)2 − 4 away from the branch points. With the help

of Theorem 8.2 in [21] the functions f, g in equation (∗) extend to holomorphic functions
on C∗. Summing up one can consider µ and ν as two different functions on the same
Riemann surface Y .
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3.4 The eigenline bundle

Remark 3.27. From the previous considerations we see that µ is a non-zero holomorphic
map on Y ∗.

Definition 3.28. Let Y ∗ be defined by

Y ∗ = {(λ, ν̃) ∈ C∗ × C∗ | det(ν̃1− ζλ) = ν̃2 + det(ξλ) = 0}

and suppose that the polynomial a(λ) = −λ det(ξλ) has 2g pairwise distinct roots. By
declaring λ = 0,∞ to be two additional branch points and setting ν = ν̃λ one obtains that

Y := {(λ, ν) ∈ CP1 × CP1 | ν2 = λa(λ)}

defines a compact hyperelliptic curve Y of genus g, the spectral curve. The genus g is
called the spectral genus.

Remark 3.29. Note that the eigenvalue ν̃ of ξλ is given by ν̃ = ν
λ .

We obtain two different parametrizations of the spectral curve Y , namely with coordinates
(λ, µ) or coordinates (λ, ν). In order to translate the involutions σ, ρ, η to the coordinates
(λ, ν) one has to consider the realization of ξλ ∈ Pg.

Remark 3.30. Since λg−1ξ1/λ̄
t = −ξλ, the polynomial a(λ) = −λ det(ξλ) satisfies the

reality condition
λ2ga(1/λ̄) = a(λ)

and therefore the involutions σ, ρ, η with respect to (λ, ν) are given by

σ : (λ, ν) 7→ (λ,−ν), ρ : (λ, ν) 7→ (λ̄−1,−λ̄−1−gν̄), η : (λ, ν) 7→ (λ̄−1, λ̄−1−gν̄).

Note that λg−1ξ1/λ̄
t = −ξλ implies λ

g−1
2 ξ1/λ̄

t = −λ
1−g

2 ξλ and thus the matrix λ
1−g

2 ξλ lies
in su(2) for λ ∈ S1. On su(2) the determinant is the square of a norm and therefore

0 ≤ det(λ
1−g

2 ξλ) = λ1−g det(ξλ) = −λ−ga(λ)

holds for λ ∈ S1. Moreover, a(λ) has distinct roots and thus λ−ga(λ) < 0 holds on
S1. Let us show that η has no fixed points. Suppose (λ, ν) is a point on Y such that
(λ̄−1, λ̄−1−gν̄) = (λ, ν). Then λ ∈ S1 and

λ̄−1−gν̄ = ν ⇐⇒ λ̄−ga(λ) = λ̄−1−gν̄2 = |ν|2 ≥ 0,

which contradicts the previous inequality. This proves that η has no fixed points.

3.4 The eigenline bundle

We want to establish a 1:1-correspondence between pairs (u, uy) that originate from so-
lutions of the sinh-Gordon equation and the so-called spectral data (Y (u, uy), D(u, uy))
consisting of the spectral curve Y (u, uy) and a divisor D(u, uy) on Y (u, uy). Let us inves-
tigate how this divisor can be constructed from a pair (u, uy). We denote the eigenvalue
ν̃ of ξλ by ν in the following.
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Chapter 3. Spectral data for periodic solutions of the sinh-Gordon equation

Proposition 3.31 ([27], Proposition 5.1). Consider the monodromy Mλ that satisfies
M1/λ̄

t = M−1
λ and ξλ =

(
α β
γ −α

)
∈ Pg with [Mλ, ξλ] = 0. Assume ν 6= 0 and µ2 6= 1.

Then Mλ and ξλ have the same eigenvectors v+ = (1, (ν − α)/β)t, v− = (1,−(ν + α)/β)t

with

ξλv+ = νv+ and Mλv+ = µv+,

ξλv− = −νv− and Mλv− = µ−1v−.

The same argumentation as in Proposition 3.31 yields for the eigenvectors of M t
λ and ξtλ

Remark 3.32. Consider the monodromy Mλ that satisfies M1/λ̄
t = M−1

λ and ξλ =(
α β
γ −α

)
∈ Pg with [Mλ, ξλ] = 0. Assume ν 6= 0 and µ2 6= 1. Then M t

λ and ξtλ have the

same eigenvectors w+ = (1, β/(ν + α))t, w− = (1, β/(−ν + α))t with

ξtλw+ = νw+ and M t
λw+ = µw+,

ξtλw− = −νw− and M t
λw− = µ−1w−.

Lemma 3.33. The eigenvectors v+ and v− have the asymptotic expansions

v± =


(

1
±e−u(0)

√
λ

)
+O(λ) at λ = 0,(

1
±eu(0)

√
λ

)
+O(λ−1) at λ =∞.

Proof. Since ν2 = −det(ξλ) = − 1
4λ + O(1) around λ = 0 we obtain ν = i

2
√
λ

around
λ = 0. Moreover, there holds

ζλ(x) =
(

0 β−1(x)
0 0

)
λ−1 +

(
α0(x) β0(x)
γ0(x) −α0(x)

)
λ0 + . . .+

(
αg(x) βg(x)
γg(x) −αg(x)

)
λg

and thus with ξλ = ζλ(0) we get the expansion

ν − α(0)
β(0)

=
i
2

√
λ
−1 − (α0(0) +O(λ))
β−1(0)λ−1 +O(1)

=
i
2 +O(

√
λ)

β−1(0)
√
λ
−1

+O(
√
λ)

=
i
√
λ

2β−1(0)
+O(1)

around λ = 0. Now β−1(x) = i
2e
u yields the claim for λ = 0. A similar consideration

gives the expansion around λ =∞.

If we adapt the proof of Lemma 3.33 for w+ and w− we arrive at

Corollary 3.34. The transposed eigenvectors w+ and w− have the asymptotic expansions

w± =


(

1
±eu(0)/

√
λ

)
+O(λ) at λ = 0,(

1
±e−u(0)/

√
λ

)
+O(λ−1) at λ =∞.
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3.4 The eigenline bundle

In the following we will see that the functions v+, v− and w+, w− define meromorphic
functions on the spectral curve Y .

Lemma 3.35. On the spectral curve Y there exist unique meromorphic maps v(λ, µ) and
w(λ, µ) from Y to C2 such that

(i) For all (λ, µ) ∈ Y ∗ the value of v(λ, µ) is an eigenvector of Mλ with eigenvalue µ
and w(λ, µ) is an eigenvector of M t

λ with eigenvalue µ, i.e.

Mλv(λ, µ) = µv(λ, µ), M t
λw(λ, µ) = µw(λ, µ).

(ii) The first component of v(λ, µ) and w(λ, µ) is equal to 1, i.e. v(λ, µ) = (1, v2(λ, µ))t

and w(λ, µ) = (1, w2(λ, µ))t on Y .

Proof. Since the form αλ satisfies α1/λ̄ = −αtλ the monodromy satisfies

M1/λ̄ = M t
λ
−1

and is therefore of the form

Mλ =
(
a b
−b∗ a∗

)
,

where we set f∗(λ) = f(1/λ̄) for holomorphic functions f : C∗ → C. In analogy to the
proof of Proposition 3.31 we obtain

v(λ, µ) =
(

1
µ−a
b

)
=
(

1
b∗

a∗−µ

)
and w(λ, µ) =

(
1
a−µ
b∗

)
=
(

1
b

µ−a∗

)
.

If the denominators do not vanish identically, this gives vector-valued functions of the
desired form on Y ∗. From Lemma 3.33 and Corollary 3.34 we know that

v± =


(

1
±e−u(0)

√
λ

)
+O(λ) at λ = 0,(

1
±eu(0)

√
λ

)
+O(λ−1) at λ =∞.

and

w± =


(

1
±eu(0)/

√
λ

)
+O(λ) at λ = 0,(

1
±e−u(0)/

√
λ

)
+O(λ−1) at λ =∞.

Therefore the maps v, w are globally defined on Y . Now the subspace

E(λ0,µ0) = {v ∈ C2 |Mλ0v = µ0v}

for (λ0, µ0) ∈ Y is at least one-dimensional, that is dim(E(λ0,µ0)) ≥ 1 for all (λ0, µ0) ∈ Y .
Since Y is non-singular the set

Y ′ := {(λ0, µ0) ∈ Y | dim(E(λ0,µ0)) = 2}
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Chapter 3. Spectral data for periodic solutions of the sinh-Gordon equation

is empty. Moreover, the set

Y ′′ :=
{

(λ0, µ0) ∈ Y | @ v = ( v1
v2 ) ∈ E(λ0,µ0) : v1 6= 0

}
which is equal to (Y ∗)′′ := {(λ0, µ0) ∈ Y ∗ | b(λ0) = 0 and a∗(λ0) = µ0} for (λ0, µ0) ∈ Y ∗
is a subvariety of Y and therefore either discrete or equal to Y . Due to Lemma 3.33 the
point y∞ ∈ Y ′′ and y0 /∈ Y ′′. Thus Y ′′ 6= Y is a discrete subset of Y and therefore finite.
In particular (Y ∗)′′ is finite as well. A similar reasoning holds for w. This implies that
v, w can be extended uniquely to meromorphic maps from Y to C2 and concludes the
proof.

The projector P . We will use the meromorphic maps v : Y → C2 and wt : Y → C2

to define a matrix-valued meromorphic function on Y by setting P := vwt

wtv . Given a
meromorphic map f on Y we also define

P (f) :=
vfwt

wtv
.

It turns out that P is a projector and has the following properties (see [47], Lemma 3.5).

Lemma 3.36.

(i) P 2 = P

(ii) P ·Mλ = Mλ · P = µP

(iii)
∑2

i=1
viw

t
i

wtivi
= 1, where v1, w

t
1 are the eigenvectors for µ and v2, w

t
2 the corresponding

eigenvectors for 1
µ .

(iv) The divisor of P is −b, where b is the branching divisor of Y , see Def. 3.22.

Proof.

(i) First we note that P is independent of the choice of v, wt, since for ṽ = fv and
w̃t = gwt with meromorphic functions f, g one gets

ṽw̃t

w̃tṽ
=
vwt

wtv
= P.

Therefore we may assume that locally v, wt have neither poles nor zeros. From the
definition of P one obtains

P 2 =
(vwt)(vwt)
(wtv)(wtv)

=
v(wtv)wt

(wtv)(wtv)
=
vwt

wtv
= P.

(ii) A direct calculation gives P ·Mλ = µP = Mλ · P .
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3.4 The eigenline bundle

(iii) Away from the branch points v1, v2 and w1, w2 are bases of C2. Moreover, the
equations Mλv1 = µv1 and Mλv2 = 1

µv2 imply

wt2Mλv1 = 1
µw

t
2v1 = µwt2v1 and wt1Mλv2 = µwt2v1 = 1

µw
t
2v1.

Therefore wtivj = 0 if i 6= j. This shows that up to a factor v1, v2 and w1, w2 are

dual bases of C2 and thus
∑2

i=1
viw

t
i

wtivi
= 1 holds.

(iv) From the construction of P we see that

P (λ0, µ0) =
(
vwt

wtv

)
(λ0, µ0)

=
(

1
2µ−∆(λ)

(
µ− a∗ b
−b∗ µ− a

))
(λ0, µ0)

and therefore P can only have poles and those occur at the points where 2µ−∆(λ)
vanishes. From Lemma 3.33 and Corollary 3.34 we see that wtv = 2 at λ = 0 and
at λ =∞. Moreover, we have

vwt =
(

1 eu(0)
√
λ

e−u(0)
√
λ 1

)
+O(λ) at λ = 0

and

vwt =
(

1 e−u(0)
√
λ

eu(0)
√
λ 1

)
+O(λ−1) at λ =∞.

Thus P has a pole at λ = 0 and λ = ∞. This shows that the divisor of P is the
negative branching divisor −b and concludes the proof.

Remark 3.37. Considering λ : Y → CP1 as a holomorphic map from Y to CP1 and
denoting the 2g simple zeros of 2µ−∆(λ) by α1, . . . , α2g we get the following divisors

(λ) = 2y0 − 2y∞, (dλ) = α1 + . . .+ α2g + y0 − 3y∞.

Thus Lemma 3.36 (iv) implies that P dλ
λ is a holomorphic 1-form on Y ∗ since the branching

divisor b is given by b = α1 + . . .+ α2g + y0 + y∞.

Remark 3.38. Note that we have Mλ = P (µ) + σ∗P (µ) and ξλ = P (ν) + σ∗P (ν).

The holomorphic maps v : Y → CP1 and w : Y → CP1 from Lemma 3.35 motivate the
following

Definition 3.39. Set D(u, uy) and Dt(u, uy) as

D(u, uy) = −(v(λ, µ)) and Dt(u, uy) = −(w(λ, µ))

and denote by E(u, uy) := OD(u,uy) and Et(u, uy) := ODt(u,uy) the corresponding holo-
morphic line bundles. Then E(u, uy) is called the eigenline bundle and Et(u, uy) is
called the transposed eigenline bundle.
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Chapter 3. Spectral data for periodic solutions of the sinh-Gordon equation

Since there holds

{(λi, µi) | b(λi) = 0 and a(λi) 6= µi} = {(λi, µi) | b(λi) = 0 and a∗(λi) = µi}

we get
D(u, uy) =

∑
(λi, µi) with b(λi) = 0 and a∗(λi) = µi

and analogously

Dt(u, uy) =
∑

(λ̃i, µ̃i) with b∗(λ̃i) = 0 and a(λ̃i) = µ̃i

on Y ∗. In the proof of Lemma 3.35 we saw that the set

(Y ∗)′′ =
{

(λ0, µ0) ∈ Y ∗ | @ v = ( v1
v2 ) ∈ E(λ0,µ0) : v1 6= 0

}
= {(λ0, µ0) ∈ Y ∗ | b(λ0) = 0 and a∗(λ0) = µ0}

is finite, therefore D(u, uy) and Dt(u, uy) indeed define divisors on Y .

Remark 3.40. The sections v1, v2 and w1, w2 span the space of global sections of OD(u,uy)

and ODt(u,uy). Moreover, v and ψ = F−1
λ v define linear equivalent divisors D ' D′.

We want to understand how the involutions of the spectral curve Y act on the divisors
D(u, uy), Dt(u, uy) described above and therefore investigate how the involutions act on
the eigenvectors v, wt of the monodromy Mλ.

Lemma 3.41. Let σ2 =
(

0 −i
i 0

)
. The eigenvectors v, wt transform as follows under the

involutions of the spectral curve:

σ∗v ∼ σ2w, ρ∗v ∼ w̄, η∗v ∼ σ2v̄.

Proof. If v(λ, µ−1) is an eigenvector of Mλ then v(λ, µ−1) is also an eigenvector of M−1
λ

since
Mλv(λ, µ−1) = 1

µv(λ, µ−1)⇐⇒M−1
λ v(λ, µ−1) = µv(λ, µ−1).

With M−1
λ = σ2M

t
λσ2 we get

M−1
λ v(λ, µ−1) = µv(λ, µ−1)

⇔ σ2M
t
λσ2v(λ, µ−1) = µv(λ, µ−1)

⇔ M t
λσ2v(λ, µ−1) = µσ2v(λ, µ−1)

and therefore σ2v(λ, µ−1) is an eigenvector of M t
λ. Since

wtMλ = µwt ⇐⇒M t
λw = µw

we see that σ2v(λ, µ−1) must be a multiple of w and the first claim is proved.
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3.4 The eigenline bundle

With an analogous argument one can see that v̄(λ̄−1, µ̄−1) is an eigenvector of M−1
λ̄−1 since

M
−1
λ̄−1 v̄(λ̄−1, µ̄−1) = M−1

λ̄−1v(λ̄−1, µ̄−1) = µ̄v(λ̄−1, µ̄−1) = µv̄(λ̄−1, µ̄−1).

With M
−1
λ̄−1 = M t

λ we get

M
−1
λ̄−1 v̄(λ̄−1, µ̄−1) = µv̄(λ̄−1, µ̄−1)

⇔ M t
λv̄(λ̄−1, µ̄−1) = µv̄(λ̄−1, µ̄−1)

and therefore v̄(λ̄−1, µ̄−1) is an eigenvector of M t
λ and a multiple of w. Finally the last

claim follows directly from the above lemma.

Lemma 3.42. The divisors D(u, uy) and Dt(u, uy) transform as follows under the invo-
lutions of the spectral curve:

σ ◦D(u, uy) = Dt(u, uy) + ρ ◦ (f), ρ ◦D(u, uy) = Dt(u, uy),
D(u, uy)− η ◦D(u, uy) = (f) for a merom. f with fη∗f̄ = −1.

Proof. From Lemma 3.41 we know that w ∼ ρ∗v̄ and due to the required normalization
v1 = 1 = w1 even

w = ρ∗v̄.

Now we get ρ ◦D(u, uy) = Dt(u, uy). From Lemma 3.41 we also know that v = fσ2η
∗v̄

and thus get
D(u, uy) = (f) + η ◦D(u, uy).

Moreover, applying the equation v = fσ2η
∗v̄, one can compute

−v = σ2σ2v = σ2fη
∗v̄ = fη∗(σ2v) = fη∗(fη∗v̄) = fη∗(f̄)η∗(η∗v) = fη∗(f̄)v

and therefore fη∗f̄ = −1. This yields the last equation. In order to obtain the first
equation we calculate

σ(D(u, uy)) = (ρ ◦ η)(D(u, uy)) = ρ(D(u, uy) + (f)) = Dt(u, uy) + ρ ◦ (f).

This equation yields the desired result and concludes the proof.

Remark 3.43. The meromorphic function f = µ−a
b satisfies fη∗f̄ = −1 and there holds

η(D(u, uy))−D(u, uy) = (f).

Proof. A direct calculation shows η∗f̄ = µ−a∗
b∗ and thus

fη∗f̄ =
µ− a
b
· µ− a

∗

b∗
= −1⇐⇒ µ2 − (a+ a∗)µ+ aa∗ + bb∗ = 0.

The second statement follows directly from the definition of the divisor D(u, uy).
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Chapter 3. Spectral data for periodic solutions of the sinh-Gordon equation

We are now able to calculate the degrees of the line bundles E(u, uy) = OD(u,uy) and
Et(u, uy) = ODt(u,uy) (compare with [47], Theorem 3.6).

Theorem 3.44. The divisors D(u, uy) and Dt(u, uy) have the degree g+1, where g is the
genus of the spectral curve Y . For solutions v, wt of Lemma 3.35 the following equation
for divisors holds:

D(u, uy) +Dt(u, uy) + (wt · v) = b,

where b is the branching divisor of the spectral curve Y .

Proof. From the definition of D(u, uy) resp. Dt(u, uy) we get

(vwt) = −D(u, uy)−Dt(u, uy).

Now the equation for divisors follows directly from Lemma 3.36, since

(P ) =
(
vwt

wtv

)
= (vwt)− (wtv) = −D(u, uy)−Dt(u, uy)− (wtv) = −b,

i.e.
D(u, uy) +Dt(u, uy) + (wt · v) = b.

In order to prove the first part of the claim we first note that Dt(u, uy) = ρ ◦ D(u, uy)
implies

2 degD(u, uy) = deg b− deg(wt · v) = deg b

since wtv is a meromorphic function on Y . Now deg b = 2g + 2 yields the claim.

We want to consider the monodromy Mλ(z1) of a frame Gλ with a different basepoint z1

with Gλ(z1) = 1.

Lemma 3.45. Consider the two fundamental solutions Fλ, Gλ ∈ SL(2,C) of

dFλ = Fλαλ, Fλ(z0) = 1

dGλ = Gλαλ, Gλ(z1) = 1

for periodic αλ with period p. Then the monodromies Mλ(z0) and Mλ(z1) for the frames
Fλ and Gλ satisfy the following equation

Mλ(z1) = F−1
λ (z1)Mλ(z0)Fλ(z1).

Proof. Consider the system

dGλ = Gλαλ with Gλ(z0) =: G0

Then one obtains
Gλ(z) = Gλ(z0) · Fλ(z) ∀z

62



3.4 The eigenline bundle

since Gλ(z0) · Fλ(z) is also a solution of the above system with the same initial value G0.
In particular one has

Gλ(z1) = 1 = Gλ(z0) · Fλ(z1)

and therefore Gλ(z0) = F−1
λ (z1). Since Gλ(z1) = 1 we get

Mλ(z1) = Gλ(z1 + p) = Gλ(z0)Fλ(z1 + p)
= Gλ(z0)Mλ(z0)Fλ(z1)
= F−1

λ (z1)Mλ(z0)Fλ(z1)

and the claim follows.

Remark 3.46. If v is an eigenvector for Mλ(z0) with eigenvalue µ then ṽ = F−1
λ (z1)v is

an eigenvector for the conjugated monodromy Mλ(z1) = F−1
λ (z1)Mλ(z0)Fλ(z1).

If we replace z1 by the variable z we see that the basepoint-dependent monodromy
Mλ(z) = F−1

λ (z)Mλ(z0)Fλ(z) satisfies

dMλ(z) = −F−1
λ (z) (dFλ(z))F−1

λ (z)Mλ(z0)Fλ(z) + F−1
λ (z)Mλ(z0) (dFλ(z))

= [Mλ(z), αλ(z)].

The result of Lemma 3.35 can be transfered to the situation where the monodromy de-
pends on the basepoint.

Proposition 3.47. Consider the monodromy Mλ that satisfies M1/λ̄
t = M−1

λ and ξλ ∈ Pg
with [Mλ, ξλ] = 0. Assume ν 6= 0 and µ2 6= 1. Then Mλ(x) = F−1

λ (x)MλFλ(x) and

ζλ(x) = F−1
λ (x)ξλFλ(x) =

(
α(x) β(x)
γ(x) −α(x)

)
have the same eigenvectors v+(x) = (1, (ν −

α(x))/β(x))t, v−(x) = (1,−(ν + α(x))/β(x))t with

ζλ(x)v+(x) = νv+(x) and Mλ(x)v+(x) = µv+(x),

ζλ(x)v−(x) = −νv−(x) and Mλ(x)v−(x) = µ−1v−(x).

Remark 3.48. Consider the monodromy Mλ that satisfies M1/λ̄
t = M−1

λ and ξλ ∈ Pg
with [Mλ, ξλ] = 0. Assume ν 6= 0 and µ2 6= 1. Then M t

λ(x) and ζtλ(x) have the same
eigenvectors w+(x) = (1, β(x)/(ν + α(x)))t, w− = (1, β(x)/(−ν + α(x)))t with

ζtλ(x)w+(x) = νw+(x) and M t
λ(x)w+(x) = µw+(x),

ζtλ(x)w−(x) = −νw−(x) and M t
λ(x)w−(x) = µ−1w−(x).

Theorem 3.49. On the spectral curve Y there exist unique holomorphic x-dependent
maps v((λ, µ), x) and w((λ, µ), x) from Y × R to C2 such that

(i) For all (λ, µ) ∈ Y ∗ and all x ∈ R the value of v((λ, µ), x) is an eigenvector of Mλ(x)
with eigenvalue µ and w((λ, µ), x) is an eigenvector of M t

λ(x) with eigenvalue µ, i.e.

Mλ(x)v((λ, µ), x) = µv((λ, µ), x), M t
λ(x)w((λ, µ), x) = µw((λ, µ), x).
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Chapter 3. Spectral data for periodic solutions of the sinh-Gordon equation

(ii) The first component of v((λ, µ), x) and w((λ, µ), x) is equal to 1, i.e. v((λ, µ), x) =
(1, v2((λ, µ), x))t and w((λ, µ), x) = (1, w2((λ, µ), x))t on Y × R.

Proof. Again we can put together v+(x), v−(x) and w+(x), w−(x) to obtain maps v((λ, µ), x)
and w((λ, µ), x). Adapting the proofs of Lemma 3.33 and Corollary 3.34 we get

v±(x) =


(

1
±e−u(x)

√
λ

)
+O(λ) at λ = 0,(

1
±eu(x)

√
λ

)
+O(λ−1) at λ =∞.

and

w±(x) =


(

1
±eu(x)/

√
λ

)
+O(λ) at λ = 0,(

1
±e−u(x)/

√
λ

)
+O(λ−1) at λ =∞.

The remaining part of the proof coincides with the proof of Lemma 3.35.

Remark 3.50. On Y ∗ these maps are given by

v((λ, µ), x) =
ψ((λ, µ), x)
ψ1((λ, µ), x)

and w((λ, µ), x) =
ϕ((λ, µ), x)
ϕ1((λ, µ), x)

where
ψ((λ, µ), x) = F−1

λ (x)v(λ, µ) and ϕ((λ, µ), x) = F tλ(x)w(λ, µ).

Obviously there holds v((λ, µ), x + p) = v((λ, µ), x) and w((λ, µ), x + p) = w((λ, µ), x).
In particular v((λ, µ),p) = v((λ, µ), 0) = v(λ, µ).

Lemma 3.51. The map ψ+ = F−1
λ v+ has the asymptotic expansions

ψ+ =

exp( −ix
2
√
λ

)
((

1
e−u(x)

√
λ

)
+O(λ)

)
at λ = 0,

exp(−ix
√
λ

2 )
((

1
eu(x)

√
λ

)
+O(λ−1)

)
at λ =∞.

Proof. We follow the proof of [27], Lemma 5.2. By Proposition 3.47 an eigenvector of
ζλ(x) and Mλ(x) for the eigenvalues ν and µ is given by v+(x) = (1, (ν − α(x))/β(x))t.
Since ζλ(x) = F−1

λ (x)ξλFλ(x) we see that ψ+(x) = F−1
λ (x)v+ is an eigenvector of ζλ(x)

and it is collinear to v+(x). This defines a function f(λ, x) such that

f(λ, x)v+(x) = ψ+(x) (3.4.1)

holds. Differentiating equation (3.4.1) we obtain

( d
dxf)v+ + f( d

dxv+) = −Uλψ+

and thus
f−1( d

dxf)v+ = −Uλv+ − d
dxv+.
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3.4 The eigenline bundle

Moreover, considering the first entry of the last vector equation we get

f−1( d
dxf) = −(α0 − ᾱ0)− (λ−1β−1 − γ̄0)ν−αβ . (3.4.2)

Inserting the results from Lemma 3.33 and Corollary 3.34 into equation (3.4.2) we obtain

f−1( d
dxf) =

{
−λ−1β−1

i
√
λ

2β−1
+O(1) = − i

2
√
λ

+O(1) at λ = 0,

−γ̄0
i
√
λ

2γ̄0
+O(1) = − i

√
λ

2 +O(1) at λ =∞.

Now integration of f−1( d
dxf) yields the claim, since ψ+(x) = f(λ, x)v+(x).

With the help of Lemma 3.51 we obtain the following version of Theorem 3.10 in [47].

Corollary 3.52. For the eigenline bundle E(Tx(u, uy)) of the translated Cauchy data
Tx(u, uy) = (u(·+ x), uy(·+ x)) we have

E(Tx(u, uy)) ' E(u, uy)⊗ L(x),

where the holomorphic line bundle L(x) with deg(L(x)) = 0 for all x ∈ R is defined by
the cocycles φ0 := exp( 1√

λ
ix
2 ) on U0\{y0} and φ∞ := exp(

√
λ ix2 ) on U∞\{y∞}.

Proof. Translating by x results in the x-dependent monodromy Mλ(x). From Corollary
3.12 we know that the asymptotic expansion of lnµ is given by

lnµ =
ip

2
√
λ

+O(
√
λ) at λ = 0 and lnµ =

ip
√
λ

2
+O(1/

√
λ) at λ =∞.

Thus Lemma 3.51 shows that the formula

v((λ, µ), x) = e
x
p

lnµ
F−1
λ (x)v(λ, µ)

holds around λ = 0 and λ =∞. Moreover, the map F−1
λ (x)v(λ, µ) defines a holomorphic

line bundle that is isomorphic to E(u, uy) on Y ∗. This proves the claim.

Remark 3.53. Due to Theorem 3.49 it is possible to extend the definition of the projector
P to a projector Px that is defined by

Px(f) :=
v(x)fw(x)t

w(x)tv(x)
= F−1

λ (x)P (f)Fλ(x).

Moreover, there holds Mλ(x) = Px(µ) + σ∗Px(µ) and ζλ(x) = Px(ν) + σ∗Px(ν).

Remark 3.54. Given a doubly periodic solution of the sinh-Gordon equation with respect
to the lattice Γ = Zτ1 ⊕ Zτ2 ⊂ C we see that for ψ := F−1

λ v we obtain the equation

ψ(z + aτ1 + bτ2) = e−a lnµ1−b lnµ2ψ(z) for (a, b) ∈ Z2.
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Chapter 3. Spectral data for periodic solutions of the sinh-Gordon equation

Here µ1, µ2 are the eigenvalues of the monodromies M τ1
λ = Fλ(τ1) and M τ2

λ = Fλ(τ2)
respectively. In order to obtain a doubly periodic ψ̃ we make the ansatz

ψ̃ = ecz+dz̄ψ

and arrive at the equation

ψ̃(z + aτ1 + bτ2) = ecz+dz̄ea(cτ1+dτ̄1)+b(cτ2+dτ̄2)ψ(z + aτ1 + bτ2).

In particular ψ̃(z + aτ1 + bτ2) = ψ̃(z) for all (a, b) ∈ Z2 if and only if

ea(cτ1+dτ̄1)+b(cτ2+dτ̄2) = ea lnµ1+b lnµ2 .

A direct calculation gives

c =
τ̄2 lnµ1 − τ̄1 lnµ2

τ1τ̄2 − τ̄1τ2
, d =

τ1 lnµ2 − τ2 lnµ1

τ1τ̄2 − τ̄1τ2

and
lnµi = τic+ τ̄id for i = 1, 2.

Thus

ψ̃ = exp
(
τ̄2 lnµ1 − τ̄1 lnµ2

τ1τ̄2 − τ̄1τ2
z +

τ1 lnµ2 − τ2 lnµ1

τ1τ̄2 − τ̄1τ2
z̄

)
ψ

is periodic with respect to the lattice Γ ⊂ C. The asymptotic expansions of M τ1
λ and M τ2

λ

show
lnµi ∼

τi√
λ

at λ = 0 and lnµi ∼ τ̄i
√
λ at λ =∞ for i = 1, 2.

Therefore c ∼ 1√
λ

at λ = 0 and c = 0 at λ = ∞. Moreover, d = 0 at λ = 0 and d ∼
√
λ

at λ =∞. From this we deduce that c is holomorphic at λ =∞ and d is holomorphic at
λ = 0.

3.5 The associated spectral data

In this section we want to summarize the description for periodic finite type solutions of
the sinh-Gordon equation. Given a hyperelliptic Riemann surface Y with branch points
over λ = 0 (y0) and λ = ∞ (y∞) we can deduce conditions such that Y is the spectral
curve of a periodic finite type solution of the sinh-Gordon equation.

Let us recall the well-known characterization of such spectral curves (compare with [36],
Section 1.2, in the case of immersed CMC tori in S3).

Theorem 3.55. Let Y be a hyperelliptic Riemann surface with branch points over λ = 0
(y0) and λ =∞ (y∞). Then Y is the spectral curve of a periodic real finite type solution
of the sinh-Gordon equation if and only if the following three conditions hold:
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(i) Besides the hyperelliptic involution σ the Riemann surface Y has two further anti-
holomorphic involutions η and ρ = η ◦ σ. Moreover, η has no fixed points and
η(y0) = y∞.

(ii) There exists a non-zero holomorphic function µ on Y \{y0, y∞} that obeys

σ∗µ = µ−1, η∗µ̄ = µ, ρ∗µ̄ = µ−1.

(iii) The form d lnµ is a meromorphic differential of the second kind with double poles
at y0 and y∞ only.

Proof. We first consider the “if”-part “⇒” and get the conditions (i) and (ii) from Remark
3.30 and Remark 3.27 together with Lemma 3.25. From Corollary 3.12 we also have

lnµ = 1√
λ

ip
2 +
√
λ

∫ p

0

(
−i(∂u)2 + i

2 cosh(2u)
)
dt+O(λ) at λ = 0,

lnµ =
√
λ ip2 + 1√

λ

∫ p

0

(
−i(∂̄u)2 + i

2 cosh(2u)
)
dt+O(λ−1) at λ =∞

and therefore get in the
√
λ-chart around λ = 0 and the (1/

√
λ)-chart around λ =∞

d lnµ = d
√
λ

(
− 1
λ
ip
2 +

∫ p

0

(
−i(∂u)2 + i

2 cosh(2u)
)
dt+O(

√
λ)
)

at λ = 0,

d lnµ =
d√
λ

(
−λ ip2 +

∫ p

0

(
−i(∂̄u)2 + i

2 cosh(2u)
)
dt+O(1/

√
λ)
)

at λ =∞.

This implies condition (iii). The “only if”-part “⇐” follows from Proposition 4.34 in
Chapter 4.

Remark 3.56. Since σ∗d lnµ = d ln(1/µ) = −d lnµ, we see that d lnµ changes its sign
under the hyperelliptic involution σ.

Following the terminology of [27, 35, 36], we will describe spectral curves of periodic real
finite type solutions of the sinh-Gordon equation via hyperelliptic curves of the form

ν2 = λ a(λ) = −λ2 det(ξλ) = (λν̃)2.

Here ν̃ is the eigenvalue of ξλ and λ : Y → CP1 is chosen in a way such that y0 and y∞
correspond to λ = 0 and λ =∞ with

σ∗λ = λ, η∗λ̄ = λ−1, ρ∗λ̄ = λ−1.

Note that the function λ : Y → CP1 is fixed only up to a Möbius transformations of the
form λ 7→ e2iϕλ. Moreover, d lnµ is of the form

d lnµ =
b(λ)
ν

dλ

λ
,

where b is a polynomial of degree g+1 with λg+1b(λ̄−1) = −b(λ). This yields the following
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Chapter 3. Spectral data for periodic solutions of the sinh-Gordon equation

Definition 3.57. The spectral curve data of a periodic real finite type solution of the
sinh-Gordon equation is a pair (a, b) ∈ C2g[λ]× Cg+1[λ] such that

(i) λ2ga(λ̄−1) = a(λ) and λ−ga(λ) ≤ 0 for all λ ∈ S1 and |a(0)| = 1.

(ii) On the hyperelliptic curve ν2 = λa(λ) there is a single-valued holomorphic function
µ with essential singularities at λ = 0 and λ =∞ with logarithmic differential

d lnµ =
b(λ)
ν

dλ

λ

with b(0) = i

√
a(0)

2 p that transforms under the three involutions

σ : (λ, ν) 7→ (λ,−ν), ρ : (λ, ν) 7→ (λ̄−1,−λ̄−1−gν̄), η : (λ, ν) 7→ (λ̄−1, λ̄−1−gν̄)

according to σ∗µ = µ−1, ρ∗µ = µ̄−1 and η∗µ = µ̄.

Remark 3.58. The conditions (i) and (ii) from Definition 3.57 are equivalent to the
following conditions (compare with Definition 5.10 in [27]):

(i) λ2ga(λ̄−1) = a(λ) and λ−ga(λ) ≤ 0 for all λ ∈ S1 and |a(0)| = 1.

(ii) λg+1b(λ̄−1) = −b(λ) and b(0) = i

√
a(0)

2 p.

(iii)
∫ 1/ᾱi
αi

b(λ)
ν

dλ
λ = 0 for all roots αi of a.

(iv) The unique function h : Ỹ → C, where Ỹ = Y \
⋃
γi and γi are closed cycles over the

straight lines connecting αi and 1/ᾱi, obeying σ∗h = −h and dh = b(λ)
ν

dλ
λ , satisfies

h(αi) ∈ πiZ for all roots αi of a.

Since a Möbius transformation of the form λ 7→ e2iϕλ changes the spectral curve data
(a, b) but does not change the corresponding periodic solution of the sinh-Gordon equation
we introduce the following

Definition 3.59. For all g ∈ N0 let Mg(p) be the space of equivalence classes of spectral
curve data (a, b) from Definition 3.57 with respect to the action of λ 7→ e2iϕλ on (a, b).
Mg(p) is called the moduli space of spectral curve data for Cauchy data (u, uy) of
periodic real finite type solutions of the sinh-Gordon equation.

Each pair of polynomials (a, b) ∈ Mg(p) represents a spectral curve Y(a,b) for Cauchy
data (u, uy) of a periodic real finite type solution of the sinh-Gordon equation.

Definition 3.60. Let

M1
g(p) := {(a, b) ∈Mg(p) | a has 2g pairwise distinct roots and

(a, b) have no common roots}

be the moduli space of non-degenerated smooth spectral curve data for Cauchy data (u, uy)
of periodic real finite type solutions of the sinh-Gordon equation.
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The term “non-degenerated” in Definition 3.60 reflects the following fact (compare with
[28], Section 9): If one considers deformations of spectral curve data (a, b), the corre-
sponding integral curves have possible singularities, if a and b have common roots. By
excluding the case of common roots of (a, b), one can avoid that situation and identify
the space of such deformations with certain polynomials c ∈ Cg+1[λ] (see Chapter 5).

Remark 3.61. By studying Cauchy data (u, uy) whose spectral curve Y (u, uy) corresponds
to (a, b) ∈M1

g(p), we have the following benefits:

1. Since (a, b) ∈M1
g(p) correspond to Cauchy data (u, uy) of finite type, we can avoid

difficult functional analytic methods for the asymptotic analysis of the spectral curves
Y at λ = 0 and λ =∞.

2. Since (a, b) ∈M1
g(p) have no common roots, we obtain non-singular smooth spectral

curves Y and can apply the standard tools from complex analysis for their investi-
gation.

Note, that these assumptions can be dropped in order to extend the results from this
thesis to the more general setting. This was done in [47] for the case of the non-linear
Schrödinger operator, for example.

Definition 3.62. The spectral data of a periodic real finite type solution of the sinh-
Gordon equation is a pair (Y (u, uy), D(u, uy)) such that Y (u, uy) is a hyperelliptic Rie-
mann surface of genus g that obeys the conditions from Theorem 3.55 and D(u, uy) is a
divisor of degree g + 1 on Y (u, uy) that obeys η(D)−D = (f) for a meromorphic f with
fη∗f̄ = −1.

Remark 3.63. In the following chapter we will treat the inverse problem, that is, we will
associate a periodic real finite type solution of the sinh-Gordon equation to given spectral
data (Y,D) and thus show that the correspondence between such solutions and the spectral
data is bijective.
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4 The inverse problem

The Picard group Pic(Y (u, uy)) ' H1(Y (u, uy),O∗) is the space of isomorphy classes of
holomorphic line bundles. We want to construct linear flows on PicRg+1(Y (u, uy)), i.e. on
the connected component of Pic(Y (u, uy)) of holomorphic line bundles of degree g + 1
obeying some reality condition.

The following two sections are based on notes from the lecture “Geometrical applications
of integrable systems” given by Martin Kilian and Martin U. Schmidt at the university
of Mannheim in 2005.

4.1 The space h−finite and Mittag-Leffler distributions

On the compact hyperelliptic Riemann surface Y (u, uy) there lie two distinguished points
y0 and y∞ that correspond to the points lying above λ = 0 and λ =∞ respectively.

Definition 4.1. Let h be the algebra of germs of functions that are holomorphic in a
punctered neighborhood of 0 ∈ C, i.e.

h := {(U, h) | 0 ∈ U ⊂ C open and connected, h : U\{0} → C holomorphic}/∼

where (U, h) ∼ (U ′, h′) if h|(U∩U ′)0\{0} = h′|(U∩U ′)0\{0} (with (U ∩ U ′)0 the connected
component of 0). Furthermore define the following subsets

h+ := {(U, h) ∈ h | h extends holomorphically to 0}
h− := {(U, h) ∈ h | h extends holomorphically to CP1\{0} with h(∞) = 0}

h−finite := {(U, h) ∈ h− | h has a pole at 0}.

The following lemma provides us with a decomposition of h that is analogous to the
Birkhoff factorization.

Lemma 4.2. There holds h = h+ ⊕ h−.

Proof. For any h ∈ h let h+(z) = 1
2πi

∮ h(ez)dez
z−ez . Here the integral is taken along a path in

the domain of definition of h around z and 0 in the anti-clockwise direction. Moreover, let
h−(z) = 1

2πi

∮ h(ez)dez
z−ez , where this integral is taken along a path in the domain of definition

of h around 0, but not around z, in the anti-clockwise direction. Since the form h(ez)dez
z−ez

is closed, these integrals do not depend on the choice of the path of integration. Due
to Cauchy’s integral formula we have h = h+ + h−. Moreover, h+ is holomorphic in a
neighborhood of 0 and h− is holomorphic on CP1\{0} and vanishes at ∞.
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We will construct linear flows on Pic0(Y (u, uy)) by means of the so-called Krichever
construction and therefore recall the following

Lemma 4.3. The cohomology group H1(Y (u, uy),O) is the Lie algebra of Pic0(Y (u, uy)) '
Jac(Y (u, uy)).

Proof. Set Y := Y (u, uy). The long cohomology exact sequence corresponding to 0 →
Z→ O → O∗ → 1 is

0→ H1(Y,Z)→ H1(Y,O)
exp(2πi·)−−−−−→ H1(Y,O∗) deg−−→ H2(Y,Z)→ 0.

Restricting ourselves to line bundles of degree 0, we see that the map H1(Y,O)
exp(2πi·)−−−−−→

H1(Y,O∗) is surjective and therefore

Pic0(Y ) ' Jac(Y ) ' H1(Y,O)/H1(Y,Z).

It is well-known that for G0 (the connected component of the unit e of a Lie group G)
one has G0 ' g/ ker(exp) via the exponential map. Since H1(Y,Z) = ker(exp) the claim
follows.

The maps L and ϕ. We will focus on the following diagram

ϕ : h2

exp(·)
��

// H1(Y,O)

exp(2πi·)
��

L : H2 // H1(Y,O∗)

and describe the maps L : H2 → H1(Y,O∗) and ϕ : h2 → H1(Y,O) in more detail. Here
H denotes the Lie group of all non-vanishing holomorphic functions g = exp(h) defined
on U\{0}, where U is some neighborhood of 0. The group multiplication is given by
multiplication of functions. In particular h is the Lie algebra of H.

Let k =
√
λ be a local parameter such that k(y0) = 0 and k̃ = 1/

√
λ be a local parameter

such that k̃(y∞) = 0. We will describe the map ϕ : h2 → H1(Y,O), (h0, h∞) 7→ ϕ(h0, h∞)
and therefore consider disjoint open simply-connected neighborhoods U0, U∞ of y0, y∞
such that k∗h0 and k̃∗h∞ are defined on U0\{y0} and U∞\{y∞} respectively.

Setting U := Y \{y0, y∞} we get a cover U := {U0, U, U∞} of Y . The only non-empty
intersections of neighborhoods from U are U0\{y0} and U∞\{y∞}. Thus k∗h0 and k̃∗h∞
are cocycles for this cover and induce a cohomology-class in H1(Y,O). Since U0 and U∞
are simply connected we have H1(U0,O) = 0 = H1(U∞,O). Moreover, H1(U,O) = 0
since U is a non-compact Riemann surface. This shows that U is a Leray cover (see
Theorem 2.20) and therefore H1(Y,O) = H1(U ,O). Summing up we get a surjective map

ϕ : h2 → H1(Y,O).
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Moreover, the map L : H2 → H1(Y,O∗) is given by the element that corresponds to
the line bundle L(g0, g∞) that is induced the the cocycles k∗g0 = k∗ exp(h0) over U0 and
k̃∗g∞ = k̃∗ exp(h∞) over U∞. Now we have the following

Lemma 4.4.

(i) The kernel of ϕ : h2 → H1(Y,O) consists of those (h0, h∞) ∈ h2 that admit a holo-
morphic function h on Y \{y0, y∞} such that h−k∗h0 and h− k̃∗h∞ are holomorphic
at y0 and y∞ respectively. In particular one has (h+)2 ⊂ ker(ϕ).

(ii) ϕ[(h−finite)2] = H1(Y,O).

Proof. From the Serre Duality Theorem we know that the pairing

〈ω, ϕ(h0, h∞)〉 = Resy0(k∗h0ω) + Resy∞(k̃∗h∞ω) (∗)

is non-degenerate for ω ∈ H0(Y,Ω) and ϕ(h0, h∞) ∈ H1(Y,O), where Resy0(k∗h0ω) and
Resy∞(k̃∗h∞ω) are defined via integrals over small paths around y0 and y∞ respectively.

(i) If (k∗h0, k̃
∗h∞) is a co-boundary, there exist holomorphic functions g0, g∞ on U0 and

U∞ and a holomorphic h on Y \{y0, y∞} such that k∗h0 = h − g0 on U0\{y0} and
k̃∗h∞ = h − g∞ on U∞\{y∞}. Thus the 1-form hω is holomorphic on Y \{y0, y∞}
for all ω ∈ H0(Y,Ω) and due to the Residue Theorem [21] the equation

〈ω, ϕ(h0, h∞)〉 = Resy0(k∗h0ω) + Resy∞(k̃∗h∞ω)
= Resy0(hω) + Resy∞(hω)
= 0

holds for all ω ∈ H0(Y,Ω). Since (∗) is non-degenerate one obtains ϕ(h0, h∞) = 0.
Conversely ϕ(h0, h∞) = 0 ∈ H1(Y,O) implies that (k∗h0, k̃

∗h∞) is a co-boundary.

(ii) Since h = h+ ⊕ h− by Lemma 4.2 and ϕ[(h+)2] = 0 by (i) we have ϕ[(h−)2] =
H1(Y,O). Denote by N the highest possible vanishing order of differentials ω ∈
H0(Y,Ω) at the points y0, y∞. For (h0, h∞) ∈ (h−)2 define (h̃0, h̃∞) to be the
Taylor polynomials of (h0, h∞) at ∞ of order N + 1. Then we get

Resy0(k∗(h0 − h̃0)ω) = 0 = Resy∞(k̃∗(h∞ − h̃∞)ω)

since there only appear poles of order greater or equal 2. Serre duality (∗) gives

〈ω, ϕ(h0 − h̃0, h∞ − h̃∞)〉 = Resy0(k∗(h0 − h̃0)ω) + Resy∞(k̃∗(h∞ − h̃∞)ω)
= 0

for all ω ∈ H0(Y,Ω). Therefore (h0−h̃0, h∞−h̃∞) ∈ ker(ϕ) and (h0−h̃0, h∞−h̃∞) ∈
(h−)2\(h−finite)

2. This shows ϕ[(h−finite)
2] = H1(Y,O) and concludes the proof.
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Mittag-Leffler distributions. Each element (h0, h∞) ∈ (h−finite)
2 defines a Mittag-

Leffler distribution (M-L distribution) ξ(h0, h∞) = (f0, f, f∞) := (k∗h0, 0, k̃∗h∞) on Y
with respect to the cover U . A solution of such a M-L distribution is a meromorphic
function h on Y that is holomorphic on Y ∗ such that h−k∗h0 and h−k̃∗h∞ are holomorphic
on U0 and U∞ respectively. Thus Lemma 4.4 implies that the M-L distribution induced
by (h0, h∞) ∈ (h−finite)

2 has a solution if and only if ϕ(h0, h∞) = 0, i.e.

〈ω, ϕ(h0, h∞)〉 = Resy0(k∗h0ω) + Resy∞(k̃∗h∞ω) = 0

for all ω ∈ H0(Y,Ω). Since H1(Y,M) = 0 (see [21], Corollary 17.17), for every element
[f ] ∈ H1(Y,O) there exists a Mittag-Leffler distribution ξ = (f0, f, f∞) ∈ C0(U ,M) such
that [δξ] = [f ]. Recall that δ : C0(U ,M)→ Z1(U ,O) is given by

δ(f0, f, f∞) = (f0 − f, f∞ − f).

In our situation we have ξ(h0, h∞) = (f0, f, f∞) = (k∗h0, 0, k̃∗h∞) and therefore

δ(ξ(h0, h∞)) = (k∗h0, k̃
∗h∞).

Thus we arrive at the following diagram:

(h−finite)
2

ϕ

&&MMMMMMMMMM

ξ // ξ[(h−finite)
2]

[δ]

��
H1(Y,O)

Since ϕ = [δ] ◦ ξ is surjective we see that [δ] : ξ[(h−finite)
2] ⊂ C0(U ,M) → H1(Y,O) is

surjective as well. We can introduce a “basis” for ξ[(h−finite)
2] ⊂ C0(U ,M) for hyperelliptic

Y since every meromorphic function f can be written as

f = r(λ) + νs(λ)

in that situation. Here r, s are rational functions with respect to λ and Y is given by
ν2 = λa(λ). Considering some element (f0, 0, f∞) ∈ ξ[(h−finite)

2] ⊂ C0(U ,M) we demand
that f0 has a pole at y0 and that f∞ has a pole at y∞. If f0 and f∞ were of the form
f0 = r0(λ) and f∞ = r∞(λ) we could reduce the question to a consideration on CP1

and hence δ((f0, 0, f∞)) = 0 since H1(CP1,O) = 0 in that case. Since δ is a group
homomorphism we get

δ(f0, 0, f∞) = δ(r0(λ) + νs0(λ), 0, r∞(λ) + νs∞(λ))
= δ(r0(λ), 0, r∞(λ)) + δ(νs0(λ), 0, νs∞(λ))
= δ(νs0(λ), 0, νs∞(λ))

for general (f0, 0, f∞). Therefore we can restrict ourselves to the case where f0 is given by
f0 = νs0(λ) and likewise f∞ = νs∞(λ). The following lemma provides us with a possible
choice for a basis we are looking for.
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Lemma 4.5. The equivalence classes [hi] of the g tuples hi := (f i0, f
i
∞) given by hi =

(νλ−i,−νλ−i) for i = 1, . . . , g are a basis of H1(Y,O).

Proof. We know that for i = 1, . . . , g the differentials ωi = λi−1dλ
ν span a basis for H0(Y,Ω)

and that the pairing 〈·, ·〉 : H0(Y,Ω)×H1(Y,O)→ C given by (ω, [h]) 7→ Res(hω) is non-
degenerate due to Serre duality 2.24. Therefore we can calculate the dual basis of the ωi
with respect to this pairing and see

〈ωi, [hj ]〉 = Resλ=0f
j
0ωi + Resλ=∞f

j
∞ωi

= Resλ=0λ
i−j−1dλ− Resλ=∞λ

i−j−1dλ

= Resλ=0λ
i−j−1dλ+ Resλ=0λ

−i+j+1dλ

λ2

= Resλ=0(λi−j−1 + λ−i+j−1)dλ
= 2 · δij .

This shows spanC{[h1], . . . , [hg]} = H1(Y,O) and concludes the proof.

As a direct consequence of Lemma 4.5 we get

Corollary 4.6. Any element [f ] ∈ H1(Y,O) can be represented by a function f0(λ, ν)
that is given by

f0(λ, ν) =
g−1∑
i=0

ciλ
−i−1ν with (c0, . . . , cg−1) ∈ Cg

and thus [f ] != [(f0,−f0)] = [(
∑g−1

i=0 ciλ
−i−1ν,−

∑g−1
i=0 ciλ

−i−1ν)].

Remark 4.7. Recall the following divisor equations (written in multiplicative form)

(λ) =
y2

0

y2
∞
, (dλ) =

α1 · . . . · α2gy0

y3
∞

, (ν) =
α1 · . . . · α2gy0

y2g+1
∞

.

Considering the function λ−i−1ν we get for 0 ≤ i ≤ g − 1

(
λ−i−1ν

)
=
α1 · . . . · α2gy0y

2i+2
∞

y2g+1
∞ y2i+2

0

=
α1 · . . . · α2g

y2g−2i−1
∞ y2i+1

0

and thus the expressions in (f0, f∞) = (
∑g−1

i=0 ciλ
−i−1ν,−

∑g−1
i=0 ciλ

−i−1ν) have the right
behaviour with respect to the poles at λ = 0 and λ = ∞. Summing up we see that
ξ[(h−finite)2] ⊂ C0(U ,M) can be parametrized by

f = (f0, 0, f∞) =

(
g−1∑
i=0

ciλ
−i−1ν, 0,−

g−1∑
i=0

ciλ
−i−1ν

)

with (c0, . . . , cg−1) ∈ Cg.
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Remark 4.8. Similarily as in Lemma 4.5 all equivalence classes [h̃i] of the g tuples
h̃i := (f̃ i0, f̃

i
∞) given by h̃i = (νλ−i, νλ−i) are equal to [0] ∈ H1(Y,O) since the h̃i corre-

spond to solvable Mittag-Leffler distributions (νλ−i, 0, νλ−i) that are solved by the global
meromorphic function νλ−i. In particular we see that the equivalence classes of

ĥi := hi + h̃i = (2νλ−i, 0) for i = 1, . . . , g

also define a basis of H1(Y,O) since [h̃i] = [0] and thus [ĥi] = [hi] + [h̃i] = [hi].

4.2 The Krichever construction

The construction procedure for linear flows on Pic0(Y ) is due to Krichever [38] and shall
be described in the following. In [43] McIntosh desribes the Krichever construction for
finite type solutions of the sinh-Gordon equation. Every h = (h0, h∞) ∈ (h−finite)

2 defines
a one-parameter family Lh(t) in Pic0(Y ) with the cocycles k∗ exp(th0) and k̃∗ exp(th∞)
over U0\{y0} and U∞\{y∞} respectively. This corresponds to the assignment

C 3 t 7→ exp(2πiϕ(th)) =: Lh(t) ∈ H1(Y,O∗)

since ϕ : (h−finite)
2 → H1(Y,O) maps into the Lie algebra of Pic(Y ) ' H1(Y,O∗). In

particular one has Lh(t+ t′) = Lh(t)⊗ Lh(t′) and therefore

deg(Lh(t+ t′)) = deg(Lh(t)⊗ Lh(t′)) = deg(Lh(t)) + deg(Lh(t′)).

Since deg(Lh(0)) = 0 this flow stays in Pic0(Y ), i.e. deg(Lh(t)) = 0 for all t, and defines a
one-parameter group. Conversely every one-parameter group in Pic0(Y ) is obtained that
way.

The following lemma describes the relationship between these flows and Mittag-Leffler
distributions.

Lemma 4.9.

(i) An element h = (h0, h∞) ∈ (h−finite)2 induces a trivial flow, i.e. Lh(t) is trivial for
all t ∈ C, if and only if the corresponding M-L distribution is solvable.

(ii) An element h = (h0, h∞) ∈ (h−finite)2 induces a periodic flow, i.e. Lh(p) ∼= 1, if and
only if the M-L distribution can be solved by means of a multi-valued meromorphic
function p whose values at a point differ by an element of 2πi

p Z. In particular dp is
an Abelian differential of the second kind with

∫
γ dp ∈

2πi
p Z for all γ ∈ H1(Y,Z).

Proof.

(i) The bundle Lh(t) is trivial for all t ∈ C if and only if

H1(Y,O∗) 3 1 = exp(2πiϕ(th)).
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Since the kernel of exp(2πi·) is discrete, this is equivalent to th ∈ ker(ϕ) for all
t ∈ C. Now Lemma 4.4 implies that h ∈ ker(ϕ) if and only if the M-L distribution
is solvable.

(ii) The condition Lh(p) ∼= 1 (and thus that Lh(p) is a trivial holomorphic line bun-
dle) is equivalent to the existence of a nowhere vanishing holomorphic section, i.e.
there exist nowhere vanishing holomorphic functions g on Y \{y0, y∞} and g0, g∞
on U0, U∞ such that

g = k∗ exp(p · h0)g0 on U0\{y0}
and

g = k̃∗ exp(p · h∞)g∞ on U∞\{y∞}.
Then p := 1

p ln g is a multi-valued meromorphic function that satisfies

dp =
1
p
dg

g
=

d

dk
h0(k) +

1
p
dg0

g0
on U0\{y0}

and a similar equation holds around y∞. Since h0 and h∞ have poles of order at
least one we see that dp is an Abelian differential of the second kind with the desired
properties.

4.3 A reality condition on H1(Y,O)

Since we are dealing with real Cauchy data (u, uy) the spectral curve Y (u, uy) has an
anti-holomorphic involution η and we may ask which conditions are imposed by η on the
different objects we are dealing with. We start with the following

Definition 4.10. Let H1
R(Y,O) := {[f ] ∈ H1(Y,O) | η∗[f ] = [f ]} be the real part of

H1(Y,O) with respect to the involution η and PicR
0 (Y ) := {[g] ∈ Pic0(Y ) | [η∗g] = [g]} the

corresponding real part of Pic0(Y ).

Lemma 4.11.

(i) For the line bundle L(x) defined by E(Tx(u, uy)) ' E(u, uy)⊗L(x) we have L(x) ∈
PicR

0 (Y (u, uy)) for all x ∈ R.

(ii) The cocycle [f ] corresponding to the line bundle L(x) lies in the real part of H1(Y,O)
with respect to the involution η, i.e. there holds [f ] ∈ H1

R(Y (u, uy),O).

Proof.

(i) From the proof of Corollary 3.52 we know that

v((λ, µ), x) = e
x
p lnµ

F−1
λ (x)v(λ, µ)

around λ = 0 and λ =∞. The cocycles (g0, g∞) ∈ H1(Y,O∗) for L(x) are given by

((e
x
p lnµ

, U0), (e
x
p lnµ

, U∞)). Since η∗lnµ = lnµ the claim follows.
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(ii) Due to (i) we know that L(x) ∈ PicR
0 (Y (u, uy)). Applying the inverse of the expo-

nential map we see that for the cocycle [f ] corresponding to the line bundle L(x)
there holds [f ] ∈ H1

R(Y (u, uy),O).

Remark 4.12. We want to state an important remark concerning the involutions σ, ρ, η
on Y and their behaviour on U0, U∞, i.e. around the distinguished points λ = 0 and
λ =∞. From Corollary 3.12 we know that

lnµ ∼

{
i√
λ

= i
k around λ = 0,

i
√
λ = iek around λ =∞.

On the other hand there holds

σ∗ lnµ = − lnµ, ρ∗ lnµ = − lnµ, η∗ lnµ = lnµ.

Inserting the local expressions for lnµ with respect to the charts k, k̃ we obtain

σ∗k = −k, σ∗k̃ = −k̃, ρ∗k = k̃, η∗k = −k̃.

The above formulas will be important in the following lemma.

Lemma 4.13. The tuple h = (h0, h∞) ∈ (h−finite)2 corresponding to the function lnµ

satisfies the reality condition h∞(k̃) = η∗h0(k) with respect to the involution η.

Proof. From the previous Remark 4.12 we know that η∗k = −k̃. From Corollary 3.12 we
also obtain

lnµ = 1√
λ

ip
2 +
√
λ

∫ p

0

(
−i(∂u)2 + i

2 cosh(2u)
)
dt+O(λ) at λ = 0,

lnµ =
√
λ ip2 + 1√

λ

∫ p

0

(
−i(∂̄u)2 + i

2 cosh(2u)
)
dt+O(λ−1) at λ =∞.

Since p ∈ R we get for the leading terms of this expansion

p · h∞(k̃) = 1ek ip2 = η∗ 1
k
ip
2 = p(η∗h0(k))

and the claim is proved. In particular we have h0(k) = 1
k
i
2 and h∞(k̃) = 1ek i2 .

The following lemma shows which conditions are imposed on an element [f ] ∈ H1
R(Y,O)

and that dimRH
1
R(Y,O) = g.

Lemma 4.14. An element [f ] = [(f0, f∞)] ∈ H1(Y,O) satisfies η∗[f ] = [f ] if and only
if f∞ = η∗f̄0. The corresponding representative f∞

!= −f0 = −
∑g−1

i=0 ciλ
−i−1ν satisfies

c̄i = −cg−1−i for i = 0, . . . , g − 1. This defines a real g-dimensional subspace of Cg. In
particular dimRH

1
R(Y,O) = g.
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Proof. The first part of the lemma is obvious. Now a direct calculation gives

−η∗(
g−1∑
i=0

ciλ−i−1ν) = −
g−1∑
i=0

c̄iλ
i+1λ−g−1ν = −

g−1∑
i=0

c̄iλ
i−gν

j:=g−i−1
= −

g−1∑
j=0

c̄g−1−jλ
−j−1ν

!=
g−1∑
i=0

ciλ
−i−1ν

if and only if c̄i = −cg−1−i for i = 0, . . . , g− 1. The subspace of elements (c0, . . . , cg−1) ∈
Cg that obey these conditions is a real g-dimensional subspace.

Corollary 4.15. Any element [f ] = [(f0, η
∗f̄0)] ∈ H1

R(Y,O) can be represented by f0(λ, ν)
with

f0(λ, ν) =
g−1∑
i=0

ciλ
−i−1ν

and c̄i = −cg−1−i for i = 0, . . . , g− 1. In that case the function f0(λ, ν) can be written as

f0(λ, ν) =
1
2

(
g−1∑
i=0

ciλ
−i−1ν − η∗(

g−1∑
i=0

ciλ−i−1ν)

)
.

Remark 4.16. We already saw that the equivalence class of

f̃ = (f̃0, f̃∞) != (f̃0, f̃0) =

(
g−1∑
i=0

c̃iλ
−i−1ν,

g−1∑
i=0

c̃iλ
−i−1ν

)

is equal to [0] ∈ H1(Y,O) since f̃ corresponds to a solvable Mittag-Leffler distribution.

From Lemma 4.14 we know that η∗[f̃ ] = [f̃ ] if and only if f̃∞ = η∗f̃0. The corresponding
representative f̃∞

!= f̃0 =
∑g−1

i=0 c̃iλ
−i−1ν satisfies ¯̃ci = c̃g−1−i for i = 0, . . . , g − 1. By

choosing c̃i := ci for i = 0, . . . , g − 1 we can deduce that any element of H1
R(Y,O) can be

respresented by

f̂ = f + f̃ =

2

g
2
−1∑
i=0

ciλ
−i−1ν, 2

g
2
−1∑
i=0

c̄iλ
i−gν


since [f̃ ] = [0] and thus [f̂ ] = [f ] + [f̃ ] = [f ].

From the previous discussions about Krichever’s construction procedure for one-dimensional
subgroups of PicR

0 (Y ) we immediately get (see [35], Proposition 2.8)

Proposition 4.17. Cauchy data (u, uy) of finite type correspond to a periodic solution
of the sinh-Gordon equation if and only if

(i) There exists a meromorphic differential d lnµ of the second kind on the spectral
curve Y with second order poles at the points y0 and y∞.

79



Chapter 4. The inverse problem

(ii) The differential d lnµ is the logarithmic derivative of a function µ on Y which
transforms under the involutions in the following way:

σ∗µ = µ−1, ρ∗µ = µ̄−1, η∗µ = µ̄.

Three classes of integrable systems. The Krichever construction provides us with a
way to distinguish three classes of integrable systems with respect to the following data:
a compact Riemann surface Y , the spectral curve; points y0 and y∞ on Y ; and conformal
charts k, k̃ that are centered at these points together with two elements h = (h0, h∞) and
h̃ = (h̃0, h̃∞) ∈ (h−finite)

2.

(I) (Finite dimensional case) The first class corresponds to finite dimensional integrable
systems. It is characterized by the property that both flows that are induced by h
and h̃ are trivial. The corresponding Lax operators are matrices.

(II) (Simply periodic case) The second class is characterized by a trivial flow induced by
h̃ and a periodic flow induced by h. The corresponding Lax operators are ordinary
differential operators.

(III) (Doubly periodic case) The third class is characterized by the property that both
flows induced by h and h̃ are periodic. The corresponding Lax operators are partial
differential operators.

Remark 4.18. In the present case we have h̃ = ( 1
z2 ,

1
z2 ) and h = ( i

2z ,
i

2z ). This cor-
responds to the second class (II). Here the function λ corresponds to h̃ and lnµ cor-
responds to h. In the present notation h corresponds to the Mittag-Leffler distribution
ξ = (pν

λ , 0,
pν
λg ). Then

δξ = (pν
λ − 0, pν

λg − 0) = (pν
λ ,

pν
λg ) ∈ H1

R(Y,O).

Moreover, lnµ − pν
λ is holomorphic on U0 and lnµ − η∗(pν

λ ) = lnµ − pν
λg is holomorphic

on U∞. Thus h induces a periodic flow in PicR
0 (Y ).

4.4 The Baker-Akhiezer function

In order to tackle the inverse problem one has to implement a procedure that yields
Cauchy data (u, uy) of a periodic finite type solution of the sinh-Gordon equation from
given spectral data (Y,D) with certain properties. The function λ : Y → CP1 corresponds
to the trivial flow Leh(t) on Pic0(Y ) that is induced by the solvable Mittag-Leffler distri-
bution h̃ = (h̃0, h̃∞) = ( 1

z2 ,
1
z2 ).

By choosing a second element h = (h0, h∞) ∈ (h−finite)
2 that corresponds to a periodic

flow it is possible to determine a map that has the same analytic properties as the map
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4.4 The Baker-Akhiezer function

ψ((λ, µ), x) = F−1
λ (x)v(λ, µ) completely.

Recall that Lemma 3.51 provides us with the asymptotic expansions

ψ = exp
(
−ix
2
√
λ

)((
1

e−u(x)
√
λ

)
+O(λ)

)
at λ = 0

and

ψ = exp

(
−ix
√
λ

2

)((
1

eu(x)
√
λ

)
+O(λ−1)

)
at λ =∞.

The modified Baker-Akhiezer function. We will now modify ψ in order to obtain
an object that will play the role of the Baker-Akhiezer function in the following. Setting

ψ0 = exp
(

ix

2
√
λ

)
ψ at λ = 0 and ψ∞ = exp

(
ix
√
λ

2

)
ψ at λ =∞

we see from the above expansions that ψ has two disadvantages: On the one hand ψ0

and ψ∞ are x-dependent at λ = 0 and λ = ∞ respectively. On the other hand ψ∞ is
not holomorphic around λ = ∞ in contrast to the holomorphic ψ0 (around λ = 0). By
gauging the frame Fλ with the constant matrix T = 1√

2

(
1 −1
1 1

)
we get

Ũλ = T−1U(ζλ)T and ζ̃λ = T−1ζλT

for the corresponding Killing field that solves d
dx ζ̃λ = [ζ̃λ, Ũλ]. Setting ζλ =

(
α β
γ −α

)
we

obtain

ζ̃λ =
(
α̃ β̃
γ̃ −α̃

)
=

1
2

(
β + γ −2α+ β − γ

−2α− β + γ −β − γ

)
.

Denoting the eigenvalue ν̃ = λ−1ν of ξλ by ν, we have

ṽ+(x) =

(
1

ν−eαeβ
)

=

(
1

2ν−β−γ
−2α+β−γ

)
and the expansion

2ν − β − γ
−2α+ β − γ

=


−β−1+i

√
λ+O(λ)

β−1+O(λ) = −1 + i
β−1

√
λ+O(λ) at λ = 0,

γ̄0+i/
√
λ+O(1/λ)

γ̄0+O(1/λ) = 1 + i
γ̄0

√
λ

+O(1/λ) at λ =∞.
(4.4.1)

If we repeat the steps from the proof of Lemma 3.51 we arrive at the following

Lemma 4.19. The map ψ̃+ := T−1F−1
λ (x)ṽ+(0) has the expansions

ψ̃+ =


exp

(
−ix
2
√
λ

)( 1
−1 +O(

√
λ)

)
at λ = 0,

exp
(
−ix
√
λ

2

)( 1
1 +O(1/

√
λ)

)
at λ =∞.
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Chapter 4. The inverse problem

Proof. Obviously ψ̃+(x) is an eigenvector of ζ̃λ(x) = T−1ζλ(x)T and it is collinear to
ṽ+(x). This defines a function f(λ, x) such that

f(λ, x)ṽ+(x) = ψ̃+(x) (4.4.2)

holds. Differentiating equation (4.4.2) we obtain

( d
dxf)ṽ+ + f( d

dx ṽ+) = −Ũλψ̃+

with Ũλ = T−1U(ζλ)T and thus

f−1( d
dxf)ṽ+ = −Ũλṽ+ − d

dx ṽ+.

Moreover, setting U(ζλ) =
(
U11 U12
U21 −U11

)
and considering the first entry of the last vector

equation we obtain

f−1( d
dxf) = −1

2(U12 + U21)− 1
2(−2U11 + U12 − U21)ν−eαeβ . (4.4.3)

Writing out equation (4.4.3) we get

f−1( d
dxf) = −1

2(λ−1β−1 + γ0− γ̄0− λβ̄−1)− 1
2(2ᾱ0− 2α0 + λ−1β−1− γ0− γ̄0 + λβ̄−1)ν−eαeβ

and thus inserting the expansion (4.4.1) into equation (4.4.3) gives

f−1( d
dxf) =

{
−λ−1β−1

i
√
λ

2β−1
+O(1) = − i

2
√
λ

+O(1) at λ = 0,

−γ̄0
i
√
λ

2γ̄0
+O(1) = − i

√
λ

2 +O(1) at λ =∞.

Now integration of f−1( d
dxf) yields the claim, since ψ̃+(x) = f(λ, x)ṽ+(x).

Remark 4.20. Since T is invertible we see that the divisor D̃(x) corresponding to ψ̃(x)
is equivalent to the divisor D(x) that corresponds to ψ(x). In particular deg(D̃(x)) =
deg(D(x)) = g + 1 for all x ∈ R. Moreover, the above gauge leads to constant values of
ψ̃0 and ψ̃∞ at y0 and y∞ and has in addition the advantage that y0, y∞ /∈ D̃(x) for all
x ∈ R.

We omit the tilde in the following and arrive at the following characterization of the
entries ψi appearing in ψ = (ψ1, ψ2)t:

(i) For fixed x ∈ R there holds (ψi) ≥ −D on Y ∗ = Y \{y0, y∞}.

(ii) ψ0
i = exp

(
ix

2
√
λ

)
ψi is holomorphic at λ = 0 and ψ∞i = exp

(
ix
√
λ

2

)
ψi is holomorphic

at λ =∞.

For fixed x ∈ R, conditions (i) and (ii) imply that ψ is a holomorphic section of the bundle
OD for some divisor D of degree g + 1.
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4.4 The Baker-Akhiezer function

Lemma 4.21. Let D be a divisor of degree g+1 on Y and assume dimH0(Y,OD−y0−y∞) =
0 or dimH0(Y,OD−2·y0) = 0. Then dimH0(Y,OD−y0) = 1 = dimH0(Y,OD−y∞).

Remark 4.22. Note that D−2y0 and D−2y∞ are equivalent divisors, that is D−2y∞−
(D − 2y0) = 2y0 − 2y∞ = (λ) and thus

H0(Y,OD−2·y0) = 0 ⇐⇒ H0(Y,OD−2·y∞) = 0.

Proof of Lemma 4.21. First assume that dimH0(Y,OD−y0−y∞) = 0 holds. Due to the
Riemann-Roch Theorem 2.22 we get

dimH0(Y,OD−y0) = 1− g + deg(D − y0) + i(D − y0) = 1 + i(D − y0) ≥ 1.

Suppose dimH0(Y,OD−y0) > 1. Then there exist two linearly independent sections
ψ1, ψ2 ∈ H0(Y,OD−y0) with ψ1(y0) = 0 = ψ2(y0). Since dimH0(Y,OD−y0−y∞) = 0
there holds a = ψ1(y∞) 6= 0 and b = ψ2(y∞) 6= 0. But then (bψ1 − aψ2)(y∞) = 0, i.e.
bψ1 − aψ2 ∈ H0(Y,OD−y0−y∞) != 0. This implies that bψ1 − aψ2 ≡ 0 and thus ψ2 = b

aψ1

- a contradiction. This implies dimH0(Y,OD−y0) = 1. The same reasoning leads to
dimH0(Y,OD−y∞) = 1.

Now let us assume that dimH0(Y,OD−2·y0) = 0 holds. Suppose again that we have
dimH0(Y,OD−y0) > 1 and that there exist two linearly independent sections ψ1, ψ2 ∈
H0(Y,OD−y0) with ψ1(y0) = 0 = ψ2(y0). Since dimH0(Y,OD−2·y0) = 0 the derivatives of
ψ1 and ψ2 at y0 are given by a = ψ′1(y0) 6= 0 and b = ψ′2(y0) 6= 0. But then

(bψ1 − aψ2)′(y0) = (bψ′1 − aψ′2)(y0) = 0,

i.e. bψ1 − aψ2 ∈ H0(Y,OD−2y0) != 0. This implies that bψ1 − aψ2 ≡ 0 and thus ψ2 = b
aψ1

- a contradiction. This implies dimH0(Y,OD−y0) = 1. Due to Remark 4.22 there holds
H0(Y,OD−2·y0) = 0 if and only if H0(Y,OD−2·y∞) = 0. Then an analogous argumentation
leads to dimH0(Y,OD−y∞) = 1.

Thus for a fixed value of x ∈ R the map ψi obeying conditions (i) and (ii) is uniquely
determined by either

(1) the value of ψ0
i at y0 and the value of ψ∞i at y∞ or

(2) the value of ψ0
i at y0 and its first derivative at y0 or

(3) the value of ψ∞i at y∞ and its first derivative at y∞.

Remark 4.23. The gauge with T = 1√
2

(
1 −1
1 1

)
leads to ψ = T−1F−1

λ (x)ṽ(0) and its
entries ψi are uniquely determined by the value of ψ0

i at y0 and the value of ψ∞i at y∞.
This corresponds to condition (1). By choosing another gauge one can find normalizations
that correspond to the conditions (2) and (3).
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Chapter 4. The inverse problem

Definition 4.24. Let Pic(Y ) be the Picard variety of Y and let

PicR(Y ) := {D ∈ Pic(Y ) | η(D)−D = (f) for a merom. f with fη∗f̄ = −1}

be the set of quaternionic divisors with respect to the involution η.

Note that the condition on D from Definition 4.24 arises from the reality condition on αλ
(or equivalently ξλ). Nevertheless Proposition 4.25 justifies the notion “quaternionic divi-
sor”. With this definition at hand we see that the violation of condition (1) corresponds
to divisors D that are contained in the set

S1 := {D ∈ Picg+1(Y ) ∩ PicR(Y ) | dimH0(Y,OD−y0−y∞) 6= 0}.

Here Picg+1(Y ) is the connected component of divisors D in Pic(Y ) with deg(D) = g+ 1.
Likewise the violations of conditions (2) and (3) are described by

S2 := {D ∈ Picg+1(Y ) ∩ PicR(Y ) | dimH0(Y,OD−2·y0) 6= 0}

and
S3 := {D ∈ Picg+1(Y ) ∩ PicR(Y ) | dimH0(Y,OD−2·y∞) 6= 0}.

We need some preparation in order to prove that Si = ∅ for i = 1, 2, 3 in our situation.

Proposition 4.25. Let D be a divisor on Y that satisfies D − η(D) = (f) for a mero-
morphic function f with fη∗f = −1. Then the space of holomorphic sections H0(Y,OD)
is a quaternionic vector space with quaternionic structure given by j : h 7→ j(h) = 1

f η
∗h̄.

In particular there holds dimH0(Y,OD) = 2n with n ∈ N0.

Proof. We only have to verify that the anti-linear map j : H0(Y,OD)→ H0(Y,OD), h 7→
j(h) = 1

f η
∗h̄ (cf. [30]) satisfies j2 = −id. A direct calculation gives

j2(h) = 1
f η
∗ 1
f η
∗h = 1

fη∗f
h = −h.

This shows j2 = −id and concludes the proof.

Lemma 4.26. Let Y be a hyperelliptic Riemann surface of genus g with λ : Y → CP1 of
degree 2 and branch points over λ = 0 (y0) and λ =∞ (y∞). Let η be an anti-holomorphic
involution on Y without fixed points such that η∗λ̄ = λ−1. Moreover, let D be a divisor of
degree g−1 on Y with η(D)−D = (f) for a meromorphic function f obeying fη∗f̄ = −1.
Then one has H0(Y,OD) = 0.

Proof. First we prove that deg(f) > g holds. For this let us assume that deg(f) ≤ g
and show that this yields a contradiction. Due to Proposition III.7.10 in [20] the function
f must be of even degree. Moreover the proof of that proposition shows that f is a
rational function of λ. But then the condition fη∗f̄ = −1 is violated and thus deg(f) > g
must hold. Now suppose that dimH0(Y,OD) > 0, i.e. dimH0(Y,OD) ≥ 2 due to
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4.4 The Baker-Akhiezer function

Proposition 4.25. Then there exists a meromorphic function h that satisfies (h) ≥ −D
and an equivalent effective divisor D′ = D + (h) ≥ 0 with deg(D′) = deg(D) = g − 1.
Moreover, there exists a corresponding meromorphic function f ′ such that

η(D′)−D′ = (f ′) with f ′η∗f̄ ′ = −1.

Since D′ ≥ 0 we get deg(f ′) ≤ g − 1 < g, i.e. a contradiction! Thus there must hold
H0(Y,OD) = 0 and the claim is proved.

With the help of Lemma 4.26 we get

Proposition 4.27. There holds Si = ∅ for i = 1, 2, 3.

Proof. Let D ∈ Picg+1(Y )∩PicR(Y ) be an arbitrary quaternionic divisor of degree g+ 1.
We make the observation that

η(D − y0 − y∞)− (D − y0 − y∞) = η(D)−D = (f) with fη∗f̄ = −1

holds. Thus D1 := D−y0−y∞ is a quaternionic divisor with deg(D1) = g−1 that fulfills
all requirements of Lemma 4.26. This shows dimH0(Y,OD−y0−y∞) = 0 and thus S1 = ∅.
Now consider the equation

η(D − 2y0)− (D − 2y0) = η(D)−D + 2y0 − 2y∞ = η(D)−D + (λ) = (λf)

and set f̃ := λf . Then f̃η∗f̃ = fη∗f = −1 and thus D2 := D − 2y0 is a quaternionic
divisor with deg(D2) = g − 1 that fulfills all requirements of Lemma 4.26. This shows
dimH0(Y,OD−2·y0) = 0 and thus S2 = ∅. Finally S3 = ∅ follows from the same argumen-
tation since

η(D − 2y∞)− (D − 2y∞) = η(D)−D − 2y0 + 2y∞ = η(D)−D + ( 1
λ) = ( 1

λf)

and f̂ = 1
λf also fulfills f̂η∗f̂ = −1. Thus D3 := D − 2y∞ is a quaternionic divi-

sor with deg(D3) = g − 1 that fulfills all requirements from Lemma 4.26. This yields
dimH0(Y,OD−2·y∞) = 0 and concludes the proof.

Remark 4.28. The situation changes significantly if one considers real solutions u :
R2 → R of the cosh-Gordon equation ∆u = cosh(u), for example. Then the sets Si are in
general no longer empty and one obtains singularities of the solutions u (see [4],[6]).

Definition 4.29. Let Y be a spectral curve with distinguished points y0, y∞ and charts
k, k̃ centered at y0 and y∞ respectively. Let D ≥ 0 be an effective divisor on Y with
deg(D) = g + 1 and y0, y∞ /∈ D that satisfies the reality condition η(D) − D = (f) for
a meromorphic function f with fη∗f̄ = −1. Moreover, let h = (h0, h∞) ∈ (h−finite)2 be
given. A Baker-Akhiezer function ψ : Y × R → C2 is a vector-valued map with the
following properties:
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Chapter 4. The inverse problem

(i) For fixed x ∈ R the entries ψi of ψ(x) satisfy (ψi) ≥ −D on Y ∗ := Y \{y0, y∞}.

(ii) The map ψ0 = k∗ exp(x · h0)ψ is holomorphic in a neighborhood of y0 and the map
ψ∞ = k̃∗ exp(x · h∞)ψ is holomorphic in a neighborhood of y∞.

We call a Baker-Akhiezer function ψ normalized if in addition there holds:

(iii) The maps ψ0 and ψ∞ from (ii) are normalized by

ψ0 =
(

1
−1

)
+O(

√
λ) at y0

and

ψ∞ =
(

1
1

)
+O(1/

√
λ) at y∞.

Remark 4.30. Conditions (i) and (ii) imply that ψ is a holomorphic section of the bundle
OD⊗Lh(x). Here the cocycles of Lh(x) are given by k∗ exp(x ·h0) at y0 and k̃∗ exp(x ·h∞)
at y∞.

The following theorem shows that ψ : Y ×R→ C2 is uniquely determined by the analytic
properties stated in Definition 4.29.

Theorem 4.31. Let Y be a spectral curve with distinguished points y0, y∞ and charts k, k̃
centered at y0 and y∞. Let D ≥ 0 be an effective divisor on Y with deg(D) = g + 1 and
y0, y∞ /∈ D that satisfies the reality condition η(D)−D = (f) for a meromorphic function
f with fη∗f̄ = −1. Moreover, let h = (h0, h∞) ∈ (h−finite)2 be given. Then there exists a
unique Baker-Akhiezer function ψ that satisfies properties (i) - (iii) from Defintion 4.29.

Proof. For every x ∈ R the bundle Lh(x) is a real line bundle (compare with Hitchin’s
terminology introduced in [30]) with deg(Lh(x)) = 0. Thus for a given quaternionic divisor
D and fixed x ∈ R the divisor corresponding to the holomorphic line bundle OD ⊗Lh(x)
is quaternionic as well. Denote this divisor by D(x), i.e. D(x) ∈ Picg+1(Y )∩PicR(Y ) for
every fixed x ∈ R. First we observe that dimH0(Y,OD(x)) ≥ 2 for every x ∈ R since by
the Riemann-Roch Theorem 2.22 we have

dimH0(Y,OD(x)) = 1− g + deg(D(x)) + i(D(x)) = 2 + i(D(x)) ≥ 2.

Moreover, there holds H0(Y,OD(x)−y0−y∞) = 0 for every x ∈ R due to Proposition 4.27
and thus dimH0(Y,OD(x)) = 2 for every x ∈ R, i.e. the space of sections of the corre-
sponding bundle is 2-dimensional. This guarantees the existence of the functions ψ1, ψ2.
We now prove the uniqueness of the functions ψ1, ψ2 and thus the uniqueness of ψ. There-
fore we suppose that there exist other functions ψ̃1 and ψ̃2 that obey conditions (i) to (iii)
from Definition 4.29. But then Lemma 4.21 shows that ψ̃i = ψi for i = 1, 2 since S1 = ∅
due to Proposition 4.27. This implies the uniqueness of the normalized Baker-Akhiezer
function ψ and concludes the proof.

Remark 4.32. Since the entries of the Baker-Akhiezer function ψ can be written in terms
of Riemann’s theta functions, we can deduce that ψ is differentiable with respect to the
spatial variable x.
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4.5 The reconstruction of (u, uy)

4.5 The reconstruction of (u, uy)

We will now describe the reconstruction procedure that allows us to identify Cauchy data
(u, uy) of periodic real finite type solution of the sinh-Gordon equation with their spectral
data (Y (u, uy), D(u, uy)) and vice versa.

Proposition 4.33. Let ψ̃±(x) = (ψ̃±1 (x), ψ̃±2 (x))t = T−1F−1
λ (x)ṽ±(0) and set

Ψ(x) := T

(
ψ̃+

1 (x) ψ̃−1 (x)
ψ̃+

2 (x) ψ̃−2 (x)

)
.

Then the frame Fλ with Fλ(0) = 1 is given by

Fλ(x) = Ψ(0)Ψ−1(x).

Proof. Since d
dxΨ = −UλΨ with we get

d

dx
Ψ−1 = Ψ−1Uλ.

Then Fλ(x) := Ψ(0)Ψ−1(x) is the unique solution for d
dxFλ = FλUλ with Fλ(0) = 1.

Proposition 4.34. Let Y be a hyperelliptic Riemann surface of genus g with branch
points over λ = 0 (y0) and λ =∞ (y∞) and the following properties:

(i) Besides the hyperelliptic involution σ the Riemann surface Y has two additional
anti-holomorphic involutions η and ρ = η ◦ σ. Moreover, η has no fixed points and
η(y0) = y∞.

(ii) There exists a non-zero holomorphic function µ on Y \{y0, y∞} that obeys

σ∗µ = µ−1, η∗µ̄ = µ, ρ∗µ̄ = µ−1.

(iii) The form d lnµ is a meromorphic differential of the second kind with double poles
at y0 and y∞.

Moreover, let D ≥ 0 be an effective divisor of degree g + 1 on Y with y0, y∞ /∈ D and
η(D) − D = (f) for a meromorphic function f obeying fη∗f̄ = −1. Then there exist
unique Cauchy data (u, uy) ' Uλ of a periodic real finite type solution of the sinh-Gordon
equation such that Y (ũ, ũy) = Y and D(ũ, ũy) = D with (ũ, ũy) ' Ũλ = T−1UλT .

Conversely, let (u, uy) ' Uλ be Cauchy data of a periodic real finite type solution of the
sinh-Gordon equation and consider (ũ, ũy) ' Ũλ = T−1UλT . Then there exists a pair
(Y,D) of spectral data with the above properties such that the associated Cauchy data
(ũ, ũy)(Y,D) satisfy (ũ, ũy)(Y,D) = (ũ, ũy).

87



Chapter 4. The inverse problem

Proof. For the first claim consider the unique Baker-Akhiezer function ψ = (ψ1, ψ2)t for
h = ( iz2 ,

iz
2 ) given by Theorem 4.31. In analogy to the proof of Proposition 4.33 we set

Ψ(x) :=
(
ψ1(x) σ∗ψ1(x)
ψ2(x) σ∗ψ2(x)

)
.

Then Gλ(x) := Ψ(0)Ψ−1(x) satisfies G1/λ̄
t = G−1

λ due to Lemma 3.41 and Lemma 3.42.
Moreover, we have Gλ(0) = Ψ(0)Ψ(0)−1 = 1. From the asymptotic expansion of ψ around
λ = 0 we obtain the expansion

Ψ(x) exp

(
ix

2
√
λ

0
0 − ix

2
√
λ

)
= Bλ(x)Ψ(0)

around λ = 0, where Bλ(x) is of the form Bλ(x) =
∑

i≥0 λ
iBi(x), and thus

Gλ(x) = Ψ(0) exp

(
ix

2
√
λ

0
0 − ix

2
√
λ

)
Ψ−1(0)B−1

λ (x)

holds around λ = 0. Taking the derivative yields

d

dx
Gλ(x) = Ψ(0)

(
i

2
√
λ

0
0 − i

2
√
λ

)
exp

(
ix

2
√
λ

0
0 − ix

2
√
λ

)
Ψ−1(0)B−1

λ (x)

−Ψ(0) exp

(
ix

2
√
λ

0
0 − ix

2
√
λ

)
Ψ−1(0)B−1

λ (x)
(
d

dx
Bλ(x)

)
B−1
λ (x)

and therefore

G−1
λ (x)

d

dx
Gλ(x) = Bλ(x)Ψ(0)

(
i

2
√
λ

0
0 − i

2
√
λ

)
Ψ−1(0)B−1

λ (x)−
(
d

dx
Bλ(x)

)
B−1
λ (x)

holds around λ = 0. Gauging with T−1 = 1√
2

(
1 1
−1 1

)
yields

TG−1
λ (x)

(
d

dx
Gλ(x)

)
T−1 = TBλ(x)Ψ(0)

(
i

2
√
λ

0
0 − i

2
√
λ

)
Ψ−1(0)B−1

λ (x)T−1

−T
(
d

dx
Bλ(x)

)
B−1
λ (x)T−1.

From the proof of Lemma 3.36 we know that

v+w
t
+ =

(
1 eu(0)

√
λ

e−u(0)
√
λ 1

)
+O(λ) at λ = 0
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and wt+v+ = 2 at λ = 0. Setting Ψ̃(0) = TΨ(0) and applying the projector P we get

Ψ̃(0)

(
i

2
√
λ

0
0 − i

2
√
λ

)
Ψ̃−1(0) = P

(
i

2
√
λ

)
+ σ∗P

(
i

2
√
λ

)
=

(
i

2
√
λ

eu(0)
√
λ

i
2
√
λ

e−u(0)
√
λ i

2
√
λ

i
2
√
λ

)
+

(
− i

2
√
λ

eu(0)
√
λ

i
2
√
λ

e−u(0)
√
λ i

2
√
λ

− i
2
√
λ

)

=
(

0 ieu(0)λ−1

ie−u(0) 0

)
+O(1)

around λ = 0. Define Uλ := TG−1
λ (x)

(
d
dxGλ(x)

)
T−1. Then the previous considerations

yield Uλ =
∑

i≥−1 Uiλ
i. Moreover, there holds U1/λ̄

t = −Uλ and thus we get

Uλ = U−1λ
−1 + U0 + U1λ

with U−k = −U tk. Note that Fλ := TGλT
−1 (with monodromy Mλ = TGλ(p)T−1) solves

d

dx
Fλ(x) = Fλ(x)Uλ with Fλ(0) = 1.

Then the map

ζλ(x) := T (Px(λ−1ν) + σ∗Px(λ−1ν))T−1 = T

(
ψ(λ−1ν)ϕt

ϕtψ
+ σ∗

(
ψ(λ−1ν)ϕt

ϕtψ

))
T−1

solves d
dxζλ = [ζλ, Uλ]. Moreover, since λ−1ν = i

2
√
λ

around λ = 0, the asymptotic
expansion of P

(
λ−1ν

)
+ σ∗P

(
λ−1ν

)
shows ξλ := ζλ(0) ∈ Pg. Thus Uλ ' (u, uy) is of

finite type. The map ψ̃ = T−1F−1
λ T ṽ, where ṽ is an eigenvector of M̃λ = T−1MλT ,

satisfies
d

dx
ψ̃ = −Ũλψ̃ with Ũλ = T−1UλT = G−1

λ

d

dx
Gλ and M̃λψ̃(0) = µψ̃(0).

Moreover, ψ̃ fulfills all requirements from Definition 4.29. Due to the uniqueness of the
Baker-Akhiezer function from Theorem 4.31 we get ψ̃ = ψ. This proves the first claim.

Conversely, let (u, uy) ' Uλ be of finite type and consider the frame Fλ, that is a solution of
d
dxFλ = FλUλ with Fλ(0) = 1, together with the corresponding monodromy Mλ = Fλ(p).
Gauging with T yields F̃λ = T−1FλT and Ũλ = T−1UλT . Then the map ψ̃ = T−1F−1

λ T ṽ,
where ṽ is an eigenvector of M̃λ = T−1MλT , satisfies

d

dx
ψ̃ = −Ũλψ̃ with Ũλ = T−1UλT and M̃λψ̃(0) = µψ̃(0)

and fulfills all requirements from Definition 4.29. From Chapter 3 we know that Ũλ yields
a spectral curve Y and a divisor D with the properties stated above. On Y there exists a
unique Baker-Akhiezer function ψ. Due to the uniqueness we get ψ̃ = ψ and the second
claim is proved.
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With the help of Proposition 4.34 we can prove the following

Theorem 4.35. The power series that appear in the asymptotic expansion

βλ(x)

1 +
∑
m≥1

am(x)(
√
λ)m

+
∑
m≥1

d

dx
am(x)(

√
λ)m =

1 +
∑
m≥1

am(x)(
√
λ)m

 ∑
m≥−1

bm(x)(
√
λ)m (∗)

around λ = 0 from Theorem 3.10 are convergent if and only if the pair (u, uy) is of finite
type. Here b−1(x) and b0(x) are given by b−1(x) ≡ β−1 = i

2

(
1 0
0 −1

)
and b0(x) ≡ ( 0 0

0 0 ).

Proof. Let (u, uy) be of finite type. For gλ(x) := 1 +
∑

m≥1 am(x)(
√
λ)m consider the

systems d
dxGλ = Gλβλ and

d

dx
Ĝλ = Ĝλβ̂λ with Ĝλ(x) = gλ(0)−1Gλ(x)gλ(x) = exp

(∫ x

0
β̂λ(t) dt

)
.

Note that β̂λ(x) =
∑

m≥−1 bm(x)(
√
λ)m is a diagonal matrix. Then the map

exp
(

ix

2
√
λ

)
ψ = exp

(
ix

2
√
λ

)
G−1
λ (x)v = exp

(
ix

2
√
λ

)
gλ(x)Ĝ−1

λ (x)gλ(0)−1v

= exp
(

ix

2
√
λ

)
gλ(x)Ĝ−1

λ (x)e1

= exp

 ix

2
√
λ
− ix

2
√
λ
−
∑
m≥1

(
√
λ)m

∫ x

0
bm(t)e1 dt

 gλ(x)

= exp

−∑
m≥1

(
√
λ)m

∫ x

0
bm(t)e1 dt

 gλ(x)

is a convergent power series around λ = 0 due to Lemma 3.51 and thus gλ(x) also con-
verges on a neighborhood of λ = 0. This shows that the power series in (∗) are convergent
around λ = 0.

Now suppose that the power series in (∗) are convergent on a small neighborhood of λ = 0.
Since Ĝλ(x) = exp(

∫ x
0 βλ(t) dt) and Gλ(p) = gλ(0)Ĝλ(p)gλ(0)−1 we see that

lnµ =
∑
m≥−1

(
√
λ)m

∫ p

0
bm(t)e1 dt

is a meromorphic function around λ = 0 with a simple pole at λ = 0 and a similar
statement also holds around λ = ∞. Thus the normalization of the multiplier curve has
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finite genus g. Due to the equation

ψ = G−1
λ (x)v = gλ(x)Ĝ−1

λ gλ(0)−1v

we see that the corresponding Baker-Akhiezer function has only finitely many poles around
λ = 0 (and λ =∞) and consequently the corresponding divisor D satisfies deg(D) <∞.
Now Proposition 4.34 shows that the corresponding pair (u, uy) is of finite type.
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5 Isospectral and non-isospectral
deformations

5.1 Deformations of spectral curves

We start this chapter with non-isospectral deformations, i.e. deformations that change
the spectral curve Y . First we need some definitions.

Definition 5.1. The group of homotopic cycles on a Riemann surface Y is called fun-
damental group and is denoted by π1(Y ). The abelianization of π1(Y ) is the homology
group H1(Y,Z).

Definition 5.2. A basis (A,B) = (a1, . . . , ag, b1, . . . , bg) of H1(Y,Z) is called canonical
if the intersection numbers of this basis are given by

aj ◦ ak = 0,
bj ◦ bk = 0,
aj ◦ bk = δjk

with j, k ∈ {1, . . . , g}.

Consider the subset Aη ⊂ H1(Y,Z) of anti-invariant cycles with respect to the involution
η, i.e.

Aη = {c ∈ H1(Y,Z) | η∗c ≡ −c}.

Then Aη is a sub-module of H1(Y,Z) ' Z2g of rank g and the same holds for the subset
of invariant cycles

Iη = {c ∈ H1(Y,Z) | η∗c ≡ c}.

Since the short exact sequence

0→ Iη → H1(Y,Z)→ H1(Y,Z)/Iη ' Aη → 0

does not generally split we have H1(Y,Z) 6= Iη ⊕ Aη in general. Choosing a-cycles from
Aη ' Zg (i.e. η∗ai ≡ −ai for i = 1, . . . , g) the dual basis of b-cycles obeys

η∗bi ≡ bi mod 〈a1, . . . , ag〉.

With this observation in mind we choose the following homology basis (A,B) of H1(Y,Z)
for the upcoming considerations:
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Chapter 5. Isospectral and non-isospectral deformations

For i = 1, . . . , g let ai be defined as the closed cycle surrounding the line segment [αi, 1/ᾱi]
where α1, . . . , αg ∈ D are the (simple) zeros of the polynomial a(λ) in the open disk D.
Now the b-cycles again are chosen in a way such that

η∗bi ≡ bi mod 〈a1, . . . , ag〉

holds for i = 1, . . . , g. The resulting basis (A,B) forH1(Y,Z) is called an adapted canonical
basis in analogy to the terminology introduced in [14].

5.1.1 Infinitesimal deformations of spectral curves

Definition 5.3. Let Σp
g denote the space of smooth hyperelliptic Riemann surfaces Y of

genus g with the properties described in Theorem 3.55, such that d lnµ has no roots at the
branchpoints of Y .

We will now investigate deformations of Σp
g 'M1

g(p). For this, following the expositions
of [24, 28, 35], we derive vector fields on open subsets ofM1

g(p) and parametrize the cor-
responding deformations by a parameter t ∈ [0, ε). We consider deformations of Y (u, uy)
that preserve the periods of d lnµ. We already know that∫

ai

d lnµ = 0 and
∫
bi

d lnµ ∈ 2πiZ for i = 1, . . . , g.

Considering the Taylor expansion of lnµ with respect to t we get

lnµ(t) = lnµ(0) + t ∂t lnµ(0) +O(t2)

and thus
d lnµ(t) = d lnµ(0) + t d∂t lnµ(0) +O(t2).

Given a closed cycle c ∈ H1(Y,Z) we have∫
c
d lnµ(t) =

∫
c
d lnµ(0) + t

∫
c
d∂t lnµ(0) +O(t2)

and therefore
d

dt

(∫
c
d lnµ(t)

) ∣∣∣∣
t=0

=
∫
c
d∂t lnµ(0) = 0.

This shows that deformations resulting from the prescription of ∂t lnµ|t=0 at t = 0 preserve
the periods of d lnµ infinitesimally along the deformation and thus are isoperiodic. If we
set λ̇ = 0 we can consider lnµ as a function of λ and t and get

lnµ(λ, t) = lnµ(λ, 0) + t ∂t lnµ(λ, 0) +O(t2)

as well as
∂λ lnµ(λ, t) = ∂λ lnµ(λ, 0) + t ∂2

λ t lnµ(λ, 0) +O(t2).
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5.1 Deformations of spectral curves

We know that Ŷ = {(λ, µ) ∈ C∗ × C∗ | R(λ, µ) = µ2 − ∆(λ)µ + 1 = 0}. Differentiating
the expression R(λ, µ) = 0 with respect to λ we get

2µ∂λµ−∆′(λ)µ−∆(λ)∂λµ = 2µ2∂λµ

µ
−∆′(λ)µ− µ∆(λ)

∂λµ

µ
= 0

and therefore

∂λ lnµ =
∆′(λ)µ

2µ2 − µ∆(λ)
=

∆′(λ)
2µ−∆(λ)

on Ŷ . On the compact spectral curve Y the function ∂λ lnµ is therefore given by

∂λ lnµ =
b(λ)
λ ν

and the compatibility condition ∂2
t λ lnµ|t=0 = ∂2

λ t lnµ|t=0 will lead to a deformation of
the spectral data (a, b) or equivalently to a deformation of the spectral curve Y with
its differential d lnµ. Therefore this deformation is non-isospectral. In the following we
will investigate which conditions δ lnµ := (∂t lnµ)|t=0 has to obey in order obtain such a
deformation.

The Whitham deformation. Following the ansatz given in [28] we consider the function
lnµ as a function of λ and t and write lnµ locally as

lnµ =


fαi(λ)

√
λ− αi + πini at a zero αi of a,

f0(λ)λ−1/2 + πin0 at λ = 0,
f∞(λ)λ1/2 + πin∞ at λ =∞.

Here we choose small neighborhoods around the branch points such that each neighbor-
hood contains at most one branch point. Moreover, the functions fαi , f0, f∞ do not vanish
at the corresponding branch points. If we write ġ for (∂tg)|t=0 we get

(∂t lnµ)|t=0 =


ḟαi(λ)

√
λ− αi −

α̇ifαi (λ)

2
√
λ−αi

at a zero αi of a,

ḟ0(λ)λ−1/2 at λ = 0,
ḟ∞(λ)λ1/2 at λ =∞.

Since the branches of lnµ differ from each other by an element in 2πiZ we see that
δ lnµ = (∂t lnµ)|t=0 is a single-valued meromorphic function on Y with poles at the
branch points of Y , i.e. the poles of δ lnµ are located at the zeros of a and at λ = 0 and
λ =∞. Thus we have

δ lnµ =
c(λ)
ν

with a polynomial c of degree at most g + 1. Since η∗δ lnµ = δ ln µ̄ and η∗ν = λ̄−g−1ν̄
the polynomial c obeys the reality condition

λg+1c(λ̄−1) = c(λ). (5.1.1)

95



Chapter 5. Isospectral and non-isospectral deformations

Differentiating ν2 = λa with respect to t we get 2νν̇ = λȧ. The same computation for
the derivative with respect to λ gives 2νν ′ = a+ λa′. Now a direct calculation shows

∂2
t λ lnµ|t=0 = ∂t

(
b

λ ν

) ∣∣∣∣
t=0

=
ḃλν − bλν̇
λ2ν2

=
2ḃa− bȧ

2ν3
,

∂2
λ t lnµ|t=0 = ∂λ

( c
ν

)
=
c′ν − cν ′

ν2
=

2c′ν2 − 2cνν ′

2ν3
=

2c′λa− ca− cλa′

2ν3
.

The compatibility condition ∂2
t λ lnµ|t=0 = ∂2

λ t lnµ|t=0 holds if and only if

− 2ḃa+ bȧ = −2λac′ + ac+ λa′c. (5.1.2)

Both sides of this equation are polynomials of degree at most 3g+1 and therefore describe
relations for 3g + 2 coefficients. If we choose a polynomial c that obeys the reality con-
dition (5.1.1) we obtain a vector field on M1

g(p). Since (a, b) ∈ M1
g(p) have no common

roots, the polynomials a, b, c in equation (5.1.2) uniquely define a tangent vector (ȧ, ḃ)
(see [28], Section 9). An application of these techniques to study CMC tori in S3 and H3

can be found in [34] and [40]. In the following we will specify such polynomials c that lead
to deformations which do not change the period p of (u, uy) (compare with [28], Section 9).

Preserving the period p along the deformation. If we evaluate the compatibility
equation (5.1.2) at λ = 0 we get

−2ḃ(0)a(0) + b(0)ȧ(0) = a(0)c(0).

Moreover,

ṗ = 2
d

dt

(
b(0)

i
√
a(0)

)∣∣∣∣
t=0

=
−2ḃ(0)a(0) + b(0)ȧ(0)

−i(a(0))3/2
= i

c(0)√
a(0)

.

This proves

Lemma 5.4. Vector fields on M1
g(p) that are induced by polynomials c obeying (5.1.1)

preserve the period p of (u, uy) if and only if c(0) = 0.

Let us take a closer look at the space of polynomials c that induce a Whitham deformation.

Lemma 5.5. For the coefficients of the polynomial c(λ) =
∑g+1

i=0 ciλ
i obeying (5.1.1) there

holds ci = c̄g+1−i for i = 0, . . . , g + 1.

Proof. Inserting c(λ) =
∑g+1

i=0 ciλ
i into (5.1.1) yields

λg+1
g+1∑
i=0

c̄iλ
−i =

g+1∑
i=0

c̄iλ
g+1−i =

g+1∑
i=0

c̄g+1−iλ
i !=

g+1∑
i=0

ciλ
i.

Equating the coefficients shows ci = c̄g+1−i for i = 0, . . . , g+1 and concludes the proof.
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Proposition 5.6. The space of polynomials c corresponding to deformations of spectral
curve data (a, b) ∈M1

g(p) (with fixed period p) is g-dimensional.

Proof. The space of polynomials c of degree at most g + 1 obeying the reality condition
(5.1.1) is (g+2)-dimensional. From Lemma 5.4 we know that ṗ = 0 if and only if c(0) = 0.
This yields the claim.

Note that c corresponds to a transformation λ 7→ eiϕλ if and only if (∃f ∈ iR : b = fc).
This equivalence can be deduced as follows. Consider λ(t) = eiϕtλ with λ̇(t) = iϕλ. Then

∂

∂t
lnµ(λ(t))|t=0 =

∂

∂λ
lnµ · λ̇(t) =

b

λν
iϕλ

!=
c

ν

and thus c = iϕb. We show that (∃f ∈ iR : b = fc) =⇒ (deg(c) = g+1 and c obeys (5.1.1)).
Since b has degree g+1 there also holds deg(c) = g+1. Moreover, b satisfies λg+1b(1/λ̄) =
−b(λ). Since f ∈ iR we get

λg+1b(1/λ̄) = −fλg+1c(1/λ̄) != −fc(λ)

and thus c obeys (5.1.1). Finally there holds

ṗ 6= 0 Lem. 5.4⇐⇒ c(0) 6= 0 Lem. 5.5⇐⇒ (deg(c) = g + 1 and c obeys (5.1.1))

and thus ṗ = 0⇐⇒ ¬(deg(c) = g + 1 and c obeys (5.1.1)). Moreover,

¬(deg(c) = g + 1 and c obeys (5.1.1)) =⇒ ¬(∃f ∈ iR : b = fc)

and therefore infinitesimal Möbius transformations of the form λ 7→ eiϕλ are excluded in
the case of deformations that fix the period p.

5.1.2 M1
g(p) is a smooth g-dimensional manifold

From Proposition 5.6 we know that the space of polynomials c corresponding to defor-
mations of M1

g(p) with fixed period p is g-dimensional. In the following we want to
show that M1

g(p) is a real g-dimensional manifold. For this, we follow the terminology
introduced by Carberry and Schmidt in [14].

Let us recall the conditions that characterize a representative (a, b) ∈ C2g[λ]×Cg+1[λ] of
an element in Mg(p):

(i) λ2ga(λ̄−1) = a(λ) and λ−ga(λ) < 0 for all λ ∈ S1 and |a(0)| = 1.

(ii) λg+1b(λ̄−1) = −b(λ).

(iii) fi(a, b) :=
∫ 1/ᾱi
αi

b
ν
dλ
λ = 0 for the roots αi of a in the open disk D ⊂ C.
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Chapter 5. Isospectral and non-isospectral deformations

(iv) The unique function h : Ỹ → C with σ∗h = −h and dh = b
ν
dλ
λ satisfies h(αi) ∈ πiZ

for all roots αi of a.

Definition 5.7. Let Hg be the set of polynomials a ∈ C2g[λ] that satisfy condition (i)
and whose roots are pairwise distinct.

Every a ∈ Hg corresponds to a smooth spectral curve. Moreover, every a ∈ Hg is uniquely
determined by its roots.

Definition 5.8. For every a ∈ Hg let the space Ba be given by

Ba := {b ∈ Cg+1[λ] | b satisfies conditions (ii) and (iii)}.

Since (iii) imposes g linearly independent constraints on the (g+ 2)-dimensional space of
polynomials b ∈ Cg+1[λ] obeying the reality condition (ii) we get

Proposition 5.9. dimR Ba = 2. In particular every b0 ∈ C uniquely determines an
element b ∈ Ba with b(0) = b0.

Now we arrive at

Proposition 5.10. The set

M := {(a, b) ∈ C2g[λ]×Cg+1[λ] | a ∈ Hg, (a, b) have no common roots and b satisfies (ii)}

is an open subset of a (3g + 2)-dimensional real vector space. Moreover, the set

N := {(a, b) ∈M | fi(a, b) = 0 for i = 1, . . . , g}

defines a real submanifold of M of dimension 2g+ 2 that is parameterized by (a, b(0)). If
b(0) = b0 is fixed we get a real submanifold of dimension 2g.

Proof. Consider the map f = (f1, . . . , fg) : R2g+2 × Rg → Rg given by

((a, b0), (b1, . . . , b(g+1)/2)) 7→ f(a, b) := (f1(a, b), . . . , fg(a, b)).

If we choose b ∈ Ba with b(0) = b0 we get f(a, b) = 0 due to Proposition 5.9. Moreover,
f is linear with respect to (b1, . . . , b(g+1)/2) and thus ∂(f1,...,fg)

∂(b1,...,b(g+1)/2) is invertible at (a, b).
Now we can apply the Implicit Function Theorem and see that there exist neighborhoods
U ⊂ R2g+2 and V ⊂ Rg with (a, b0) ∈ U and (b1, . . . , b(g+1)/2) ∈ V and a smooth map
g : U → V with g(a, b0) = (b1, . . . , b(g+1)/2) such that

f((a, b0), g(a, b0)) = 0 for all (a, b0) ∈ U.

Therefore N = f−1[0] defines a real submanifold of M of dimension 2g+ 2 that is param-
eterized by (a, b(0)).

The results in [27, 28] yield the following theorem (compare with Lemma 5.3 in [29]).
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Theorem 5.11. For a fixed choice n1, . . . , ng ∈ Z the map h = (h1, . . . , hg) : N →
(iR/2πiZ)g ' (S1)g with

hj : N → iR/2πiZ, (a, b) 7→ hj(a, b) := lnµ(αj)− πinj

is smooth and its differential dh has full rank. In particular M1
g(p) = h−1[0] defines a

real submanifold of dimension g. Here we consider b(0) = b0 as fixed, i.e. dimR(N) = 2g.

Proof. Let us consider an integral curve (a(t), b(t)) for the vectorfield Xc that corresponds
to a Whitham deformation that is induced by a polynomial c obeying the reality condition
(5.1.1). Then there holds h(a(t), b(t)) ≡ const. along this deformation and therefore

dh(a(t), b(t)) · (ȧ(t), ḃ(t)) = dh(a(t), b(t)) ·Xc(a(t), b(t)) = 0.

From Proposition 5.6 we know that the space of polynomials c that correspond to a
deformation with fixed period p is g-dimensional. We will now show that the map

c 7→ Xc(a(t), b(t)) = (ȧ(t), ḃ(t)) with h(a(t), b(t)) ≡ const. (5.1.3)

is one-to-one and onto. The first part of the claim is obvious. For the second part consider
the functions

fbj (a, b) :=
∫
bj

d lnµ =
∫
bj

b(λ)
ν

dλ

λ
= lnµ(αj) = πinj ∈ πiZ

along (a(t), b(t)), where the bj are the b-cycles of Y . Taking the derivative yields

d

dt
fbj (a, b)

∣∣
t=0

=
∫
bj

d

dt

(
b(λ)
ν

) ∣∣∣∣
t=0

dλ

λ
=
∫
bj

∂t(∂λ lnµ)|t=0 dλ = 0 = 0.

Morover, for the a-cycles aj we have

faj (a, b) = fj(a, b) =
∫
aj

d lnµ =
∫
aj

b(λ)
ν

dλ

λ
= 0

and consequently

d

dt
faj (a, b)

∣∣
t=0

=
∫
aj

d

dt

(
b(λ)
ν

) ∣∣∣∣
t=0

dλ

λ
=
∫
aj

∂t(∂λ lnµ)|t=0 dλ = 0.

Since all integrals of ∂t(∂λ lnµ)|t=0 vanish, there exists a meromorphic function φ with

dφ = ∂t(∂λ lnµ)|t=0 dλ.

Due to the Whitham equation (5.1.2) this function is given by φ = (∂t lnµ)|t=0 = c
ν .

Thus the map in (5.1.3) is bijective. This shows dim(ker dh) = g and consequently
dim(im dh) = g as well. Therefore dh : R2g → Rg has full rank and the claim follows.
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5.2 Deformations of the eigenline bundle

We want to consider isospectral deformations and therefore state the following lemma,
that is motivated by the results presented in [47], Chapter 7.

Lemma 5.12. Let v1, w
t
1 be the eigenvectors for µ and v2, w

t
2 the corresponding eigenvec-

tors for 1
µ of M(λ). Then

δM(λ)v1 +M(λ)δv1 = µδv1 and δM(λ)v2 +M(λ)δv2 = 1
µδv2 (∗)

if and only if

δM(λ) =

[
2∑
i=1

(δvi)wti
wtivi

,M(λ)

]
. (∗∗)

Proof. A direct calculation shows[
2∑
i=1

(δvi)wti
wtivi

,M(λ)

]
v1 =

(
2∑
i=1

(δvi)wti
wtivi

)
M(λ)v1 −M(λ)

(
2∑
i=1

(δvi)wti
wtivi

)
v1

=

(
2∑
i=1

(δvi)wti
wtivi

)
µv1 −M(λ)δv1

= µδv1 −M(λ)δv1

(∗)
= δM(λ)v1.

An analogous calculation for v2 gives

δM(λ)v2 =

[
2∑
i=1

(δvi)wti
wtivi

,M(λ)

]
v2

and the claim is proved.

5.2.1 Isospectral group action and loop groups

The one-to-one correspondence between Cauchy data (u, uy) of periodic real finite type
solutions of the sinh-Gordon equation and their spectral data (Y (u, uy), D(u, uy)) estab-
lished in Proposition 4.34 allows us to deduce the following conclusions.

Definition 5.13. Let Iso(Y ) := {(u, uy) of finite type | Y (u, uy) = Y } be the set of finite
type Cauchy data (u, uy) whose spectral curve Y (u, uy) equals a given Y ∈ Σp

g 'M1
g(p).

Definition 5.14. Let PicR
g+1(Y ) := Picg+1(Y ) ∩ PicR(Y ) be the real part of Picg+1(Y )

with respect to the involution η (compare with Definition 4.24).

If we define (compare with Definition 3.39)

E : Iso(Y )→ PicR
g+1(Y ), (u, uy) 7→ E(u, uy),

Proposition 4.34 gives
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5.2 Deformations of the eigenline bundle

Proposition 5.15. The map E induces a homeomorphism Iso(Y ) ' PicR
g+1(Y ).

Before we can define the isospectral group action we need the following

Lemma 5.16. The real part PicR
g+1(Y ) of Picg+1(Y ) is connected.

Proof. Let JacR(Y ) ' PicR
0 (Y ) denote the real part of the Jacobian Jac(Y ) ' Pic0(Y ) of

Y with respect to the involution η and let n(JacR(Y )) be the number of connected com-
ponents of JacR(Y ). Since the quotient Y/η is a connected manifold with zero boundary
components we can deduce from the proof of Proposition 4.4 in [25] that

n(JacR(Y )) =

{
1 if g ≡ 0 (mod 2),
2 if g ≡ 1 (mod 2).

Since Jac(Y ) ' Pic0(Y ) is the Lie algebra of Picg+1(Y ) we see that the claim follows
immediately for g ≡ 0 (mod 2). For the case g ≡ 1 (mod 2) we have to exclude one
component in order to obtain our result. For this, consider the divisor

D :=
(g+1)/2∑
i=1

yi + η(yi)

with deg(D) = g + 1 and η(D) − D = 0, i.e. D is not quaternionic. Thus only one of
the connected components of JacR(Y ) corresponds to the Lie algebra of PicR

g+1(Y ) and
therefore PicR

g+1(Y ) is connected.

One gets an action on PicR
g+1(Y ) by the following

Theorem 5.17. The action of the tensor product on holomorphic line bundles induces a
continuous commutative and transitive action of Rg on PicR

g+1(Y ), which is denoted by

π : Rg × PicR
g+1(Y )→ PicR

g+1(Y ), ((t0, . . . , tg−1), E) 7→ π(t0, . . . , tg−1)(E).

Proof. Since the map ϕ : (h−finite)
2 → H1

R(Y,O) is onto there exist elements

(h0
0, h

0
∞), . . . , (hg−1

0 , hg−1
∞ ) ∈ (h−finite)

2

such that
span{ϕ(h0

0, h
0
∞), . . . , ϕ(hg−1

0 , hg−1
∞ )} = H1

R(Y,O).

Denote by L(t) = L(t0, . . . , tg−1) the family in PicR
0 (Y ) which is obtained by applying

Krichever’s construction procedure to (h0, h∞) :=
∑g−1

i=0 ci(h
i
0, h

i
∞) such that the cocycle

of L(t) around y0 is given by k∗ exp(β0(t)) with

β0(t) = β0(t0, . . . , tg−1) =
g−1∑
i=0

citih
i
0.
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Chapter 5. Isospectral and non-isospectral deformations

Then the group action
π : Rg × PicR

g+1(Y )→ PicR
g+1(Y )

is given by

((t0, . . . , tg−1), E) 7→ π(t0, . . . , tg−1)(E) = E ⊗ L(t0, . . . , tg−1).

Obviously this continuous action is commutative since the cocycles of the bundle L(t) are
of the form exp(

∑g−1
i=0 ticiϕi). Moreover, Lemma 5.16 ensures that PicR

g+1(Y ) and PicR
0 (Y )

are connected and thus for every E′ ∈ PicR
g+1(Y ) there exists t = (t0, . . . , tg−1) ∈ Rg such

that E′ = π(t0, . . . , tg−1)(E). This shows that the action π : Rg×PicR
g+1(Y )→ PicR

g+1(Y )
is transitive and concludes the proof.

Corollary 5.18. For the isospectral set Iso(Y ) there holds Iso(Y ) '
(
S1
)g.

Proof. Since the action π : Rg × PicR
g+1(Y ) → PicR

g+1(Y ) acts transitively one has
PicR

g+1(Y ) = π(Rg)(E) for some E ∈ PicR
g+1(Y ). Moreover, the stabilizer subgroup

ΓE = {(t0, . . . , tg−1) ∈ Rg | π(t0, . . . , tg−1)(E) = E}

is a discrete lattice in Rg of full rank that is isomorphic to Zg and therefore(
S1
)g = Rg/Zg ' Rg/Γ(E) ' π(Rg)(E) = PicR

g+1(Y ).

Thus we get Iso(Y ) '
(
S1
)g due to Proposition 5.15 and the claim is proved.

Loop groups and the Iwasawa decomposition. For real r ∈ (0, 1], denote the
circle with radius r by Sr = {λ ∈ C | |λ| = r} and the open disk with boundary Sr by
Ir = {λ ∈ C | |λ| < r}. Moreover, the open annulus with boundaries Sr and S1/r is given
by Ar = {λ ∈ C | r < |λ| < 1/r} for r ∈ (0, 1). For r = 1 we set A1 := S1. The loop group
ΛrSL(2,C) of SL(2,C) is the infinite dimensional Lie group of analytic maps from Sr to
SL(2,C), i.e.

ΛrSL(2,C) = O(Sr, SL(2,C)).

We will also need the following two subgroups of ΛrSL(2,C): First let

ΛrSU(2) = {F ∈ O(Ar, SL(2,C)) | F |S1 ∈ SU(2)}.

Thus we have
Fλ ∈ ΛrSU(2) ⇐⇒ F1/λ̄

t = F−1
λ .

The second subgroup is given by

Λ+
r SL(2,C) = {B ∈ O(Ir ∪ Sr, SL(2,C)) | B(0) =

(
ρ c
0 1/ρ

)
for ρ ∈ R+ and c ∈ C}.

The normalization B(0) = B0 ensures that

ΛrSU(2) ∩ Λ+
r SL(2,C) = {1}.

Now we have the following important result due to Pressley-Segal [46] that has been
generalized by McIntosh [42].
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5.2 Deformations of the eigenline bundle

Theorem 5.19. The multiplication ΛrSU(2)×Λ+
r SL(2,C)→ ΛrSL(2,C) is a surjective

real analytic diffeomorphism. The unique splitting of an element φλ ∈ ΛrSL(2,C) into

φλ = FλBλ

with Fλ ∈ ΛrSU(2) and Bλ ∈ Λ+
r SL(2,C) is called r-Iwasawa decomposition of φλ or

Iwasawa decomposition if r = 1.

Remark 5.20. The r-Iwasawa decomposition also holds on the Lie algebra level, i.e.
Λrsl2(C) = Λrsu2 ⊕ Λ+

r sl2(C). This decomposition will play a very important role in the
following.

In the finite type situation we can consider the following r-Iwasawa decomposition for
t = (t0, . . . , tg−1) ∈ Cg

exp

(
ξλ

g−1∑
i=0

λ−iti

)
= Fλ(t)Bλ(t).

Since [Mλ, ξλ] = 0 the eigenvectors for Mλ also diagonalize ξλ = B
(
λ−1ν 0

0 −λ−1ν

)
B−1 and

we get

exp

(
ξλ

g−1∑
i=0

λ−iti

)
= B exp

(∑g−1
i=0 tiλ

−i−1ν 0
0 −

∑g−1
i=0 tiλ

−i−1ν

)
B−1

and therefore

F−1
λ (t)B exp

(∑g−1
i=0 tiλ

−i−1ν 0
0 −

∑g−1
i=0 tiλ

−i−1ν

)
= Bλ(t)B.

Due to Bei = vi we see

exp(
g−1∑
i=0

tiλ
−i−1ν)F−1

λ (t)v1 = Bλ(t)v1.

In particular we obtain for t = (x, 0, . . . , 0) the equation

exp(xλ−1ν)F−1
λ (x)v1 = Bλ(x)v1.

For ψ = F−1
λ v1 and λ−1ν = i

2
√
λ

+O(1) around λ = 0 we see again that ψ0 = exp( ix
2
√
λ

)ψ
is holomorphic at λ = 0.

An equivariant mapping. For t = (t0, . . . , tg−1) consider the map ζλ(t) ∈ Λrsl2(C)
that is given by

ζλ(t) := Pt(ν̃) + σ∗Pt(ν̃) = F−1
λ (t) (P (ν̃) + σ∗P (ν̃))Fλ(t)

= F−1
λ (t)ξλFλ(t)
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Chapter 5. Isospectral and non-isospectral deformations

with ν̃ = ν
λ . Then ζλ(t) obviously satisfies

d

dti
ζλ(t) = [ζλ(t), Uλ(ti)] with Uλ(ti) := Fλ(t)−1

(
d
dti
Fλ(t)

)
.

For i 6= 0 the form Uλ(ti) corresponds to a higher flow in the sinh-Gordon hierarchy.
Recall that the spectral curve Y ∈ Σp

g 'M1
g(p) is the compactification of Y ∗ = {(λ, ν) ∈

C∗×C∗ | ν2 = −det(ξλ)}. Due to Proposition 4.33 we can assign to every E ∈ PicR
g+1(Y )

a projector P (E) such that P (E)(λ−1ν) + σ∗P (E)(λ−1ν) = ξλ.

Proposition 5.21. The homeomorphism

ξλ : PicR
g+1(Y )→ {ξλ ∈ Pg | det(ξλ) = −λ−1a(λ)}, E 7→ ξλ(E)

with
ξλ(E) := P (E)(λ−1ν) + σ∗P (E)(λ−1ν)

is an equivariant mapping for the action π : Rg × PicR
g+1(Y ) → PicR

g+1(Y ) introduced in
Theorem 5.17 and the commutative and transitive group action (compare [27]) given by

π(t0, . . . , tg−1)(ξλ) := φλ(t) = F−1
λ (t)ξλFλ(t).

This action respects the Iwasawa decomposition for t = (t0, . . . , tg−1) that is given by

exp

(
ξλ

g−1∑
i=0

λ−iti

)
= Fλ(t0, . . . , tg−1)Bλ(t0, . . . , tg−1).

Proof. Setting ν̃ = ν
λ , a direct calculation shows

ξλ(π(t0, . . . , tg−1)(E)) = ξλ(E ⊗ L(t0, . . . , tg−1)) = Pt(E)(ν̃) + σ∗Pt(E)(ν̃)
= F−1

λ (t) (P (E)(ν̃) + σ∗P (E)(ν̃))Fλ(t)
= F−1

λ (t)ξλ(E)Fλ(t)
= π(t0, . . . , tg−1)(ξλ(E))

and thus the claim is proved.

Considering ζλ(x) := φλ(t) ∈ Λrsl2(C) for t = (x, 0, . . . , 0) we obtain

ζλ(x) = F−1
λ (x)ξλFλ(x).

Then ζλ(x) satisfies the equation

d

dx
ζλ(x) = [ζλ(x), Uλ(x)],

i.e. ζλ(x) is the polynomial Killing field with ζλ(0) = ξλ. Moreover, the r-Iwasawa
decomposition

exp(x ξλ) = Fλ(x)Bλ(x)

holds in that situation.
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5.2 Deformations of the eigenline bundle

5.2.2 Infinitesimal deformations of ξλ and Uλ

In order to describe the infinitesimal deformations of ξλ and Uλ, we follow the exposition
of [2], IV.2.e. Transfering those methods to our situation yields

Theorem 5.22. Let f0(λ, ν) =
∑g−1

i=0 ciλ
−i−1ν be the representative of [(f0, η

∗f̄0)] ∈
H1

R(X,O) and let

Af0 := P (f0) + σ∗P (f0) =
g−1∑
i=0

ciλ
−i(P (λ−1ν) + σ∗P (λ−1ν)) =

g−1∑
i=0

ciλ
−iξλ

be the induced element in Λrsl2(C). Then the vector field of the isospectral action π :
Rg × PicR

g+1(Y )→ PicR
g+1(Y ) at E takes the value

ξ̇λ = [A+
f0
, ξλ] = −[ξλ, A−f0

]

under the equivariant map E 7→ ξλ(E) from Proposition 5.21. Here Af0 = A+
f0

+ A−f0
is

the Lie algebra decomposition of the Iwasawa decomposition.

Proof. We write ν for ν̃. Obviously there holds Af0v = f0v. If we write ṽ = eβ0(t)v for
local sections ṽ of OD ⊗L(t0, . . . , tg−1) and v of OD with β0(t) =

∑g−1
i=0 citiλ

−i−1ν we get

δṽ = β̇0(t)ṽ + eβ0(t)δv = f0ṽ + eβ0(t)δv

= Af0 ṽ + eβ0(t)δv

= eβ0(t)(Af0v + δv).

Moreover, (f0) ≥ 0 on Y ∗. This shows that Af0v+ δv is a vector-valued section of OD on
Y ∗ and defines a map A+

f0
such that

Af0v + δv = A+
f0
v

holds. Since Af0v = f0v we also obtain the equations{
ξλv = νv,

ξλ(A+
f0
v − δv) = ν(A+

f0
v − δv).

This implies
ξλδv + [A+

f0
, ξλ]v = νδv.

Differentiating the equation ξλv = νv we additionally obtain

ξ̇λv + ξλδv = ν̇v + νδv = νδv.

Combining the last two equations yields

ξ̇λv = [A+
f0
, ξλ]v

and concludes the proof since this equation holds for a basis of eigenvectors.

105



Chapter 5. Isospectral and non-isospectral deformations

Remark 5.23. The decomposition of Af ∈ Λrsl(2,C) = Λrsu2 ⊕ Λ+
r sl2(C) yields Af0 =

A+
f0

+A−f0
and therefore Af0v + δv = A+

f0
v implies

δv = −A−f0
v.

In particular A−f0
is given by A−f0

= −
∑ δvwt

wtv .

We want to extend Theorem 5.22 to obtain the value of the vectorfield induced by π :
Rg × PicR

g+1(Y )→ PicR
g+1(Y ) at Uλ.

Theorem 5.24. Let f0(λ, ν) =
∑g−1

i=0 ciλ
−i−1ν be the representative of [(f0, η

∗f̄0)] ∈
H1

R(X,O) and let

Af0(x) := Px(f0) + σ∗Px(f0) =
g−1∑
i=0

ciλ
−i(Px(λ−1ν) + σ∗Px(λ−1ν)) =

g−1∑
i=0

ciλ
−iζλ(x)

be the induced map Af0 : R → Λrsl2(C). Then the vector field of the isospectral action
π : Rg × PicR

g+1(Y )→ PicR
g+1(Y ) at E takes the value

δUλ(x) = [A+
f0

(x), Lλ(x)] = [Lλ(x), A−f0
(x)].

Here Af0(x) = A+
f0

(x) +A−f0
(x) is the Lie algebra decomposition of the Iwasawa decompo-

sition.

Proof. Obviously Af0(x)v(x) = f0v(x). In analogy to the proof of Theorem 5.22 we obtain
a map A+

f0
(x) such that

Af0(x)v(x) + δv(x) = A+
f0

(x)v(x)

holds. Since Af0(x)v(x) = f0v(x) we also obtain the equations{
Lλ(x)v(x) = lnµ

p v(x),

Lλ(x)(A+
f0

(x)v(x)− δv(x)) = lnµ
p (A+

f0
(x)v(x)− δv(x))

around λ = 0. This implies

Lλ(x)δv(x) + [A+
f0

(x), Lλ(x)]v(x) = lnµ
p δv(x).

Differentiating the equation Lλ(x)v(x) = lnµ
p v(x) we additionally obtain

δLλ(x)v(x) + Lλ(x)δv(x) = δ lnµ
p v(x) + lnµ

p δv(x) = lnµ
p δv(x).

Combining the last two equations yields

δLλ(x)v(x) = δUλ(x)v(x) = [A+
f0

(x), Lλ(x)]v(x)

and concludes the proof since this equation holds for a basis of eigenvectors.
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5.3 General deformations of Mλ and Uλ

In the next lemma we consider the situation of a general variation with isospectral and
non-isospectral parts.

Lemma 5.25. Let v1, w
t
1 be the eigenvectors for µ and v2, w

t
2 the corresponding eigenvec-

tors for 1
µ of M(λ). Then

δM(λ)v1 +M(λ)δv1 = (δµ)v1 + µδv1 and δM(λ)v2 +M(λ)δv2 = δ( 1
µ)v2 + 1

µδv2 (∗)

if and only if

δM(λ) =

[
2∑
i=1

(δvi)wti
wtivi

,M(λ)

]
+ (P (δµ) + σ∗P (δµ)). (∗∗)

Proof. A direct calculation shows([
2∑
i=1

(δvi)wti
wtivi

,M(λ)

]
+ (P (δµ) + σ∗P (δµ))

)
v1 =

(
2∑
i=1

(δvi)wti
wtivi

)
µv1 −M(λ)δv1 + (δµ)v1

= µδv1 −M(λ)δv1 + (δµ)v1

(∗)
= δM(λ)v1.

An analogous calculation for v2 gives

δM(λ)v2 =

([
2∑
i=1

(δvi)wti
wtivi

,M(λ)

]
+ (P (δµ) + σ∗P (δµ))

)
v2

and the claim is proved.

Since the arguments from the previous proof carry over to the equation Mλ(x)v(x) =
µv(x) we get the following

Corollary 5.26. For the x-dependent monodromy Mλ(x) a general variation is given by

δMλ(x) =

[
2∑
i=1

(δvi(x))wti(x)
wti(x)vi(x)

,Mλ(x)

]
+ (Px(δµ) + σ∗Px(δµ)).

The above considerations also apply for the equation Lλ(x)v(x) = ( d
dx + Uλ)v(x) =

lnµ
p · v(x) around λ = 0 and yield

Lemma 5.27. Let v1(x), wt1(x) be the eigenvectors for µ and v2(x), wt2(x) the correspond-
ing eigenvectors for 1

µ of Mλ(x) and M t
λ(x) respectively. Then

δUλv1(x) + Lλ(x)δv1(x) = ( δ lnµ
p )v1(x) + lnµ

p δv1(x) (∗)

and
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Chapter 5. Isospectral and non-isospectral deformations

δUλv2(x) + Lλ(x)δv2(x) = −( δ lnµ
p )v2(x)− lnµ

p δv2(x) (∗)

around λ = 0 if and only if

δUλ =

[
Lλ(x),−

2∑
i=1

(δvi(x))wti(x)
wti(x)vi(x)

]
+ (Px( δ lnµ

p ) + σ∗Px( δ lnµ
p )). (∗∗)

Proof. Following the steps from the proof of Lemma 5.25 and keeping in mind that δp = 0
in our situation yields the claim.

Remark 5.28. The above formula (∗∗) reflects the decomposition of the tangent space
into isospectral and non-isospectral deformations.
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6 Hamiltonian formalism and the
symplectic form

6.1 Completely integrable Hamiltonian systems

In the following we will show that periodic finite type solutions of the sinh-Gordon equa-
tion can be considered as a completely integrable system (compare with [15, 16] in the
context of classical string theory). We refer to [19, 31, 32] for further reading. A nice
introduction to the subject can also be found in [33]. We start with some definitions.

Definition 6.1. A bilinear mapping

{·, ·} : C∞(M)× C∞(M)→ C∞(M), (f, g) 7→ {f, g}

on a differentiable manifold M is called a Poisson bracket if it satisfies

(i) (Anti-symmetry) {f, g} = −{g, f},

(ii) (Jacobi identity) {f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0 and

(iii) (Leibniz rule) {f, gh} = {f, g}h+ h{f, h}.

A Poisson manifold (M, {·, ·}) is a differentiable manifold M with a Poisson bracket
{·, ·} on M .

Since a Poisson bracket {·, ·} satisfies (i) and (ii) from Definition 6.1 it is also a Lie bracket
and thus (C∞(M), {·, ·}) is a Lie algebra.

For every f ∈ C∞(M) the map g 7→ {f, g} is a derivation of the smooth functions on
M and therefore defines a vector field, denoted by X(f) ∈ XM . In particular one has
dg(X(f)) = {f, g} and

X({f, g}) = [X(f), X(g)] for all f, g ∈ C∞(M),

where [·, ·] is the Lie bracket of vector fields. Thus f 7→ X(f) induces a Lie algebra
homomorphism φ : (C∞(M), {·, ·})→ (XM , [·, ·]).

Definition 6.2. Let (M, {·, ·}) be a Poisson manifold. Two functions f, g ∈ C∞(M) are
said to be in involution if {f, g} = 0.

Definition 6.3. A symplectic manifold (M,Ω) is a differentiable manifold M with a
non-degenerate closed 2-form Ω. The form Ω is called symplectic form of M .
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Definition 6.4. A Hamiltonian system (M,Ω, H) is a symplectic manifold (M,Ω)
with a smooth function H : M → R. The corresponding vector field X(H) is called
Hamiltonian vector field.

Definition 6.5. Let (M,Ω, H) be a Hamiltonian system. A function f : M → R is called
integral of motion for the Hamiltonian system (M,Ω, H) if f is preserved under the
flow ΦX(H) of the Hamiltonian vector field X(H).

From Definition 6.5 we immediately deduce that f : M → R is an integral of motion if
and only if 0 = d

dtf(ΦX(H))|t=0 = df(X(H)) = {f,H}, i.e. f and H are in involution.
From the formula

[X(f), X(H)] = X({f,H}) != 0

we see that the corresponding Hamiltonian vector fields X(f) and X(H) commute. In
particular the Hamiltonian H itself is an integral of motion.

Definition 6.6. A Hamiltonian system (M,Ω, H) with dim(M) = 2n is called com-
pletely integrable if and only if the system has besides the Hamiltonian H =: f1 addi-
tional n− 1 integrals of motion f2, . . . , fn such that the derivatives df1, . . . , dfn are linear
independent in T ∗pM for all p ∈M .

Definition 6.7. A subspace of a vector space which is maximal isotropic with respect to
a symplectic form Ω is called Lagrangian. A submanifold N of a symplectic manifold
(M,Ω) is called Lagrangian if and only if TpN is a Lagrangian subspace with respect to Ω
for all p ∈ N .

6.2 The phase space (Mp
g ,Ω)

In the following we will define the phase space of our integrable system. We need some
preparation and first recall the generalized Weierstrass representation [17]. Set

Λ∞−1sl2(C) = {ξλ ∈ O(C∗, sl2(C)) | (λξλ)λ=0 ∈ C∗ε+}.

A potential is a holomorphic 1-form ξλdz on C with ξλ ∈ Λ∞−1sl2(C). Given such a
potential one can solve the holomorphic ODE dφλ = φλξλ to obtain a map φλ : C →
ΛrSL(2,C). Then Theorem 5.19 yields an extended frame Fλ : C → ΛrSU(2) via the
r-Iwasawa decomposition

φλ = FλBλ.

It is proven in [17] that each extended frame can be obtained from a potential ξλdz by
the Iwasawa decomposition. Note, that we have the inclusions

Pg ⊂ Λ∞−1sl2(C) ⊂ Λrsl2(C).

An extended frame Fλ : C → ΛrSU(2) is of finite type, if there exists g ∈ N such that
the corresponding potential ξλdz satisfies ξλ ∈ Pg ⊂ Λ∞−1sl2(C). We say that a polynomial
Killing field has minimal degree if and only if it has neither roots nor poles in λ ∈ C∗. We
will need the following proposition that summarizes two results by Burstall-Pedit [12, 13].
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g ,Ω)

Proposition 6.8 ([27], Proposition 4.5). For an extended frame of finite type there exists
a unique polynomial Killing field of minimal degree. There is a smooth 1:1 correspondence
between the set of extended frames of finite type and the set of polynomial Killing fields
without zeros.

Consider the map A : ξλ 7→ A(ξλ) := −λ det ξλ (see [27]) and set P1
g (p) := A−1[M1

g(p)].
Moreover, denote by C∞p := C∞(R/p) the Fréchet space of real infinitely differentiable
functions of period p ∈ R+. The above discussion and Remark 3.19 yield an injective
map

φ : P1
g (p) ⊂ Λ∞−1sl2(C)→ φ[P1

g (p)] ⊂ C∞p × C∞p , ξλ 7→ (u(ξλ), uy(ξλ)).

Definition 6.9. Let Mp
g denote the space of (u, uy) ∈ C∞p × C∞p (with fixed period p)

such that (u, uy) is of finite type in the sense of Def. 3.13, where Φλ is of fixed degree
g ∈ N0, and ζλ(0) ∈ P1

g (p) with ζλ = Φλ − λg−1Φ1/λ̄
t, i.e. Mp

g := φ[P1
g (p)].

Now we are able to prove the following

Lemma 6.10. The map φ : P1
g (p)→Mp

g , ξλ 7→ (u(ξλ), uy(ξλ)) is an embedding.

Proof. From the previous discussion we know that φ : P1
g (p) → Mp

g is bijective. We
show that φ−1 : Mp

g → P1
g (p) is continuous. Assume that g is the minimal degree for

ξλ ∈ P1
g (p) (see Proposition 6.8). Then the Jacobi fields

(ω0, ∂yω0), . . . , (ωg−1, ∂yωg−1) ∈ C∞(C/p)× C∞(C/p)

are linearly independent over C with all their derivatives up to order 2g+ 1. We will now
show that they stay linearly independent if we restrict them to R. For this, suppose that
they are linearly dependent on R with all their derivatives up to order 2g + 1. Since u
solves the elliptic sinh-Gordon with analytic coefficients u is analytic on C [41]. Thus the
(ωi, ∂yωi) are analytic as well since they only depend on u and its k-th derivatives with
k ≤ 2i+ 1 ≤ 2g + 1 (see [45], Proposition 3.1). Thus they stay linearly dependent on an
open neighborhood and the subset M ⊂ C of points such that these functions are linearly
dependent is open and closed. Therefore M = C, a contradiction!

By considering all derivatives of (u, uy) up to order 2g+1 we get a small open neighborhood
U of (u, uy) ∈ C∞(R/p)× C∞(R/p) such that the functions

(ω̃0, ∂yω̃0), . . . , (ω̃g−1, ∂yω̃g−1) ∈ C∞(R/p)× C∞(R/p)

stay linearly independent for (ũ, ũy) ∈ U . Given (u, uy) ∈ U there exist numbers
a0, . . . , ag−1 such that the g vectors

((ω0(aj), ∂yω0(aj)), . . . , (ωg−1(aj), ∂yωg−1(aj)))t

are linearly independent. Recall that (ωg, ∂yωg) =
∑g−1

i=0 ci(ωi, ∂yωi) in the finite type situ-
ation, which assures the existence of a polynomial Killing field. Inserting these a0, . . . , ag−1
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into the equation (ωg, ∂yωg) =
∑g−1

i=0 ci(ωi, ∂yωi) we obtain an invertible g × g matrix
and can calculate the ci. This shows that the coefficients ci continuously depend on
(u, uy) ∈ U . Thus for (u, uy) ∈Mp

g and ε > 0 there exists a δε > 0 such that

‖ξλ(u, uy)− ξλ(ũ, ũy)‖ < ε

holds for all Cauchy data (ũ, ũy) ∈ Mp
g with ‖(u, uy) − (ũ, ũy)‖ < δε, where the norm is

given by the supremum of the first 2g + 1 derivatives.

Let us study the map

Y : Mp
g → Σp

g 'M1
g(p), (u, uy) 7→ Y (u, uy)

that appears in the diagram
P1
g (p)

φ

��

A

""DD
DD

DD
DD

Mp
g

Y // Σp
g

Proposition 6.11. The map Y : Mp
g → Σp

g ' M1
g(p), (u, uy) 7→ Y (u, uy) is a prin-

ciple bundle with fibre Iso(Y (u, uy)) ' PicR
g+1(Y (u, uy)) ' (S1)g. In particular Mp

g is a
manifold of dimension 2g.

Proof. Due to Theorem 5.11 the spaceM1
g(p) is a smooth g-dimensional manifold. From

Proposition 4.12 in [27] we know that the mapping

A : P1
g (p)→M1

g(p), ξλ 7→ −λ det(ξλ)

is a principal fibre bundle with fibre (S1)g and thus P1
g (p) is a manifold of dimension 2g.

Due to Lemma 6.10 the map φ : P1
g (p)→Mp

g is an embedding and thus Mp
g is a manifold

of dimension 2g as well.

Note, that the structure of such “finite-gap manifolds” is also investigated in [18] and
[7, 39]. It will turn out that Mp

g can be considered as a symplectic manifold with a certain
symplectic form Ω. To see this, we closely follow the exposition of [44] and consider the
phase space of (q, p) ∈ C∞p × C∞p equipped with the symplectic form

Ω =
∫ p

0
dq ∧ dp

and the Poisson bracket

{f, g} =
∫ p

0
〈∇f, J∇g〉 dx with J =

(
0 1
−1 0

)
.

Here f and g are functionals of the form h : C∞p × C∞p → R, (q, p) 7→ h(q, p) and ∇h
denotes the corresponding gradient of h in the function space C∞p × C∞p . Note that
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there holds {f, g} = Ω(∇f,∇g). If we consider functionals H, f on the function space
M = C∞p × C∞p we have

df(X) =
∫ p

0
〈∇f,X〉 dx

and
X(H) = J∇H.

Since X(H) is a vector field it defines a flow Φ : O ⊂M ×R→M such that Φ((q0, p0), t)
solves

d

dt
Φ((q0, p0), t) = X(H)(Φ((q0, p0), t)) with Φ((q0, p0), 0) = (q0, p0).

In the following we will write (q(t), p(t))t := Φ((q0, p0), t) for integral curves of X(H) that
start at (q0, p0). A direct calculation shows

d

dt
f(q(t), p(t))

∣∣∣∣
t=0

= df(X(H)) =
∫ p

0
〈∇f, J∇H〉 dx = {f,H}

and we see again that f is an integral of motion if and only if f and H are in involution.
Set (q, p) = (u, uy), where u is a solution of the sinh-Gordon equation, i.e.

∆u+ 2 sinh(2u) = uxx + uyy + 2 sinh(2u) = 0.

Setting t = y we can investigate the so-called sinh-Gordon flow that is expressed by

d

dy

(
u
uy

)
=
(

uy
−uxx − 2 sinh(2u)

)
= J∇H2 =

(
0 1
−1 0

)(∂H2
∂q
∂H2
∂p

)
with the Hamiltonian

H2(q, p) =
∫ p

0

1
2p

2 − 1
2(qx)2 + cosh(2q) dx =

∫ p

0

1
2(uy)2 − 1

2(ux)2 + cosh(2u) dx

and corresponding gradient

∇H2 = (qxx + 2 sinh(2q), p)t = (uxx + 2 sinh(2u), uy)
t .

Remark 6.12. Since we have a loop group splitting (the r-Iwasawa decomposition) in the
finite type situation, all corresponding flows can be integrated. Thus the flow (q(y), p(y))t =
(u(x, y), uy(x, y))t that corresponds to the sinh-Gordon flow is defined for all y ∈ R.

Due to Remark 6.12 q(y) = u(x, y) is a periodic solution of the sinh-Gordon equation with
u(x + p, y) = u(x, y) for all (x, y) ∈ R2. The Hamiltonian H2 is an integral of motion,
another one is associated with the flow of translation (here we set t = x) induced by the
functional

H1(q, p) =
∫ p

0
pqx dx =

∫ p

0
uyux dx

with
d

dx

(
u
uy

)
=
(
ux
uyx

)
= J∇H1.
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6.3 Polynomial Killing fields and integrals of motion

The Pinkall-Sterling iteration generates a sequence of solutions to the homogeneous Jacobi
equation. The iteration requires for a given ωn to find τn solving

∂τn = ∂2ωn − 2∂ωn∂u,

∂̄τn = −e−2uωn

and then defining ωn+1 = ∂τn + 2τn∂u. Here we use a slightly different normalization
according to the exposition given in [36]. In order to obtain τn it is useful to introduce
auxiliary functions φn with

φn = ∂ωn − τn

that satisfy

∂φn = 2∂ωn∂u,
∂̄φn = −ωn sinh(2u).

In order to supplement ωn and τn at each step to a parametric Jacobi field one has to
find a function σn that satisfies

∂σn = −e−2uωn,

∂̄σn = ∂̄2ωn − 2∂̄ωn∂̄u.

Finally one has the formula

σn = −e−2u(∂ωn−1 + φn−1).

We will now describe how the functions ϕ((λ, µ), z) := F−1
λ (z)v(λ, µ) and ψ((λ, µ), z) :=(

0 1
−1 0

)
ϕ((λ, µ), z) can be used to describe the functions ω, σ, τ from the Pinkall-Sterling

iteration. Note that we swapped the roles of ϕ and ψ since we follow the exposition given
in [36]. First we see that ψ is a solution of

∂

(
ψ1

ψ2

)
=

1
2

(
∂u ie−u

iλ−1eu −∂u

)(
ψ1

ψ2

)
,

∂̄

(
ψ1

ψ2

)
=

1
2

(
−∂̄u iλeu

ie−u ∂̄u

)(
ψ1

ψ2

)
.

Likewise ϕ solves

∂

(
ϕ1

ϕ2

)
= −1

2

(
∂u ie−u

iλ−1eu −∂u

)(
ϕ1

ϕ2

)
,

∂̄

(
ϕ1

ϕ2

)
= −1

2

(
−∂̄u iλeu

ie−u ∂̄u

)(
ϕ1

ϕ2

)
.
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6.3 Polynomial Killing fields and integrals of motion

Proposition 6.13 ([36], Proposition 3.1). Let ψ and ϕ be solutions of the above system
and define ω := ψ1ϕ1 − ψ2ϕ2. Then

(i) The functon h = ψtϕ satisfies dh = 0.

(ii) The function ω is in the kernel of the Jacobi operator and can be supplemented to a
parametric Jacobi field with corresponding (up to complex constants)

τ =
iψ2ϕ1

eu
, σ = − iψ1ϕ2

eu
.

Now we get the following

Proposition 6.14 ([36], Proposition 3.3). Let h = ψtϕ. Then the entries of

P (z) :=
ψϕt

ψtϕ
=

1
h

(
ψ1ϕ1 ψ1ϕ2

ψ2ϕ1 ψ2ϕ2

)
have at λ = 0 the asymptotic expansions

− iω
2h

=
1√
λ

∞∑
n=1

ωn(−λ)n,

− iτ
h

=
ψ2ϕ1

euh
=

1√
λ

∞∑
n=0

τn(−λ)n,

− iσ
h

= −ψ1ϕ2

euh
=

1√
λ

∞∑
n=1

σn(−λ)n.

By utilizing the involution ρ we can compute the asymptotic expansion of P (z) at λ =∞
from the expansion at λ = 0. Since we have τ̄ = σ we get ρ∗(ωh ) = ω

h and ρ∗( τ̄h) = σ
h .

This yields

Corollary 6.15 ([36], Corollary 3.4). The entries of P (z) have at λ =∞ the asymptotic
expansions

iω

2h
=
√
λ
∞∑
n=1

(−1)nω̄nλ−n,

iτ

h
=
√
λ
∞∑
n=1

(−1)nσ̄nλ−n,

iσ

h
=
√
λ

∞∑
n=0

(−1)nτ̄nλ−n.

Definition 6.16. Consider the asymptotic expansion

lnµ =
1√
λ

ip
2

+
√
λ
∑
n≥0

cnλ
n at λ = 0

and set H2n+1 := (−1)n+1<(cn) and H2n+2 := (−1)n+1=(cn) for n ≥ 0.
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Remark 6.17. Since

lnµ = 1√
λ

ip
2 +
√
λ

∫ p

0

(
−i(∂u)2 + i

2 cosh(2u)
)
dt+O(λ)

at λ = 0 we see that the functions H1, H2 are given by

H1 =
∫ p

0

1
2uyux dx,

H2 = −
∫ p

0

1
4(uy)2 − 1

4(ux)2 + 1
2 cosh(2u) dx.

These functions are proportional to the Hamiltonians that induce the flow of translation
and the sinh-Gordon flow respectively.

We will now illustrate the link between the Pinkall-Sterling iteration from Proposition
3.17 and these functions Hn (which we call Hamiltonians from now on) and show that
the functions Hn are pairwise in involution. Recall the formula

d

dt
H((u, uy) + t(δu, δuy))|t=0 = dH(u,uy)(δu, δuy) = Ω(∇H(u, uy), (δu, δuy))

from the first section of this chapter. First we need the following lemma.

Lemma 6.18. For the map lnµ we have the variational formula

d

dt
lnµ((u, uy) + t(δu, δuy))

∣∣∣∣
t=0

=
∫ p

0

1
ϕtψ

ψtδUλϕdx

with

δUλ =
1
2

(
−iδuy iλ−1euδu− ie−uδu

iλeuδu− ie−uδu iδuy

)
.

Proof. We follow the ansatz presented in [44], Section 6, and obtain for Fλ(x) solving
d
dxFλ = FλUλ with Fλ(0) = 1 the variational equation

d

dx

d

dt
Fλ(δu, δuy)

∣∣∣∣
t=0

=
(
d

dt
Fλ(δu, δuy)

∣∣∣∣
t=0

)
Uλ + FλδUλ

with (
d

dt
Fλ(δu, δuy)

∣∣∣∣
t=0

)
(0) =

(
0 0
0 0

)
and

δUλ =
1
2

(
−iδuy iλ−1euδu− ie−uδu

iλeuδu− ie−uδu iδuy

)
.

The solution of this differential equation is given by(
d

dt
Fλ(δu, δuy)

∣∣∣∣
t=0

)
(x) =

(∫ x

0
Fλ(y)δUλ(y)F−1

λ (y) dy
)
Fλ(x)
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and evaluating at x = p yields

d

dt
Mλ(δu, δuy)

∣∣∣∣
t=0

=
(∫ p

0
Fλ(y)δUλ(y)F−1

λ (y) dy
)
Mλ.

Due to Lemma 5.25 there holds

δMλ =
d

dt
Mλ(δu, δuy)

∣∣∣∣
t=0

=

[
2∑
i=1

(δvi)wti
wtivi

,Mλ

]
+ (P (δµ) + σ∗P (δµ)).

If we multiply the last equation with wt1
wt1v1

from the left and v1 from the right we get

µ
wt1δv1

wt1v1
− µw

t
1δv1

wt1v1
+ δµ

wt1v1

wt1v1
= δµ = µ

∫ p

0

1
ϕtψ

ψtδUλϕdx

and therefore
d

dt
lnµ(δu, δuy)

∣∣∣∣
t=0

=
∫ p

0

1
ϕtψ

ψtδUλϕdx.

This proves the claim.

We now will apply Lemma 6.18 and Corollary 3.12 to establish a link between solutions
ωn of the homogeneous Jacobi equation from Proposition 3.17 and the Hamiltonians Hn.

Theorem 6.19. For the series of Hamiltonians (Hn)n∈N0 and solutions (ωn)n∈N0 of the
homogeneous Jacobi equation from the Pinkall-Sterling iteration there holds

∇H2n+1 = (<(ωn(·, 0)),<(∂yωn(·, 0))) and ∇H2n+2 = (=(ωn(·, 0)),=(∂yωn(·, 0))).

Proof. Considering the result of Lemma 6.18 a direct calculation gives

d

dt
lnµ(δu, δuy)

∣∣∣∣
t=0

=
∫ p

0

1
ϕtψ

ψtδUλϕdx

h=ϕtψ
=

∫ p

0

1
2h
ψt
(

−iδuy iλ−1euδu− ie−uδu
iλeuδu− ie−uδu iδuy

)
ϕdx

=
∫ p

0

1
2h

((ψ2ϕ1(iλeu − ie−u) + ψ1ϕ2(iλ−1eu − ie−u))δu

− i(ψ1ϕ1 − ψ2ϕ2)δuy) dx
Prop. 6.13

=
∫ p

0

1
2h
(
(λe2uτ − τ − λ−1e2uσ + σ)δu− iω δuy

)
dx

Prop. 3.17
=

∫ p

0

1
2h
(
−(∂ω − ∂̄ω)δu− iω δuy

)
dx

=
∫ p

0

1
2h

(iωy δu− iω δuy) dx = Ω(− i
2h (ω, ωy), (δu, δuy))

= Ω
(−i

2h (<(ω),<(ωy)), (δu, δuy)
)

+ iΩ
(−i

2h (=(ω),=(ωy)), (δu, δuy)
)

=
√
λ
∑
n≥0

(−1)n+1Ω ((<(ωn),<(∂yωn)), (δu, δuy))λn

+ i
√
λ
∑
n≥0

(−1)n+1Ω ((=(ωn),=(∂yωn)), (δu, δuy))λn
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around λ = 0 due to Proposition 6.14. On the other hand we know from Corollary 3.12
that we have the following asymptotic expansion of lnµ around λ = 0

lnµ = 1√
λ

ip
2 +
√
λ

∫ p

0

(
−i(∂u)2 + i

2 cosh(2u)
)
dt+O(λ)

= 1√
λ

ip
2 +
√
λ
∑
n≥0

cnλ
n

= 1√
λ

ip
2 +
√
λ
∑
n≥0

(−1)n+1H2n+1λ
n + i

√
λ
∑
n≥0

(−1)n+1H2n+2λ
n.

Thus we get

d

dt
lnµ(δu, δuy)

∣∣∣∣
t=0

=
√
λ
∑
n≥0

(−1)n+1Ω (∇H2n+1, (δu, δuy))λn

+ i
√
λ
∑
n≥0

(−1)n+1Ω (∇H2n+2, (δu, δuy))λn

and a comparison of the coefficients of the two power series yields the claim.

6.4 An inner product on Λrsl2(C)

We already introduced a differential operator Lλ(x, y) := d
dx + Uλ(x, y) such that the

sinh-Gordon flow can be expressed in commutator form, i.e.

d

dy
Lλ(x, y) =

d

dy
Uλ(x, y) = [Lλ(y), Vλ(x, y)] =

d

dx
Vλ(x, y) + [Uλ(x, y), Vλ(x, y)].

In the following we will translate the symplectic form Ω with respect to the identification
(u, uy) ' Uλ. First recall that the span of {ε+, ε−, ε} is sl2(C) and that the inner product

〈·, ·〉 : sl2(C)× sl2(C)→ C, (α, β) 7→ 〈α, β〉 := tr(α · β)

is non-degenerate. We will now extend the inner product 〈·, ·〉 to a non-degenerate inner
product 〈·, ·〉Λ on Λrsl2(C) = Λrsu2(C)⊕ Λ+

r sl2(C) such that

〈·, ·〉Λ|Λrsu2(C)×Λrsu2(C) ≡ 0 and 〈·, ·〉Λ|Λ+
r sl2(C)×Λ+

r sl2(C) ≡ 0,

i.e. Λrsu2(C) and Λ+
r sl2(C) are isotropic subspaces of Λrsl2(C) with respect to 〈·, ·〉Λ.

Lemma 6.20. The map 〈·, ·〉Λ : Λrsl2(C)× Λrsl2(C)→ R given by

(α, β) 7→ 〈α, β〉Λ := =
(
Resλ=0

dλ
λ tr(α · β)

)
is bilinear and non-degenerate. Moreover, there holds

〈·, ·〉Λ|Λrsu2(C)×Λrsu2(C) ≡ 0 and 〈·, ·〉Λ|Λ+
r sl2(C)×Λ+

r sl2(C) ≡ 0,

i.e. Λrsu2(C) and Λ+
r sl2(C) are isotropic subspaces of Λrsl2(C) with respect to 〈·, ·〉Λ.
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Proof. The bilinearity of 〈·, ·〉Λ follows from the bilinearity of tr(·). Now consider a non-
zero element ξ =

∑
i∈I λ

iξi ∈ Λrsl2(C) and pick out an index j ∈ I such that ξj 6= 0.
Setting ξ̃ = iλ−jξ

t
j we obtain

〈ξ, ξ̃〉Λ = =
(

Resλ=0
dλ
λ tr(ξ · ξ̃)

)
= tr(ξj · ξ

t
j) ∈ R+

since ξj 6= 0. This shows that 〈·, ·〉Λ is non-degenerate, i.e. the first part of the lemma.

We will now prove the second part of the lemma, namely that Λrsu2(C) and Λ+
r sl2(C)

are isotropic subspaces of Λrsl2(C) with respect to 〈·, ·〉Λ.

First we consider α+ = α+
λ =

∑
i λ

iα+
i , α̃

+ =
∑

i λ
iα̃+
i ∈ Λrsu2(C) with

α+
λ = −α+

1/λ̄

t
and α̃+

λ = −α̃+
1/λ̄

t
.

Then one obtains

〈α+, α̃+〉Λ = =
(
Resλ=0

dλ
λ tr(α+ · α̃+)

)
= =(tr(α+

−1 · α̃
+
1 + α+

0 · α̃
+
0 + α+

1 · α̃
+
−1)).

A direct calculation gives

tr(α+
−1α̃

+
1 + α+

0 α̃
+
0 + α+

1 α̃
+
−1) = tr((−α+

−1)t(−α̃+
1 )t + (−α+

0 )t(−α̃+
0 )t + (−α+

1 )t(−α̃+
−1)t)

!= tr(α+
−1α̃

+
1 + α+

0 α̃
+
0 + α+

1 α̃
+
−1)

and thus tr(α+
−1α̃

+
1 + α+

0 α̃
+
0 + α+

1 α̃
+
−1) ∈ R. This shows

〈α+, α̃+〉Λ = =(tr(α+
−1 · α̃

+
1 + α+

0 · α̃
+
0 + α+

1 · α̃
+
−1)) = 0.

Now consider β− =
∑

i≥0 λ
iβ−i , β̃

− =
∑

i≥0 λ
iβ̃−i ∈ Λ+

r sl2(C) where β−0 , β̃
−
0 are of the

form

β−0 =
(
h0 e0

0 −h0

)
, β̃−0 =

(
h̃0 ẽ0

0 −h̃0

)
with h0, h̃0 ∈ R and e0, ẽ0 ∈ C. Then one gets

〈β−, β̃−〉Λ = =
(

Resλ=0
dλ
λ tr(β− · β̃−)

)
= =(tr(β−0 · β̃

−
0 ))

= =(2h0h̃0)
= 0.

This yields the second claim and concludes the proof.
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6.5 The symplectic form Ω and Serre duality

This section incorporates the results from Chapter 4, 5 and 6 and establishes a connection
between the symplectic form Ω and Serre Duality 2.24. Moreover, we will show that
(Mp

g ,Ω, H2) is a completely integrable Hamiltonian system.

Definition 6.21. Let H0
R(Y,Ω) := {ω ∈ H0(Y,Ω) | η∗ω = −ω} be the real part of

H0(Y,Ω) with respect to the involution η.

The following observation is based on [24] and [47]. Let R(λ, µ) = 0 be the equation
that defines the Riemann surface Y (u, uy) corresponding to (u, uy). Taking the total
differential we get

∂R

∂λ
dλ+

∂R

∂µ
dµ = 0 (∗)

and differentiating with respect to (δu, δuy) yields

∂R

∂λ
λ̇ dt+

∂R

∂µ
µ̇ dt+ Ṙ dt = 0. (∗∗)

With the help of (∗) we get

dµ = −
∂R
∂µ

∂R
∂λ

dλ and dλ = −
∂R
∂λ
∂R
∂µ

dµ.

Now a direct calculation using (∗) and (∗∗) shows that for the form ω = δ lnµ(δu, δuy)dλλ −
δ lnλ(δu, δuy)dµµ there holds

ω = δ lnµ(δu, δuy)
dλ

λ
− δ lnλ(δu, δuy)

dµ

µ
= −δR(δu, δuy)

µ∂R∂µ

dλ

λ

!=
δR(δu, δuy)

λ∂R∂λ

dµ

µ
.

Thus we can choose that either δ lnλ = 0 or δ lnµ = 0. In the following we will usually
impose the first condition δ lnλ = 0. Since η is given by (λ, µ) 7→ (1/λ̄, µ̄) we have

η∗δ lnµ = δ lnµ and η∗ dλλ = −dλ
λ .

Thus we arrive at the map ω : T(u,uy)M
p
g → H0

R(Y (u, uy),Ω) given by

(δu, δuy) 7→ ω(δu, δuy) := δ lnµ(δu, δuy)
dλ

λ
.

Remark 6.22. Due to Theorem 5.11 we can identify the space TY (u,uy)Σ
p
g of infinitesimal

non-isospectral (but iso-periodic) deformations of Y (u, uy) with the space H0
R(Y (u, uy),Ω)

via the map c 7→ ω(c) := c
ν
dλ
λ = δ lnµdλλ . Therefore ω can be identified with dY , the

derivative of Y : Mp
g → Σp

g . Due to Proposition 6.11, the map Y : Mp
g → Σp

g is a
submersion. Thus the map ω : T(u,uy)M

p
g → H0

R(Y (u, uy),Ω) is surjective.
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Note that deformations which keep the period p fixed indeed correspond to a holomorphic
1-form ω since in that case we have

ω = δ lnµ
dλ

λ
=
c(λ)
λ

dλ

ν
=
∑g

i=1 ciλ
i

λ

dλ

ν
=

g∑
i=1

ci
λi−1dλ

ν
.

Definition 6.23. Let L(u,uy) ⊂ T(u,uy)M
p
g be the kernel of the the map ω : T(u,uy)M

p
g →

H0
R(Y (u, uy),Ω), i.e. L(u,uy) = ker(ω).

Now we are able to formulate and prove the main result of this work. The proof is based
on the ideas and methods presented in the proof of [47], Theorem 7.5.

Theorem 6.24.

(i) There exists an isomorphism of vector spaces dΓ(u,uy) : H1
R(Y (u, uy),O)→ L(u,uy).

(ii) For all [f ] ∈ H1
R(Y (u, uy),O) and all (δu, δuy) ∈ T(u,uy)M

p
g the equation

Ω(dΓ(u,uy)([f ]), (δu, δuy)) = iRes([f ]ω(δu, δuy)) (6.5.1)

holds. Here the right hand side is defined as in the Serre Duality Theorem 2.24.

(iii) (Mp
g ,Ω, H2) is a Hamiltonian system. In particular, Ω is non-degenerate on Mp

g .

Remark 6.25.

(i) From the Serre Duality Theorem 2.24 we know that the pairing Res : H1(Y (u, uy),O)×
H0(Y (u, uy),Ω)→ C is non-degenerate.

(ii) L(u,uy) ⊂ T(u,uy)M
p
g is a maximal isotropic subspace with respect to the symplectic

form Ω : T(u,uy)M
p
g × T(u,uy)M

p
g → R, i.e. L(u,uy) is Lagrangian.

Proof.

(i) Let [f ] = [(f0, η
∗f̄0)] ∈ H1

R(Y,O) be a cocycle with representative f0 as defined in
Lemma 4.15. Then we get

Af0(x) := Px(f0) + σ∗Px(f0) =
g−1∑
i=0

ciλ
−i(Px(λ−1ν) + σ∗Px(λ−1ν)) =

g−1∑
i=0

ciλ
−iζλ(x)

with
δUλ(x) = [A+

f0
(x), Lλ(x)] = [Lλ(x), A−f0

(x)].

due to Theorem 5.24 and moreover

δv(x) = −A−f0
(x)v(x)
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holds due to Remark 5.23 with A−f0
(x) = −

∑ (δvi(x))wti(x)

wti(x)vi(x)
. From Lemma 5.27 we

know that in general

δUλ(x) =

[
Lλ(x),−

2∑
i=1

(δvi(x))wti(x)
wti(x)vi(x)

]
+ (Px( δ lnµ

p ) + σ∗Px( δ lnµ
p )).

Since δUλ(x) = [Lλ(x), A−f0
(x)] we see that δ lnµ(δuf0 , δuf0

y ) = 0 and consequently

(δuf0 , δuf0
y ) ∈ ker(ω).

Thus we have an injective map dΓ(u,uy) : H1
R(Y (u, uy),O) → L(u,uy). Due to Re-

mark 6.22 we know that ω : T(u,uy)M
p
g → H0

R(Y (u, uy),Ω) is surjective. Since
dimH0

R(Y (u, uy),Ω) = g there holds dimL(u,uy) = dim ker(ω) = g and thus dΓ(u,uy) :
H1

R(Y (u, uy),O)→ L(u,uy) is an isomorphism of vector spaces.

(ii) For an isospectral variation of Uλ(x) we have

δUλ(x) = [Lλ, B−(x)] = d
dxB

−(x)− [Uλ(x), B−(x)]

with a map B−(x) : R→ Λ+
r sl2(C). In the following⊕ will denote the Λrsu2(C)-part

of Λrsl2(C) = Λrsu2(C)⊕ Λ+
r sl2(C) and 	 will correspond to the second summand

Λ+
r sl2(C). Since δUλ(x) lies in the ⊕-part and d

dxB
−(x) lies in the 	-part, we see

that δUλ(x) is equal to the ⊕-part of the commutator expression −[Uλ(x), B−(x)].
Writing U for Uλ(x) and B− for B−(x) we get

δU = λ−1δU−1 + λ0δU0 + λδU1

!=
(
λ−1[B−0 , U−1] + λ0([B−1 , U−1] + [B−0 , U0])
+λ([B−2 , U−1] + [B−1 , U0] + [B−0 , U1])

)
⊕.

Thus we arrive at three equations

δU−1 = [B−0 , U−1], δU0 =
(
[B−1 , U−1] + [B−0 , U0]

)
⊕ ,

δU1 =
(
[B−2 , U−1] + [B−1 , U0] + [B−0 , U1]

)
⊕ .

Recall that Uλ is given by

Uλ =
1
2

(
−iuy iλ−1eu + ie−u

iλeu + ie−u iuy

)
and consequently

δUλ =
1
2

(
−iδuy iλ−1euδu− ie−uδu

iλeuδu− ie−uδu iδuy

)
.
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We can now use the above equations in order to obtain relations on the coefficients
B−0 and B−1 of B− =

∑
i≥0 λ

iB−i where B−0 is of the form

B−0 =
(
h0 e0

0 −h0

)
with h0 ∈ R, e0 ∈ C,

and B−1 is of the form B−1 =
(
h1 e1
f1 −h1

)
. Since δU−1 = [B−0 , U−1] a direct calculation

yields

B−0 =
(

1
2δu e0

0 −1
2δu

)
.

Moreover, the sum [B−1 , U−1] + [B−0 , U0] is given by(
i
2e0e

−u − i
2f1e

u ih1e
u + ie0uy + i

2e
−uδu

− i
2e
−uδu − i

2e0e
−u + i

2f1e
u

)
.

For the diagonal entry of [B−1 , U−1] + [B−0 , U0] the ⊕-part is given by the imaginary
part and therefore

− i
2δuy = i

2<(e0)e−u − i
2<(f1)eu.

Thus we get

δuy = <(f1)eu −<(e0)e−u.

For B−(x) := A−f0
(x) we obtain

=
(

tr(δU0A
−
f0,0

) + tr(δU−1A
−
f0,1

)
)

= =
(
−iδuyh0 − i

2e0e
−uδu+ i

2f1e
uδu
)

= −δuy<(h0) + 1
2δu

(
<(f1)eu −<(e0)e−u

)
=

1
2

(
δuδuf0

y − δuf0 δuy

)
.

Now a direct calculation gives

1
2

Ω(dΓ(u,uy)([f ]), (δu, δuy)) =
1
2

∫ p

0
(δuf0δuy − δu δuf0

y )dx

= −
∫ p

0
=
(

tr(δU0A
−
f0,0

) + tr(δU−1A
−
f0,1

)
)
dx

= −
∫ p

0
〈δUλ(x), A−f0

(x)〉Λdx

δUλ∈⊕= −
∫ p

0
〈δUλ(x), Af0(x)〉Λdx.
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Setting P̂x( δ lnµ
p ) := Px( δ lnµ

p ) + σ∗Px( δ lnµ
p ), we further obtain

1
2

Ω(dΓ(u,uy)([f ]), (δu, δuy))
Lem. 5.27= −

∫ p

0
〈[Lλ(x), B−(x)], Af0(x)〉Λdx

−
∫ p

0
〈P̂x( δ lnµ

p ), Af0(x)〉Λdx

=
∫ p

0
〈[B−(x), Lλ(x)], Af0(x)〉Λdx

−
∫ p

0
〈P̂x( δ lnµ

p ), Af0(x)〉Λdx.

Recall, that tr([B−(x), Lλ(x)] · Af0(x)) = tr(B−(x) · [Lλ(x), Af0(x)]). Moreover,
there holds [Lλ(x), Af0(x)] = 0 and we get

1
2

Ω(dΓ(u,uy)([f ]), (δu, δuy)) =
∫ p

0
〈B−(x), [Lλ(x), Af0(x)]〉Λdx

−
∫ p

0
〈P̂x( δ lnµ

p ), Af0(x)〉Λdx

= −
∫ p

0
〈P̂x( δ lnµ

p ), Af0(x)〉Λdx

= −
∫ p

0
〈Af0(x), P̂x( δ lnµ

p )〉Λdx.

Writing out the last equation yields

Ω(dΓ(u,uy)([f ]), (δu, δuy)) = − 2
p

∫ p

0
=
(

Resy0
dλ
λ tr(Af0(x)P̂x(δ lnµ))

)
dx

= −2=
(
Resy0(f0 · δ lnµdλλ )

)
= i

(
Resy0(f0 · δ lnµdλλ )− Resy0(f0 · δ lnµdλλ )

)
= i

(
Resy0(f0 · δ lnµdλλ )− Resy∞η

∗(f0 · δ lnµdλλ )
)

= i
(
Resy0(f0 · δ lnµdλλ ) + Resy∞(f∞ · δ lnµdλλ )

)
and thus

Ω(dΓ(u,uy)([f ]), (δu, δuy)) = iRes([f ]ω(δu, δuy)).

(iii) In order to prove (iii) we have to show that Ω is non-degenerate on Mp
g . From

equation (6.5.1) we know that

Ω((δu, δuy), (δũ, δũy)) = 0 for (δu, δuy), (δũ, δũy) ∈ L(u,uy) = ker(ω).

Moreover, ω : T(u,uy)M
p
g → H0

R(Y (u, uy),Ω) is surjective since dimT(u,uy)M
p
g = 2g

and dim ker(ω) = g = dimH0
R(Y (u, uy),Ω). Thus we have

T(u,uy)M
p
g / ker(ω) ' H0

R(Y (u, uy),Ω)
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and there exists a basis {δa1, . . . , δag, δb1, . . . , δbg} of T(u,uy)M
p
g such that

span{δa1, . . . , δag} = ker(ω) and ω[span{δb1, . . . , δbg}] = H0
R(Y (u, uy),Ω).

Now L(u,uy) = ker(ω) ' H1
R(Y (u, uy),O) and since the pairing from Serre duality

is non-degenerate we obtain with equation (6.5.1) (after choosing the appropriate
basis)

Ω(δai, δbj) = δij and Ω(δbi, δaj) = −δij .

Summing up the matrix representation BΩ of Ω on T(u,uy)M
p
g has the form

BΩ =
(

0 1

−1 (∗)

)
and thus Ω is of full rank. This shows (iii) and concludes the proof of Theorem 6.24.

Corollary 6.26. The map dΓ(u,uy) : H1
R(Y (u, uy),O)→ L(u,uy) is given by

(f0, η
∗f̄0) 7→ (δuf0 , δuf0

y ) = Resλ=0
f0

2h(ω, ωy)dλλ + Resλ=∞
η∗f̄0

2h (ω, ωy)dλλ .

Proof. From Theorem 6.24 and the proof of Theorem 6.19 we can extract the formula

Ω
(

(δuf0 , δuf0
y ), (δu, δuy)

)
= i

(
Resλ=0(f0 · δ lnµdλλ ) + Resλ=∞(η∗f̄0 · δ lnµdλλ )

)
= Resλ=0(f0 · Ω( 1

2h(ω, ωy), (δu, δuy))dλλ )

+ Resλ=∞(η∗f̄0 · Ω( 1
2h(ω, ωy), (δu, δuy))dλλ )

= Ω
(

Resλ=0
f0

2h(ω, ωy)dλλ + Resλ=∞
η∗f̄0

2h (ω, ωy)dλλ , (δu, δuy)
)
.

Since Ω is non-degenerate due to Theorem 6.24, the claim follows immediately.

Corollary 6.27. The Hamiltonians Hn : Mp
g → R are in involution, i.e. {Hn, Hm} = 0

for n,m = 1, . . . , g and the Hamiltonian system (Mp
g ,Ω, H2) is completely integrable.

Proof. From Theorem 6.19 we know that

∇H2n+1 = (<(ωn(·, 0)),<(∂yωn(·, 0))) and ∇H2n+2 = (=(ωn(·, 0)),=(∂yωn(·, 0))).

By choosing the appropriate f0 we can deduce from Corollary 6.26 that the elements
(<(ωn(·, 0)),<(∂yωn(·, 0))) and (=(ωn(·, 0)),=(∂yωn(·, 0))) lie in L(u,uy) = ker(ω). More-
over, we get from Theorem 6.24 that there exist some [fn] ∈ H1

R(Y,O) such that

{Hn, Hm} = Ω(∇Hn,∇Hm) = Ω(dΓ(u,uy)([fn]),∇Hm) = iRes([fn]ω(∇Hm)).

This gives {Hn, Hm} = iRes([fn], ω(∇Hm)) = 0 for n,m = 1, . . . , g.
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Remark 6.28. For the non-linear Schrödinger operator with a potential q(x) with period
p = 1 the symplectic form is given by

Ω(δq, δq̃) =
∑
i 6=j

∫ 1

0

δqij(x)δq̃ji(x)
pi − pj

dx,

where the distinct pi are the entries of the diagonal matrix p = diag(p1, . . . , pn) appearing
in the corresponding Lax operator

L =
d

dx
+ q(x) + λp.

A direct calculation shows

Ω(δq, δq̃) =
∑
i 6=j

∫ 1

0

δqij(x)δq̃ji(x)
pi − pj

dx

=
∫ 1

0
tr(δq(x)ad−1(p)δq̃(x)− δq̃(x)ad−1(p)δq(x))dx

= Resλ=∞
dλ

λ

∫ 1

0
tr(δq(x)ad−1(p)δq̃(x)− δq̃(x)ad−1(p)δq(x))dx

= Resλ=∞
dλ

λ

∫ 1

0
tr([L, a−(x)]ad−1(p)[L, b−(x)]

− [L, b−(x)]ad−1(p)[L, a−(x)])dx

= Resλ=∞dλ

∫ 1

0
tr([L, a−(x)]ad−1(p)[ 1

λL, b
−(x)]

− [L, b−(x)]ad−1(p)[ 1
λL, a

−(x)])dx

= Resλ=∞dλ

∫ 1

0
tr([L, a−(x)]b−(x)− [L, b−(x)]a−(x))dx.

The techniques from the proof of [47], Theorem 7.5, lead to the reproduction of the sym-
plectic form by Serre duality .

We want to illustrate Theorem 6.24 and consider the first non-trivial case g = 1. It
corresponds to a solution of the sinh-Gordon equation where the “higher flow” is given
by the flow of translations and therefore the corresponding polynomial Killing field ζλ(x)
solves

d
dxζλ = [ζλ, Uλ] with ζλ(0) ∈ P1.

From Lemma 5.27 we know that a general variation of Uλ is given by

δUλ =

[
Lλ,−

2∑
i=1

(δvi(x))wti(x)
wti(x)vi(x)

]
+
(
Px( δ lnµ

p ) + σ∗Px( δ lnµ
p )

)
= [Lλ, B−(x)] +

(
Px( δ lnµ

p ) + σ∗Px( δ lnµ
p )

)
= δU I

λ + δUN
λ
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and that δUλ is a sum of an isospectral part δU I
λ and a non-isospectral (but iso-periodic)

part δUN
λ . Moreover, let

δUf0

λ = [Lλ, A−f0
(x)]

be a variation that corresponds to an element (δuf0 , δuf0
y ) ∈ L(u,uy). In the present

situation f0 and δ lnµ are given by

f0 = c0
ν

λ
with c0 ∈ iR and δ lnµ = c1

λ

ν
with c1 ∈ R.

Note that c(λ) = c1λ is a polynomial of degree g = 1 since we are interested in iso-periodic
deformations δUN

λ that leave the period p fixed. Now Af0(x) is given by

Af0(x) = Px(f0) + σ∗Px(f0) = c0(Px(λ−1ν) + σ∗Px(λ−1ν))
= c0ζλ(x).

Inserting this into equation (6.5.1) yields

Ω((δuf0 , δuf0
y ), (δu, δuy)) = iRes([f ]ω(δu, δuy))

= −2=
(
Resy0(f0 · δ lnµdλλ )

)
= 2ic0c1 ∈ R.

The last equation equals zero if and only if c0 = 0 or c1 = 0.
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7 Summary and outlook

In this chapter we summarize the results of this work, especially those which are new. We
also give some remarks on other interesting questions that are beyond the scope of this
thesis.

7.1 Summary

In this thesis we studied the sinh-Gordon equation and worked out the Hamiltonian frame-
work for periodic finite type solutions, i.e. we identified the space of such solutions as a
completely integrable Hamiltonian system (Mp

g ,Ω, H2). Moreover, we were able to prove
the classical features of integrable systems for that particular system. We now give an
overview for the results of the various chapters.

In the second chapter we introduced the λ-dependent sl2(C)-valued one-form αλ with
λ ∈ C∗ following the exposition of Hitchin in [30] to obtain a C∗-family of flat connections.
The Maurer-Cartan equation for αλ is the sinh-Gordon equation

∆u+ 2 sinh(2u) = 0,

which arises as the integrability condition for the λ-dependent extended frame Fλ that
solves the equation

dFλ = Fλαλ with Fλ(z0) = 1.

Moreover, it was possible to describe the transformation of Fλ and αλ with respect to
certain parameter transformations.

In the third chapter we introduced spectral data (Y,D) for periodic finite type solutions
of the sinh-Gordon equation consisting of a spectral curve Y and a divisor D. We defined
the monodromy Mλ of the λ-dependent frame Fλ and considered its asymptotic expan-
sion around the points λ = 0 and λ =∞. At these points Mλ has essential singularities.
We were able to prove a formal diagonalization of the form αλ around λ = 0 and also
obtained a formal diagonalization of the monodromy Mλ around λ = 0.
Instead of taking a periodic u defined on R2 we studied a pair (u, uy) ∈ C∞(R/p) ×
C∞(R/p) with fixed period p ∈ R that corresponds to u if one considers the coordinate y
as a flow parameter. By introducing polynomial Killing fields ζλ(x) and the appropriate
space of potentials Pg we parameterized the space of Cauchy data (u, uy) of finite type
and gave definitions for their spectral data (Y (u, uy), D(u, uy)) consisting of a spectral
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curve Y (u, uy) and a divisor D(u, uy) on Y (u, uy).

In the fourth chapter we showed that the map (u, uy) 7→ (Y (u, uy), D(u, uy)) is a bi-
jection and introduced a basis of H1(Y,O). Moreover, we translated the reality con-
dition on Mλ and ξλ to this setting. We also investigated the Baker-Akhiezer func-
tion and its analytic properties in order to reconstruct the x-dependent eigenvectors of
Mλ(x) = F−1

λ (x)MλFλ(x) and ζλ(x).

The fifth chapter dealt with isospectral and non-isospectral deformations of the spectral
data (Y,D). On the one hand we studied non-isospectral (but isoperiodc) deformations
of spectral curves Y of genus g and showed that the space of such curves is a smooth
g-dimensional manifold with the help of the Whitham deformations. This lead to the
conclusion that the space of Cauchy data (u, uy) that corresponds to such smooth spectral
curves Y is a smooth 2g-dimensional manifold.
We also introduced an isospectral group action on PicR

g+1(Y ) by means of Krichever’s
construction procedure for linear flows on PicR

0 (Y ) and showed that

Iso(Y ) = {(u, uy) | Y (u, uy) = Y }

is parameterized by a g-dimensional torus (S1)g. This degree of freedom corresponds to
the degree of freedom for the movement of the divisor D in the Jacobian Jac(Y ). More-
over, we calculated the infinitesimal deformations of ξλ and Uλ that result from that
isospectral group action.

The sixth chapter combined the third, fourth and fifth chapter and dealt with the symplec-
tic form Ω on the 2g-dimensional phase space Mp

g as well as the Hamiltonian formalism
for the sinh-Gordon hierarchy.
Due to the asymptotic expansion of the monodromy Mλ we were able to define a series
of Hamiltonians (Hn)n∈N0 on the phase space and showed that the series (ωn)n∈N0 of
solutions of the linearized sinh-Gordon equation

∂̄∂ω + cosh(2u)ω =
(

1
4∆ + cosh(2u)

)
ω = 0,

that is obtained via the Pinkall-Sterling iteration, corresponds to the gradients of the
Hamiltonians (Hn)n∈N0 in the following way:

∇H2n+1 = (<(ωn(·, 0)),<(∂yωn(·, 0))) and ∇H2n+2 = (=(ωn(·, 0)),=(∂yωn(·, 0))).

We also showed that (Hn)n∈N0 are involutive integrals of motion for the Hamiltonian
system (Mp

g ,Ω, H2). Moreover, we introduced an inner product on the loop Lie algebra
Λrsl2(C) and used this inner product to establish the formula

Ω(dΓ(u,uy)([f ]), (δu, δuy)) = iRes([f ]ω(δu, δuy))

that relates the symplectic form Ω to Serre duality as it was done in [47] for the non-linear
Schrödinger operator. This is the main result of the thesis.
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7.2 Outlook

The Bäcklund transformation provides a tool for isospectral transformations of given
Cauchy data (u, uy). A good exposition for the case of complex Fermi curves of finite
genus corresponding to Dirac operators with periodic finite type potentials can be found
in [48]. For a quaternionic divisor D with deg(D) = g+ 1 we see that the transformation

D 7→ D̃ := D + y0 + y∞ − y − η(y)

preserves this property. By calculating the corresponding Baker-Akhiezer function ψ̃, it
should be possible to describe the transformation (u, uy) 7→ (ũ, ũy) with respect to the
transformation D 7→ D̃.

Another interesting question arises from a result in [47], where the non-linear Schrödinger
operator with periodic potential q(x) was investigated. It was shown that the points
(λi, µi)i∈I of the corresponding divisor D(q) are almost Darboux coordinates in the sense
that

Ω(δq, δq̃) =
∑
i

( ddtλi(δq)|t=0)( ddt lnµi(δq̃)|t=0)− ( ddtλi(δq̃)|t=0)( ddt lnµi(δq)|t=0),

or in short form
Ω =

∑
i

dλi ∧ d lnµi.

An analogous result was proven in [1] for the finite-dimensional case. This result should
carry over to the present situation if we replace λi by lnλi in the last equation. It would
be interesting to relate our results to the existence of such Darboux coordinates in the
present setting.

Finally, it should be possible to extend the present results to periodic solutions of the
sinh-Gordon equation of infinite type to obtain a similar description as in [47].
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