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Non-technical Summary

The financial and economic crisis has stressed the need for a better understanding of

destabilizing effects, in particular arising from the financial sector, and how these may

spill over to economic activity. In turn, weakening economic conditions are likely to feed

back to the financial sector, giving rise to a so-called adverse feedback loop.

So far lacking is work on non-linear linkages and asymmetric dynamics as they may

unfold over time. For instance, the magnitude to which financial sector instabilities affect

economic activity could depend on the actual state of the financial sector which is more

severe at some downswings than others. Thus, non-linearities might not matter much for

a long time period but then may generate a rare and large event.

In our empirical work we analyze the feedback mechanisms between economic down-

turns and financial stress for selected euro area countries as they may appear at some

time periods. The hitherto theoretical and empirical findings suggest the need for an

empirical approach that can accommodate varying dynamic patterns across alternative

states of the economy. We propose a non-linear multivariate Vector Smooth Transition

Autoregressive (VSTAR) model framework which has not been used empirically so far. In

contrast to previous studies it is able to capture smooth regime changes which we expect

in the financial market-output nexus. Our contribution is threefold: first, we use financial

condition indices which are more comprehensive and put a stronger focus on the banking

sector. Second, we apply a non-linear VSTAR model which has not been used before. We

think it is more appropriate to model the relationship between output and the financial

sector since it allows for smooth regime changes. Third, we comprehensively investigate

the (potentially changing) dynamics between the financial sector and the real economy

over time.

In most countries, a shock in the financial market leads to a long-lasting negative re-

sponse in economic activity which is regime-dependent. Yet, the negative response is not

as pronounced as it is in some other studies. This may first result from regime changes tak-

ing place rather smooth than abrupt. Shocks in the presence of smooth regime-changing

may be dampened so that the negative effect on economic activity is weaker. Second, the

outcomes hinge centrally on the sample period. We show that dynamics in the financial

market-macroeconomy link vary over time in the euro area countries. Linearity cannot be

rejected for some euro area countries over time questioning non-linearities in the financial

sector-output nexus as unambiguous feature. Our results point towards increasing impor-

tance of non-linearities with the financial crisis break out. Even if linearity is rejected,

the negative output effect typically observed is not always present. In particular, it is

not continually found before the Lehman collapse, although we are in a model-defined

high stress regime. This suggests that events leading to a strong economic breakdown are

rather related to a financial cycle which has low frequency and hence, occur rarely.



Das Wichtigste in Kürze

Die Finanz-und Wirtschaftskrise hat die Notwendigkeit für ein besseres Verständnis von

destabilisierenden Effekten des Finanzsektors und deren Auswirkung auf die reale Ökonomie

verdeutlicht. Umgekehrt kann aber auch die schlechte Wirtschaftslage wiederum Druck

auf den Finanzsektor ausüben, was zu weiteren negativen Feedbackeffekten führen kann.

Bisher fehlen empirische Analysen, die nicht-lineare Zusammenhänge und asymmetrische

Dynamiken im Zeitverlauf, untersuchen. Beispielsweise könnte die Intensität der Nicht-

Linearitäten vom derzeitigen Zustand des Finanzmarktsektors abhängen und je nach

Lage negativere Effekte auf die reale Ökonomie zur Folge haben. So könnten Nicht-

Linearitäten über einen langen Zeitraum keine große Rolle spielen, aber dann seltene und

große (Wirtschafts-)Krisen generieren.

In unserer empirischen Analyse untersuchen wir die Feedback-Mechanismen zwischen

der makrokonomischen Entwicklung und dem Finanzmarktsektor in ausgewählten Ländern

des Euroraums und wie sie sich über einen längeren Zeitraum verhalten. Wir verwen-

den ein nicht-lineares multivariates “Vector Smooth Transition Autoregressive” (VSTAR)

Modell, welches in der bisherigen Literatur noch nicht verwendet wurde. Im Gegensatz zu

anderen Modellen ist dieses in der Lage, glatte Regimewechsel zu modellieren. Wir gehen

davon aus, dass der Übergang von einem zum anderen Regime eher schrittweise als abrupt

verläuft. Wir erweitern die bisherigen Erkenntnisse um drei Aspekte: Erstens verwenden

wir neue Finanzmarktstressindizes, die umfassender sind und einen stärkeren Fokus auf

den Bankensektor legen. Zweitens setzen wir ein nicht-lineares VSTAR Modell ein, das

bisher nicht verwendet worden ist. Wir erwarten, dass dieses Modell besser geeignet ist,

die Beziehung zwischen der ökonomischen Aktivität und dem Finanzmarktsektor zu mod-

ellieren, da es glatte Regimewechsel ermöglicht. Drittens untersuchen wir umfassend die

(potentiell wechselnden) dynamischen Zusammenhänge zwischen dem Finanzsektor und

der Realwirtschaft im Zeitverlauf.

In den meisten Euro-Ländern führt ein Schock in dem Finanzmarktsektor zu einer lan-

ganhaltend negativen Reaktion der wirtschaftlichen Aktivität, die regime-abhängig ist.

Dennoch ist die negative Reaktion nicht so stark ausgeprägt wie in anderen Studien.

Dies kann daran liegen, dass der Regimeübergang eher glatt als abrupt modelliert wird.

Schocks können daher gedämpft werden, so dass der negative Effekt auf die ökonomische

Aktivität schwächer ist. Zweitens hängen die Ergebnisse stark davon ab, welcher Zeitraum

zugrunde gelegt wird. Wir zeigen, dass die dynamischen Zusammenhänge zwischen dem

Finanzmarkt und der wirtschaftlichen Entwicklung im Laufe der Zeit variieren. Linearität

kann für einige Euro-Länder über gewisse Zeitperioden nicht abgelehnt werden, sodass

Nicht-Linearitäten als permanentes Element in Frage gestellt werden. Unsere Ergebnisse

deuten aber auf eine zunehmende Bedeutung von Nicht-Linearitäten mit dem Ausbruch

der Finanzkrise hin. Selbst wenn Linearität abgelehnt wird, ist der typische negative

Output-Effekt nicht immer vorhanden. Das gilt insbesondere für den Zeitraum vor der



Lehman-Pleite, obwohl wir uns hier in einem vom Modell definierten Regime mit hohen

Grad an Finanzmarktstress befinden. Dies deutet darauf hin, dass Ereignisse, die zu

einem starken wirtschaftlichen Zusammenbruch führen, eher einem Finanzmarkt-Zyklus

zuzuschreiben sind, der eine niedrige Frequenz aufweist und diese daher selten auftreten.
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1 Introduction

The financial and economic crisis has stressed the need for a better understanding of

destabilizing effects, in particular arising from the financial sector, and how these may

spill over to economic activity. In turn, weakening economic conditions are likely to feed

back to the financial sector, giving rise to a so-called adverse feedback loop.

Recent studies incorporate financial market frictions into theoretical models or analyze

the spill-over mechanisms from the financial sector to the real economy. Non-standard

amplification mechanisms such as the credit channel or financial stress to economic activity

have recently started to become more important in theoretical modeling. Beside the

financial accelerator theory of the work by Bernanke et al. (1999), in the past mostly

applied to firms, there is a more recent literature concentrating on the banking sector as

a source for business cycle dynamics. Such theoretical studies have started with Stiglitz

and Greenwald (2003) and continued with Adrian and Shin (2009), Adrian et al. (2010),

Geanakoplos and Farmer (2009), Gorton (2010), Geanakoplos (2011), Brunnermeier and

Sannikov (2013), and Mittnik and Semmler (2013). For instance, the latter build on the

balance sheets of banks showing that there is a downward spiral through overleveraging,

financial linkages and contagion. Those theoretical models have in common that i) they

underline a critical impact of financial sector dynamics on economic activity and ii) they

highlight non-linear amplification and destabilizing effects.

Mittnik and Semmler (2013) as well as Brunnermeier and Sannikov (2013) emphasize

that a theoretical analysis based on traditional log-linearization techniques is likely to

be inadequate due to local instabilities, and non-linear amplification mechanisms which

do not arise near the steady state but can generate globally multiple regimes. Their

theoretical models and simulation results are in contrast to the DSGE model tradition

where amplifying effects occur locally around a stable unique steady state. In our paper, a

model that allows for regime switching between low and high financial stress is introduced.

This will motivate our empirical work employing a VSTAR regime switching model.

As to empirical work, there is a growing econometric research that also deals with the

impact of financial stress on economic activity. Extensions are now made to multivariate

systems since those are able to capture this kind of interdependent dynamics. The more

recent research strand also accounts for non-linear dynamics (see Hubrich et al. (2013),

Holló et al. (2012), Mittnik and Semmler (2013), Hubrich and Tetlow (2012), and Davig

and Hakkio (2010)). The results of these studies indicate that financial stress has a strong,

but regime-specific impact on the real economy. In particular, all studies find extreme

negative effects of an increase of financial stress on economic activity in a distressed

period, whereas the effects in a low stress period are relatively small or even negligible.

Besides the stronger effect, Hubrich and Tetlow (2012) point out that the negative impact

on the economy is longer-lasting in high stress periods. The model outcomes of Mittnik

and Semmler (2013) imply additionally that the size and sign of shocks may matter. The
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need for applying non-linear models to the financial-sector output nexus is also stressed

by Hubrich and Teräsvirta (2013).

Yet, so far lacking is work on non-linear linkages and asymmetric dynamics as they may

unfold over time. For instance, the magnitude to which financial sector instabilities affect

economic activity could depend on the actual state of the financial sector which is more

severe at some downswings than others. Thus, non-linearities might not matter much for

a long time period but then may generate a rare and large event.

In our empirical work we analyze the feedback mechanisms between economic downturns

and financial stress as they may appear at some time periods. Based on a new, broader

data set for extracting financial condition indices, that extensively includes banking vari-

ables, we explore the financial-real nexus and how it behaves over time. We also study

the existence of heterogeneity across the euro area countries.

The hitherto theoretical and empirical findings suggest the need for an empirical ap-

proach that can accommodate varying dynamic patterns across alternative states of the

economy. We propose a non-linear multivariate Vector Smooth Transition Autoregres-

sive (VSTAR) model framework, developed by Teräsvirta and Yang (2013a;b), which has

not been used empirically so far. In contrast to previous studies it is able to capture

smooth regime changes. We expect the transition from one to another regime in the

financial market-output nexus to be rather smooth. Misleading results may be produced

by abruptly changing regime-models. Our contribution is threefold: first, we use financial

condition indices which are more comprehensive and put a stronger focus on the banking

sector. Second, we apply a non-linear VSTAR model which has not been used before. We

think it is more appropriate to model the relationship between output and the financial

sector since it allows for smooth regime changes. Third, we comprehensively investigate

the (potentially changing) dynamics between the financial sector and the real economy

over time for selected euro area countries.

We confirm the relevance of non-linearities in the financial sector-output nexus by using

a Vector STAR model. In most countries, a shock to the financial market leads to a

long-lasting negative response in economic activity which is regime-dependent. Yet, the

negative effect is not as pronounced as it is in some other studies. This may be the

result from, first, regime changes taking place rather smoothly than abruptly which may

dampen the negative outcome. Second, the results centrally hinge on the time periods

studied. We show that dynamics in the financial market-macroeconomy linkage vary over

time in the euro area countries. The typically found negative output effect is not always

present, particularly before the Lehman collapse, although we are in a model-defined high

stress regime. This suggests that events leading to a strong economic breakdown are rare

and related to a financial cycle with low frequency.

The paper is organized as follows. Section 2 motivates our empirical analysis by a

theoretical model which allows for (smooth) regime-switching between a low and high
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stress regime. Section 3 derives empirical results of the financial sector-output relation.

Section 3.1 describes the constructed ZEW Financial Condition Indexes (FCI). The non-

linear VSTAR model and its characteristics are considered in section 3.2. In section 3.3,

we first contrast results of linear and non-linear models. Second, we analyze the financial

market-output nexus over time. Finally, section 4 concludes.

2 Theoretical Model

Next, we introduce a financial - real interaction model with an essential role of the financial

sector. The model introduced here resembles Brunnermeier and Sannikov (2013) and

represents an extension of the model by Mittnik and Semmler (2013). Both models

focus on the balance sheets of the banking system, whereas the former authors stress the

volatility of asset prices and contagion effects to generate destabilizing feedback loops, the

latter study’s feedback loops arise from leveraging, financial linkages and sudden jumps in

credit spreads. A similar line of research, is proposed by Stein (2012) where overleveraging

of the banking sector, as compared to optimal leveraging, is made central and can trigger

a high stress regime.

In this type of research model typically, when leveraging and payouts are less con-

strained, and financial stress and risk premia are high the banking system is vulnerable

and more prone to a regime of high financial stress and instability. With stronger deci-

sion restrictions on leveraging, low interest rates and low credit spreads a regime of less

financial stress, stability of the banking system and a good macro performance might

emerge. Yet, as Stein (2012) points out this is likely to be also a period - because of the

low interest rate, low credit spread, rising capital gains and higher leveraging – that gives

rise to the vulnerability of the banking sector, creating the conditions for a fragile future

banking - macro link. Thus, those financial sector - macro feedback loops can create a

regime of low financial stress, stable environment and expansionary periods, but are also

likely to generate destabilizing forces generating contractions and recessions. This might

occasionally occur when the financial sector starts to come under stress, risk premia rise

and capital gains, due to a collapse of asset prices, rapidly fall making themselves felt on

aggregate demand and output.

Empirically there have been by now numerous extensive studies on those vulnerable

regimes and destabilizing feedback loops.1 Many studies have called this a vicious cycle.2

What, however, recently has been explored is a “diabolic loop”. This has particularly

become very relevant in Europe where the financial crisis 2008/9 was quickly followed by

a sovereign debt crisis. Then, there is not only the relationship of banks with the private

sector, but there is a triangle relationship between private borrowing, bank leveraging, and

1See for example, Stein (2012) and Mittnik and Semmler (2013).
2See Brunnermeier and Sannikov (2013), Geanakoplos (2011), Stein (2012), Mittnik and Semmler

(2013).
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sovereign debt, see Brunnermeier and Oehmke (2012). Banks give not only loans to the

private sector, but also keep treasury bonds on their asset side. Banks vulnerability can

arise due to a threat of private loan losses or an asset price fall, or due to the deterioration

of the fiscal position of the sovereign. When the banks are threatened by insolvency, and

a bank bail out by the public occurs, sovereign debt as well as sovereign insolvency threat

rises, which make the banks even more vulnerable, cutting their loan supply to the private

sector, which in turn generates less revenue for the state with greater threat of insolvency

risk and so on. Moreover, both the private sector as well as public sector borrowing are

usually accompanied by an increase in external liabilities, see Stein (2012: ch.8).

In our modeling strategy we want to refer to two strands of literature. First, we build on

the literature about those complex feedback loops which can create vulnerable regimes.

This is best understood in a multi-period model where one allows for leveraging of eco-

nomic agents and asset price movements. There are several reasons why the choice of a

multi-period model is insightful:

• One needs to track the path of dynamic variables over a longer horizon. The evolu-

tion of debt and the sustainability of debt can only be tracked over a longer horizon,

though we do not assume an infinite horizon here.

• Leveraging and the evolution of debt is frequently seen to be interconnected with

asset prices and net worth (see Geanakoplos (2011), and Stein (2012)). To have

a multi-period payoff function either for consumers, banks or firms, is essential in

asset pricing theory.

• The outcomes of such an intertemporal decision model with finite horizon can then

be compared to standard macro models with infinite horizon. One also can easily

evaluate policy effects in this context.

Second, we also want to take into account amplification and feedback loops that are

mentioned as essential, for example in Brunnermeier and Sannikov (2013), Mittnik and

Semmler (2013) and Stein (2012). Macroeconomics amplification mechanisms have been

known since long but they are rare in DSGE models, since mean reversion is usually

assumed. The following magnifying effects could be at work in certain regimes, possibly

triggering a regime switch:

• On the real side there could be a strong multiplier effects in certain regimes, gener-

ating stronger feedback loops, for example if multipliers turn out to be stronger in

recessions than in expansions (Mittnik and Semmler 2012).

• Interest rates and credit spreads could also be regime dependent (and different from

the interest rate that results from the Taylor rule), moving counter-cyclically, as

often described by the literature on the financial accelerator.

4



• The Fisher debt deflation effect might become relevant, for example triggering a

rise of the fraction of households deleveraging, see also Eggertsson and Krugman

(2012).3

• There could be price expectation and real interest rate effects that are destabilizing,

for example deflationary pressures, pointed out by Tobin (1975)’s work.

• There are wage channel effects that can trigger amplifying forces (this depends of

course on the shape of the Phillips curve).4

• The asset price channel could also be amplifying, through wealth effects on aggre-

gate demand (for example amplifying an upswing with asset prices rising, but also

accelerating a downswing in periods of large asset price losses).

• There could be banking vulnerability due to overleveraging, loan losses and asset

price fall, with externality and contagion effects, which could trigger the above

mentioned “diabolic loop”.

Brunnermeier and Oehmke (2012: p.30) in particular stress the importance of amplifying

mechanisms arising from externalities and contagion effects. They write why does a shock

“...propagate across so many sectors of the economy? The reason is amplification. In the

presence of amplification, even a modest triggering event can cause large spillovers across

the financial system. Amplification can occur because of direct spillovers, such as so-

called domino effects, or indirect spillovers that work through prices, constraints, and the

endogenous responses of market participants.”

Though the proposed model could be more explicitly related to the work by Stein (2012)

we only sketch some important amplification mechanisms. In the US and also in Spain, so

Stein’s view, the sectors with asset price boom, such as financial intermediaries and real

sectors, have helped to service the debt from high capital gains. On the other hand, the

high leveraging and over-borrowing might trigger high risk premia, high interest rates and

credit spreads and collapse of financial linkages. This is then likely to be accompanied by

a fall in asset prices and stronger losses in capital value and net worth, finally generating,

through macro feedback loops, an economic contraction.

This dynamic process can easily generate a regime switch from low to high financial stress

and banking instability entailing an economic recession.5 Furthermore, one might want to

understand the above sketched adverse feedback loops by dealing with an open economy.

This can be done by following an approach suggested by Blanchard and Fischer (1989).

For recent empirical evidence of the relevance of external debt on the macrodynamics in

3They extensively treat the Fisher debt deflation effect in their paper, but they also stress the house-
holds’ deleveraging effect on demand.

4See Charpe et al. (2013).
5A similar model of asset price credit market boom is also presented in Semmler and Bernard (2012).
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Europe, see Stein (2012: ch.8). This as well as the central bank’s policy responses will be

taken into account in our model.

Most of the recent dynamic models, such as DSGE models and the Brunnermeier and

Sannikov (2013) and Mittnik and Semmler (2013) models, as well as Blanchard and Fischer

(1989), are working with an infinite horizon model. In our context, as we will show,

an infinite horizon model is not needed. We here propose to solve the model with a

receding finite horizon by a new numerical procedure, the NMPC method, see Grüne et

al. (2013), summarized in the Appendix A. This is a new solution procedure that allows for

a multi-period model, but also better includes some of the above discussed macroeconomic

feedback loops and amplification mechanisms. Yet, it approaches, with longer horizon,

the usual infinite horizon solution.

2.1 Regime of Low Financial Stress

In a first model variant we presume that the interest rate on borrowing is at a low level

and remains constant. This can be seen as equivalent to the case of the central bank

pursuing a low – or near zero – interest rate policy. By this policy, the central bank

is aiming to keep the economy in a low financial stress regime.6 The detailed measure

of financial stress that also includes banking as well as sovereign risk variables, will be

discussed in the next section. Our model variant for the low stress regime reads as follows:

V (k, d) = max
ct,gt,

∫ T

0

e−rtU(ct)dt (1)

s.t.

dkt = (gt − δ)ktdt+ σtktdZt (2)

dbt = (rbt − (yt − ct − it − ϕ(gtkt)))dt (3)

In equ. (1) there are preferences over log utility. The policy variables in equ. (1) are

consumption (ct), and growth rate of capital stock (gt).
7 The horizon T does not have

to be very large, or go to infinity.8

Equ. (2) represents the capital stock. It increases due to investment but declines due

to a capital depreciation rate δ. Brunnermeier and Sannikov (2013) have a stochastic

shock in a Brownian motion and volatility dependent asset prices. We can also admit

6See Christiano et al. (2011), and Woodford (2011).
7Actually in the numerics we can take c̃ = c/k,and then multiply it by k in the preferences, so that

the first two choice variables can be confined to lie between 0 and 1.
8For details of such a model with short time horizon, approximating well models with longer time

horizons but needing much less information, see Grüne et al. (2013). Those type of models are called
Nonlinear Model Predictive Control, see Grüne and Pannek (2011), where the basic theory is developed
without discounting.
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stochastic shocks occurring along the path, represented by the second term in equ. (2).

This is the only stochastic shock we may built in (though we will neglect it in our current

version when we solve the model). Equ. (3) represents the dynamics of aggregate debt

(households and firms).9 Our debt dynamics are written here in a way which is standard

if one allows for borrowing of households, firms and the sovereign. As mentioned we also

allow here for external debt.10

The interest payment on debt, rbt, increases debt but the surplus (yt− ct− it−ϕ(gtkt))

– the excess of income over spending – decreases debt through a surplus.11 Hereby we

have i = gtkt. Note that consumption and investment are separate decision variables.

Moreover, ϕ(gtkt) is the adjustment cost for investment. Overall the model has two

decision variables and two state variables. Note also that we have quadratic adjustment

cost of investment and we could permit a difference of interest and discount rates.12

One can allow the income y to be split up into y = normal return on capital + capital

gains + wage income.13 Then the excess return on capital income over the interest rate,

generated through capital gains, can be used to service the debt, see Stein (2011).

Now we solve our above model by using NMPC.14 Assuming here r = 0.04, δ = 0.07 and

quadratic adjustment cost of investment, we obtain the following solutions using NMPC,

yet, setting the shock in equ. (2) equal to zero.

For a regime of low financial stress, in figure 1 the vertical axis shows the debt to capital

stock ratio, the horizontal is the capital stock. Here the paths are shown for different

initial conditions. The upper end of the two paths represents the steady state which is

unique where both the trajectories end up. The NMPC numerics guarantees that the

transversality condition holds – the trajectories are not explosive but converge toward a

steady state where the left hand side of equ. (3) is zero. So, with the central bank keeping

the interest rate low there is a regime of low financial stress where debt is sustainable.15

Figure 1 gives the solution paths for two different initial conditions, but the same dis-

count and interest rates. We could also assume that the central bank is able to reduce

the discount rate and interest rates through appropriate monetary instruments even to a

lower rate. The results of the NMPC solution for example, with a temporarily different

9Brunnermeier and Sannikov (2013) have the debt dynamic formulated as a net worth dynamics but
a closed economy framework. In our open economy framework, we could also allow for sovereign debt
here.

10In fact borrowing can be interpreted as borrowing taking place also from abroad, see Blanchard and
Fischer (1989).

11How this works for an open economy, and what the stylized facts for Europe are can be found in
Stein (2012: ch.8).

12This is frequently done in a two type of agent model, as Eggertsson and Krugman (2012).
13Note that the capital gains could be positive or negative, for a more detailed specification of those,

see Stein (2012).
14See the sketch of the algorithm in the Appendix A.
15This is consistent with the case put forward by Bohn (2007) that the debt is mean reverting when the

reaction coefficient (the response of the surplus with respect to sovereign debt) in his debt dynamics is
greater than the interest rate. In his case however the interest rate is a constant, or only slightly varying
through the growth rate of marginal utilities, if he takes the latter to determine the discount rate.
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Figure 1: dynamic paths of sovereign debt for constant interest rate, for two initial
conditions, k(0) = 0.9, b(0) = 0.9 (left) k(0) = 2.8, b(0) = 0.9 (right, bold), convergence
to steady state, with r = 0.04.

interest rate, or credit spread, can also easily be obtained. Results from our solution

method have shown that the solution paths converge toward the steady state, yet for a

smaller interest rate there is a lower debt to output ratio on the out of steady state path.

In this first model variant we keep the interest rate on leveraging persistently low, by

assuming that there is low financial stress and the central bank can sufficiently reduce

not only the interest rate but also credit spreads by reducing financial stress. This may

generate a tranquil period where there are large capital gains and an asset price boom,

where risk premia are low and asset prices rising. Yet, when an overleveraging occurs and

the asset price bubble bursts and capital gains become negative, then net worth maybe

rapidly deteriorating. As the debt ratio rises and the capital gains fall, and interest rates

and credit spreads are likely to rise – the latter being negatively correlated with the

capital gains – net worth of the assets can quickly vanish or become negative.16 Regime

dependent interest rates and credit spreads are discussed next.

2.2 Regime of High Financial Stress

We next allow the yields on bonds, sovereign or private, and financial stress, to be endoge-

nous. This presumably will then also entail endogenous feedback loops of the financial

stress to macroeconomic variables, possibly giving rise to the loss of stability. This is

somewhat equivalent to the central bank not attempting – or not being able – to pursue

a monetary policy to reduce asset market stress and to bring down credit spreads. Let

16For details of such a scenario, see Stein (2012).
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our model now be defined as follows

V (k, d) = max
ct,gt,

∫ T

0

e−rtU(ct)dt (4)

s.t.

dkt = (gt − δ)ktdt+ σtktdZt (5)

dbt = r(st|γ, c∗)bt − (yat − ct − it − ϕ(gtkt)))dt (6)

The difference to the model of low stress regime is here now that we assume state

depending financial stress, represented by the banking sector, security and exchange rate

market variables. Following the line of much other research, we make now interest rate

to be paid on debt a non-linear function of some state variable. Since we want to have

the function to be bounded we can define financial stress to be given by the following

function:17

r(st|γ, c∗) = [1 + exp(−γ(st − c∗))]−1, γ > 0, c∗ > 0 (7)

This function makes the credit cost depending on the state variable financial stress, st, a

threshold variable, c∗, and a slope parameter, γ. The above represents the logistic function

often used in STAR models and further discussed in our specification of the VSTAR model

in sect. 3.2 below. It is also roughly the function that has been empirically observed in

De Grauwe (2012),18 but one can also derive from Roch and Uhlig (2012).19 In our

numerical solution procedure we will approximate this function above by a closely related

function.20

Now if we were to look at the asset side of the economy, asset prices are likely to fall or

do not grow any more and capital gains could become negative. So if the capital gains

shrink, the source for debt services declines, and surpluses would shrink, the debt service

rise with higher interest rates and debt sustainability becomes threatened.21

Note also that when we allow the income ya in (6) to include capital gains, aiding to

17Note that empirically we will introduce a multitude of factors generating financial stress. For the
shape of the function in equ. (7) see Figure 4.

18Presenting there EU debt and bond yield data, see also Corsetti et al. (2013).
19In DSGE models the rise of risk premia and its persistence on a high level is often modeled through

large shocks with some strong persistent, see Gilchrist and Zakraǰsek (2012).
20Since in our numerics we cannot directly read in the financial stress, st, we approximate (7) by an

arctan function such as r(bt/kt) = βarctan(bt/kt), We hereby have set β = 0.1. Here too, the credit cost
rises in a non-linear way with the debt to capital stock ratio, first slowly, then more rapidly but is finally
bounded. Yet, this function behaves the same way as the above logistic function, except that it is a bit
flatter at its upper and lower branches. Also, the arctan function is not bounded by 1 and 0 but can
move in reasonable bounds as needed to approximate actual credit cost. It is also numerically easier to
solve in our NMPC algorithm.

21For a scenario like this, see Stein (2012) where this is exemplified with macroeconomic data for Spain
and Ireland.
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service the debt, there is an advantage for borrowing agents as long as there is little

financial stress and no risk premium to be paid. We want to remark that low interest

rates and capital gains are frequently highly (negatively) correlated. This points to a kind

of low frequency financial cycle scenario22 where financial stress and financial fragility may

arise in a period of tranquility where low stress and zero risk premia can be observed,

as for example were seen from the 1990s to 2007. Implicitly, in this case, on the asset

side, as Stein (2012) shows, the present value of the assets will tend to become very large,

because there is no correction through risk premia,23 as it should be, and net worth will

be high.

The reversal of this process is likely to trigger macroeconomic instabilities when financial

stress is significantly driven by asset prices and banking vulnerability. Note that asset

prices are likely to fall with higher interest rates, rising risk premia and credit spreads,

and higher discount rates.24 Asset prices falling means capital losses. Yet, sudden loss

of capital gains generate lower income to service debt, at a time when debt service rises

through rising financial stress and credit spreads. The asset price bubble may burst in a

period when high debt services emerge.25 There are now endogenous risk premia, rise of

interest rates and prices of asset declining.

This triggers important macroeconomic feedback loops that one often can be observed

during periods of rising financial stress, as for example listed above. This is frequently

accompanied by a decline in aggregate demand and output.26 Though optimal consump-

tion and investment plans might be targeted, actual income, consumption and investment

are likely to decline due to rising financial stress — falling asset prices, rising risk premia

and credit spreads. So, overall we may experience that actual output adjusts downward:

yat = g
(
r(st|γ, c∗)

)
(iopt + copt) (8)

Note that in equ. (8) we have now defined actual output to be driven by aggregate

demand, where consumption and investment demand, responding to financial stress are

affecting actual output. The optimally chosen consumption and investment demand for

each time period of the state variables are actually not realized, but only the consumption

and investment demand under the impact of financial stress are executed. This can easily

be executed by our NMPC algorithm. What is modeled here is what Blanchard and Leigh

(2013) call the feedback of financial market stress on aggregate demand.27

22Financial cycles as rather long cycles are studied in Schularick and Taylor (2012).
23Stein (2012) suggests then to make corrections by suggesting to take the trends/drifts in capital

gains and interest rates in such a model, that would better measure some debt capacity. The borrowing
exceeding that debt capacity would amount to excess borrowing.

24See Semmler and Chen (2013).
25See Stein (2012).
26See Blanchard and Leigh (2013), and Corsetti et al. (2013). The latter show how empirically sovereign

debt and banking risk also increases private borrowing cost.
27This is what a recent IMF study defines as follows: “The risk channel amplifies the transmission

of shocks to aggregate demand, unless monetary policy manages to offset the spillover from sovereign
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We can note that if risk premia and credit spreads and thus financial stress rise, but are

bounded as in (7), yat will decline due lower consumption and investment demand, but if

demand and output falls, income, and thus tax revenue, as well as capital gains, and the

surplus, to service the debt, are likely to fall, too. This might make then debt and bond

issuing – if bonds are sold on the market – unsustainable, because of further jumps in

financial risk.

Next we solve our model (4) – (8) numerically using again NMPC. We illustrate the

outcome by two variants. In both variants we are in a regime of high financial stress.

First, we are setting the macro feedback loops on aggregate demand, g
(
r(st|γ, c∗)

)
, to be

very weak. We get the following results.

Figure 2: Debt dynamics for non-linear financial stress effects; weak effects on aggregate
demand (right graph, bold); strong effect on aggregate demand (left graph), for initial
conditions k(0) = 0.9, b(0) = 0.9

As the solution path for the capital stock and leveraging in figure 2 (right graph) shows

the credit spread below a certain threshold permits a higher capital stock and higher

leveraging. Yet as the credit spread rises – in our case caused by financial market stress

– and if it reaches a certain threshold, we observe that with an increasing leveraging risk

premia rise, capital stock stops rising but the leverage ratio is rising further. Thus, if

the credit spread is moving beyond a certain threshold, debt becomes unsustainable since

capital gains fall and the interest payments become higher than the surplus to service the

default risk to private funding costs”,Corsetti et al. (2013).
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debt, see (6).28

Stronger macroeconomic feedback loops29 may arise due to the following:

• There is the wealth effect reducing aggregate demand – when the capital apprecia-

tion falls, or becomes negative, both consumption and investment demand are likely

to fall.

• The share of households that are income and credit constrained, in the sense of

Gaĺı et al. (2007), and households that are higher leveraged and are under financial

stress,30 are significantly rising in a contraction period of the business cycle, see also

Mittnik and Semmler (2013; 2012).

• As the financial market forces trigger banking and financial stress,31 the central

bank may have no instruments available – or is not willing – to force the interest

rate down further and/or to reduce risk premia and credit spreads, for example by

purchasing bad assets and bonds to drive down asset market risk and risk premia.32

• The fraction of private households start strongly deleveraging that reduces income

and liquidity of other households and firms, which might be accompanied by a Fisher

debt deflation process, see Eggertsson and Krugman (2012).33

• Finally, there could occur even a worse feedback: a weak financial sector, holding

risky sovereign or other debt, may come under severe stress, because debt may go

into default and banks reduce lending to the real economy, or worse, may even

default.34

Whereas the first four destabilizing mechanisms have been known in the literature and

are often viewed to generate a vicious cycle, the last one, which has recently been dis-

cussed, adds a more dangerous mechanism which has been, as mentioned, called “diabolic

loop”.35

28This maybe be magnified by the reversion of the effect as mentioned before: namely the risk and
risk premia rising, discount rates rising and falling (or negative) capital gains, not supporting the debt
repayments any more. So debt would rise faster.

29A systematic study of macroeconomic feedback effect, know from the history of macroeconomics,
partly stabilizing partly destabilizing, are extensively discussed in Charpe et al. (2013).

30The share of those households matter, since there is empirical evidence that the drop in demand
will be larger for households with larger debt, that are forced to deleverage more, see Eggertsson and
Krugman (2012).

31See the ZEW financial condition index.
32The ECB in Europe was for example constrained by the Maastricht Treaty not to purchase sovereign

bonds. Later this was relaxed by allowing it to purchase sovereign bonds on the secondary market, though
there a number of programs that by-passed the Maastricht Treaty.

33A detailed discussion of further macroeconomic feedback effects of this type can be found in Charpe
et al. (2013).

34See Brunnermeier and Oehmke (2012), and Bolton and Jeanne (2011), the latter present data on the
sovereign debt holdings of banks.

35See figure 5 in Brunnermeier and Oehmke (2012) and see also Bolton and Jeanne (2011).
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Now we expect, starting with a debt to capital stock ratio roughly above normal that the

above feedback mechanisms lead to higher financial market stress and higher risk yields,

higher credit spreads and lower output, leading to a contraction in the utilization of the

capital stock, and capital stock itself, and to an increasing debt to capital stock ratio.36

The debt dynamics with endogenous credit spread and endogenous demand and output

contraction of system (4) – (8) are shown in figure 2 (left graph), using again the NMPC

solution method. The situation is sketched here also assumes that the central bank cannot

– or is not authorized to – bring down the financial market stress through financial market

interventions.

Figure 2 (left graph) shows, starting with a debt to capital stock ratio of roughly unity,

the feedback mechanisms of higher financial market stress – higher risk premia, higher

yields and higher credit spreads – and lower output leading to a contraction of capital

stock and increasing debt to capital stock ratio.37

Given those above sketched macro feedback loops and a lack of a proper central bank’s

reaction it is easily explained why there might be a regime switch from a low to a high

stress regime where vulnerabilities increase and a faster deterioration of demand and

output as well as unsustainable debt dynamics are likely to occur, as shown in the two

graphs in Figure 2.

3 Empirics

In the following, we present our empirical strategy and the results derived. In section 3.1,

we present the ZEW Financial Condition Indices for selected euro area countries which

are used to model the financial sector conditions or stress levels. Next, we introduce the

Vector STAR model in section 3.2 as well as our empirical modeling cycle and evaluation

strategy of the financial market-output relation. Section 3.3 discusses, first, linear vs.

non-linear model outcomes. Second, we analyze the financial sector-output link and its

amplification mechanisms over time.

3.1 Financial Condition Indices for selected euro area countries

In this section, we briefly describe the ZEW Financial Condition Indices (FCI) for the

euro area. Kliesen et al. (2012: p.372) state that there is a a high degree of overlap

between financial stress and condition indices (FSI vs. FCI). They point out that stress

indices contain more price variables, whereas condition indices are broader including also

quantities. “As such, an FSI can be considered a snapshot of the level of fragility in

36This could equivalently create a downward spiral in net worth, if the model is written in terms of net
worth, as Brunnermeier and Sannikov (2013) and Stein (2012).

37Note that a strong contractionary effect could also occur if the creditors become unwilling to lend when
a certain debt to GDP ratio is reached and new borrowing or rolling over of old debt will be discontinued.
For a model including such a sudden rise of credit market constraint, see Ernst and Semmler (2012).
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the financial market and an FCI a mapping of financial conditions onto macroeconomic

condition.” Nevertheless, there is no clear-cut distinction of financial stress and condition

indices. The ZEW indexes are broad indexes with a fairly high negative correlation to IP

growth, so they are called ZEW financial condition indexes, reflecting both vulnerability

of the financial market as well as a link to the macroeconomy. In the following we will

refer to financial stress and financial conditions synonymously.

The data-set used extends this of available FSI and FCI by various variables. Some of

them are neglected in the existing financial stress indices but play an important role in

describing financial stress as it occurred after (and to some extent before) the Lehman

collapse, for instance. Many of the existing indices focus predominately on price vari-

ables, whereas our index expands also to movement in volumes, particularly within the

banking sector. The financial sector and economic breakdown were closely related to the

banking sector. Adding banking-related factors with a close link to the economic down-

turn, contribute to the improvement of a financial condition index. In particular, some

of these additional factors, namely the annual growth rate of assets over liabilities, the

ratio of short over long-term debt securities issued by banks38 and, the annual growth

rate of lending of banking to the private sector, reflect dynamics of the theoretical model

introduced in section 2 before. We emphasize that it is not sufficient to comprise only an

aggregated euro area indicator. Such an index would not reflect the heterogeneity of the

financial sector of the individual euro area member states adequately (see also Bijlsma

and Zwart (2013)).

The FCIs are available for Belgium, Germany, Austria, Finland, France, Greece39, Ire-

land, Italy, Netherlands, Portugal and Spain from 1980:01 to 2013:01 on a monthly basis

(for a graphical representation of the indexes see figure 11 in Appendix B). The selected

Eurozone countries account for almost 98% of total euro area GDP. There do not exist

Financial Stress or Conditions Indices which are as comprehensive as the ZEW FCIs in

terms of their broadness of different stress categories and country coverage. The ZEW

FCIs consist of three (standard) categories: banking sector, security market and for-

eign exchange market. The following variables represent the banking sector: interbank

rate spread, Eonia/Euribor Spreads, TED spread, bank stock market returns, beta of the

banking sector, CMAX interacted with the inverse price-book ratio, inverted term spread,

ratio of short over long debt security issued, bank lending to private sector, the ratio of

total assets over liabilities, excess reserves, the inverse marginal lending facility, money

market spread, spread of main refinancing rate and euro area 2-year government bench-

mark bond yield, and write-offs. The variables related to stress in the security market are

38Following Geanakoplos (2011), we do not include the assets over equity ratio variable but use flows
due to their more reasonable ability in explaining stress in balance sheets of banks. The former may
deliver an unreasonable measure: equity is high in a boom leading to a decline in the ratio and vice versa
in a bust.

39We do not include the inverted term spread due to its paradoxical evolution during the current
financial and economic crisis, see also Neely (2012).
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given by share price returns and their volatility, corporate debt spreads and volatility of

government bond returns. Volatility of real effective exchange rates is included to reflect

risk in the foreign exchange market. Most of the variables are available on country level,

some are Eurozone aggregates. For a detailed description of the data see Table 12 in

Appendix B.

To account for a fairly high correlation across some variables, we use a dynamic factor

model to extract the common factor which we call ZEW Financial Condition Index. We

apply the two-step estimation approach of Doz et al. (2011) which has the ability to

account for ragged edges of the data sample. The dynamic factor model looks as follows:

Xt = Λ∗0Ft + ξt (9)

Ft are the common factors, Λ∗0 is the matrix of factor loadings, Xt is the vector of observ-

ables, and ξt is the idiosyncratic component. The common factor Ft follows a (V)AR-

process A(L)Ft = ut. In the initial step, the factor loadings are estimated by principal

components, whereas in the second step the Kalman filter is applied.

To model economic activity, we use monthly growth rates of industrial production indices

which are in constant prices and seasonally adjusted. The data is taken from the OECD

and available from 1980:01 till 2013:01.

The FCIs for the euro area countries capture the country-specific and euro area wide

stress periods properly, meaning they indicate financial stress if there was a financial

market turmoil. They reflect the risk associated with the financial market breakdown in

2008 as well as the sovereign debt crisis. The ZEW FCIs are negatively correlated with

the monthly growth rate of industrial production in the respective country (see Table 1).

We conclude that the ZEW FCIs allow us to derive valuable, new insights in the link of

financial sector turmoils and economic dynamics in the euro area countries.

Table 1: Correlations of FCIs and IP

AUT BEL FIN FRA GER GRE IRE ITA NLD PRT ESP

corr(IP,FCI) -0.0851 -0.0505 -0.1271 -0.1249 -0.2028 -0.0426 -0.0438 -0.0523 -0.0593 -0.0425 -0.0286

3.2 A non-linear Vector STAR approach

Our empirical non-linear analysis contributes to the existing literature in several ways.

First, we use new financial condition indices which are more comprehensive, have a

stronger focus on the banking sector and are broader in terms of country coverage. Sec-

ond, we apply a Vector Smooth Transition Model as proposed by Teräsvirta (1994) and

Teräsvirta and Yang (2013a) which has not been used within this literature before. The

Vector STAR model is able to capture the relevant non-linear dynamics in a more so-

phisticated and reasonable way. Third, we put a stronger focus on assessing the financial

sector-output relation and non-linearities over time.
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The Vector STAR model reflects the transmission mechanisms as described in the the-

oretical model. It allows for smooth or abrupt regime-switching based on an observable

transition variable allowing for a straightforward economic interpretation of the different

regimes and can capture asymmetric dynamics of shocks and amplification effects in low

and high stress regimes. The hitherto studies, which incorporate non-linearities, apply

Markov Switching or Threshold Vector Autoregressive (TVAR). We prefer a model with

an observable transition variable such that we can motivate the transition variable by

defining a meaningful set of regimes for a particular state of the economy or the financial

market (e.g. low/high stress). This leads to the exclusion of Markov Switching models

which do not easily offer a direct economic interpretation. Moreover, an abrupt switch

from one regime into the other like in a TVAR modeol is not plausible in our application.

Marginal and negligible changes in the transition variable can lead to extreme conse-

quences, namely, a different regime. Yet, the transition from a high to a low stress regime

may take a while. For a comprehensive survey on non-linear Vector models see Hubrich

and Teräsvirta (2013).

The logistic Vector STAR model looks as follows40:

yt =
{ m∑
i=1

(Gi−1
t −Gi

t)F
′

i

}
xt + εt (10)

where yt is a k × 1 column vector, xt = (y
′
t−1, . . . ,y

′
t−p,d

′
t)
′, and where dt is a vec-

tor containing deterministic components. Fi = (A
′

i1, . . . ,A
′
1p,Φ

′

i)
′ includes coefficient

matrices. The error term εt is assumed to be independent normal with zero mean and

variance-covariance matrix Ω. Gi
t(.) is a diagonal matrix of transition functions such that

different transition function across regimes can be modeled:

Gi
t(.) = diag

{
g(s1it|γi1, ci1), . . . ,g(skit|γik, cik)

}
(11)

for i = 1 . . . ,m− 1, where m determines the number of transitions across equations and

G0
t = Ik,Gm

t = 0. The transition function are assumed to be of logistic type which is

monotonically increasing in sijt and bounded between zero and one.

g(sijt|γij, cij) = [1 + exp(−γij(sijt − cij))]−1, γij > 0 (12)

The transition function depends on the transition speed (γij), the location parameter

(cij) and the transition variable (sijt). Usually, a d-times lagged endogenous variable is

used. There is also the special case where only one transition function governs the whole

system, then, Gi
t(.) = g(sijt|γi, ci)Ik. The latter will be the relevant model type for our

application. The slope parameter γij and thereby, the Vector STAR model is redefined

40The notation is taken from Teräsvirta and Yang (2013a).
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by

γij = exp(νij), (13)

where νij is the parameter to be estimated following Schleer (2013). Redefining γij facili-

tates the construction of a grid because one can build an equidistant grid in the dimension

of νij. The search space (grid) for γ is then automatically dense in the beginning and less

so when it becomes large which is a sensible choice for estimating the Vector STAR model.

In order to make γ a scale-free parameter, it is divided by the standard deviation of the

transition variable when the parameters of the VSTAR model are estimated (Teräsvirta

2004).

We use a logistic function since it is able to capture regime-switching and the kind of

asymmetries we are interested in. The effects of shocks can vary across low and high stress

scenarios like they do in the macroeconomy as has been shown in the theoretical model

in section 2. If the economy already is in a recession period, an increase in financial stress

might have different, e.g. stronger and longer lasting, effects on the real economy than

in a boom and low stress scenario due to the previously described endogenous feedback

mechanisms. Destabilizing effects may set in such that we face multiple regimes that do

not converge to a stable equilibrium again. Technically, the logistic function is bounded

between zero and one. If γ tends to infinity it converges to a pure threshold model and if

γ approaches zero it collapses to a linear VAR model. The location parameter c defines

the threshold value.

Applying a Vector STAR model has the advantage of having a fully specified modeling

cycle at hand consisting of three steps: testing linearity, specifying and estimating the

Vector STAR model and finally, evaluating the model.41 We proceed as follows:

Unit root tests: We check stationarity of the individual FCI and IP series by applying

following two tests: ERS DF-GLS and ERS point-optimal developed by Elliott et al.

(1996). Those tests have better power properties and lower size distortions in comparison

to the standard ADF test (Hayashi 2000: p.601). Moreover, we test the stability condition

of the linear VAR model, that its reverse characteristic polynomial has no roots in and on

the complex unit circle (Lütkepohl 2005: p.16). To the best of our knowledge, there do

not exist unit root test derived for a Vector STAR with logistic type transition function.

Hence, we stick to tests for a linear model.

Testing linearity: We apply a joint linearity test of the whole Vector STAR system as

recommended by Camacho (2004), Weise (1999) and formalized by Teräsvirta and Yang

(2013b). Therefore, we rely on Rao’s statistic which is recommended also by the latter

authors due to satisfying size properties. Thereby, we choose the respective lag of the

transition variable which rejects linearity at the 5% level and the p-value is minimized.

For each model, the lag length is selected by the Schwarz Information criterion (Schwarz

41Teräsvirta (1998) describes the modeling cycle for a univariate procedure and Teräsvirta and Yang
(2013a;b) extend it for a multivariate Vector STAR model.
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1978) and the maximum lag length is set to maxlag = round(12(T/100)(1/4)) which is the

formula suggested by Schwert (1989). We rely on the full lag structure, as otherwise the

power of linearity tests is harmed (see Teräsvirta (2004: p. 225)). As suggested by the

theoretical model, we use the ZEW FCIs reflecting financial market stress as transition

variable for both the FCI and IP equation. The maximum tested lag is set to 3, a constant

is always included. We do not expect that a higher lag length of the transition variable

is economically reasonable in defining the “stress regime”.42

Selecting the lag length and estimation: We select the lag length by the Schwarz Infor-

mation criterion based on a linear VAR model, generate starting-values by Differential

Evolution in a multivariate framework as suggested by Schleer (2013) and estimate the

model by Maximum Likelihood (interior-point algorithm). If there is still serial correlation

in the lag structure43, we add another lag until the serial correlation test of Teräsvirta

and Yang (2013b) with wild-bootstrapped p-values cannot reject the null of no serial

correlation. The wild-bootstrap is based on Godfrey and Tremayne (2005).

We bound our estimation problem with respect to the γ and c by using 0.5 and 30

as bounds for the slope parameter (γ). For the bounds of the the location parameter

we use the approach of Schleer (2013) defining the location parameter c for the grid as

a function of the transition speed: C = f(Γ). If γ is high, implying a low number of

observations around the threshold, we use a truncated sample of the observations of the

transition variable for the location parameter C. Moreover, in our application there are

three features which should be considered for finding the location parameter determining

the different regimes. First, a value of zero means neutral financial market conditions.

Second, the transition variable, the ZEW FCIs, are strongly positively skewed (see Figure

3 and Table 2). Third, high stress occurs less often. If we used a symmetric range to

get the support of the transition variable, we would exclude most of or even the complete

high stress regime. As a consequence, we take the value which is closest to zero as center

(separating negative and positive values) and use the lower 20% and upper 40% percentile

around this value for finding the threshold (c).44 The chosen asymmetry of the intervals

is a consequence of the skewness of the indices.

Table 2: Skewness of ZEW Financial Condition Indices

AUT BEL FIN FRA GER GRE IRE ITA NDL PRT ESP

skewness 1.928 1.871 1.502 2.004 2.010 1.137 1.995 1.621 2.183 1.855 0.595

Evaluation stage: As discussed above, we ensure that our estimated VSTAR models

do not exhibit serially correlated error terms. This is a crucial misspecification test in a

42This is confirmed by the results, as the most frequent lag chosen by the selection procedure is one
(see section 3.3).

43We test serial correlation of order one to twelve.
44If the upper 40% quantile exceeds the support of the realizations of the transition variable, we use a

range which excludes the 10% highest and 60% lowest values.
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Figure 3: Kernel densities of financial stress indexes, normal kernel, bandwidth
optimized for normal kernel, between 0.22 and 0.58

dynamic model in order to rule out inconsistency of parameter estimates caused by serial

correlation.

To capture different dynamics across euro area countries and get insights of financial

market - macro linkages, we conduct several analyzes. First of all, we model a bivariate

Vector STAR model with the ZEW FCIs and industrial production for each country based

on financial condition index as transition variable.

We use a bivariate VSTAR model with yt = [∆logIP,FCI]. Assuming one transition

function governing the whole system, we have two different histories (regimes):

FCIt−d < c (low stress regime)

FCIt−d ≥ c (high stress regime)
(14)

The non-linear IRFs are not restricted to remain in one regime. In other words, we allow

for regime-switching after the initial shock has taken place.

Initially, we perform Granger causality tests which are based on our VSTAR model,

thus, taking the non-linearity already into account. Since we rely on a model with two

regimes, we technically can “divide” the model in a linear and non-linear part. Hence,

we can test Granger causality based on the linear parameters only and on the linear and

non-linear parameters. It will be interesting to see whether the dynamics change if we

also take the non-linear part represented by their coefficients into account.

Second, we construct non-linear IRFs, namely “Generalized” IRFs, following the method
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of Koop et al. (1996) and Weise (1999) who applied the approach to Vector STAR models.

There are important differences between linear and non-linear IRFs: the latter are history-

dependent, their future shocks may not necessarily be zero, and, they are not invariant

to the size and the sign of a shock. We use B = 100 bootstrap repetition and R = 100

Monte Carlo replications. By using “Generalized” IRFs, we are able to model asymmetric

dynamics with respect to the regime (timing). The non-linear IRFs of the VSTAR model

is based on the Cholesky decomposition to derive structural responses. There are two

possible factorizations. First, the financial condition index has a contemporaneous effect

on industrial production, whereas a shock in industrial production does not affect the

financial sector in the same period. For instance, Holló et al. (2012) and van Roye (2011)

apply this setting arguing that the current level of IP cannot be observed by market

participants due to the publication lag. Hence, the realization cannot be reflected in the

variables underlying the FCI.

On the contrary, Mittnik and Semmler (2013) and Hubrich and Tetlow (2012) rely on

the reverse ordering. In this case, a variable representing financial market dynamics as

the FCI is considered to be fast-reacting to output, whereas output is rather sluggishly

adjusting. The latter ordering seems to be more plausible from our point of view, hence,

we stick to that form of orthogonalization.

Confidence bands for non-linear IRFs can be constructed by using the empirical dis-

tribution function for constructing the 90% confidence interval for each h = 1, . . . , H.

A second approach is based on the highest density regions. This concept was devel-

oped by Hyndman (1996) and suggested for construction confidence intervals for IRF in

non-linear model set-ups by Skalin and Teräsvirta (2002); Teräsvirta et al. (2010). A fur-

ther possibility is to use box-and-whiskers graphs following Teräsvirta and Yang (2013a).

The concepts relies on R GIRFs generated by the Monte Carlo integration procedure

and represent these by using box-plots for 50% (box) and 80% whisker highest density

regions. Yet, none of these methods of constructing confidence bands allows to make in-

ference statements. Due to the IRF construction, the function is a random variable itself.

Asymptotic theory has not been explored so far.

3.3 Results

Before we discuss the results of Granger causality tests and impulse response functions,

we first present the results of the model selection tests, namely, unit root and linearity

tests, beginning with the former. Except of the FCI of Portugal, Spain and Ireland, the

FCI and IP growth series of all countries are confirmed to be stationary by at least one

test.45 Recall that we perform two tests: ERS DF-GLS and ERS point-optimal. Mostly,

both tests results coincide indicating stationarity of the time series which is perfectly in

line with our expectation that neither IP growth nor FCI exhibit a trend-like behavior.

45The results can be found in Table 13 in Appendix C.
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Non-stationarity of the Financial Condition Index of Portugal, Spain and Ireland was

found at the 5% level. We exclude Ireland from our analysis, whereas we adjust the

sample for Portugal and Spain as non-stationarity in the FCI series appears to be a more

recent phenomena. The FCI indexes of those two countries are steadily increasing after

the financial market breakdown due to the sovereign debt crisis setting in quite heavily

as well, resulting in non-stationary behavior.46 The sample periods for each estimated

model can be seen in Table 3. For these sample periods, the previously mentioned stability

condition of a (linear) VAR model is satisfied as well.

Table 3: Sample Periods

Austria 1980:01 2013m01

Belgium 1980:01 2012m12

Finland 1980:01 2013m01

France 1980:01 2013m01

Germany 1980:01 2013m01

Greece 1980:01 2013m01

Italy 1980:01 2012m12

Netherlands 1980:01 2013m01

Portugal 1980:01 2011m07

Spain 1980:01 2011m09

The null of the joint linearity test (Rao’s test statistic) is rejected for each model confirmi

ng non-linearities in the financial sector-output dynamics. For the majority of models the

lag length of the transition variable was chosen to be one. This has been indicated by

the smallest p-value for lag one out of one to three. This is in line with our expectation

that a more recent, in terms of its lag, FCI is appropriate for determining the regime in

the financial market-output nexus. The only exception is Spain, for which the smallest p-

value was found for lag length three of the transition variable. Overall, joint non-linearity

has been detected in the dynamic, interdependent multivariate VSTAR models for all

countries.47

In the following section 3.3.1, we present the results of Granger causality tests and

impulse response functions for the full sample contrasting linear and non-linear outcomes.

3.3.1 Linear vs. Non-linear Analysis

Although the linearity tests confirm our conjecture of a non-linear relation, we derive fur-

ther insights into differences between linear and non-linear model specification. First, we

evaluate whether the different model types yield qualitatively different results. Second,

46We assume here that the underlying DGPs change essentially. Alternatively, the complete period
before could constitute a low stress regime, which empirically does not show non-stationarity. Due to
the recent economic development in Spain, Ireland and Portugal with significant distortions in various
sectors and unsustainable paths of sovereign debt, for instance, we prefer the former explanation.

47In section 3.3.2 we will discuss the results of the linearity tests in more detail, particulary, their
evolution over time.
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we analyze the magnitude of differences across linear and non-linear model set-ups. In the

following, we discuss the results of Granger causality tests for a linear VAR model and

a non-linear VSTAR model. Table 4 presents the results for a linear model. The FCIs

Granger cause industrial production in all euro area countries except of Greece and Por-

tugal at a 5% level of significance. On the contrary, the output variable does not Granger

cause the financial market conditions in all countries except for Spain. These results give

us a rather clear-cut picture indicating that the FCI is useful in forecasting industrial

production, whereas the reverse is not true. Based on a linear VAR model, industrial

production does not comprise statistically relevant information for the future situation of

financial markets. Moreover, we cannot detect strong cross-country heterogeneity. The

overall picture is rather identical for the euro area countries.

Table 4: P-values of Granger causality tests – linear VAR model

country FCI → IP IP → FCI

Austria 0.0145 0.5674

Belgium 0.0045 0.8418

Finland 0.0000 0.1984

France 0.0051 0.9289

Germany 0.0000 0.4707

Greece 0.2022 0.7701

Italy 0.0408 0.4434

Netherlands 0.0001 0.3591

Portugal 0.1008 0.8529

Spain 0.0062 0.0401

As linearity tests indicate non-linear behavior, we contrast the VAR-results with Granger

causality VSTAR-results. The results for the non-linear Vector STAR models are quite

different as can be seen in Table 5. As discussed above, in the Vector STAR model we can

test linear and non-linear Granger causality. In the linear case, we test Granger causality

based on the linear parameters and in the second case, we test non-linear Granger causality

based on linear and non-linear parameters.

First, the results of the linear Granger causality based on the VSTAR model differ clearly

from those generated by the linear VAR model. Second, Granger causality between FCI

and IP is quiet different by taking also the non-linear parameters into account. This

emphasizes the relevance of non-linearities in the financial market-output nexus once

more and points out that the differences between linear and non-linear outcomes are

qualitatively relevant.

Focussing on the results of the linear and non-linear parameters which describe the whole

non-linear model dynamics in Table 5, we detect a significant interdependent financial

market-output relations for Austria, Belgium, Spain, Germany, and the Netherlands.

This gives support for the adverse feedback look, as it was called by the chairman of the

FED Bernanke: not only a shock in financial market conditions results in a significant
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Table 5: P-values of Granger causality tests – non-linear VSTAR model

linear parameters linear and non-linear parameters

country FCI → IP IP → FCI FCI → IP IP → FCI

Austria 0.0607 0.0026 0.0151 0.0000

Belgium 0.2777 0.1516 0.0000 0.0167

Finland 0.0557 0.2845 0.0000 0.1039

France 0.2895 0.9939 0.0064 0.4726

Germany 0.1286 0.0355 0.0001 0.0171

Greece 0.8831 0.1124 0.2396 0.0971

Italy 0.4042 0.7364 0.1495 0.2224

Netherlands 0.0056 0.9980 0.0000 0.0305

Portugal 0.4954 0.0340 0.0756 0.0161

Spain 0.0006 0.3766 0.0002 0.0100

long-lasting effect on output, but also the negative economic conditions may feedback on

the financial market again. This effect may be neglected if one relies on a linear VAR

model which is not able to model a regime change. It can therefore not switch to a regime

with negative financial market conditions yielding negative effects for economic activity

again as they are also motivated by our theoretical model. Moreover, the results based

on the non-linear VSTAR model point towards more heterogeneity across the euro area

countries than linear Granger causality does.

Having found further empirical evidence for the relevance of non-linearities which is

qualitatively relevant, we compute Impulse Response Functions based on a one standard

deviation shock in FCI and report the accumulated response of economic activity after

6,12,18,24 and 36 months. This is done for both a linear VAR model and non-linear

VSTAR model. All linear IRF show the expected results of a, in most cases significant,

negative response of industrial production after a shock which worsens the conditions on

the financial markets. After 36 months industrial production is for all countries on average

0.78% lower supporting a long-lasting permanent negative effect on the real economy.

Table 6: Accumulated responses of IP based on linear VAR model after shock in FCI

AUT BEL FIN FRA GER GRE ITA NLD PRT ESP

6 m -0.29% -0.47% -0.44% -0.34% -0.67% -0.30% -0.39% -0.44% -0.39% -0.38%

12 m -0.51% -0.54% -0.88% -0.52% -1.10% -0.51% -0.57% -0.63% -0.57% -0.50%

18 m -0.66% -0.58% -1.13% -0.61% -1.24% -0.61% -0.57% -0.67% -0.65% -0.43%

24 m -0.76% -0.61% -1.29% -0.66% -1.28% -0.68% -0.56% -0.64% -0.70% -0.32%

36 m -0.88% -0.65% -1.44% -0.72% -1.30% -0.77% -0.54% -0.57% -0.79% -0.10%

Italic numbers denote statistically insignificant coefficients, Monte Carlo confidence bands, +/- 2
standard errors.

Yet, in a linear VAR model set-up, we cannot differentiate between different regimes

which may influence the outcomes. Linear models can only handle symmetric effects,

whereas a non-linear model set-up is able to capture potential asymmetric dynamics

within the financial sector-output relation. It is a priori not clear how non-linearities
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influence the relation between the financial sector and the real economy. The negative

response in a high (low) stress regime could be higher (lower) due to feed-back effects from

the real sector to the financial market which could not be taken into account adequately

by a linear model. On the contrary, allowing for regime-switching could lead to smaller

negative effects on the macroeconomy. For instance, after 6 or 12 months it may likely

be that the economy is faced by at least one regime shift or by another shock hitting the

economy. This implies that the initial shock has taken place in a regime of high stress,

but it propagates by facing different regimes. Hence, a shift to a low stress regime may

dampen the negative consequence on the real economy. In any case, different regimes may

change the results and their consideration is important for understanding the financial

market-output nexus.

Before we present the results of non-linear IRF, Table 7 shows the values of the optimized

threshold and slope parameter for the VSTAR-model. These parameters clearly vary

across countries. We also report their standard deviation in order to show their estimation

precision.

As can be seen in Figure 4, a smooth rather than an abrupt change takes place for most

countries. The optimized slope parameter which determines the transition speed is on

a moderate level. Only Italy constitutes an exception showing a rather high transition

speed from one to the other regime. The overall finding is in line with our expectation

that regime-switching in the financial market-output nexus may be rather smooth. This

becomes clear by considering a transition from a high to a low stress regime: A high

stress regime will likely not be exited abruptly but the transition may take some time.

This result is particularly important for the interpretation of the results of multi-regime

VAR or Threshold VAR models which model a sudden regime-change. As indicated by

the VSTAR model, the type of non-linearity in the financial market-output relation is

different. This may produce misleading results of abruptly swtiching models. The non-

linearities are not as strong and quick as a multi-regime VAR is able to generate. The

location parameter is also very heterogenous across countries. In most countries it is above

zero. The higher the threshold, the higher the FCI needs to be to switch to a high stress

regime. Yet, one has to be cautious with a comparison across countries. The FCIs are

country-specific which has also been shown by their different skewness parameters. Hence,

the support for the optimization problem differs and the location parameters cannot be

easily compared across countries.

Table 7: Optimized location and slope parameter of VSTAR models

AUT BEL FIN FRA GER GRE ITA NLD PRT ESP

c 2.03 2.58 -0.55 1.56 1.29 -0.59 -0.29 1.48 1.36 1.63
std.dev. 1.3115 2.2819 0.0350 0.0610 0.4194 0.0882 0.0014 0.0267 0.5392 0.0365
γ 0.50 0.50 2.20 4.11 0.50 1.43 30.00 2.09 0.5000 3.95
std.dev. 0.3915 0.5073 0.0735 0.2200 0.2338 0.1156 0.0454 0.0490 0.2638 0.1309
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Figure 4: Transition functions for selected euro area countries, VSTAR model

In the following, we present the accumulated responses of IP after a one standard devi-

ation shock in FCI took place for a non-linear VSTAR model (Table 8). The IRFs allow

for regime switching which is a reasonable scenario and neglected in some studies. The

interpretation is as follows: a shock took place either in a low or high stress regime and

the (average) response is calculated without setting future shocks to zero. It is only the

shock which has taken place in either regime and it is not the response for a high (low)

stress regime. For Germany, Austria, Belgium, Finland, the Netherlands and Portugal,

we find a negative response of IP after a shock in the high financial stress regime which

is stronger than in the low stress regime confirming non-linear dynamics in the financial

sector-output nexus. This is line with the hitherto empirical literature applying Markov

Switching models or Multi-regime VARs (see for instance van Roye (2011); Hubrich and

Tetlow (2012); Mittnik and Semmler (2013)). Except for Portugal, the responses both for

a low and high stress regime shock are smaller than for the linear VAR.

This may likely be a result of allowing for regime switching, not setting future shocks

to zero and modeling more flexible transmission mechanisms in the economy. As a conse-

quence, the regime-switching dampens the effect on the real economy, although we allow

for non-linear feedback effects of industrial production. For France and Greece, we cannot

find a negative reaction of IP after a shock in the financial market. Portugal and Spain

show the strongest negative effect in IP after the shock. This is in line with the recent

economic development of Portugal and Spain suffering dramatically from the financial

market turmoils. Surprisingly, the results of the latter country are stronger if the shock

took place in the low stress regime. In Italy the response of IP is negative for both

regimes, but it does not influence the results much in which regime the shock has taken

place. This may be explained by Italy being a country which has faced many shocks and

did not remain in a regime for a long time.
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Bijlsma and Zwart (2013) have classified countries as market-based or bank-based by us-

ing a wide-range of indicators. According to them, Germany, Austria, Spain, Italy, Greece

and Portugal belong to the latter group. France, Belgium, Finland and the Netherlands

are market-based economies. By taking the mean of each group 36 months after a shock,

the bank-based economies show a lower mean of −0.44% than the market-based countries

−0.27% after a shock in a low stress regime as well as in a high stress regime −0.85% vs.

−0.26%. This gives some empirical evidence that in banking-based economy the recovery

after a financial-market shock takes longer and has a more persistent impact on the real

economy (see Boissay et al. (2013)).

Table 8: Average of accumulated responses of IP based on bivariate non-linear VSTAR
model after shock in FCI

AUT BEL FIN FRA GER GRE ITA NLD PRT ESP

low stress

6 months 0.15% 0.28% -0.35% 0.04% -0.31% 0.18% -0.25% -0.40% -0.57% -0.61%

12 months 0.02% 0.41% -0.28% 0.01% -0.37% 0.21% -0.25% -0.50% -0.50% -0.96%

18 months -0.06% 0.46% -0.30% 0.00% -0.38% 0.16% -0.17% -0.32% -0.06% -1.13%

24 months -0.10% 0.39% -0.30% 0.00% -0.38% 0.19% -0.10% -0.30% -0.95% -1.25%

36 months -0.13% -0.43% -0.30% 0.00% -0.38% 0.17% -0.07% -0.36% -0.75% -1.48%

high stress

6 months -0.16% -0.10% -0.81% -0.12% -0.53% 0.37% -0.22% -0.58% -0.94% -0.26%

12 months -0.20% -0.16% -0.57% 0.11% -0.59% 0.33% -0.29% -0.40% -0.82% -0.69%

18 months -0.23% -0.19% -0.62% 0.11% -0.60% 0.06% -0.18% -0.19% 0.76% -0.92%

24 months -0.26% -0.20% -0.61% 0.08% -0.59% 0.43% -0.08% -0.25% -3.08% -1.04%

36 months -0.28% -0.23% -0.61% 0.10% -0.59% -0.11% 0.01% -0.28% -3.09% -1.04%

Overall, we identify regime-specific dynamics which are not as different and negative as

a one may expect and as it was found by previous studies (see, for instance Aboura and

van Roye (2013), Hubrich et al. (2013), and Holló et al. (2012)). This results may not only

come from the fact that a rather smooth change takes place, but the allowance for regime

switching and further shocks may likely dampen the negative effect over time and give us

a more realistic picture of the dynamics within economies. Yet, also the underlying time

sample may play a crucial role for the results. This issue will be discussed in the following

section.

3.3.2 Non-linearities over time

To identify potentially changing transmission and amplification mechanisms in the relation

between the financial sector and economic activity over time, first, we analyze whether

non-linearities constitute a permanent feature in that relation by means of linearity tests.

Second, we assess whether there are quantitative differences over time. To assess the

latter, we compute rolling impulse response functions (RIRF). RIRFs are an appropriate

tool to analyze the evolution of potentially altering dynamics.
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Before the non-linear model is estimated, we check whether the financial condition in-

dices and industrial production constitute indeed a non-linear relation. Rejecting linearity

is a necessary condition for estimating a non-linear VSTAR model. If we model a linear

relation by a non-linear model, we estimate an unidentified model containing nuisance

parameters that are not identified. Hence, it is crucial to ensure by means of a testing

procedure that indeed non-linearities can be detected in order to derive valid results.

We start at the beginning of 1995 and estimate the country-specific VSTAR model of

FCI and IP with increasing window sample size. Starting in 1995 aims at balancing the

trade-off between the number of observations which are necessary to reliably estimate

the VSTAR model and the time horizon for which the different VSTAR models can be

calculated. The former requires a sample period which is as long as possible.

From an economic perspective, it would be interesting to estimate the RIRFs for a

sample which ends earlier to get further insights in potentially changing dynamics. For

instance, a sample which ends before the Black Monday of 1987. Starting in 1995:01

leaves us with 180 observations for the first VSTAR model being a good compromise.

Stationarity tests, lag selection and estimation strategy are as described above. Based

on the (rolling) unit roots tests, we excluded Ireland in our analysis as the FCI series

suffers from non-stationarity over a significant time period. For some other countries, we

adjusted the sample if we observe a unit root or unstable behavior of the VSTAR model.48

We compute rolling linearity tests based on Rao’s statistic. The results of the rolling

linearity tests are discussed in the following and reported in Table 9. Belgium, Finland,

France and Portugal show highly non-linear dynamics in the financial sector-output link

over the complete rolling sample. Linearity is rejected at a 1% level of significance. For

the second group of countries, comprising of Germany, Greece and the Netherlands the

null of linearity is rejected most of the time at a 1% or 5% level of significance. There are

few exceptions for Germany and the Netherlands for which linearity can only be rejected

at the 10% level. Nevertheless, we take this as empirical evidence that also these three

countries exhibit non-linear dynamics in the financial market-macro link. Spain, Austria,

and Italy constitute the third group. Before the financial crisis break-out, we cannot reject

the null of linearity at a usual level of significance. Yet, after the collapse for Austria, Italy

and partly Spain exhibit non-linear dynamics in the financial market-output relation. The

pattern which is most clear for the latter three countries, a decrease in the p-value after

the Lehman collapse, is qualitatively identical across most euro area countries. The latter

result can be found in Table 9. The average of pre-crisis p-values is clearly higher than

for the crisis period. Hence, non-linearities become (more) evident.49 Except of Austria,

Italy and Spain, the countries also exhibit non-linear dynamics before the collapse, where

the latter group switches from linearity to non-linearity.

48The exclusions we made are reported in Table 14 in Appendix D.
49Belgium, Finland, and Greece may be declared as an exception. The p-values are extremely low

before such that a significant further drop cannot be observed.
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This result may indicate that the non-linearities in the financial-market output relation

may not be present or be weaker before the financial crisis break-out due to the drop in

the p-value afterwards.50 For most series the underlying (full sample) process appears to

be non-linear. By focussing on subsamples, this is not necessarily the case. In particu-

lar, conditional on being only in a low stress regime the interplay between FCI and IP

should be only linear. This may likely be the rational behind the switch to a non-linear

relation after the Lehman collapse. We can take away from the linearity tests that the

financial sector-output nexus does not always exhibit inherent non-linearities. There is

heterogeneity across countries. This has to be checked thoroughly. Moreover, declining

p-values from the pre-crisis to the crisis sample indicate a change in the dynamic behavior

and amplification mechanisms.

Table 9: Mean of p-values of rolling linearity tests (Rao’s statistic)

AUT BEL FIN FRA GER GRE ITA NLD PRT ESP

full sample 0.26772 0.0000 0.0000 0.00001 0.00628 0.0000 0.10902 0.00590 0.00002 0.30138

pre-crisis sample 0.35425 0.0000 0.0000 0.00001 0.00812 0.0000 0.14141 0.00774 0.00002 0.33038

crisis sample 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00389 0.0000 0.00004 0.17286

Full sample refers to 1980m1:2013m1 (exceptions see Table 14), the pre-crisis sample to
1980m1:2008m8 and the crisis sample to 2008m09:2012m12.

To investigate the evolution of non-linearities further, we compute rolling non-linear

IRFs for those countries exhibiting non-linearities over the whole sample period. Those

countries are Belgium, Finland, France, Portugal, Germany, Greece, and the Netherlands.

We leave out Spain, Italy, and Austria. The linearity tests have already shown that we

cannot detect regime-specific dynamics before the financial market meltdown. Hence,

we observe a qualitative differences with linear behavior before and non-linear behavior

after the Lehman collapse. For Belgium, Finland, France, Portugal, Germany, Greece,

Netherlands we analyze whether, although we observe non-linear behavior over the whole

sample period, quantitative differences arise in the financial market-output nexus.

Results are presented in more detail for Germany in the following. We discuss the results

of France, Greece, the Netherlands, Finland, and Belgium as well. The detailed results of

the latter countries can be found in Appendix D.51

In Figures 5 and 6, the rolling impulse response functions for Germany show a highly

interesting pattern. Before the Lehman collapse, hence, up to September 2008, a shock

in the financial sector which is represented by the ZEW FCI does not lead to a negative

50It further stands out that if linearity is rejected, the test selects lag length one of the FCI to be
the transition variable in 76%. This further confirms our conjecture that a FCI with a shorter delay
determines the regime.

51The financial sector-output nexus of Portugal shows instabilities which may come from insufficient
sample length to reliable estimate these rolling impulses or explosive behavior due to non-stationarity of
the system. Hence, we do not present those results. Recall that we test non-stationarity of the individual
series but we cannot test non-stationarity of the whole VSTAR system as the econometric theory is not
developed so far. Nevertheless, also these results confirm once more the high sensitivity with respect to
the actual sample (size).
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response of industrial production in Germany. Neither the shock in the low nor in the

high stress regimes – as they are defined here by the model – resulted in a response which

is persistent or even negative. The financial crisis looks like a structural break in the

financial sector-output relation. The dynamics are clearly changing after the financial

sector is under strain as a results of the Lehman breakdown. As from September 2008

on, the response of IP is clearly negative and economic activity persistently remains on

a lower level. The dot-com bubble, an event which also puts the financial market in

Germany under pressure, for instance, does also not result in remarkable and persistent

consequences on the real economy. From that perspective, the financial crisis 2008 appears

as an “outlier event”.

Figure 5: Rolling IRFs of IP, Germany, low stress regime

To get more quantitative insights into the results, we calculated the mean of all rolling

IRFs for 6,12,18,24 and 36 months after the initial shock has taken place. We analyze

the results for three different periods: the full sample 1980:01 – 2013:01, the pre-crisis

sample 1980:01 – 2008:08 and the crisis sample 2008:09 – 2013:01. We compare the

mean of the RIRFs across regimes. Surprisingly, the mean after a shock in the low stress

regime is lower for the full and the pre-crisis sample. This indicates that in a low stress

regime the consequences for the real economy were more negative which contradicts the

results of the hitherto theoretical and empirical literature. After the Lehman breakdown,

the crisis period, the IRFs show the expected and in the hitherto literature described

results of asymmetric significant, negative responses across high and low stress regimes.

An interpretation of this result could be, that first, before the crisis non-linearities in

the financial-sector output link may not be as prominent as they are after the Lehman

collapse. Second, the estimation of low vs. high stress need to be qualified. Before the

Lehman collapse there may have been not such “high” stress situation such that strong
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Figure 6: Rolling IRFs of IP, Germany, high stress regime

amplification mechanisms have been triggered.

Table 10: Average over accumulated response of IP after 1 std.dev. shock in FCI,
Germany

full sample pre-crisis sample crisis sample
low stress high stress low stress high stress low stress high stress

6 months -0.27% -0.06% -0.22% 0.13% -0.44% -0.66%
12 months -0.36% -0.09% -0.28% 0.13% -0.62% -0.84%
18 months -0.39% -0.10% -0.30% 0.13% -0.67% -0.88%
24 months -0.39% -0.10% -0.31% 0.13% -0.68% -0.88%
36 months -0.40% -0.10% -0.31% 0.13% -0.68% -0.88%
Full sample refers to 1980m1:2013m1, the pre-crisis sample to 1980m1:2008m08 and the crisis
sample to 2008m09:2013m1.

This effect has not been discussed in the literature. One may ask, whether the financial

crisis is only a larger shock or whether the amplification mechanisms are changing after

the Lehman collapse or both. Based on our results, the shock propagation and dynamics

have clearly changed. Yet, the shock size is always one standard deviation, which is

significantly increasing in the course of time (see figure 7). This roughly holds for the

other countries as well (see Figure 12). What is most clear is that the shock size increases

after the Lehman breakdown.

To analyze whether the change in the dynamics and intensity of the negative response of

the real economy is purely driven by the size of the shock, we also calculate RIRF where

we control for the shock size, i.e. we normalize the shock size to be 0.2348 for all RIRFs.

This is the mean of the (one standard deviation) shock of the rolling window sample from

1995:01 to 2013:01 for Germany.

As can be seen from Figures 8 and 9, it is obviously not only the size of the shock
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Figure 7: Shock size of FCI, Germany

Figure 8: Rolling IRFs of IP, normalized shock, Germany, low stress regime
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Figure 9: Rolling IRFs of IP, Germany, normalized shock, high stress regime

which matters. There have been also systematic changes in the amplification mechanisms

compared to normal times. Although we control for the size of the shock, the dynamics

clearly change after the Lehman breakdown independent of the regime in which the shock

took place. This is in contrast to results derived by Benati (2013). He argues that financial

crises results in very similar macro fluctuations as they are in normal times, but only the

size of the shock matters. Yet, Benati (2013) does not account for a stochastic regime-

switching, hence non-linear behavior, which most likely does not model the dynamics

after the Lehman shock adequately. The sample-specific means confirm those derived

with non-normalized shocks (see Table 11).

Table 11: Mean of accumulated response of IP after normalized shock in FCI, Germany

full sample pre-crisis sample crisis sample
low stress high stress low stress high stress low stress high stress

6 months -0.26% 0.00% -0.24% 0.14% -0.33% -0.49%
12 months -0.34% -0.03% -0.31% 0.15% -0.47% -0.62%
18 months -0.37% -0.04% -0.33% 0.15% -0.51% -0.65%
24 months -0.38% -0.04% -0.34% 0.15% -0.51% -0.66%
36 months -0.38% -0.04% -0.35% 0.15% -0.51% -0.65%
Full sample refers to 1980m1:2013m1, the pre-crisis sample to 1980m1:2008m8 and the crisis sample
to 2008m09:2013m1.

The results obtained hold for France, Finland, and Belgium as well. We present the

normalized shock response in Appendix D. After 2008:09 the response of industrial pro-

duction is clearly negative although we control for the shock size, whereas it varies around

zero before. This confirms our conclusions drawn before. For Greece and the Netherlands

the results are not as unambiguous as for the latter countries. Yet, we observe also here

changing dynamics after Lehman collapse.
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First, the stronger amplification mechanisms may arise after the Lehman collapse, de-

scribing asymmetric behavior in the financial sector-output link which might have not

been present before. Second, the Lehman breakdown may constitute a structural break

in the link between the financial sector and economic activity making it necessary to work

with non-linear models. The “outlier event” Lehman brothers and the following Euro crisis

could also constitute a new situation in the financial sector-output nexus which prevails.

This is also confirmed by following Figure 10 which shows the value of the location pa-

rameter over time. The value remains on a low level before it rises strongly after the

financial crisis break-out. The optimized location parameter for the other countries can

be found in the Appendix D. The pattern, that there is an increasing threshold value, is

confirmed for the analyzed countries. In contrast to Germany, the threshold value is even

further increasing recently.

The outcomes lead to the question whether we really capture “high” financial stress

before or whether the amplification mechanisms were weaker. As to the first point, we

can take a look at the location parameter. For Germany, France, the Netherlands, and

Belgium it remains on a rather low level before the Lehman collapse, whereas it is al-

ready quite high in Finland and Greece in the 90s. As to the second point, the weaker

amplification mechanism before the Lehman break down, this is also likely but cannot be

explored here further because of a lack of detailed data.

Figure 10: Optimized location parameter VSTAR model, Germany

We suggest that our findings are in line with the financial cycle interpretation in the

sense of Jordà et al. (2011) and Schularick and Taylor (2012): events leading to a strong

economic breakdown as consequence of a financial market crisis are related rather to a

financial cycle which has a low frequency and hence, occur rarely. The hitherto empirical

finding – a shock in the financial sector leads to a stronger negative effect on the real
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economy in a high “stress” regime than in a low one – has to be interpreted with more

caution. This is in particular important for short samples. The negative output effect

may not always be present although we are in a model-defined “high stress” regime.

The difficulty is to find out what kind of “high stress regime” leads to such negative

consequences. Thus, it is not only the difficulty to differentiate between high and low

stress regimes but also to identify relevant (for the real economy) stress regimes.

4 Conclusion

We confirm the relevance of non-linearities in the financial sector-output relation by a

Vector STAR model based on the data sample from 1980:01 to 2013:01 by using new

Financial Condition Indices. It appears to us that an important clue for a loss of stability

can be found in the stability of the banking system. That is why we have constructed

new indices.

In most countries, a shock in the financial market leads to a long-lasting negative re-

sponse in economic activity which is regime-dependent. Yet, the negative response is not

as pronounced as it is in other studies. This may first result from regime changes taking

place rather smooth than abrupt. Shocks in the presence of smooth regime-changing may

be dampened so that the negative effect on economic activity is weaker. Second, the

outcomes hinge centrally on the sample period. We show that dynamics in the financial

market-macroeconomy link vary over time in the euro area countries. Linearity cannot be

rejected for some euro area countries over time questioning non-linearities in the financial

sector-output nexus as unambiguous feature. Declining p-values point towards increasing

importance of non-linearities with the financial crisis break out. Even if linearity is re-

jected, the negative output effect typically observed is not always present. In particular,

it is not continually found before the Lehman collapse, although we are in a model-defined

high stress regime. This suggests that events leading to a strong economic breakdown are

rather related to a financial cycle which has low frequency and hence, occur rarely. The

difficulty is to determine what kind of high stress regimes lead to such stronger amplifi-

cation. One has to differentiate not only between high and low stress regimes but also to

identify relevant stress regimes (for the real economy) and their amplification mechanisms.

Yet, we do not set-up a complete structural model in the empirical sense but describe in

a bivariate non-linear VSTAR model the connection between financial market conditions

and the real economy. As the link between both is still not fully understood in theory, it is

important for model builders to have some empirical insights in order to better understand

the dynamics.
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A The Numerical Procedure

For the numerical solution of our dynamic decision problem we employ a new procedure.

Usually one uses DYNARE or Dynamic Programming to solve models such as presented

in section 2, see Grüne and Semmler (2004). DYNARE linearizations work with first

or second order approximation and eliminates the non-linearities. Though DP may be

superior, but its numerical effort typically grows exponentially with the dimension of

the state variable. Hence, even for moderate state dimensions it may be impossible to

compute a solution with reasonable accuracy. A remedy to this problem can be obtained

by using nonlinear model predictive control (NMPC), which is the method we use in this

paper, see Grüne et al. (2013). Instead of computing the optimal value function for all

possible initial states, NMPC only computes single trajectories.

In order to describe the method, let us abstractly write the dynamic decision problem

as

maximize

∫ T

0

e−ρt`(x(t), u(t))dt,

where x(t) satisfies ẋ(t) = f(x(t), u(t)), x(0) = x0 and the maximization takes place over

a set of admissible decision functions. By discretizing this problem in time, we obtain an

approximate discrete time problem of the form

maximize
T∑
i=0

βi`(xi, ui)dt, (15)

where the maximization is now performed over a sequence ui of decision values and the

sequence xi satisfies xi+1 = Φ(h, xi, ui). Here h > 0 is the discretization time step,

β = e−ρh and Φ is a numerical scheme approximating the solution of ẋ(t) = f(x(t), u(t))

on the time interval [ih, (i + 1)h]. For details and references in which the error of this

discretization is analyzed we refer to Grüne et al. (2013).

The idea of NMPC now lies in replacing the maximization of the above large horizon

functional, where we could have T ⇒ ∞, by the iterative maximization of finite horizon

functionals

maximize
N∑
k=0

βi`(xk,i, uk,i)dt, (16)

for a truncated finite horizon N ∈ N with xk+1,i = Φ(h, xk,i, uk,i) and the index i indicates

the number of the iteration, cf. the algorithm below. Note that neither β nor ` nor Φ

changes when passing from (15) to (16), only the horizon is truncated.

Problems of type (16) can be efficiently solved numerically by converting them into a

static nonlinear program and solving them by efficient NLP solvers, see Grüne and Pannek

(2011).

Given an initial value x0, an approximate solution of (15) can now be obtained by
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iteratively solving (16) as follows:

(1) for i=1,2,3,. . .

(2) solve (16) with initial value x0,i := xi and denote the

resulting optimal control sequence by u∗k,i
(3) set ui := u∗0,i and xi+1 := Φ(h, xi, ui)

(4) end of for-loop

This algorithm yields an infinite trajectory xi, i = 1, 2, 3, . . . whose control sequence

ui consists of all the first elements u∗0,i of the decision sequences for the finite horizon

subproblems (16).

Under appropriate assumptions on the problem, it can be shown that the solution (xi, ui)

(which depends on the choice of N above) converges to the correct solution of (15) as N →
∞. The main requirement in these assumptions is the existence of an equilibrium for the

infinite horizon problem (15). If this equilibrium is known, it can be used as an additional

constraint in (16), in order to improve the convergence properties. However, recent results

have shown that without a priori knowledge of this equilibrium this convergence can also

be ensured, see Grüne et al. (2013), and this is the approach we use in the computations

in this paper.

B The Data

Figure 11: FCIs of selected euro area countries

In Table 12 follows a brief description of variables used to extract the ZEW FCIs di-

vided into three groups, namely, the banking sector (variables related to the money and

interbank market, credit conditions and constraints, balance sheet structure of banks,

and bank’s profitability situation), security market and foreign exchange market. We also
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report the transformation which were used to make the series stationary, the native fre-

quency, the source (D=Datastream; ECB=European Central Bank), the first observation

if the series is a euro area aggregate and not country-specific and a note if the series is a

euro area (EA) aggregate.
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C Results from unit root testing

Table 13: Unit root tests

test test-stat. 5% crit.-val. test-stat. 5% crit.-val.

ERS DF-GLS
ip aut

-0.395 -1.942
fci aut

-3.359 -1.942

ERS point-optimal 0.638 3.258 1.120 3.259

ERS DF-GLS
ip bel

-3.981 -1.942
fci bel

-2.566 -1.942

ERS point-optimal 0.114 3.258 2.179 3.259

ERS DF-GLS
ip fin

-0.865 -1.942
fci fin

-2.901 -1.942

ERS point-optimal 0.231 3.259 1.564 3.259

ERS DF-GLS
ip fra

-3.648 -1.942
fci fra

-3.351 -1.942

ERS point-optimal 0.351 3.259 1.285 3.259

ERS DF-GLS
ip ger

-5.627 -1.942
fci ger

-3.958 -1.942

ERS point-optimal 0.352 3.259 0.761 3.259

ERS DF-GLS
ip gre

-2.132 -1.942
fci gre

-2.442 -1.942

ERS point-optimal 0.012 3.259 2.480 3.259

ERS DF-GLS
ip ire

-31.178 -1.942
fci ire

-0.417 -1.942

ERS point-optimal 0.113 3.259 11.394 3.259

ERS DF-GLS
ip ita

-3.675 -1.942
fci ita

-1.986 -1.942

ERS point-optimal 0.628 3.258 3.630 3.259

ERS DF-GLS
ip nld

-1.054 -1.942
fci nld

-3.721 -1.942

ERS point-optimal 0.236 3.259 0.934 3.259

ERS DF-GLS
ip prt

-0.542 -1.942
fci prt

-1.437 -1.942

ERS point-optimal 0.184 3.259 5.126 3.259

ERS DF-GLS
ip esp

-0.951 -1.942
fci esp

-1.188 -1.942

ERS point-optimal 0.638 3.259 6.094 3.259
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D Non-linearities over time

Table 14: Excluded time periods for rolling linearity tests and IRFs

Excluded time periods due to unstable results

AUT -

BEL 1995M01–1998M12, 2008M09 – 2009M02, 2009M06, 2011M08 – 2013M01

ESP 2011M10 – 2013M01

FIN -

FRA 2008M09 – 2008M11, 2011M11

GER 2008M09 – 2009M01

GRE 1995M01 – 1998M01

ITA 1995M01 – 1995M04, 1995M06, 2011M12, 2012M04

NDL 2008M09 - 2008M11, 2009M04

PRT 2011M08 – 2013M01

Figure 12: Shock size of FCI
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Figure 13: Rolling IRFs of IP, France, normalized shock, low stress regime

Figure 14: Rolling IRFs of IP, France, normalized shock, high stress regime
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Figure 15: Optimized location parameter VSTAR model, France

Figure 16: Rolling IRFs of IP, Greece, normalized shock, low stress regime
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Figure 17: Rolling IRFs of IP, Greece, normalized shock, high stress regime

Figure 18: Optimized location parameter VSTAR model, Greece
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Figure 19: Rolling IRFs of IP, Netherlands, normalized shock, low stress regime

Figure 20: Rolling IRFs of IP, Netherlands, normalized shock, high stress regime
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Figure 21: Optimized location parameter VSTAR model, Netherlands

Figure 22: Rolling IRFs of IP, Finland, normalized shock, low stress regime
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Figure 23: Rolling IRFs of IP, Finland, normalized shock, high stress regime

Figure 24: Optimized location parameter VSTAR model, Finland
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Figure 25: Rolling IRFs of IP, Belgium, normalized shock, low stress regime

Figure 26: Rolling IRFs of IP, Belgium, normalized shock, high stress regime
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Figure 27: Optimized location parameter VSTAR model, Belgium
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and Timo Teräsvirta, “Thresholds and Smooth Transitions in Vector Autoregressive

Models,” Research Paper 2013-18, CREATES 2013.
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