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Abstract

Sectoral heterogeneity is crucial to address several economic questions. This paper provides a
detailed mapping of sectoral production possibility frontiers, using different nesting structures and
levels of aggregation (primary, secondary, tertiary activities and energy-intensive firms). Elasticities
of substitution between capital, labour and energy are identified by employing an international multi-
sector dataset, accounting for biased technological change and normalising the production function to
clusters of observations. Complementarity dominates, with the noteworthy exception of the capital-
labour composite, close to Cobb-Douglas. I also present some stylized facts relating substitution

elasticities to sectoral characteristics.
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1 Introduction

The estimation of sectoral production functions is relevant for several economic issues, from environmen-
tal sustainability of economic growth to the analysis of structural change and productivity. Clear-cut
differences exist across sectoral groups of firms with respect to product features, production technology
and business structure. A strand of macroeconomic research puts sectoral heterogeneity at the root
of the structural change experienced by advanced economies in the last century. Besides differences in
income elasticity of demand characterising sectoral goods, the rise and fall of the industrial sector has
been due to sector-specific technological features, as higher total factor productivity and a larger scale
of production compared to agriculture and services (Buera and Kaboski, 2012; Duarte and Restuccia,
2010). Another field which emphasises sectoral heterogeneity is the study of the environmental sustain-
ability of economic growth. The industrial sector employs production technologies that have a higher
pollution and natural resource intensity (e.g. chemical processes, furnaces, high-temperature processing)
compared to lighter business activities as banking, accommodation and education services. Besides factor
shares, the cross-price elasticity of substitution is a sectoral characteristic that has great importance in
the literature, because the cost of environmental policies (taxes and quantity restrictions) in terms of
output increases with the degree of complementarity of natural resources in production. The presence of
sectors with a low intensity of natural resources and a degree of input substitution relieves such costs.
Under an endogenous technological change framework, Bretschger and Smulders (2012) argue that the
presence of highly innovative sectors that have complementarity between natural resources (or pollution)
and other factors of production is a potential threat for long-run sustainability. If this was the case,
resource scarcity would reduce the profitability of sectors with low flexibility in production and for those
firms, investment in innovation would eventually dry up.

This paper delivers empirical evidence on production technology characteristics that sectors have in
modern economies, with a special focus on elasticities of substitution between production inputs as capital,
labour and energy. I provide a mapping of sectoral production possibility frontiers (PPFs), estimated with
an international panel dataset of OECD economies and a quite detailed level of disaggregation. Jorgenson
and Timmer (2011) recommend to dig into sectoral disaggregation because even the classic sectoral
breakdown into primary, secondary and tertiary sectors is inaccurate when it comes to productivity.
Whereas a large part of services has a sluggish productivity dynamics, an important fraction of tertiary
firms (e.g. distribution services) does not differ much from industrial firms.

The literature on estimating PPFs spans over several decades and I refer to the extended surveys in
Barker et al. (1995) and Chirinko (2008) for a detailed review. Surprisingly enough, even if the literature
is extremely mature there is still need for further work. First of all, most studies have been interested
in aggregate production functions and relatively little work has been done on the estimation of sectoral
PPFs. Besides the interest arising from the strands of research mentioned above, high demand for this
type of work comes from quantitative multi-sector general equilibrium models (e.g. Otto et al., 2008;
van der Mensbrugghe, 2010), because the choice of parameter values describing production technologies
usually relies on empirical work. By screening the literature in search of estimates for calibration of this
type of models, I find that only some studies use a functional form that satisfies the regularity conditions
they require (see Perroni and Rutherford 1995), like the CES production function. Moreover, the level
of aggregation is important: model calibration needs to rely on data sharing similar underlying extensive
margin (Browning et al., 1999). A recent study using sectoral data is Koesler and Schymura (2012). The
paper presents estimates of sectoral Constant Elasticity of Substitution (CES) functions performed with
non-linear estimation and alternative nesting structures, but factor-augmenting technological change is
omitted and the PPF is identified without using factor demand equations.

In case the numerical or analytical model accounts for factor-augmenting technological change, good



calibration standards - see Hansen and Heckman (1996) and Cooley (1997) for a discussion - require a
satisfying match between the theoretical specification and the supporting empirical model. Only part of
empirical studies in the literature embeds factor-biased technological progress. For calibration purposes,
it is not recommended to use results from econometric work that only accounts for factors substitution if
the model includes factor-augmenting technological change: the supporting econometric model should as
well separately identify the marginal rate of technical substitution and the effect of technological change
on inputs efficiency. The omission of biased technological progress might as well lead to flawed estimation
results. Leon-Ledesma et al. (2013) show why neglecting factor-augmenting technological change in a
CES production function estimation generates point estimates that are closer to the Cobb-Douglas value
of one. Therefore, a general production function specification must be used in applied work even if dealing
with biased technological change is not a straightforward task'.

Overall, the set of available empirical work using both sectoral data, CES production functions and
factor-augmenting technology is tiny. The most relevant paper is the work by van der Werf (2008),
who uses a general CES specification with factor-augmenting technological change. In his dataset the
sectoral coverage is not extensive and the parameters of the production function are identified by first
differencing. The application of first differences has the unpleasant side effect to remove important long-
run information and to make the interpretation of the estimated elasticity less clear, as also remarked in
Antras (2004).

My work contributes to the literature by providing estimates of sectoral production functions using a
methodology that combines the points just mentioned and improves the identification of technology by
normalising the production function (Leon-Ledesma et al., 2010). I obtain compelling empirical results
about input substitution by using enough data variability and a general CES specification. The main
data source is the World Input-Output Dataset (WIOD, Timmer (2012)), a multi-sector panel database
with harmonised data for several countries. I prefer the panel estimation to the time-series approach of
Antras (2004), Leon-Ledesma et al. (2010, 2013) and Herrendorf et al. (2013), because the joint use of
cross-section and time-series variability improves the identification of input substitution and technological
change. The estimation of the manufacturing sector’s production function using only observations of the
US manufacturing sector over time relies on the assumption that Italian, German, French and Canadian
data for the same sector type are not informative to identify the manufacturing firm’s production function.
As T am interested in the general properties of the manufacturing sector’s technology, it could be argued
that the aggregate production function is better identified by looking at the variability across economies
sharing similar technologies but having different characteristics. We need observations along the same
isoquant and, this means, we need international data for the same sector type. Moreover, I apply the
normalisation of the CES production function, which has several advantages for the case of interest.
First, normalisation allows to properly identify all parameters of a CES specification with technological
change and the normalised function does not have the unpleasant property that scale and distribution
parameters are actually depending on the elasticity of substitution. Second, thanks to normalisation I
overcome the underidentification problem well known in the literature and all coefficients in the resulting
system of equations can be identified without using first-differences. Third, normalisation reshapes data
variability: observations are normalized to a the collection of sectoral means (a representative country)
and the separation of panels along the sector type dimension is less rough in terms of information loss.

LCarraro and De Cian (2012) is an attempt to account for the endogeneity of biased technological change. Using country
data, they develop a framework that includes input substitution with a quite detailed representation of technological change,
introducing some auxiliary variables to capture the microeconomic decisions of technology adoption, e.g. R&D, education
expenditures and equipment and machinery imports. This is an interesting approach because technological change is an
elusive concept, an unobserved factor that should be represented in more details in econometric models. Alternatively,
technological change can be treated as a time varying unobserved component and estimated with state-space models, as
in Jin and Jorgenson (2010). They adopt a translog model, which is not fully compatible with applied models using CES
functions.



The focus is on input elasticities because the sample has a quite short time coverage (14 years) and
the identification of long-run technological trends might be unsuccessful. The elasticity of substitution
is considered to be quite stable over time and this analysis takes a snapshot of input substitution in
the last two decades. Innovation and cross-country differences in technological development are only
taken into account to correctly identify the elasticity of substitution. I find that production inputs
are complements in most sectors and under several nesting structures, in line with previous studies,
with a notable exception. The cross-price elasticity of substitution between capital and labour is close to
unity, suggesting that value added sectoral production functions might be represented by a Cobb-Douglas
specification.

Furthermore, I provide estimates for different levels of data aggregation. The WIOD dataset has a
quite detailed level of sectoral disaggregation, up to two-digits, but some research questions call for a
more aggregated grouping of firms according to characteristics as energy intensity or the type of output
produced (i.e. raw materials, manufacturing goods or services). Not less important is the estimation of
a classic economy-wide production function. When shifting the focus from one level of aggregation to
another, a question comes natural: how does the elasticity of substitution depends on the level of aggre-
gation? A strand of research with a theoretical focus has studied the microfoundation of the aggregate
production function, explaining how particular statistical distributions of individual firms’ production
functions result in functional forms that are equivalent to Cobb Douglas and CES technologies (e.g.
Jones (2005)). Under a more applied perspective, the works of Sato (1967) and, more recently, Oberfield
and Raval (2012), explain the relationship between the aggregate elasticity of input substitution and the
corresponding parameters of micro-production technologies. The aggregate elasticity of substitution is
a weighted average of sectoral elasticities of substitution - the intensive margin - and the elasticity of
demand between sectoral goods - the extensive margin. I find that the estimated elasticities for macro-
sectors lie within the range of estimates for subsectors, a hint that the extensive margin plays a little role
compared to input share adjustment within narrow sectors.

The results of this paper give quite strong evidence for a below unit elasticity in the economy-wide
production function, with the exception of the value added composite that maintains a unitary elasticity.
By grouping sectors in macrosectors, i.e. primary/secondary /tertiary and energy-intensive/low energy use
sectors, I obtain elasticity values that are quite similar across macrosectors. For significant heterogeneity
in input substitution to appear, the level of disaggregation has to be higher. This result is relevant for
building multisector models and it provides evidence for the modelling assumption of identical elasticities
across broad sectoral groups. Moreover, the fact that the group of energy-intensive firms does not have
a different degree of input substitution compared to the rest of the economy is particularly crucial for
environmental policy.

The article is organised as follows. Section 2 is about the econometric methodology. After a brief de-
scription of the economic model, I introduce the theoretical underpinnings of the normalisation approach
and explain how this is used to obtain a collection of panel datasets for different sectors. Estimation

method and results are presented and discussed in Section 4. Section 5 concludes.

2 Econometric Strategy

In this section I present the identification strategy underlying the estimate of the sectoral elasticity of
factor substitution, that is the percentage response of factor shares to input price changes in different coun-
tries, and factor-augmenting technological progress, shifts in factors efficiency that affect their marginal

productivities. The econometric model is derived from the standard firm’s maximisation problem. Firms’



production is described by CES technology? with factor-augmenting technological change and three in-
puts of production are employed, capital, labour and energy. Firms behave optimally in a competitive
environment and substitution elasticities between inputs of production and factor-augmenting coefficients
are identified through conditional factor demands obtained by Shephard’s lemma. The non-normalised
CES production function with capital K, labour L and energy E for one sector has the form:
o—1 o—1 o—17%52T

Y = [n(AxK)7 + w(ALL) + (1 -7 — w)(AEE)T} t (1)
where 7 and w are share parameters and Ax, Ay and Ag are factor-augmenting coefficients of cap-
ital, labour and energy. After the derivation of conditional factor demands by Shepard’s lemma and
rearranging, the resulting equations for factor shares are

K P

ln? = olnr+ (0 — 1)lnAg + olné, (2)
L P

ln? = olnw+ (0 —1)InAr + aln%, (3)
E P

In= = oln(l—-7m—w)+(c—1)nAg+ oln—-, 4)
Y Pg

where Py is the price of output and Pk, Pg and w are input prices. The use of energy complicates
the interpretation of the model because gross output requires the use of intermediate goods, which are
omitted here. In line with several papers in the literature I do not include intermediate goods, but I
make the underlying assumption explicit. For model (2) - (4) to be a reliable foundation of the empirical
analysis, intermediate goods should have a unitary elasticity of substitution with the capital-labour-
energy composite in the production of gross output. Changes in relative prices of these inputs should
induce little variation in the share of intermediate goods use?. In econometric terms, this is a classic case
of omitted variable bias and capital, labour and energy prices are required not to be correlated with the
intermediate goods share.

In the following, systems of factor demands - with one or two level functions - are going to be
normalised to improve the identification of the PPF. Normalisation of the production function in empirical
work needs a specific definition of the normalisation point in terms of available data. Before explaining
how I normalise the panel dataset, I shortly digress on the meaning of normalisation and the implications
for model (2) - (4). At the end of this section, the model is extended to the case of nested production

functions.

2.1 Normalisation

Equation (1) is a constant elasticity of substitution production function in the most general formulation,
given that the scale parameter - total factor productivity - is included in the share parameters thanks
to the homogeneity of degree one of the function. Still, parameters in (1) may lack a clear economic
interpretation. de La Grandville (1989) and Klump and de La Grandville (2000) point out that some
parameters are in fact dependent on the elasticity of substitution o if variables are not normalised to a

2 Factor demands derived from CES functions are less general than alternative approaches (i.e. translog ) and this is
not the best choice for an investigation on general properties of aggregate PPFs, but they have the advantage to satisfy
regularity conditions required by applied economic modelling.

3 See Herrendorf et al. (2013) for a more detailed explanation of the conditions for a value added composite to exist.
Even if here I am dealing with a capital-labour-energy composite and not a value added composite, the same reasoning
holds.



specific reference point. They show that the scale and distribution coefficients of a non-normalized CES
production function are dependent on the elasticity of substitution, so that = and w in (1) change as o
varies. From a theoretical viewpoint, the normalisation of the production function is recommended for
comparative static exercises on ¢ to make sure that an isoquant changes its curvature without shifting
(the isoquant stays anchored to the normalisation point). As a result, a clearer economic interpretation
can be attributed to each parameter in the normalised function®.

The production function (1) in normalised form is:

=1 o1 e=1735%7
Y _ A K v A L T A E g
v o= [”0 <A§7> +wo (Afofo) + (1 =70 —wo) (Aif) } : (5)

given the normalisation point (Yy, Axo, Aro, Aro, Ko, Lo, Eo, wo, Pro, Peo). Similarly to the result in (2)-

(4), the system of conditional factor demands for capital, labour and energy is:

lng = (0’ — l)lTLAK +o (111% + 1117'('0), (6)
ln% = (c—1)InAL+o (ln%’ + lnwo) ) (7)
E = (0 indg+o (B +1n(1 - m - 8)), ®)

where bar variables are normalized to the baseline point.

A well known problem in the literature (van der Werf, 2008; Carraro and De Cian, 2012) is that
the estimation of system (2) - (4) cannot identify all unknown parameters o, Ax, Ar, Ag,w and 7w. The
normalised system (6) - (8) has an advantage compared to system (2) - (4). When necessary, first-
differencing may provide a solution by eliminating the distribution parameters w and 7 but the drawback
is to limit the estimation results to the short-run. Normalisation of the production function (1) is able
to make the system of factor demands fully identifiable, because share parameters have here a clear

interpretation. The distribution parameters wg and 7 in (5) are known, because they are the capital and

. . . . L . .

labour shares at the normalisation point (i.e. wg = ol +p;’§E§ r—— Ko)' The first term in the right hand
side of (2)-(4) is constant and it may be added to relative prices (see (6) - (8)), meaning that for every
observation the relative input price is adjusted to the corresponding factor share at the normalisation
point. As a result, there are four unknown parameters o, inAg, InAy, and InAg that may be correctly

identified without additional transformation applied on system (6)-(8).

2.2 Normalisation with Panel Data

The next step is to set a data counterpart for the normalisation point. Previous work applying nor-
malisation (Leon-Ledesma et al., 2011, 2013; Herrendorf et al., 2013) has used time series data for one
country - United States - and defined the normalisation point as the sample average over time. For the
case of panel datasets the more complex data structure leaves room for alternative tuning of the nor-
malised functions. The purpose of my study is to retrieve parameters of the sectoral production function
describing sectoral PPFs. Normalising by time sample averages for each country-sector observation would
rather be appropriate to estimate country-sector specific production functions and not general sectoral
PPFs. Intuitively, observations that are represented by the same production function should have the

same normalisation point.

4 In the field of computational general equilibrium models, the normalised production function is called calibrated share
form and this method is used to facilitate model calibration. At the baseline point the economy is in the benchmark scenario
and the calibrated parameters should make the model replicate that reference point.



Therefore, I choose to normalize the dataset with an average representative country, a vector of J
elements containing average values for each sector type j € {1,.., J}. Each observation is anchored to the
relative sector-specific normalisation point for the first sample period. Alternatively, the dataset could
be normalized with respect to one specific country, e.g. United States. In this case every Manufacturing
sector observation has to be adjusted using the data for United States, the same for Agriculture and so on.
If the chosen country is the most advanced in the world technology frontier the interpretation of estimated
parameters would be clear, but with sectoral data it is not straightforward to find one country that is a
technological leader in all sectors in the dataset. A more “anonymous” cross-section normalisation seems
appropriate. Moreover, factor shares show low variability over time when data are aggregated by sector
type and it produces more stable capital, labour and energy shares at the normalisation point. About the
time position of the normalisation point (here equal to tg), data show quite constant factor shares over
the sample period so that the time dimension is not important for the implementation of normalisation.
Following the literature using normalisation in applied work, the normalisation point is averaged over
time.

Finally, notice that is is not necessary to find data for the normalisation of factor-augmenting coeffi-
cients Ay, for input h, because model (6)-(8) allows to estimate the normalised level of technology instead
of the original parameter in (1). In fact, the normalisation of technology would not be straightforward
because of its ambiguous nature, besides lack of data information and measurement issues. Therefore,
the estimation results for factor-augmenting coefficients will measure the country relative position in the

world technology frontier, the distance from the average level.

2.3 Nested Production Functions

Alternative specifications are important to provide results that are compatible with the specification of
production structures commonly used in applied economic modeling, but the econometric strategy is not
affected by nesting, nor aggregation. I consider four nesting cases: a one-level function and three two-level
functions. As a major difference, the one-level function restricts the cross-price elasticity of substitution to
be the same for alternative pairs of inputs, differently from the two-level nested functions. The estimation
of different nesting specifications is mostly of interest for the calibration of specific numerical models and
there is no convincing methodology to establish which nesting structure better fit the data®.

Systems of factor demands for production functions with alternative nesting structures are easily
derived thanks to the weak separability of the CES function. For instance, the normalised CES function
with KL — F structure has the following specification:

KL,E
“ KL,E—1 N °KLE-'| ok g1
Y _|KLE VA VA )\ 9KL.E _gKL,E E E\ °KL,E
Yo T [70 (AVAD VAO) +(1=mg )(AEO Eo) ’ (9)
with the value added term defined as:
IK,L
R ok, L1 A KLYl 5g -1
VA _ K,L K o K,L L o ’
= [ (R 4) R a0 (s ) R (10

As in van der Werf (2008), the economic model used to estimate the nesting structure KL — E is:

5Previous attempts to use a statistical criterion to select the nesting structure that better explain data (e.g. Kemfert
(1998) and van der Werf (2008)) are not convincing. They compare factor demand systems with alternative nesting
structures based on the R? statistics. However, these econometric models have different dependent variables, which makes
the R? not suitable for such purpose.
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Equations (12) and (13) include the share of value added over total output, given normalised prices
and quantities. Differently from van der Werf (2008), rearranging conditional factor demands as in (12)-
(13) still does not help to overcome the problem of having unobservable variables of factor composites,
i.e. VA, in the solution of profit maximisation given (9) - (10). In fact, equations (12) and (13) require
to normalise separately prices and quantities of factor composites, which are not observed, so that I
need to average these variables jointly and to consider only the value of the factor composite. This
shortcut leads to measurement errors, due to the fact that averaging the value composite is not equal to
the product of normalised prices and quantities (Py 4V A # Py 4V A). Nevertheless, the concern about
potential estimation bias is limited if such error term, i.e. the covariance between prices and quantities,
does not generate spurious variability across observations for each sector type. Over time, the covariance
between prices and quantities in the same sector would be altered ouly if deep changes in the market
structure occurred. However, the main assumption throughout the paper is that the PPF of each sector
- which depends on the market structure - is constant over the sample time period, besides effects of
technological change. The same holds for cross-country heterogeneity. As a result, consistently with the
general working assumptions, I argue that the error introduced with the normalisation of factor composite
variables does not generate bias in the estimation.

3 Dataset Description

My dataset covers 27 economies and 33 sectors, listed in Table 5 in the Appendix, for the period 1995-
2008 and it is constructed with data from the World Input-Output Dataset (WIOD, see Timmer (2012))
and the IEA Energy Prices and Taxes database®. The WIOD provides information about output, input
quantities, wages and capital prices for all sectors, based on the NACE classification (Rev 1.1). In
particular, the WIOD contains data for quantities of energy use disaggregated by several energy carriers
(26 energy carriers). The unit of measure for energy is tonnes of oil equivalent (toe). Labour price
is the total labour compensation divided by labour units (total hours worked by individual engaged).
The capital stock price is constructed using WIOD data and output is the real gross total output. The
price of output at time t is considered the numeraire for each sector-country observation. All nominal
variables have been harmonized with appropriate exchange rates for prices and expressed in 1995 US

5The WIOD dataset includes data up to 2009 but the last year shows extreme drops in economic activity due to the
aftermath of the 2007-2008 financial crisis and it is regarded as an outlier.
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Figure 1: Factor Shares in the Disaggregated Dataset

Note: Sector labels are explained in Table 5 the Appendix

dollars. As no data on the price of energy composite are available from official sources, I construct energy
price aggregates at country level by combining WIOD energy quantities with prices provided by the IEA
dataset (the procedure is explained in more details in Appendix A). The IEA dataset does not include
sectoral energy prices but only time-series of national price data are provided, so that in my dataset
energy prices do not vary across sectors in the same country. The major concern related to such data
limitation is that some sectors might face effective energy prices that are different from the national
average, which may happen because, for instance, firms in these sectors bears special energy taxes or are
relatively bigger compared to the size distribution in other sectors. Nevertheless, if this holds true in
every country, each sectoral dataset used for estimation carries no particular flaw for estimation purpose.

Figure 1 shows input shares by sector, averaged over time and country dimension. Sectors are very
heterogeneous with respect to factor shares: activities like production of fuels, real estate and mining
have a low labour intensity and high capital intensity, whereas some service activities (e.g. education and
public administration) and the construction sector have labour share well above 70 percent. Of course,
such heterogeneity does not imply high diversity in the degree of input substitution. One important
feature of the data is the stability of factor shares over time” for each country-sector unit of observation,
with no sharp variations over the sample time period. This fact is important because the normalisation
point is fixed to one specific year and estimation results are likely to be robust to the choice of the
benchmark time period.

Macrosectors are constructed by aggregation using groups of the original 33 sectors. Quantity variables
are aggregated and prices are weighted averages of initial prices, with weights given by country-specific
output shares on total international output. Details about sectoral aggregation are summarized in Table
6 in the Appendix. The first macrosectoral classification is based on the classic distinction between
primary, secondary and tertiary sectors. The second classification separates the most energy-intensive
activities from the rest of the economy. A sector is considered energy-intensive if the energy share on
total costs is higher than 5 percent, on average®. This category includes agriculture, mining activities,
some industries, the energy sector and transportation services. Finally, sectors are aggregated up to the

national level to retrieve estimates of the classic macroeconomic production function.

"The time pattern of input shares for each country-sector unit cannot be displayed here for reasons of space.
8The choice of the threshold is quite robust, because by lowering it to 3% only one additional sector (Food, Beverages
and Tobacco) would join the group of energy-intensive activities.



4 Estimation and Results

4.1 System Estimation

Econometric models used to estimate one-level production possibilities frontiers (5) and two-level
technologies, i.e. (9)-(10), are based on the normalised conditional factor demand models derived in the
previous section. The econometric model is defined on a panel of country-year data, separately for each
sector: I assume that each sector has the same degree of input substitution in different countries but
levels of technological development are allowed to be heterogeneous across economies.

In order to capture the effect of time on technological progress and technology differences across coun-
tries, I focus on the growth rates of Ay;, and assume that the normalised level of technology development
follows an exponential process Ap; = ap;e?(*=%) where h is an input and i a country index. Model
(6)-(8) becomes:

K; Py,
In Y{t = ag;+0ki(t —to) + Bln (P;l‘tﬂ'o> + 6f§ (14)
L; Py
lnT': = aj; +($Li(t*t0) + Bln <PZ” (.do) +Eil{5 (15)
E; Py
In= = api+0mi(t —to) + fln <PEY“<1—7TO—OJ0)) +ef (16)
1 it

at time ¢, given ayp; = Ina; Sectoral indexes js are omitted for clarity. In vector notation (set to = 0):
Sit =0 + 0t + Py +eq (17)

where the 3z1 vector S;; contains physical input shares and P, is a 3z1 vector of normalised relative
prices. All models are estimated with the generalised method of moments estimator. The variance-
covariance matrix of disturbances is Heteroskedasticity and Autocorrelation Consistent (HAC) to account
for autocorrelation typical of macroeconomic variables (and present in the data here). No specific assump-
tion is imposed on the cross-equation error correlation. Notice that sectoral input-output relationships
could spur serial correlation in the error terms across sector, but this is not an issue here because model
(17) is specified for one single sector.

The vector a; of factor-augmenting technological change coefficients measures the initial level of
technology development for country i. To understand whether «; is better captured by fixed or random
effects, I carry out classic tests to compare alternative panel data models. Firstly, the Likelihood Ratio
test rejects complete pooling meaning that fixed effects improve the identification of the sectoral degree of
input substitution. Secondly, the Hausman test supports the fixed effects model as candidate for further
estimation.

Model (17) accounts for country-specific factor-augmenting technological change and for each input
it captures both level, by a constant term, and rate of efficiency growth, by a time trend. The former
term measures the starting position of the country on the - normalised - international technology frontier
and the latter would instead catch dynamic features of factor-augmenting technology, namely changes in
factor intensity over time. Parameter estimates of system (17) are used to retrieve the coefficients of the
original model, the elasticity of substitution ¢ and growth rates ~;,;. Here I focus on the estimates of
elasticities and leave aside results for factor-augmenting coefficients. Besides the data short time coverage,
notice that in the two-level production functions the interpretation of technological change coefficients
for composites of inputs, see system (11) - (13), does not provide insights on more general questions on

the nature of technological change. The elasticity of substitution is obtained as 6 = B, where B is the
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coefficient estimated from model (17).
The estimation of two-level factor demand systems, as (11) - (13), is similar. The estimated system

of equation is:

lng =QE; + 5El(t - tO) + ﬁlln (}5 (]_ — 7T(I)<L’E)) + 65 (]_8)
lni = O‘VA—Li+5VA—Li(t—tO)+ B2 lnPVAVA+ﬁ lnP—y—l—eVA L7 (19)
PVAVA ’ ’ 1-B1
Prc K P VA Py
155};% = ayva-K;+ 5VA—K,¢(t to)+ : f2ﬂ1l VA + Byl npi + GVA K (20)

Again, I set t = tg and carry out the estimation with the generalised method of moments estimator
with HAC variance-covariance matrix. Also in this case country-specific coefficients are modeled as fixed
effects. Thanks to restrictions imposed on coefficients before estimation, the elasticities of substitution

are retrieved as follows: ok g = 51 and 6k 1 = Bg.
4.2 Estimation Results
4.2.1 Alternative Nesting Structures

This section presents a general discussion of the results obtained with the most disaggregated data and
tables showing full details® are attached in the Appendix (Tables 8 and 9). Estimation results for the
four nesting structures provide strong evidence for input complementarity in production, in line with
the literature. Table 1 lists some descriptive statistics for the point estimates (if statistically significant
at 5 percent), in order to give a flavour of the distribution of o across sectors. Figure 2 plots some
of the estimated elasticities for all sectors, ordered by value. The K LFE one-level production function
constraints substitution possibilities to be the same for capital, labour and energy and in this case, results
point quite clearly at complementarity between them. Only three sectors (Agriculture, Machinery and
Wholesale Trade) have an estimated elasticity 6k g that is not significantly different from one at the 5%
level. For two-level production functions, results show a quite high heterogeneity in sectoral substitution
between inputs. When capital and labour are combined in a value added composite (the K L — F nesting),
sectoral elasticities between the two inputs lie quite close to unity and for some manufacturing sectors and
transportation activities, the value added composite is described by a Cobb-Douglas production function.
This result is remarkable, providing evidence for the common modelling assumption of fixed labour and
capital compensation shares. Differently from studies that focus on capital and labour only, here the
econometric model accounts for the effect of the upper nesting level (energy) in the substitution between
capital and labour. Equations (19)-(20) in Section 4.1 show how the upper-level elasticity oxr g enters
factor demands and alters the effect of changes in the share of value added on labour and capital shares.
Looking at the distribution of 6 ; , mean and median values are slightly below unity, whereas energy
shows a high degree of complementarity with the value added composite. Intuitively, large part of the
energy demand derives from the use of capital goods and complementarity was expected. This intuition
is confirmed by 6k, in the K'E — L nesting, point estimates that indicate low flexibility in the use of
capital and energy (with the unique exception of the Wood Production sector).

Elasticity distributions are rather symmetric and mean and median values stay within the domain of
complementarity. The estimated elasticity is higher than one only in few cases, mostly in the LE — K

nesting. For several sectors, about one third, the LE — K structure has high substitution between capital

9Due to limitations of space, Tables 8-9 do not report additional tests (J-statistic and parameter tests) but they are
avalable upon request.

11



Table 1: Estimated Elasticities for Disaggregated Sectors

KL-E KE-L LE-K KLE
OKL,E OK,L OKE,L OK,E OLE,K OL.E OKLE

[Min - Max] [0-0.82] [0.59- 1.05] [0-1.31] [0.36- 1.03] [0- 1.96] [0.20- 0.87] [0.39- 0.89]
Mean 0.25 0.91 0.38 0.57 0.72 0.65 0.73
Median 0.25 0.93 0.40 0.54 0.53 0.67 0.75

Note: 337 observations. Non-zero values are estimated coefficients with level of significance at 5%.

and the labour-energy composite, but at the same time in half of the sectors a Leontief technology results.
The distribution of 6.k, x is indeed quite asymmetric and the median is lower than the mean.

Yet we might doubt that if a sector had a Cobb-Douglas technology but different factor shares across
countries, the econometric strategy used here could lead to flawed results because of the normalisation
of the share parameters in the production function. Here the share parameter - crucial in a Cobb-
Douglas function - is indeed constrained to be equal to the input share at the normalisation point, but
cross-country heterogeneity in factor shares could be still captured by fixed effects and no bias arises in
the estimation of the elasticity parameter. In this regard, the time dimension of the panel dataset is
particularly important to disentangle these data features, given quite stable factor shares over time.

In Figure 2, sectors are ordered by their estimated elasticity value for the one-level production function
6k e and for input couples in various two-level production nestings (6., 6x,£, 61,8). Is the ranking de-
pending on sectoral characteristics? This question is rather unusual, because the elasticity of substitution
between inputs is regarded as an - unexplained - exogenous parameter. Looking at the graphs, sectors’
placement on the ranking does not show any apparent regularity, but a more accurate analysis provides
interesting insights. I calculate correlations of sectoral elasticities with selected sectoral characteristics,
reported in Table 2, and find some “stylised facts”.

First, the elasticity of substitution 6k e in the one-level production function is correlated with input
cost shares ¢y, , h € {L, K, E}, positively with the labour share and negatively with the fraction of
capital and energy costs. For 6k ; the opposite holds, which gives a hint about the role of factor-
augmenting technological change in the relationship (that is ineffective on cost shares under Cobb-Douglas
technology). The fourth column shows the correlation of &, with a measure of the imbalance in factor
shares, (;5]['{ = ‘1/){11 — (ZhH wi) /NH‘, where H is the set of Ny inputs in the nesting and vy, is the
factor cost share of one of these inputs. Except for the KL composite, in the other three forms of nesting
the elasticity is weakly correlated with the imbalance in factor use. The fifth columns shows no signs
of a strong relationship between input substitution and the size of the sector j market, measured by the
value share on total national output, v;. The last three columns present correlations between o and 9{;,
the fraction of total national employment of input A that is demanded by sector j. The statistically
significant correlation coefficients are mostly negative, in particular for the one-level production function.

Overall, this piece of analysis sheds some light on the ranking in Figure 2. Consider the graph
representing the elasticity ox g at the bottom of the page. According to the correlations of Table 2,
sectors with high elasticity values tend to have higher labour cost shares - and more imbalanced input
shares - but also to be small players in factor markets. The presence of non zero correlations between
cross-price input elasticities and sectoral equilibrium allocations has important implications for economic
policy because the effect of an input tax depends on such kind of correlation in an economy with several

heterogeneous sectors.
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Table 2: Correlation between Input Elasticities and Sectoral Characteristics

Cost Input Share Sector Sector Weight
Shares Imbalance Value Share in Input’s Market
P YL YK o) oH v or 0K 0p
OK,L -0.41 0.40 - 0.13 -0.02 0.37 -0.28 -0.063
0.016 0.019 0.478 0.924 0.036 0.118 0.729
OK,E - -0.29 -0.16 -0.31 -0.40 -0.28 -0.33 -0.29
0.110 0.398 0.076 0.022 0.112 0.062 0.104
OL.E -0.25 - 0.13 -0.38 -0.28 -0.33 -0.16 0.11
0.181 0.485 0.027 0.115 0.058 0.379 0.560
ke 0.64  -0.37 -0.46 0.34 0.04 -0.67 -0.30 -0.44
0.000 0.042 0.008 0.057 0.815 0.000 0.091 0.011

Note: p-values in smaller font, bold faced values are statistically significant at 5 percent level.

4.2.2 Level of Aggregation and Elasticities

Table 3 shows estimation results and reports distribution statistics'® for n; subsectors that belong to
each macrosector j € {Pri,Sec,Ter, HighE, LowE, Aggr} (see Table 6 in the Appendix for details).
In general, complementarity is confirmed at a higher level of aggregation. Qualitatively, the Primary,
Secondary and Tertiary sectors do not differ much in terms of input substitution for all nesting structures
except 6. k. The estimates for 615 k show perfect complementarity between labour and the KE
composite in the Primary and Secondary sectors and, consistently, for Energy-Intensive firms. On the
contrary, the Tertiary sector (as well as the Low Energy Use sector) appears to have strong degree of
substitution at this level of the nesting. The results would bolster the assumption of identical degree
of input substitution across sectors, common in theoretical modelling work. Qualitatively, sectors differ
with respect to factor shares but not the elasticity of substitution.

Moreover, even the estimation with macrosector data provides support for a unitary elasticity between
capital and labour in the KL composite, which is in contrast with previous studies using normalised
production functions, i.e. Herrendorf et al. (2013) and Leon-Ledesma et al. (2013). Obtaining higher
results than studies using time-series data is not a new issue in the literature - see Antras (2004) for
a discussion - but my work embeds two major improvements compared to these studies: the extension
to a panel data analysis and the modelling of energy. By accounting for energy, I manage to capture
the interactions between this input and capital and labour and go beyond the implicit assumption of
fixed cost shares between energy and the value added composite. Another enhancement comes from the
cross-section dimension because there are additional information to estimate the technology frontier of
each country. However, my estimates mostly differ from Herrendorf et al. (2013) and Leon-Ledesma et
al. (2013) because I estimate an international PPF rather than the degree of input substitution for one
single country, that in their case is United States.

My results bring a bad news for environmental policy: energy-intensive firms have strong complemen-
tarity between energy and other factors of production. Without technological progress, environmental
policies relying on input substitution have little potential to reduce firms energy demand without occurring
in high output losses. Related to the insight of Bretschger and Smulders (2012), input complementarity
in production for the most innovative firms, namely the Secondary sector, arises the concern that energy
scarcity might have detrimental effects on the pace of technological change.

Input elasticities at a more aggregated level are expected to differ from estimates discussed in the
previous section. For instance, data variation for relative input prices and quantity shares in the energy-
intensive sector embodies both the degree of input substitution of subsectors and the extensive margin

10As the Primary sector includes only the Agriculture and Mining sectors, no mean and median values are calculated.
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Table 3: Estimated Elasticities for Macrosectors and Comparison

KL-E KE-L LE-K KLE
OKL,E OK,L OKE,L OK,E OLE,K OL,E OKLE
Primary
0.28 0.91 0.29 0.46 0 0.62 0.87
(npri=2)
[Min-Max] [0.27 - 0.29] [0.83-0.90] [0-0.40] [0.38-0.54] [0-0]  [0.59-0.67] [0.39 - 0.86]
Mean/Median - - - - - - -
Secondary
0.23 0.95 0.25 0.53 0 0.56 0.62
(nsec=16)
[Min-Max] [0-0.32] [0.59 - 1.04] [0-1.31] [0.36-1.03] [0-1.95] [0.21-0.87] [0.49 - 0.89]
Mean/Median 0.21/0.24 0.91/0.93 0.37/0.39 0.59/0.56 0.67/0.41 0.68/0.71 0.70/0.73
Tertiary
0.20 1.00 0.42 0.45 1.67 0.66 0.82
(nTer :15)
[Min-Max] [0.17-0.82] [0.73-1.05] [0-0.73] [0.37-0.82] [0-1.96] [0.19-0.84] [0.49 - 0.89]
Mean/Median 0.28/0.25 0.92/0.93 0.42/0.42 0.54/0.53 0.86/0.85 0.62/0.65 0.77/0.80
Energy-Intensive
0.21 0.95 0.26 0.44 0 0.59 0.66
(nuighe=11)
[Min-Max] [0-0.82] [0.77-1.04] [0-1.31] [0.36-1.03] [0-1.85] [0.52-0.87] [0.43 - 0.82]
Mean/Median 0.27/0.25 0.90/0.92 0.42/0.44 0.59/0.55 0.44/0 0.72/0.73 0.70/0.71
Low Energy Use
0.21 0.99 0.33 0.47 1.51 0.64 0.75
(nLowE :22)
[Min-Max] [0-0.30] [0.59-1.05] [0-0.76] [0.37-0.9] [0-1.96] [0.20-0.84] [0.39 - 0.89]
Mean/Median 0.23/0.25 0.92/0.95  0.36/0.39  0.55/0.53  0.87/0.85  0.61/0.65 0.75/0.80
Aggregate Economy
0.21 0.98 0.31 0.42 1.51 0.73 0.74
(naggr=35)
[Min—MaX] [0-0.81] [0.59 - 1.05] [0-1.31] [0.36 - 1.03] [0 - 1.96] [0.19 - 0.87] [0.39 - 0.89]
Mean/Median 0.25/0.25 0.91/0.93 0.38/0.40 0.57/0.54 0.72/0.53 0.65/0.67 0.73/0.75

Note: 337 observations. Non-zero values are estimated coefficients with level of significance at 5%.

adjustment operating through reallocation of demand across sectoral goods. In fact, subsectors differ in
factor shares and their output prices react differently to input price changes. According to the theoretical
understanding of Sato (1967) and Oberfield and Raval (2012), having point estimates for macrosectors
lying within the minimum and maximum value of subsector elasticities hints that the elasticity of demand
between subsector goods is quite low. This result is not trivial as for different types of elasticities, i.e.
Frisch elasticity of labour supply, the aggregate value turns to be higher than estimates from micro-data
because the extensive margin plays a more important role (total hours mostly adjust through employment

changes, see for instance Fiorito and Zanella (2012)).

4.3 Robustness Check

Compared to most studies to date, the normalisation approach has the advantage to leave room for
the analysis of long-run dynamics. Indeed, systems (14) - (16) and (18) - (20) can identify all coefficients
of the original model with variables in levels and do not require first differencing. Nonetheless, the use
of level variables with time series data raises the well known concern about spurious regression. In the
case at hand, even testing for the presence of unit roots is not a straightforward task because of the
complex data structure and the small sample time length T. Unfortunately, with T=14 and N=27 panel
unit-root tests, like the Im-Pesaran-Shin test, have low power and size distortion (Maddala and Wu, 1999;
Im et al., 2003). In order to avoid the use of unreliable evidence, an indirect way to check for spurious
estimation, I make additional estimation runs with a first-differenced version of the factor demand models.
Results are shown in Tables 9 and Table 11 in the Appendix. Overall, the use of first differences leads

to outcomes that are qualitatively similar to the results of the previous set of estimations, even if they
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Table 4: Changes in Sectoral Ranking with the First-differenced Model

|AQuartile| 6k, 6k, OLE OKLE

Zero 13 14 6 10

One 10 11 10 14

Two 7 5 11 6
Three 3 3 6 3

might be quantitatively different. Firstly, the evidence for gross complementarity between capital, labour
and energy still holds. For some sectors the estimated elasticity of substitution is lower than previously
estimated and drops to zero. Secondly, new estimates still indicate that the elasticity of substitution
between capital and labour in the KL — E production structure is close to one at various levels of
aggregation. Third, I check if the ranking over 67 is preserved. I divide the set of estimation results for
each nesting structure into four quartiles, with thresholds given by the 25th, 50th, 75th percentiles of the
sample distribution of estimated input elasticities. For each sector, I track the change in quartile position
after estimating the corresponding first-differenced model, which can be from -3 to +3. Table 4 shows
the number of sectors that happen to have one, two, three or no changes in quartile in the new set of
estimates. I consider the position in the order preserved if the sector does not jump to another quartile
and we can see from Table 4 that this strict condition holds only in one third of the estimation results.
Under a more relaxed requirement that allows the sector’s 47 to jump in one of the closest quartiles, the
distribution looks quite preserved eventually for all elasticities except 61 . The ordering of sectors along
the 61,5 estimates is rather different from the one obtained from the estimation without first-differenced

variables.

5 Final Remarks

I have presented estimates of the elasticity of substitution between capital, labour and energy obtained
from the estimation of normalised conditional factor demands with cross-country panel datasets. The
normalisation of the production function and the rich dataset help to identify factor-augmenting techno-
logical change and to measure the degree of factor substitution more precisely. The estimation is carried
out on alternative input nesting structures and different levels of aggregation.

There are four major findings. First, in line with previous studies, there is a quite low degree of
flexibility in using production inputs at the aggregate level. Given a one percent change in relative input
prices, factor shares experience a less than proportional percentage variation. In a CES specification,
this also implies an increase in the cost share of the input that gets relatively more expensive. Moreover,
higher input efficiency through factor-augmenting technological progress has the effect to reduce the
input marginal productivity and shrink the relative demand of this production factor. This result holds
in most sectors under different levels of aggregation and alternative nesting structures. The notable
exception is capital and labour in the value added composite. In this case the cross-price elasticity of
substitution is close to unity and this result suggests that production functions for sectoral value added
might be represented by a Cobb-Douglas specification. Second, by grouping sectors in macrosectors,
i.e. primary/secondary/tertiary and energy-intensive/low energy use sectors, I obtain elasticity values
that are quite similar across macrosectors. Moreover, the group of energy-intensive firms does not have a
different degree of input substitution compared to the rest of the economy. As well, the primary, secondary
and tertiary sectors have very similar elasticities. The full data aggregation up to the national economy
provides estimates of the classic aggregate production function and shows a quite strong evidence for an
elasticity below unit with the exception, also in this case, of the value added composite that results to

have a unitary elasticity. The third result is that the estimation of production functions for macrosectors
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gives elasticity estimates that lie within the range of estimates obtained from more disaggregated data,
suggesting that the elasticity of demand between subsectoral goods is low.

The fourth and last finding is a small set of stylized facts, the correlation of input elasticities with
sectoral characteristics as input cost shares, imbalances in input use for production, the sector value
share and the sector weight in each input market. In general, an intuitive interpretation of these stylized
facts is not possible because whereas the properties of a CES technology can guide us in explaining the
potential effects of input elasticities on factor cost and value shares in equilibrium, explaining why these
sectoral allocations would determine an exogenous parameter is a walk in the dark. An in-depth study
of these correlations would be an interesting line of further research, with potential implications for the

analysis of input taxation in a multisector economy.
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A Construction of Energy Price Data

Original price data are taken from the OECD dataset “Energy prices and Taxes”. In order to build
the aggregate energy price index for every country-year observation, I need prices for each major energy
carrier included in the WIOD (14 selected!!, covering around 70% of total energy use). The aggregate
index is a weighted average of energy prices for different energy types, where weights are given by the
country’s energy mix (average over the sample period, to avoid that variations in weights affect the
aggregate price).

OECD price data present several missing values. The highest concern is about interruptions in time
series for single energy carriers because this could generate spurious variations in the aggregate index.
To prevent missing data from affecting the aggregate price index over time, incomplete time series are
reconstructed. Fortunately, the cases are not so many and only the energy carriers Naphtha, High Fuel
Oil (HFO) and Electricity present this issue. For Naphtha and HFO, I exploit the similarity of these
products to, respectively, Diesel and Light Fuel Oil (LFO), for which I have complete information. The
replacement procedure is as follows. First, I calculate yearly changes for the price of the substitute
energy carrier starting from the first year of missing data in the original series. The price changes are

then applied to the original price series {pej7t}tT:0:

t
Deh,l
Pejt = H (e )pej,tm—l

I=t, DPeh,i—1

where the price of the incomplete energy carrier j (e.g. HFQO) is replaced by the price of the energy
carrier h (e.g. LFO) and the first missing year for j is period t,. For Electricity prices, the few cases
of incomplete time series are reconstructed by interpolation. However, when countries have only few
available observations, no more than four years, the entire time series is considered missing and it is
removed from the calculation of the price index (the quantities for the missing energy carrier are also
subtracted to the total energy use before weighting).

Finally, data for some energy carriers in few countries are completely missing (first two columns in
Table 5). The replacement procedure is the same, this time using information of similar countries. The
matching is based on geographical and economic criteria, mostly location proximity and similarity in the
national energy mix (fourth column). The third column of Table 7 lists the share of those energy carriers
for year 2002, showing that missing data are not higher than one fifth of total energy use (excluded

Slovenia, around 25%).

Table 7: Missing value treatment for specific energy carriers

Energy carrier  Missing values for ~ Energy share (pct, 2002) Replaced with

Diesel Estonia 4.6 Finland
Slovenia 5.4 Austria
Electricity Estonia 7.8 Finland
Slovenia 13.4 Austria
LFO Estonia 5.1 Finland
Slovenia 7.0 Austria
Natural Gas Austria 15.7 Hungary
Belgium 11.3 France
Portugal 6.7 Spain
Italy 16.6 Spain

1 Crude Oil, Diesel, Jet fuel, Light Fuel Oil (LFO), Heavy Fuel Oil (HFO), Naphtha, Natural Gas, Electricity and
Renewables
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Table 6: Macrosectors - Specification

Macrosector Including:
Primary (Pri) AtB, C
Secondary (Sec) 15t16 - 24, 27t28, 29, 30t33, 34t35, 36t37, E, F
Tertiary (Ter) 50-52, 60-64, 70, 71t74, H, J ,L,M,N,O
Energy-intensive (HighE) AtB, C, 17t18, 20-24, 26, 27t28 , E, 60-63

Low Energy Use (LowE)  15t16, 19, 25, 29 - 36t37, 50-52, 64, 70, 71t74, F, H, J ,L,M,N,0
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Table 10: Macrosectors - Details of Estimation Results

Primary Secondary Tertiary Energ.y Low Energy Aggregate
Intensive Use Economy

OKL,E 0.28*** 0.23%** 0.20%** 0.21%%* 0.21%%* 0.21%%*
(0.09) (0.07) (0.05) (0.06) (0.05) (0.06)

okL,E = 1 67.26 185.0 232.5 159.5 206.3 202.8
OK,L 0.91%%* 0.95%** 1.00%%* 0.95%%* 1.00%** 0.98%**
(0.03) (0.04) (0.02) (0.03) (0.02) (0.01)

o, — 1 10.29 1.52 0.06 3.49 0.00 0.22

J-Stat 16.5 2.12 5.53 4.6 3.91 7.08
OKE,L 0.29%%* 0.25%%* 0.42%%%* 0.25%%%* 0.33%%* 0.31%%*
(0.06) (0.07) (0.03) (0.05) (0.05) (0.04)

Ho:ogxpr =1 122.4 103.2 302.9 255.1 204.8 352.7
OK,E 0.46%** 0.53%** 0.45%** 0.44%%* 0.46%** 0.42%%*
(0.06) (0.07) (0.04) (0.05) (0.05) (0.04)

Ho:oxp =1 75.59 38.63 155.3 106.7 136.1 175.5

J-Stat 60.39 61.69 67.63 77.4 51.0 70.36
OLE,K -0.21 -0.69* 1.67%** -0.08 1.51%** 1.51%**
(0.47) (0.38) (0.16) (0.40) (0.10) (0.14)

Ho: o0k =1 6.64 19.73 17.66 7.34 26.94 13.08
OL,E 0.62%%* 0.56%** 0.66%** 0.59%** 0.64%%* 0.73%%*
(0.12) (0.08) (0.11) (0.10) (0.10) (0.09)

Hy:opp =1 9.76 28.23 9.99 15.86 12.23 9.37

J-Stat 18.71 32.83 20.57 25.45 23.99 20.81
OKEL 0.87%%* 0.62%%* 0.82%%* 0.66%** 0.75%%* 0.74%%%
(0.10) (0.09) (0.05) (0.09) (0.06) (0.07)

Ho:okxgpr =1 1.81 18.26 13.25 15.8 17.5 16.10

J-Stat 23.8 22.45 17.04 20.05 18.2 22.0

Note: 337 Observations. Standard errors in parenthesis. The table also reports the the J-statistic and
the x?2 statistics for the Wald test of the Cobb-Douglas hypothesis.
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Table 11:

Macrosectors - Estimation with First-differenced Models

Primary Secondary Tertiary Energ%/ Low Energy Aggregate
Intensive Use Economy

OKL,E -4,69 2.31 1.13%* 3.45 1.07%** 1.02%**
(734,48) (7.63) (0.58) (15.41) (0.38) (0.07)

Hy: oxp,e =1 0.00 0.03 0.05 0.02 0.04 0.11
OK,L 0.62%%* 0.90%** 1.02%%* 0.86%** 1.01%%* 0.97%%*
(0.18) (0.09) (0.05) (0.08) (0.05) (0.04)

Ho:oxp =1 4.5 1.28 0.16 2.36 0.05 0.40

J-Stat 9.44 0.65 6.18 0.79 1.54 5.43
OKE,L -0.04 0.73%%* 0.59%** 0.23%* 0.68%** 0.71%%*
(0.19) (0.10) (0.08) (0.09) (0.08) (0.06)

Ho:ogxpr =1 28.00 6.88 23.57 66.12 13.42 39.93
OK,E 0.38*** 0.94%%* 0.73%** 0.36%** 0.84%** 0.87***
(0.08) (0.04) (0.09) (0.09) (0.07) (0.06)

Ho:oxp =1 48.73 2.21 9.06 54.01 5.07 4.53

J-Stat 85.4 28.04 87.44 96.21 24.44 39.93
OLE,K 0.48 0.94%%* 1.19%** 0.72%%* 1.28%** 1.06%**
(0.46) (0.17) (0.11) (0.27) (0.12) (0.13)

Ho: o0k =1 1.28 0.12 2.64 1.00 5.13 0.26
OL.E 1.03%%* 1.02%** 1.02%** 1.15%** 1.00%** 1.02%**
(0.01) (0.08) (0.01) (0.21) (0.01) (0.03)

Hy:opp =1 2.89 0.10 6.45 0.50 0.37 0.76

J-Stat 0.27 2.23 0.26 1.02 2.65 1.25
OKLE 0.95%%* 0.87%** 1.05%%* 0.91%** 1.02%%* 0.98%**
(0.11) (0.10) (0.05) (0.10) (0.07) (0.04)

Ho:okxgpr =1 0.75 1.64 1.08 0.75 0.07 0.14

J-Stat 2.09 0.05 1.21 0.22 3.41 0.40

Note: 310 Observations.

the x?2 statistics for the Wald test of the Cobb-Douglas hypothesis.
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Standard errors in parenthesis. The table also reports the the J-statistic and



