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Abstract

Sectoral heterogeneity is crucial to address several economic questions. This paper provides a

detailed mapping of sectoral production possibility frontiers, using di�erent nesting structures and

levels of aggregation (primary, secondary, tertiary activities and energy-intensive �rms). Elasticities

of substitution between capital, labour and energy are identi�ed by employing an international multi-

sector dataset, accounting for biased technological change and normalising the production function to

clusters of observations. Complementarity dominates, with the noteworthy exception of the capital-

labour composite, close to Cobb-Douglas. I also present some stylized facts relating substitution

elasticities to sectoral characteristics.
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1 Introduction

The estimation of sectoral production functions is relevant for several economic issues, from environmen-

tal sustainability of economic growth to the analysis of structural change and productivity. Clear-cut

di�erences exist across sectoral groups of �rms with respect to product features, production technology

and business structure. A strand of macroeconomic research puts sectoral heterogeneity at the root

of the structural change experienced by advanced economies in the last century. Besides di�erences in

income elasticity of demand characterising sectoral goods, the rise and fall of the industrial sector has

been due to sector-speci�c technological features, as higher total factor productivity and a larger scale

of production compared to agriculture and services (Buera and Kaboski, 2012; Duarte and Restuccia,

2010). Another �eld which emphasises sectoral heterogeneity is the study of the environmental sustain-

ability of economic growth. The industrial sector employs production technologies that have a higher

pollution and natural resource intensity (e.g. chemical processes, furnaces, high-temperature processing)

compared to lighter business activities as banking, accommodation and education services. Besides factor

shares, the cross-price elasticity of substitution is a sectoral characteristic that has great importance in

the literature, because the cost of environmental policies (taxes and quantity restrictions) in terms of

output increases with the degree of complementarity of natural resources in production. The presence of

sectors with a low intensity of natural resources and a degree of input substitution relieves such costs.

Under an endogenous technological change framework, Bretschger and Smulders (2012) argue that the

presence of highly innovative sectors that have complementarity between natural resources (or pollution)

and other factors of production is a potential threat for long-run sustainability. If this was the case,

resource scarcity would reduce the pro�tability of sectors with low �exibility in production and for those

�rms, investment in innovation would eventually dry up.

This paper delivers empirical evidence on production technology characteristics that sectors have in

modern economies, with a special focus on elasticities of substitution between production inputs as capital,

labour and energy. I provide a mapping of sectoral production possibility frontiers (PPFs), estimated with

an international panel dataset of OECD economies and a quite detailed level of disaggregation. Jorgenson

and Timmer (2011) recommend to dig into sectoral disaggregation because even the classic sectoral

breakdown into primary, secondary and tertiary sectors is inaccurate when it comes to productivity.

Whereas a large part of services has a sluggish productivity dynamics, an important fraction of tertiary

�rms (e.g. distribution services) does not di�er much from industrial �rms.

The literature on estimating PPFs spans over several decades and I refer to the extended surveys in

Barker et al. (1995) and Chirinko (2008) for a detailed review. Surprisingly enough, even if the literature

is extremely mature there is still need for further work. First of all, most studies have been interested

in aggregate production functions and relatively little work has been done on the estimation of sectoral

PPFs. Besides the interest arising from the strands of research mentioned above, high demand for this

type of work comes from quantitative multi-sector general equilibrium models (e.g. Otto et al., 2008;

van der Mensbrugghe, 2010), because the choice of parameter values describing production technologies

usually relies on empirical work. By screening the literature in search of estimates for calibration of this

type of models, I �nd that only some studies use a functional form that satis�es the regularity conditions

they require (see Perroni and Rutherford 1995), like the CES production function. Moreover, the level

of aggregation is important: model calibration needs to rely on data sharing similar underlying extensive

margin (Browning et al., 1999). A recent study using sectoral data is Koesler and Schymura (2012). The

paper presents estimates of sectoral Constant Elasticity of Substitution (CES) functions performed with

non-linear estimation and alternative nesting structures, but factor-augmenting technological change is

omitted and the PPF is identi�ed without using factor demand equations.

In case the numerical or analytical model accounts for factor-augmenting technological change, good
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calibration standards - see Hansen and Heckman (1996) and Cooley (1997) for a discussion - require a

satisfying match between the theoretical speci�cation and the supporting empirical model. Only part of

empirical studies in the literature embeds factor-biased technological progress. For calibration purposes,

it is not recommended to use results from econometric work that only accounts for factors substitution if

the model includes factor-augmenting technological change: the supporting econometric model should as

well separately identify the marginal rate of technical substitution and the e�ect of technological change

on inputs e�ciency. The omission of biased technological progress might as well lead to �awed estimation

results. Leon-Ledesma et al. (2013) show why neglecting factor-augmenting technological change in a

CES production function estimation generates point estimates that are closer to the Cobb-Douglas value

of one. Therefore, a general production function speci�cation must be used in applied work even if dealing

with biased technological change is not a straightforward task1.

Overall, the set of available empirical work using both sectoral data, CES production functions and

factor-augmenting technology is tiny. The most relevant paper is the work by van der Werf (2008),

who uses a general CES speci�cation with factor-augmenting technological change. In his dataset the

sectoral coverage is not extensive and the parameters of the production function are identi�ed by �rst

di�erencing. The application of �rst di�erences has the unpleasant side e�ect to remove important long-

run information and to make the interpretation of the estimated elasticity less clear, as also remarked in

Antras (2004).

My work contributes to the literature by providing estimates of sectoral production functions using a

methodology that combines the points just mentioned and improves the identi�cation of technology by

normalising the production function (Leon-Ledesma et al., 2010). I obtain compelling empirical results

about input substitution by using enough data variability and a general CES speci�cation. The main

data source is the World Input-Output Dataset (WIOD, Timmer (2012)), a multi-sector panel database

with harmonised data for several countries. I prefer the panel estimation to the time-series approach of

Antras (2004), Leon-Ledesma et al. (2010, 2013) and Herrendorf et al. (2013), because the joint use of

cross-section and time-series variability improves the identi�cation of input substitution and technological

change. The estimation of the manufacturing sector's production function using only observations of the

US manufacturing sector over time relies on the assumption that Italian, German, French and Canadian

data for the same sector type are not informative to identify the manufacturing �rm's production function.

As I am interested in the general properties of the manufacturing sector's technology, it could be argued

that the aggregate production function is better identi�ed by looking at the variability across economies

sharing similar technologies but having di�erent characteristics. We need observations along the same

isoquant and, this means, we need international data for the same sector type. Moreover, I apply the

normalisation of the CES production function, which has several advantages for the case of interest.

First, normalisation allows to properly identify all parameters of a CES speci�cation with technological

change and the normalised function does not have the unpleasant property that scale and distribution

parameters are actually depending on the elasticity of substitution. Second, thanks to normalisation I

overcome the underidenti�cation problem well known in the literature and all coe�cients in the resulting

system of equations can be identi�ed without using �rst-di�erences. Third, normalisation reshapes data

variability: observations are normalized to a the collection of sectoral means (a representative country)

and the separation of panels along the sector type dimension is less rough in terms of information loss.

1Carraro and De Cian (2012) is an attempt to account for the endogeneity of biased technological change. Using country
data, they develop a framework that includes input substitution with a quite detailed representation of technological change,
introducing some auxiliary variables to capture the microeconomic decisions of technology adoption, e.g. R&D, education
expenditures and equipment and machinery imports. This is an interesting approach because technological change is an
elusive concept, an unobserved factor that should be represented in more details in econometric models. Alternatively,
technological change can be treated as a time varying unobserved component and estimated with state-space models, as
in Jin and Jorgenson (2010). They adopt a translog model, which is not fully compatible with applied models using CES
functions.
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The focus is on input elasticities because the sample has a quite short time coverage (14 years) and

the identi�cation of long-run technological trends might be unsuccessful. The elasticity of substitution

is considered to be quite stable over time and this analysis takes a snapshot of input substitution in

the last two decades. Innovation and cross-country di�erences in technological development are only

taken into account to correctly identify the elasticity of substitution. I �nd that production inputs

are complements in most sectors and under several nesting structures, in line with previous studies,

with a notable exception. The cross-price elasticity of substitution between capital and labour is close to

unity, suggesting that value added sectoral production functions might be represented by a Cobb-Douglas

speci�cation.

Furthermore, I provide estimates for di�erent levels of data aggregation. The WIOD dataset has a

quite detailed level of sectoral disaggregation, up to two-digits, but some research questions call for a

more aggregated grouping of �rms according to characteristics as energy intensity or the type of output

produced (i.e. raw materials, manufacturing goods or services). Not less important is the estimation of

a classic economy-wide production function. When shifting the focus from one level of aggregation to

another, a question comes natural: how does the elasticity of substitution depends on the level of aggre-

gation? A strand of research with a theoretical focus has studied the microfoundation of the aggregate

production function, explaining how particular statistical distributions of individual �rms' production

functions result in functional forms that are equivalent to Cobb Douglas and CES technologies (e.g.

Jones (2005)). Under a more applied perspective, the works of Sato (1967) and, more recently, Ober�eld

and Raval (2012), explain the relationship between the aggregate elasticity of input substitution and the

corresponding parameters of micro-production technologies. The aggregate elasticity of substitution is

a weighted average of sectoral elasticities of substitution - the intensive margin - and the elasticity of

demand between sectoral goods - the extensive margin. I �nd that the estimated elasticities for macro-

sectors lie within the range of estimates for subsectors, a hint that the extensive margin plays a little role

compared to input share adjustment within narrow sectors.

The results of this paper give quite strong evidence for a below unit elasticity in the economy-wide

production function, with the exception of the value added composite that maintains a unitary elasticity.

By grouping sectors in macrosectors, i.e. primary/secondary/tertiary and energy-intensive/low energy use

sectors, I obtain elasticity values that are quite similar across macrosectors. For signi�cant heterogeneity

in input substitution to appear, the level of disaggregation has to be higher. This result is relevant for

building multisector models and it provides evidence for the modelling assumption of identical elasticities

across broad sectoral groups. Moreover, the fact that the group of energy-intensive �rms does not have

a di�erent degree of input substitution compared to the rest of the economy is particularly crucial for

environmental policy.

The article is organised as follows. Section 2 is about the econometric methodology. After a brief de-

scription of the economic model, I introduce the theoretical underpinnings of the normalisation approach

and explain how this is used to obtain a collection of panel datasets for di�erent sectors. Estimation

method and results are presented and discussed in Section 4. Section 5 concludes.

2 Econometric Strategy

In this section I present the identi�cation strategy underlying the estimate of the sectoral elasticity of

factor substitution, that is the percentage response of factor shares to input price changes in di�erent coun-

tries, and factor-augmenting technological progress, shifts in factors e�ciency that a�ect their marginal

productivities. The econometric model is derived from the standard �rm's maximisation problem. Firms'
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production is described by CES technology2 with factor-augmenting technological change and three in-

puts of production are employed, capital, labour and energy. Firms behave optimally in a competitive

environment and substitution elasticities between inputs of production and factor-augmenting coe�cients

are identi�ed through conditional factor demands obtained by Shephard's lemma. The non-normalised

CES production function with capital K, labour L and energy E for one sector has the form:

Y =
[
π(AKK)

σ−1
σ + ω(ALL)

σ−1
σ + (1− π − ω)(AEE)

σ−1
σ

] σ
σ−1

, (1)

where π and ω are share parameters and AK , AL and AE are factor-augmenting coe�cients of cap-

ital, labour and energy. After the derivation of conditional factor demands by Shepard's lemma and

rearranging, the resulting equations for factor shares are

ln
K

Y
= σlnπ + (σ − 1)lnAK + σln

PY
PK

, (2)

ln
L

Y
= σlnω + (σ − 1)lnAL + σln

PY
w
, (3)

ln
E

Y
= σln(1− π − ω) + (σ − 1)lnAE + σln

PY
PE

, (4)

where PY is the price of output and PK , PE and w are input prices. The use of energy complicates

the interpretation of the model because gross output requires the use of intermediate goods, which are

omitted here. In line with several papers in the literature I do not include intermediate goods, but I

make the underlying assumption explicit. For model (2) - (4) to be a reliable foundation of the empirical

analysis, intermediate goods should have a unitary elasticity of substitution with the capital-labour-

energy composite in the production of gross output. Changes in relative prices of these inputs should

induce little variation in the share of intermediate goods use3. In econometric terms, this is a classic case

of omitted variable bias and capital, labour and energy prices are required not to be correlated with the

intermediate goods share.

In the following, systems of factor demands - with one or two level functions - are going to be

normalised to improve the identi�cation of the PPF. Normalisation of the production function in empirical

work needs a speci�c de�nition of the normalisation point in terms of available data. Before explaining

how I normalise the panel dataset, I shortly digress on the meaning of normalisation and the implications

for model (2) - (4). At the end of this section, the model is extended to the case of nested production

functions.

2.1 Normalisation

Equation (1) is a constant elasticity of substitution production function in the most general formulation,

given that the scale parameter - total factor productivity - is included in the share parameters thanks

to the homogeneity of degree one of the function. Still, parameters in (1) may lack a clear economic

interpretation. de La Grandville (1989) and Klump and de La Grandville (2000) point out that some

parameters are in fact dependent on the elasticity of substitution σ if variables are not normalised to a

2 Factor demands derived from CES functions are less general than alternative approaches (i.e. translog ) and this is

not the best choice for an investigation on general properties of aggregate PPFs, but they have the advantage to satisfy

regularity conditions required by applied economic modelling.

3 See Herrendorf et al. (2013) for a more detailed explanation of the conditions for a value added composite to exist.

Even if here I am dealing with a capital-labour-energy composite and not a value added composite, the same reasoning

holds.

5



speci�c reference point. They show that the scale and distribution coe�cients of a non-normalized CES

production function are dependent on the elasticity of substitution, so that π and ω in (1) change as σ

varies. From a theoretical viewpoint, the normalisation of the production function is recommended for

comparative static exercises on σ to make sure that an isoquant changes its curvature without shifting

(the isoquant stays anchored to the normalisation point). As a result, a clearer economic interpretation

can be attributed to each parameter in the normalised function4.

The production function (1) in normalised form is:

Y
Y0

=

[
π0

(
AK
AK0

K
K0

)σ−1
σ

+ ω0

(
AL
AL0

L
L0

)σ−1
σ

+ (1− π0 − ω0)
(
AE
AE0

E
E0

)σ−1
σ

] σ
σ−1

, (5)

given the normalisation point (Y0, AK0, AL0, AE0,K0, L0, E0, w0, pk0, pe0). Similarly to the result in (2)-

(4), the system of conditional factor demands for capital, labour and energy is:

ln K̄
Ȳ

= (σ − 1)lnĀK + σ
(
ln P̄Y
P̄K

+ lnπ0

)
, (6)

ln L̄
Ȳ

= (σ − 1)lnĀL + σ
(
ln P̄Yw̄ + lnω0

)
, (7)

ln Ē
Ȳ

= (σ − 1)lnĀE + σ
(
ln P̄Y
P̄E

+ ln(1− π0 − δ0)
)
, (8)

where bar variables are normalized to the baseline point.

A well known problem in the literature (van der Werf, 2008; Carraro and De Cian, 2012) is that

the estimation of system (2) - (4) cannot identify all unknown parameters σ, AK , AL, AE , ω and π. The

normalised system (6) - (8) has an advantage compared to system (2) - (4). When necessary, �rst-

di�erencing may provide a solution by eliminating the distribution parameters ω and π but the drawback

is to limit the estimation results to the short-run. Normalisation of the production function (1) is able

to make the system of factor demands fully identi�able, because share parameters have here a clear

interpretation. The distribution parameters ω0 and π0 in (5) are known, because they are the capital and

labour shares at the normalisation point (i.e. ω0 = w0L0

w0L0+pE0E0+pK0K0
). The �rst term in the right hand

side of (2)-(4) is constant and it may be added to relative prices (see (6) - (8)), meaning that for every

observation the relative input price is adjusted to the corresponding factor share at the normalisation

point. As a result, there are four unknown parameters σ, lnĀK , lnĀL, and lnĀE that may be correctly

identi�ed without additional transformation applied on system (6)-(8).

2.2 Normalisation with Panel Data

The next step is to set a data counterpart for the normalisation point. Previous work applying nor-

malisation (Leon-Ledesma et al., 2011, 2013; Herrendorf et al., 2013) has used time series data for one

country - United States - and de�ned the normalisation point as the sample average over time. For the

case of panel datasets the more complex data structure leaves room for alternative tuning of the nor-

malised functions. The purpose of my study is to retrieve parameters of the sectoral production function

describing sectoral PPFs. Normalising by time sample averages for each country-sector observation would

rather be appropriate to estimate country-sector speci�c production functions and not general sectoral

PPFs. Intuitively, observations that are represented by the same production function should have the

same normalisation point.

4 In the �eld of computational general equilibrium models, the normalised production function is called calibrated share

form and this method is used to facilitate model calibration. At the baseline point the economy is in the benchmark scenario

and the calibrated parameters should make the model replicate that reference point.
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Therefore, I choose to normalize the dataset with an average representative country, a vector of J

elements containing average values for each sector type j ∈ {1, .., J}. Each observation is anchored to the

relative sector-speci�c normalisation point for the �rst sample period. Alternatively, the dataset could

be normalized with respect to one speci�c country, e.g. United States. In this case every Manufacturing

sector observation has to be adjusted using the data for United States, the same for Agriculture and so on.

If the chosen country is the most advanced in the world technology frontier the interpretation of estimated

parameters would be clear, but with sectoral data it is not straightforward to �nd one country that is a

technological leader in all sectors in the dataset. A more �anonymous� cross-section normalisation seems

appropriate. Moreover, factor shares show low variability over time when data are aggregated by sector

type and it produces more stable capital, labour and energy shares at the normalisation point. About the

time position of the normalisation point (here equal to t0), data show quite constant factor shares over

the sample period so that the time dimension is not important for the implementation of normalisation.

Following the literature using normalisation in applied work, the normalisation point is averaged over

time.

Finally, notice that is is not necessary to �nd data for the normalisation of factor-augmenting coe�-

cients Ah for input h, because model (6)-(8) allows to estimate the normalised level of technology instead

of the original parameter in (1). In fact, the normalisation of technology would not be straightforward

because of its ambiguous nature, besides lack of data information and measurement issues. Therefore,

the estimation results for factor-augmenting coe�cients will measure the country relative position in the

world technology frontier, the distance from the average level.

2.3 Nested Production Functions

Alternative speci�cations are important to provide results that are compatible with the speci�cation of

production structures commonly used in applied economic modeling, but the econometric strategy is not

a�ected by nesting, nor aggregation. I consider four nesting cases: a one-level function and three two-level

functions. As a major di�erence, the one-level function restricts the cross-price elasticity of substitution to

be the same for alternative pairs of inputs, di�erently from the two-level nested functions. The estimation

of di�erent nesting speci�cations is mostly of interest for the calibration of speci�c numerical models and

there is no convincing methodology to establish which nesting structure better �t the data5.

Systems of factor demands for production functions with alternative nesting structures are easily

derived thanks to the weak separability of the CES function. For instance, the normalised CES function

with KL− E structure has the following speci�cation:

Y
Y0

=

[
πKL,E0

(
AVA
AVA0

VA
VA0

)σKL,E−1

σKL,E +(1−πKL,E0 )
(
AE
AE0

E
E0

)σKL,E−1

σKL,E

] σKL,E
σKL,E−1

, (9)

with the value added term de�ned as:

VA
VA0

=

[
πK,L0

(
AK
AK0

K
K0

)σK,L−1

σK,L +(1−πK,L0 )
(
AL
AL0

L
L0

)σK,L−1

σK,L

] σK,L
σK,L−1

. (10)

As in van der Werf (2008), the economic model used to estimate the nesting structure KL− E is:

5Previous attempts to use a statistical criterion to select the nesting structure that better explain data (e.g. Kemfert
(1998) and van der Werf (2008)) are not convincing. They compare factor demand systems with alternative nesting
structures based on the R2 statistics. However, these econometric models have di�erent dependent variables, which makes
the R2 not suitable for such purpose.
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ln Ē
Ȳ

=(σKL,E − 1)lnĀE + σKL,E

(
ln P̄Y
P̄E

+ ln(1− πKL,E0 )
)

(11)

ln w̄L̄

P̄V AVA
= (σK,L − 1)lnĀLĀV A + σK,Lln(1− πK,L0 ) +

σKL,E(σK,L−1)
σKL,E−1 lnπKL,E0 +

+
(σK,L−1)
1−σKL,E ln

P̄VAV A
P̄Y Ȳ

+ (σK,L − 1)ln P̄Yw̄ , (12)

ln P̄KK̄

P̄VAV A
= (σK,L − 1)lnĀKĀV A + σK,Llnπ

K,L
0 +

σKL,E(σK,L−1)
σKL,E−1 lnπKL,E0 +

+
(σK,L−1)
1−σKL,E ln

P̄VAV A
P̄Y Ȳ

+ (σK,L − 1)ln P̄Y
P̄K

. (13)

Equations (12) and (13) include the share of value added over total output, given normalised prices

and quantities. Di�erently from van der Werf (2008), rearranging conditional factor demands as in (12)-

(13) still does not help to overcome the problem of having unobservable variables of factor composites,

i.e. V A, in the solution of pro�t maximisation given (9) - (10). In fact, equations (12) and (13) require

to normalise separately prices and quantities of factor composites, which are not observed, so that I

need to average these variables jointly and to consider only the value of the factor composite. This

shortcut leads to measurement errors, due to the fact that averaging the value composite is not equal to

the product of normalised prices and quantities (PV AV A 6= P̄V AV A). Nevertheless, the concern about

potential estimation bias is limited if such error term, i.e. the covariance between prices and quantities,

does not generate spurious variability across observations for each sector type. Over time, the covariance

between prices and quantities in the same sector would be altered only if deep changes in the market

structure occurred. However, the main assumption throughout the paper is that the PPF of each sector

- which depends on the market structure - is constant over the sample time period, besides e�ects of

technological change. The same holds for cross-country heterogeneity. As a result, consistently with the

general working assumptions, I argue that the error introduced with the normalisation of factor composite

variables does not generate bias in the estimation.

3 Dataset Description

My dataset covers 27 economies and 33 sectors, listed in Table 5 in the Appendix, for the period 1995-

2008 and it is constructed with data from the World Input-Output Dataset (WIOD, see Timmer (2012))

and the IEA Energy Prices and Taxes database6. The WIOD provides information about output, input

quantities, wages and capital prices for all sectors, based on the NACE classi�cation (Rev 1.1). In

particular, the WIOD contains data for quantities of energy use disaggregated by several energy carriers

(26 energy carriers). The unit of measure for energy is tonnes of oil equivalent (toe). Labour price

is the total labour compensation divided by labour units (total hours worked by individual engaged).

The capital stock price is constructed using WIOD data and output is the real gross total output. The

price of output at time t0 is considered the numeraire for each sector-country observation. All nominal

variables have been harmonized with appropriate exchange rates for prices and expressed in 1995 US

6The WIOD dataset includes data up to 2009 but the last year shows extreme drops in economic activity due to the
aftermath of the 2007-2008 �nancial crisis and it is regarded as an outlier.

8



Figure 1: Factor Shares in the Disaggregated Dataset

Note: Sector labels are explained in Table 5 the Appendix

dollars. As no data on the price of energy composite are available from o�cial sources, I construct energy

price aggregates at country level by combining WIOD energy quantities with prices provided by the IEA

dataset (the procedure is explained in more details in Appendix A). The IEA dataset does not include

sectoral energy prices but only time-series of national price data are provided, so that in my dataset

energy prices do not vary across sectors in the same country. The major concern related to such data

limitation is that some sectors might face e�ective energy prices that are di�erent from the national

average, which may happen because, for instance, �rms in these sectors bears special energy taxes or are

relatively bigger compared to the size distribution in other sectors. Nevertheless, if this holds true in

every country, each sectoral dataset used for estimation carries no particular �aw for estimation purpose.

Figure 1 shows input shares by sector, averaged over time and country dimension. Sectors are very

heterogeneous with respect to factor shares: activities like production of fuels, real estate and mining

have a low labour intensity and high capital intensity, whereas some service activities (e.g. education and

public administration) and the construction sector have labour share well above 70 percent. Of course,

such heterogeneity does not imply high diversity in the degree of input substitution. One important

feature of the data is the stability of factor shares over time7 for each country-sector unit of observation,

with no sharp variations over the sample time period. This fact is important because the normalisation

point is �xed to one speci�c year and estimation results are likely to be robust to the choice of the

benchmark time period.

Macrosectors are constructed by aggregation using groups of the original 33 sectors. Quantity variables

are aggregated and prices are weighted averages of initial prices, with weights given by country-speci�c

output shares on total international output. Details about sectoral aggregation are summarized in Table

6 in the Appendix. The �rst macrosectoral classi�cation is based on the classic distinction between

primary, secondary and tertiary sectors. The second classi�cation separates the most energy-intensive

activities from the rest of the economy. A sector is considered energy-intensive if the energy share on

total costs is higher than 5 percent, on average8. This category includes agriculture, mining activities,

some industries, the energy sector and transportation services. Finally, sectors are aggregated up to the

national level to retrieve estimates of the classic macroeconomic production function.

7The time pattern of input shares for each country-sector unit cannot be displayed here for reasons of space.
8The choice of the threshold is quite robust, because by lowering it to 3% only one additional sector (Food, Beverages

and Tobacco) would join the group of energy-intensive activities.
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4 Estimation and Results

4.1 System Estimation

Econometric models used to estimate one-level production possibilities frontiers (5) and two-level

technologies, i.e. (9)-(10), are based on the normalised conditional factor demand models derived in the

previous section. The econometric model is de�ned on a panel of country-year data, separately for each

sector: I assume that each sector has the same degree of input substitution in di�erent countries but

levels of technological development are allowed to be heterogeneous across economies.

In order to capture the e�ect of time on technological progress and technology di�erences across coun-

tries, I focus on the growth rates of Āhi, and assume that the normalised level of technology development

follows an exponential process Āhi = ahie
γhi(t−t0), where h is an input and i a country index. Model

(6)-(8) becomes:

ln
K̄it

Ȳit
= αKi + δKi(t− t0) + βln

(
P̄Yit

¯PKit
π0

)
+ εKit (14)

ln
L̄it
Ȳit

= αLi + δLi(t− t0) + βln

(
P̄Yit
P̄Lit

ω0

)
+ εLit (15)

ln
Ēit
Ȳit

= αEi + δEi(t− t0) + βln

(
P̄Yit
P̄Eit

(1− π0 − ω0)

)
+ εEit (16)

at time t, given αhi = lnai Sectoral indexes js are omitted for clarity. In vector notation (set t0 = 0):

s̄it = αi + δit+ P̄itβ + εit (17)

where the 3x1 vector s̄it contains physical input shares and P̄it is a 3x1 vector of normalised relative

prices. All models are estimated with the generalised method of moments estimator. The variance-

covariance matrix of disturbances is Heteroskedasticity and Autocorrelation Consistent (HAC) to account

for autocorrelation typical of macroeconomic variables (and present in the data here). No speci�c assump-

tion is imposed on the cross-equation error correlation. Notice that sectoral input-output relationships

could spur serial correlation in the error terms across sector, but this is not an issue here because model

(17) is speci�ed for one single sector.

The vector αi of factor-augmenting technological change coe�cients measures the initial level of

technology development for country i. To understand whether αi is better captured by �xed or random

e�ects, I carry out classic tests to compare alternative panel data models. Firstly, the Likelihood Ratio

test rejects complete pooling meaning that �xed e�ects improve the identi�cation of the sectoral degree of

input substitution. Secondly, the Hausman test supports the �xed e�ects model as candidate for further

estimation.

Model (17) accounts for country-speci�c factor-augmenting technological change and for each input

it captures both level, by a constant term, and rate of e�ciency growth, by a time trend. The former

term measures the starting position of the country on the - normalised - international technology frontier

and the latter would instead catch dynamic features of factor-augmenting technology, namely changes in

factor intensity over time. Parameter estimates of system (17) are used to retrieve the coe�cients of the

original model, the elasticity of substitution σ and growth rates γhi. Here I focus on the estimates of

elasticities and leave aside results for factor-augmenting coe�cients. Besides the data short time coverage,

notice that in the two-level production functions the interpretation of technological change coe�cients

for composites of inputs, see system (11) - (13), does not provide insights on more general questions on

the nature of technological change. The elasticity of substitution is obtained as σ̂ = β̂, where β̂ is the
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coe�cient estimated from model (17).

The estimation of two-level factor demand systems, as (11) - (13), is similar. The estimated system

of equation is:

ln Ē
Ȳ

=αEi + δEi(t− t0) + β1ln
(
P̄Yit
P̄Eit

(1− πKL,E0 )
)

+ εEit (18)

ln
w̄L̄

P̄V AV A
= αV A−L,i + δV A−L,i(t− t0) + β2

1−β1
ln P̄VAV A

P̄Y Ȳ
+ β2ln

P̄Y
w̄ + εV A−L

it , (19)

ln P̄KK̄

P̄VAV A
= αV A−K,i + δV A−K,i(t− t0)+

β2

1− β1
ln
P̄V AV A

P̄Y Ȳ
+ β2ln

P̄Y
P̄K

+ εV A−K
it . (20)

Again, I set t = t0 and carry out the estimation with the generalised method of moments estimator

with HAC variance-covariance matrix. Also in this case country-speci�c coe�cients are modeled as �xed

e�ects. Thanks to restrictions imposed on coe�cients before estimation, the elasticities of substitution

are retrieved as follows: σ̂KL,E = β̂1 and σ̂K,L = β̂2.

4.2 Estimation Results

4.2.1 Alternative Nesting Structures

This section presents a general discussion of the results obtained with the most disaggregated data and

tables showing full details9 are attached in the Appendix (Tables 8 and 9). Estimation results for the

four nesting structures provide strong evidence for input complementarity in production, in line with

the literature. Table 1 lists some descriptive statistics for the point estimates (if statistically signi�cant

at 5 percent), in order to give a �avour of the distribution of σ across sectors. Figure 2 plots some

of the estimated elasticities for all sectors, ordered by value. The KLE one-level production function

constraints substitution possibilities to be the same for capital, labour and energy and in this case, results

point quite clearly at complementarity between them. Only three sectors (Agriculture, Machinery and

Wholesale Trade) have an estimated elasticity σ̂KLE that is not signi�cantly di�erent from one at the 5%

level. For two-level production functions, results show a quite high heterogeneity in sectoral substitution

between inputs. When capital and labour are combined in a value added composite (the KL−E nesting),

sectoral elasticities between the two inputs lie quite close to unity and for some manufacturing sectors and

transportation activities, the value added composite is described by a Cobb-Douglas production function.

This result is remarkable, providing evidence for the common modelling assumption of �xed labour and

capital compensation shares. Di�erently from studies that focus on capital and labour only, here the

econometric model accounts for the e�ect of the upper nesting level (energy) in the substitution between

capital and labour. Equations (19)-(20) in Section 4.1 show how the upper-level elasticity σKL,E enters

factor demands and alters the e�ect of changes in the share of value added on labour and capital shares.

Looking at the distribution of σ̂K,L , mean and median values are slightly below unity, whereas energy

shows a high degree of complementarity with the value added composite. Intuitively, large part of the

energy demand derives from the use of capital goods and complementarity was expected. This intuition

is con�rmed by σ̂K,E in the KE − L nesting, point estimates that indicate low �exibility in the use of

capital and energy (with the unique exception of the Wood Production sector).

Elasticity distributions are rather symmetric and mean and median values stay within the domain of

complementarity. The estimated elasticity is higher than one only in few cases, mostly in the LE −K
nesting. For several sectors, about one third, the LE−K structure has high substitution between capital

9Due to limitations of space, Tables 8-9 do not report additional tests (J-statistic and parameter tests) but they are
avalable upon request.
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Table 1: Estimated Elasticities for Disaggregated Sectors

KL-E KE-L LE-K KLE

σ̂KL,E σ̂K,L σ̂KE,L σ̂K,E σ̂LE,K σ̂L,E σ̂KLE

[Min - Max] [0 - 0.82] [0.59 - 1.05] [0 - 1.31] [0.36 - 1.03] [0 - 1.96] [0.20 - 0.87] [0.39 - 0.89]

Mean 0.25 0.91 0.38 0.57 0.72 0.65 0.73

Median 0.25 0.93 0.40 0.54 0.53 0.67 0.75

Note: 337 observations. Non-zero values are estimated coe�cients with level of signi�cance at 5%.

and the labour-energy composite, but at the same time in half of the sectors a Leontief technology results.

The distribution of σ̂LE,K is indeed quite asymmetric and the median is lower than the mean.

Yet we might doubt that if a sector had a Cobb-Douglas technology but di�erent factor shares across

countries, the econometric strategy used here could lead to �awed results because of the normalisation

of the share parameters in the production function. Here the share parameter - crucial in a Cobb-

Douglas function - is indeed constrained to be equal to the input share at the normalisation point, but

cross-country heterogeneity in factor shares could be still captured by �xed e�ects and no bias arises in

the estimation of the elasticity parameter. In this regard, the time dimension of the panel dataset is

particularly important to disentangle these data features, given quite stable factor shares over time.

In Figure 2, sectors are ordered by their estimated elasticity value for the one-level production function

σ̂KLE and for input couples in various two-level production nestings (σ̂K,L, σ̂K,E, σ̂L,E). Is the ranking de-

pending on sectoral characteristics? This question is rather unusual, because the elasticity of substitution

between inputs is regarded as an - unexplained - exogenous parameter. Looking at the graphs, sectors'

placement on the ranking does not show any apparent regularity, but a more accurate analysis provides

interesting insights. I calculate correlations of sectoral elasticities with selected sectoral characteristics,

reported in Table 2, and �nd some �stylised facts�.

First, the elasticity of substitution σ̂KLE in the one-level production function is correlated with input

cost shares ψh , h ∈ {L,K,E}, positively with the labour share and negatively with the fraction of

capital and energy costs. For σ̂K,L the opposite holds, which gives a hint about the role of factor-

augmenting technological change in the relationship (that is ine�ective on cost shares under Cobb-Douglas

technology). The fourth column shows the correlation of σ̂f with a measure of the imbalance in factor

shares, φjH =
∣∣∣ψjh1

−
(∑H

h ψ
j
h

)
/NH

∣∣∣, where H is the set of NH inputs in the nesting and ψh1 is the

factor cost share of one of these inputs. Except for the KL composite, in the other three forms of nesting

the elasticity is weakly correlated with the imbalance in factor use. The �fth columns shows no signs

of a strong relationship between input substitution and the size of the sector j market, measured by the

value share on total national output, νj . The last three columns present correlations between σ and θjh,

the fraction of total national employment of input h that is demanded by sector j. The statistically

signi�cant correlation coe�cients are mostly negative, in particular for the one-level production function.

Overall, this piece of analysis sheds some light on the ranking in Figure 2. Consider the graph

representing the elasticity σKLE at the bottom of the page. According to the correlations of Table 2,

sectors with high elasticity values tend to have higher labour cost shares - and more imbalanced input

shares - but also to be small players in factor markets. The presence of non zero correlations between

cross-price input elasticities and sectoral equilibrium allocations has important implications for economic

policy because the e�ect of an input tax depends on such kind of correlation in an economy with several

heterogeneous sectors.
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Figure 2: Overview of Sectoral Elasticities of Substitution

Note: Con�dence intervals at 95% level.
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Table 2: Correlation between Input Elasticities and Sectoral Characteristics

Cost Input Share Sector Sector Weight

Shares Imbalance Value Share in Input's Market

ρ ψL ψK ψE φH ν θL θK θE

σ̂K,L -0.41 0.40 - 0.13 -0.02 0.37 -0.28 -0.063

0.016 0.019 0.478 0.924 0.036 0.118 0.729

σ̂K,E - -0.29 -0.16 -0.31 -0.40 -0.28 -0.33 -0.29

0.110 0.398 0.076 0.022 0.112 0.062 0.104

σ̂L,E -0.25 - 0.13 -0.38 -0.28 -0.33 -0.16 0.11

0.181 0.485 0.027 0.115 0.058 0.379 0.560

σ̂KLE 0.64 -0.37 -0.46 0.34 0.04 -0.67 -0.30 -0.44

0.000 0.042 0.008 0.057 0.815 0.000 0.091 0.011

Note: p-values in smaller font, bold faced values are statistically signi�cant at 5 percent level.

4.2.2 Level of Aggregation and Elasticities

Table 3 shows estimation results and reports distribution statistics10 for nj subsectors that belong to

each macrosector j ∈ {Pri, Sec, Ter,HighE,LowE,Aggr} (see Table 6 in the Appendix for details).

In general, complementarity is con�rmed at a higher level of aggregation. Qualitatively, the Primary,

Secondary and Tertiary sectors do not di�er much in terms of input substitution for all nesting structures

except σ̂LE,K . The estimates for σ̂LE,K show perfect complementarity between labour and the KE

composite in the Primary and Secondary sectors and, consistently, for Energy-Intensive �rms. On the

contrary, the Tertiary sector (as well as the Low Energy Use sector) appears to have strong degree of

substitution at this level of the nesting. The results would bolster the assumption of identical degree

of input substitution across sectors, common in theoretical modelling work. Qualitatively, sectors di�er

with respect to factor shares but not the elasticity of substitution.

Moreover, even the estimation with macrosector data provides support for a unitary elasticity between

capital and labour in the KL composite, which is in contrast with previous studies using normalised

production functions, i.e. Herrendorf et al. (2013) and Leon-Ledesma et al. (2013). Obtaining higher

results than studies using time-series data is not a new issue in the literature - see Antras (2004) for

a discussion - but my work embeds two major improvements compared to these studies: the extension

to a panel data analysis and the modelling of energy. By accounting for energy, I manage to capture

the interactions between this input and capital and labour and go beyond the implicit assumption of

�xed cost shares between energy and the value added composite. Another enhancement comes from the

cross-section dimension because there are additional information to estimate the technology frontier of

each country. However, my estimates mostly di�er from Herrendorf et al. (2013) and Leon-Ledesma et

al. (2013) because I estimate an international PPF rather than the degree of input substitution for one

single country, that in their case is United States.

My results bring a bad news for environmental policy: energy-intensive �rms have strong complemen-

tarity between energy and other factors of production. Without technological progress, environmental

policies relying on input substitution have little potential to reduce �rms energy demand without occurring

in high output losses. Related to the insight of Bretschger and Smulders (2012), input complementarity

in production for the most innovative �rms, namely the Secondary sector, arises the concern that energy

scarcity might have detrimental e�ects on the pace of technological change.

Input elasticities at a more aggregated level are expected to di�er from estimates discussed in the

previous section. For instance, data variation for relative input prices and quantity shares in the energy-

intensive sector embodies both the degree of input substitution of subsectors and the extensive margin

10As the Primary sector includes only the Agriculture and Mining sectors, no mean and median values are calculated.
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Table 3: Estimated Elasticities for Macrosectors and Comparison

KL-E KE-L LE-K KLE

σ̂KL,E σ̂K,L σ̂KE,L σ̂K,E σ̂LE,K σ̂L,E σ̂KLE

Primary
0.28 0.91 0.29 0.46 0 0.62 0.87

(nPri=2)

[Min-Max] [0.27 - 0.29] [0.83 - 0.90] [0 - 0.40] [0.38 - 0.54] [0 - 0] [0.59 - 0.67] [0.39 - 0.86]

Mean/Median - - - - - - -

Secondary
0.23 0.95 0.25 0.53 0 0.56 0.62

(nSec=16)

[Min-Max] [0 - 0.32] [0.59 - 1.04] [0 - 1.31] [0.36 - 1.03] [0 - 1.95] [0.21 - 0.87] [0.49 - 0.89]

Mean/Median 0.21/0.24 0.91/0.93 0.37/0.39 0.59/0.56 0.67/0.41 0.68/0.71 0.70/0.73

Tertiary
0.20 1.00 0.42 0.45 1.67 0.66 0.82

(nTer=15)

[Min-Max] [0.17 - 0.82] [0.73 - 1.05] [0 - 0.73] [0.37 - 0.82] [0 - 1.96] [0.19 - 0.84] [0.49 - 0.89]

Mean/Median 0.28/0.25 0.92/0.93 0.42/0.42 0.54/0.53 0.86/0.85 0.62/0.65 0.77/0.80

Energy-Intensive
0.21 0.95 0.26 0.44 0 0.59 0.66

(nHighE=11)

[Min-Max] [0 - 0.82] [0.77 - 1.04] [0 - 1.31] [0.36 - 1.03] [0 - 1.85] [0.52 - 0.87] [0.43 - 0.82]

Mean/Median 0.27/0.25 0.90/0.92 0.42/0.44 0.59/0.55 0.44/0 0.72/0.73 0.70/0.71

Low Energy Use
0.21 0.99 0.33 0.47 1.51 0.64 0.75

(nLowE=22)

[Min-Max] [0 - 0.30] [0.59 - 1.05] [0 - 0.76] [0.37 - 0.9] [0 - 1.96] [0.20 - 0.84] [0.39 - 0.89]

Mean/Median 0.23/0.25 0.92/0.95 0.36/0.39 0.55/0.53 0.87/0.85 0.61/0.65 0.75/0.80

Aggregate Economy
0.21 0.98 0.31 0.42 1.51 0.73 0.74

(nAggr=33)

[Min-Max] [0 - 0.81] [0.59 - 1.05] [0 - 1.31] [0.36 - 1.03] [0 - 1.96] [0.19 - 0.87] [0.39 - 0.89]

Mean/Median 0.25/0.25 0.91/0.93 0.38/0.40 0.57/0.54 0.72/0.53 0.65/0.67 0.73/0.75

Note: 337 observations. Non-zero values are estimated coe�cients with level of signi�cance at 5%.

adjustment operating through reallocation of demand across sectoral goods. In fact, subsectors di�er in

factor shares and their output prices react di�erently to input price changes. According to the theoretical

understanding of Sato (1967) and Ober�eld and Raval (2012), having point estimates for macrosectors

lying within the minimum and maximum value of subsector elasticities hints that the elasticity of demand

between subsector goods is quite low. This result is not trivial as for di�erent types of elasticities, i.e.

Frisch elasticity of labour supply, the aggregate value turns to be higher than estimates from micro-data

because the extensive margin plays a more important role (total hours mostly adjust through employment

changes, see for instance Fiorito and Zanella (2012)).

4.3 Robustness Check

Compared to most studies to date, the normalisation approach has the advantage to leave room for

the analysis of long-run dynamics. Indeed, systems (14) - (16) and (18) - (20) can identify all coe�cients

of the original model with variables in levels and do not require �rst di�erencing. Nonetheless, the use

of level variables with time series data raises the well known concern about spurious regression. In the

case at hand, even testing for the presence of unit roots is not a straightforward task because of the

complex data structure and the small sample time length T. Unfortunately, with T=14 and N=27 panel

unit-root tests, like the Im-Pesaran-Shin test, have low power and size distortion (Maddala and Wu, 1999;

Im et al., 2003). In order to avoid the use of unreliable evidence, an indirect way to check for spurious

estimation, I make additional estimation runs with a �rst-di�erenced version of the factor demand models.

Results are shown in Tables 9 and Table 11 in the Appendix. Overall, the use of �rst di�erences leads

to outcomes that are qualitatively similar to the results of the previous set of estimations, even if they
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Table 4: Changes in Sectoral Ranking with the First-di�erenced Model

|4Quartile| σ̂K,L σ̂K,E σ̂L,E σ̂KLE

Zero 13 14 6 10

One 10 11 10 14

Two 7 5 11 6

Three 3 3 6 3

might be quantitatively di�erent. Firstly, the evidence for gross complementarity between capital, labour

and energy still holds. For some sectors the estimated elasticity of substitution is lower than previously

estimated and drops to zero. Secondly, new estimates still indicate that the elasticity of substitution

between capital and labour in the KL − E production structure is close to one at various levels of

aggregation. Third, I check if the ranking over σ̂j is preserved. I divide the set of estimation results for

each nesting structure into four quartiles, with thresholds given by the 25th, 50th, 75th percentiles of the

sample distribution of estimated input elasticities. For each sector, I track the change in quartile position

after estimating the corresponding �rst-di�erenced model, which can be from -3 to +3. Table 4 shows

the number of sectors that happen to have one, two, three or no changes in quartile in the new set of

estimates. I consider the position in the order preserved if the sector does not jump to another quartile

and we can see from Table 4 that this strict condition holds only in one third of the estimation results.

Under a more relaxed requirement that allows the sector's σ̂j to jump in one of the closest quartiles, the

distribution looks quite preserved eventually for all elasticities except σ̂L,E . The ordering of sectors along

the σ̂L,E estimates is rather di�erent from the one obtained from the estimation without �rst-di�erenced

variables.

5 Final Remarks

I have presented estimates of the elasticity of substitution between capital, labour and energy obtained

from the estimation of normalised conditional factor demands with cross-country panel datasets. The

normalisation of the production function and the rich dataset help to identify factor-augmenting techno-

logical change and to measure the degree of factor substitution more precisely. The estimation is carried

out on alternative input nesting structures and di�erent levels of aggregation.

There are four major �ndings. First, in line with previous studies, there is a quite low degree of

�exibility in using production inputs at the aggregate level. Given a one percent change in relative input

prices, factor shares experience a less than proportional percentage variation. In a CES speci�cation,

this also implies an increase in the cost share of the input that gets relatively more expensive. Moreover,

higher input e�ciency through factor-augmenting technological progress has the e�ect to reduce the

input marginal productivity and shrink the relative demand of this production factor. This result holds

in most sectors under di�erent levels of aggregation and alternative nesting structures. The notable

exception is capital and labour in the value added composite. In this case the cross-price elasticity of

substitution is close to unity and this result suggests that production functions for sectoral value added

might be represented by a Cobb-Douglas speci�cation. Second, by grouping sectors in macrosectors,

i.e. primary/secondary/tertiary and energy-intensive/low energy use sectors, I obtain elasticity values

that are quite similar across macrosectors. Moreover, the group of energy-intensive �rms does not have a

di�erent degree of input substitution compared to the rest of the economy. As well, the primary, secondary

and tertiary sectors have very similar elasticities. The full data aggregation up to the national economy

provides estimates of the classic aggregate production function and shows a quite strong evidence for an

elasticity below unit with the exception, also in this case, of the value added composite that results to

have a unitary elasticity. The third result is that the estimation of production functions for macrosectors
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gives elasticity estimates that lie within the range of estimates obtained from more disaggregated data,

suggesting that the elasticity of demand between subsectoral goods is low.

The fourth and last �nding is a small set of stylized facts, the correlation of input elasticities with

sectoral characteristics as input cost shares, imbalances in input use for production, the sector value

share and the sector weight in each input market. In general, an intuitive interpretation of these stylized

facts is not possible because whereas the properties of a CES technology can guide us in explaining the

potential e�ects of input elasticities on factor cost and value shares in equilibrium, explaining why these

sectoral allocations would determine an exogenous parameter is a walk in the dark. An in-depth study

of these correlations would be an interesting line of further research, with potential implications for the

analysis of input taxation in a multisector economy.
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A Construction of Energy Price Data

Original price data are taken from the OECD dataset �Energy prices and Taxes�. In order to build

the aggregate energy price index for every country-year observation, I need prices for each major energy

carrier included in the WIOD (14 selected11, covering around 70% of total energy use). The aggregate

index is a weighted average of energy prices for di�erent energy types, where weights are given by the

country's energy mix (average over the sample period, to avoid that variations in weights a�ect the

aggregate price).

OECD price data present several missing values. The highest concern is about interruptions in time

series for single energy carriers because this could generate spurious variations in the aggregate index.

To prevent missing data from a�ecting the aggregate price index over time, incomplete time series are

reconstructed. Fortunately, the cases are not so many and only the energy carriers Naphtha, High Fuel

Oil (HFO) and Electricity present this issue. For Naphtha and HFO, I exploit the similarity of these

products to, respectively, Diesel and Light Fuel Oil (LFO), for which I have complete information. The

replacement procedure is as follows. First, I calculate yearly changes for the price of the substitute

energy carrier starting from the �rst year of missing data in the original series. The price changes are

then applied to the original price series {pej,t}Tt=0:

pej,t =

t∏
l=tx

(
peh,l
peh,l−1

)
pej,tx−1

where the price of the incomplete energy carrier j (e.g. HFO) is replaced by the price of the energy

carrier h (e.g. LFO) and the �rst missing year for j is period tx. For Electricity prices, the few cases

of incomplete time series are reconstructed by interpolation. However, when countries have only few

available observations, no more than four years, the entire time series is considered missing and it is

removed from the calculation of the price index (the quantities for the missing energy carrier are also

subtracted to the total energy use before weighting).

Finally, data for some energy carriers in few countries are completely missing (�rst two columns in

Table 5). The replacement procedure is the same, this time using information of similar countries. The

matching is based on geographical and economic criteria, mostly location proximity and similarity in the

national energy mix (fourth column). The third column of Table 7 lists the share of those energy carriers

for year 2002, showing that missing data are not higher than one �fth of total energy use (excluded

Slovenia, around 25%).

Table 7: Missing value treatment for speci�c energy carriers

Energy carrier Missing values for Energy share (pct, 2002) Replaced with

Diesel Estonia 4.6 Finland

Slovenia 5.4 Austria

Electricity Estonia 7.8 Finland

Slovenia 13.4 Austria

LFO Estonia 5.1 Finland

Slovenia 7.0 Austria

Natural Gas Austria 15.7 Hungary

Belgium 11.3 France

Portugal 6.7 Spain

Italy 16.6 Spain

11Crude Oil, Diesel, Jet fuel, Light Fuel Oil (LFO), Heavy Fuel Oil (HFO), Naphtha, Natural Gas, Electricity and
Renewables
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Table 6: Macrosectors - Speci�cation
Macrosector Including:

Primary (Pri) AtB, C

Secondary (Sec) 15t16 - 24, 27t28, 29, 30t33, 34t35, 36t37, E, F

Tertiary (Ter) 50-52, 60-64, 70, 71t74, H, J ,L,M,N,O

Energy-intensive (HighE) AtB, C, 17t18, 20-24, 26, 27t28 , E, 60-63

Low Energy Use (LowE) 15t16, 19, 25, 29 - 36t37, 50-52, 64, 70, 71t74, F, H, J ,L,M,N,O
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Table 10: Macrosectors - Details of Estimation Results

Primary Secondary Tertiary
Energy Low Energy Aggregate

Intensive Use Economy

σKL,E 0.28*** 0.23*** 0.20*** 0.21*** 0.21*** 0.21***

(0.09) (0.07) (0.05) (0.06) (0.05) (0.06)

σKL,E = 1 67.26 135.0 232.5 159.5 206.3 202.8

σK,L 0.91*** 0.95*** 1.00*** 0.95*** 1.00*** 0.98***

(0.03) (0.04) (0.02) (0.03) (0.02) (0.01)

σK,L = 1 10.29 1.52 0.06 3.49 0.00 0.22

J-Stat 16.5 2.12 5.53 4.6 3.91 7.03

σKE,L 0.29*** 0.25*** 0.42*** 0.25*** 0.33*** 0.31***

(0.06) (0.07) (0.03) (0.05) (0.05) (0.04)

H0 : σKE,L = 1 122.4 103.2 302.9 255.1 204.3 352.7

σK,E 0.46*** 0.53*** 0.45*** 0.44*** 0.46*** 0.42***

(0.06) (0.07) (0.04) (0.05) (0.05) (0.04)

H0 : σK,E = 1 75.59 38.63 155.3 106.7 136.1 175.5

J-Stat 60.39 61.69 67.63 77.4 51.0 70.36

σLE,K -0.21 -0.69* 1.67*** -0.08 1.51*** 1.51***

(0.47) (0.38) (0.16) (0.40) (0.10) (0.14)

H0 : σLE,K = 1 6.64 19.73 17.66 7.34 26.94 13.08

σL,E 0.62*** 0.56*** 0.66*** 0.59*** 0.64*** 0.73***

(0.12) (0.08) (0.11) (0.10) (0.10) (0.09)

H0 : σL,E = 1 9.76 28.23 9.99 15.86 12.23 9.37

J-Stat 18.71 32.83 20.57 25.45 23.99 20.81

σKEL 0.87*** 0.62*** 0.82*** 0.66*** 0.75*** 0.74***

(0.10) (0.09) (0.05) (0.09) (0.06) (0.07)

H0 : σKEL = 1 1.81 18.26 13.25 15.3 17.5 16.10

J-Stat 23.8 22.45 17.04 20.05 18.2 22.0

Note: 337 Observations. Standard errors in parenthesis. The table also reports the the J-statistic and

the χ2 statistics for the Wald test of the Cobb-Douglas hypothesis.
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Table 11: Macrosectors - Estimation with First-di�erenced Models

Primary Secondary Tertiary
Energy Low Energy Aggregate

Intensive Use Economy

σKL,E -4,69 2.31 1.13* 3.45 1.07*** 1.02***

(734,48) (7.63) (0.58) (15.41) (0.38) (0.07)

H0 : σKL,E = 1 0.00 0.03 0.05 0.02 0.04 0.11

σK,L 0.62*** 0.90*** 1.02*** 0.86*** 1.01*** 0.97***

(0.18) (0.09) (0.05) (0.08) (0.05) (0.04)

H0 : σK,L = 1 4.5 1.28 0.16 2.36 0.05 0.40

J-Stat 9.44 0.65 6.18 0.79 1.54 5.43

σKE,L -0.04 0.73*** 0.59*** 0.23** 0.68*** 0.71***

(0.19) (0.10) (0.08) (0.09) (0.08) (0.06)

H0 : σKE,L = 1 28.00 6.88 23.57 66.12 13.42 39.93

σK,E 0.38*** 0.94*** 0.73*** 0.36*** 0.84*** 0.87***

(0.08) (0.04) (0.09) (0.09) (0.07) (0.06)

H0 : σK,E = 1 48.73 2.21 9.06 54.01 5.07 4.53

J-Stat 35.4 28.04 37.44 36.21 24.44 39.93

σLE,K 0.48 0.94*** 1.19*** 0.72*** 1.28*** 1.06***

(0.46) (0.17) (0.11) (0.27) (0.12) (0.13)

H0 : σLE,K = 1 1.28 0.12 2.64 1.00 5.13 0.26

σL,E 1.03*** 1.02*** 1.02*** 1.15*** 1.00*** 1.02***

(0.01) (0.08) (0.01) (0.21) (0.01) (0.03)

H0 : σL,E = 1 2.89 0.10 6.45 0.50 0.37 0.76

J-Stat 0.27 2.23 0.26 1.02 2.65 1.25

σKLE 0.95*** 0.87*** 1.05*** 0.91*** 1.02*** 0.98***

(0.11) (0.10) (0.05) (0.10) (0.07) (0.04)

H0 : σKEL = 1 0.75 1.64 1.03 0.75 0.07 0.14

J-Stat 2.09 0.05 1.21 0.22 3.41 0.40

Note: 310 Observations. Standard errors in parenthesis. The table also reports the the J-statistic and

the χ2 statistics for the Wald test of the Cobb-Douglas hypothesis.
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